code_generator.cc revision 92a73aef279be78e3c2b04db1713076183933436
1/* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "code_generator.h" 18 19#include "code_generator_arm.h" 20#include "code_generator_x86.h" 21#include "code_generator_x86_64.h" 22#include "compiled_method.h" 23#include "dex/verified_method.h" 24#include "driver/dex_compilation_unit.h" 25#include "gc_map_builder.h" 26#include "leb128.h" 27#include "mapping_table.h" 28#include "ssa_liveness_analysis.h" 29#include "utils/assembler.h" 30#include "verifier/dex_gc_map.h" 31#include "vmap_table.h" 32 33namespace art { 34 35void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { 36 const GrowableArray<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); 37 DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock()); 38 DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1))); 39 Initialize(); 40 41 DCHECK_EQ(frame_size_, kUninitializedFrameSize); 42 if (!is_leaf) { 43 MarkNotLeaf(); 44 } 45 ComputeFrameSize(GetGraph()->GetNumberOfLocalVRegs() 46 + GetGraph()->GetNumberOfTemporaries() 47 + 1 /* filler */, 48 0, /* the baseline compiler does not have live registers at slow path */ 49 GetGraph()->GetMaximumNumberOfOutVRegs() 50 + 1 /* current method */); 51 GenerateFrameEntry(); 52 53 HGraphVisitor* location_builder = GetLocationBuilder(); 54 HGraphVisitor* instruction_visitor = GetInstructionVisitor(); 55 for (size_t i = 0, e = blocks.Size(); i < e; ++i) { 56 HBasicBlock* block = blocks.Get(i); 57 Bind(block); 58 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 59 HInstruction* current = it.Current(); 60 current->Accept(location_builder); 61 InitLocations(current); 62 current->Accept(instruction_visitor); 63 } 64 } 65 GenerateSlowPaths(); 66 67 size_t code_size = GetAssembler()->CodeSize(); 68 uint8_t* buffer = allocator->Allocate(code_size); 69 MemoryRegion code(buffer, code_size); 70 GetAssembler()->FinalizeInstructions(code); 71} 72 73void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { 74 // The frame size has already been computed during register allocation. 75 DCHECK_NE(frame_size_, kUninitializedFrameSize); 76 const GrowableArray<HBasicBlock*>& blocks = GetGraph()->GetBlocks(); 77 DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock()); 78 DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1))); 79 Initialize(); 80 81 GenerateFrameEntry(); 82 HGraphVisitor* instruction_visitor = GetInstructionVisitor(); 83 for (size_t i = 0, e = blocks.Size(); i < e; ++i) { 84 HBasicBlock* block = blocks.Get(i); 85 Bind(block); 86 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { 87 HInstruction* current = it.Current(); 88 current->Accept(instruction_visitor); 89 } 90 } 91 GenerateSlowPaths(); 92 93 size_t code_size = GetAssembler()->CodeSize(); 94 uint8_t* buffer = allocator->Allocate(code_size); 95 MemoryRegion code(buffer, code_size); 96 GetAssembler()->FinalizeInstructions(code); 97} 98 99void CodeGenerator::GenerateSlowPaths() { 100 for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { 101 slow_paths_.Get(i)->EmitNativeCode(this); 102 } 103} 104 105size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) { 106 for (size_t i = 0; i < length; ++i) { 107 if (!array[i]) { 108 array[i] = true; 109 return i; 110 } 111 } 112 LOG(FATAL) << "Could not find a register in baseline register allocator"; 113 return -1; 114} 115 116void CodeGenerator::ComputeFrameSize(size_t number_of_spill_slots, 117 size_t maximum_number_of_live_registers, 118 size_t number_of_out_slots) { 119 first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize; 120 121 SetFrameSize(RoundUp( 122 number_of_spill_slots * kVRegSize 123 + number_of_out_slots * kVRegSize 124 + maximum_number_of_live_registers * GetWordSize() 125 + FrameEntrySpillSize(), 126 kStackAlignment)); 127} 128 129Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { 130 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 131 // Use the temporary region (right below the dex registers). 132 int32_t slot = GetFrameSize() - FrameEntrySpillSize() 133 - kVRegSize // filler 134 - (number_of_locals * kVRegSize) 135 - ((1 + temp->GetIndex()) * kVRegSize); 136 return Location::StackSlot(slot); 137} 138 139int32_t CodeGenerator::GetStackSlot(HLocal* local) const { 140 uint16_t reg_number = local->GetRegNumber(); 141 uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); 142 if (reg_number >= number_of_locals) { 143 // Local is a parameter of the method. It is stored in the caller's frame. 144 return GetFrameSize() + kVRegSize // ART method 145 + (reg_number - number_of_locals) * kVRegSize; 146 } else { 147 // Local is a temporary in this method. It is stored in this method's frame. 148 return GetFrameSize() - FrameEntrySpillSize() 149 - kVRegSize // filler. 150 - (number_of_locals * kVRegSize) 151 + (reg_number * kVRegSize); 152 } 153} 154 155void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { 156 LocationSummary* locations = instruction->GetLocations(); 157 if (locations == nullptr) return; 158 159 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 160 blocked_core_registers_[i] = false; 161 } 162 163 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 164 blocked_fpu_registers_[i] = false; 165 } 166 167 for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) { 168 blocked_register_pairs_[i] = false; 169 } 170 171 // Mark all fixed input, temp and output registers as used. 172 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 173 Location loc = locations->InAt(i); 174 // The DCHECKS below check that a register is not specified twice in 175 // the summary. 176 if (loc.IsRegister()) { 177 DCHECK(!blocked_core_registers_[loc.reg()]); 178 blocked_core_registers_[loc.reg()] = true; 179 } else if (loc.IsFpuRegister()) { 180 DCHECK(!blocked_fpu_registers_[loc.reg()]); 181 blocked_fpu_registers_[loc.reg()] = true; 182 } else if (loc.IsRegisterPair()) { 183 DCHECK(!blocked_core_registers_[loc.AsRegisterPairLow<int>()]); 184 blocked_core_registers_[loc.AsRegisterPairLow<int>()] = true; 185 DCHECK(!blocked_core_registers_[loc.AsRegisterPairHigh<int>()]); 186 blocked_core_registers_[loc.AsRegisterPairHigh<int>()] = true; 187 } 188 } 189 190 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 191 Location loc = locations->GetTemp(i); 192 if (loc.IsRegister()) { 193 // Check that a register is not specified twice in the summary. 194 DCHECK(!blocked_core_registers_[loc.reg()]); 195 blocked_core_registers_[loc.reg()] = true; 196 } else { 197 DCHECK_EQ(loc.GetPolicy(), Location::kRequiresRegister); 198 } 199 } 200 201 SetupBlockedRegisters(); 202 203 // Allocate all unallocated input locations. 204 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { 205 Location loc = locations->InAt(i); 206 HInstruction* input = instruction->InputAt(i); 207 if (loc.IsUnallocated()) { 208 if ((loc.GetPolicy() == Location::kRequiresRegister) 209 || (loc.GetPolicy() == Location::kRequiresFpuRegister)) { 210 loc = AllocateFreeRegister(input->GetType()); 211 } else { 212 DCHECK_EQ(loc.GetPolicy(), Location::kAny); 213 HLoadLocal* load = input->AsLoadLocal(); 214 if (load != nullptr) { 215 loc = GetStackLocation(load); 216 } else { 217 loc = AllocateFreeRegister(input->GetType()); 218 } 219 } 220 locations->SetInAt(i, loc); 221 } 222 } 223 224 // Allocate all unallocated temp locations. 225 for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { 226 Location loc = locations->GetTemp(i); 227 if (loc.IsUnallocated()) { 228 DCHECK_EQ(loc.GetPolicy(), Location::kRequiresRegister); 229 // TODO: Adjust handling of temps. We currently consider temps to use 230 // core registers. They may also use floating point registers at some point. 231 loc = AllocateFreeRegister(Primitive::kPrimInt); 232 locations->SetTempAt(i, loc); 233 } 234 } 235 Location result_location = locations->Out(); 236 if (result_location.IsUnallocated()) { 237 switch (result_location.GetPolicy()) { 238 case Location::kAny: 239 case Location::kRequiresRegister: 240 case Location::kRequiresFpuRegister: 241 result_location = AllocateFreeRegister(instruction->GetType()); 242 break; 243 case Location::kSameAsFirstInput: 244 result_location = locations->InAt(0); 245 break; 246 } 247 locations->SetOut(result_location); 248 } 249} 250 251void CodeGenerator::InitLocations(HInstruction* instruction) { 252 if (instruction->GetLocations() == nullptr) { 253 if (instruction->IsTemporary()) { 254 HInstruction* previous = instruction->GetPrevious(); 255 Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); 256 Move(previous, temp_location, instruction); 257 previous->GetLocations()->SetOut(temp_location); 258 } 259 return; 260 } 261 AllocateRegistersLocally(instruction); 262 for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { 263 Location location = instruction->GetLocations()->InAt(i); 264 if (location.IsValid()) { 265 // Move the input to the desired location. 266 Move(instruction->InputAt(i), location, instruction); 267 } 268 } 269} 270 271bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { 272 // We currently iterate over the block in insertion order. 273 return current->GetBlockId() + 1 == next->GetBlockId(); 274} 275 276CodeGenerator* CodeGenerator::Create(ArenaAllocator* allocator, 277 HGraph* graph, 278 InstructionSet instruction_set) { 279 switch (instruction_set) { 280 case kArm: 281 case kThumb2: { 282 return new (allocator) arm::CodeGeneratorARM(graph); 283 } 284 case kMips: 285 return nullptr; 286 case kX86: { 287 return new (allocator) x86::CodeGeneratorX86(graph); 288 } 289 case kX86_64: { 290 return new (allocator) x86_64::CodeGeneratorX86_64(graph); 291 } 292 default: 293 return nullptr; 294 } 295} 296 297void CodeGenerator::BuildNativeGCMap( 298 std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const { 299 const std::vector<uint8_t>& gc_map_raw = 300 dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); 301 verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); 302 303 uint32_t max_native_offset = 0; 304 for (size_t i = 0; i < pc_infos_.Size(); i++) { 305 uint32_t native_offset = pc_infos_.Get(i).native_pc; 306 if (native_offset > max_native_offset) { 307 max_native_offset = native_offset; 308 } 309 } 310 311 GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth()); 312 for (size_t i = 0; i < pc_infos_.Size(); i++) { 313 struct PcInfo pc_info = pc_infos_.Get(i); 314 uint32_t native_offset = pc_info.native_pc; 315 uint32_t dex_pc = pc_info.dex_pc; 316 const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); 317 CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; 318 builder.AddEntry(native_offset, references); 319 } 320} 321 322void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data, SrcMap* src_map) const { 323 uint32_t pc2dex_data_size = 0u; 324 uint32_t pc2dex_entries = pc_infos_.Size(); 325 uint32_t pc2dex_offset = 0u; 326 int32_t pc2dex_dalvik_offset = 0; 327 uint32_t dex2pc_data_size = 0u; 328 uint32_t dex2pc_entries = 0u; 329 330 if (src_map != nullptr) { 331 src_map->reserve(pc2dex_entries); 332 } 333 334 // We currently only have pc2dex entries. 335 for (size_t i = 0; i < pc2dex_entries; i++) { 336 struct PcInfo pc_info = pc_infos_.Get(i); 337 pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset); 338 pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset); 339 pc2dex_offset = pc_info.native_pc; 340 pc2dex_dalvik_offset = pc_info.dex_pc; 341 if (src_map != nullptr) { 342 src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset})); 343 } 344 } 345 346 uint32_t total_entries = pc2dex_entries + dex2pc_entries; 347 uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); 348 uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; 349 data->resize(data_size); 350 351 uint8_t* data_ptr = &(*data)[0]; 352 uint8_t* write_pos = data_ptr; 353 write_pos = EncodeUnsignedLeb128(write_pos, total_entries); 354 write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); 355 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size); 356 uint8_t* write_pos2 = write_pos + pc2dex_data_size; 357 358 pc2dex_offset = 0u; 359 pc2dex_dalvik_offset = 0u; 360 for (size_t i = 0; i < pc2dex_entries; i++) { 361 struct PcInfo pc_info = pc_infos_.Get(i); 362 DCHECK(pc2dex_offset <= pc_info.native_pc); 363 write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset); 364 write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset); 365 pc2dex_offset = pc_info.native_pc; 366 pc2dex_dalvik_offset = pc_info.dex_pc; 367 } 368 DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); 369 DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size); 370 371 if (kIsDebugBuild) { 372 // Verify the encoded table holds the expected data. 373 MappingTable table(data_ptr); 374 CHECK_EQ(table.TotalSize(), total_entries); 375 CHECK_EQ(table.PcToDexSize(), pc2dex_entries); 376 auto it = table.PcToDexBegin(); 377 auto it2 = table.DexToPcBegin(); 378 for (size_t i = 0; i < pc2dex_entries; i++) { 379 struct PcInfo pc_info = pc_infos_.Get(i); 380 CHECK_EQ(pc_info.native_pc, it.NativePcOffset()); 381 CHECK_EQ(pc_info.dex_pc, it.DexPc()); 382 ++it; 383 } 384 CHECK(it == table.PcToDexEnd()); 385 CHECK(it2 == table.DexToPcEnd()); 386 } 387} 388 389void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const { 390 Leb128EncodingVector vmap_encoder; 391 // We currently don't use callee-saved registers. 392 size_t size = 0 + 1 /* marker */ + 0; 393 vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). 394 vmap_encoder.PushBackUnsigned(size); 395 vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); 396 397 *data = vmap_encoder.GetData(); 398} 399 400void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) { 401 uint32_t size = stack_map_stream_.ComputeNeededSize(); 402 data->resize(size); 403 MemoryRegion region(data->data(), size); 404 stack_map_stream_.FillIn(region); 405} 406 407void CodeGenerator::RecordPcInfo(HInstruction* instruction, uint32_t dex_pc) { 408 // Collect PC infos for the mapping table. 409 struct PcInfo pc_info; 410 pc_info.dex_pc = dex_pc; 411 pc_info.native_pc = GetAssembler()->CodeSize(); 412 pc_infos_.Add(pc_info); 413 414 // Populate stack map information. 415 416 if (instruction == nullptr) { 417 // For stack overflow checks. 418 stack_map_stream_.AddStackMapEntry(dex_pc, pc_info.native_pc, 0, 0, 0, 0); 419 return; 420 } 421 422 LocationSummary* locations = instruction->GetLocations(); 423 HEnvironment* environment = instruction->GetEnvironment(); 424 425 size_t environment_size = instruction->EnvironmentSize(); 426 427 size_t register_mask = 0; 428 size_t inlining_depth = 0; 429 stack_map_stream_.AddStackMapEntry( 430 dex_pc, pc_info.native_pc, register_mask, 431 locations->GetStackMask(), environment_size, inlining_depth); 432 433 // Walk over the environment, and record the location of dex registers. 434 for (size_t i = 0; i < environment_size; ++i) { 435 HInstruction* current = environment->GetInstructionAt(i); 436 if (current == nullptr) { 437 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kNone, 0); 438 continue; 439 } 440 441 Location location = locations->GetEnvironmentAt(i); 442 switch (location.GetKind()) { 443 case Location::kConstant: { 444 DCHECK(current == location.GetConstant()); 445 if (current->IsLongConstant()) { 446 int64_t value = current->AsLongConstant()->GetValue(); 447 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, Low32Bits(value)); 448 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, High32Bits(value)); 449 ++i; 450 DCHECK_LT(i, environment_size); 451 } else { 452 DCHECK(current->IsIntConstant()); 453 int32_t value = current->AsIntConstant()->GetValue(); 454 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, value); 455 } 456 break; 457 } 458 459 case Location::kStackSlot: { 460 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex()); 461 break; 462 } 463 464 case Location::kDoubleStackSlot: { 465 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex()); 466 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, 467 location.GetHighStackIndex(kVRegSize)); 468 ++i; 469 DCHECK_LT(i, environment_size); 470 break; 471 } 472 473 case Location::kRegister : { 474 int id = location.reg(); 475 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id); 476 if (current->GetType() == Primitive::kPrimDouble 477 || current->GetType() == Primitive::kPrimLong) { 478 stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id); 479 ++i; 480 DCHECK_LT(i, environment_size); 481 } 482 break; 483 } 484 485 default: 486 LOG(FATAL) << "Unexpected kind " << location.GetKind(); 487 } 488 } 489} 490 491size_t CodeGenerator::GetStackOffsetOfSavedRegister(size_t index) { 492 return first_register_slot_in_slow_path_ + index * GetWordSize(); 493} 494 495void CodeGenerator::SaveLiveRegisters(LocationSummary* locations) { 496 RegisterSet* register_set = locations->GetLiveRegisters(); 497 uint32_t count = 0; 498 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 499 if (register_set->ContainsCoreRegister(i)) { 500 size_t stack_offset = GetStackOffsetOfSavedRegister(count); 501 ++count; 502 SaveCoreRegister(Location::StackSlot(stack_offset), i); 503 // If the register holds an object, update the stack mask. 504 if (locations->RegisterContainsObject(i)) { 505 locations->SetStackBit(stack_offset / kVRegSize); 506 } 507 } 508 } 509 510 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 511 if (register_set->ContainsFloatingPointRegister(i)) { 512 LOG(FATAL) << "Unimplemented"; 513 } 514 } 515} 516 517void CodeGenerator::RestoreLiveRegisters(LocationSummary* locations) { 518 RegisterSet* register_set = locations->GetLiveRegisters(); 519 uint32_t count = 0; 520 for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) { 521 if (register_set->ContainsCoreRegister(i)) { 522 size_t stack_offset = GetStackOffsetOfSavedRegister(count); 523 ++count; 524 RestoreCoreRegister(Location::StackSlot(stack_offset), i); 525 } 526 } 527 528 for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) { 529 if (register_set->ContainsFloatingPointRegister(i)) { 530 LOG(FATAL) << "Unimplemented"; 531 } 532 } 533} 534 535void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const { 536 LocationSummary* locations = suspend_check->GetLocations(); 537 HBasicBlock* block = suspend_check->GetBlock(); 538 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check); 539 DCHECK(block->IsLoopHeader()); 540 541 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { 542 HInstruction* current = it.Current(); 543 LiveInterval* interval = current->GetLiveInterval(); 544 // We only need to clear bits of loop phis containing objects and allocated in register. 545 // Loop phis allocated on stack already have the object in the stack. 546 if (current->GetType() == Primitive::kPrimNot 547 && interval->HasRegister() 548 && interval->HasSpillSlot()) { 549 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize); 550 } 551 } 552} 553 554} // namespace art 555