code_generator.cc revision 6058455d486219994921b63a2d774dc9908415a2
1/* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "code_generator.h" 18 19#ifdef ART_ENABLE_CODEGEN_arm 20#include "code_generator_arm.h" 21#endif 22 23#ifdef ART_ENABLE_CODEGEN_arm64 24#include "code_generator_arm64.h" 25#endif 26 27#ifdef ART_ENABLE_CODEGEN_x86 28#include "code_generator_x86.h" 29#endif 30 31#ifdef ART_ENABLE_CODEGEN_x86_64 32#include "code_generator_x86_64.h" 33#endif 34 35#ifdef ART_ENABLE_CODEGEN_mips64 36#include "code_generator_mips64.h" 37#endif 38 39#include "compiled_method.h" 40#include "dex/verified_method.h" 41#include "driver/dex_compilation_unit.h" 42#include "gc_map_builder.h" 43#include "graph_visualizer.h" 44#include "leb128.h" 45#include "mapping_table.h" 46#include "mirror/array-inl.h" 47#include "mirror/object_array-inl.h" 48#include "mirror/object_reference.h" 49#include "parallel_move_resolver.h" 50#include "ssa_liveness_analysis.h" 51#include "utils/assembler.h" 52#include "verifier/dex_gc_map.h" 53#include "vmap_table.h" 54 55namespace art { 56 57// Return whether a location is consistent with a type. 58static bool CheckType(Primitive::Type type, Location location) { 59 if (location.IsFpuRegister() 60 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { 61 return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble); 62 } else if (location.IsRegister() || 63 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { 64 return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot); 65 } else if (location.IsRegisterPair()) { 66 return type == Primitive::kPrimLong; 67 } else if (location.IsFpuRegisterPair()) { 68 return type == Primitive::kPrimDouble; 69 } else if (location.IsStackSlot()) { 70 return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong) 71 || (type == Primitive::kPrimFloat) 72 || (type == Primitive::kPrimNot); 73 } else if (location.IsDoubleStackSlot()) { 74 return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); 75 } else if (location.IsConstant()) { 76 if (location.GetConstant()->IsIntConstant()) { 77 return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong); 78 } else if (location.GetConstant()->IsNullConstant()) { 79 return type == Primitive::kPrimNot; 80 } else if (location.GetConstant()->IsLongConstant()) { 81 return type == Primitive::kPrimLong; 82 } else if (location.GetConstant()->IsFloatConstant()) { 83 return type == Primitive::kPrimFloat; 84 } else { 85 return location.GetConstant()->IsDoubleConstant() 86 && (type == Primitive::kPrimDouble); 87 } 88 } else { 89 return location.IsInvalid() || (location.GetPolicy() == Location::kAny); 90 } 91} 92 93// Check that a location summary is consistent with an instruction. 94static bool CheckTypeConsistency(HInstruction* instruction) { 95 LocationSummary* locations = instruction->GetLocations(); 96 if (locations == nullptr) { 97 return true; 98 } 99 100 if (locations->Out().IsUnallocated() 101 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { 102 DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) 103 << instruction->GetType() 104 << " " << locations->InAt(0); 105 } else { 106 DCHECK(CheckType(instruction->GetType(), locations->Out())) 107 << instruction->GetType() 108 << " " << locations->Out(); 109 } 110 111 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { 112 DCHECK(CheckType(instruction->InputAt(i)->GetType(), locations->InAt(i))) 113 << instruction->InputAt(i)->GetType() 114 << " " << locations->InAt(i); 115 } 116 117 HEnvironment* environment = instruction->GetEnvironment(); 118 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { 119 if (environment->GetInstructionAt(i) != nullptr) { 120 Primitive::Type type = environment->GetInstructionAt(i)->GetType(); 121 DCHECK(CheckType(type, environment->GetLocationAt(i))) 122 << type << " " << environment->GetLocationAt(i); 123 } else { 124 DCHECK(environment->GetLocationAt(i).IsInvalid()) 125 << environment->GetLocationAt(i); 126 } 127 } 128 return true; 129} 130 131size_t CodeGenerator::GetCacheOffset(uint32_t index) { 132 return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue(); 133} 134 135size_t CodeGenerator::GetCachePointerOffset(uint32_t index) { 136 auto pointer_size = InstructionSetPointerSize(GetInstructionSet()); 137 return mirror::Array::DataOffset(pointer_size).Uint32Value() + pointer_size * index; 138} 139 140void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { 141 Initialize(); 142 if (!is_leaf) { 143 MarkNotLeaf(); 144 } 145 const bool is_64_bit = Is64BitInstructionSet(GetInstructionSet()); 146 InitializeCodeGeneration(GetGraph()->GetNumberOfLocalVRegs() 147 + GetGraph()->GetTemporariesVRegSlots() 148 + 1 /* filler */, 149 0, /* the baseline compiler does not have live registers at slow path */ 150 0, /* the baseline compiler does not have live registers at slow path */ 151 GetGraph()->GetMaximumNumberOfOutVRegs() 152 + (is_64_bit ? 2 : 1) /* current method */, 153 GetGraph()->GetBlocks()); 154 CompileInternal(allocator, /* is_baseline */ true); 155} 156 157bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { 158 DCHECK_EQ(block_order_->Get(current_block_index_), current); 159 return GetNextBlockToEmit() == FirstNonEmptyBlock(next); 160} 161 162HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { 163 for (size_t i = current_block_index_ + 1; i < block_order_->Size(); ++i) { 164 HBasicBlock* block = block_order_->Get(i); 165 if (!block->IsSingleJump()) { 166 return block; 167 } 168 } 169 return nullptr; 170} 171 172HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { 173 while (block->IsSingleJump()) { 174 block = block->GetSuccessor(0); 175 } 176 return block; 177} 178 179class DisassemblyScope { 180 public: 181 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen) 182 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) { 183 if (codegen_.GetDisassemblyInformation() != nullptr) { 184 start_offset_ = codegen_.GetAssembler().CodeSize(); 185 } 186 } 187 188 ~DisassemblyScope() { 189 // We avoid building this data when we know it will not be used. 190 if (codegen_.GetDisassemblyInformation() != nullptr) { 191 codegen_.GetDisassemblyInformation()->AddInstructionInterval( 192 instruction_, start_offset_, codegen_.GetAssembler().CodeSize()); 193 } 194 } 195 196 private: 197 const CodeGenerator& codegen_; 198 HInstruction* instruction_; 199 size_t start_offset_; 200}; 201 202 203void CodeGenerator::GenerateSlowPaths() { 204 size_t code_start = 0; 205 for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { 206 if (disasm_info_ != nullptr) { 207 code_start = GetAssembler()->CodeSize(); 208 } 209 slow_paths_.Get(i)->EmitNativeCode(this); 210 if (disasm_info_ != nullptr) { 211 disasm_info_->AddSlowPathInterval(slow_paths_.Get(i), code_start, GetAssembler()->CodeSize()); 212 } 213 } 214} 215 216void CodeGenerator::CompileInternal(CodeAllocator* allocator, bool is_baseline) { 217 is_baseline_ = is_baseline; 218 HGraphVisitor* instruction_visitor = GetInstructionVisitor(); 219 DCHECK_EQ(current_block_index_, 0u); 220 221 size_t frame_start = GetAssembler()->CodeSize(); 222 GenerateFrameEntry(); 223 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); 224 if (disasm_info_ != nullptr) { 225 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); 226 } 227 228 for (size_t e = block_order_->Size(); current_block_index_ < e; ++current_block_index_) { 229 HBasicBlock* block = block_order_->Get(current_block_index_); 230 // Don't generate code for an empty block. Its predecessors will branch to its successor 231 // directly. Also, the label of that block will not be emitted, so this helps catch 232 // errors where we reference that label. 233 if (block->IsSingleJump()) continue; 234 Bind(block); 235 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 236 HInstruction* current = it.Current(); 237 DisassemblyScope disassembly_scope(current, *this); 238 if (is_baseline) { 239 InitLocationsBaseline(current); 240 } 241 DCHECK(CheckTypeConsistency(current)); 242 uintptr_t native_pc_begin = GetAssembler()->CodeSize(); 243 current->Accept(instruction_visitor); 244 uintptr_t native_pc_end = GetAssembler()->CodeSize(); 245 RecordNativeDebugInfo(current->GetDexPc(), native_pc_begin, native_pc_end); 246 } 247 } 248 249 GenerateSlowPaths(); 250 251 // Finalize instructions in assember; 252 Finalize(allocator); 253} 254 255void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { 256 // The register allocator already called `InitializeCodeGeneration`, 257 // where the frame size has been computed. 258 DCHECK(block_order_ != nullptr); 259 Initialize(); 260 CompileInternal(allocator, /* is_baseline */ false); 261} 262 263void CodeGenerator::Finalize(CodeAllocator* allocator) { 264 size_t code_size = GetAssembler()->CodeSize(); 265 uint8_t* buffer = allocator->Allocate(code_size); 266 267 MemoryRegion code(buffer, code_size); 268 GetAssembler()->FinalizeInstructions(code); 269} 270 271void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) { 272 // No linker patches by default. 273} 274 275size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) { 276 for (size_t i = 0; i < length; ++i) { 277 if (!array[i]) { 278 array[i] = true; 279 return i; 280 } 281 } 282 LOG(FATAL) << "Could not find a register in baseline register allocator"; 283 UNREACHABLE(); 284} 285 286size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) { 287 for (size_t i = 0; i < length - 1; i += 2) { 288 if (!array[i] && !array[i + 1]) { 289 array[i] = true; 290 array[i + 1] = true; 291 return i; 292 } 293 } 294 LOG(FATAL) << "Could not find a register in baseline register allocator"; 295 UNREACHABLE(); 296} 297 298void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, 299 size_t maximum_number_of_live_core_registers, 300 size_t maximum_number_of_live_fp_registers, 301 size_t number_of_out_slots, 302 const GrowableArray<HBasicBlock*>& block_order) { 303 block_order_ = &block_order; 304 DCHECK(block_order_->Get(0) == GetGraph()->GetEntryBlock()); 305 ComputeSpillMask(); 306 first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; 307 308 if (number_of_spill_slots == 0 309 && !HasAllocatedCalleeSaveRegisters() 310 && IsLeafMethod() 311 && !RequiresCurrentMethod()) { 312 DCHECK_EQ(maximum_number_of_live_core_registers, 0u); 313 DCHECK_EQ(maximum_number_of_live_fp_registers, 0u); 314 SetFrameSize(CallPushesPC() ? GetWordSize() : 0); 315 } else { 316 SetFrameSize(RoundUp( 317 number_of_spill_slots * kVRegSize 318 + number_of_out_slots * kVRegSize 319 + maximum_number_of_live_core_registers * GetWordSize() 320 + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize() 321 + FrameEntrySpillSize(), 322 kStackAlignment)); 323 } 324} 325 326Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { 327 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 328 // The type of the previous instruction tells us if we need a single or double stack slot. 329 Primitive::Type type = temp->GetType(); 330 int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1; 331 // Use the temporary region (right below the dex registers). 332 int32_t slot = GetFrameSize() - FrameEntrySpillSize() 333 - kVRegSize // filler 334 - (number_of_locals * kVRegSize) 335 - ((temp_size + temp->GetIndex()) * kVRegSize); 336 return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot); 337} 338 339int32_t CodeGenerator::GetStackSlot(HLocal* local) const { 340 uint16_t reg_number = local->GetRegNumber(); 341 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 342 if (reg_number >= number_of_locals) { 343 // Local is a parameter of the method. It is stored in the caller's frame. 344 // TODO: Share this logic with StackVisitor::GetVRegOffsetFromQuickCode. 345 return GetFrameSize() + InstructionSetPointerSize(GetInstructionSet()) // ART method 346 + (reg_number - number_of_locals) * kVRegSize; 347 } else { 348 // Local is a temporary in this method. It is stored in this method's frame. 349 return GetFrameSize() - FrameEntrySpillSize() 350 - kVRegSize // filler. 351 - (number_of_locals * kVRegSize) 352 + (reg_number * kVRegSize); 353 } 354} 355 356void CodeGenerator::CreateCommonInvokeLocationSummary( 357 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) { 358 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena(); 359 LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCall); 360 361 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { 362 HInstruction* input = invoke->InputAt(i); 363 locations->SetInAt(i, visitor->GetNextLocation(input->GetType())); 364 } 365 366 locations->SetOut(visitor->GetReturnLocation(invoke->GetType())); 367 368 if (invoke->IsInvokeStaticOrDirect()) { 369 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect(); 370 if (call->IsStringInit()) { 371 locations->AddTemp(visitor->GetMethodLocation()); 372 } else if (call->IsRecursive()) { 373 locations->SetInAt(call->GetCurrentMethodInputIndex(), visitor->GetMethodLocation()); 374 } else { 375 locations->AddTemp(visitor->GetMethodLocation()); 376 locations->SetInAt(call->GetCurrentMethodInputIndex(), Location::RequiresRegister()); 377 } 378 } else { 379 locations->AddTemp(visitor->GetMethodLocation()); 380 } 381} 382 383void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { 384 // The DCHECKS below check that a register is not specified twice in 385 // the summary. The out location can overlap with an input, so we need 386 // to special case it. 387 if (location.IsRegister()) { 388 DCHECK(is_out || !blocked_core_registers_[location.reg()]); 389 blocked_core_registers_[location.reg()] = true; 390 } else if (location.IsFpuRegister()) { 391 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); 392 blocked_fpu_registers_[location.reg()] = true; 393 } else if (location.IsFpuRegisterPair()) { 394 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); 395 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; 396 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); 397 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; 398 } else if (location.IsRegisterPair()) { 399 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); 400 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; 401 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); 402 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; 403 } 404} 405 406void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { 407 LocationSummary* locations = instruction->GetLocations(); 408 if (locations == nullptr) return; 409 410 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 411 blocked_core_registers_[i] = false; 412 } 413 414 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 415 blocked_fpu_registers_[i] = false; 416 } 417 418 for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) { 419 blocked_register_pairs_[i] = false; 420 } 421 422 // Mark all fixed input, temp and output registers as used. 423 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 424 BlockIfInRegister(locations->InAt(i)); 425 } 426 427 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 428 Location loc = locations->GetTemp(i); 429 BlockIfInRegister(loc); 430 } 431 Location result_location = locations->Out(); 432 if (locations->OutputCanOverlapWithInputs()) { 433 BlockIfInRegister(result_location, /* is_out */ true); 434 } 435 436 SetupBlockedRegisters(/* is_baseline */ true); 437 438 // Allocate all unallocated input locations. 439 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 440 Location loc = locations->InAt(i); 441 HInstruction* input = instruction->InputAt(i); 442 if (loc.IsUnallocated()) { 443 if ((loc.GetPolicy() == Location::kRequiresRegister) 444 || (loc.GetPolicy() == Location::kRequiresFpuRegister)) { 445 loc = AllocateFreeRegister(input->GetType()); 446 } else { 447 DCHECK_EQ(loc.GetPolicy(), Location::kAny); 448 HLoadLocal* load = input->AsLoadLocal(); 449 if (load != nullptr) { 450 loc = GetStackLocation(load); 451 } else { 452 loc = AllocateFreeRegister(input->GetType()); 453 } 454 } 455 locations->SetInAt(i, loc); 456 } 457 } 458 459 // Allocate all unallocated temp locations. 460 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 461 Location loc = locations->GetTemp(i); 462 if (loc.IsUnallocated()) { 463 switch (loc.GetPolicy()) { 464 case Location::kRequiresRegister: 465 // Allocate a core register (large enough to fit a 32-bit integer). 466 loc = AllocateFreeRegister(Primitive::kPrimInt); 467 break; 468 469 case Location::kRequiresFpuRegister: 470 // Allocate a core register (large enough to fit a 64-bit double). 471 loc = AllocateFreeRegister(Primitive::kPrimDouble); 472 break; 473 474 default: 475 LOG(FATAL) << "Unexpected policy for temporary location " 476 << loc.GetPolicy(); 477 } 478 locations->SetTempAt(i, loc); 479 } 480 } 481 if (result_location.IsUnallocated()) { 482 switch (result_location.GetPolicy()) { 483 case Location::kAny: 484 case Location::kRequiresRegister: 485 case Location::kRequiresFpuRegister: 486 result_location = AllocateFreeRegister(instruction->GetType()); 487 break; 488 case Location::kSameAsFirstInput: 489 result_location = locations->InAt(0); 490 break; 491 } 492 locations->UpdateOut(result_location); 493 } 494} 495 496void CodeGenerator::InitLocationsBaseline(HInstruction* instruction) { 497 AllocateLocations(instruction); 498 if (instruction->GetLocations() == nullptr) { 499 if (instruction->IsTemporary()) { 500 HInstruction* previous = instruction->GetPrevious(); 501 Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); 502 Move(previous, temp_location, instruction); 503 } 504 return; 505 } 506 AllocateRegistersLocally(instruction); 507 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { 508 Location location = instruction->GetLocations()->InAt(i); 509 HInstruction* input = instruction->InputAt(i); 510 if (location.IsValid()) { 511 // Move the input to the desired location. 512 if (input->GetNext()->IsTemporary()) { 513 // If the input was stored in a temporary, use that temporary to 514 // perform the move. 515 Move(input->GetNext(), location, instruction); 516 } else { 517 Move(input, location, instruction); 518 } 519 } 520 } 521} 522 523void CodeGenerator::AllocateLocations(HInstruction* instruction) { 524 instruction->Accept(GetLocationBuilder()); 525 DCHECK(CheckTypeConsistency(instruction)); 526 LocationSummary* locations = instruction->GetLocations(); 527 if (!instruction->IsSuspendCheckEntry()) { 528 if (locations != nullptr && locations->CanCall()) { 529 MarkNotLeaf(); 530 } 531 if (instruction->NeedsCurrentMethod()) { 532 SetRequiresCurrentMethod(); 533 } 534 } 535} 536 537CodeGenerator* CodeGenerator::Create(HGraph* graph, 538 InstructionSet instruction_set, 539 const InstructionSetFeatures& isa_features, 540 const CompilerOptions& compiler_options) { 541 switch (instruction_set) { 542#ifdef ART_ENABLE_CODEGEN_arm 543 case kArm: 544 case kThumb2: { 545 return new arm::CodeGeneratorARM(graph, 546 *isa_features.AsArmInstructionSetFeatures(), 547 compiler_options); 548 } 549#endif 550#ifdef ART_ENABLE_CODEGEN_arm64 551 case kArm64: { 552 return new arm64::CodeGeneratorARM64(graph, 553 *isa_features.AsArm64InstructionSetFeatures(), 554 compiler_options); 555 } 556#endif 557#ifdef ART_ENABLE_CODEGEN_mips 558 case kMips: 559 UNUSED(compiler_options); 560 UNUSED(graph); 561 UNUSED(isa_features); 562 return nullptr; 563#endif 564#ifdef ART_ENABLE_CODEGEN_mips64 565 case kMips64: { 566 return new mips64::CodeGeneratorMIPS64(graph, 567 *isa_features.AsMips64InstructionSetFeatures(), 568 compiler_options); 569 } 570#endif 571#ifdef ART_ENABLE_CODEGEN_x86 572 case kX86: { 573 return new x86::CodeGeneratorX86(graph, 574 *isa_features.AsX86InstructionSetFeatures(), 575 compiler_options); 576 } 577#endif 578#ifdef ART_ENABLE_CODEGEN_x86_64 579 case kX86_64: { 580 return new x86_64::CodeGeneratorX86_64(graph, 581 *isa_features.AsX86_64InstructionSetFeatures(), 582 compiler_options); 583 } 584#endif 585 default: 586 return nullptr; 587 } 588} 589 590void CodeGenerator::BuildNativeGCMap( 591 ArenaVector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const { 592 const std::vector<uint8_t>& gc_map_raw = 593 dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); 594 verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); 595 596 uint32_t max_native_offset = stack_map_stream_.ComputeMaxNativePcOffset(); 597 598 size_t num_stack_maps = stack_map_stream_.GetNumberOfStackMaps(); 599 GcMapBuilder builder(data, num_stack_maps, max_native_offset, dex_gc_map.RegWidth()); 600 for (size_t i = 0; i != num_stack_maps; ++i) { 601 const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); 602 uint32_t native_offset = stack_map_entry.native_pc_offset; 603 uint32_t dex_pc = stack_map_entry.dex_pc; 604 const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); 605 CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc; 606 builder.AddEntry(native_offset, references); 607 } 608} 609 610void CodeGenerator::BuildMappingTable(ArenaVector<uint8_t>* data) const { 611 uint32_t pc2dex_data_size = 0u; 612 uint32_t pc2dex_entries = stack_map_stream_.GetNumberOfStackMaps(); 613 uint32_t pc2dex_offset = 0u; 614 int32_t pc2dex_dalvik_offset = 0; 615 uint32_t dex2pc_data_size = 0u; 616 uint32_t dex2pc_entries = 0u; 617 uint32_t dex2pc_offset = 0u; 618 int32_t dex2pc_dalvik_offset = 0; 619 620 for (size_t i = 0; i < pc2dex_entries; i++) { 621 const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); 622 pc2dex_data_size += UnsignedLeb128Size(stack_map_entry.native_pc_offset - pc2dex_offset); 623 pc2dex_data_size += SignedLeb128Size(stack_map_entry.dex_pc - pc2dex_dalvik_offset); 624 pc2dex_offset = stack_map_entry.native_pc_offset; 625 pc2dex_dalvik_offset = stack_map_entry.dex_pc; 626 } 627 628 // Walk over the blocks and find which ones correspond to catch block entries. 629 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 630 HBasicBlock* block = graph_->GetBlocks().Get(i); 631 if (block->IsCatchBlock()) { 632 intptr_t native_pc = GetAddressOf(block); 633 ++dex2pc_entries; 634 dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset); 635 dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset); 636 dex2pc_offset = native_pc; 637 dex2pc_dalvik_offset = block->GetDexPc(); 638 } 639 } 640 641 uint32_t total_entries = pc2dex_entries + dex2pc_entries; 642 uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); 643 uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; 644 data->resize(data_size); 645 646 uint8_t* data_ptr = &(*data)[0]; 647 uint8_t* write_pos = data_ptr; 648 649 write_pos = EncodeUnsignedLeb128(write_pos, total_entries); 650 write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); 651 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size); 652 uint8_t* write_pos2 = write_pos + pc2dex_data_size; 653 654 pc2dex_offset = 0u; 655 pc2dex_dalvik_offset = 0u; 656 dex2pc_offset = 0u; 657 dex2pc_dalvik_offset = 0u; 658 659 for (size_t i = 0; i < pc2dex_entries; i++) { 660 const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); 661 DCHECK(pc2dex_offset <= stack_map_entry.native_pc_offset); 662 write_pos = EncodeUnsignedLeb128(write_pos, stack_map_entry.native_pc_offset - pc2dex_offset); 663 write_pos = EncodeSignedLeb128(write_pos, stack_map_entry.dex_pc - pc2dex_dalvik_offset); 664 pc2dex_offset = stack_map_entry.native_pc_offset; 665 pc2dex_dalvik_offset = stack_map_entry.dex_pc; 666 } 667 668 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 669 HBasicBlock* block = graph_->GetBlocks().Get(i); 670 if (block->IsCatchBlock()) { 671 intptr_t native_pc = GetAddressOf(block); 672 write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset); 673 write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset); 674 dex2pc_offset = native_pc; 675 dex2pc_dalvik_offset = block->GetDexPc(); 676 } 677 } 678 679 680 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); 681 DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size); 682 683 if (kIsDebugBuild) { 684 // Verify the encoded table holds the expected data. 685 MappingTable table(data_ptr); 686 CHECK_EQ(table.TotalSize(), total_entries); 687 CHECK_EQ(table.PcToDexSize(), pc2dex_entries); 688 auto it = table.PcToDexBegin(); 689 auto it2 = table.DexToPcBegin(); 690 for (size_t i = 0; i < pc2dex_entries; i++) { 691 const StackMapStream::StackMapEntry& stack_map_entry = stack_map_stream_.GetStackMap(i); 692 CHECK_EQ(stack_map_entry.native_pc_offset, it.NativePcOffset()); 693 CHECK_EQ(stack_map_entry.dex_pc, it.DexPc()); 694 ++it; 695 } 696 for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) { 697 HBasicBlock* block = graph_->GetBlocks().Get(i); 698 if (block->IsCatchBlock()) { 699 CHECK_EQ(GetAddressOf(block), it2.NativePcOffset()); 700 CHECK_EQ(block->GetDexPc(), it2.DexPc()); 701 ++it2; 702 } 703 } 704 CHECK(it == table.PcToDexEnd()); 705 CHECK(it2 == table.DexToPcEnd()); 706 } 707} 708 709void CodeGenerator::BuildVMapTable(ArenaVector<uint8_t>* data) const { 710 Leb128Encoder<ArenaAllocatorAdapter<uint8_t>> vmap_encoder(data); 711 // We currently don't use callee-saved registers. 712 size_t size = 0 + 1 /* marker */ + 0; 713 vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). 714 vmap_encoder.PushBackUnsigned(size); 715 vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); 716} 717 718void CodeGenerator::BuildStackMaps(ArenaVector<uint8_t>* data) { 719 uint32_t size = stack_map_stream_.PrepareForFillIn(); 720 data->resize(size); 721 MemoryRegion region(data->data(), size); 722 stack_map_stream_.FillIn(region); 723} 724 725void CodeGenerator::RecordNativeDebugInfo(uint32_t dex_pc, 726 uintptr_t native_pc_begin, 727 uintptr_t native_pc_end) { 728 if (src_map_ != nullptr && dex_pc != kNoDexPc && native_pc_begin != native_pc_end) { 729 src_map_->push_back(SrcMapElem({static_cast<uint32_t>(native_pc_begin), 730 static_cast<int32_t>(dex_pc)})); 731 } 732} 733 734void CodeGenerator::RecordPcInfo(HInstruction* instruction, 735 uint32_t dex_pc, 736 SlowPathCode* slow_path) { 737 if (instruction != nullptr) { 738 // The code generated for some type conversions and comparisons 739 // may call the runtime, thus normally requiring a subsequent 740 // call to this method. However, the method verifier does not 741 // produce PC information for certain instructions, which are 742 // considered "atomic" (they cannot join a GC). 743 // Therefore we do not currently record PC information for such 744 // instructions. As this may change later, we added this special 745 // case so that code generators may nevertheless call 746 // CodeGenerator::RecordPcInfo without triggering an error in 747 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") 748 // thereafter. 749 if (instruction->IsTypeConversion() || instruction->IsCompare()) { 750 return; 751 } 752 if (instruction->IsRem()) { 753 Primitive::Type type = instruction->AsRem()->GetResultType(); 754 if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) { 755 return; 756 } 757 } 758 } 759 760 uint32_t outer_dex_pc = dex_pc; 761 uint32_t outer_environment_size = 0; 762 uint32_t inlining_depth = 0; 763 if (instruction != nullptr) { 764 for (HEnvironment* environment = instruction->GetEnvironment(); 765 environment != nullptr; 766 environment = environment->GetParent()) { 767 outer_dex_pc = environment->GetDexPc(); 768 outer_environment_size = environment->Size(); 769 if (environment != instruction->GetEnvironment()) { 770 inlining_depth++; 771 } 772 } 773 } 774 775 // Collect PC infos for the mapping table. 776 uint32_t native_pc = GetAssembler()->CodeSize(); 777 778 if (instruction == nullptr) { 779 // For stack overflow checks. 780 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0); 781 stack_map_stream_.EndStackMapEntry(); 782 return; 783 } 784 LocationSummary* locations = instruction->GetLocations(); 785 786 uint32_t register_mask = locations->GetRegisterMask(); 787 if (locations->OnlyCallsOnSlowPath()) { 788 // In case of slow path, we currently set the location of caller-save registers 789 // to register (instead of their stack location when pushed before the slow-path 790 // call). Therefore register_mask contains both callee-save and caller-save 791 // registers that hold objects. We must remove the caller-save from the mask, since 792 // they will be overwritten by the callee. 793 register_mask &= core_callee_save_mask_; 794 } 795 // The register mask must be a subset of callee-save registers. 796 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); 797 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, 798 native_pc, 799 register_mask, 800 locations->GetStackMask(), 801 outer_environment_size, 802 inlining_depth); 803 804 EmitEnvironment(instruction->GetEnvironment(), slow_path); 805 stack_map_stream_.EndStackMapEntry(); 806} 807 808void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) { 809 if (environment == nullptr) return; 810 811 if (environment->GetParent() != nullptr) { 812 // We emit the parent environment first. 813 EmitEnvironment(environment->GetParent(), slow_path); 814 stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(), 815 environment->GetDexPc(), 816 environment->GetInvokeType(), 817 environment->Size()); 818 } 819 820 // Walk over the environment, and record the location of dex registers. 821 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { 822 HInstruction* current = environment->GetInstructionAt(i); 823 if (current == nullptr) { 824 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); 825 continue; 826 } 827 828 Location location = environment->GetLocationAt(i); 829 switch (location.GetKind()) { 830 case Location::kConstant: { 831 DCHECK_EQ(current, location.GetConstant()); 832 if (current->IsLongConstant()) { 833 int64_t value = current->AsLongConstant()->GetValue(); 834 stack_map_stream_.AddDexRegisterEntry( 835 DexRegisterLocation::Kind::kConstant, Low32Bits(value)); 836 stack_map_stream_.AddDexRegisterEntry( 837 DexRegisterLocation::Kind::kConstant, High32Bits(value)); 838 ++i; 839 DCHECK_LT(i, environment_size); 840 } else if (current->IsDoubleConstant()) { 841 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); 842 stack_map_stream_.AddDexRegisterEntry( 843 DexRegisterLocation::Kind::kConstant, Low32Bits(value)); 844 stack_map_stream_.AddDexRegisterEntry( 845 DexRegisterLocation::Kind::kConstant, High32Bits(value)); 846 ++i; 847 DCHECK_LT(i, environment_size); 848 } else if (current->IsIntConstant()) { 849 int32_t value = current->AsIntConstant()->GetValue(); 850 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); 851 } else if (current->IsNullConstant()) { 852 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0); 853 } else { 854 DCHECK(current->IsFloatConstant()) << current->DebugName(); 855 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); 856 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); 857 } 858 break; 859 } 860 861 case Location::kStackSlot: { 862 stack_map_stream_.AddDexRegisterEntry( 863 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 864 break; 865 } 866 867 case Location::kDoubleStackSlot: { 868 stack_map_stream_.AddDexRegisterEntry( 869 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 870 stack_map_stream_.AddDexRegisterEntry( 871 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); 872 ++i; 873 DCHECK_LT(i, environment_size); 874 break; 875 } 876 877 case Location::kRegister : { 878 int id = location.reg(); 879 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { 880 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); 881 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 882 if (current->GetType() == Primitive::kPrimLong) { 883 stack_map_stream_.AddDexRegisterEntry( 884 DexRegisterLocation::Kind::kInStack, offset + kVRegSize); 885 ++i; 886 DCHECK_LT(i, environment_size); 887 } 888 } else { 889 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id); 890 if (current->GetType() == Primitive::kPrimLong) { 891 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id); 892 ++i; 893 DCHECK_LT(i, environment_size); 894 } 895 } 896 break; 897 } 898 899 case Location::kFpuRegister : { 900 int id = location.reg(); 901 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { 902 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); 903 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 904 if (current->GetType() == Primitive::kPrimDouble) { 905 stack_map_stream_.AddDexRegisterEntry( 906 DexRegisterLocation::Kind::kInStack, offset + kVRegSize); 907 ++i; 908 DCHECK_LT(i, environment_size); 909 } 910 } else { 911 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id); 912 if (current->GetType() == Primitive::kPrimDouble) { 913 stack_map_stream_.AddDexRegisterEntry( 914 DexRegisterLocation::Kind::kInFpuRegisterHigh, id); 915 ++i; 916 DCHECK_LT(i, environment_size); 917 } 918 } 919 break; 920 } 921 922 case Location::kFpuRegisterPair : { 923 int low = location.low(); 924 int high = location.high(); 925 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { 926 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); 927 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 928 } else { 929 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low); 930 } 931 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { 932 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); 933 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 934 ++i; 935 } else { 936 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high); 937 ++i; 938 } 939 DCHECK_LT(i, environment_size); 940 break; 941 } 942 943 case Location::kRegisterPair : { 944 int low = location.low(); 945 int high = location.high(); 946 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { 947 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); 948 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 949 } else { 950 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low); 951 } 952 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { 953 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); 954 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 955 } else { 956 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high); 957 } 958 ++i; 959 DCHECK_LT(i, environment_size); 960 break; 961 } 962 963 case Location::kInvalid: { 964 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); 965 break; 966 } 967 968 default: 969 LOG(FATAL) << "Unexpected kind " << location.GetKind(); 970 } 971 } 972 973 if (environment->GetParent() != nullptr) { 974 stack_map_stream_.EndInlineInfoEntry(); 975 } 976} 977 978bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { 979 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); 980 981 return (first_next_not_move != nullptr) 982 && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0)); 983} 984 985void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { 986 // If we are from a static path don't record the pc as we can't throw NPE. 987 // NB: having the checks here makes the code much less verbose in the arch 988 // specific code generators. 989 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { 990 return; 991 } 992 993 if (!compiler_options_.GetImplicitNullChecks()) { 994 return; 995 } 996 997 if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) { 998 return; 999 } 1000 1001 // Find the first previous instruction which is not a move. 1002 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); 1003 1004 // If the instruction is a null check it means that `instr` is the first user 1005 // and needs to record the pc. 1006 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { 1007 HNullCheck* null_check = first_prev_not_move->AsNullCheck(); 1008 // TODO: The parallel moves modify the environment. Their changes need to be reverted 1009 // otherwise the stack maps at the throw point will not be correct. 1010 RecordPcInfo(null_check, null_check->GetDexPc()); 1011 } 1012} 1013 1014void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { 1015 LocationSummary* locations = suspend_check->GetLocations(); 1016 HBasicBlock* block = suspend_check->GetBlock(); 1017 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); 1018 DCHECK(block->IsLoopHeader()); 1019 1020 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 1021 HInstruction* current = it.Current(); 1022 LiveInterval* interval = current->GetLiveInterval(); 1023 // We only need to clear bits of loop phis containing objects and allocated in register. 1024 // Loop phis allocated on stack already have the object in the stack. 1025 if (current->GetType() == Primitive::kPrimNot 1026 && interval->HasRegister() 1027 && interval->HasSpillSlot()) { 1028 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); 1029 } 1030 } 1031} 1032 1033void CodeGenerator::EmitParallelMoves(Location from1, 1034 Location to1, 1035 Primitive::Type type1, 1036 Location from2, 1037 Location to2, 1038 Primitive::Type type2) { 1039 HParallelMove parallel_move(GetGraph()->GetArena()); 1040 parallel_move.AddMove(from1, to1, type1, nullptr); 1041 parallel_move.AddMove(from2, to2, type2, nullptr); 1042 GetMoveResolver()->EmitNativeCode(¶llel_move); 1043} 1044 1045void CodeGenerator::ValidateInvokeRuntime(HInstruction* instruction, SlowPathCode* slow_path) { 1046 // Ensure that the call kind indication given to the register allocator is 1047 // coherent with the runtime call generated, and that the GC side effect is 1048 // set when required. 1049 if (slow_path == nullptr) { 1050 DCHECK(instruction->GetLocations()->WillCall()) << instruction->DebugName(); 1051 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC())) 1052 << instruction->DebugName() << instruction->GetSideEffects().ToString(); 1053 } else { 1054 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath() || slow_path->IsFatal()) 1055 << instruction->DebugName() << slow_path->GetDescription(); 1056 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) || 1057 // Control flow would not come back into the code if a fatal slow 1058 // path is taken, so we do not care if it triggers GC. 1059 slow_path->IsFatal() || 1060 // HDeoptimize is a special case: we know we are not coming back from 1061 // it into the code. 1062 instruction->IsDeoptimize()) 1063 << instruction->DebugName() << instruction->GetSideEffects().ToString() 1064 << slow_path->GetDescription(); 1065 } 1066 1067 // Check the coherency of leaf information. 1068 DCHECK(instruction->IsSuspendCheck() 1069 || ((slow_path != nullptr) && slow_path->IsFatal()) 1070 || instruction->GetLocations()->CanCall() 1071 || !IsLeafMethod()) 1072 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : ""); 1073} 1074 1075void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { 1076 RegisterSet* register_set = locations->GetLiveRegisters(); 1077 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); 1078 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { 1079 if (!codegen->IsCoreCalleeSaveRegister(i)) { 1080 if (register_set->ContainsCoreRegister(i)) { 1081 // If the register holds an object, update the stack mask. 1082 if (locations->RegisterContainsObject(i)) { 1083 locations->SetStackBit(stack_offset / kVRegSize); 1084 } 1085 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1086 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1087 saved_core_stack_offsets_[i] = stack_offset; 1088 stack_offset += codegen->SaveCoreRegister(stack_offset, i); 1089 } 1090 } 1091 } 1092 1093 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { 1094 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { 1095 if (register_set->ContainsFloatingPointRegister(i)) { 1096 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1097 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1098 saved_fpu_stack_offsets_[i] = stack_offset; 1099 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); 1100 } 1101 } 1102 } 1103} 1104 1105void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { 1106 RegisterSet* register_set = locations->GetLiveRegisters(); 1107 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); 1108 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { 1109 if (!codegen->IsCoreCalleeSaveRegister(i)) { 1110 if (register_set->ContainsCoreRegister(i)) { 1111 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1112 stack_offset += codegen->RestoreCoreRegister(stack_offset, i); 1113 } 1114 } 1115 } 1116 1117 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { 1118 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { 1119 if (register_set->ContainsFloatingPointRegister(i)) { 1120 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1121 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); 1122 } 1123 } 1124 } 1125} 1126 1127} // namespace art 1128