code_generator.cc revision d97dc40d186aec46bfd318b6a2026a98241d7e9c
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator.h"
18
19#include "code_generator_arm.h"
20#include "code_generator_arm64.h"
21#include "code_generator_x86.h"
22#include "code_generator_x86_64.h"
23#include "compiled_method.h"
24#include "dex/verified_method.h"
25#include "driver/dex_compilation_unit.h"
26#include "gc_map_builder.h"
27#include "leb128.h"
28#include "mapping_table.h"
29#include "mirror/array-inl.h"
30#include "mirror/object_array-inl.h"
31#include "mirror/object_reference.h"
32#include "ssa_liveness_analysis.h"
33#include "utils/assembler.h"
34#include "verifier/dex_gc_map.h"
35#include "vmap_table.h"
36
37namespace art {
38
39size_t CodeGenerator::GetCacheOffset(uint32_t index) {
40  return mirror::ObjectArray<mirror::Object>::OffsetOfElement(index).SizeValue();
41}
42
43void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) {
44  const GrowableArray<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
45  DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock());
46  DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1)));
47  Initialize();
48
49  DCHECK_EQ(frame_size_, kUninitializedFrameSize);
50  if (!is_leaf) {
51    MarkNotLeaf();
52  }
53  ComputeFrameSize(GetGraph()->GetNumberOfLocalVRegs()
54                     + GetGraph()->GetTemporariesVRegSlots()
55                     + 1 /* filler */,
56                   0, /* the baseline compiler does not have live registers at slow path */
57                   0, /* the baseline compiler does not have live registers at slow path */
58                   GetGraph()->GetMaximumNumberOfOutVRegs()
59                     + 1 /* current method */);
60  GenerateFrameEntry();
61
62  HGraphVisitor* location_builder = GetLocationBuilder();
63  HGraphVisitor* instruction_visitor = GetInstructionVisitor();
64  for (size_t i = 0, e = blocks.Size(); i < e; ++i) {
65    HBasicBlock* block = blocks.Get(i);
66    Bind(block);
67    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
68      HInstruction* current = it.Current();
69      current->Accept(location_builder);
70      InitLocations(current);
71      current->Accept(instruction_visitor);
72    }
73  }
74  GenerateSlowPaths();
75  Finalize(allocator);
76}
77
78void CodeGenerator::CompileOptimized(CodeAllocator* allocator) {
79  // The frame size has already been computed during register allocation.
80  DCHECK_NE(frame_size_, kUninitializedFrameSize);
81  const GrowableArray<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
82  DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock());
83  DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1)));
84  Initialize();
85
86  GenerateFrameEntry();
87  HGraphVisitor* instruction_visitor = GetInstructionVisitor();
88  for (size_t i = 0, e = blocks.Size(); i < e; ++i) {
89    HBasicBlock* block = blocks.Get(i);
90    Bind(block);
91    for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
92      HInstruction* current = it.Current();
93      current->Accept(instruction_visitor);
94    }
95  }
96  GenerateSlowPaths();
97  Finalize(allocator);
98}
99
100void CodeGenerator::Finalize(CodeAllocator* allocator) {
101  size_t code_size = GetAssembler()->CodeSize();
102  uint8_t* buffer = allocator->Allocate(code_size);
103
104  MemoryRegion code(buffer, code_size);
105  GetAssembler()->FinalizeInstructions(code);
106}
107
108void CodeGenerator::GenerateSlowPaths() {
109  for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) {
110    slow_paths_.Get(i)->EmitNativeCode(this);
111  }
112}
113
114size_t CodeGenerator::FindFreeEntry(bool* array, size_t length) {
115  for (size_t i = 0; i < length; ++i) {
116    if (!array[i]) {
117      array[i] = true;
118      return i;
119    }
120  }
121  LOG(FATAL) << "Could not find a register in baseline register allocator";
122  UNREACHABLE();
123  return -1;
124}
125
126size_t CodeGenerator::FindTwoFreeConsecutiveAlignedEntries(bool* array, size_t length) {
127  for (size_t i = 0; i < length - 1; i += 2) {
128    if (!array[i] && !array[i + 1]) {
129      array[i] = true;
130      array[i + 1] = true;
131      return i;
132    }
133  }
134  LOG(FATAL) << "Could not find a register in baseline register allocator";
135  UNREACHABLE();
136  return -1;
137}
138
139void CodeGenerator::ComputeFrameSize(size_t number_of_spill_slots,
140                                     size_t maximum_number_of_live_core_registers,
141                                     size_t maximum_number_of_live_fp_registers,
142                                     size_t number_of_out_slots) {
143  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
144  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
145  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
146  first_register_slot_in_slow_path_ = (number_of_out_slots + number_of_spill_slots) * kVRegSize;
147
148  SetFrameSize(RoundUp(
149      number_of_spill_slots * kVRegSize
150      + number_of_out_slots * kVRegSize
151      + maximum_number_of_live_core_registers * GetWordSize()
152      + maximum_number_of_live_fp_registers * GetFloatingPointSpillSlotSize()
153      + FrameEntrySpillSize(),
154      kStackAlignment));
155}
156
157Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const {
158  uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs();
159  // The type of the previous instruction tells us if we need a single or double stack slot.
160  Primitive::Type type = temp->GetType();
161  int32_t temp_size = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble) ? 2 : 1;
162  // Use the temporary region (right below the dex registers).
163  int32_t slot = GetFrameSize() - FrameEntrySpillSize()
164                                - kVRegSize  // filler
165                                - (number_of_locals * kVRegSize)
166                                - ((temp_size + temp->GetIndex()) * kVRegSize);
167  return temp_size == 2 ? Location::DoubleStackSlot(slot) : Location::StackSlot(slot);
168}
169
170int32_t CodeGenerator::GetStackSlot(HLocal* local) const {
171  uint16_t reg_number = local->GetRegNumber();
172  uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs();
173  if (reg_number >= number_of_locals) {
174    // Local is a parameter of the method. It is stored in the caller's frame.
175    return GetFrameSize() + kVRegSize  // ART method
176                          + (reg_number - number_of_locals) * kVRegSize;
177  } else {
178    // Local is a temporary in this method. It is stored in this method's frame.
179    return GetFrameSize() - FrameEntrySpillSize()
180                          - kVRegSize  // filler.
181                          - (number_of_locals * kVRegSize)
182                          + (reg_number * kVRegSize);
183  }
184}
185
186void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const {
187  LocationSummary* locations = instruction->GetLocations();
188  if (locations == nullptr) return;
189
190  for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) {
191    blocked_core_registers_[i] = false;
192  }
193
194  for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) {
195    blocked_fpu_registers_[i] = false;
196  }
197
198  for (size_t i = 0, e = number_of_register_pairs_; i < e; ++i) {
199    blocked_register_pairs_[i] = false;
200  }
201
202  // Mark all fixed input, temp and output registers as used.
203  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
204    Location loc = locations->InAt(i);
205    // The DCHECKS below check that a register is not specified twice in
206    // the summary.
207    if (loc.IsRegister()) {
208      DCHECK(!blocked_core_registers_[loc.reg()]);
209      blocked_core_registers_[loc.reg()] = true;
210    } else if (loc.IsFpuRegister()) {
211      DCHECK(!blocked_fpu_registers_[loc.reg()]);
212      blocked_fpu_registers_[loc.reg()] = true;
213    } else if (loc.IsFpuRegisterPair()) {
214      DCHECK(!blocked_fpu_registers_[loc.AsFpuRegisterPairLow<int>()]);
215      blocked_fpu_registers_[loc.AsFpuRegisterPairLow<int>()] = true;
216      DCHECK(!blocked_fpu_registers_[loc.AsFpuRegisterPairHigh<int>()]);
217      blocked_fpu_registers_[loc.AsFpuRegisterPairHigh<int>()] = true;
218    } else if (loc.IsRegisterPair()) {
219      DCHECK(!blocked_core_registers_[loc.AsRegisterPairLow<int>()]);
220      blocked_core_registers_[loc.AsRegisterPairLow<int>()] = true;
221      DCHECK(!blocked_core_registers_[loc.AsRegisterPairHigh<int>()]);
222      blocked_core_registers_[loc.AsRegisterPairHigh<int>()] = true;
223    }
224  }
225
226  for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) {
227    Location loc = locations->GetTemp(i);
228    // The DCHECKS below check that a register is not specified twice in
229    // the summary.
230    if (loc.IsRegister()) {
231      DCHECK(!blocked_core_registers_[loc.reg()]);
232      blocked_core_registers_[loc.reg()] = true;
233    } else if (loc.IsFpuRegister()) {
234      DCHECK(!blocked_fpu_registers_[loc.reg()]);
235      blocked_fpu_registers_[loc.reg()] = true;
236    } else {
237      DCHECK(loc.GetPolicy() == Location::kRequiresRegister
238             || loc.GetPolicy() == Location::kRequiresFpuRegister);
239    }
240  }
241
242  static constexpr bool kBaseline = true;
243  SetupBlockedRegisters(kBaseline);
244
245  // Allocate all unallocated input locations.
246  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
247    Location loc = locations->InAt(i);
248    HInstruction* input = instruction->InputAt(i);
249    if (loc.IsUnallocated()) {
250      if ((loc.GetPolicy() == Location::kRequiresRegister)
251          || (loc.GetPolicy() == Location::kRequiresFpuRegister)) {
252        loc = AllocateFreeRegister(input->GetType());
253      } else {
254        DCHECK_EQ(loc.GetPolicy(), Location::kAny);
255        HLoadLocal* load = input->AsLoadLocal();
256        if (load != nullptr) {
257          loc = GetStackLocation(load);
258        } else {
259          loc = AllocateFreeRegister(input->GetType());
260        }
261      }
262      locations->SetInAt(i, loc);
263    }
264  }
265
266  // Allocate all unallocated temp locations.
267  for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) {
268    Location loc = locations->GetTemp(i);
269    if (loc.IsUnallocated()) {
270      switch (loc.GetPolicy()) {
271        case Location::kRequiresRegister:
272          // Allocate a core register (large enough to fit a 32-bit integer).
273          loc = AllocateFreeRegister(Primitive::kPrimInt);
274          break;
275
276        case Location::kRequiresFpuRegister:
277          // Allocate a core register (large enough to fit a 64-bit double).
278          loc = AllocateFreeRegister(Primitive::kPrimDouble);
279          break;
280
281        default:
282          LOG(FATAL) << "Unexpected policy for temporary location "
283                     << loc.GetPolicy();
284      }
285      locations->SetTempAt(i, loc);
286    }
287  }
288  Location result_location = locations->Out();
289  if (result_location.IsUnallocated()) {
290    switch (result_location.GetPolicy()) {
291      case Location::kAny:
292      case Location::kRequiresRegister:
293      case Location::kRequiresFpuRegister:
294        result_location = AllocateFreeRegister(instruction->GetType());
295        break;
296      case Location::kSameAsFirstInput:
297        result_location = locations->InAt(0);
298        break;
299    }
300    locations->SetOut(result_location);
301  }
302}
303
304void CodeGenerator::InitLocations(HInstruction* instruction) {
305  if (instruction->GetLocations() == nullptr) {
306    if (instruction->IsTemporary()) {
307      HInstruction* previous = instruction->GetPrevious();
308      Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
309      Move(previous, temp_location, instruction);
310    }
311    return;
312  }
313  AllocateRegistersLocally(instruction);
314  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
315    Location location = instruction->GetLocations()->InAt(i);
316    HInstruction* input = instruction->InputAt(i);
317    if (location.IsValid()) {
318      // Move the input to the desired location.
319      if (input->GetNext()->IsTemporary()) {
320        // If the input was stored in a temporary, use that temporary to
321        // perform the move.
322        Move(input->GetNext(), location, instruction);
323      } else {
324        Move(input, location, instruction);
325      }
326    }
327  }
328}
329
330bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
331  // We currently iterate over the block in insertion order.
332  return current->GetBlockId() + 1 == next->GetBlockId();
333}
334
335CodeGenerator* CodeGenerator::Create(HGraph* graph,
336                                     InstructionSet instruction_set,
337                                     const InstructionSetFeatures& isa_features,
338                                     const CompilerOptions& compiler_options) {
339  switch (instruction_set) {
340    case kArm:
341    case kThumb2: {
342      return new arm::CodeGeneratorARM(graph,
343          *isa_features.AsArmInstructionSetFeatures(),
344          compiler_options);
345    }
346    case kArm64: {
347      return new arm64::CodeGeneratorARM64(graph, compiler_options);
348    }
349    case kMips:
350      return nullptr;
351    case kX86: {
352      return new x86::CodeGeneratorX86(graph, compiler_options);
353    }
354    case kX86_64: {
355      return new x86_64::CodeGeneratorX86_64(graph, compiler_options);
356    }
357    default:
358      return nullptr;
359  }
360}
361
362void CodeGenerator::BuildNativeGCMap(
363    std::vector<uint8_t>* data, const DexCompilationUnit& dex_compilation_unit) const {
364  const std::vector<uint8_t>& gc_map_raw =
365      dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap();
366  verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
367
368  uint32_t max_native_offset = 0;
369  for (size_t i = 0; i < pc_infos_.Size(); i++) {
370    uint32_t native_offset = pc_infos_.Get(i).native_pc;
371    if (native_offset > max_native_offset) {
372      max_native_offset = native_offset;
373    }
374  }
375
376  GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth());
377  for (size_t i = 0; i < pc_infos_.Size(); i++) {
378    struct PcInfo pc_info = pc_infos_.Get(i);
379    uint32_t native_offset = pc_info.native_pc;
380    uint32_t dex_pc = pc_info.dex_pc;
381    const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
382    CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc;
383    builder.AddEntry(native_offset, references);
384  }
385}
386
387void CodeGenerator::BuildMappingTable(std::vector<uint8_t>* data, DefaultSrcMap* src_map) const {
388  uint32_t pc2dex_data_size = 0u;
389  uint32_t pc2dex_entries = pc_infos_.Size();
390  uint32_t pc2dex_offset = 0u;
391  int32_t pc2dex_dalvik_offset = 0;
392  uint32_t dex2pc_data_size = 0u;
393  uint32_t dex2pc_entries = 0u;
394  uint32_t dex2pc_offset = 0u;
395  int32_t dex2pc_dalvik_offset = 0;
396
397  if (src_map != nullptr) {
398    src_map->reserve(pc2dex_entries);
399  }
400
401  for (size_t i = 0; i < pc2dex_entries; i++) {
402    struct PcInfo pc_info = pc_infos_.Get(i);
403    pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset);
404    pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset);
405    pc2dex_offset = pc_info.native_pc;
406    pc2dex_dalvik_offset = pc_info.dex_pc;
407    if (src_map != nullptr) {
408      src_map->push_back(SrcMapElem({pc2dex_offset, pc2dex_dalvik_offset}));
409    }
410  }
411
412  // Walk over the blocks and find which ones correspond to catch block entries.
413  for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
414    HBasicBlock* block = graph_->GetBlocks().Get(i);
415    if (block->IsCatchBlock()) {
416      intptr_t native_pc = GetAddressOf(block);
417      ++dex2pc_entries;
418      dex2pc_data_size += UnsignedLeb128Size(native_pc - dex2pc_offset);
419      dex2pc_data_size += SignedLeb128Size(block->GetDexPc() - dex2pc_dalvik_offset);
420      dex2pc_offset = native_pc;
421      dex2pc_dalvik_offset = block->GetDexPc();
422    }
423  }
424
425  uint32_t total_entries = pc2dex_entries + dex2pc_entries;
426  uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
427  uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
428  data->resize(data_size);
429
430  uint8_t* data_ptr = &(*data)[0];
431  uint8_t* write_pos = data_ptr;
432
433  write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
434  write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
435  DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size);
436  uint8_t* write_pos2 = write_pos + pc2dex_data_size;
437
438  pc2dex_offset = 0u;
439  pc2dex_dalvik_offset = 0u;
440  dex2pc_offset = 0u;
441  dex2pc_dalvik_offset = 0u;
442
443  for (size_t i = 0; i < pc2dex_entries; i++) {
444    struct PcInfo pc_info = pc_infos_.Get(i);
445    DCHECK(pc2dex_offset <= pc_info.native_pc);
446    write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset);
447    write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset);
448    pc2dex_offset = pc_info.native_pc;
449    pc2dex_dalvik_offset = pc_info.dex_pc;
450  }
451
452  for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
453    HBasicBlock* block = graph_->GetBlocks().Get(i);
454    if (block->IsCatchBlock()) {
455      intptr_t native_pc = GetAddressOf(block);
456      write_pos2 = EncodeUnsignedLeb128(write_pos2, native_pc - dex2pc_offset);
457      write_pos2 = EncodeSignedLeb128(write_pos2, block->GetDexPc() - dex2pc_dalvik_offset);
458      dex2pc_offset = native_pc;
459      dex2pc_dalvik_offset = block->GetDexPc();
460    }
461  }
462
463
464  DCHECK_EQ(static_cast<size_t>(write_pos - data_ptr), hdr_data_size + pc2dex_data_size);
465  DCHECK_EQ(static_cast<size_t>(write_pos2 - data_ptr), data_size);
466
467  if (kIsDebugBuild) {
468    // Verify the encoded table holds the expected data.
469    MappingTable table(data_ptr);
470    CHECK_EQ(table.TotalSize(), total_entries);
471    CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
472    auto it = table.PcToDexBegin();
473    auto it2 = table.DexToPcBegin();
474    for (size_t i = 0; i < pc2dex_entries; i++) {
475      struct PcInfo pc_info = pc_infos_.Get(i);
476      CHECK_EQ(pc_info.native_pc, it.NativePcOffset());
477      CHECK_EQ(pc_info.dex_pc, it.DexPc());
478      ++it;
479    }
480    for (size_t i = 0; i < graph_->GetBlocks().Size(); ++i) {
481      HBasicBlock* block = graph_->GetBlocks().Get(i);
482      if (block->IsCatchBlock()) {
483        CHECK_EQ(GetAddressOf(block), it2.NativePcOffset());
484        CHECK_EQ(block->GetDexPc(), it2.DexPc());
485        ++it2;
486      }
487    }
488    CHECK(it == table.PcToDexEnd());
489    CHECK(it2 == table.DexToPcEnd());
490  }
491}
492
493void CodeGenerator::BuildVMapTable(std::vector<uint8_t>* data) const {
494  Leb128EncodingVector vmap_encoder;
495  // We currently don't use callee-saved registers.
496  size_t size = 0 + 1 /* marker */ + 0;
497  vmap_encoder.Reserve(size + 1u);  // All values are likely to be one byte in ULEB128 (<128).
498  vmap_encoder.PushBackUnsigned(size);
499  vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
500
501  *data = vmap_encoder.GetData();
502}
503
504void CodeGenerator::BuildStackMaps(std::vector<uint8_t>* data) {
505  uint32_t size = stack_map_stream_.ComputeNeededSize();
506  data->resize(size);
507  MemoryRegion region(data->data(), size);
508  stack_map_stream_.FillIn(region);
509}
510
511void CodeGenerator::RecordPcInfo(HInstruction* instruction, uint32_t dex_pc) {
512  if (instruction != nullptr) {
513    // The code generated for some type conversions may call the
514    // runtime, thus normally requiring a subsequent call to this
515    // method.  However, the method verifier does not produce PC
516    // information for certain instructions, which are considered "atomic"
517    // (they cannot join a GC).
518    // Therefore we do not currently record PC information for such
519    // instructions.  As this may change later, we added this special
520    // case so that code generators may nevertheless call
521    // CodeGenerator::RecordPcInfo without triggering an error in
522    // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
523    // thereafter.
524    if (instruction->IsTypeConversion()) {
525      return;
526    }
527    if (instruction->IsRem()) {
528      Primitive::Type type = instruction->AsRem()->GetResultType();
529      if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
530        return;
531      }
532    }
533  }
534
535  // Collect PC infos for the mapping table.
536  struct PcInfo pc_info;
537  pc_info.dex_pc = dex_pc;
538  pc_info.native_pc = GetAssembler()->CodeSize();
539  pc_infos_.Add(pc_info);
540
541  // Populate stack map information.
542
543  if (instruction == nullptr) {
544    // For stack overflow checks.
545    stack_map_stream_.AddStackMapEntry(dex_pc, pc_info.native_pc, 0, 0, 0, 0);
546    return;
547  }
548
549  LocationSummary* locations = instruction->GetLocations();
550  HEnvironment* environment = instruction->GetEnvironment();
551
552  size_t environment_size = instruction->EnvironmentSize();
553
554  size_t inlining_depth = 0;
555  uint32_t register_mask = locations->GetRegisterMask();
556  if (locations->OnlyCallsOnSlowPath()) {
557    // In case of slow path, we currently set the location of caller-save registers
558    // to register (instead of their stack location when pushed before the slow-path
559    // call). Therefore register_mask contains both callee-save and caller-save
560    // registers that hold objects. We must remove the caller-save from the mask, since
561    // they will be overwritten by the callee.
562    register_mask &= core_callee_save_mask_;
563  }
564  // The register mask must be a subset of callee-save registers.
565  DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
566  stack_map_stream_.AddStackMapEntry(
567      dex_pc, pc_info.native_pc, register_mask,
568      locations->GetStackMask(), environment_size, inlining_depth);
569
570  // Walk over the environment, and record the location of dex registers.
571  for (size_t i = 0; i < environment_size; ++i) {
572    HInstruction* current = environment->GetInstructionAt(i);
573    if (current == nullptr) {
574      stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kNone, 0);
575      continue;
576    }
577
578    Location location = locations->GetEnvironmentAt(i);
579    switch (location.GetKind()) {
580      case Location::kConstant: {
581        DCHECK(current == location.GetConstant());
582        if (current->IsLongConstant()) {
583          int64_t value = current->AsLongConstant()->GetValue();
584          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, Low32Bits(value));
585          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, High32Bits(value));
586          ++i;
587          DCHECK_LT(i, environment_size);
588        } else if (current->IsDoubleConstant()) {
589          int64_t value = bit_cast<double, int64_t>(current->AsDoubleConstant()->GetValue());
590          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, Low32Bits(value));
591          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, High32Bits(value));
592          ++i;
593          DCHECK_LT(i, environment_size);
594        } else if (current->IsIntConstant()) {
595          int32_t value = current->AsIntConstant()->GetValue();
596          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, value);
597        } else {
598          DCHECK(current->IsFloatConstant());
599          int32_t value = bit_cast<float, int32_t>(current->AsFloatConstant()->GetValue());
600          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kConstant, value);
601        }
602        break;
603      }
604
605      case Location::kStackSlot: {
606        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex());
607        break;
608      }
609
610      case Location::kDoubleStackSlot: {
611        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack, location.GetStackIndex());
612        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInStack,
613                                              location.GetHighStackIndex(kVRegSize));
614        ++i;
615        DCHECK_LT(i, environment_size);
616        break;
617      }
618
619      case Location::kRegister : {
620        int id = location.reg();
621        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id);
622        if (current->GetType() == Primitive::kPrimLong) {
623          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, id);
624          ++i;
625          DCHECK_LT(i, environment_size);
626        }
627        break;
628      }
629
630      case Location::kFpuRegister : {
631        int id = location.reg();
632        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, id);
633        if (current->GetType() == Primitive::kPrimDouble) {
634          stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, id);
635          ++i;
636          DCHECK_LT(i, environment_size);
637        }
638        break;
639      }
640
641      case Location::kFpuRegisterPair : {
642        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, location.low());
643        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInFpuRegister, location.high());
644        ++i;
645        DCHECK_LT(i, environment_size);
646        break;
647      }
648
649      case Location::kRegisterPair : {
650        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, location.low());
651        stack_map_stream_.AddDexRegisterEntry(DexRegisterMap::kInRegister, location.high());
652        ++i;
653        DCHECK_LT(i, environment_size);
654        break;
655      }
656
657      default:
658        LOG(FATAL) << "Unexpected kind " << location.GetKind();
659    }
660  }
661}
662
663bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
664  HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
665  return (first_next_not_move != nullptr) && first_next_not_move->CanDoImplicitNullCheck();
666}
667
668void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
669  // If we are from a static path don't record the pc as we can't throw NPE.
670  // NB: having the checks here makes the code much less verbose in the arch
671  // specific code generators.
672  if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
673    return;
674  }
675
676  if (!compiler_options_.GetImplicitNullChecks()) {
677    return;
678  }
679
680  if (!instr->CanDoImplicitNullCheck()) {
681    return;
682  }
683
684  // Find the first previous instruction which is not a move.
685  HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
686
687  // If the instruction is a null check it means that `instr` is the first user
688  // and needs to record the pc.
689  if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
690    HNullCheck* null_check = first_prev_not_move->AsNullCheck();
691    // TODO: The parallel moves modify the environment. Their changes need to be reverted
692    // otherwise the stack maps at the throw point will not be correct.
693    RecordPcInfo(null_check, null_check->GetDexPc());
694  }
695}
696
697void CodeGenerator::SaveLiveRegisters(LocationSummary* locations) {
698  RegisterSet* register_set = locations->GetLiveRegisters();
699  size_t stack_offset = first_register_slot_in_slow_path_;
700  for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) {
701    if (!IsCoreCalleeSaveRegister(i)) {
702      if (register_set->ContainsCoreRegister(i)) {
703        // If the register holds an object, update the stack mask.
704        if (locations->RegisterContainsObject(i)) {
705          locations->SetStackBit(stack_offset / kVRegSize);
706        }
707        DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize());
708        stack_offset += SaveCoreRegister(stack_offset, i);
709      }
710    }
711  }
712
713  for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) {
714    if (!IsFloatingPointCalleeSaveRegister(i)) {
715      if (register_set->ContainsFloatingPointRegister(i)) {
716        DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize());
717        stack_offset += SaveFloatingPointRegister(stack_offset, i);
718      }
719    }
720  }
721}
722
723void CodeGenerator::RestoreLiveRegisters(LocationSummary* locations) {
724  RegisterSet* register_set = locations->GetLiveRegisters();
725  size_t stack_offset = first_register_slot_in_slow_path_;
726  for (size_t i = 0, e = GetNumberOfCoreRegisters(); i < e; ++i) {
727    if (!IsCoreCalleeSaveRegister(i)) {
728      if (register_set->ContainsCoreRegister(i)) {
729        DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize());
730        stack_offset += RestoreCoreRegister(stack_offset, i);
731      }
732    }
733  }
734
735  for (size_t i = 0, e = GetNumberOfFloatingPointRegisters(); i < e; ++i) {
736    if (!IsFloatingPointCalleeSaveRegister(i)) {
737      if (register_set->ContainsFloatingPointRegister(i)) {
738        DCHECK_LT(stack_offset, GetFrameSize() - FrameEntrySpillSize());
739        stack_offset += RestoreFloatingPointRegister(stack_offset, i);
740      }
741    }
742  }
743}
744
745void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
746  LocationSummary* locations = suspend_check->GetLocations();
747  HBasicBlock* block = suspend_check->GetBlock();
748  DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
749  DCHECK(block->IsLoopHeader());
750
751  for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
752    HInstruction* current = it.Current();
753    LiveInterval* interval = current->GetLiveInterval();
754    // We only need to clear bits of loop phis containing objects and allocated in register.
755    // Loop phis allocated on stack already have the object in the stack.
756    if (current->GetType() == Primitive::kPrimNot
757        && interval->HasRegister()
758        && interval->HasSpillSlot()) {
759      locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
760    }
761  }
762}
763
764void CodeGenerator::EmitParallelMoves(Location from1, Location to1, Location from2, Location to2) {
765  HParallelMove parallel_move(GetGraph()->GetArena());
766  parallel_move.AddMove(from1, to1, nullptr);
767  parallel_move.AddMove(from2, to2, nullptr);
768  GetMoveResolver()->EmitNativeCode(&parallel_move);
769}
770
771}  // namespace art
772