code_generator.cc revision 5f8741860d465410bfed495dbb5f794590d338da
1/* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "code_generator.h" 18 19#include "code_generator_arm.h" 20#include "code_generator_arm64.h" 21#include "code_generator_x86.h" 22#include "code_generator_x86_64.h" 23#include "compiled_method.h" 24#include "dex/verified_method.h" 25#include "driver/dex_compilation_unit.h" 26#include "gc_map_builder.h" 27#include "leb128.h" 28#include "mapping_table.h" 29#include "mirror/array-inl.h" 30#include "mirror/object_array-inl.h" 31#include "mirror/object_reference.h" 32#include "ssa_liveness_analysis.h" 33#include "utils/assembler.h" 34#include "verifier/dex_gc_map.h" 35#include "vmap_table.h" 36 37namespace art { 38 39size_t CodeGenerator::GetCacheOffset(uint32_t index) { 40 return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue(); 41} 42 43static bool IsSingleGoto(HBasicBlock* block) { 44 HLoopInformation* loop_info = block->GetLoopInformation(); 45 // TODO: Remove the null check b/19084197. 46 return (block->GetFirstInstruction() != nullptr) 47 && (block->GetFirstInstruction() == block->GetLastInstruction()) 48 && block->GetLastInstruction()->IsGoto() 49 // Back edges generate the suspend check. 50 && (loop_info == nullptr || !loop_info->IsBackEdge(block)); 51} 52 53void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { 54 Initialize(); 55 if (!is_leaf) { 56 MarkNotLeaf(); 57 } 58 InitializeCodeGeneration(GetGraph()->GetNumberOfLocalVRegs() 59 + GetGraph()->GetTemporariesVRegSlots() 60 + 1 /* filler */, 61 0, /* the baseline compiler does not have live registers at slow path */ 62 0, /* the baseline compiler does not have live registers at slow path */ 63 GetGraph()->GetMaximumNumberOfOutVRegs() 64 + 1 /* current method */, 65 GetGraph()->GetBlocks()); 66 CompileInternal(allocator, /* is_baseline */ true); 67} 68 69bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { 70 DCHECK_EQ(block_order_->Get(current_block_index_), current); 71 return GetNextBlockToEmit() == FirstNonEmptyBlock(next); 72} 73 74HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { 75 for (size_t i = current_block_index_ + 1; i < block_order_->Size(); ++i) { 76 HBasicBlock* block = block_order_->Get(i); 77 if (!IsSingleGoto(block)) { 78 return block; 79 } 80 } 81 return nullptr; 82} 83 84HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { 85 while (IsSingleGoto(block)) { 86 block = block->GetSuccessors().Get(0); 87 } 88 return block; 89} 90 91void CodeGenerator::CompileInternal(CodeAllocator* allocator, bool is_baseline) { 92 HGraphVisitor* instruction_visitor = GetInstructionVisitor(); 93 DCHECK_EQ(current_block_index_, 0u); 94 GenerateFrameEntry(); 95 for (size_t e = block_order_->Size(); current_block_index_ < e; ++current_block_index_) { 96 HBasicBlock* block = block_order_->Get(current_block_index_); 97 // Don't generate code for an empty block. Its predecessors will branch to its successor 98 // directly. Also, the label of that block will not be emitted, so this helps catch 99 // errors where we reference that label. 100 if (IsSingleGoto(block)) continue; 101 Bind(block); 102 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 103 HInstruction* current = it.Current(); 104 if (is_baseline) { 105 InitLocationsBaseline(current); 106 } 107 current->Accept(instruction_visitor); 108 } 109 } 110 111 // Generate the slow paths. 112 for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { 113 slow_paths_.Get(i)->EmitNativeCode(this); 114 } 115 116 // Finalize instructions in assember; 117 Finalize(allocator); 118} 119 120void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { 121 // The register allocator already called `InitializeCodeGeneration`, 122 // where the frame size has been computed. 123 DCHECK(block_order_ != nullptr); 124 Initialize(); 125 CompileInternal(allocator, /* is_baseline */ false); 126} 127 128void CodeGenerator::Finalize(CodeAllocator* allocator) { 129 size_t code_size = GetAssembler()->CodeSize(); 130 uint8_t* buffer = allocator->Allocate(code_size); 131 132 MemoryRegion code(buffer, code_size); 133 GetAssembler()->FinalizeInstructions(code); 134} 135 136size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) { 137 for (size_t i = 0; i < length; ++i) { 138 if (!array[i]) { 139 array[i] = true; 140 return i; 141 } 142 } 143 LOG(FATAL) << "Could not find a register in baseline register allocator"; 144 UNREACHABLE(); 145 return -1; 146} 147 148size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) { 149 for (size_t i = 0; i < length - 1; i += 2) { 150 if (!array[i] && !array[i + 1]) { 151 array[i] = true; 152 array[i + 1] = true; 153 return i; 154 } 155 } 156 LOG(FATAL) << "Could not find a register in baseline register allocator"; 157 UNREACHABLE(); 158 return -1; 159} 160 161void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, 162 size_t maximum_number_of_live_core_registers, 163 size_t maximum_number_of_live_fp_registers, 164 size_t number_of_out_slots, 165 const GrowableArray<HBasicBlock*>& block_order) { 166 block_order_ = &block_order; 167 DCHECK(block_order_->Get(0) == GetGraph()->GetEntryBlock()); 168 DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), block_order_->Get(1))); 169 ComputeSpillMask(); 170 first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; 171 172 if (number_of_spill_slots == 0 173 && !HasAllocatedCalleeSaveRegisters() 174 && IsLeafMethod() 175 && !RequiresCurrentMethod()) { 176 DCHECK_EQ(maximum_number_of_live_core_registers, 0u); 177 DCHECK_EQ(maximum_number_of_live_fp_registers, 0u); 178 SetFrameSize(CallPushesPC() ? GetWordSize() : 0); 179 } else { 180 SetFrameSize(RoundUp( 181 number_of_spill_slots * kVRegSize 182 + number_of_out_slots * kVRegSize 183 + maximum_number_of_live_core_registers * GetWordSize() 184 + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize() 185 + FrameEntrySpillSize(), 186 kStackAlignment)); 187 } 188} 189 190Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { 191 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 192 // The type of the previous instruction tells us if we need a single or double stack slot. 193 Primitive::Type type = temp->GetType(); 194 int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1; 195 // Use the temporary region (right below the dex registers). 196 int32_t slot = GetFrameSize() - FrameEntrySpillSize() 197 - kVRegSize // filler 198 - (number_of_locals * kVRegSize) 199 - ((temp_size + temp->GetIndex()) * kVRegSize); 200 return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot); 201} 202 203int32_t CodeGenerator::GetStackSlot(HLocal* local) const { 204 uint16_t reg_number = local->GetRegNumber(); 205 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 206 if (reg_number >= number_of_locals) { 207 // Local is a parameter of the method. It is stored in the caller's frame. 208 return GetFrameSize() + kVRegSize // ART method 209 + (reg_number - number_of_locals) * kVRegSize; 210 } else { 211 // Local is a temporary in this method. It is stored in this method's frame. 212 return GetFrameSize() - FrameEntrySpillSize() 213 - kVRegSize // filler. 214 - (number_of_locals * kVRegSize) 215 + (reg_number * kVRegSize); 216 } 217} 218 219void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { 220 // The DCHECKS below check that a register is not specified twice in 221 // the summary. The out location can overlap with an input, so we need 222 // to special case it. 223 if (location.IsRegister()) { 224 DCHECK(is_out || !blocked_core_registers_[location.reg()]); 225 blocked_core_registers_[location.reg()] = true; 226 } else if (location.IsFpuRegister()) { 227 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); 228 blocked_fpu_registers_[location.reg()] = true; 229 } else if (location.IsFpuRegisterPair()) { 230 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); 231 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; 232 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); 233 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; 234 } else if (location.IsRegisterPair()) { 235 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); 236 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; 237 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); 238 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; 239 } 240} 241 242void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { 243 LocationSummary* locations = instruction->GetLocations(); 244 if (locations == nullptr) return; 245 246 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 247 blocked_core_registers_[i] = false; 248 } 249 250 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 251 blocked_fpu_registers_[i] = false; 252 } 253 254 for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) { 255 blocked_register_pairs_[i] = false; 256 } 257 258 // Mark all fixed input, temp and output registers as used. 259 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 260 BlockIfInRegister(locations->InAt(i)); 261 } 262 263 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 264 Location loc = locations->GetTemp(i); 265 BlockIfInRegister(loc); 266 } 267 Location result_location = locations->Out(); 268 if (locations->OutputCanOverlapWithInputs()) { 269 BlockIfInRegister(result_location, /* is_out */ true); 270 } 271 272 SetupBlockedRegisters(/* is_baseline */ true); 273 274 // Allocate all unallocated input locations. 275 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 276 Location loc = locations->InAt(i); 277 HInstruction* input = instruction->InputAt(i); 278 if (loc.IsUnallocated()) { 279 if ((loc.GetPolicy() == Location::kRequiresRegister) 280 || (loc.GetPolicy() == Location::kRequiresFpuRegister)) { 281 loc = AllocateFreeRegister(input->GetType()); 282 } else { 283 DCHECK_EQ(loc.GetPolicy(), Location::kAny); 284 HLoadLocal* load = input->AsLoadLocal(); 285 if (load != nullptr) { 286 loc = GetStackLocation(load); 287 } else { 288 loc = AllocateFreeRegister(input->GetType()); 289 } 290 } 291 locations->SetInAt(i, loc); 292 } 293 } 294 295 // Allocate all unallocated temp locations. 296 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 297 Location loc = locations->GetTemp(i); 298 if (loc.IsUnallocated()) { 299 switch (loc.GetPolicy()) { 300 case Location::kRequiresRegister: 301 // Allocate a core register (large enough to fit a 32-bit integer). 302 loc = AllocateFreeRegister(Primitive::kPrimInt); 303 break; 304 305 case Location::kRequiresFpuRegister: 306 // Allocate a core register (large enough to fit a 64-bit double). 307 loc = AllocateFreeRegister(Primitive::kPrimDouble); 308 break; 309 310 default: 311 LOG(FATAL) << "Unexpected policy for temporary location " 312 << loc.GetPolicy(); 313 } 314 locations->SetTempAt(i, loc); 315 } 316 } 317 if (result_location.IsUnallocated()) { 318 switch (result_location.GetPolicy()) { 319 case Location::kAny: 320 case Location::kRequiresRegister: 321 case Location::kRequiresFpuRegister: 322 result_location = AllocateFreeRegister(instruction->GetType()); 323 break; 324 case Location::kSameAsFirstInput: 325 result_location = locations->InAt(0); 326 break; 327 } 328 locations->UpdateOut(result_location); 329 } 330} 331 332void CodeGenerator::InitLocationsBaseline(HInstruction* instruction) { 333 AllocateLocations(instruction); 334 if (instruction->GetLocations() == nullptr) { 335 if (instruction->IsTemporary()) { 336 HInstruction* previous = instruction->GetPrevious(); 337 Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); 338 Move(previous, temp_location, instruction); 339 } 340 return; 341 } 342 AllocateRegistersLocally(instruction); 343 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { 344 Location location = instruction->GetLocations()->InAt(i); 345 HInstruction* input = instruction->InputAt(i); 346 if (location.IsValid()) { 347 // Move the input to the desired location. 348 if (input->GetNext()->IsTemporary()) { 349 // If the input was stored in a temporary, use that temporary to 350 // perform the move. 351 Move(input->GetNext(), location, instruction); 352 } else { 353 Move(input, location, instruction); 354 } 355 } 356 } 357} 358 359void CodeGenerator::AllocateLocations(HInstruction* instruction) { 360 instruction->Accept(GetLocationBuilder()); 361 LocationSummary* locations = instruction->GetLocations(); 362 if (!instruction->IsSuspendCheckEntry()) { 363 if (locations != nullptr && locations->CanCall()) { 364 MarkNotLeaf(); 365 } 366 if (instruction->NeedsCurrentMethod()) { 367 SetRequiresCurrentMethod(); 368 } 369 } 370} 371 372CodeGenerator* CodeGenerator::Create(HGraph* graph, 373 InstructionSet instruction_set, 374 const InstructionSetFeatures& isa_features, 375 const CompilerOptions& compiler_options) { 376 switch (instruction_set) { 377 case kArm: 378 case kThumb2: { 379 return new arm::CodeGeneratorARM(graph, 380 *isa_features.AsArmInstructionSetFeatures(), 381 compiler_options); 382 } 383 case kArm64: { 384 return new arm64::CodeGeneratorARM64(graph, 385 *isa_features.AsArm64InstructionSetFeatures(), 386 compiler_options); 387 } 388 case kMips: 389 return nullptr; 390 case kX86: { 391 return new x86::CodeGeneratorX86(graph, compiler_options); 392 } 393 case kX86_64: { 394 return new x86_64::CodeGeneratorX86_64(graph, compiler_options); 395 } 396 default: 397 return nullptr; 398 } 399} 400 401void CodeGenerator::BuildNativeGCMap( 402 std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const { 403 const std::vector<uint8_t>& gc_map_raw = 404 dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); 405 verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); 406 407 uint32_t max_native_offset = 0; 408 for (size_t i = 0; i < pc_infos_.Size(); i++) { 409 uint32_t native_offset = pc_infos_.Get(i).native_pc; 410 if (native_offset > max_native_offset) { 411 max_native_offset = native_offset; 412 } 413 } 414 415 GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth()); 416 for (size_t i = 0; i < pc_infos_.Size(); i++) { 417 struct PcInfo pc_info = pc_infos_.Get(i); 418 uint32_t native_offset = pc_info.native_pc; 419 uint32_t dex_pc = pc_info.dex_pc; 420 const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); 421 CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc; 422 builder.AddEntry(native_offset, references); 423 } 424} 425 426void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data, DefaultSrcMap* src_map) const { 427 uint32_t pc2dex_data_size = 0u; 428 uint32_t pc2dex_entries = pc_infos_.Size(); 429 uint32_t pc2dex_offset = 0u; 430 int32_t pc2dex_dalvik_offset = 0; 431 uint32_t dex2pc_data_size = 0u; 432 uint32_t dex2pc_entries = 0u; 433 uint32_t dex2pc_offset = 0u; 434 int32_t dex2pc_dalvik_offset = 0; 435 436 if (src_map != nullptr) { 437 src_map->reserve(pc2dex_entries); 438 } 439 440 for (size_t i = 0; i < pc2dex_entries; i++) { 441 struct PcInfo pc_info = pc_infos_.Get(i); 442 pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset); 443 pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset); 444 pc2dex_offset = pc_info.native_pc; 445 pc2dex_dalvik_offset = pc_info.dex_pc; 446 if (src_map != nullptr) { 447 src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset})); 448 } 449 } 450 451 // Walk over the blocks and find which ones correspond to catch block entries. 452 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 453 HBasicBlock* block = graph_->GetBlocks().Get(i); 454 if (block->IsCatchBlock()) { 455 intptr_t native_pc = GetAddressOf(block); 456 ++dex2pc_entries; 457 dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset); 458 dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset); 459 dex2pc_offset = native_pc; 460 dex2pc_dalvik_offset = block->GetDexPc(); 461 } 462 } 463 464 uint32_t total_entries = pc2dex_entries + dex2pc_entries; 465 uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); 466 uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; 467 data->resize(data_size); 468 469 uint8_t* data_ptr = &(*data)[0]; 470 uint8_t* write_pos = data_ptr; 471 472 write_pos = EncodeUnsignedLeb128(write_pos, total_entries); 473 write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); 474 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size); 475 uint8_t* write_pos2 = write_pos + pc2dex_data_size; 476 477 pc2dex_offset = 0u; 478 pc2dex_dalvik_offset = 0u; 479 dex2pc_offset = 0u; 480 dex2pc_dalvik_offset = 0u; 481 482 for (size_t i = 0; i < pc2dex_entries; i++) { 483 struct PcInfo pc_info = pc_infos_.Get(i); 484 DCHECK(pc2dex_offset <= pc_info.native_pc); 485 write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset); 486 write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset); 487 pc2dex_offset = pc_info.native_pc; 488 pc2dex_dalvik_offset = pc_info.dex_pc; 489 } 490 491 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 492 HBasicBlock* block = graph_->GetBlocks().Get(i); 493 if (block->IsCatchBlock()) { 494 intptr_t native_pc = GetAddressOf(block); 495 write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset); 496 write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset); 497 dex2pc_offset = native_pc; 498 dex2pc_dalvik_offset = block->GetDexPc(); 499 } 500 } 501 502 503 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); 504 DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size); 505 506 if (kIsDebugBuild) { 507 // Verify the encoded table holds the expected data. 508 MappingTable table(data_ptr); 509 CHECK_EQ(table.TotalSize(), total_entries); 510 CHECK_EQ(table.PcToDexSize(), pc2dex_entries); 511 auto it = table.PcToDexBegin(); 512 auto it2 = table.DexToPcBegin(); 513 for (size_t i = 0; i < pc2dex_entries; i++) { 514 struct PcInfo pc_info = pc_infos_.Get(i); 515 CHECK_EQ(pc_info.native_pc, it.NativePcOffset()); 516 CHECK_EQ(pc_info.dex_pc, it.DexPc()); 517 ++it; 518 } 519 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 520 HBasicBlock* block = graph_->GetBlocks().Get(i); 521 if (block->IsCatchBlock()) { 522 CHECK_EQ(GetAddressOf(block), it2.NativePcOffset()); 523 CHECK_EQ(block->GetDexPc(), it2.DexPc()); 524 ++it2; 525 } 526 } 527 CHECK(it == table.PcToDexEnd()); 528 CHECK(it2 == table.DexToPcEnd()); 529 } 530} 531 532void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const { 533 Leb128EncodingVector vmap_encoder; 534 // We currently don't use callee-saved registers. 535 size_t size = 0 + 1 /* marker */ + 0; 536 vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). 537 vmap_encoder.PushBackUnsigned(size); 538 vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); 539 540 *data = vmap_encoder.GetData(); 541} 542 543void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) { 544 uint32_t size = stack_map_stream_.ComputeNeededSize(); 545 data->resize(size); 546 MemoryRegion region(data->data(), size); 547 stack_map_stream_.FillIn(region); 548} 549 550void CodeGenerator::RecordPcInfo(HInstruction* instruction, uint32_t dex_pc) { 551 if (instruction != nullptr) { 552 // The code generated for some type conversions may call the 553 // runtime, thus normally requiring a subsequent call to this 554 // method. However, the method verifier does not produce PC 555 // information for certain instructions, which are considered "atomic" 556 // (they cannot join a GC). 557 // Therefore we do not currently record PC information for such 558 // instructions. As this may change later, we added this special 559 // case so that code generators may nevertheless call 560 // CodeGenerator::RecordPcInfo without triggering an error in 561 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") 562 // thereafter. 563 if (instruction->IsTypeConversion()) { 564 return; 565 } 566 if (instruction->IsRem()) { 567 Primitive::Type type = instruction->AsRem()->GetResultType(); 568 if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) { 569 return; 570 } 571 } 572 } 573 574 // Collect PC infos for the mapping table. 575 struct PcInfo pc_info; 576 pc_info.dex_pc = dex_pc; 577 pc_info.native_pc = GetAssembler()->CodeSize(); 578 pc_infos_.Add(pc_info); 579 580 // Populate stack map information. 581 582 if (instruction == nullptr) { 583 // For stack overflow checks. 584 stack_map_stream_.AddStackMapEntry(dex_pc, pc_info.native_pc, 0, 0, 0, 0); 585 return; 586 } 587 588 LocationSummary* locations = instruction->GetLocations(); 589 HEnvironment* environment = instruction->GetEnvironment(); 590 591 size_t environment_size = instruction->EnvironmentSize(); 592 593 size_t inlining_depth = 0; 594 uint32_t register_mask = locations->GetRegisterMask(); 595 if (locations->OnlyCallsOnSlowPath()) { 596 // In case of slow path, we currently set the location of caller-save registers 597 // to register (instead of their stack location when pushed before the slow-path 598 // call). Therefore register_mask contains both callee-save and caller-save 599 // registers that hold objects. We must remove the caller-save from the mask, since 600 // they will be overwritten by the callee. 601 register_mask &= core_callee_save_mask_; 602 } 603 // The register mask must be a subset of callee-save registers. 604 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); 605 stack_map_stream_.AddStackMapEntry( 606 dex_pc, pc_info.native_pc, register_mask, 607 locations->GetStackMask(), environment_size, inlining_depth); 608 609 // Walk over the environment, and record the location of dex registers. 610 for (size_t i = 0; i < environment_size; ++i) { 611 HInstruction* current = environment->GetInstructionAt(i); 612 if (current == nullptr) { 613 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kNone, 0); 614 continue; 615 } 616 617 Location location = locations->GetEnvironmentAt(i); 618 switch (location.GetKind()) { 619 case Location::kConstant: { 620 DCHECK_EQ(current, location.GetConstant()); 621 if (current->IsLongConstant()) { 622 int64_t value = current->AsLongConstant()->GetValue(); 623 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, Low32Bits(value)); 624 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, High32Bits(value)); 625 ++i; 626 DCHECK_LT(i, environment_size); 627 } else if (current->IsDoubleConstant()) { 628 int64_t value = bit_cast<double, int64_t>(current->AsDoubleConstant()->GetValue()); 629 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, Low32Bits(value)); 630 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, High32Bits(value)); 631 ++i; 632 DCHECK_LT(i, environment_size); 633 } else if (current->IsIntConstant()) { 634 int32_t value = current->AsIntConstant()->GetValue(); 635 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, value); 636 } else if (current->IsNullConstant()) { 637 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, 0); 638 } else { 639 DCHECK(current->IsFloatConstant()); 640 int32_t value = bit_cast<float, int32_t>(current->AsFloatConstant()->GetValue()); 641 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, value); 642 } 643 break; 644 } 645 646 case Location::kStackSlot: { 647 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex()); 648 break; 649 } 650 651 case Location::kDoubleStackSlot: { 652 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex()); 653 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, 654 location.GetHighStackIndex(kVRegSize)); 655 ++i; 656 DCHECK_LT(i, environment_size); 657 break; 658 } 659 660 case Location::kRegister : { 661 int id = location.reg(); 662 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id); 663 if (current->GetType() == Primitive::kPrimLong) { 664 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id); 665 ++i; 666 DCHECK_LT(i, environment_size); 667 } 668 break; 669 } 670 671 case Location::kFpuRegister : { 672 int id = location.reg(); 673 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, id); 674 if (current->GetType() == Primitive::kPrimDouble) { 675 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, id); 676 ++i; 677 DCHECK_LT(i, environment_size); 678 } 679 break; 680 } 681 682 case Location::kFpuRegisterPair : { 683 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, location.low()); 684 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, location.high()); 685 ++i; 686 DCHECK_LT(i, environment_size); 687 break; 688 } 689 690 case Location::kRegisterPair : { 691 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, location.low()); 692 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, location.high()); 693 ++i; 694 DCHECK_LT(i, environment_size); 695 break; 696 } 697 698 default: 699 LOG(FATAL) << "Unexpected kind " << location.GetKind(); 700 } 701 } 702} 703 704bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { 705 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); 706 return (first_next_not_move != nullptr) && first_next_not_move->CanDoImplicitNullCheck(); 707} 708 709void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { 710 // If we are from a static path don't record the pc as we can't throw NPE. 711 // NB: having the checks here makes the code much less verbose in the arch 712 // specific code generators. 713 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { 714 return; 715 } 716 717 if (!compiler_options_.GetImplicitNullChecks()) { 718 return; 719 } 720 721 if (!instr->CanDoImplicitNullCheck()) { 722 return; 723 } 724 725 // Find the first previous instruction which is not a move. 726 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); 727 728 // If the instruction is a null check it means that `instr` is the first user 729 // and needs to record the pc. 730 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { 731 HNullCheck* null_check = first_prev_not_move->AsNullCheck(); 732 // TODO: The parallel moves modify the environment. Their changes need to be reverted 733 // otherwise the stack maps at the throw point will not be correct. 734 RecordPcInfo(null_check, null_check->GetDexPc()); 735 } 736} 737 738void CodeGenerator::SaveLiveRegisters(LocationSummary* locations) { 739 RegisterSet* register_set = locations->GetLiveRegisters(); 740 size_t stack_offset = first_register_slot_in_slow_path_; 741 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 742 if (!IsCoreCalleeSaveRegister(i)) { 743 if (register_set->ContainsCoreRegister(i)) { 744 // If the register holds an object, update the stack mask. 745 if (locations->RegisterContainsObject(i)) { 746 locations->SetStackBit(stack_offset / kVRegSize); 747 } 748 DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize()); 749 stack_offset += SaveCoreRegister(stack_offset, i); 750 } 751 } 752 } 753 754 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 755 if (!IsFloatingPointCalleeSaveRegister(i)) { 756 if (register_set->ContainsFloatingPointRegister(i)) { 757 DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize()); 758 stack_offset += SaveFloatingPointRegister(stack_offset, i); 759 } 760 } 761 } 762} 763 764void CodeGenerator::RestoreLiveRegisters(LocationSummary* locations) { 765 RegisterSet* register_set = locations->GetLiveRegisters(); 766 size_t stack_offset = first_register_slot_in_slow_path_; 767 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 768 if (!IsCoreCalleeSaveRegister(i)) { 769 if (register_set->ContainsCoreRegister(i)) { 770 DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize()); 771 stack_offset += RestoreCoreRegister(stack_offset, i); 772 } 773 } 774 } 775 776 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 777 if (!IsFloatingPointCalleeSaveRegister(i)) { 778 if (register_set->ContainsFloatingPointRegister(i)) { 779 DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize()); 780 stack_offset += RestoreFloatingPointRegister(stack_offset, i); 781 } 782 } 783 } 784} 785 786void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { 787 LocationSummary* locations = suspend_check->GetLocations(); 788 HBasicBlock* block = suspend_check->GetBlock(); 789 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); 790 DCHECK(block->IsLoopHeader()); 791 792 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 793 HInstruction* current = it.Current(); 794 LiveInterval* interval = current->GetLiveInterval(); 795 // We only need to clear bits of loop phis containing objects and allocated in register. 796 // Loop phis allocated on stack already have the object in the stack. 797 if (current->GetType() == Primitive::kPrimNot 798 && interval->HasRegister() 799 && interval->HasSpillSlot()) { 800 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); 801 } 802 } 803} 804 805void CodeGenerator::EmitParallelMoves(Location from1, Location to1, Location from2, Location to2) { 806 HParallelMove parallel_move(GetGraph()->GetArena()); 807 parallel_move.AddMove(from1, to1, nullptr); 808 parallel_move.AddMove(from2, to2, nullptr); 809 GetMoveResolver()->EmitNativeCode(¶llel_move); 810} 811 812} // namespace art 813