code_generator.cc revision 87f3fcbd0db352157fc59148e94647ef21b73bce
1/* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "code_generator.h" 18 19#ifdef ART_ENABLE_CODEGEN_arm 20#include "code_generator_arm.h" 21#endif 22 23#ifdef ART_ENABLE_CODEGEN_arm64 24#include "code_generator_arm64.h" 25#endif 26 27#ifdef ART_ENABLE_CODEGEN_x86 28#include "code_generator_x86.h" 29#endif 30 31#ifdef ART_ENABLE_CODEGEN_x86_64 32#include "code_generator_x86_64.h" 33#endif 34 35#ifdef ART_ENABLE_CODEGEN_mips 36#include "code_generator_mips.h" 37#endif 38 39#ifdef ART_ENABLE_CODEGEN_mips64 40#include "code_generator_mips64.h" 41#endif 42 43#include "bytecode_utils.h" 44#include "compiled_method.h" 45#include "dex/verified_method.h" 46#include "driver/compiler_driver.h" 47#include "graph_visualizer.h" 48#include "intrinsics.h" 49#include "leb128.h" 50#include "mirror/array-inl.h" 51#include "mirror/object_array-inl.h" 52#include "mirror/object_reference.h" 53#include "mirror/string.h" 54#include "parallel_move_resolver.h" 55#include "ssa_liveness_analysis.h" 56#include "utils/assembler.h" 57 58namespace art { 59 60// Return whether a location is consistent with a type. 61static bool CheckType(Primitive::Type type, Location location) { 62 if (location.IsFpuRegister() 63 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) { 64 return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble); 65 } else if (location.IsRegister() || 66 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) { 67 return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot); 68 } else if (location.IsRegisterPair()) { 69 return type == Primitive::kPrimLong; 70 } else if (location.IsFpuRegisterPair()) { 71 return type == Primitive::kPrimDouble; 72 } else if (location.IsStackSlot()) { 73 return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong) 74 || (type == Primitive::kPrimFloat) 75 || (type == Primitive::kPrimNot); 76 } else if (location.IsDoubleStackSlot()) { 77 return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); 78 } else if (location.IsConstant()) { 79 if (location.GetConstant()->IsIntConstant()) { 80 return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong); 81 } else if (location.GetConstant()->IsNullConstant()) { 82 return type == Primitive::kPrimNot; 83 } else if (location.GetConstant()->IsLongConstant()) { 84 return type == Primitive::kPrimLong; 85 } else if (location.GetConstant()->IsFloatConstant()) { 86 return type == Primitive::kPrimFloat; 87 } else { 88 return location.GetConstant()->IsDoubleConstant() 89 && (type == Primitive::kPrimDouble); 90 } 91 } else { 92 return location.IsInvalid() || (location.GetPolicy() == Location::kAny); 93 } 94} 95 96// Check that a location summary is consistent with an instruction. 97static bool CheckTypeConsistency(HInstruction* instruction) { 98 LocationSummary* locations = instruction->GetLocations(); 99 if (locations == nullptr) { 100 return true; 101 } 102 103 if (locations->Out().IsUnallocated() 104 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) { 105 DCHECK(CheckType(instruction->GetType(), locations->InAt(0))) 106 << instruction->GetType() 107 << " " << locations->InAt(0); 108 } else { 109 DCHECK(CheckType(instruction->GetType(), locations->Out())) 110 << instruction->GetType() 111 << " " << locations->Out(); 112 } 113 114 auto&& inputs = instruction->GetInputs(); 115 for (size_t i = 0; i < inputs.size(); ++i) { 116 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i))) 117 << inputs[i]->GetType() << " " << locations->InAt(i); 118 } 119 120 HEnvironment* environment = instruction->GetEnvironment(); 121 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) { 122 if (environment->GetInstructionAt(i) != nullptr) { 123 Primitive::Type type = environment->GetInstructionAt(i)->GetType(); 124 DCHECK(CheckType(type, environment->GetLocationAt(i))) 125 << type << " " << environment->GetLocationAt(i); 126 } else { 127 DCHECK(environment->GetLocationAt(i).IsInvalid()) 128 << environment->GetLocationAt(i); 129 } 130 } 131 return true; 132} 133 134size_t CodeGenerator::GetCacheOffset(uint32_t index) { 135 return sizeof(GcRoot<mirror::Object>) * index; 136} 137 138size_t CodeGenerator::GetCachePointerOffset(uint32_t index) { 139 auto pointer_size = InstructionSetPointerSize(GetInstructionSet()); 140 return pointer_size * index; 141} 142 143uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) { 144 return array_length->IsStringLength() 145 ? mirror::String::CountOffset().Uint32Value() 146 : mirror::Array::LengthOffset().Uint32Value(); 147} 148 149uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) { 150 DCHECK(array_get->GetType() == Primitive::kPrimChar || !array_get->IsStringCharAt()); 151 return array_get->IsStringCharAt() 152 ? mirror::String::ValueOffset().Uint32Value() 153 : mirror::Array::DataOffset(Primitive::ComponentSize(array_get->GetType())).Uint32Value(); 154} 155 156bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { 157 DCHECK_EQ((*block_order_)[current_block_index_], current); 158 return GetNextBlockToEmit() == FirstNonEmptyBlock(next); 159} 160 161HBasicBlock* CodeGenerator::GetNextBlockToEmit() const { 162 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) { 163 HBasicBlock* block = (*block_order_)[i]; 164 if (!block->IsSingleJump()) { 165 return block; 166 } 167 } 168 return nullptr; 169} 170 171HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const { 172 while (block->IsSingleJump()) { 173 block = block->GetSuccessors()[0]; 174 } 175 return block; 176} 177 178class DisassemblyScope { 179 public: 180 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen) 181 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) { 182 if (codegen_.GetDisassemblyInformation() != nullptr) { 183 start_offset_ = codegen_.GetAssembler().CodeSize(); 184 } 185 } 186 187 ~DisassemblyScope() { 188 // We avoid building this data when we know it will not be used. 189 if (codegen_.GetDisassemblyInformation() != nullptr) { 190 codegen_.GetDisassemblyInformation()->AddInstructionInterval( 191 instruction_, start_offset_, codegen_.GetAssembler().CodeSize()); 192 } 193 } 194 195 private: 196 const CodeGenerator& codegen_; 197 HInstruction* instruction_; 198 size_t start_offset_; 199}; 200 201 202void CodeGenerator::GenerateSlowPaths() { 203 size_t code_start = 0; 204 for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) { 205 SlowPathCode* slow_path = slow_path_unique_ptr.get(); 206 current_slow_path_ = slow_path; 207 if (disasm_info_ != nullptr) { 208 code_start = GetAssembler()->CodeSize(); 209 } 210 // Record the dex pc at start of slow path (required for java line number mapping). 211 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path); 212 slow_path->EmitNativeCode(this); 213 if (disasm_info_ != nullptr) { 214 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize()); 215 } 216 } 217 current_slow_path_ = nullptr; 218} 219 220void CodeGenerator::Compile(CodeAllocator* allocator) { 221 // The register allocator already called `InitializeCodeGeneration`, 222 // where the frame size has been computed. 223 DCHECK(block_order_ != nullptr); 224 Initialize(); 225 226 HGraphVisitor* instruction_visitor = GetInstructionVisitor(); 227 DCHECK_EQ(current_block_index_, 0u); 228 229 size_t frame_start = GetAssembler()->CodeSize(); 230 GenerateFrameEntry(); 231 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_)); 232 if (disasm_info_ != nullptr) { 233 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); 234 } 235 236 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) { 237 HBasicBlock* block = (*block_order_)[current_block_index_]; 238 // Don't generate code for an empty block. Its predecessors will branch to its successor 239 // directly. Also, the label of that block will not be emitted, so this helps catch 240 // errors where we reference that label. 241 if (block->IsSingleJump()) continue; 242 Bind(block); 243 // This ensures that we have correct native line mapping for all native instructions. 244 // It is necessary to make stepping over a statement work. Otherwise, any initial 245 // instructions (e.g. moves) would be assumed to be the start of next statement. 246 MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc()); 247 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 248 HInstruction* current = it.Current(); 249 if (current->HasEnvironment()) { 250 // Create stackmap for HNativeDebugInfo or any instruction which calls native code. 251 // Note that we need correct mapping for the native PC of the call instruction, 252 // so the runtime's stackmap is not sufficient since it is at PC after the call. 253 MaybeRecordNativeDebugInfo(current, block->GetDexPc()); 254 } 255 DisassemblyScope disassembly_scope(current, *this); 256 DCHECK(CheckTypeConsistency(current)); 257 current->Accept(instruction_visitor); 258 } 259 } 260 261 GenerateSlowPaths(); 262 263 // Emit catch stack maps at the end of the stack map stream as expected by the 264 // runtime exception handler. 265 if (graph_->HasTryCatch()) { 266 RecordCatchBlockInfo(); 267 } 268 269 // Finalize instructions in assember; 270 Finalize(allocator); 271} 272 273void CodeGenerator::Finalize(CodeAllocator* allocator) { 274 size_t code_size = GetAssembler()->CodeSize(); 275 uint8_t* buffer = allocator->Allocate(code_size); 276 277 MemoryRegion code(buffer, code_size); 278 GetAssembler()->FinalizeInstructions(code); 279} 280 281void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) { 282 // No linker patches by default. 283} 284 285void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots, 286 size_t maximum_number_of_live_core_registers, 287 size_t maximum_number_of_live_fpu_registers, 288 size_t number_of_out_slots, 289 const ArenaVector<HBasicBlock*>& block_order) { 290 block_order_ = &block_order; 291 DCHECK(!block_order.empty()); 292 DCHECK(block_order[0] == GetGraph()->GetEntryBlock()); 293 ComputeSpillMask(); 294 first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; 295 296 if (number_of_spill_slots == 0 297 && !HasAllocatedCalleeSaveRegisters() 298 && IsLeafMethod() 299 && !RequiresCurrentMethod()) { 300 DCHECK_EQ(maximum_number_of_live_core_registers, 0u); 301 DCHECK_EQ(maximum_number_of_live_fpu_registers, 0u); 302 SetFrameSize(CallPushesPC() ? GetWordSize() : 0); 303 } else { 304 SetFrameSize(RoundUp( 305 number_of_spill_slots * kVRegSize 306 + number_of_out_slots * kVRegSize 307 + maximum_number_of_live_core_registers * GetWordSize() 308 + maximum_number_of_live_fpu_registers * GetFloatingPointSpillSlotSize() 309 + FrameEntrySpillSize(), 310 kStackAlignment)); 311 } 312} 313 314void CodeGenerator::CreateCommonInvokeLocationSummary( 315 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) { 316 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena(); 317 LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCall); 318 319 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) { 320 HInstruction* input = invoke->InputAt(i); 321 locations->SetInAt(i, visitor->GetNextLocation(input->GetType())); 322 } 323 324 locations->SetOut(visitor->GetReturnLocation(invoke->GetType())); 325 326 if (invoke->IsInvokeStaticOrDirect()) { 327 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect(); 328 switch (call->GetMethodLoadKind()) { 329 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: 330 locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation()); 331 break; 332 case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: 333 locations->AddTemp(visitor->GetMethodLocation()); 334 locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister()); 335 break; 336 default: 337 locations->AddTemp(visitor->GetMethodLocation()); 338 break; 339 } 340 } else { 341 locations->AddTemp(visitor->GetMethodLocation()); 342 } 343} 344 345void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) { 346 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex()); 347 348 // Initialize to anything to silent compiler warnings. 349 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; 350 switch (invoke->GetOriginalInvokeType()) { 351 case kStatic: 352 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck; 353 break; 354 case kDirect: 355 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck; 356 break; 357 case kVirtual: 358 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck; 359 break; 360 case kSuper: 361 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck; 362 break; 363 case kInterface: 364 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck; 365 break; 366 } 367 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr); 368} 369 370void CodeGenerator::CreateUnresolvedFieldLocationSummary( 371 HInstruction* field_access, 372 Primitive::Type field_type, 373 const FieldAccessCallingConvention& calling_convention) { 374 bool is_instance = field_access->IsUnresolvedInstanceFieldGet() 375 || field_access->IsUnresolvedInstanceFieldSet(); 376 bool is_get = field_access->IsUnresolvedInstanceFieldGet() 377 || field_access->IsUnresolvedStaticFieldGet(); 378 379 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetArena(); 380 LocationSummary* locations = 381 new (allocator) LocationSummary(field_access, LocationSummary::kCall); 382 383 locations->AddTemp(calling_convention.GetFieldIndexLocation()); 384 385 if (is_instance) { 386 // Add the `this` object for instance field accesses. 387 locations->SetInAt(0, calling_convention.GetObjectLocation()); 388 } 389 390 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64 391 // regardless of the the type. Because of that we forced to special case 392 // the access to floating point values. 393 if (is_get) { 394 if (Primitive::IsFloatingPointType(field_type)) { 395 // The return value will be stored in regular registers while register 396 // allocator expects it in a floating point register. 397 // Note We don't need to request additional temps because the return 398 // register(s) are already blocked due the call and they may overlap with 399 // the input or field index. 400 // The transfer between the two will be done at codegen level. 401 locations->SetOut(calling_convention.GetFpuLocation(field_type)); 402 } else { 403 locations->SetOut(calling_convention.GetReturnLocation(field_type)); 404 } 405 } else { 406 size_t set_index = is_instance ? 1 : 0; 407 if (Primitive::IsFloatingPointType(field_type)) { 408 // The set value comes from a float location while the calling convention 409 // expects it in a regular register location. Allocate a temp for it and 410 // make the transfer at codegen. 411 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations); 412 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type)); 413 } else { 414 locations->SetInAt(set_index, 415 calling_convention.GetSetValueLocation(field_type, is_instance)); 416 } 417 } 418} 419 420void CodeGenerator::GenerateUnresolvedFieldAccess( 421 HInstruction* field_access, 422 Primitive::Type field_type, 423 uint32_t field_index, 424 uint32_t dex_pc, 425 const FieldAccessCallingConvention& calling_convention) { 426 LocationSummary* locations = field_access->GetLocations(); 427 428 MoveConstant(locations->GetTemp(0), field_index); 429 430 bool is_instance = field_access->IsUnresolvedInstanceFieldGet() 431 || field_access->IsUnresolvedInstanceFieldSet(); 432 bool is_get = field_access->IsUnresolvedInstanceFieldGet() 433 || field_access->IsUnresolvedStaticFieldGet(); 434 435 if (!is_get && Primitive::IsFloatingPointType(field_type)) { 436 // Copy the float value to be set into the calling convention register. 437 // Note that using directly the temp location is problematic as we don't 438 // support temp register pairs. To avoid boilerplate conversion code, use 439 // the location from the calling convention. 440 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance), 441 locations->InAt(is_instance ? 1 : 0), 442 (Primitive::Is64BitType(field_type) ? Primitive::kPrimLong : Primitive::kPrimInt)); 443 } 444 445 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings. 446 switch (field_type) { 447 case Primitive::kPrimBoolean: 448 entrypoint = is_instance 449 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance) 450 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static); 451 break; 452 case Primitive::kPrimByte: 453 entrypoint = is_instance 454 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance) 455 : (is_get ? kQuickGetByteStatic : kQuickSet8Static); 456 break; 457 case Primitive::kPrimShort: 458 entrypoint = is_instance 459 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance) 460 : (is_get ? kQuickGetShortStatic : kQuickSet16Static); 461 break; 462 case Primitive::kPrimChar: 463 entrypoint = is_instance 464 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance) 465 : (is_get ? kQuickGetCharStatic : kQuickSet16Static); 466 break; 467 case Primitive::kPrimInt: 468 case Primitive::kPrimFloat: 469 entrypoint = is_instance 470 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance) 471 : (is_get ? kQuickGet32Static : kQuickSet32Static); 472 break; 473 case Primitive::kPrimNot: 474 entrypoint = is_instance 475 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance) 476 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic); 477 break; 478 case Primitive::kPrimLong: 479 case Primitive::kPrimDouble: 480 entrypoint = is_instance 481 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance) 482 : (is_get ? kQuickGet64Static : kQuickSet64Static); 483 break; 484 default: 485 LOG(FATAL) << "Invalid type " << field_type; 486 } 487 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr); 488 489 if (is_get && Primitive::IsFloatingPointType(field_type)) { 490 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type); 491 } 492} 493 494// TODO: Remove argument `code_generator_supports_read_barrier` when 495// all code generators have read barrier support. 496void CodeGenerator::CreateLoadClassLocationSummary(HLoadClass* cls, 497 Location runtime_type_index_location, 498 Location runtime_return_location, 499 bool code_generator_supports_read_barrier) { 500 ArenaAllocator* allocator = cls->GetBlock()->GetGraph()->GetArena(); 501 LocationSummary::CallKind call_kind = cls->NeedsAccessCheck() 502 ? LocationSummary::kCall 503 : (((code_generator_supports_read_barrier && kEmitCompilerReadBarrier) || 504 cls->CanCallRuntime()) 505 ? LocationSummary::kCallOnSlowPath 506 : LocationSummary::kNoCall); 507 LocationSummary* locations = new (allocator) LocationSummary(cls, call_kind); 508 if (cls->NeedsAccessCheck()) { 509 locations->SetInAt(0, Location::NoLocation()); 510 locations->AddTemp(runtime_type_index_location); 511 locations->SetOut(runtime_return_location); 512 } else { 513 locations->SetInAt(0, Location::RequiresRegister()); 514 locations->SetOut(Location::RequiresRegister()); 515 } 516} 517 518 519void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const { 520 // The DCHECKS below check that a register is not specified twice in 521 // the summary. The out location can overlap with an input, so we need 522 // to special case it. 523 if (location.IsRegister()) { 524 DCHECK(is_out || !blocked_core_registers_[location.reg()]); 525 blocked_core_registers_[location.reg()] = true; 526 } else if (location.IsFpuRegister()) { 527 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]); 528 blocked_fpu_registers_[location.reg()] = true; 529 } else if (location.IsFpuRegisterPair()) { 530 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]); 531 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true; 532 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]); 533 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true; 534 } else if (location.IsRegisterPair()) { 535 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]); 536 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true; 537 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]); 538 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true; 539 } 540} 541 542void CodeGenerator::AllocateLocations(HInstruction* instruction) { 543 instruction->Accept(GetLocationBuilder()); 544 DCHECK(CheckTypeConsistency(instruction)); 545 LocationSummary* locations = instruction->GetLocations(); 546 if (!instruction->IsSuspendCheckEntry()) { 547 if (locations != nullptr) { 548 if (locations->CanCall()) { 549 MarkNotLeaf(); 550 } else if (locations->Intrinsified() && 551 instruction->IsInvokeStaticOrDirect() && 552 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) { 553 // A static method call that has been fully intrinsified, and cannot call on the slow 554 // path or refer to the current method directly, no longer needs current method. 555 return; 556 } 557 } 558 if (instruction->NeedsCurrentMethod()) { 559 SetRequiresCurrentMethod(); 560 } 561 } 562} 563 564void CodeGenerator::MaybeRecordStat(MethodCompilationStat compilation_stat, size_t count) const { 565 if (stats_ != nullptr) { 566 stats_->RecordStat(compilation_stat, count); 567 } 568} 569 570std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph, 571 InstructionSet instruction_set, 572 const InstructionSetFeatures& isa_features, 573 const CompilerOptions& compiler_options, 574 OptimizingCompilerStats* stats) { 575 ArenaAllocator* arena = graph->GetArena(); 576 switch (instruction_set) { 577#ifdef ART_ENABLE_CODEGEN_arm 578 case kArm: 579 case kThumb2: { 580 return std::unique_ptr<CodeGenerator>( 581 new (arena) arm::CodeGeneratorARM(graph, 582 *isa_features.AsArmInstructionSetFeatures(), 583 compiler_options, 584 stats)); 585 } 586#endif 587#ifdef ART_ENABLE_CODEGEN_arm64 588 case kArm64: { 589 return std::unique_ptr<CodeGenerator>( 590 new (arena) arm64::CodeGeneratorARM64(graph, 591 *isa_features.AsArm64InstructionSetFeatures(), 592 compiler_options, 593 stats)); 594 } 595#endif 596#ifdef ART_ENABLE_CODEGEN_mips 597 case kMips: { 598 return std::unique_ptr<CodeGenerator>( 599 new (arena) mips::CodeGeneratorMIPS(graph, 600 *isa_features.AsMipsInstructionSetFeatures(), 601 compiler_options, 602 stats)); 603 } 604#endif 605#ifdef ART_ENABLE_CODEGEN_mips64 606 case kMips64: { 607 return std::unique_ptr<CodeGenerator>( 608 new (arena) mips64::CodeGeneratorMIPS64(graph, 609 *isa_features.AsMips64InstructionSetFeatures(), 610 compiler_options, 611 stats)); 612 } 613#endif 614#ifdef ART_ENABLE_CODEGEN_x86 615 case kX86: { 616 return std::unique_ptr<CodeGenerator>( 617 new (arena) x86::CodeGeneratorX86(graph, 618 *isa_features.AsX86InstructionSetFeatures(), 619 compiler_options, 620 stats)); 621 } 622#endif 623#ifdef ART_ENABLE_CODEGEN_x86_64 624 case kX86_64: { 625 return std::unique_ptr<CodeGenerator>( 626 new (arena) x86_64::CodeGeneratorX86_64(graph, 627 *isa_features.AsX86_64InstructionSetFeatures(), 628 compiler_options, 629 stats)); 630 } 631#endif 632 default: 633 return nullptr; 634 } 635} 636 637size_t CodeGenerator::ComputeStackMapsSize() { 638 return stack_map_stream_.PrepareForFillIn(); 639} 640 641static void CheckCovers(uint32_t dex_pc, 642 const HGraph& graph, 643 const CodeInfo& code_info, 644 const ArenaVector<HSuspendCheck*>& loop_headers, 645 ArenaVector<size_t>* covered) { 646 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 647 for (size_t i = 0; i < loop_headers.size(); ++i) { 648 if (loop_headers[i]->GetDexPc() == dex_pc) { 649 if (graph.IsCompilingOsr()) { 650 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid()); 651 } 652 ++(*covered)[i]; 653 } 654 } 655} 656 657// Debug helper to ensure loop entries in compiled code are matched by 658// dex branch instructions. 659static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph, 660 const CodeInfo& code_info, 661 const DexFile::CodeItem& code_item) { 662 if (graph.HasTryCatch()) { 663 // One can write loops through try/catch, which we do not support for OSR anyway. 664 return; 665 } 666 ArenaVector<HSuspendCheck*> loop_headers(graph.GetArena()->Adapter(kArenaAllocMisc)); 667 for (HReversePostOrderIterator it(graph); !it.Done(); it.Advance()) { 668 if (it.Current()->IsLoopHeader()) { 669 HSuspendCheck* suspend_check = it.Current()->GetLoopInformation()->GetSuspendCheck(); 670 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) { 671 loop_headers.push_back(suspend_check); 672 } 673 } 674 } 675 ArenaVector<size_t> covered(loop_headers.size(), 0, graph.GetArena()->Adapter(kArenaAllocMisc)); 676 const uint16_t* code_ptr = code_item.insns_; 677 const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_; 678 679 size_t dex_pc = 0; 680 while (code_ptr < code_end) { 681 const Instruction& instruction = *Instruction::At(code_ptr); 682 if (instruction.IsBranch()) { 683 uint32_t target = dex_pc + instruction.GetTargetOffset(); 684 CheckCovers(target, graph, code_info, loop_headers, &covered); 685 } else if (instruction.IsSwitch()) { 686 DexSwitchTable table(instruction, dex_pc); 687 uint16_t num_entries = table.GetNumEntries(); 688 size_t offset = table.GetFirstValueIndex(); 689 690 // Use a larger loop counter type to avoid overflow issues. 691 for (size_t i = 0; i < num_entries; ++i) { 692 // The target of the case. 693 uint32_t target = dex_pc + table.GetEntryAt(i + offset); 694 CheckCovers(target, graph, code_info, loop_headers, &covered); 695 } 696 } 697 dex_pc += instruction.SizeInCodeUnits(); 698 code_ptr += instruction.SizeInCodeUnits(); 699 } 700 701 for (size_t i = 0; i < covered.size(); ++i) { 702 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent"; 703 } 704} 705 706void CodeGenerator::BuildStackMaps(MemoryRegion region, const DexFile::CodeItem& code_item) { 707 stack_map_stream_.FillIn(region); 708 if (kIsDebugBuild) { 709 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(region), code_item); 710 } 711} 712 713void CodeGenerator::RecordPcInfo(HInstruction* instruction, 714 uint32_t dex_pc, 715 SlowPathCode* slow_path) { 716 if (instruction != nullptr) { 717 // The code generated for some type conversions 718 // may call the runtime, thus normally requiring a subsequent 719 // call to this method. However, the method verifier does not 720 // produce PC information for certain instructions, which are 721 // considered "atomic" (they cannot join a GC). 722 // Therefore we do not currently record PC information for such 723 // instructions. As this may change later, we added this special 724 // case so that code generators may nevertheless call 725 // CodeGenerator::RecordPcInfo without triggering an error in 726 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x") 727 // thereafter. 728 if (instruction->IsTypeConversion()) { 729 return; 730 } 731 if (instruction->IsRem()) { 732 Primitive::Type type = instruction->AsRem()->GetResultType(); 733 if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) { 734 return; 735 } 736 } 737 } 738 739 uint32_t outer_dex_pc = dex_pc; 740 uint32_t outer_environment_size = 0; 741 uint32_t inlining_depth = 0; 742 if (instruction != nullptr) { 743 for (HEnvironment* environment = instruction->GetEnvironment(); 744 environment != nullptr; 745 environment = environment->GetParent()) { 746 outer_dex_pc = environment->GetDexPc(); 747 outer_environment_size = environment->Size(); 748 if (environment != instruction->GetEnvironment()) { 749 inlining_depth++; 750 } 751 } 752 } 753 754 // Collect PC infos for the mapping table. 755 uint32_t native_pc = GetAssembler()->CodeSize(); 756 757 if (instruction == nullptr) { 758 // For stack overflow checks and native-debug-info entries without dex register 759 // mapping (i.e. start of basic block or start of slow path). 760 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0); 761 stack_map_stream_.EndStackMapEntry(); 762 return; 763 } 764 LocationSummary* locations = instruction->GetLocations(); 765 766 uint32_t register_mask = locations->GetRegisterMask(); 767 if (locations->OnlyCallsOnSlowPath()) { 768 // In case of slow path, we currently set the location of caller-save registers 769 // to register (instead of their stack location when pushed before the slow-path 770 // call). Therefore register_mask contains both callee-save and caller-save 771 // registers that hold objects. We must remove the caller-save from the mask, since 772 // they will be overwritten by the callee. 773 register_mask &= core_callee_save_mask_; 774 } 775 // The register mask must be a subset of callee-save registers. 776 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask); 777 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, 778 native_pc, 779 register_mask, 780 locations->GetStackMask(), 781 outer_environment_size, 782 inlining_depth); 783 784 EmitEnvironment(instruction->GetEnvironment(), slow_path); 785 stack_map_stream_.EndStackMapEntry(); 786 787 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation(); 788 if (instruction->IsSuspendCheck() && 789 (info != nullptr) && 790 graph_->IsCompilingOsr() && 791 (inlining_depth == 0)) { 792 DCHECK_EQ(info->GetSuspendCheck(), instruction); 793 // We duplicate the stack map as a marker that this stack map can be an OSR entry. 794 // Duplicating it avoids having the runtime recognize and skip an OSR stack map. 795 DCHECK(info->IsIrreducible()); 796 stack_map_stream_.BeginStackMapEntry( 797 dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0); 798 EmitEnvironment(instruction->GetEnvironment(), slow_path); 799 stack_map_stream_.EndStackMapEntry(); 800 if (kIsDebugBuild) { 801 HEnvironment* environment = instruction->GetEnvironment(); 802 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { 803 HInstruction* in_environment = environment->GetInstructionAt(i); 804 if (in_environment != nullptr) { 805 DCHECK(in_environment->IsPhi() || in_environment->IsConstant()); 806 Location location = environment->GetLocationAt(i); 807 DCHECK(location.IsStackSlot() || 808 location.IsDoubleStackSlot() || 809 location.IsConstant() || 810 location.IsInvalid()); 811 if (location.IsStackSlot() || location.IsDoubleStackSlot()) { 812 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize())); 813 } 814 } 815 } 816 } 817 } else if (kIsDebugBuild) { 818 // Ensure stack maps are unique, by checking that the native pc in the stack map 819 // last emitted is different than the native pc of the stack map just emitted. 820 size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps(); 821 if (number_of_stack_maps > 1) { 822 DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_offset, 823 stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_offset); 824 } 825 } 826} 827 828bool CodeGenerator::HasStackMapAtCurrentPc() { 829 uint32_t pc = GetAssembler()->CodeSize(); 830 size_t count = stack_map_stream_.GetNumberOfStackMaps(); 831 return count > 0 && stack_map_stream_.GetStackMap(count - 1).native_pc_offset == pc; 832} 833 834void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction, 835 uint32_t dex_pc, 836 SlowPathCode* slow_path) { 837 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) { 838 if (HasStackMapAtCurrentPc()) { 839 // Ensure that we do not collide with the stack map of the previous instruction. 840 GenerateNop(); 841 } 842 RecordPcInfo(instruction, dex_pc, slow_path); 843 } 844} 845 846void CodeGenerator::RecordCatchBlockInfo() { 847 ArenaAllocator* arena = graph_->GetArena(); 848 849 for (HBasicBlock* block : *block_order_) { 850 if (!block->IsCatchBlock()) { 851 continue; 852 } 853 854 uint32_t dex_pc = block->GetDexPc(); 855 uint32_t num_vregs = graph_->GetNumberOfVRegs(); 856 uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment. 857 uint32_t native_pc = GetAddressOf(block); 858 uint32_t register_mask = 0; // Not used. 859 860 // The stack mask is not used, so we leave it empty. 861 ArenaBitVector* stack_mask = 862 ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator); 863 864 stack_map_stream_.BeginStackMapEntry(dex_pc, 865 native_pc, 866 register_mask, 867 stack_mask, 868 num_vregs, 869 inlining_depth); 870 871 HInstruction* current_phi = block->GetFirstPhi(); 872 for (size_t vreg = 0; vreg < num_vregs; ++vreg) { 873 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) { 874 HInstruction* next_phi = current_phi->GetNext(); 875 DCHECK(next_phi == nullptr || 876 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber()) 877 << "Phis need to be sorted by vreg number to keep this a linear-time loop."; 878 current_phi = next_phi; 879 } 880 881 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) { 882 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); 883 } else { 884 Location location = current_phi->GetLiveInterval()->ToLocation(); 885 switch (location.GetKind()) { 886 case Location::kStackSlot: { 887 stack_map_stream_.AddDexRegisterEntry( 888 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 889 break; 890 } 891 case Location::kDoubleStackSlot: { 892 stack_map_stream_.AddDexRegisterEntry( 893 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 894 stack_map_stream_.AddDexRegisterEntry( 895 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); 896 ++vreg; 897 DCHECK_LT(vreg, num_vregs); 898 break; 899 } 900 default: { 901 // All catch phis must be allocated to a stack slot. 902 LOG(FATAL) << "Unexpected kind " << location.GetKind(); 903 UNREACHABLE(); 904 } 905 } 906 } 907 } 908 909 stack_map_stream_.EndStackMapEntry(); 910 } 911} 912 913void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) { 914 if (environment == nullptr) return; 915 916 if (environment->GetParent() != nullptr) { 917 // We emit the parent environment first. 918 EmitEnvironment(environment->GetParent(), slow_path); 919 stack_map_stream_.BeginInlineInfoEntry(environment->GetMethodIdx(), 920 environment->GetDexPc(), 921 environment->GetInvokeType(), 922 environment->Size()); 923 } 924 925 // Walk over the environment, and record the location of dex registers. 926 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) { 927 HInstruction* current = environment->GetInstructionAt(i); 928 if (current == nullptr) { 929 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); 930 continue; 931 } 932 933 Location location = environment->GetLocationAt(i); 934 switch (location.GetKind()) { 935 case Location::kConstant: { 936 DCHECK_EQ(current, location.GetConstant()); 937 if (current->IsLongConstant()) { 938 int64_t value = current->AsLongConstant()->GetValue(); 939 stack_map_stream_.AddDexRegisterEntry( 940 DexRegisterLocation::Kind::kConstant, Low32Bits(value)); 941 stack_map_stream_.AddDexRegisterEntry( 942 DexRegisterLocation::Kind::kConstant, High32Bits(value)); 943 ++i; 944 DCHECK_LT(i, environment_size); 945 } else if (current->IsDoubleConstant()) { 946 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue()); 947 stack_map_stream_.AddDexRegisterEntry( 948 DexRegisterLocation::Kind::kConstant, Low32Bits(value)); 949 stack_map_stream_.AddDexRegisterEntry( 950 DexRegisterLocation::Kind::kConstant, High32Bits(value)); 951 ++i; 952 DCHECK_LT(i, environment_size); 953 } else if (current->IsIntConstant()) { 954 int32_t value = current->AsIntConstant()->GetValue(); 955 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); 956 } else if (current->IsNullConstant()) { 957 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0); 958 } else { 959 DCHECK(current->IsFloatConstant()) << current->DebugName(); 960 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue()); 961 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value); 962 } 963 break; 964 } 965 966 case Location::kStackSlot: { 967 stack_map_stream_.AddDexRegisterEntry( 968 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 969 break; 970 } 971 972 case Location::kDoubleStackSlot: { 973 stack_map_stream_.AddDexRegisterEntry( 974 DexRegisterLocation::Kind::kInStack, location.GetStackIndex()); 975 stack_map_stream_.AddDexRegisterEntry( 976 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize)); 977 ++i; 978 DCHECK_LT(i, environment_size); 979 break; 980 } 981 982 case Location::kRegister : { 983 int id = location.reg(); 984 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) { 985 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id); 986 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 987 if (current->GetType() == Primitive::kPrimLong) { 988 stack_map_stream_.AddDexRegisterEntry( 989 DexRegisterLocation::Kind::kInStack, offset + kVRegSize); 990 ++i; 991 DCHECK_LT(i, environment_size); 992 } 993 } else { 994 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id); 995 if (current->GetType() == Primitive::kPrimLong) { 996 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id); 997 ++i; 998 DCHECK_LT(i, environment_size); 999 } 1000 } 1001 break; 1002 } 1003 1004 case Location::kFpuRegister : { 1005 int id = location.reg(); 1006 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) { 1007 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id); 1008 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 1009 if (current->GetType() == Primitive::kPrimDouble) { 1010 stack_map_stream_.AddDexRegisterEntry( 1011 DexRegisterLocation::Kind::kInStack, offset + kVRegSize); 1012 ++i; 1013 DCHECK_LT(i, environment_size); 1014 } 1015 } else { 1016 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id); 1017 if (current->GetType() == Primitive::kPrimDouble) { 1018 stack_map_stream_.AddDexRegisterEntry( 1019 DexRegisterLocation::Kind::kInFpuRegisterHigh, id); 1020 ++i; 1021 DCHECK_LT(i, environment_size); 1022 } 1023 } 1024 break; 1025 } 1026 1027 case Location::kFpuRegisterPair : { 1028 int low = location.low(); 1029 int high = location.high(); 1030 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) { 1031 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low); 1032 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 1033 } else { 1034 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low); 1035 } 1036 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) { 1037 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high); 1038 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 1039 ++i; 1040 } else { 1041 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high); 1042 ++i; 1043 } 1044 DCHECK_LT(i, environment_size); 1045 break; 1046 } 1047 1048 case Location::kRegisterPair : { 1049 int low = location.low(); 1050 int high = location.high(); 1051 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) { 1052 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low); 1053 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 1054 } else { 1055 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low); 1056 } 1057 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) { 1058 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high); 1059 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset); 1060 } else { 1061 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high); 1062 } 1063 ++i; 1064 DCHECK_LT(i, environment_size); 1065 break; 1066 } 1067 1068 case Location::kInvalid: { 1069 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0); 1070 break; 1071 } 1072 1073 default: 1074 LOG(FATAL) << "Unexpected kind " << location.GetKind(); 1075 } 1076 } 1077 1078 if (environment->GetParent() != nullptr) { 1079 stack_map_stream_.EndInlineInfoEntry(); 1080 } 1081} 1082 1083bool CodeGenerator::IsImplicitNullCheckAllowed(HNullCheck* null_check) const { 1084 return compiler_options_.GetImplicitNullChecks() && 1085 // Null checks which might throw into a catch block need to save live 1086 // registers and therefore cannot be done implicitly. 1087 !null_check->CanThrowIntoCatchBlock(); 1088} 1089 1090bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) { 1091 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves(); 1092 1093 return (first_next_not_move != nullptr) 1094 && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0)); 1095} 1096 1097void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) { 1098 // If we are from a static path don't record the pc as we can't throw NPE. 1099 // NB: having the checks here makes the code much less verbose in the arch 1100 // specific code generators. 1101 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) { 1102 return; 1103 } 1104 1105 if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) { 1106 return; 1107 } 1108 1109 // Find the first previous instruction which is not a move. 1110 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves(); 1111 1112 // If the instruction is a null check it means that `instr` is the first user 1113 // and needs to record the pc. 1114 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) { 1115 HNullCheck* null_check = first_prev_not_move->AsNullCheck(); 1116 if (IsImplicitNullCheckAllowed(null_check)) { 1117 // TODO: The parallel moves modify the environment. Their changes need to be 1118 // reverted otherwise the stack maps at the throw point will not be correct. 1119 RecordPcInfo(null_check, null_check->GetDexPc()); 1120 } 1121 } 1122} 1123 1124void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) { 1125 if (IsImplicitNullCheckAllowed(instruction)) { 1126 MaybeRecordStat(kImplicitNullCheckGenerated); 1127 GenerateImplicitNullCheck(instruction); 1128 } else { 1129 MaybeRecordStat(kExplicitNullCheckGenerated); 1130 GenerateExplicitNullCheck(instruction); 1131 } 1132} 1133 1134void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { 1135 LocationSummary* locations = suspend_check->GetLocations(); 1136 HBasicBlock* block = suspend_check->GetBlock(); 1137 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); 1138 DCHECK(block->IsLoopHeader()); 1139 1140 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 1141 HInstruction* current = it.Current(); 1142 LiveInterval* interval = current->GetLiveInterval(); 1143 // We only need to clear bits of loop phis containing objects and allocated in register. 1144 // Loop phis allocated on stack already have the object in the stack. 1145 if (current->GetType() == Primitive::kPrimNot 1146 && interval->HasRegister() 1147 && interval->HasSpillSlot()) { 1148 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); 1149 } 1150 } 1151} 1152 1153void CodeGenerator::EmitParallelMoves(Location from1, 1154 Location to1, 1155 Primitive::Type type1, 1156 Location from2, 1157 Location to2, 1158 Primitive::Type type2) { 1159 HParallelMove parallel_move(GetGraph()->GetArena()); 1160 parallel_move.AddMove(from1, to1, type1, nullptr); 1161 parallel_move.AddMove(from2, to2, type2, nullptr); 1162 GetMoveResolver()->EmitNativeCode(¶llel_move); 1163} 1164 1165void CodeGenerator::ValidateInvokeRuntime(HInstruction* instruction, SlowPathCode* slow_path) { 1166 // Ensure that the call kind indication given to the register allocator is 1167 // coherent with the runtime call generated, and that the GC side effect is 1168 // set when required. 1169 if (slow_path == nullptr) { 1170 DCHECK(instruction->GetLocations()->WillCall()) 1171 << "instruction->DebugName()=" << instruction->DebugName(); 1172 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC())) 1173 << "instruction->DebugName()=" << instruction->DebugName() 1174 << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString(); 1175 } else { 1176 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath() || slow_path->IsFatal()) 1177 << "instruction->DebugName()=" << instruction->DebugName() 1178 << " slow_path->GetDescription()=" << slow_path->GetDescription(); 1179 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) || 1180 // When read barriers are enabled, some instructions use a 1181 // slow path to emit a read barrier, which does not trigger 1182 // GC, is not fatal, nor is emitted by HDeoptimize 1183 // instructions. 1184 (kEmitCompilerReadBarrier && 1185 (instruction->IsInstanceFieldGet() || 1186 instruction->IsStaticFieldGet() || 1187 instruction->IsArraySet() || 1188 instruction->IsArrayGet() || 1189 instruction->IsLoadClass() || 1190 instruction->IsLoadString() || 1191 instruction->IsInstanceOf() || 1192 instruction->IsCheckCast()))) 1193 << "instruction->DebugName()=" << instruction->DebugName() 1194 << " instruction->GetSideEffects().ToString()=" << instruction->GetSideEffects().ToString() 1195 << " slow_path->GetDescription()=" << slow_path->GetDescription(); 1196 } 1197 1198 // Check the coherency of leaf information. 1199 DCHECK(instruction->IsSuspendCheck() 1200 || ((slow_path != nullptr) && slow_path->IsFatal()) 1201 || instruction->GetLocations()->CanCall() 1202 || !IsLeafMethod()) 1203 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : ""); 1204} 1205 1206void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { 1207 RegisterSet* live_registers = locations->GetLiveRegisters(); 1208 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); 1209 1210 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { 1211 if (!codegen->IsCoreCalleeSaveRegister(i)) { 1212 if (live_registers->ContainsCoreRegister(i)) { 1213 // If the register holds an object, update the stack mask. 1214 if (locations->RegisterContainsObject(i)) { 1215 locations->SetStackBit(stack_offset / kVRegSize); 1216 } 1217 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1218 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1219 saved_core_stack_offsets_[i] = stack_offset; 1220 stack_offset += codegen->SaveCoreRegister(stack_offset, i); 1221 } 1222 } 1223 } 1224 1225 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { 1226 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { 1227 if (live_registers->ContainsFloatingPointRegister(i)) { 1228 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1229 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1230 saved_fpu_stack_offsets_[i] = stack_offset; 1231 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i); 1232 } 1233 } 1234 } 1235} 1236 1237void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { 1238 RegisterSet* live_registers = locations->GetLiveRegisters(); 1239 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); 1240 1241 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { 1242 if (!codegen->IsCoreCalleeSaveRegister(i)) { 1243 if (live_registers->ContainsCoreRegister(i)) { 1244 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1245 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1246 stack_offset += codegen->RestoreCoreRegister(stack_offset, i); 1247 } 1248 } 1249 } 1250 1251 for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) { 1252 if (!codegen->IsFloatingPointCalleeSaveRegister(i)) { 1253 if (live_registers->ContainsFloatingPointRegister(i)) { 1254 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); 1255 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); 1256 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i); 1257 } 1258 } 1259 } 1260} 1261 1262void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) { 1263 // Check to see if we have known failures that will cause us to have to bail out 1264 // to the runtime, and just generate the runtime call directly. 1265 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); 1266 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); 1267 1268 // The positions must be non-negative. 1269 if ((src_pos != nullptr && src_pos->GetValue() < 0) || 1270 (dest_pos != nullptr && dest_pos->GetValue() < 0)) { 1271 // We will have to fail anyways. 1272 return; 1273 } 1274 1275 // The length must be >= 0. 1276 HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); 1277 if (length != nullptr) { 1278 int32_t len = length->GetValue(); 1279 if (len < 0) { 1280 // Just call as normal. 1281 return; 1282 } 1283 } 1284 1285 SystemArrayCopyOptimizations optimizations(invoke); 1286 1287 if (optimizations.GetDestinationIsSource()) { 1288 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) { 1289 // We only support backward copying if source and destination are the same. 1290 return; 1291 } 1292 } 1293 1294 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) { 1295 // We currently don't intrinsify primitive copying. 1296 return; 1297 } 1298 1299 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena(); 1300 LocationSummary* locations = new (allocator) LocationSummary(invoke, 1301 LocationSummary::kCallOnSlowPath, 1302 kIntrinsified); 1303 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). 1304 locations->SetInAt(0, Location::RequiresRegister()); 1305 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); 1306 locations->SetInAt(2, Location::RequiresRegister()); 1307 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); 1308 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); 1309 1310 locations->AddTemp(Location::RequiresRegister()); 1311 locations->AddTemp(Location::RequiresRegister()); 1312 locations->AddTemp(Location::RequiresRegister()); 1313} 1314 1315uint32_t CodeGenerator::GetReferenceSlowFlagOffset() const { 1316 ScopedObjectAccess soa(Thread::Current()); 1317 mirror::Class* klass = mirror::Reference::GetJavaLangRefReference(); 1318 DCHECK(klass->IsInitialized()); 1319 return klass->GetSlowPathFlagOffset().Uint32Value(); 1320} 1321 1322uint32_t CodeGenerator::GetReferenceDisableFlagOffset() const { 1323 ScopedObjectAccess soa(Thread::Current()); 1324 mirror::Class* klass = mirror::Reference::GetJavaLangRefReference(); 1325 DCHECK(klass->IsInitialized()); 1326 return klass->GetDisableIntrinsicFlagOffset().Uint32Value(); 1327} 1328 1329} // namespace art 1330