code_generator_arm.cc revision 02e3092f8d98f339588e48691db77f227b48ac1e
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "gc/accounting/card_table.h"
25#include "intrinsics.h"
26#include "intrinsics_arm.h"
27#include "mirror/array-inl.h"
28#include "mirror/class-inl.h"
29#include "thread.h"
30#include "utils/arm/assembler_arm.h"
31#include "utils/arm/managed_register_arm.h"
32#include "utils/assembler.h"
33#include "utils/stack_checks.h"
34
35namespace art {
36
37template<class MirrorType>
38class GcRoot;
39
40namespace arm {
41
42static bool ExpectedPairLayout(Location location) {
43  // We expected this for both core and fpu register pairs.
44  return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
45}
46
47static constexpr int kCurrentMethodStackOffset = 0;
48static constexpr Register kMethodRegisterArgument = R0;
49
50static constexpr Register kCoreAlwaysSpillRegister = R5;
51static constexpr Register kCoreCalleeSaves[] =
52    { R5, R6, R7, R8, R10, R11, LR };
53static constexpr SRegister kFpuCalleeSaves[] =
54    { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
55
56// D31 cannot be split into two S registers, and the register allocator only works on
57// S registers. Therefore there is no need to block it.
58static constexpr DRegister DTMP = D31;
59
60static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
61
62// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
63#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())->  // NOLINT
64#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
65
66static constexpr int kRegListThreshold = 4;
67
68// SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
69// for each live D registers they treat two corresponding S registers as live ones.
70//
71// Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
72// from a list of contiguous S registers a list of contiguous D registers (processing first/last
73// S registers corner cases) and save/restore this new list treating them as D registers.
74// - decreasing code size
75// - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
76//   restored and then used in regular non SlowPath code as D register.
77//
78// For the following example (v means the S register is live):
79//   D names: |    D0   |    D1   |    D2   |    D4   | ...
80//   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
81//   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
82//
83// S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
84// as D registers.
85static size_t SaveContiguousSRegisterList(size_t first,
86                                          size_t last,
87                                          CodeGenerator* codegen,
88                                          size_t stack_offset) {
89  DCHECK_LE(first, last);
90  if ((first == last) && (first == 0)) {
91    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first);
92    return stack_offset;
93  }
94  if (first % 2 == 1) {
95    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++);
96  }
97
98  bool save_last = false;
99  if (last % 2 == 0) {
100    save_last = true;
101    --last;
102  }
103
104  if (first < last) {
105    DRegister d_reg = static_cast<DRegister>(first / 2);
106    DCHECK_EQ((last - first + 1) % 2, 0u);
107    size_t number_of_d_regs = (last - first + 1) / 2;
108
109    if (number_of_d_regs == 1) {
110      __ StoreDToOffset(d_reg, SP, stack_offset);
111    } else if (number_of_d_regs > 1) {
112      __ add(IP, SP, ShifterOperand(stack_offset));
113      __ vstmiad(IP, d_reg, number_of_d_regs);
114    }
115    stack_offset += number_of_d_regs * kArmWordSize * 2;
116  }
117
118  if (save_last) {
119    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1);
120  }
121
122  return stack_offset;
123}
124
125static size_t RestoreContiguousSRegisterList(size_t first,
126                                             size_t last,
127                                             CodeGenerator* codegen,
128                                             size_t stack_offset) {
129  DCHECK_LE(first, last);
130  if ((first == last) && (first == 0)) {
131    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first);
132    return stack_offset;
133  }
134  if (first % 2 == 1) {
135    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++);
136  }
137
138  bool restore_last = false;
139  if (last % 2 == 0) {
140    restore_last = true;
141    --last;
142  }
143
144  if (first < last) {
145    DRegister d_reg = static_cast<DRegister>(first / 2);
146    DCHECK_EQ((last - first + 1) % 2, 0u);
147    size_t number_of_d_regs = (last - first + 1) / 2;
148    if (number_of_d_regs == 1) {
149      __ LoadDFromOffset(d_reg, SP, stack_offset);
150    } else if (number_of_d_regs > 1) {
151      __ add(IP, SP, ShifterOperand(stack_offset));
152      __ vldmiad(IP, d_reg, number_of_d_regs);
153    }
154    stack_offset += number_of_d_regs * kArmWordSize * 2;
155  }
156
157  if (restore_last) {
158    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1);
159  }
160
161  return stack_offset;
162}
163
164void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
165  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
166  size_t orig_offset = stack_offset;
167
168  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
169  for (uint32_t i : LowToHighBits(core_spills)) {
170    // If the register holds an object, update the stack mask.
171    if (locations->RegisterContainsObject(i)) {
172      locations->SetStackBit(stack_offset / kVRegSize);
173    }
174    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
175    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
176    saved_core_stack_offsets_[i] = stack_offset;
177    stack_offset += kArmWordSize;
178  }
179
180  int reg_num = POPCOUNT(core_spills);
181  if (reg_num != 0) {
182    if (reg_num > kRegListThreshold) {
183      __ StoreList(RegList(core_spills), orig_offset);
184    } else {
185      stack_offset = orig_offset;
186      for (uint32_t i : LowToHighBits(core_spills)) {
187        stack_offset += codegen->SaveCoreRegister(stack_offset, i);
188      }
189    }
190  }
191
192  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
193  orig_offset = stack_offset;
194  for (uint32_t i : LowToHighBits(fp_spills)) {
195    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
196    saved_fpu_stack_offsets_[i] = stack_offset;
197    stack_offset += kArmWordSize;
198  }
199
200  stack_offset = orig_offset;
201  while (fp_spills != 0u) {
202    uint32_t begin = CTZ(fp_spills);
203    uint32_t tmp = fp_spills + (1u << begin);
204    fp_spills &= tmp;  // Clear the contiguous range of 1s.
205    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
206    stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
207  }
208  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
209}
210
211void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
212  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
213  size_t orig_offset = stack_offset;
214
215  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
216  for (uint32_t i : LowToHighBits(core_spills)) {
217    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
218    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
219    stack_offset += kArmWordSize;
220  }
221
222  int reg_num = POPCOUNT(core_spills);
223  if (reg_num != 0) {
224    if (reg_num > kRegListThreshold) {
225      __ LoadList(RegList(core_spills), orig_offset);
226    } else {
227      stack_offset = orig_offset;
228      for (uint32_t i : LowToHighBits(core_spills)) {
229        stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
230      }
231    }
232  }
233
234  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
235  while (fp_spills != 0u) {
236    uint32_t begin = CTZ(fp_spills);
237    uint32_t tmp = fp_spills + (1u << begin);
238    fp_spills &= tmp;  // Clear the contiguous range of 1s.
239    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
240    stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
241  }
242  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
243}
244
245class NullCheckSlowPathARM : public SlowPathCodeARM {
246 public:
247  explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {}
248
249  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
250    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
251    __ Bind(GetEntryLabel());
252    if (instruction_->CanThrowIntoCatchBlock()) {
253      // Live registers will be restored in the catch block if caught.
254      SaveLiveRegisters(codegen, instruction_->GetLocations());
255    }
256    arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
257                               instruction_,
258                               instruction_->GetDexPc(),
259                               this);
260    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
261  }
262
263  bool IsFatal() const OVERRIDE { return true; }
264
265  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }
266
267 private:
268  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
269};
270
271class DivZeroCheckSlowPathARM : public SlowPathCodeARM {
272 public:
273  explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {}
274
275  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
276    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
277    __ Bind(GetEntryLabel());
278    arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
279    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
280  }
281
282  bool IsFatal() const OVERRIDE { return true; }
283
284  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }
285
286 private:
287  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
288};
289
290class SuspendCheckSlowPathARM : public SlowPathCodeARM {
291 public:
292  SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
293      : SlowPathCodeARM(instruction), successor_(successor) {}
294
295  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
296    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
297    __ Bind(GetEntryLabel());
298    arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
299    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
300    if (successor_ == nullptr) {
301      __ b(GetReturnLabel());
302    } else {
303      __ b(arm_codegen->GetLabelOf(successor_));
304    }
305  }
306
307  Label* GetReturnLabel() {
308    DCHECK(successor_ == nullptr);
309    return &return_label_;
310  }
311
312  HBasicBlock* GetSuccessor() const {
313    return successor_;
314  }
315
316  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }
317
318 private:
319  // If not null, the block to branch to after the suspend check.
320  HBasicBlock* const successor_;
321
322  // If `successor_` is null, the label to branch to after the suspend check.
323  Label return_label_;
324
325  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
326};
327
328class BoundsCheckSlowPathARM : public SlowPathCodeARM {
329 public:
330  explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
331      : SlowPathCodeARM(instruction) {}
332
333  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
334    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
335    LocationSummary* locations = instruction_->GetLocations();
336
337    __ Bind(GetEntryLabel());
338    if (instruction_->CanThrowIntoCatchBlock()) {
339      // Live registers will be restored in the catch block if caught.
340      SaveLiveRegisters(codegen, instruction_->GetLocations());
341    }
342    // We're moving two locations to locations that could overlap, so we need a parallel
343    // move resolver.
344    InvokeRuntimeCallingConvention calling_convention;
345    codegen->EmitParallelMoves(
346        locations->InAt(0),
347        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
348        Primitive::kPrimInt,
349        locations->InAt(1),
350        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
351        Primitive::kPrimInt);
352    QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
353        ? kQuickThrowStringBounds
354        : kQuickThrowArrayBounds;
355    arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
356    CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
357    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
358  }
359
360  bool IsFatal() const OVERRIDE { return true; }
361
362  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }
363
364 private:
365  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
366};
367
368class LoadClassSlowPathARM : public SlowPathCodeARM {
369 public:
370  LoadClassSlowPathARM(HLoadClass* cls,
371                       HInstruction* at,
372                       uint32_t dex_pc,
373                       bool do_clinit)
374      : SlowPathCodeARM(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
375    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
376  }
377
378  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
379    LocationSummary* locations = at_->GetLocations();
380
381    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
382    __ Bind(GetEntryLabel());
383    SaveLiveRegisters(codegen, locations);
384
385    InvokeRuntimeCallingConvention calling_convention;
386    __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex().index_);
387    QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
388                                                : kQuickInitializeType;
389    arm_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this);
390    if (do_clinit_) {
391      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
392    } else {
393      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
394    }
395
396    // Move the class to the desired location.
397    Location out = locations->Out();
398    if (out.IsValid()) {
399      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
400      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
401    }
402    RestoreLiveRegisters(codegen, locations);
403    __ b(GetExitLabel());
404  }
405
406  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }
407
408 private:
409  // The class this slow path will load.
410  HLoadClass* const cls_;
411
412  // The instruction where this slow path is happening.
413  // (Might be the load class or an initialization check).
414  HInstruction* const at_;
415
416  // The dex PC of `at_`.
417  const uint32_t dex_pc_;
418
419  // Whether to initialize the class.
420  const bool do_clinit_;
421
422  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
423};
424
425class LoadStringSlowPathARM : public SlowPathCodeARM {
426 public:
427  explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {}
428
429  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
430    LocationSummary* locations = instruction_->GetLocations();
431    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
432    HLoadString* load = instruction_->AsLoadString();
433    const uint32_t string_index = load->GetStringIndex().index_;
434    Register out = locations->Out().AsRegister<Register>();
435    Register temp = locations->GetTemp(0).AsRegister<Register>();
436    constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
437
438    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
439    __ Bind(GetEntryLabel());
440    SaveLiveRegisters(codegen, locations);
441
442    InvokeRuntimeCallingConvention calling_convention;
443    // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
444    // the kSaveEverything call (or use `out` for the address after non-kSaveEverything call).
445    bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0));
446    Register entry_address = temp_is_r0 ? out : temp;
447    DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
448    if (call_saves_everything_except_r0 && temp_is_r0) {
449      __ mov(entry_address, ShifterOperand(temp));
450    }
451
452    __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index);
453    arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
454    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
455
456    // Store the resolved String to the .bss entry.
457    if (call_saves_everything_except_r0) {
458      // The string entry address was preserved in `entry_address` thanks to kSaveEverything.
459      __ str(R0, Address(entry_address));
460    } else {
461      // For non-Baker read barrier, we need to re-calculate the address of the string entry.
462      CodeGeneratorARM::PcRelativePatchInfo* labels =
463          arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
464      __ BindTrackedLabel(&labels->movw_label);
465      __ movw(entry_address, /* placeholder */ 0u);
466      __ BindTrackedLabel(&labels->movt_label);
467      __ movt(entry_address, /* placeholder */ 0u);
468      __ BindTrackedLabel(&labels->add_pc_label);
469      __ add(entry_address, entry_address, ShifterOperand(PC));
470      __ str(R0, Address(entry_address));
471    }
472
473    arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
474    RestoreLiveRegisters(codegen, locations);
475
476    __ b(GetExitLabel());
477  }
478
479  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }
480
481 private:
482  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
483};
484
485class TypeCheckSlowPathARM : public SlowPathCodeARM {
486 public:
487  TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
488      : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {}
489
490  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
491    LocationSummary* locations = instruction_->GetLocations();
492    DCHECK(instruction_->IsCheckCast()
493           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
494
495    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
496    __ Bind(GetEntryLabel());
497
498    if (!is_fatal_) {
499      SaveLiveRegisters(codegen, locations);
500    }
501
502    // We're moving two locations to locations that could overlap, so we need a parallel
503    // move resolver.
504    InvokeRuntimeCallingConvention calling_convention;
505    codegen->EmitParallelMoves(locations->InAt(0),
506                               Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
507                               Primitive::kPrimNot,
508                               locations->InAt(1),
509                               Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
510                               Primitive::kPrimNot);
511    if (instruction_->IsInstanceOf()) {
512      arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
513                                 instruction_,
514                                 instruction_->GetDexPc(),
515                                 this);
516      CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
517      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
518    } else {
519      DCHECK(instruction_->IsCheckCast());
520      arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
521                                 instruction_,
522                                 instruction_->GetDexPc(),
523                                 this);
524      CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
525    }
526
527    if (!is_fatal_) {
528      RestoreLiveRegisters(codegen, locations);
529      __ b(GetExitLabel());
530    }
531  }
532
533  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }
534
535  bool IsFatal() const OVERRIDE { return is_fatal_; }
536
537 private:
538  const bool is_fatal_;
539
540  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
541};
542
543class DeoptimizationSlowPathARM : public SlowPathCodeARM {
544 public:
545  explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
546    : SlowPathCodeARM(instruction) {}
547
548  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
549    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
550    __ Bind(GetEntryLabel());
551    arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
552    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
553  }
554
555  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }
556
557 private:
558  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
559};
560
561class ArraySetSlowPathARM : public SlowPathCodeARM {
562 public:
563  explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {}
564
565  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
566    LocationSummary* locations = instruction_->GetLocations();
567    __ Bind(GetEntryLabel());
568    SaveLiveRegisters(codegen, locations);
569
570    InvokeRuntimeCallingConvention calling_convention;
571    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
572    parallel_move.AddMove(
573        locations->InAt(0),
574        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
575        Primitive::kPrimNot,
576        nullptr);
577    parallel_move.AddMove(
578        locations->InAt(1),
579        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
580        Primitive::kPrimInt,
581        nullptr);
582    parallel_move.AddMove(
583        locations->InAt(2),
584        Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
585        Primitive::kPrimNot,
586        nullptr);
587    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
588
589    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
590    arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
591    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
592    RestoreLiveRegisters(codegen, locations);
593    __ b(GetExitLabel());
594  }
595
596  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }
597
598 private:
599  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
600};
601
602// Slow path marking an object reference `ref` during a read
603// barrier. The field `obj.field` in the object `obj` holding this
604// reference does not get updated by this slow path after marking (see
605// ReadBarrierMarkAndUpdateFieldSlowPathARM below for that).
606//
607// This means that after the execution of this slow path, `ref` will
608// always be up-to-date, but `obj.field` may not; i.e., after the
609// flip, `ref` will be a to-space reference, but `obj.field` will
610// probably still be a from-space reference (unless it gets updated by
611// another thread, or if another thread installed another object
612// reference (different from `ref`) in `obj.field`).
613class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM {
614 public:
615  ReadBarrierMarkSlowPathARM(HInstruction* instruction,
616                             Location ref,
617                             Location entrypoint = Location::NoLocation())
618      : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) {
619    DCHECK(kEmitCompilerReadBarrier);
620  }
621
622  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }
623
624  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
625    LocationSummary* locations = instruction_->GetLocations();
626    Register ref_reg = ref_.AsRegister<Register>();
627    DCHECK(locations->CanCall());
628    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
629    DCHECK(instruction_->IsInstanceFieldGet() ||
630           instruction_->IsStaticFieldGet() ||
631           instruction_->IsArrayGet() ||
632           instruction_->IsArraySet() ||
633           instruction_->IsLoadClass() ||
634           instruction_->IsLoadString() ||
635           instruction_->IsInstanceOf() ||
636           instruction_->IsCheckCast() ||
637           (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
638           (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
639        << "Unexpected instruction in read barrier marking slow path: "
640        << instruction_->DebugName();
641    // The read barrier instrumentation of object ArrayGet
642    // instructions does not support the HIntermediateAddress
643    // instruction.
644    DCHECK(!(instruction_->IsArrayGet() &&
645             instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
646
647    __ Bind(GetEntryLabel());
648    // No need to save live registers; it's taken care of by the
649    // entrypoint. Also, there is no need to update the stack mask,
650    // as this runtime call will not trigger a garbage collection.
651    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
652    DCHECK_NE(ref_reg, SP);
653    DCHECK_NE(ref_reg, LR);
654    DCHECK_NE(ref_reg, PC);
655    // IP is used internally by the ReadBarrierMarkRegX entry point
656    // as a temporary, it cannot be the entry point's input/output.
657    DCHECK_NE(ref_reg, IP);
658    DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg;
659    // "Compact" slow path, saving two moves.
660    //
661    // Instead of using the standard runtime calling convention (input
662    // and output in R0):
663    //
664    //   R0 <- ref
665    //   R0 <- ReadBarrierMark(R0)
666    //   ref <- R0
667    //
668    // we just use rX (the register containing `ref`) as input and output
669    // of a dedicated entrypoint:
670    //
671    //   rX <- ReadBarrierMarkRegX(rX)
672    //
673    if (entrypoint_.IsValid()) {
674      arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
675      __ blx(entrypoint_.AsRegister<Register>());
676    } else {
677      int32_t entry_point_offset =
678          CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg);
679      // This runtime call does not require a stack map.
680      arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
681    }
682    __ b(GetExitLabel());
683  }
684
685 private:
686  // The location (register) of the marked object reference.
687  const Location ref_;
688
689  // The location of the entrypoint if already loaded.
690  const Location entrypoint_;
691
692  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
693};
694
695// Slow path marking an object reference `ref` during a read barrier,
696// and if needed, atomically updating the field `obj.field` in the
697// object `obj` holding this reference after marking (contrary to
698// ReadBarrierMarkSlowPathARM above, which never tries to update
699// `obj.field`).
700//
701// This means that after the execution of this slow path, both `ref`
702// and `obj.field` will be up-to-date; i.e., after the flip, both will
703// hold the same to-space reference (unless another thread installed
704// another object reference (different from `ref`) in `obj.field`).
705class ReadBarrierMarkAndUpdateFieldSlowPathARM : public SlowPathCodeARM {
706 public:
707  ReadBarrierMarkAndUpdateFieldSlowPathARM(HInstruction* instruction,
708                                           Location ref,
709                                           Register obj,
710                                           Location field_offset,
711                                           Register temp1,
712                                           Register temp2)
713      : SlowPathCodeARM(instruction),
714        ref_(ref),
715        obj_(obj),
716        field_offset_(field_offset),
717        temp1_(temp1),
718        temp2_(temp2) {
719    DCHECK(kEmitCompilerReadBarrier);
720  }
721
722  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathARM"; }
723
724  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
725    LocationSummary* locations = instruction_->GetLocations();
726    Register ref_reg = ref_.AsRegister<Register>();
727    DCHECK(locations->CanCall());
728    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
729    // This slow path is only used by the UnsafeCASObject intrinsic.
730    DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
731        << "Unexpected instruction in read barrier marking and field updating slow path: "
732        << instruction_->DebugName();
733    DCHECK(instruction_->GetLocations()->Intrinsified());
734    DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
735    DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
736
737    __ Bind(GetEntryLabel());
738
739    // Save the old reference.
740    // Note that we cannot use IP to save the old reference, as IP is
741    // used internally by the ReadBarrierMarkRegX entry point, and we
742    // need the old reference after the call to that entry point.
743    DCHECK_NE(temp1_, IP);
744    __ Mov(temp1_, ref_reg);
745
746    // No need to save live registers; it's taken care of by the
747    // entrypoint. Also, there is no need to update the stack mask,
748    // as this runtime call will not trigger a garbage collection.
749    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
750    DCHECK_NE(ref_reg, SP);
751    DCHECK_NE(ref_reg, LR);
752    DCHECK_NE(ref_reg, PC);
753    // IP is used internally by the ReadBarrierMarkRegX entry point
754    // as a temporary, it cannot be the entry point's input/output.
755    DCHECK_NE(ref_reg, IP);
756    DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg;
757    // "Compact" slow path, saving two moves.
758    //
759    // Instead of using the standard runtime calling convention (input
760    // and output in R0):
761    //
762    //   R0 <- ref
763    //   R0 <- ReadBarrierMark(R0)
764    //   ref <- R0
765    //
766    // we just use rX (the register containing `ref`) as input and output
767    // of a dedicated entrypoint:
768    //
769    //   rX <- ReadBarrierMarkRegX(rX)
770    //
771    int32_t entry_point_offset =
772        CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg);
773    // This runtime call does not require a stack map.
774    arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
775
776    // If the new reference is different from the old reference,
777    // update the field in the holder (`*(obj_ + field_offset_)`).
778    //
779    // Note that this field could also hold a different object, if
780    // another thread had concurrently changed it. In that case, the
781    // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set
782    // (CAS) operation below would abort the CAS, leaving the field
783    // as-is.
784    Label done;
785    __ cmp(temp1_, ShifterOperand(ref_reg));
786    __ b(&done, EQ);
787
788    // Update the the holder's field atomically.  This may fail if
789    // mutator updates before us, but it's OK.  This is achieved
790    // using a strong compare-and-set (CAS) operation with relaxed
791    // memory synchronization ordering, where the expected value is
792    // the old reference and the desired value is the new reference.
793
794    // Convenience aliases.
795    Register base = obj_;
796    // The UnsafeCASObject intrinsic uses a register pair as field
797    // offset ("long offset"), of which only the low part contains
798    // data.
799    Register offset = field_offset_.AsRegisterPairLow<Register>();
800    Register expected = temp1_;
801    Register value = ref_reg;
802    Register tmp_ptr = IP;       // Pointer to actual memory.
803    Register tmp = temp2_;       // Value in memory.
804
805    __ add(tmp_ptr, base, ShifterOperand(offset));
806
807    if (kPoisonHeapReferences) {
808      __ PoisonHeapReference(expected);
809      if (value == expected) {
810        // Do not poison `value`, as it is the same register as
811        // `expected`, which has just been poisoned.
812      } else {
813        __ PoisonHeapReference(value);
814      }
815    }
816
817    // do {
818    //   tmp = [r_ptr] - expected;
819    // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
820
821    Label loop_head, exit_loop;
822    __ Bind(&loop_head);
823
824    __ ldrex(tmp, tmp_ptr);
825
826    __ subs(tmp, tmp, ShifterOperand(expected));
827
828    __ it(NE);
829    __ clrex(NE);
830
831    __ b(&exit_loop, NE);
832
833    __ strex(tmp, value, tmp_ptr);
834    __ cmp(tmp, ShifterOperand(1));
835    __ b(&loop_head, EQ);
836
837    __ Bind(&exit_loop);
838
839    if (kPoisonHeapReferences) {
840      __ UnpoisonHeapReference(expected);
841      if (value == expected) {
842        // Do not unpoison `value`, as it is the same register as
843        // `expected`, which has just been unpoisoned.
844      } else {
845        __ UnpoisonHeapReference(value);
846      }
847    }
848
849    __ Bind(&done);
850    __ b(GetExitLabel());
851  }
852
853 private:
854  // The location (register) of the marked object reference.
855  const Location ref_;
856  // The register containing the object holding the marked object reference field.
857  const Register obj_;
858  // The location of the offset of the marked reference field within `obj_`.
859  Location field_offset_;
860
861  const Register temp1_;
862  const Register temp2_;
863
864  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathARM);
865};
866
867// Slow path generating a read barrier for a heap reference.
868class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM {
869 public:
870  ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
871                                         Location out,
872                                         Location ref,
873                                         Location obj,
874                                         uint32_t offset,
875                                         Location index)
876      : SlowPathCodeARM(instruction),
877        out_(out),
878        ref_(ref),
879        obj_(obj),
880        offset_(offset),
881        index_(index) {
882    DCHECK(kEmitCompilerReadBarrier);
883    // If `obj` is equal to `out` or `ref`, it means the initial object
884    // has been overwritten by (or after) the heap object reference load
885    // to be instrumented, e.g.:
886    //
887    //   __ LoadFromOffset(kLoadWord, out, out, offset);
888    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
889    //
890    // In that case, we have lost the information about the original
891    // object, and the emitted read barrier cannot work properly.
892    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
893    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
894  }
895
896  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
897    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
898    LocationSummary* locations = instruction_->GetLocations();
899    Register reg_out = out_.AsRegister<Register>();
900    DCHECK(locations->CanCall());
901    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
902    DCHECK(instruction_->IsInstanceFieldGet() ||
903           instruction_->IsStaticFieldGet() ||
904           instruction_->IsArrayGet() ||
905           instruction_->IsInstanceOf() ||
906           instruction_->IsCheckCast() ||
907           (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified())
908        << "Unexpected instruction in read barrier for heap reference slow path: "
909        << instruction_->DebugName();
910    // The read barrier instrumentation of object ArrayGet
911    // instructions does not support the HIntermediateAddress
912    // instruction.
913    DCHECK(!(instruction_->IsArrayGet() &&
914             instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
915
916    __ Bind(GetEntryLabel());
917    SaveLiveRegisters(codegen, locations);
918
919    // We may have to change the index's value, but as `index_` is a
920    // constant member (like other "inputs" of this slow path),
921    // introduce a copy of it, `index`.
922    Location index = index_;
923    if (index_.IsValid()) {
924      // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
925      if (instruction_->IsArrayGet()) {
926        // Compute the actual memory offset and store it in `index`.
927        Register index_reg = index_.AsRegister<Register>();
928        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
929        if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
930          // We are about to change the value of `index_reg` (see the
931          // calls to art::arm::Thumb2Assembler::Lsl and
932          // art::arm::Thumb2Assembler::AddConstant below), but it has
933          // not been saved by the previous call to
934          // art::SlowPathCode::SaveLiveRegisters, as it is a
935          // callee-save register --
936          // art::SlowPathCode::SaveLiveRegisters does not consider
937          // callee-save registers, as it has been designed with the
938          // assumption that callee-save registers are supposed to be
939          // handled by the called function.  So, as a callee-save
940          // register, `index_reg` _would_ eventually be saved onto
941          // the stack, but it would be too late: we would have
942          // changed its value earlier.  Therefore, we manually save
943          // it here into another freely available register,
944          // `free_reg`, chosen of course among the caller-save
945          // registers (as a callee-save `free_reg` register would
946          // exhibit the same problem).
947          //
948          // Note we could have requested a temporary register from
949          // the register allocator instead; but we prefer not to, as
950          // this is a slow path, and we know we can find a
951          // caller-save register that is available.
952          Register free_reg = FindAvailableCallerSaveRegister(codegen);
953          __ Mov(free_reg, index_reg);
954          index_reg = free_reg;
955          index = Location::RegisterLocation(index_reg);
956        } else {
957          // The initial register stored in `index_` has already been
958          // saved in the call to art::SlowPathCode::SaveLiveRegisters
959          // (as it is not a callee-save register), so we can freely
960          // use it.
961        }
962        // Shifting the index value contained in `index_reg` by the scale
963        // factor (2) cannot overflow in practice, as the runtime is
964        // unable to allocate object arrays with a size larger than
965        // 2^26 - 1 (that is, 2^28 - 4 bytes).
966        __ Lsl(index_reg, index_reg, TIMES_4);
967        static_assert(
968            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
969            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
970        __ AddConstant(index_reg, index_reg, offset_);
971      } else {
972        // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
973        // intrinsics, `index_` is not shifted by a scale factor of 2
974        // (as in the case of ArrayGet), as it is actually an offset
975        // to an object field within an object.
976        DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
977        DCHECK(instruction_->GetLocations()->Intrinsified());
978        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
979               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
980            << instruction_->AsInvoke()->GetIntrinsic();
981        DCHECK_EQ(offset_, 0U);
982        DCHECK(index_.IsRegisterPair());
983        // UnsafeGet's offset location is a register pair, the low
984        // part contains the correct offset.
985        index = index_.ToLow();
986      }
987    }
988
989    // We're moving two or three locations to locations that could
990    // overlap, so we need a parallel move resolver.
991    InvokeRuntimeCallingConvention calling_convention;
992    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
993    parallel_move.AddMove(ref_,
994                          Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
995                          Primitive::kPrimNot,
996                          nullptr);
997    parallel_move.AddMove(obj_,
998                          Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
999                          Primitive::kPrimNot,
1000                          nullptr);
1001    if (index.IsValid()) {
1002      parallel_move.AddMove(index,
1003                            Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
1004                            Primitive::kPrimInt,
1005                            nullptr);
1006      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
1007    } else {
1008      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
1009      __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
1010    }
1011    arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
1012    CheckEntrypointTypes<
1013        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
1014    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
1015
1016    RestoreLiveRegisters(codegen, locations);
1017    __ b(GetExitLabel());
1018  }
1019
1020  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }
1021
1022 private:
1023  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
1024    size_t ref = static_cast<int>(ref_.AsRegister<Register>());
1025    size_t obj = static_cast<int>(obj_.AsRegister<Register>());
1026    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1027      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
1028        return static_cast<Register>(i);
1029      }
1030    }
1031    // We shall never fail to find a free caller-save register, as
1032    // there are more than two core caller-save registers on ARM
1033    // (meaning it is possible to find one which is different from
1034    // `ref` and `obj`).
1035    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
1036    LOG(FATAL) << "Could not find a free caller-save register";
1037    UNREACHABLE();
1038  }
1039
1040  const Location out_;
1041  const Location ref_;
1042  const Location obj_;
1043  const uint32_t offset_;
1044  // An additional location containing an index to an array.
1045  // Only used for HArrayGet and the UnsafeGetObject &
1046  // UnsafeGetObjectVolatile intrinsics.
1047  const Location index_;
1048
1049  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
1050};
1051
1052// Slow path generating a read barrier for a GC root.
1053class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM {
1054 public:
1055  ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
1056      : SlowPathCodeARM(instruction), out_(out), root_(root) {
1057    DCHECK(kEmitCompilerReadBarrier);
1058  }
1059
1060  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
1061    LocationSummary* locations = instruction_->GetLocations();
1062    Register reg_out = out_.AsRegister<Register>();
1063    DCHECK(locations->CanCall());
1064    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
1065    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
1066        << "Unexpected instruction in read barrier for GC root slow path: "
1067        << instruction_->DebugName();
1068
1069    __ Bind(GetEntryLabel());
1070    SaveLiveRegisters(codegen, locations);
1071
1072    InvokeRuntimeCallingConvention calling_convention;
1073    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
1074    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
1075    arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
1076                               instruction_,
1077                               instruction_->GetDexPc(),
1078                               this);
1079    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
1080    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
1081
1082    RestoreLiveRegisters(codegen, locations);
1083    __ b(GetExitLabel());
1084  }
1085
1086  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }
1087
1088 private:
1089  const Location out_;
1090  const Location root_;
1091
1092  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
1093};
1094
1095#undef __
1096// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
1097#define __ down_cast<ArmAssembler*>(GetAssembler())->  // NOLINT
1098
1099inline Condition ARMCondition(IfCondition cond) {
1100  switch (cond) {
1101    case kCondEQ: return EQ;
1102    case kCondNE: return NE;
1103    case kCondLT: return LT;
1104    case kCondLE: return LE;
1105    case kCondGT: return GT;
1106    case kCondGE: return GE;
1107    case kCondB:  return LO;
1108    case kCondBE: return LS;
1109    case kCondA:  return HI;
1110    case kCondAE: return HS;
1111  }
1112  LOG(FATAL) << "Unreachable";
1113  UNREACHABLE();
1114}
1115
1116// Maps signed condition to unsigned condition.
1117inline Condition ARMUnsignedCondition(IfCondition cond) {
1118  switch (cond) {
1119    case kCondEQ: return EQ;
1120    case kCondNE: return NE;
1121    // Signed to unsigned.
1122    case kCondLT: return LO;
1123    case kCondLE: return LS;
1124    case kCondGT: return HI;
1125    case kCondGE: return HS;
1126    // Unsigned remain unchanged.
1127    case kCondB:  return LO;
1128    case kCondBE: return LS;
1129    case kCondA:  return HI;
1130    case kCondAE: return HS;
1131  }
1132  LOG(FATAL) << "Unreachable";
1133  UNREACHABLE();
1134}
1135
1136inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1137  // The ARM condition codes can express all the necessary branches, see the
1138  // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1139  // There is no dex instruction or HIR that would need the missing conditions
1140  // "equal or unordered" or "not equal".
1141  switch (cond) {
1142    case kCondEQ: return EQ;
1143    case kCondNE: return NE /* unordered */;
1144    case kCondLT: return gt_bias ? CC : LT /* unordered */;
1145    case kCondLE: return gt_bias ? LS : LE /* unordered */;
1146    case kCondGT: return gt_bias ? HI /* unordered */ : GT;
1147    case kCondGE: return gt_bias ? CS /* unordered */ : GE;
1148    default:
1149      LOG(FATAL) << "UNREACHABLE";
1150      UNREACHABLE();
1151  }
1152}
1153
1154void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
1155  stream << Register(reg);
1156}
1157
1158void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1159  stream << SRegister(reg);
1160}
1161
1162size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1163  __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
1164  return kArmWordSize;
1165}
1166
1167size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1168  __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
1169  return kArmWordSize;
1170}
1171
1172size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1173  __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
1174  return kArmWordSize;
1175}
1176
1177size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1178  __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
1179  return kArmWordSize;
1180}
1181
1182CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
1183                                   const ArmInstructionSetFeatures& isa_features,
1184                                   const CompilerOptions& compiler_options,
1185                                   OptimizingCompilerStats* stats)
1186    : CodeGenerator(graph,
1187                    kNumberOfCoreRegisters,
1188                    kNumberOfSRegisters,
1189                    kNumberOfRegisterPairs,
1190                    ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
1191                                        arraysize(kCoreCalleeSaves)),
1192                    ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
1193                                        arraysize(kFpuCalleeSaves)),
1194                    compiler_options,
1195                    stats),
1196      block_labels_(nullptr),
1197      location_builder_(graph, this),
1198      instruction_visitor_(graph, this),
1199      move_resolver_(graph->GetArena(), this),
1200      assembler_(graph->GetArena()),
1201      isa_features_(isa_features),
1202      uint32_literals_(std::less<uint32_t>(),
1203                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1204      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1205      boot_image_string_patches_(StringReferenceValueComparator(),
1206                                 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1207      pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1208      boot_image_type_patches_(TypeReferenceValueComparator(),
1209                               graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1210      pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1211      boot_image_address_patches_(std::less<uint32_t>(),
1212                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1213      jit_string_patches_(StringReferenceValueComparator(),
1214                          graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1215      jit_class_patches_(TypeReferenceValueComparator(),
1216                         graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
1217  // Always save the LR register to mimic Quick.
1218  AddAllocatedRegister(Location::RegisterLocation(LR));
1219}
1220
1221void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
1222  // Ensure that we fix up branches and literal loads and emit the literal pool.
1223  __ FinalizeCode();
1224
1225  // Adjust native pc offsets in stack maps.
1226  for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
1227    uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
1228    uint32_t new_position = __ GetAdjustedPosition(old_position);
1229    stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
1230  }
1231  // Adjust pc offsets for the disassembly information.
1232  if (disasm_info_ != nullptr) {
1233    GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
1234    frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
1235    frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
1236    for (auto& it : *disasm_info_->GetInstructionIntervals()) {
1237      it.second.start = __ GetAdjustedPosition(it.second.start);
1238      it.second.end = __ GetAdjustedPosition(it.second.end);
1239    }
1240    for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
1241      it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
1242      it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
1243    }
1244  }
1245
1246  CodeGenerator::Finalize(allocator);
1247}
1248
1249void CodeGeneratorARM::SetupBlockedRegisters() const {
1250  // Stack register, LR and PC are always reserved.
1251  blocked_core_registers_[SP] = true;
1252  blocked_core_registers_[LR] = true;
1253  blocked_core_registers_[PC] = true;
1254
1255  // Reserve thread register.
1256  blocked_core_registers_[TR] = true;
1257
1258  // Reserve temp register.
1259  blocked_core_registers_[IP] = true;
1260
1261  if (GetGraph()->IsDebuggable()) {
1262    // Stubs do not save callee-save floating point registers. If the graph
1263    // is debuggable, we need to deal with these registers differently. For
1264    // now, just block them.
1265    for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
1266      blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
1267    }
1268  }
1269}
1270
1271InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
1272      : InstructionCodeGenerator(graph, codegen),
1273        assembler_(codegen->GetAssembler()),
1274        codegen_(codegen) {}
1275
1276void CodeGeneratorARM::ComputeSpillMask() {
1277  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
1278  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
1279  // There is no easy instruction to restore just the PC on thumb2. We spill and
1280  // restore another arbitrary register.
1281  core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
1282  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
1283  // We use vpush and vpop for saving and restoring floating point registers, which take
1284  // a SRegister and the number of registers to save/restore after that SRegister. We
1285  // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
1286  // but in the range.
1287  if (fpu_spill_mask_ != 0) {
1288    uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
1289    uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
1290    for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
1291      fpu_spill_mask_ |= (1 << i);
1292    }
1293  }
1294}
1295
1296static dwarf::Reg DWARFReg(Register reg) {
1297  return dwarf::Reg::ArmCore(static_cast<int>(reg));
1298}
1299
1300static dwarf::Reg DWARFReg(SRegister reg) {
1301  return dwarf::Reg::ArmFp(static_cast<int>(reg));
1302}
1303
1304void CodeGeneratorARM::GenerateFrameEntry() {
1305  bool skip_overflow_check =
1306      IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
1307  DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1308  __ Bind(&frame_entry_label_);
1309
1310  if (HasEmptyFrame()) {
1311    return;
1312  }
1313
1314  if (!skip_overflow_check) {
1315    __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
1316    __ LoadFromOffset(kLoadWord, IP, IP, 0);
1317    RecordPcInfo(nullptr, 0);
1318  }
1319
1320  __ PushList(core_spill_mask_);
1321  __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
1322  __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
1323  if (fpu_spill_mask_ != 0) {
1324    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1325    __ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
1326    __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
1327    __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
1328  }
1329
1330  if (GetGraph()->HasShouldDeoptimizeFlag()) {
1331    // Initialize should_deoptimize flag to 0.
1332    __ mov(IP, ShifterOperand(0));
1333    __ StoreToOffset(kStoreWord, IP, SP, -kShouldDeoptimizeFlagSize);
1334  }
1335
1336  int adjust = GetFrameSize() - FrameEntrySpillSize();
1337  __ AddConstant(SP, -adjust);
1338  __ cfi().AdjustCFAOffset(adjust);
1339
1340  // Save the current method if we need it. Note that we do not
1341  // do this in HCurrentMethod, as the instruction might have been removed
1342  // in the SSA graph.
1343  if (RequiresCurrentMethod()) {
1344    __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
1345  }
1346}
1347
1348void CodeGeneratorARM::GenerateFrameExit() {
1349  if (HasEmptyFrame()) {
1350    __ bx(LR);
1351    return;
1352  }
1353  __ cfi().RememberState();
1354  int adjust = GetFrameSize() - FrameEntrySpillSize();
1355  __ AddConstant(SP, adjust);
1356  __ cfi().AdjustCFAOffset(-adjust);
1357  if (fpu_spill_mask_ != 0) {
1358    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1359    __ vpops(start_register, POPCOUNT(fpu_spill_mask_));
1360    __ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_));
1361    __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
1362  }
1363  // Pop LR into PC to return.
1364  DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
1365  uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
1366  __ PopList(pop_mask);
1367  __ cfi().RestoreState();
1368  __ cfi().DefCFAOffset(GetFrameSize());
1369}
1370
1371void CodeGeneratorARM::Bind(HBasicBlock* block) {
1372  Label* label = GetLabelOf(block);
1373  __ BindTrackedLabel(label);
1374}
1375
1376Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
1377  switch (type) {
1378    case Primitive::kPrimBoolean:
1379    case Primitive::kPrimByte:
1380    case Primitive::kPrimChar:
1381    case Primitive::kPrimShort:
1382    case Primitive::kPrimInt:
1383    case Primitive::kPrimNot: {
1384      uint32_t index = gp_index_++;
1385      uint32_t stack_index = stack_index_++;
1386      if (index < calling_convention.GetNumberOfRegisters()) {
1387        return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
1388      } else {
1389        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1390      }
1391    }
1392
1393    case Primitive::kPrimLong: {
1394      uint32_t index = gp_index_;
1395      uint32_t stack_index = stack_index_;
1396      gp_index_ += 2;
1397      stack_index_ += 2;
1398      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1399        if (calling_convention.GetRegisterAt(index) == R1) {
1400          // Skip R1, and use R2_R3 instead.
1401          gp_index_++;
1402          index++;
1403        }
1404      }
1405      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1406        DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
1407                  calling_convention.GetRegisterAt(index + 1));
1408
1409        return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
1410                                              calling_convention.GetRegisterAt(index + 1));
1411      } else {
1412        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1413      }
1414    }
1415
1416    case Primitive::kPrimFloat: {
1417      uint32_t stack_index = stack_index_++;
1418      if (float_index_ % 2 == 0) {
1419        float_index_ = std::max(double_index_, float_index_);
1420      }
1421      if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
1422        return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
1423      } else {
1424        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1425      }
1426    }
1427
1428    case Primitive::kPrimDouble: {
1429      double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
1430      uint32_t stack_index = stack_index_;
1431      stack_index_ += 2;
1432      if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
1433        uint32_t index = double_index_;
1434        double_index_ += 2;
1435        Location result = Location::FpuRegisterPairLocation(
1436          calling_convention.GetFpuRegisterAt(index),
1437          calling_convention.GetFpuRegisterAt(index + 1));
1438        DCHECK(ExpectedPairLayout(result));
1439        return result;
1440      } else {
1441        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1442      }
1443    }
1444
1445    case Primitive::kPrimVoid:
1446      LOG(FATAL) << "Unexpected parameter type " << type;
1447      break;
1448  }
1449  return Location::NoLocation();
1450}
1451
1452Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
1453  switch (type) {
1454    case Primitive::kPrimBoolean:
1455    case Primitive::kPrimByte:
1456    case Primitive::kPrimChar:
1457    case Primitive::kPrimShort:
1458    case Primitive::kPrimInt:
1459    case Primitive::kPrimNot: {
1460      return Location::RegisterLocation(R0);
1461    }
1462
1463    case Primitive::kPrimFloat: {
1464      return Location::FpuRegisterLocation(S0);
1465    }
1466
1467    case Primitive::kPrimLong: {
1468      return Location::RegisterPairLocation(R0, R1);
1469    }
1470
1471    case Primitive::kPrimDouble: {
1472      return Location::FpuRegisterPairLocation(S0, S1);
1473    }
1474
1475    case Primitive::kPrimVoid:
1476      return Location::NoLocation();
1477  }
1478
1479  UNREACHABLE();
1480}
1481
1482Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
1483  return Location::RegisterLocation(kMethodRegisterArgument);
1484}
1485
1486void CodeGeneratorARM::Move32(Location destination, Location source) {
1487  if (source.Equals(destination)) {
1488    return;
1489  }
1490  if (destination.IsRegister()) {
1491    if (source.IsRegister()) {
1492      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
1493    } else if (source.IsFpuRegister()) {
1494      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
1495    } else {
1496      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
1497    }
1498  } else if (destination.IsFpuRegister()) {
1499    if (source.IsRegister()) {
1500      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
1501    } else if (source.IsFpuRegister()) {
1502      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
1503    } else {
1504      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
1505    }
1506  } else {
1507    DCHECK(destination.IsStackSlot()) << destination;
1508    if (source.IsRegister()) {
1509      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
1510    } else if (source.IsFpuRegister()) {
1511      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
1512    } else {
1513      DCHECK(source.IsStackSlot()) << source;
1514      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
1515      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
1516    }
1517  }
1518}
1519
1520void CodeGeneratorARM::Move64(Location destination, Location source) {
1521  if (source.Equals(destination)) {
1522    return;
1523  }
1524  if (destination.IsRegisterPair()) {
1525    if (source.IsRegisterPair()) {
1526      EmitParallelMoves(
1527          Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1528          Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1529          Primitive::kPrimInt,
1530          Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1531          Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1532          Primitive::kPrimInt);
1533    } else if (source.IsFpuRegister()) {
1534      UNIMPLEMENTED(FATAL);
1535    } else if (source.IsFpuRegisterPair()) {
1536      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
1537                 destination.AsRegisterPairHigh<Register>(),
1538                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
1539    } else {
1540      DCHECK(source.IsDoubleStackSlot());
1541      DCHECK(ExpectedPairLayout(destination));
1542      __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
1543                        SP, source.GetStackIndex());
1544    }
1545  } else if (destination.IsFpuRegisterPair()) {
1546    if (source.IsDoubleStackSlot()) {
1547      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1548                         SP,
1549                         source.GetStackIndex());
1550    } else if (source.IsRegisterPair()) {
1551      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1552                 source.AsRegisterPairLow<Register>(),
1553                 source.AsRegisterPairHigh<Register>());
1554    } else {
1555      UNIMPLEMENTED(FATAL);
1556    }
1557  } else {
1558    DCHECK(destination.IsDoubleStackSlot());
1559    if (source.IsRegisterPair()) {
1560      // No conflict possible, so just do the moves.
1561      if (source.AsRegisterPairLow<Register>() == R1) {
1562        DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
1563        __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
1564        __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
1565      } else {
1566        __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
1567                         SP, destination.GetStackIndex());
1568      }
1569    } else if (source.IsFpuRegisterPair()) {
1570      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
1571                        SP,
1572                        destination.GetStackIndex());
1573    } else {
1574      DCHECK(source.IsDoubleStackSlot());
1575      EmitParallelMoves(
1576          Location::StackSlot(source.GetStackIndex()),
1577          Location::StackSlot(destination.GetStackIndex()),
1578          Primitive::kPrimInt,
1579          Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
1580          Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
1581          Primitive::kPrimInt);
1582    }
1583  }
1584}
1585
1586void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
1587  DCHECK(location.IsRegister());
1588  __ LoadImmediate(location.AsRegister<Register>(), value);
1589}
1590
1591void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1592  HParallelMove move(GetGraph()->GetArena());
1593  move.AddMove(src, dst, dst_type, nullptr);
1594  GetMoveResolver()->EmitNativeCode(&move);
1595}
1596
1597void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
1598  if (location.IsRegister()) {
1599    locations->AddTemp(location);
1600  } else if (location.IsRegisterPair()) {
1601    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1602    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1603  } else {
1604    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1605  }
1606}
1607
1608void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
1609                                     HInstruction* instruction,
1610                                     uint32_t dex_pc,
1611                                     SlowPathCode* slow_path) {
1612  ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1613  GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value());
1614  if (EntrypointRequiresStackMap(entrypoint)) {
1615    RecordPcInfo(instruction, dex_pc, slow_path);
1616  }
1617}
1618
1619void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1620                                                           HInstruction* instruction,
1621                                                           SlowPathCode* slow_path) {
1622  ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1623  GenerateInvokeRuntime(entry_point_offset);
1624}
1625
1626void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) {
1627  __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
1628  __ blx(LR);
1629}
1630
1631void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1632  DCHECK(!successor->IsExitBlock());
1633
1634  HBasicBlock* block = got->GetBlock();
1635  HInstruction* previous = got->GetPrevious();
1636
1637  HLoopInformation* info = block->GetLoopInformation();
1638  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1639    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
1640    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1641    return;
1642  }
1643
1644  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1645    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1646  }
1647  if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1648    __ b(codegen_->GetLabelOf(successor));
1649  }
1650}
1651
1652void LocationsBuilderARM::VisitGoto(HGoto* got) {
1653  got->SetLocations(nullptr);
1654}
1655
1656void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
1657  HandleGoto(got, got->GetSuccessor());
1658}
1659
1660void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1661  try_boundary->SetLocations(nullptr);
1662}
1663
1664void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1665  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1666  if (!successor->IsExitBlock()) {
1667    HandleGoto(try_boundary, successor);
1668  }
1669}
1670
1671void LocationsBuilderARM::VisitExit(HExit* exit) {
1672  exit->SetLocations(nullptr);
1673}
1674
1675void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1676}
1677
1678void InstructionCodeGeneratorARM::GenerateVcmp(HInstruction* instruction) {
1679  Primitive::Type type = instruction->InputAt(0)->GetType();
1680  Location lhs_loc = instruction->GetLocations()->InAt(0);
1681  Location rhs_loc = instruction->GetLocations()->InAt(1);
1682  if (rhs_loc.IsConstant()) {
1683    // 0.0 is the only immediate that can be encoded directly in
1684    // a VCMP instruction.
1685    //
1686    // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1687    // specify that in a floating-point comparison, positive zero
1688    // and negative zero are considered equal, so we can use the
1689    // literal 0.0 for both cases here.
1690    //
1691    // Note however that some methods (Float.equal, Float.compare,
1692    // Float.compareTo, Double.equal, Double.compare,
1693    // Double.compareTo, Math.max, Math.min, StrictMath.max,
1694    // StrictMath.min) consider 0.0 to be (strictly) greater than
1695    // -0.0. So if we ever translate calls to these methods into a
1696    // HCompare instruction, we must handle the -0.0 case with
1697    // care here.
1698    DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1699    if (type == Primitive::kPrimFloat) {
1700      __ vcmpsz(lhs_loc.AsFpuRegister<SRegister>());
1701    } else {
1702      DCHECK_EQ(type, Primitive::kPrimDouble);
1703      __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()));
1704    }
1705  } else {
1706    if (type == Primitive::kPrimFloat) {
1707      __ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>());
1708    } else {
1709      DCHECK_EQ(type, Primitive::kPrimDouble);
1710      __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()),
1711               FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>()));
1712    }
1713  }
1714}
1715
1716void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond,
1717                                                  Label* true_label,
1718                                                  Label* false_label ATTRIBUTE_UNUSED) {
1719  __ vmstat();  // transfer FP status register to ARM APSR.
1720  __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias()));
1721}
1722
1723void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond,
1724                                                               Label* true_label,
1725                                                               Label* false_label) {
1726  LocationSummary* locations = cond->GetLocations();
1727  Location left = locations->InAt(0);
1728  Location right = locations->InAt(1);
1729  IfCondition if_cond = cond->GetCondition();
1730
1731  Register left_high = left.AsRegisterPairHigh<Register>();
1732  Register left_low = left.AsRegisterPairLow<Register>();
1733  IfCondition true_high_cond = if_cond;
1734  IfCondition false_high_cond = cond->GetOppositeCondition();
1735  Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part
1736
1737  // Set the conditions for the test, remembering that == needs to be
1738  // decided using the low words.
1739  // TODO: consider avoiding jumps with temporary and CMP low+SBC high
1740  switch (if_cond) {
1741    case kCondEQ:
1742    case kCondNE:
1743      // Nothing to do.
1744      break;
1745    case kCondLT:
1746      false_high_cond = kCondGT;
1747      break;
1748    case kCondLE:
1749      true_high_cond = kCondLT;
1750      break;
1751    case kCondGT:
1752      false_high_cond = kCondLT;
1753      break;
1754    case kCondGE:
1755      true_high_cond = kCondGT;
1756      break;
1757    case kCondB:
1758      false_high_cond = kCondA;
1759      break;
1760    case kCondBE:
1761      true_high_cond = kCondB;
1762      break;
1763    case kCondA:
1764      false_high_cond = kCondB;
1765      break;
1766    case kCondAE:
1767      true_high_cond = kCondA;
1768      break;
1769  }
1770  if (right.IsConstant()) {
1771    int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1772    int32_t val_low = Low32Bits(value);
1773    int32_t val_high = High32Bits(value);
1774
1775    __ CmpConstant(left_high, val_high);
1776    if (if_cond == kCondNE) {
1777      __ b(true_label, ARMCondition(true_high_cond));
1778    } else if (if_cond == kCondEQ) {
1779      __ b(false_label, ARMCondition(false_high_cond));
1780    } else {
1781      __ b(true_label, ARMCondition(true_high_cond));
1782      __ b(false_label, ARMCondition(false_high_cond));
1783    }
1784    // Must be equal high, so compare the lows.
1785    __ CmpConstant(left_low, val_low);
1786  } else {
1787    Register right_high = right.AsRegisterPairHigh<Register>();
1788    Register right_low = right.AsRegisterPairLow<Register>();
1789
1790    __ cmp(left_high, ShifterOperand(right_high));
1791    if (if_cond == kCondNE) {
1792      __ b(true_label, ARMCondition(true_high_cond));
1793    } else if (if_cond == kCondEQ) {
1794      __ b(false_label, ARMCondition(false_high_cond));
1795    } else {
1796      __ b(true_label, ARMCondition(true_high_cond));
1797      __ b(false_label, ARMCondition(false_high_cond));
1798    }
1799    // Must be equal high, so compare the lows.
1800    __ cmp(left_low, ShifterOperand(right_low));
1801  }
1802  // The last comparison might be unsigned.
1803  // TODO: optimize cases where this is always true/false
1804  __ b(true_label, final_condition);
1805}
1806
1807void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
1808                                                               Label* true_target_in,
1809                                                               Label* false_target_in) {
1810  // Generated branching requires both targets to be explicit. If either of the
1811  // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1812  Label fallthrough_target;
1813  Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1814  Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1815
1816  Primitive::Type type = condition->InputAt(0)->GetType();
1817  switch (type) {
1818    case Primitive::kPrimLong:
1819      GenerateLongComparesAndJumps(condition, true_target, false_target);
1820      break;
1821    case Primitive::kPrimFloat:
1822    case Primitive::kPrimDouble:
1823      GenerateVcmp(condition);
1824      GenerateFPJumps(condition, true_target, false_target);
1825      break;
1826    default:
1827      LOG(FATAL) << "Unexpected compare type " << type;
1828  }
1829
1830  if (false_target != &fallthrough_target) {
1831    __ b(false_target);
1832  }
1833
1834  if (fallthrough_target.IsLinked()) {
1835    __ Bind(&fallthrough_target);
1836  }
1837}
1838
1839void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
1840                                                        size_t condition_input_index,
1841                                                        Label* true_target,
1842                                                        Label* false_target) {
1843  HInstruction* cond = instruction->InputAt(condition_input_index);
1844
1845  if (true_target == nullptr && false_target == nullptr) {
1846    // Nothing to do. The code always falls through.
1847    return;
1848  } else if (cond->IsIntConstant()) {
1849    // Constant condition, statically compared against "true" (integer value 1).
1850    if (cond->AsIntConstant()->IsTrue()) {
1851      if (true_target != nullptr) {
1852        __ b(true_target);
1853      }
1854    } else {
1855      DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1856      if (false_target != nullptr) {
1857        __ b(false_target);
1858      }
1859    }
1860    return;
1861  }
1862
1863  // The following code generates these patterns:
1864  //  (1) true_target == nullptr && false_target != nullptr
1865  //        - opposite condition true => branch to false_target
1866  //  (2) true_target != nullptr && false_target == nullptr
1867  //        - condition true => branch to true_target
1868  //  (3) true_target != nullptr && false_target != nullptr
1869  //        - condition true => branch to true_target
1870  //        - branch to false_target
1871  if (IsBooleanValueOrMaterializedCondition(cond)) {
1872    // Condition has been materialized, compare the output to 0.
1873    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
1874    DCHECK(cond_val.IsRegister());
1875    if (true_target == nullptr) {
1876      __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
1877    } else {
1878      __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
1879    }
1880  } else {
1881    // Condition has not been materialized. Use its inputs as the comparison and
1882    // its condition as the branch condition.
1883    HCondition* condition = cond->AsCondition();
1884
1885    // If this is a long or FP comparison that has been folded into
1886    // the HCondition, generate the comparison directly.
1887    Primitive::Type type = condition->InputAt(0)->GetType();
1888    if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1889      GenerateCompareTestAndBranch(condition, true_target, false_target);
1890      return;
1891    }
1892
1893    LocationSummary* locations = cond->GetLocations();
1894    DCHECK(locations->InAt(0).IsRegister());
1895    Register left = locations->InAt(0).AsRegister<Register>();
1896    Location right = locations->InAt(1);
1897    if (right.IsRegister()) {
1898      __ cmp(left, ShifterOperand(right.AsRegister<Register>()));
1899    } else {
1900      DCHECK(right.IsConstant());
1901      __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1902    }
1903    if (true_target == nullptr) {
1904      __ b(false_target, ARMCondition(condition->GetOppositeCondition()));
1905    } else {
1906      __ b(true_target, ARMCondition(condition->GetCondition()));
1907    }
1908  }
1909
1910  // If neither branch falls through (case 3), the conditional branch to `true_target`
1911  // was already emitted (case 2) and we need to emit a jump to `false_target`.
1912  if (true_target != nullptr && false_target != nullptr) {
1913    __ b(false_target);
1914  }
1915}
1916
1917void LocationsBuilderARM::VisitIf(HIf* if_instr) {
1918  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1919  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1920    locations->SetInAt(0, Location::RequiresRegister());
1921  }
1922}
1923
1924void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
1925  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1926  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1927  Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1928      nullptr : codegen_->GetLabelOf(true_successor);
1929  Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1930      nullptr : codegen_->GetLabelOf(false_successor);
1931  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1932}
1933
1934void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1935  LocationSummary* locations = new (GetGraph()->GetArena())
1936      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1937  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
1938  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1939    locations->SetInAt(0, Location::RequiresRegister());
1940  }
1941}
1942
1943void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1944  SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
1945  GenerateTestAndBranch(deoptimize,
1946                        /* condition_input_index */ 0,
1947                        slow_path->GetEntryLabel(),
1948                        /* false_target */ nullptr);
1949}
1950
1951void LocationsBuilderARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
1952  LocationSummary* locations = new (GetGraph()->GetArena())
1953      LocationSummary(flag, LocationSummary::kNoCall);
1954  locations->SetOut(Location::RequiresRegister());
1955}
1956
1957void InstructionCodeGeneratorARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
1958  __ LoadFromOffset(kLoadWord,
1959                    flag->GetLocations()->Out().AsRegister<Register>(),
1960                    SP,
1961                    codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
1962}
1963
1964void LocationsBuilderARM::VisitSelect(HSelect* select) {
1965  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1966  if (Primitive::IsFloatingPointType(select->GetType())) {
1967    locations->SetInAt(0, Location::RequiresFpuRegister());
1968    locations->SetInAt(1, Location::RequiresFpuRegister());
1969  } else {
1970    locations->SetInAt(0, Location::RequiresRegister());
1971    locations->SetInAt(1, Location::RequiresRegister());
1972  }
1973  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1974    locations->SetInAt(2, Location::RequiresRegister());
1975  }
1976  locations->SetOut(Location::SameAsFirstInput());
1977}
1978
1979void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
1980  LocationSummary* locations = select->GetLocations();
1981  Label false_target;
1982  GenerateTestAndBranch(select,
1983                        /* condition_input_index */ 2,
1984                        /* true_target */ nullptr,
1985                        &false_target);
1986  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1987  __ Bind(&false_target);
1988}
1989
1990void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1991  new (GetGraph()->GetArena()) LocationSummary(info);
1992}
1993
1994void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
1995  // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1996}
1997
1998void CodeGeneratorARM::GenerateNop() {
1999  __ nop();
2000}
2001
2002void LocationsBuilderARM::HandleCondition(HCondition* cond) {
2003  LocationSummary* locations =
2004      new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
2005  // Handle the long/FP comparisons made in instruction simplification.
2006  switch (cond->InputAt(0)->GetType()) {
2007    case Primitive::kPrimLong:
2008      locations->SetInAt(0, Location::RequiresRegister());
2009      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2010      if (!cond->IsEmittedAtUseSite()) {
2011        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2012      }
2013      break;
2014
2015    case Primitive::kPrimFloat:
2016    case Primitive::kPrimDouble:
2017      locations->SetInAt(0, Location::RequiresFpuRegister());
2018      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
2019      if (!cond->IsEmittedAtUseSite()) {
2020        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2021      }
2022      break;
2023
2024    default:
2025      locations->SetInAt(0, Location::RequiresRegister());
2026      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2027      if (!cond->IsEmittedAtUseSite()) {
2028        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2029      }
2030  }
2031}
2032
2033void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
2034  if (cond->IsEmittedAtUseSite()) {
2035    return;
2036  }
2037
2038  LocationSummary* locations = cond->GetLocations();
2039  Location left = locations->InAt(0);
2040  Location right = locations->InAt(1);
2041  Register out = locations->Out().AsRegister<Register>();
2042  Label true_label, false_label;
2043
2044  switch (cond->InputAt(0)->GetType()) {
2045    default: {
2046      // Integer case.
2047      if (right.IsRegister()) {
2048        __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>()));
2049      } else {
2050        DCHECK(right.IsConstant());
2051        __ CmpConstant(left.AsRegister<Register>(),
2052                       CodeGenerator::GetInt32ValueOf(right.GetConstant()));
2053      }
2054      __ it(ARMCondition(cond->GetCondition()), kItElse);
2055      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
2056             ARMCondition(cond->GetCondition()));
2057      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
2058             ARMCondition(cond->GetOppositeCondition()));
2059      return;
2060    }
2061    case Primitive::kPrimLong:
2062      GenerateLongComparesAndJumps(cond, &true_label, &false_label);
2063      break;
2064    case Primitive::kPrimFloat:
2065    case Primitive::kPrimDouble:
2066      GenerateVcmp(cond);
2067      GenerateFPJumps(cond, &true_label, &false_label);
2068      break;
2069  }
2070
2071  // Convert the jumps into the result.
2072  Label done_label;
2073
2074  // False case: result = 0.
2075  __ Bind(&false_label);
2076  __ LoadImmediate(out, 0);
2077  __ b(&done_label);
2078
2079  // True case: result = 1.
2080  __ Bind(&true_label);
2081  __ LoadImmediate(out, 1);
2082  __ Bind(&done_label);
2083}
2084
2085void LocationsBuilderARM::VisitEqual(HEqual* comp) {
2086  HandleCondition(comp);
2087}
2088
2089void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
2090  HandleCondition(comp);
2091}
2092
2093void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
2094  HandleCondition(comp);
2095}
2096
2097void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
2098  HandleCondition(comp);
2099}
2100
2101void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
2102  HandleCondition(comp);
2103}
2104
2105void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
2106  HandleCondition(comp);
2107}
2108
2109void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2110  HandleCondition(comp);
2111}
2112
2113void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2114  HandleCondition(comp);
2115}
2116
2117void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
2118  HandleCondition(comp);
2119}
2120
2121void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
2122  HandleCondition(comp);
2123}
2124
2125void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2126  HandleCondition(comp);
2127}
2128
2129void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2130  HandleCondition(comp);
2131}
2132
2133void LocationsBuilderARM::VisitBelow(HBelow* comp) {
2134  HandleCondition(comp);
2135}
2136
2137void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
2138  HandleCondition(comp);
2139}
2140
2141void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
2142  HandleCondition(comp);
2143}
2144
2145void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
2146  HandleCondition(comp);
2147}
2148
2149void LocationsBuilderARM::VisitAbove(HAbove* comp) {
2150  HandleCondition(comp);
2151}
2152
2153void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
2154  HandleCondition(comp);
2155}
2156
2157void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
2158  HandleCondition(comp);
2159}
2160
2161void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
2162  HandleCondition(comp);
2163}
2164
2165void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
2166  LocationSummary* locations =
2167      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2168  locations->SetOut(Location::ConstantLocation(constant));
2169}
2170
2171void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
2172  // Will be generated at use site.
2173}
2174
2175void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
2176  LocationSummary* locations =
2177      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2178  locations->SetOut(Location::ConstantLocation(constant));
2179}
2180
2181void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
2182  // Will be generated at use site.
2183}
2184
2185void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
2186  LocationSummary* locations =
2187      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2188  locations->SetOut(Location::ConstantLocation(constant));
2189}
2190
2191void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
2192  // Will be generated at use site.
2193}
2194
2195void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
2196  LocationSummary* locations =
2197      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2198  locations->SetOut(Location::ConstantLocation(constant));
2199}
2200
2201void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2202  // Will be generated at use site.
2203}
2204
2205void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
2206  LocationSummary* locations =
2207      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2208  locations->SetOut(Location::ConstantLocation(constant));
2209}
2210
2211void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2212  // Will be generated at use site.
2213}
2214
2215void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2216  memory_barrier->SetLocations(nullptr);
2217}
2218
2219void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2220  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
2221}
2222
2223void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
2224  ret->SetLocations(nullptr);
2225}
2226
2227void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
2228  codegen_->GenerateFrameExit();
2229}
2230
2231void LocationsBuilderARM::VisitReturn(HReturn* ret) {
2232  LocationSummary* locations =
2233      new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
2234  locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
2235}
2236
2237void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
2238  codegen_->GenerateFrameExit();
2239}
2240
2241void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2242  // The trampoline uses the same calling convention as dex calling conventions,
2243  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
2244  // the method_idx.
2245  HandleInvoke(invoke);
2246}
2247
2248void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2249  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
2250}
2251
2252void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2253  // Explicit clinit checks triggered by static invokes must have been pruned by
2254  // art::PrepareForRegisterAllocation.
2255  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2256
2257  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2258  if (intrinsic.TryDispatch(invoke)) {
2259    if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
2260      invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
2261    }
2262    return;
2263  }
2264
2265  HandleInvoke(invoke);
2266
2267  // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
2268  if (invoke->HasPcRelativeDexCache()) {
2269    invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2270  }
2271}
2272
2273static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
2274  if (invoke->GetLocations()->Intrinsified()) {
2275    IntrinsicCodeGeneratorARM intrinsic(codegen);
2276    intrinsic.Dispatch(invoke);
2277    return true;
2278  }
2279  return false;
2280}
2281
2282void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2283  // Explicit clinit checks triggered by static invokes must have been pruned by
2284  // art::PrepareForRegisterAllocation.
2285  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2286
2287  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2288    return;
2289  }
2290
2291  LocationSummary* locations = invoke->GetLocations();
2292  codegen_->GenerateStaticOrDirectCall(
2293      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
2294  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2295}
2296
2297void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
2298  InvokeDexCallingConventionVisitorARM calling_convention_visitor;
2299  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2300}
2301
2302void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2303  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2304  if (intrinsic.TryDispatch(invoke)) {
2305    return;
2306  }
2307
2308  HandleInvoke(invoke);
2309}
2310
2311void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2312  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2313    return;
2314  }
2315
2316  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
2317  DCHECK(!codegen_->IsLeafMethod());
2318  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2319}
2320
2321void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2322  HandleInvoke(invoke);
2323  // Add the hidden argument.
2324  invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
2325}
2326
2327void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2328  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2329  LocationSummary* locations = invoke->GetLocations();
2330  Register temp = locations->GetTemp(0).AsRegister<Register>();
2331  Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
2332  Location receiver = locations->InAt(0);
2333  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2334
2335  // Set the hidden argument. This is safe to do this here, as R12
2336  // won't be modified thereafter, before the `blx` (call) instruction.
2337  DCHECK_EQ(R12, hidden_reg);
2338  __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());
2339
2340  if (receiver.IsStackSlot()) {
2341    __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
2342    // /* HeapReference<Class> */ temp = temp->klass_
2343    __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
2344  } else {
2345    // /* HeapReference<Class> */ temp = receiver->klass_
2346    __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
2347  }
2348  codegen_->MaybeRecordImplicitNullCheck(invoke);
2349  // Instead of simply (possibly) unpoisoning `temp` here, we should
2350  // emit a read barrier for the previous class reference load.
2351  // However this is not required in practice, as this is an
2352  // intermediate/temporary reference and because the current
2353  // concurrent copying collector keeps the from-space memory
2354  // intact/accessible until the end of the marking phase (the
2355  // concurrent copying collector may not in the future).
2356  __ MaybeUnpoisonHeapReference(temp);
2357  __ LoadFromOffset(kLoadWord, temp, temp,
2358        mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
2359  uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2360      invoke->GetImtIndex(), kArmPointerSize));
2361  // temp = temp->GetImtEntryAt(method_offset);
2362  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
2363  uint32_t entry_point =
2364      ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
2365  // LR = temp->GetEntryPoint();
2366  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
2367  // LR();
2368  __ blx(LR);
2369  DCHECK(!codegen_->IsLeafMethod());
2370  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2371}
2372
2373void LocationsBuilderARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2374  HandleInvoke(invoke);
2375}
2376
2377void InstructionCodeGeneratorARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2378  codegen_->GenerateInvokePolymorphicCall(invoke);
2379}
2380
2381void LocationsBuilderARM::VisitNeg(HNeg* neg) {
2382  LocationSummary* locations =
2383      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2384  switch (neg->GetResultType()) {
2385    case Primitive::kPrimInt: {
2386      locations->SetInAt(0, Location::RequiresRegister());
2387      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2388      break;
2389    }
2390    case Primitive::kPrimLong: {
2391      locations->SetInAt(0, Location::RequiresRegister());
2392      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2393      break;
2394    }
2395
2396    case Primitive::kPrimFloat:
2397    case Primitive::kPrimDouble:
2398      locations->SetInAt(0, Location::RequiresFpuRegister());
2399      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2400      break;
2401
2402    default:
2403      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2404  }
2405}
2406
2407void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
2408  LocationSummary* locations = neg->GetLocations();
2409  Location out = locations->Out();
2410  Location in = locations->InAt(0);
2411  switch (neg->GetResultType()) {
2412    case Primitive::kPrimInt:
2413      DCHECK(in.IsRegister());
2414      __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
2415      break;
2416
2417    case Primitive::kPrimLong:
2418      DCHECK(in.IsRegisterPair());
2419      // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
2420      __ rsbs(out.AsRegisterPairLow<Register>(),
2421              in.AsRegisterPairLow<Register>(),
2422              ShifterOperand(0));
2423      // We cannot emit an RSC (Reverse Subtract with Carry)
2424      // instruction here, as it does not exist in the Thumb-2
2425      // instruction set.  We use the following approach
2426      // using SBC and SUB instead.
2427      //
2428      // out.hi = -C
2429      __ sbc(out.AsRegisterPairHigh<Register>(),
2430             out.AsRegisterPairHigh<Register>(),
2431             ShifterOperand(out.AsRegisterPairHigh<Register>()));
2432      // out.hi = out.hi - in.hi
2433      __ sub(out.AsRegisterPairHigh<Register>(),
2434             out.AsRegisterPairHigh<Register>(),
2435             ShifterOperand(in.AsRegisterPairHigh<Register>()));
2436      break;
2437
2438    case Primitive::kPrimFloat:
2439      DCHECK(in.IsFpuRegister());
2440      __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
2441      break;
2442
2443    case Primitive::kPrimDouble:
2444      DCHECK(in.IsFpuRegisterPair());
2445      __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2446               FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2447      break;
2448
2449    default:
2450      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2451  }
2452}
2453
2454void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
2455  Primitive::Type result_type = conversion->GetResultType();
2456  Primitive::Type input_type = conversion->GetInputType();
2457  DCHECK_NE(result_type, input_type);
2458
2459  // The float-to-long, double-to-long and long-to-float type conversions
2460  // rely on a call to the runtime.
2461  LocationSummary::CallKind call_kind =
2462      (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2463        && result_type == Primitive::kPrimLong)
2464       || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
2465      ? LocationSummary::kCallOnMainOnly
2466      : LocationSummary::kNoCall;
2467  LocationSummary* locations =
2468      new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2469
2470  // The Java language does not allow treating boolean as an integral type but
2471  // our bit representation makes it safe.
2472
2473  switch (result_type) {
2474    case Primitive::kPrimByte:
2475      switch (input_type) {
2476        case Primitive::kPrimLong:
2477          // Type conversion from long to byte is a result of code transformations.
2478        case Primitive::kPrimBoolean:
2479          // Boolean input is a result of code transformations.
2480        case Primitive::kPrimShort:
2481        case Primitive::kPrimInt:
2482        case Primitive::kPrimChar:
2483          // Processing a Dex `int-to-byte' instruction.
2484          locations->SetInAt(0, Location::RequiresRegister());
2485          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2486          break;
2487
2488        default:
2489          LOG(FATAL) << "Unexpected type conversion from " << input_type
2490                     << " to " << result_type;
2491      }
2492      break;
2493
2494    case Primitive::kPrimShort:
2495      switch (input_type) {
2496        case Primitive::kPrimLong:
2497          // Type conversion from long to short is a result of code transformations.
2498        case Primitive::kPrimBoolean:
2499          // Boolean input is a result of code transformations.
2500        case Primitive::kPrimByte:
2501        case Primitive::kPrimInt:
2502        case Primitive::kPrimChar:
2503          // Processing a Dex `int-to-short' instruction.
2504          locations->SetInAt(0, Location::RequiresRegister());
2505          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2506          break;
2507
2508        default:
2509          LOG(FATAL) << "Unexpected type conversion from " << input_type
2510                     << " to " << result_type;
2511      }
2512      break;
2513
2514    case Primitive::kPrimInt:
2515      switch (input_type) {
2516        case Primitive::kPrimLong:
2517          // Processing a Dex `long-to-int' instruction.
2518          locations->SetInAt(0, Location::Any());
2519          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2520          break;
2521
2522        case Primitive::kPrimFloat:
2523          // Processing a Dex `float-to-int' instruction.
2524          locations->SetInAt(0, Location::RequiresFpuRegister());
2525          locations->SetOut(Location::RequiresRegister());
2526          locations->AddTemp(Location::RequiresFpuRegister());
2527          break;
2528
2529        case Primitive::kPrimDouble:
2530          // Processing a Dex `double-to-int' instruction.
2531          locations->SetInAt(0, Location::RequiresFpuRegister());
2532          locations->SetOut(Location::RequiresRegister());
2533          locations->AddTemp(Location::RequiresFpuRegister());
2534          break;
2535
2536        default:
2537          LOG(FATAL) << "Unexpected type conversion from " << input_type
2538                     << " to " << result_type;
2539      }
2540      break;
2541
2542    case Primitive::kPrimLong:
2543      switch (input_type) {
2544        case Primitive::kPrimBoolean:
2545          // Boolean input is a result of code transformations.
2546        case Primitive::kPrimByte:
2547        case Primitive::kPrimShort:
2548        case Primitive::kPrimInt:
2549        case Primitive::kPrimChar:
2550          // Processing a Dex `int-to-long' instruction.
2551          locations->SetInAt(0, Location::RequiresRegister());
2552          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2553          break;
2554
2555        case Primitive::kPrimFloat: {
2556          // Processing a Dex `float-to-long' instruction.
2557          InvokeRuntimeCallingConvention calling_convention;
2558          locations->SetInAt(0, Location::FpuRegisterLocation(
2559              calling_convention.GetFpuRegisterAt(0)));
2560          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2561          break;
2562        }
2563
2564        case Primitive::kPrimDouble: {
2565          // Processing a Dex `double-to-long' instruction.
2566          InvokeRuntimeCallingConvention calling_convention;
2567          locations->SetInAt(0, Location::FpuRegisterPairLocation(
2568              calling_convention.GetFpuRegisterAt(0),
2569              calling_convention.GetFpuRegisterAt(1)));
2570          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2571          break;
2572        }
2573
2574        default:
2575          LOG(FATAL) << "Unexpected type conversion from " << input_type
2576                     << " to " << result_type;
2577      }
2578      break;
2579
2580    case Primitive::kPrimChar:
2581      switch (input_type) {
2582        case Primitive::kPrimLong:
2583          // Type conversion from long to char is a result of code transformations.
2584        case Primitive::kPrimBoolean:
2585          // Boolean input is a result of code transformations.
2586        case Primitive::kPrimByte:
2587        case Primitive::kPrimShort:
2588        case Primitive::kPrimInt:
2589          // Processing a Dex `int-to-char' instruction.
2590          locations->SetInAt(0, Location::RequiresRegister());
2591          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2592          break;
2593
2594        default:
2595          LOG(FATAL) << "Unexpected type conversion from " << input_type
2596                     << " to " << result_type;
2597      }
2598      break;
2599
2600    case Primitive::kPrimFloat:
2601      switch (input_type) {
2602        case Primitive::kPrimBoolean:
2603          // Boolean input is a result of code transformations.
2604        case Primitive::kPrimByte:
2605        case Primitive::kPrimShort:
2606        case Primitive::kPrimInt:
2607        case Primitive::kPrimChar:
2608          // Processing a Dex `int-to-float' instruction.
2609          locations->SetInAt(0, Location::RequiresRegister());
2610          locations->SetOut(Location::RequiresFpuRegister());
2611          break;
2612
2613        case Primitive::kPrimLong: {
2614          // Processing a Dex `long-to-float' instruction.
2615          InvokeRuntimeCallingConvention calling_convention;
2616          locations->SetInAt(0, Location::RegisterPairLocation(
2617              calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
2618          locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2619          break;
2620        }
2621
2622        case Primitive::kPrimDouble:
2623          // Processing a Dex `double-to-float' instruction.
2624          locations->SetInAt(0, Location::RequiresFpuRegister());
2625          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2626          break;
2627
2628        default:
2629          LOG(FATAL) << "Unexpected type conversion from " << input_type
2630                     << " to " << result_type;
2631      };
2632      break;
2633
2634    case Primitive::kPrimDouble:
2635      switch (input_type) {
2636        case Primitive::kPrimBoolean:
2637          // Boolean input is a result of code transformations.
2638        case Primitive::kPrimByte:
2639        case Primitive::kPrimShort:
2640        case Primitive::kPrimInt:
2641        case Primitive::kPrimChar:
2642          // Processing a Dex `int-to-double' instruction.
2643          locations->SetInAt(0, Location::RequiresRegister());
2644          locations->SetOut(Location::RequiresFpuRegister());
2645          break;
2646
2647        case Primitive::kPrimLong:
2648          // Processing a Dex `long-to-double' instruction.
2649          locations->SetInAt(0, Location::RequiresRegister());
2650          locations->SetOut(Location::RequiresFpuRegister());
2651          locations->AddTemp(Location::RequiresFpuRegister());
2652          locations->AddTemp(Location::RequiresFpuRegister());
2653          break;
2654
2655        case Primitive::kPrimFloat:
2656          // Processing a Dex `float-to-double' instruction.
2657          locations->SetInAt(0, Location::RequiresFpuRegister());
2658          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2659          break;
2660
2661        default:
2662          LOG(FATAL) << "Unexpected type conversion from " << input_type
2663                     << " to " << result_type;
2664      };
2665      break;
2666
2667    default:
2668      LOG(FATAL) << "Unexpected type conversion from " << input_type
2669                 << " to " << result_type;
2670  }
2671}
2672
2673void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
2674  LocationSummary* locations = conversion->GetLocations();
2675  Location out = locations->Out();
2676  Location in = locations->InAt(0);
2677  Primitive::Type result_type = conversion->GetResultType();
2678  Primitive::Type input_type = conversion->GetInputType();
2679  DCHECK_NE(result_type, input_type);
2680  switch (result_type) {
2681    case Primitive::kPrimByte:
2682      switch (input_type) {
2683        case Primitive::kPrimLong:
2684          // Type conversion from long to byte is a result of code transformations.
2685          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
2686          break;
2687        case Primitive::kPrimBoolean:
2688          // Boolean input is a result of code transformations.
2689        case Primitive::kPrimShort:
2690        case Primitive::kPrimInt:
2691        case Primitive::kPrimChar:
2692          // Processing a Dex `int-to-byte' instruction.
2693          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
2694          break;
2695
2696        default:
2697          LOG(FATAL) << "Unexpected type conversion from " << input_type
2698                     << " to " << result_type;
2699      }
2700      break;
2701
2702    case Primitive::kPrimShort:
2703      switch (input_type) {
2704        case Primitive::kPrimLong:
2705          // Type conversion from long to short is a result of code transformations.
2706          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2707          break;
2708        case Primitive::kPrimBoolean:
2709          // Boolean input is a result of code transformations.
2710        case Primitive::kPrimByte:
2711        case Primitive::kPrimInt:
2712        case Primitive::kPrimChar:
2713          // Processing a Dex `int-to-short' instruction.
2714          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2715          break;
2716
2717        default:
2718          LOG(FATAL) << "Unexpected type conversion from " << input_type
2719                     << " to " << result_type;
2720      }
2721      break;
2722
2723    case Primitive::kPrimInt:
2724      switch (input_type) {
2725        case Primitive::kPrimLong:
2726          // Processing a Dex `long-to-int' instruction.
2727          DCHECK(out.IsRegister());
2728          if (in.IsRegisterPair()) {
2729            __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2730          } else if (in.IsDoubleStackSlot()) {
2731            __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
2732          } else {
2733            DCHECK(in.IsConstant());
2734            DCHECK(in.GetConstant()->IsLongConstant());
2735            int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2736            __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
2737          }
2738          break;
2739
2740        case Primitive::kPrimFloat: {
2741          // Processing a Dex `float-to-int' instruction.
2742          SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2743          __ vcvtis(temp, in.AsFpuRegister<SRegister>());
2744          __ vmovrs(out.AsRegister<Register>(), temp);
2745          break;
2746        }
2747
2748        case Primitive::kPrimDouble: {
2749          // Processing a Dex `double-to-int' instruction.
2750          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2751          __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2752          __ vmovrs(out.AsRegister<Register>(), temp_s);
2753          break;
2754        }
2755
2756        default:
2757          LOG(FATAL) << "Unexpected type conversion from " << input_type
2758                     << " to " << result_type;
2759      }
2760      break;
2761
2762    case Primitive::kPrimLong:
2763      switch (input_type) {
2764        case Primitive::kPrimBoolean:
2765          // Boolean input is a result of code transformations.
2766        case Primitive::kPrimByte:
2767        case Primitive::kPrimShort:
2768        case Primitive::kPrimInt:
2769        case Primitive::kPrimChar:
2770          // Processing a Dex `int-to-long' instruction.
2771          DCHECK(out.IsRegisterPair());
2772          DCHECK(in.IsRegister());
2773          __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
2774          // Sign extension.
2775          __ Asr(out.AsRegisterPairHigh<Register>(),
2776                 out.AsRegisterPairLow<Register>(),
2777                 31);
2778          break;
2779
2780        case Primitive::kPrimFloat:
2781          // Processing a Dex `float-to-long' instruction.
2782          codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
2783          CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2784          break;
2785
2786        case Primitive::kPrimDouble:
2787          // Processing a Dex `double-to-long' instruction.
2788          codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
2789          CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2790          break;
2791
2792        default:
2793          LOG(FATAL) << "Unexpected type conversion from " << input_type
2794                     << " to " << result_type;
2795      }
2796      break;
2797
2798    case Primitive::kPrimChar:
2799      switch (input_type) {
2800        case Primitive::kPrimLong:
2801          // Type conversion from long to char is a result of code transformations.
2802          __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2803          break;
2804        case Primitive::kPrimBoolean:
2805          // Boolean input is a result of code transformations.
2806        case Primitive::kPrimByte:
2807        case Primitive::kPrimShort:
2808        case Primitive::kPrimInt:
2809          // Processing a Dex `int-to-char' instruction.
2810          __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2811          break;
2812
2813        default:
2814          LOG(FATAL) << "Unexpected type conversion from " << input_type
2815                     << " to " << result_type;
2816      }
2817      break;
2818
2819    case Primitive::kPrimFloat:
2820      switch (input_type) {
2821        case Primitive::kPrimBoolean:
2822          // Boolean input is a result of code transformations.
2823        case Primitive::kPrimByte:
2824        case Primitive::kPrimShort:
2825        case Primitive::kPrimInt:
2826        case Primitive::kPrimChar: {
2827          // Processing a Dex `int-to-float' instruction.
2828          __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
2829          __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
2830          break;
2831        }
2832
2833        case Primitive::kPrimLong:
2834          // Processing a Dex `long-to-float' instruction.
2835          codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
2836          CheckEntrypointTypes<kQuickL2f, float, int64_t>();
2837          break;
2838
2839        case Primitive::kPrimDouble:
2840          // Processing a Dex `double-to-float' instruction.
2841          __ vcvtsd(out.AsFpuRegister<SRegister>(),
2842                    FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2843          break;
2844
2845        default:
2846          LOG(FATAL) << "Unexpected type conversion from " << input_type
2847                     << " to " << result_type;
2848      };
2849      break;
2850
2851    case Primitive::kPrimDouble:
2852      switch (input_type) {
2853        case Primitive::kPrimBoolean:
2854          // Boolean input is a result of code transformations.
2855        case Primitive::kPrimByte:
2856        case Primitive::kPrimShort:
2857        case Primitive::kPrimInt:
2858        case Primitive::kPrimChar: {
2859          // Processing a Dex `int-to-double' instruction.
2860          __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
2861          __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2862                    out.AsFpuRegisterPairLow<SRegister>());
2863          break;
2864        }
2865
2866        case Primitive::kPrimLong: {
2867          // Processing a Dex `long-to-double' instruction.
2868          Register low = in.AsRegisterPairLow<Register>();
2869          Register high = in.AsRegisterPairHigh<Register>();
2870          SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
2871          DRegister out_d = FromLowSToD(out_s);
2872          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2873          DRegister temp_d = FromLowSToD(temp_s);
2874          SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
2875          DRegister constant_d = FromLowSToD(constant_s);
2876
2877          // temp_d = int-to-double(high)
2878          __ vmovsr(temp_s, high);
2879          __ vcvtdi(temp_d, temp_s);
2880          // constant_d = k2Pow32EncodingForDouble
2881          __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
2882          // out_d = unsigned-to-double(low)
2883          __ vmovsr(out_s, low);
2884          __ vcvtdu(out_d, out_s);
2885          // out_d += temp_d * constant_d
2886          __ vmlad(out_d, temp_d, constant_d);
2887          break;
2888        }
2889
2890        case Primitive::kPrimFloat:
2891          // Processing a Dex `float-to-double' instruction.
2892          __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2893                    in.AsFpuRegister<SRegister>());
2894          break;
2895
2896        default:
2897          LOG(FATAL) << "Unexpected type conversion from " << input_type
2898                     << " to " << result_type;
2899      };
2900      break;
2901
2902    default:
2903      LOG(FATAL) << "Unexpected type conversion from " << input_type
2904                 << " to " << result_type;
2905  }
2906}
2907
2908void LocationsBuilderARM::VisitAdd(HAdd* add) {
2909  LocationSummary* locations =
2910      new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2911  switch (add->GetResultType()) {
2912    case Primitive::kPrimInt: {
2913      locations->SetInAt(0, Location::RequiresRegister());
2914      locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2915      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2916      break;
2917    }
2918
2919    case Primitive::kPrimLong: {
2920      locations->SetInAt(0, Location::RequiresRegister());
2921      locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
2922      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2923      break;
2924    }
2925
2926    case Primitive::kPrimFloat:
2927    case Primitive::kPrimDouble: {
2928      locations->SetInAt(0, Location::RequiresFpuRegister());
2929      locations->SetInAt(1, Location::RequiresFpuRegister());
2930      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2931      break;
2932    }
2933
2934    default:
2935      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2936  }
2937}
2938
2939void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
2940  LocationSummary* locations = add->GetLocations();
2941  Location out = locations->Out();
2942  Location first = locations->InAt(0);
2943  Location second = locations->InAt(1);
2944  switch (add->GetResultType()) {
2945    case Primitive::kPrimInt:
2946      if (second.IsRegister()) {
2947        __ add(out.AsRegister<Register>(),
2948               first.AsRegister<Register>(),
2949               ShifterOperand(second.AsRegister<Register>()));
2950      } else {
2951        __ AddConstant(out.AsRegister<Register>(),
2952                       first.AsRegister<Register>(),
2953                       second.GetConstant()->AsIntConstant()->GetValue());
2954      }
2955      break;
2956
2957    case Primitive::kPrimLong: {
2958      if (second.IsConstant()) {
2959        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
2960        GenerateAddLongConst(out, first, value);
2961      } else {
2962        DCHECK(second.IsRegisterPair());
2963        __ adds(out.AsRegisterPairLow<Register>(),
2964                first.AsRegisterPairLow<Register>(),
2965                ShifterOperand(second.AsRegisterPairLow<Register>()));
2966        __ adc(out.AsRegisterPairHigh<Register>(),
2967               first.AsRegisterPairHigh<Register>(),
2968               ShifterOperand(second.AsRegisterPairHigh<Register>()));
2969      }
2970      break;
2971    }
2972
2973    case Primitive::kPrimFloat:
2974      __ vadds(out.AsFpuRegister<SRegister>(),
2975               first.AsFpuRegister<SRegister>(),
2976               second.AsFpuRegister<SRegister>());
2977      break;
2978
2979    case Primitive::kPrimDouble:
2980      __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2981               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2982               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2983      break;
2984
2985    default:
2986      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2987  }
2988}
2989
2990void LocationsBuilderARM::VisitSub(HSub* sub) {
2991  LocationSummary* locations =
2992      new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2993  switch (sub->GetResultType()) {
2994    case Primitive::kPrimInt: {
2995      locations->SetInAt(0, Location::RequiresRegister());
2996      locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
2997      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2998      break;
2999    }
3000
3001    case Primitive::kPrimLong: {
3002      locations->SetInAt(0, Location::RequiresRegister());
3003      locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
3004      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3005      break;
3006    }
3007    case Primitive::kPrimFloat:
3008    case Primitive::kPrimDouble: {
3009      locations->SetInAt(0, Location::RequiresFpuRegister());
3010      locations->SetInAt(1, Location::RequiresFpuRegister());
3011      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3012      break;
3013    }
3014    default:
3015      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3016  }
3017}
3018
3019void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
3020  LocationSummary* locations = sub->GetLocations();
3021  Location out = locations->Out();
3022  Location first = locations->InAt(0);
3023  Location second = locations->InAt(1);
3024  switch (sub->GetResultType()) {
3025    case Primitive::kPrimInt: {
3026      if (second.IsRegister()) {
3027        __ sub(out.AsRegister<Register>(),
3028               first.AsRegister<Register>(),
3029               ShifterOperand(second.AsRegister<Register>()));
3030      } else {
3031        __ AddConstant(out.AsRegister<Register>(),
3032                       first.AsRegister<Register>(),
3033                       -second.GetConstant()->AsIntConstant()->GetValue());
3034      }
3035      break;
3036    }
3037
3038    case Primitive::kPrimLong: {
3039      if (second.IsConstant()) {
3040        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
3041        GenerateAddLongConst(out, first, -value);
3042      } else {
3043        DCHECK(second.IsRegisterPair());
3044        __ subs(out.AsRegisterPairLow<Register>(),
3045                first.AsRegisterPairLow<Register>(),
3046                ShifterOperand(second.AsRegisterPairLow<Register>()));
3047        __ sbc(out.AsRegisterPairHigh<Register>(),
3048               first.AsRegisterPairHigh<Register>(),
3049               ShifterOperand(second.AsRegisterPairHigh<Register>()));
3050      }
3051      break;
3052    }
3053
3054    case Primitive::kPrimFloat: {
3055      __ vsubs(out.AsFpuRegister<SRegister>(),
3056               first.AsFpuRegister<SRegister>(),
3057               second.AsFpuRegister<SRegister>());
3058      break;
3059    }
3060
3061    case Primitive::kPrimDouble: {
3062      __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3063               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3064               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3065      break;
3066    }
3067
3068
3069    default:
3070      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3071  }
3072}
3073
3074void LocationsBuilderARM::VisitMul(HMul* mul) {
3075  LocationSummary* locations =
3076      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3077  switch (mul->GetResultType()) {
3078    case Primitive::kPrimInt:
3079    case Primitive::kPrimLong:  {
3080      locations->SetInAt(0, Location::RequiresRegister());
3081      locations->SetInAt(1, Location::RequiresRegister());
3082      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3083      break;
3084    }
3085
3086    case Primitive::kPrimFloat:
3087    case Primitive::kPrimDouble: {
3088      locations->SetInAt(0, Location::RequiresFpuRegister());
3089      locations->SetInAt(1, Location::RequiresFpuRegister());
3090      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3091      break;
3092    }
3093
3094    default:
3095      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3096  }
3097}
3098
3099void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
3100  LocationSummary* locations = mul->GetLocations();
3101  Location out = locations->Out();
3102  Location first = locations->InAt(0);
3103  Location second = locations->InAt(1);
3104  switch (mul->GetResultType()) {
3105    case Primitive::kPrimInt: {
3106      __ mul(out.AsRegister<Register>(),
3107             first.AsRegister<Register>(),
3108             second.AsRegister<Register>());
3109      break;
3110    }
3111    case Primitive::kPrimLong: {
3112      Register out_hi = out.AsRegisterPairHigh<Register>();
3113      Register out_lo = out.AsRegisterPairLow<Register>();
3114      Register in1_hi = first.AsRegisterPairHigh<Register>();
3115      Register in1_lo = first.AsRegisterPairLow<Register>();
3116      Register in2_hi = second.AsRegisterPairHigh<Register>();
3117      Register in2_lo = second.AsRegisterPairLow<Register>();
3118
3119      // Extra checks to protect caused by the existence of R1_R2.
3120      // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
3121      // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
3122      DCHECK_NE(out_hi, in1_lo);
3123      DCHECK_NE(out_hi, in2_lo);
3124
3125      // input: in1 - 64 bits, in2 - 64 bits
3126      // output: out
3127      // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3128      // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3129      // parts: out.lo = (in1.lo * in2.lo)[31:0]
3130
3131      // IP <- in1.lo * in2.hi
3132      __ mul(IP, in1_lo, in2_hi);
3133      // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3134      __ mla(out_hi, in1_hi, in2_lo, IP);
3135      // out.lo <- (in1.lo * in2.lo)[31:0];
3136      __ umull(out_lo, IP, in1_lo, in2_lo);
3137      // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3138      __ add(out_hi, out_hi, ShifterOperand(IP));
3139      break;
3140    }
3141
3142    case Primitive::kPrimFloat: {
3143      __ vmuls(out.AsFpuRegister<SRegister>(),
3144               first.AsFpuRegister<SRegister>(),
3145               second.AsFpuRegister<SRegister>());
3146      break;
3147    }
3148
3149    case Primitive::kPrimDouble: {
3150      __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3151               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3152               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3153      break;
3154    }
3155
3156    default:
3157      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3158  }
3159}
3160
3161void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3162  DCHECK(instruction->IsDiv() || instruction->IsRem());
3163  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3164
3165  LocationSummary* locations = instruction->GetLocations();
3166  Location second = locations->InAt(1);
3167  DCHECK(second.IsConstant());
3168
3169  Register out = locations->Out().AsRegister<Register>();
3170  Register dividend = locations->InAt(0).AsRegister<Register>();
3171  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3172  DCHECK(imm == 1 || imm == -1);
3173
3174  if (instruction->IsRem()) {
3175    __ LoadImmediate(out, 0);
3176  } else {
3177    if (imm == 1) {
3178      __ Mov(out, dividend);
3179    } else {
3180      __ rsb(out, dividend, ShifterOperand(0));
3181    }
3182  }
3183}
3184
3185void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
3186  DCHECK(instruction->IsDiv() || instruction->IsRem());
3187  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3188
3189  LocationSummary* locations = instruction->GetLocations();
3190  Location second = locations->InAt(1);
3191  DCHECK(second.IsConstant());
3192
3193  Register out = locations->Out().AsRegister<Register>();
3194  Register dividend = locations->InAt(0).AsRegister<Register>();
3195  Register temp = locations->GetTemp(0).AsRegister<Register>();
3196  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3197  uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3198  int ctz_imm = CTZ(abs_imm);
3199
3200  if (ctz_imm == 1) {
3201    __ Lsr(temp, dividend, 32 - ctz_imm);
3202  } else {
3203    __ Asr(temp, dividend, 31);
3204    __ Lsr(temp, temp, 32 - ctz_imm);
3205  }
3206  __ add(out, temp, ShifterOperand(dividend));
3207
3208  if (instruction->IsDiv()) {
3209    __ Asr(out, out, ctz_imm);
3210    if (imm < 0) {
3211      __ rsb(out, out, ShifterOperand(0));
3212    }
3213  } else {
3214    __ ubfx(out, out, 0, ctz_imm);
3215    __ sub(out, out, ShifterOperand(temp));
3216  }
3217}
3218
3219void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3220  DCHECK(instruction->IsDiv() || instruction->IsRem());
3221  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3222
3223  LocationSummary* locations = instruction->GetLocations();
3224  Location second = locations->InAt(1);
3225  DCHECK(second.IsConstant());
3226
3227  Register out = locations->Out().AsRegister<Register>();
3228  Register dividend = locations->InAt(0).AsRegister<Register>();
3229  Register temp1 = locations->GetTemp(0).AsRegister<Register>();
3230  Register temp2 = locations->GetTemp(1).AsRegister<Register>();
3231  int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3232
3233  int64_t magic;
3234  int shift;
3235  CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3236
3237  __ LoadImmediate(temp1, magic);
3238  __ smull(temp2, temp1, dividend, temp1);
3239
3240  if (imm > 0 && magic < 0) {
3241    __ add(temp1, temp1, ShifterOperand(dividend));
3242  } else if (imm < 0 && magic > 0) {
3243    __ sub(temp1, temp1, ShifterOperand(dividend));
3244  }
3245
3246  if (shift != 0) {
3247    __ Asr(temp1, temp1, shift);
3248  }
3249
3250  if (instruction->IsDiv()) {
3251    __ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
3252  } else {
3253    __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
3254    // TODO: Strength reduction for mls.
3255    __ LoadImmediate(temp2, imm);
3256    __ mls(out, temp1, temp2, dividend);
3257  }
3258}
3259
3260void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
3261  DCHECK(instruction->IsDiv() || instruction->IsRem());
3262  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3263
3264  LocationSummary* locations = instruction->GetLocations();
3265  Location second = locations->InAt(1);
3266  DCHECK(second.IsConstant());
3267
3268  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3269  if (imm == 0) {
3270    // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3271  } else if (imm == 1 || imm == -1) {
3272    DivRemOneOrMinusOne(instruction);
3273  } else if (IsPowerOfTwo(AbsOrMin(imm))) {
3274    DivRemByPowerOfTwo(instruction);
3275  } else {
3276    DCHECK(imm <= -2 || imm >= 2);
3277    GenerateDivRemWithAnyConstant(instruction);
3278  }
3279}
3280
3281void LocationsBuilderARM::VisitDiv(HDiv* div) {
3282  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3283  if (div->GetResultType() == Primitive::kPrimLong) {
3284    // pLdiv runtime call.
3285    call_kind = LocationSummary::kCallOnMainOnly;
3286  } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
3287    // sdiv will be replaced by other instruction sequence.
3288  } else if (div->GetResultType() == Primitive::kPrimInt &&
3289             !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3290    // pIdivmod runtime call.
3291    call_kind = LocationSummary::kCallOnMainOnly;
3292  }
3293
3294  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3295
3296  switch (div->GetResultType()) {
3297    case Primitive::kPrimInt: {
3298      if (div->InputAt(1)->IsConstant()) {
3299        locations->SetInAt(0, Location::RequiresRegister());
3300        locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
3301        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3302        int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
3303        if (value == 1 || value == 0 || value == -1) {
3304          // No temp register required.
3305        } else {
3306          locations->AddTemp(Location::RequiresRegister());
3307          if (!IsPowerOfTwo(AbsOrMin(value))) {
3308            locations->AddTemp(Location::RequiresRegister());
3309          }
3310        }
3311      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3312        locations->SetInAt(0, Location::RequiresRegister());
3313        locations->SetInAt(1, Location::RequiresRegister());
3314        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3315      } else {
3316        InvokeRuntimeCallingConvention calling_convention;
3317        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3318        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3319        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3320        //       we only need the former.
3321        locations->SetOut(Location::RegisterLocation(R0));
3322      }
3323      break;
3324    }
3325    case Primitive::kPrimLong: {
3326      InvokeRuntimeCallingConvention calling_convention;
3327      locations->SetInAt(0, Location::RegisterPairLocation(
3328          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3329      locations->SetInAt(1, Location::RegisterPairLocation(
3330          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3331      locations->SetOut(Location::RegisterPairLocation(R0, R1));
3332      break;
3333    }
3334    case Primitive::kPrimFloat:
3335    case Primitive::kPrimDouble: {
3336      locations->SetInAt(0, Location::RequiresFpuRegister());
3337      locations->SetInAt(1, Location::RequiresFpuRegister());
3338      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3339      break;
3340    }
3341
3342    default:
3343      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3344  }
3345}
3346
3347void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
3348  LocationSummary* locations = div->GetLocations();
3349  Location out = locations->Out();
3350  Location first = locations->InAt(0);
3351  Location second = locations->InAt(1);
3352
3353  switch (div->GetResultType()) {
3354    case Primitive::kPrimInt: {
3355      if (second.IsConstant()) {
3356        GenerateDivRemConstantIntegral(div);
3357      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3358        __ sdiv(out.AsRegister<Register>(),
3359                first.AsRegister<Register>(),
3360                second.AsRegister<Register>());
3361      } else {
3362        InvokeRuntimeCallingConvention calling_convention;
3363        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3364        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3365        DCHECK_EQ(R0, out.AsRegister<Register>());
3366
3367        codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
3368        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3369      }
3370      break;
3371    }
3372
3373    case Primitive::kPrimLong: {
3374      InvokeRuntimeCallingConvention calling_convention;
3375      DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3376      DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3377      DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3378      DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3379      DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
3380      DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
3381
3382      codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
3383      CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3384      break;
3385    }
3386
3387    case Primitive::kPrimFloat: {
3388      __ vdivs(out.AsFpuRegister<SRegister>(),
3389               first.AsFpuRegister<SRegister>(),
3390               second.AsFpuRegister<SRegister>());
3391      break;
3392    }
3393
3394    case Primitive::kPrimDouble: {
3395      __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3396               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3397               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3398      break;
3399    }
3400
3401    default:
3402      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3403  }
3404}
3405
3406void LocationsBuilderARM::VisitRem(HRem* rem) {
3407  Primitive::Type type = rem->GetResultType();
3408
3409  // Most remainders are implemented in the runtime.
3410  LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
3411  if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
3412    // sdiv will be replaced by other instruction sequence.
3413    call_kind = LocationSummary::kNoCall;
3414  } else if ((rem->GetResultType() == Primitive::kPrimInt)
3415             && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3416    // Have hardware divide instruction for int, do it with three instructions.
3417    call_kind = LocationSummary::kNoCall;
3418  }
3419
3420  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3421
3422  switch (type) {
3423    case Primitive::kPrimInt: {
3424      if (rem->InputAt(1)->IsConstant()) {
3425        locations->SetInAt(0, Location::RequiresRegister());
3426        locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
3427        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3428        int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
3429        if (value == 1 || value == 0 || value == -1) {
3430          // No temp register required.
3431        } else {
3432          locations->AddTemp(Location::RequiresRegister());
3433          if (!IsPowerOfTwo(AbsOrMin(value))) {
3434            locations->AddTemp(Location::RequiresRegister());
3435          }
3436        }
3437      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3438        locations->SetInAt(0, Location::RequiresRegister());
3439        locations->SetInAt(1, Location::RequiresRegister());
3440        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3441        locations->AddTemp(Location::RequiresRegister());
3442      } else {
3443        InvokeRuntimeCallingConvention calling_convention;
3444        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3445        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3446        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3447        //       we only need the latter.
3448        locations->SetOut(Location::RegisterLocation(R1));
3449      }
3450      break;
3451    }
3452    case Primitive::kPrimLong: {
3453      InvokeRuntimeCallingConvention calling_convention;
3454      locations->SetInAt(0, Location::RegisterPairLocation(
3455          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3456      locations->SetInAt(1, Location::RegisterPairLocation(
3457          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3458      // The runtime helper puts the output in R2,R3.
3459      locations->SetOut(Location::RegisterPairLocation(R2, R3));
3460      break;
3461    }
3462    case Primitive::kPrimFloat: {
3463      InvokeRuntimeCallingConvention calling_convention;
3464      locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
3465      locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
3466      locations->SetOut(Location::FpuRegisterLocation(S0));
3467      break;
3468    }
3469
3470    case Primitive::kPrimDouble: {
3471      InvokeRuntimeCallingConvention calling_convention;
3472      locations->SetInAt(0, Location::FpuRegisterPairLocation(
3473          calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
3474      locations->SetInAt(1, Location::FpuRegisterPairLocation(
3475          calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
3476      locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
3477      break;
3478    }
3479
3480    default:
3481      LOG(FATAL) << "Unexpected rem type " << type;
3482  }
3483}
3484
3485void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
3486  LocationSummary* locations = rem->GetLocations();
3487  Location out = locations->Out();
3488  Location first = locations->InAt(0);
3489  Location second = locations->InAt(1);
3490
3491  Primitive::Type type = rem->GetResultType();
3492  switch (type) {
3493    case Primitive::kPrimInt: {
3494        if (second.IsConstant()) {
3495          GenerateDivRemConstantIntegral(rem);
3496        } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3497        Register reg1 = first.AsRegister<Register>();
3498        Register reg2 = second.AsRegister<Register>();
3499        Register temp = locations->GetTemp(0).AsRegister<Register>();
3500
3501        // temp = reg1 / reg2  (integer division)
3502        // dest = reg1 - temp * reg2
3503        __ sdiv(temp, reg1, reg2);
3504        __ mls(out.AsRegister<Register>(), temp, reg2, reg1);
3505      } else {
3506        InvokeRuntimeCallingConvention calling_convention;
3507        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3508        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3509        DCHECK_EQ(R1, out.AsRegister<Register>());
3510
3511        codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
3512        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3513      }
3514      break;
3515    }
3516
3517    case Primitive::kPrimLong: {
3518      codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
3519        CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3520      break;
3521    }
3522
3523    case Primitive::kPrimFloat: {
3524      codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
3525      CheckEntrypointTypes<kQuickFmodf, float, float, float>();
3526      break;
3527    }
3528
3529    case Primitive::kPrimDouble: {
3530      codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
3531      CheckEntrypointTypes<kQuickFmod, double, double, double>();
3532      break;
3533    }
3534
3535    default:
3536      LOG(FATAL) << "Unexpected rem type " << type;
3537  }
3538}
3539
3540void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3541  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3542  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3543}
3544
3545void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3546  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
3547  codegen_->AddSlowPath(slow_path);
3548
3549  LocationSummary* locations = instruction->GetLocations();
3550  Location value = locations->InAt(0);
3551
3552  switch (instruction->GetType()) {
3553    case Primitive::kPrimBoolean:
3554    case Primitive::kPrimByte:
3555    case Primitive::kPrimChar:
3556    case Primitive::kPrimShort:
3557    case Primitive::kPrimInt: {
3558      if (value.IsRegister()) {
3559        __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
3560      } else {
3561        DCHECK(value.IsConstant()) << value;
3562        if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3563          __ b(slow_path->GetEntryLabel());
3564        }
3565      }
3566      break;
3567    }
3568    case Primitive::kPrimLong: {
3569      if (value.IsRegisterPair()) {
3570        __ orrs(IP,
3571                value.AsRegisterPairLow<Register>(),
3572                ShifterOperand(value.AsRegisterPairHigh<Register>()));
3573        __ b(slow_path->GetEntryLabel(), EQ);
3574      } else {
3575        DCHECK(value.IsConstant()) << value;
3576        if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3577          __ b(slow_path->GetEntryLabel());
3578        }
3579      }
3580      break;
3581    default:
3582      LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3583    }
3584  }
3585}
3586
3587void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
3588  Register in = locations->InAt(0).AsRegister<Register>();
3589  Location rhs = locations->InAt(1);
3590  Register out = locations->Out().AsRegister<Register>();
3591
3592  if (rhs.IsConstant()) {
3593    // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
3594    // so map all rotations to a +ve. equivalent in that range.
3595    // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
3596    uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
3597    if (rot) {
3598      // Rotate, mapping left rotations to right equivalents if necessary.
3599      // (e.g. left by 2 bits == right by 30.)
3600      __ Ror(out, in, rot);
3601    } else if (out != in) {
3602      __ Mov(out, in);
3603    }
3604  } else {
3605    __ Ror(out, in, rhs.AsRegister<Register>());
3606  }
3607}
3608
3609// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
3610// rotates by swapping input regs (effectively rotating by the first 32-bits of
3611// a larger rotation) or flipping direction (thus treating larger right/left
3612// rotations as sub-word sized rotations in the other direction) as appropriate.
3613void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) {
3614  Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
3615  Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
3616  Location rhs = locations->InAt(1);
3617  Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
3618  Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
3619
3620  if (rhs.IsConstant()) {
3621    uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
3622    // Map all rotations to +ve. equivalents on the interval [0,63].
3623    rot &= kMaxLongShiftDistance;
3624    // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
3625    // logic below to a simple pair of binary orr.
3626    // (e.g. 34 bits == in_reg swap + 2 bits right.)
3627    if (rot >= kArmBitsPerWord) {
3628      rot -= kArmBitsPerWord;
3629      std::swap(in_reg_hi, in_reg_lo);
3630    }
3631    // Rotate, or mov to out for zero or word size rotations.
3632    if (rot != 0u) {
3633      __ Lsr(out_reg_hi, in_reg_hi, rot);
3634      __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
3635      __ Lsr(out_reg_lo, in_reg_lo, rot);
3636      __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
3637    } else {
3638      __ Mov(out_reg_lo, in_reg_lo);
3639      __ Mov(out_reg_hi, in_reg_hi);
3640    }
3641  } else {
3642    Register shift_right = locations->GetTemp(0).AsRegister<Register>();
3643    Register shift_left = locations->GetTemp(1).AsRegister<Register>();
3644    Label end;
3645    Label shift_by_32_plus_shift_right;
3646
3647    __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
3648    __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
3649    __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
3650    __ b(&shift_by_32_plus_shift_right, CC);
3651
3652    // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
3653    // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
3654    __ Lsl(out_reg_hi, in_reg_hi, shift_left);
3655    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3656    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3657    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3658    __ Lsr(shift_left, in_reg_hi, shift_right);
3659    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
3660    __ b(&end);
3661
3662    __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
3663    // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
3664    // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
3665    __ Lsr(out_reg_hi, in_reg_hi, shift_right);
3666    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3667    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3668    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3669    __ Lsl(shift_right, in_reg_hi, shift_left);
3670    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));
3671
3672    __ Bind(&end);
3673  }
3674}
3675
3676void LocationsBuilderARM::VisitRor(HRor* ror) {
3677  LocationSummary* locations =
3678      new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3679  switch (ror->GetResultType()) {
3680    case Primitive::kPrimInt: {
3681      locations->SetInAt(0, Location::RequiresRegister());
3682      locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
3683      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3684      break;
3685    }
3686    case Primitive::kPrimLong: {
3687      locations->SetInAt(0, Location::RequiresRegister());
3688      if (ror->InputAt(1)->IsConstant()) {
3689        locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
3690      } else {
3691        locations->SetInAt(1, Location::RequiresRegister());
3692        locations->AddTemp(Location::RequiresRegister());
3693        locations->AddTemp(Location::RequiresRegister());
3694      }
3695      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3696      break;
3697    }
3698    default:
3699      LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3700  }
3701}
3702
3703void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
3704  LocationSummary* locations = ror->GetLocations();
3705  Primitive::Type type = ror->GetResultType();
3706  switch (type) {
3707    case Primitive::kPrimInt: {
3708      HandleIntegerRotate(locations);
3709      break;
3710    }
3711    case Primitive::kPrimLong: {
3712      HandleLongRotate(locations);
3713      break;
3714    }
3715    default:
3716      LOG(FATAL) << "Unexpected operation type " << type;
3717      UNREACHABLE();
3718  }
3719}
3720
3721void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
3722  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3723
3724  LocationSummary* locations =
3725      new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3726
3727  switch (op->GetResultType()) {
3728    case Primitive::kPrimInt: {
3729      locations->SetInAt(0, Location::RequiresRegister());
3730      if (op->InputAt(1)->IsConstant()) {
3731        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3732        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3733      } else {
3734        locations->SetInAt(1, Location::RequiresRegister());
3735        // Make the output overlap, as it will be used to hold the masked
3736        // second input.
3737        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3738      }
3739      break;
3740    }
3741    case Primitive::kPrimLong: {
3742      locations->SetInAt(0, Location::RequiresRegister());
3743      if (op->InputAt(1)->IsConstant()) {
3744        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3745        // For simplicity, use kOutputOverlap even though we only require that low registers
3746        // don't clash with high registers which the register allocator currently guarantees.
3747        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3748      } else {
3749        locations->SetInAt(1, Location::RequiresRegister());
3750        locations->AddTemp(Location::RequiresRegister());
3751        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3752      }
3753      break;
3754    }
3755    default:
3756      LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
3757  }
3758}
3759
3760void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
3761  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3762
3763  LocationSummary* locations = op->GetLocations();
3764  Location out = locations->Out();
3765  Location first = locations->InAt(0);
3766  Location second = locations->InAt(1);
3767
3768  Primitive::Type type = op->GetResultType();
3769  switch (type) {
3770    case Primitive::kPrimInt: {
3771      Register out_reg = out.AsRegister<Register>();
3772      Register first_reg = first.AsRegister<Register>();
3773      if (second.IsRegister()) {
3774        Register second_reg = second.AsRegister<Register>();
3775        // ARM doesn't mask the shift count so we need to do it ourselves.
3776        __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
3777        if (op->IsShl()) {
3778          __ Lsl(out_reg, first_reg, out_reg);
3779        } else if (op->IsShr()) {
3780          __ Asr(out_reg, first_reg, out_reg);
3781        } else {
3782          __ Lsr(out_reg, first_reg, out_reg);
3783        }
3784      } else {
3785        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3786        uint32_t shift_value = cst & kMaxIntShiftDistance;
3787        if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
3788          __ Mov(out_reg, first_reg);
3789        } else if (op->IsShl()) {
3790          __ Lsl(out_reg, first_reg, shift_value);
3791        } else if (op->IsShr()) {
3792          __ Asr(out_reg, first_reg, shift_value);
3793        } else {
3794          __ Lsr(out_reg, first_reg, shift_value);
3795        }
3796      }
3797      break;
3798    }
3799    case Primitive::kPrimLong: {
3800      Register o_h = out.AsRegisterPairHigh<Register>();
3801      Register o_l = out.AsRegisterPairLow<Register>();
3802
3803      Register high = first.AsRegisterPairHigh<Register>();
3804      Register low = first.AsRegisterPairLow<Register>();
3805
3806      if (second.IsRegister()) {
3807        Register temp = locations->GetTemp(0).AsRegister<Register>();
3808
3809        Register second_reg = second.AsRegister<Register>();
3810
3811        if (op->IsShl()) {
3812          __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
3813          // Shift the high part
3814          __ Lsl(o_h, high, o_l);
3815          // Shift the low part and `or` what overflew on the high part
3816          __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
3817          __ Lsr(temp, low, temp);
3818          __ orr(o_h, o_h, ShifterOperand(temp));
3819          // If the shift is > 32 bits, override the high part
3820          __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
3821          __ it(PL);
3822          __ Lsl(o_h, low, temp, PL);
3823          // Shift the low part
3824          __ Lsl(o_l, low, o_l);
3825        } else if (op->IsShr()) {
3826          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3827          // Shift the low part
3828          __ Lsr(o_l, low, o_h);
3829          // Shift the high part and `or` what underflew on the low part
3830          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3831          __ Lsl(temp, high, temp);
3832          __ orr(o_l, o_l, ShifterOperand(temp));
3833          // If the shift is > 32 bits, override the low part
3834          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3835          __ it(PL);
3836          __ Asr(o_l, high, temp, PL);
3837          // Shift the high part
3838          __ Asr(o_h, high, o_h);
3839        } else {
3840          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3841          // same as Shr except we use `Lsr`s and not `Asr`s
3842          __ Lsr(o_l, low, o_h);
3843          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3844          __ Lsl(temp, high, temp);
3845          __ orr(o_l, o_l, ShifterOperand(temp));
3846          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3847          __ it(PL);
3848          __ Lsr(o_l, high, temp, PL);
3849          __ Lsr(o_h, high, o_h);
3850        }
3851      } else {
3852        // Register allocator doesn't create partial overlap.
3853        DCHECK_NE(o_l, high);
3854        DCHECK_NE(o_h, low);
3855        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3856        uint32_t shift_value = cst & kMaxLongShiftDistance;
3857        if (shift_value > 32) {
3858          if (op->IsShl()) {
3859            __ Lsl(o_h, low, shift_value - 32);
3860            __ LoadImmediate(o_l, 0);
3861          } else if (op->IsShr()) {
3862            __ Asr(o_l, high, shift_value - 32);
3863            __ Asr(o_h, high, 31);
3864          } else {
3865            __ Lsr(o_l, high, shift_value - 32);
3866            __ LoadImmediate(o_h, 0);
3867          }
3868        } else if (shift_value == 32) {
3869          if (op->IsShl()) {
3870            __ mov(o_h, ShifterOperand(low));
3871            __ LoadImmediate(o_l, 0);
3872          } else if (op->IsShr()) {
3873            __ mov(o_l, ShifterOperand(high));
3874            __ Asr(o_h, high, 31);
3875          } else {
3876            __ mov(o_l, ShifterOperand(high));
3877            __ LoadImmediate(o_h, 0);
3878          }
3879        } else if (shift_value == 1) {
3880          if (op->IsShl()) {
3881            __ Lsls(o_l, low, 1);
3882            __ adc(o_h, high, ShifterOperand(high));
3883          } else if (op->IsShr()) {
3884            __ Asrs(o_h, high, 1);
3885            __ Rrx(o_l, low);
3886          } else {
3887            __ Lsrs(o_h, high, 1);
3888            __ Rrx(o_l, low);
3889          }
3890        } else {
3891          DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
3892          if (op->IsShl()) {
3893            __ Lsl(o_h, high, shift_value);
3894            __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
3895            __ Lsl(o_l, low, shift_value);
3896          } else if (op->IsShr()) {
3897            __ Lsr(o_l, low, shift_value);
3898            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3899            __ Asr(o_h, high, shift_value);
3900          } else {
3901            __ Lsr(o_l, low, shift_value);
3902            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3903            __ Lsr(o_h, high, shift_value);
3904          }
3905        }
3906      }
3907      break;
3908    }
3909    default:
3910      LOG(FATAL) << "Unexpected operation type " << type;
3911      UNREACHABLE();
3912  }
3913}
3914
3915void LocationsBuilderARM::VisitShl(HShl* shl) {
3916  HandleShift(shl);
3917}
3918
3919void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
3920  HandleShift(shl);
3921}
3922
3923void LocationsBuilderARM::VisitShr(HShr* shr) {
3924  HandleShift(shr);
3925}
3926
3927void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
3928  HandleShift(shr);
3929}
3930
3931void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
3932  HandleShift(ushr);
3933}
3934
3935void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
3936  HandleShift(ushr);
3937}
3938
3939void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
3940  LocationSummary* locations =
3941      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3942  if (instruction->IsStringAlloc()) {
3943    locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3944  } else {
3945    InvokeRuntimeCallingConvention calling_convention;
3946    locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3947  }
3948  locations->SetOut(Location::RegisterLocation(R0));
3949}
3950
3951void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
3952  // Note: if heap poisoning is enabled, the entry point takes cares
3953  // of poisoning the reference.
3954  if (instruction->IsStringAlloc()) {
3955    // String is allocated through StringFactory. Call NewEmptyString entry point.
3956    Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
3957    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
3958    __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
3959    __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
3960    __ blx(LR);
3961    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
3962  } else {
3963    codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3964    CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3965  }
3966}
3967
3968void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
3969  LocationSummary* locations =
3970      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3971  InvokeRuntimeCallingConvention calling_convention;
3972  locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3973  locations->SetOut(Location::RegisterLocation(R0));
3974  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3975  locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
3976}
3977
3978void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
3979  InvokeRuntimeCallingConvention calling_convention;
3980  __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex().index_);
3981  // Note: if heap poisoning is enabled, the entry point takes cares
3982  // of poisoning the reference.
3983  codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3984  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
3985}
3986
3987void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
3988  LocationSummary* locations =
3989      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3990  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
3991  if (location.IsStackSlot()) {
3992    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3993  } else if (location.IsDoubleStackSlot()) {
3994    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3995  }
3996  locations->SetOut(location);
3997}
3998
3999void InstructionCodeGeneratorARM::VisitParameterValue(
4000    HParameterValue* instruction ATTRIBUTE_UNUSED) {
4001  // Nothing to do, the parameter is already at its location.
4002}
4003
4004void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
4005  LocationSummary* locations =
4006      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4007  locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
4008}
4009
4010void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4011  // Nothing to do, the method is already at its location.
4012}
4013
4014void LocationsBuilderARM::VisitNot(HNot* not_) {
4015  LocationSummary* locations =
4016      new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4017  locations->SetInAt(0, Location::RequiresRegister());
4018  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4019}
4020
4021void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
4022  LocationSummary* locations = not_->GetLocations();
4023  Location out = locations->Out();
4024  Location in = locations->InAt(0);
4025  switch (not_->GetResultType()) {
4026    case Primitive::kPrimInt:
4027      __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
4028      break;
4029
4030    case Primitive::kPrimLong:
4031      __ mvn(out.AsRegisterPairLow<Register>(),
4032             ShifterOperand(in.AsRegisterPairLow<Register>()));
4033      __ mvn(out.AsRegisterPairHigh<Register>(),
4034             ShifterOperand(in.AsRegisterPairHigh<Register>()));
4035      break;
4036
4037    default:
4038      LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4039  }
4040}
4041
4042void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
4043  LocationSummary* locations =
4044      new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4045  locations->SetInAt(0, Location::RequiresRegister());
4046  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4047}
4048
4049void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
4050  LocationSummary* locations = bool_not->GetLocations();
4051  Location out = locations->Out();
4052  Location in = locations->InAt(0);
4053  __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
4054}
4055
4056void LocationsBuilderARM::VisitCompare(HCompare* compare) {
4057  LocationSummary* locations =
4058      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4059  switch (compare->InputAt(0)->GetType()) {
4060    case Primitive::kPrimBoolean:
4061    case Primitive::kPrimByte:
4062    case Primitive::kPrimShort:
4063    case Primitive::kPrimChar:
4064    case Primitive::kPrimInt:
4065    case Primitive::kPrimLong: {
4066      locations->SetInAt(0, Location::RequiresRegister());
4067      locations->SetInAt(1, Location::RequiresRegister());
4068      // Output overlaps because it is written before doing the low comparison.
4069      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4070      break;
4071    }
4072    case Primitive::kPrimFloat:
4073    case Primitive::kPrimDouble: {
4074      locations->SetInAt(0, Location::RequiresFpuRegister());
4075      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
4076      locations->SetOut(Location::RequiresRegister());
4077      break;
4078    }
4079    default:
4080      LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4081  }
4082}
4083
4084void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
4085  LocationSummary* locations = compare->GetLocations();
4086  Register out = locations->Out().AsRegister<Register>();
4087  Location left = locations->InAt(0);
4088  Location right = locations->InAt(1);
4089
4090  Label less, greater, done;
4091  Primitive::Type type = compare->InputAt(0)->GetType();
4092  Condition less_cond;
4093  switch (type) {
4094    case Primitive::kPrimBoolean:
4095    case Primitive::kPrimByte:
4096    case Primitive::kPrimShort:
4097    case Primitive::kPrimChar:
4098    case Primitive::kPrimInt: {
4099      __ LoadImmediate(out, 0);
4100      __ cmp(left.AsRegister<Register>(),
4101             ShifterOperand(right.AsRegister<Register>()));  // Signed compare.
4102      less_cond = LT;
4103      break;
4104    }
4105    case Primitive::kPrimLong: {
4106      __ cmp(left.AsRegisterPairHigh<Register>(),
4107             ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare.
4108      __ b(&less, LT);
4109      __ b(&greater, GT);
4110      // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
4111      __ LoadImmediate(out, 0);
4112      __ cmp(left.AsRegisterPairLow<Register>(),
4113             ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare.
4114      less_cond = LO;
4115      break;
4116    }
4117    case Primitive::kPrimFloat:
4118    case Primitive::kPrimDouble: {
4119      __ LoadImmediate(out, 0);
4120      GenerateVcmp(compare);
4121      __ vmstat();  // transfer FP status register to ARM APSR.
4122      less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
4123      break;
4124    }
4125    default:
4126      LOG(FATAL) << "Unexpected compare type " << type;
4127      UNREACHABLE();
4128  }
4129
4130  __ b(&done, EQ);
4131  __ b(&less, less_cond);
4132
4133  __ Bind(&greater);
4134  __ LoadImmediate(out, 1);
4135  __ b(&done);
4136
4137  __ Bind(&less);
4138  __ LoadImmediate(out, -1);
4139
4140  __ Bind(&done);
4141}
4142
4143void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
4144  LocationSummary* locations =
4145      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4146  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
4147    locations->SetInAt(i, Location::Any());
4148  }
4149  locations->SetOut(Location::Any());
4150}
4151
4152void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4153  LOG(FATAL) << "Unreachable";
4154}
4155
4156void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
4157  // TODO (ported from quick): revisit ARM barrier kinds.
4158  DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
4159  switch (kind) {
4160    case MemBarrierKind::kAnyStore:
4161    case MemBarrierKind::kLoadAny:
4162    case MemBarrierKind::kAnyAny: {
4163      flavor = DmbOptions::ISH;
4164      break;
4165    }
4166    case MemBarrierKind::kStoreStore: {
4167      flavor = DmbOptions::ISHST;
4168      break;
4169    }
4170    default:
4171      LOG(FATAL) << "Unexpected memory barrier " << kind;
4172  }
4173  __ dmb(flavor);
4174}
4175
4176void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
4177                                                         uint32_t offset,
4178                                                         Register out_lo,
4179                                                         Register out_hi) {
4180  if (offset != 0) {
4181    // Ensure `out_lo` is different from `addr`, so that loading
4182    // `offset` into `out_lo` does not clutter `addr`.
4183    DCHECK_NE(out_lo, addr);
4184    __ LoadImmediate(out_lo, offset);
4185    __ add(IP, addr, ShifterOperand(out_lo));
4186    addr = IP;
4187  }
4188  __ ldrexd(out_lo, out_hi, addr);
4189}
4190
4191void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
4192                                                          uint32_t offset,
4193                                                          Register value_lo,
4194                                                          Register value_hi,
4195                                                          Register temp1,
4196                                                          Register temp2,
4197                                                          HInstruction* instruction) {
4198  Label fail;
4199  if (offset != 0) {
4200    __ LoadImmediate(temp1, offset);
4201    __ add(IP, addr, ShifterOperand(temp1));
4202    addr = IP;
4203  }
4204  __ Bind(&fail);
4205  // We need a load followed by store. (The address used in a STREX instruction must
4206  // be the same as the address in the most recently executed LDREX instruction.)
4207  __ ldrexd(temp1, temp2, addr);
4208  codegen_->MaybeRecordImplicitNullCheck(instruction);
4209  __ strexd(temp1, value_lo, value_hi, addr);
4210  __ CompareAndBranchIfNonZero(temp1, &fail);
4211}
4212
4213void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4214  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4215
4216  LocationSummary* locations =
4217      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4218  locations->SetInAt(0, Location::RequiresRegister());
4219
4220  Primitive::Type field_type = field_info.GetFieldType();
4221  if (Primitive::IsFloatingPointType(field_type)) {
4222    locations->SetInAt(1, Location::RequiresFpuRegister());
4223  } else {
4224    locations->SetInAt(1, Location::RequiresRegister());
4225  }
4226
4227  bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
4228  bool generate_volatile = field_info.IsVolatile()
4229      && is_wide
4230      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4231  bool needs_write_barrier =
4232      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4233  // Temporary registers for the write barrier.
4234  // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
4235  if (needs_write_barrier) {
4236    locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
4237    locations->AddTemp(Location::RequiresRegister());
4238  } else if (generate_volatile) {
4239    // ARM encoding have some additional constraints for ldrexd/strexd:
4240    // - registers need to be consecutive
4241    // - the first register should be even but not R14.
4242    // We don't test for ARM yet, and the assertion makes sure that we
4243    // revisit this if we ever enable ARM encoding.
4244    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4245
4246    locations->AddTemp(Location::RequiresRegister());
4247    locations->AddTemp(Location::RequiresRegister());
4248    if (field_type == Primitive::kPrimDouble) {
4249      // For doubles we need two more registers to copy the value.
4250      locations->AddTemp(Location::RegisterLocation(R2));
4251      locations->AddTemp(Location::RegisterLocation(R3));
4252    }
4253  }
4254}
4255
4256void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
4257                                                 const FieldInfo& field_info,
4258                                                 bool value_can_be_null) {
4259  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4260
4261  LocationSummary* locations = instruction->GetLocations();
4262  Register base = locations->InAt(0).AsRegister<Register>();
4263  Location value = locations->InAt(1);
4264
4265  bool is_volatile = field_info.IsVolatile();
4266  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4267  Primitive::Type field_type = field_info.GetFieldType();
4268  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4269  bool needs_write_barrier =
4270      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4271
4272  if (is_volatile) {
4273    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4274  }
4275
4276  switch (field_type) {
4277    case Primitive::kPrimBoolean:
4278    case Primitive::kPrimByte: {
4279      __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
4280      break;
4281    }
4282
4283    case Primitive::kPrimShort:
4284    case Primitive::kPrimChar: {
4285      __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
4286      break;
4287    }
4288
4289    case Primitive::kPrimInt:
4290    case Primitive::kPrimNot: {
4291      if (kPoisonHeapReferences && needs_write_barrier) {
4292        // Note that in the case where `value` is a null reference,
4293        // we do not enter this block, as a null reference does not
4294        // need poisoning.
4295        DCHECK_EQ(field_type, Primitive::kPrimNot);
4296        Register temp = locations->GetTemp(0).AsRegister<Register>();
4297        __ Mov(temp, value.AsRegister<Register>());
4298        __ PoisonHeapReference(temp);
4299        __ StoreToOffset(kStoreWord, temp, base, offset);
4300      } else {
4301        __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
4302      }
4303      break;
4304    }
4305
4306    case Primitive::kPrimLong: {
4307      if (is_volatile && !atomic_ldrd_strd) {
4308        GenerateWideAtomicStore(base, offset,
4309                                value.AsRegisterPairLow<Register>(),
4310                                value.AsRegisterPairHigh<Register>(),
4311                                locations->GetTemp(0).AsRegister<Register>(),
4312                                locations->GetTemp(1).AsRegister<Register>(),
4313                                instruction);
4314      } else {
4315        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
4316        codegen_->MaybeRecordImplicitNullCheck(instruction);
4317      }
4318      break;
4319    }
4320
4321    case Primitive::kPrimFloat: {
4322      __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
4323      break;
4324    }
4325
4326    case Primitive::kPrimDouble: {
4327      DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
4328      if (is_volatile && !atomic_ldrd_strd) {
4329        Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
4330        Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
4331
4332        __ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
4333
4334        GenerateWideAtomicStore(base, offset,
4335                                value_reg_lo,
4336                                value_reg_hi,
4337                                locations->GetTemp(2).AsRegister<Register>(),
4338                                locations->GetTemp(3).AsRegister<Register>(),
4339                                instruction);
4340      } else {
4341        __ StoreDToOffset(value_reg, base, offset);
4342        codegen_->MaybeRecordImplicitNullCheck(instruction);
4343      }
4344      break;
4345    }
4346
4347    case Primitive::kPrimVoid:
4348      LOG(FATAL) << "Unreachable type " << field_type;
4349      UNREACHABLE();
4350  }
4351
4352  // Longs and doubles are handled in the switch.
4353  if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
4354    codegen_->MaybeRecordImplicitNullCheck(instruction);
4355  }
4356
4357  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4358    Register temp = locations->GetTemp(0).AsRegister<Register>();
4359    Register card = locations->GetTemp(1).AsRegister<Register>();
4360    codegen_->MarkGCCard(
4361        temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4362  }
4363
4364  if (is_volatile) {
4365    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4366  }
4367}
4368
4369void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4370  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4371
4372  bool object_field_get_with_read_barrier =
4373      kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
4374  LocationSummary* locations =
4375      new (GetGraph()->GetArena()) LocationSummary(instruction,
4376                                                   object_field_get_with_read_barrier ?
4377                                                       LocationSummary::kCallOnSlowPath :
4378                                                       LocationSummary::kNoCall);
4379  if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4380    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4381  }
4382  locations->SetInAt(0, Location::RequiresRegister());
4383
4384  bool volatile_for_double = field_info.IsVolatile()
4385      && (field_info.GetFieldType() == Primitive::kPrimDouble)
4386      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4387  // The output overlaps in case of volatile long: we don't want the
4388  // code generated by GenerateWideAtomicLoad to overwrite the
4389  // object's location.  Likewise, in the case of an object field get
4390  // with read barriers enabled, we do not want the load to overwrite
4391  // the object's location, as we need it to emit the read barrier.
4392  bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
4393      object_field_get_with_read_barrier;
4394
4395  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4396    locations->SetOut(Location::RequiresFpuRegister());
4397  } else {
4398    locations->SetOut(Location::RequiresRegister(),
4399                      (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
4400  }
4401  if (volatile_for_double) {
4402    // ARM encoding have some additional constraints for ldrexd/strexd:
4403    // - registers need to be consecutive
4404    // - the first register should be even but not R14.
4405    // We don't test for ARM yet, and the assertion makes sure that we
4406    // revisit this if we ever enable ARM encoding.
4407    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4408    locations->AddTemp(Location::RequiresRegister());
4409    locations->AddTemp(Location::RequiresRegister());
4410  } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4411    // We need a temporary register for the read barrier marking slow
4412    // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
4413    locations->AddTemp(Location::RequiresRegister());
4414  }
4415}
4416
4417Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) {
4418  DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat)
4419      << input->GetType();
4420  if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
4421      (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
4422    return Location::ConstantLocation(input->AsConstant());
4423  } else {
4424    return Location::RequiresFpuRegister();
4425  }
4426}
4427
4428Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
4429                                                             Opcode opcode) {
4430  DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
4431  if (constant->IsConstant() &&
4432      CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
4433    return Location::ConstantLocation(constant->AsConstant());
4434  }
4435  return Location::RequiresRegister();
4436}
4437
4438bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
4439                                                       Opcode opcode) {
4440  uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
4441  if (Primitive::Is64BitType(input_cst->GetType())) {
4442    Opcode high_opcode = opcode;
4443    SetCc low_set_cc = kCcDontCare;
4444    switch (opcode) {
4445      case SUB:
4446        // Flip the operation to an ADD.
4447        value = -value;
4448        opcode = ADD;
4449        FALLTHROUGH_INTENDED;
4450      case ADD:
4451        if (Low32Bits(value) == 0u) {
4452          return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
4453        }
4454        high_opcode = ADC;
4455        low_set_cc = kCcSet;
4456        break;
4457      default:
4458        break;
4459    }
4460    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
4461        CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
4462  } else {
4463    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
4464  }
4465}
4466
4467bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value,
4468                                                       Opcode opcode,
4469                                                       SetCc set_cc) {
4470  ShifterOperand so;
4471  ArmAssembler* assembler = codegen_->GetAssembler();
4472  if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) {
4473    return true;
4474  }
4475  Opcode neg_opcode = kNoOperand;
4476  switch (opcode) {
4477    case AND: neg_opcode = BIC; value = ~value; break;
4478    case ORR: neg_opcode = ORN; value = ~value; break;
4479    case ADD: neg_opcode = SUB; value = -value; break;
4480    case ADC: neg_opcode = SBC; value = ~value; break;
4481    case SUB: neg_opcode = ADD; value = -value; break;
4482    case SBC: neg_opcode = ADC; value = ~value; break;
4483    default:
4484      return false;
4485  }
4486  return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, value, set_cc, &so);
4487}
4488
4489void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
4490                                                 const FieldInfo& field_info) {
4491  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4492
4493  LocationSummary* locations = instruction->GetLocations();
4494  Location base_loc = locations->InAt(0);
4495  Register base = base_loc.AsRegister<Register>();
4496  Location out = locations->Out();
4497  bool is_volatile = field_info.IsVolatile();
4498  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4499  Primitive::Type field_type = field_info.GetFieldType();
4500  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4501
4502  switch (field_type) {
4503    case Primitive::kPrimBoolean:
4504      __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
4505      break;
4506
4507    case Primitive::kPrimByte:
4508      __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
4509      break;
4510
4511    case Primitive::kPrimShort:
4512      __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
4513      break;
4514
4515    case Primitive::kPrimChar:
4516      __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
4517      break;
4518
4519    case Primitive::kPrimInt:
4520      __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4521      break;
4522
4523    case Primitive::kPrimNot: {
4524      // /* HeapReference<Object> */ out = *(base + offset)
4525      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4526        Location temp_loc = locations->GetTemp(0);
4527        // Note that a potential implicit null check is handled in this
4528        // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
4529        codegen_->GenerateFieldLoadWithBakerReadBarrier(
4530            instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4531        if (is_volatile) {
4532          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4533        }
4534      } else {
4535        __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4536        codegen_->MaybeRecordImplicitNullCheck(instruction);
4537        if (is_volatile) {
4538          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4539        }
4540        // If read barriers are enabled, emit read barriers other than
4541        // Baker's using a slow path (and also unpoison the loaded
4542        // reference, if heap poisoning is enabled).
4543        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4544      }
4545      break;
4546    }
4547
4548    case Primitive::kPrimLong:
4549      if (is_volatile && !atomic_ldrd_strd) {
4550        GenerateWideAtomicLoad(base, offset,
4551                               out.AsRegisterPairLow<Register>(),
4552                               out.AsRegisterPairHigh<Register>());
4553      } else {
4554        __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
4555      }
4556      break;
4557
4558    case Primitive::kPrimFloat:
4559      __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
4560      break;
4561
4562    case Primitive::kPrimDouble: {
4563      DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
4564      if (is_volatile && !atomic_ldrd_strd) {
4565        Register lo = locations->GetTemp(0).AsRegister<Register>();
4566        Register hi = locations->GetTemp(1).AsRegister<Register>();
4567        GenerateWideAtomicLoad(base, offset, lo, hi);
4568        codegen_->MaybeRecordImplicitNullCheck(instruction);
4569        __ vmovdrr(out_reg, lo, hi);
4570      } else {
4571        __ LoadDFromOffset(out_reg, base, offset);
4572        codegen_->MaybeRecordImplicitNullCheck(instruction);
4573      }
4574      break;
4575    }
4576
4577    case Primitive::kPrimVoid:
4578      LOG(FATAL) << "Unreachable type " << field_type;
4579      UNREACHABLE();
4580  }
4581
4582  if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
4583    // Potential implicit null checks, in the case of reference or
4584    // double fields, are handled in the previous switch statement.
4585  } else {
4586    codegen_->MaybeRecordImplicitNullCheck(instruction);
4587  }
4588
4589  if (is_volatile) {
4590    if (field_type == Primitive::kPrimNot) {
4591      // Memory barriers, in the case of references, are also handled
4592      // in the previous switch statement.
4593    } else {
4594      codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4595    }
4596  }
4597}
4598
4599void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4600  HandleFieldSet(instruction, instruction->GetFieldInfo());
4601}
4602
4603void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4604  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4605}
4606
4607void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4608  HandleFieldGet(instruction, instruction->GetFieldInfo());
4609}
4610
4611void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4612  HandleFieldGet(instruction, instruction->GetFieldInfo());
4613}
4614
4615void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4616  HandleFieldGet(instruction, instruction->GetFieldInfo());
4617}
4618
4619void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4620  HandleFieldGet(instruction, instruction->GetFieldInfo());
4621}
4622
4623void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4624  HandleFieldSet(instruction, instruction->GetFieldInfo());
4625}
4626
4627void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4628  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4629}
4630
4631void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
4632    HUnresolvedInstanceFieldGet* instruction) {
4633  FieldAccessCallingConventionARM calling_convention;
4634  codegen_->CreateUnresolvedFieldLocationSummary(
4635      instruction, instruction->GetFieldType(), calling_convention);
4636}
4637
4638void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
4639    HUnresolvedInstanceFieldGet* instruction) {
4640  FieldAccessCallingConventionARM calling_convention;
4641  codegen_->GenerateUnresolvedFieldAccess(instruction,
4642                                          instruction->GetFieldType(),
4643                                          instruction->GetFieldIndex(),
4644                                          instruction->GetDexPc(),
4645                                          calling_convention);
4646}
4647
4648void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
4649    HUnresolvedInstanceFieldSet* instruction) {
4650  FieldAccessCallingConventionARM calling_convention;
4651  codegen_->CreateUnresolvedFieldLocationSummary(
4652      instruction, instruction->GetFieldType(), calling_convention);
4653}
4654
4655void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
4656    HUnresolvedInstanceFieldSet* instruction) {
4657  FieldAccessCallingConventionARM calling_convention;
4658  codegen_->GenerateUnresolvedFieldAccess(instruction,
4659                                          instruction->GetFieldType(),
4660                                          instruction->GetFieldIndex(),
4661                                          instruction->GetDexPc(),
4662                                          calling_convention);
4663}
4664
4665void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
4666    HUnresolvedStaticFieldGet* instruction) {
4667  FieldAccessCallingConventionARM calling_convention;
4668  codegen_->CreateUnresolvedFieldLocationSummary(
4669      instruction, instruction->GetFieldType(), calling_convention);
4670}
4671
4672void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
4673    HUnresolvedStaticFieldGet* instruction) {
4674  FieldAccessCallingConventionARM calling_convention;
4675  codegen_->GenerateUnresolvedFieldAccess(instruction,
4676                                          instruction->GetFieldType(),
4677                                          instruction->GetFieldIndex(),
4678                                          instruction->GetDexPc(),
4679                                          calling_convention);
4680}
4681
4682void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
4683    HUnresolvedStaticFieldSet* instruction) {
4684  FieldAccessCallingConventionARM calling_convention;
4685  codegen_->CreateUnresolvedFieldLocationSummary(
4686      instruction, instruction->GetFieldType(), calling_convention);
4687}
4688
4689void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
4690    HUnresolvedStaticFieldSet* instruction) {
4691  FieldAccessCallingConventionARM calling_convention;
4692  codegen_->GenerateUnresolvedFieldAccess(instruction,
4693                                          instruction->GetFieldType(),
4694                                          instruction->GetFieldIndex(),
4695                                          instruction->GetDexPc(),
4696                                          calling_convention);
4697}
4698
4699void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
4700  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4701  locations->SetInAt(0, Location::RequiresRegister());
4702}
4703
4704void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
4705  if (CanMoveNullCheckToUser(instruction)) {
4706    return;
4707  }
4708  Location obj = instruction->GetLocations()->InAt(0);
4709
4710  __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
4711  RecordPcInfo(instruction, instruction->GetDexPc());
4712}
4713
4714void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
4715  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
4716  AddSlowPath(slow_path);
4717
4718  LocationSummary* locations = instruction->GetLocations();
4719  Location obj = locations->InAt(0);
4720
4721  __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
4722}
4723
4724void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
4725  codegen_->GenerateNullCheck(instruction);
4726}
4727
4728static LoadOperandType GetLoadOperandType(Primitive::Type type) {
4729  switch (type) {
4730    case Primitive::kPrimNot:
4731      return kLoadWord;
4732    case Primitive::kPrimBoolean:
4733      return kLoadUnsignedByte;
4734    case Primitive::kPrimByte:
4735      return kLoadSignedByte;
4736    case Primitive::kPrimChar:
4737      return kLoadUnsignedHalfword;
4738    case Primitive::kPrimShort:
4739      return kLoadSignedHalfword;
4740    case Primitive::kPrimInt:
4741      return kLoadWord;
4742    case Primitive::kPrimLong:
4743      return kLoadWordPair;
4744    case Primitive::kPrimFloat:
4745      return kLoadSWord;
4746    case Primitive::kPrimDouble:
4747      return kLoadDWord;
4748    default:
4749      LOG(FATAL) << "Unreachable type " << type;
4750      UNREACHABLE();
4751  }
4752}
4753
4754static StoreOperandType GetStoreOperandType(Primitive::Type type) {
4755  switch (type) {
4756    case Primitive::kPrimNot:
4757      return kStoreWord;
4758    case Primitive::kPrimBoolean:
4759    case Primitive::kPrimByte:
4760      return kStoreByte;
4761    case Primitive::kPrimChar:
4762    case Primitive::kPrimShort:
4763      return kStoreHalfword;
4764    case Primitive::kPrimInt:
4765      return kStoreWord;
4766    case Primitive::kPrimLong:
4767      return kStoreWordPair;
4768    case Primitive::kPrimFloat:
4769      return kStoreSWord;
4770    case Primitive::kPrimDouble:
4771      return kStoreDWord;
4772    default:
4773      LOG(FATAL) << "Unreachable type " << type;
4774      UNREACHABLE();
4775  }
4776}
4777
4778void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type,
4779                                                Location out_loc,
4780                                                Register base,
4781                                                Register reg_offset,
4782                                                Condition cond) {
4783  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4784  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4785
4786  switch (type) {
4787    case Primitive::kPrimByte:
4788      __ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond);
4789      break;
4790    case Primitive::kPrimBoolean:
4791      __ ldrb(out_loc.AsRegister<Register>(), mem_address, cond);
4792      break;
4793    case Primitive::kPrimShort:
4794      __ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond);
4795      break;
4796    case Primitive::kPrimChar:
4797      __ ldrh(out_loc.AsRegister<Register>(), mem_address, cond);
4798      break;
4799    case Primitive::kPrimNot:
4800    case Primitive::kPrimInt:
4801      __ ldr(out_loc.AsRegister<Register>(), mem_address, cond);
4802      break;
4803    // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
4804    case Primitive::kPrimLong:
4805    case Primitive::kPrimFloat:
4806    case Primitive::kPrimDouble:
4807    default:
4808      LOG(FATAL) << "Unreachable type " << type;
4809      UNREACHABLE();
4810  }
4811}
4812
4813void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type,
4814                                               Location loc,
4815                                               Register base,
4816                                               Register reg_offset,
4817                                               Condition cond) {
4818  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4819  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4820
4821  switch (type) {
4822    case Primitive::kPrimByte:
4823    case Primitive::kPrimBoolean:
4824      __ strb(loc.AsRegister<Register>(), mem_address, cond);
4825      break;
4826    case Primitive::kPrimShort:
4827    case Primitive::kPrimChar:
4828      __ strh(loc.AsRegister<Register>(), mem_address, cond);
4829      break;
4830    case Primitive::kPrimNot:
4831    case Primitive::kPrimInt:
4832      __ str(loc.AsRegister<Register>(), mem_address, cond);
4833      break;
4834    // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
4835    case Primitive::kPrimLong:
4836    case Primitive::kPrimFloat:
4837    case Primitive::kPrimDouble:
4838    default:
4839      LOG(FATAL) << "Unreachable type " << type;
4840      UNREACHABLE();
4841  }
4842}
4843
4844void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
4845  bool object_array_get_with_read_barrier =
4846      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4847  LocationSummary* locations =
4848      new (GetGraph()->GetArena()) LocationSummary(instruction,
4849                                                   object_array_get_with_read_barrier ?
4850                                                       LocationSummary::kCallOnSlowPath :
4851                                                       LocationSummary::kNoCall);
4852  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
4853    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4854  }
4855  locations->SetInAt(0, Location::RequiresRegister());
4856  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4857  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4858    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4859  } else {
4860    // The output overlaps in the case of an object array get with
4861    // read barriers enabled: we do not want the move to overwrite the
4862    // array's location, as we need it to emit the read barrier.
4863    locations->SetOut(
4864        Location::RequiresRegister(),
4865        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
4866  }
4867  // We need a temporary register for the read barrier marking slow
4868  // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
4869  // Also need for String compression feature.
4870  if ((object_array_get_with_read_barrier && kUseBakerReadBarrier)
4871      || (mirror::kUseStringCompression && instruction->IsStringCharAt())) {
4872    locations->AddTemp(Location::RequiresRegister());
4873  }
4874}
4875
4876void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
4877  LocationSummary* locations = instruction->GetLocations();
4878  Location obj_loc = locations->InAt(0);
4879  Register obj = obj_loc.AsRegister<Register>();
4880  Location index = locations->InAt(1);
4881  Location out_loc = locations->Out();
4882  uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
4883  Primitive::Type type = instruction->GetType();
4884  const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
4885                                        instruction->IsStringCharAt();
4886  HInstruction* array_instr = instruction->GetArray();
4887  bool has_intermediate_address = array_instr->IsIntermediateAddress();
4888
4889  switch (type) {
4890    case Primitive::kPrimBoolean:
4891    case Primitive::kPrimByte:
4892    case Primitive::kPrimShort:
4893    case Primitive::kPrimChar:
4894    case Primitive::kPrimInt: {
4895      Register length;
4896      if (maybe_compressed_char_at) {
4897        length = locations->GetTemp(0).AsRegister<Register>();
4898        uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
4899        __ LoadFromOffset(kLoadWord, length, obj, count_offset);
4900        codegen_->MaybeRecordImplicitNullCheck(instruction);
4901      }
4902      if (index.IsConstant()) {
4903        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
4904        if (maybe_compressed_char_at) {
4905          Label uncompressed_load, done;
4906          __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
4907          static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
4908                        "Expecting 0=compressed, 1=uncompressed");
4909          __ b(&uncompressed_load, CS);
4910          __ LoadFromOffset(kLoadUnsignedByte,
4911                            out_loc.AsRegister<Register>(),
4912                            obj,
4913                            data_offset + const_index);
4914          __ b(&done);
4915          __ Bind(&uncompressed_load);
4916          __ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar),
4917                            out_loc.AsRegister<Register>(),
4918                            obj,
4919                            data_offset + (const_index << 1));
4920          __ Bind(&done);
4921        } else {
4922          uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
4923
4924          LoadOperandType load_type = GetLoadOperandType(type);
4925          __ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset);
4926        }
4927      } else {
4928        Register temp = IP;
4929
4930        if (has_intermediate_address) {
4931          // We do not need to compute the intermediate address from the array: the
4932          // input instruction has done it already. See the comment in
4933          // `TryExtractArrayAccessAddress()`.
4934          if (kIsDebugBuild) {
4935            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4936            DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
4937          }
4938          temp = obj;
4939        } else {
4940          __ add(temp, obj, ShifterOperand(data_offset));
4941        }
4942        if (maybe_compressed_char_at) {
4943          Label uncompressed_load, done;
4944          __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
4945          static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
4946                        "Expecting 0=compressed, 1=uncompressed");
4947          __ b(&uncompressed_load, CS);
4948          __ ldrb(out_loc.AsRegister<Register>(),
4949                  Address(temp, index.AsRegister<Register>(), Shift::LSL, 0));
4950          __ b(&done);
4951          __ Bind(&uncompressed_load);
4952          __ ldrh(out_loc.AsRegister<Register>(),
4953                  Address(temp, index.AsRegister<Register>(), Shift::LSL, 1));
4954          __ Bind(&done);
4955        } else {
4956          codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
4957        }
4958      }
4959      break;
4960    }
4961
4962    case Primitive::kPrimNot: {
4963      // The read barrier instrumentation of object ArrayGet
4964      // instructions does not support the HIntermediateAddress
4965      // instruction.
4966      DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
4967
4968      static_assert(
4969          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4970          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4971      // /* HeapReference<Object> */ out =
4972      //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4973      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4974        Location temp = locations->GetTemp(0);
4975        // Note that a potential implicit null check is handled in this
4976        // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
4977        codegen_->GenerateArrayLoadWithBakerReadBarrier(
4978            instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
4979      } else {
4980        Register out = out_loc.AsRegister<Register>();
4981        if (index.IsConstant()) {
4982          size_t offset =
4983              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4984          __ LoadFromOffset(kLoadWord, out, obj, offset);
4985          codegen_->MaybeRecordImplicitNullCheck(instruction);
4986          // If read barriers are enabled, emit read barriers other than
4987          // Baker's using a slow path (and also unpoison the loaded
4988          // reference, if heap poisoning is enabled).
4989          codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
4990        } else {
4991          Register temp = IP;
4992
4993          if (has_intermediate_address) {
4994            // We do not need to compute the intermediate address from the array: the
4995            // input instruction has done it already. See the comment in
4996            // `TryExtractArrayAccessAddress()`.
4997            if (kIsDebugBuild) {
4998              HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4999              DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
5000            }
5001            temp = obj;
5002          } else {
5003            __ add(temp, obj, ShifterOperand(data_offset));
5004          }
5005          codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
5006
5007          codegen_->MaybeRecordImplicitNullCheck(instruction);
5008          // If read barriers are enabled, emit read barriers other than
5009          // Baker's using a slow path (and also unpoison the loaded
5010          // reference, if heap poisoning is enabled).
5011          codegen_->MaybeGenerateReadBarrierSlow(
5012              instruction, out_loc, out_loc, obj_loc, data_offset, index);
5013        }
5014      }
5015      break;
5016    }
5017
5018    case Primitive::kPrimLong: {
5019      if (index.IsConstant()) {
5020        size_t offset =
5021            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5022        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
5023      } else {
5024        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5025        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
5026      }
5027      break;
5028    }
5029
5030    case Primitive::kPrimFloat: {
5031      SRegister out = out_loc.AsFpuRegister<SRegister>();
5032      if (index.IsConstant()) {
5033        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5034        __ LoadSFromOffset(out, obj, offset);
5035      } else {
5036        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
5037        __ LoadSFromOffset(out, IP, data_offset);
5038      }
5039      break;
5040    }
5041
5042    case Primitive::kPrimDouble: {
5043      SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
5044      if (index.IsConstant()) {
5045        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5046        __ LoadDFromOffset(FromLowSToD(out), obj, offset);
5047      } else {
5048        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5049        __ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
5050      }
5051      break;
5052    }
5053
5054    case Primitive::kPrimVoid:
5055      LOG(FATAL) << "Unreachable type " << type;
5056      UNREACHABLE();
5057  }
5058
5059  if (type == Primitive::kPrimNot) {
5060    // Potential implicit null checks, in the case of reference
5061    // arrays, are handled in the previous switch statement.
5062  } else if (!maybe_compressed_char_at) {
5063    codegen_->MaybeRecordImplicitNullCheck(instruction);
5064  }
5065}
5066
5067void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
5068  Primitive::Type value_type = instruction->GetComponentType();
5069
5070  bool needs_write_barrier =
5071      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5072  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5073
5074  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5075      instruction,
5076      may_need_runtime_call_for_type_check ?
5077          LocationSummary::kCallOnSlowPath :
5078          LocationSummary::kNoCall);
5079
5080  locations->SetInAt(0, Location::RequiresRegister());
5081  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5082  if (Primitive::IsFloatingPointType(value_type)) {
5083    locations->SetInAt(2, Location::RequiresFpuRegister());
5084  } else {
5085    locations->SetInAt(2, Location::RequiresRegister());
5086  }
5087  if (needs_write_barrier) {
5088    // Temporary registers for the write barrier.
5089    locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
5090    locations->AddTemp(Location::RequiresRegister());
5091  }
5092}
5093
5094void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
5095  LocationSummary* locations = instruction->GetLocations();
5096  Location array_loc = locations->InAt(0);
5097  Register array = array_loc.AsRegister<Register>();
5098  Location index = locations->InAt(1);
5099  Primitive::Type value_type = instruction->GetComponentType();
5100  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5101  bool needs_write_barrier =
5102      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5103  uint32_t data_offset =
5104      mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
5105  Location value_loc = locations->InAt(2);
5106  HInstruction* array_instr = instruction->GetArray();
5107  bool has_intermediate_address = array_instr->IsIntermediateAddress();
5108
5109  switch (value_type) {
5110    case Primitive::kPrimBoolean:
5111    case Primitive::kPrimByte:
5112    case Primitive::kPrimShort:
5113    case Primitive::kPrimChar:
5114    case Primitive::kPrimInt: {
5115      if (index.IsConstant()) {
5116        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
5117        uint32_t full_offset =
5118            data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
5119        StoreOperandType store_type = GetStoreOperandType(value_type);
5120        __ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset);
5121      } else {
5122        Register temp = IP;
5123
5124        if (has_intermediate_address) {
5125          // We do not need to compute the intermediate address from the array: the
5126          // input instruction has done it already. See the comment in
5127          // `TryExtractArrayAccessAddress()`.
5128          if (kIsDebugBuild) {
5129            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
5130            DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset);
5131          }
5132          temp = array;
5133        } else {
5134          __ add(temp, array, ShifterOperand(data_offset));
5135        }
5136        codegen_->StoreToShiftedRegOffset(value_type,
5137                                          value_loc,
5138                                          temp,
5139                                          index.AsRegister<Register>());
5140      }
5141      break;
5142    }
5143
5144    case Primitive::kPrimNot: {
5145      Register value = value_loc.AsRegister<Register>();
5146      // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
5147      // See the comment in instruction_simplifier_shared.cc.
5148      DCHECK(!has_intermediate_address);
5149
5150      if (instruction->InputAt(2)->IsNullConstant()) {
5151        // Just setting null.
5152        if (index.IsConstant()) {
5153          size_t offset =
5154              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5155          __ StoreToOffset(kStoreWord, value, array, offset);
5156        } else {
5157          DCHECK(index.IsRegister()) << index;
5158          __ add(IP, array, ShifterOperand(data_offset));
5159          codegen_->StoreToShiftedRegOffset(value_type,
5160                                            value_loc,
5161                                            IP,
5162                                            index.AsRegister<Register>());
5163        }
5164        codegen_->MaybeRecordImplicitNullCheck(instruction);
5165        DCHECK(!needs_write_barrier);
5166        DCHECK(!may_need_runtime_call_for_type_check);
5167        break;
5168      }
5169
5170      DCHECK(needs_write_barrier);
5171      Location temp1_loc = locations->GetTemp(0);
5172      Register temp1 = temp1_loc.AsRegister<Register>();
5173      Location temp2_loc = locations->GetTemp(1);
5174      Register temp2 = temp2_loc.AsRegister<Register>();
5175      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5176      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5177      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5178      Label done;
5179      SlowPathCodeARM* slow_path = nullptr;
5180
5181      if (may_need_runtime_call_for_type_check) {
5182        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
5183        codegen_->AddSlowPath(slow_path);
5184        if (instruction->GetValueCanBeNull()) {
5185          Label non_zero;
5186          __ CompareAndBranchIfNonZero(value, &non_zero);
5187          if (index.IsConstant()) {
5188            size_t offset =
5189               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5190            __ StoreToOffset(kStoreWord, value, array, offset);
5191          } else {
5192            DCHECK(index.IsRegister()) << index;
5193            __ add(IP, array, ShifterOperand(data_offset));
5194            codegen_->StoreToShiftedRegOffset(value_type,
5195                                              value_loc,
5196                                              IP,
5197                                              index.AsRegister<Register>());
5198          }
5199          codegen_->MaybeRecordImplicitNullCheck(instruction);
5200          __ b(&done);
5201          __ Bind(&non_zero);
5202        }
5203
5204        // Note that when read barriers are enabled, the type checks
5205        // are performed without read barriers.  This is fine, even in
5206        // the case where a class object is in the from-space after
5207        // the flip, as a comparison involving such a type would not
5208        // produce a false positive; it may of course produce a false
5209        // negative, in which case we would take the ArraySet slow
5210        // path.
5211
5212        // /* HeapReference<Class> */ temp1 = array->klass_
5213        __ LoadFromOffset(kLoadWord, temp1, array, class_offset);
5214        codegen_->MaybeRecordImplicitNullCheck(instruction);
5215        __ MaybeUnpoisonHeapReference(temp1);
5216
5217        // /* HeapReference<Class> */ temp1 = temp1->component_type_
5218        __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
5219        // /* HeapReference<Class> */ temp2 = value->klass_
5220        __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
5221        // If heap poisoning is enabled, no need to unpoison `temp1`
5222        // nor `temp2`, as we are comparing two poisoned references.
5223        __ cmp(temp1, ShifterOperand(temp2));
5224
5225        if (instruction->StaticTypeOfArrayIsObjectArray()) {
5226          Label do_put;
5227          __ b(&do_put, EQ);
5228          // If heap poisoning is enabled, the `temp1` reference has
5229          // not been unpoisoned yet; unpoison it now.
5230          __ MaybeUnpoisonHeapReference(temp1);
5231
5232          // /* HeapReference<Class> */ temp1 = temp1->super_class_
5233          __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
5234          // If heap poisoning is enabled, no need to unpoison
5235          // `temp1`, as we are comparing against null below.
5236          __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
5237          __ Bind(&do_put);
5238        } else {
5239          __ b(slow_path->GetEntryLabel(), NE);
5240        }
5241      }
5242
5243      Register source = value;
5244      if (kPoisonHeapReferences) {
5245        // Note that in the case where `value` is a null reference,
5246        // we do not enter this block, as a null reference does not
5247        // need poisoning.
5248        DCHECK_EQ(value_type, Primitive::kPrimNot);
5249        __ Mov(temp1, value);
5250        __ PoisonHeapReference(temp1);
5251        source = temp1;
5252      }
5253
5254      if (index.IsConstant()) {
5255        size_t offset =
5256            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5257        __ StoreToOffset(kStoreWord, source, array, offset);
5258      } else {
5259        DCHECK(index.IsRegister()) << index;
5260
5261        __ add(IP, array, ShifterOperand(data_offset));
5262        codegen_->StoreToShiftedRegOffset(value_type,
5263                                          Location::RegisterLocation(source),
5264                                          IP,
5265                                          index.AsRegister<Register>());
5266      }
5267
5268      if (!may_need_runtime_call_for_type_check) {
5269        codegen_->MaybeRecordImplicitNullCheck(instruction);
5270      }
5271
5272      codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
5273
5274      if (done.IsLinked()) {
5275        __ Bind(&done);
5276      }
5277
5278      if (slow_path != nullptr) {
5279        __ Bind(slow_path->GetExitLabel());
5280      }
5281
5282      break;
5283    }
5284
5285    case Primitive::kPrimLong: {
5286      Location value = locations->InAt(2);
5287      if (index.IsConstant()) {
5288        size_t offset =
5289            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5290        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
5291      } else {
5292        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5293        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
5294      }
5295      break;
5296    }
5297
5298    case Primitive::kPrimFloat: {
5299      Location value = locations->InAt(2);
5300      DCHECK(value.IsFpuRegister());
5301      if (index.IsConstant()) {
5302        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5303        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
5304      } else {
5305        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
5306        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
5307      }
5308      break;
5309    }
5310
5311    case Primitive::kPrimDouble: {
5312      Location value = locations->InAt(2);
5313      DCHECK(value.IsFpuRegisterPair());
5314      if (index.IsConstant()) {
5315        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5316        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
5317      } else {
5318        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5319        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
5320      }
5321
5322      break;
5323    }
5324
5325    case Primitive::kPrimVoid:
5326      LOG(FATAL) << "Unreachable type " << value_type;
5327      UNREACHABLE();
5328  }
5329
5330  // Objects are handled in the switch.
5331  if (value_type != Primitive::kPrimNot) {
5332    codegen_->MaybeRecordImplicitNullCheck(instruction);
5333  }
5334}
5335
5336void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
5337  LocationSummary* locations =
5338      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5339  locations->SetInAt(0, Location::RequiresRegister());
5340  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5341}
5342
5343void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
5344  LocationSummary* locations = instruction->GetLocations();
5345  uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
5346  Register obj = locations->InAt(0).AsRegister<Register>();
5347  Register out = locations->Out().AsRegister<Register>();
5348  __ LoadFromOffset(kLoadWord, out, obj, offset);
5349  codegen_->MaybeRecordImplicitNullCheck(instruction);
5350  // Mask out compression flag from String's array length.
5351  if (mirror::kUseStringCompression && instruction->IsStringLength()) {
5352    __ Lsr(out, out, 1u);
5353  }
5354}
5355
5356void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5357  LocationSummary* locations =
5358      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5359
5360  locations->SetInAt(0, Location::RequiresRegister());
5361  locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
5362  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5363}
5364
5365void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5366  LocationSummary* locations = instruction->GetLocations();
5367  Location out = locations->Out();
5368  Location first = locations->InAt(0);
5369  Location second = locations->InAt(1);
5370
5371  if (second.IsRegister()) {
5372    __ add(out.AsRegister<Register>(),
5373           first.AsRegister<Register>(),
5374           ShifterOperand(second.AsRegister<Register>()));
5375  } else {
5376    __ AddConstant(out.AsRegister<Register>(),
5377                   first.AsRegister<Register>(),
5378                   second.GetConstant()->AsIntConstant()->GetValue());
5379  }
5380}
5381
5382void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5383  RegisterSet caller_saves = RegisterSet::Empty();
5384  InvokeRuntimeCallingConvention calling_convention;
5385  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5386  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
5387  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
5388  locations->SetInAt(0, Location::RequiresRegister());
5389  locations->SetInAt(1, Location::RequiresRegister());
5390}
5391
5392void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5393  LocationSummary* locations = instruction->GetLocations();
5394  SlowPathCodeARM* slow_path =
5395      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
5396  codegen_->AddSlowPath(slow_path);
5397
5398  Register index = locations->InAt(0).AsRegister<Register>();
5399  Register length = locations->InAt(1).AsRegister<Register>();
5400
5401  __ cmp(index, ShifterOperand(length));
5402  __ b(slow_path->GetEntryLabel(), HS);
5403}
5404
5405void CodeGeneratorARM::MarkGCCard(Register temp,
5406                                  Register card,
5407                                  Register object,
5408                                  Register value,
5409                                  bool can_be_null) {
5410  Label is_null;
5411  if (can_be_null) {
5412    __ CompareAndBranchIfZero(value, &is_null);
5413  }
5414  __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
5415  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
5416  __ strb(card, Address(card, temp));
5417  if (can_be_null) {
5418    __ Bind(&is_null);
5419  }
5420}
5421
5422void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5423  LOG(FATAL) << "Unreachable";
5424}
5425
5426void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
5427  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5428}
5429
5430void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5431  LocationSummary* locations =
5432      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5433  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5434}
5435
5436void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5437  HBasicBlock* block = instruction->GetBlock();
5438  if (block->GetLoopInformation() != nullptr) {
5439    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5440    // The back edge will generate the suspend check.
5441    return;
5442  }
5443  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5444    // The goto will generate the suspend check.
5445    return;
5446  }
5447  GenerateSuspendCheck(instruction, nullptr);
5448}
5449
5450void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
5451                                                       HBasicBlock* successor) {
5452  SuspendCheckSlowPathARM* slow_path =
5453      down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
5454  if (slow_path == nullptr) {
5455    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
5456    instruction->SetSlowPath(slow_path);
5457    codegen_->AddSlowPath(slow_path);
5458    if (successor != nullptr) {
5459      DCHECK(successor->IsLoopHeader());
5460      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5461    }
5462  } else {
5463    DCHECK_EQ(slow_path->GetSuccessor(), successor);
5464  }
5465
5466  __ LoadFromOffset(
5467      kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
5468  if (successor == nullptr) {
5469    __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
5470    __ Bind(slow_path->GetReturnLabel());
5471  } else {
5472    __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
5473    __ b(slow_path->GetEntryLabel());
5474  }
5475}
5476
5477ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
5478  return codegen_->GetAssembler();
5479}
5480
5481void ParallelMoveResolverARM::EmitMove(size_t index) {
5482  MoveOperands* move = moves_[index];
5483  Location source = move->GetSource();
5484  Location destination = move->GetDestination();
5485
5486  if (source.IsRegister()) {
5487    if (destination.IsRegister()) {
5488      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
5489    } else if (destination.IsFpuRegister()) {
5490      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
5491    } else {
5492      DCHECK(destination.IsStackSlot());
5493      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
5494                       SP, destination.GetStackIndex());
5495    }
5496  } else if (source.IsStackSlot()) {
5497    if (destination.IsRegister()) {
5498      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
5499                        SP, source.GetStackIndex());
5500    } else if (destination.IsFpuRegister()) {
5501      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
5502    } else {
5503      DCHECK(destination.IsStackSlot());
5504      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
5505      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5506    }
5507  } else if (source.IsFpuRegister()) {
5508    if (destination.IsRegister()) {
5509      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
5510    } else if (destination.IsFpuRegister()) {
5511      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
5512    } else {
5513      DCHECK(destination.IsStackSlot());
5514      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
5515    }
5516  } else if (source.IsDoubleStackSlot()) {
5517    if (destination.IsDoubleStackSlot()) {
5518      __ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
5519      __ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
5520    } else if (destination.IsRegisterPair()) {
5521      DCHECK(ExpectedPairLayout(destination));
5522      __ LoadFromOffset(
5523          kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
5524    } else {
5525      DCHECK(destination.IsFpuRegisterPair()) << destination;
5526      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5527                         SP,
5528                         source.GetStackIndex());
5529    }
5530  } else if (source.IsRegisterPair()) {
5531    if (destination.IsRegisterPair()) {
5532      __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
5533      __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
5534    } else if (destination.IsFpuRegisterPair()) {
5535      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5536                 source.AsRegisterPairLow<Register>(),
5537                 source.AsRegisterPairHigh<Register>());
5538    } else {
5539      DCHECK(destination.IsDoubleStackSlot()) << destination;
5540      DCHECK(ExpectedPairLayout(source));
5541      __ StoreToOffset(
5542          kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
5543    }
5544  } else if (source.IsFpuRegisterPair()) {
5545    if (destination.IsRegisterPair()) {
5546      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5547                 destination.AsRegisterPairHigh<Register>(),
5548                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5549    } else if (destination.IsFpuRegisterPair()) {
5550      __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5551               FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5552    } else {
5553      DCHECK(destination.IsDoubleStackSlot()) << destination;
5554      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
5555                        SP,
5556                        destination.GetStackIndex());
5557    }
5558  } else {
5559    DCHECK(source.IsConstant()) << source;
5560    HConstant* constant = source.GetConstant();
5561    if (constant->IsIntConstant() || constant->IsNullConstant()) {
5562      int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5563      if (destination.IsRegister()) {
5564        __ LoadImmediate(destination.AsRegister<Register>(), value);
5565      } else {
5566        DCHECK(destination.IsStackSlot());
5567        __ LoadImmediate(IP, value);
5568        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5569      }
5570    } else if (constant->IsLongConstant()) {
5571      int64_t value = constant->AsLongConstant()->GetValue();
5572      if (destination.IsRegisterPair()) {
5573        __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
5574        __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
5575      } else {
5576        DCHECK(destination.IsDoubleStackSlot()) << destination;
5577        __ LoadImmediate(IP, Low32Bits(value));
5578        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5579        __ LoadImmediate(IP, High32Bits(value));
5580        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5581      }
5582    } else if (constant->IsDoubleConstant()) {
5583      double value = constant->AsDoubleConstant()->GetValue();
5584      if (destination.IsFpuRegisterPair()) {
5585        __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
5586      } else {
5587        DCHECK(destination.IsDoubleStackSlot()) << destination;
5588        uint64_t int_value = bit_cast<uint64_t, double>(value);
5589        __ LoadImmediate(IP, Low32Bits(int_value));
5590        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5591        __ LoadImmediate(IP, High32Bits(int_value));
5592        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5593      }
5594    } else {
5595      DCHECK(constant->IsFloatConstant()) << constant->DebugName();
5596      float value = constant->AsFloatConstant()->GetValue();
5597      if (destination.IsFpuRegister()) {
5598        __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
5599      } else {
5600        DCHECK(destination.IsStackSlot());
5601        __ LoadImmediate(IP, bit_cast<int32_t, float>(value));
5602        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5603      }
5604    }
5605  }
5606}
5607
5608void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
5609  __ Mov(IP, reg);
5610  __ LoadFromOffset(kLoadWord, reg, SP, mem);
5611  __ StoreToOffset(kStoreWord, IP, SP, mem);
5612}
5613
5614void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
5615  ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
5616  int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
5617  __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
5618                    SP, mem1 + stack_offset);
5619  __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
5620  __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
5621                   SP, mem2 + stack_offset);
5622  __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
5623}
5624
5625void ParallelMoveResolverARM::EmitSwap(size_t index) {
5626  MoveOperands* move = moves_[index];
5627  Location source = move->GetSource();
5628  Location destination = move->GetDestination();
5629
5630  if (source.IsRegister() && destination.IsRegister()) {
5631    DCHECK_NE(source.AsRegister<Register>(), IP);
5632    DCHECK_NE(destination.AsRegister<Register>(), IP);
5633    __ Mov(IP, source.AsRegister<Register>());
5634    __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
5635    __ Mov(destination.AsRegister<Register>(), IP);
5636  } else if (source.IsRegister() && destination.IsStackSlot()) {
5637    Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5638  } else if (source.IsStackSlot() && destination.IsRegister()) {
5639    Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5640  } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5641    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5642  } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5643    __ vmovrs(IP, source.AsFpuRegister<SRegister>());
5644    __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
5645    __ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
5646  } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
5647    __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
5648    __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
5649    __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
5650    __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5651               destination.AsRegisterPairHigh<Register>(),
5652               DTMP);
5653  } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
5654    Register low_reg = source.IsRegisterPair()
5655        ? source.AsRegisterPairLow<Register>()
5656        : destination.AsRegisterPairLow<Register>();
5657    int mem = source.IsRegisterPair()
5658        ? destination.GetStackIndex()
5659        : source.GetStackIndex();
5660    DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
5661    __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
5662    __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
5663    __ StoreDToOffset(DTMP, SP, mem);
5664  } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
5665    DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
5666    DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5667    __ vmovd(DTMP, first);
5668    __ vmovd(first, second);
5669    __ vmovd(second, DTMP);
5670  } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
5671    DRegister reg = source.IsFpuRegisterPair()
5672        ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
5673        : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5674    int mem = source.IsFpuRegisterPair()
5675        ? destination.GetStackIndex()
5676        : source.GetStackIndex();
5677    __ vmovd(DTMP, reg);
5678    __ LoadDFromOffset(reg, SP, mem);
5679    __ StoreDToOffset(DTMP, SP, mem);
5680  } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
5681    SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
5682                                           : destination.AsFpuRegister<SRegister>();
5683    int mem = source.IsFpuRegister()
5684        ? destination.GetStackIndex()
5685        : source.GetStackIndex();
5686
5687    __ vmovrs(IP, reg);
5688    __ LoadSFromOffset(reg, SP, mem);
5689    __ StoreToOffset(kStoreWord, IP, SP, mem);
5690  } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
5691    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5692    Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
5693  } else {
5694    LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
5695  }
5696}
5697
5698void ParallelMoveResolverARM::SpillScratch(int reg) {
5699  __ Push(static_cast<Register>(reg));
5700}
5701
5702void ParallelMoveResolverARM::RestoreScratch(int reg) {
5703  __ Pop(static_cast<Register>(reg));
5704}
5705
5706HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind(
5707    HLoadClass::LoadKind desired_class_load_kind) {
5708  switch (desired_class_load_kind) {
5709    case HLoadClass::LoadKind::kReferrersClass:
5710      break;
5711    case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
5712      DCHECK(!GetCompilerOptions().GetCompilePic());
5713      break;
5714    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5715      DCHECK(GetCompilerOptions().GetCompilePic());
5716      break;
5717    case HLoadClass::LoadKind::kBootImageAddress:
5718      break;
5719    case HLoadClass::LoadKind::kJitTableAddress:
5720      break;
5721    case HLoadClass::LoadKind::kDexCachePcRelative:
5722      DCHECK(!Runtime::Current()->UseJitCompilation());
5723      // We disable pc-relative load when there is an irreducible loop, as the optimization
5724      // is incompatible with it.
5725      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
5726      // with irreducible loops.
5727      if (GetGraph()->HasIrreducibleLoops()) {
5728        return HLoadClass::LoadKind::kDexCacheViaMethod;
5729      }
5730      break;
5731    case HLoadClass::LoadKind::kDexCacheViaMethod:
5732      break;
5733  }
5734  return desired_class_load_kind;
5735}
5736
5737void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
5738  if (cls->NeedsAccessCheck()) {
5739    InvokeRuntimeCallingConvention calling_convention;
5740    CodeGenerator::CreateLoadClassLocationSummary(
5741        cls,
5742        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5743        Location::RegisterLocation(R0),
5744        /* code_generator_supports_read_barrier */ true);
5745    return;
5746  }
5747
5748  const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5749  LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5750      ? LocationSummary::kCallOnSlowPath
5751      : LocationSummary::kNoCall;
5752  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
5753  if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5754    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5755  }
5756
5757  HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5758  if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
5759      load_kind == HLoadClass::LoadKind::kDexCacheViaMethod ||
5760      load_kind == HLoadClass::LoadKind::kDexCachePcRelative) {
5761    locations->SetInAt(0, Location::RequiresRegister());
5762  }
5763  locations->SetOut(Location::RequiresRegister());
5764}
5765
5766void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
5767  LocationSummary* locations = cls->GetLocations();
5768  if (cls->NeedsAccessCheck()) {
5769    codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
5770    codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
5771    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5772    return;
5773  }
5774
5775  Location out_loc = locations->Out();
5776  Register out = out_loc.AsRegister<Register>();
5777
5778  const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
5779      ? kWithoutReadBarrier
5780      : kCompilerReadBarrierOption;
5781  bool generate_null_check = false;
5782  switch (cls->GetLoadKind()) {
5783    case HLoadClass::LoadKind::kReferrersClass: {
5784      DCHECK(!cls->CanCallRuntime());
5785      DCHECK(!cls->MustGenerateClinitCheck());
5786      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5787      Register current_method = locations->InAt(0).AsRegister<Register>();
5788      GenerateGcRootFieldLoad(cls,
5789                              out_loc,
5790                              current_method,
5791                              ArtMethod::DeclaringClassOffset().Int32Value(),
5792                              read_barrier_option);
5793      break;
5794    }
5795    case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
5796      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5797      __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
5798                                                                    cls->GetTypeIndex()));
5799      break;
5800    }
5801    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5802      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5803      CodeGeneratorARM::PcRelativePatchInfo* labels =
5804          codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
5805      __ BindTrackedLabel(&labels->movw_label);
5806      __ movw(out, /* placeholder */ 0u);
5807      __ BindTrackedLabel(&labels->movt_label);
5808      __ movt(out, /* placeholder */ 0u);
5809      __ BindTrackedLabel(&labels->add_pc_label);
5810      __ add(out, out, ShifterOperand(PC));
5811      break;
5812    }
5813    case HLoadClass::LoadKind::kBootImageAddress: {
5814      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5815      DCHECK_NE(cls->GetAddress(), 0u);
5816      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5817      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5818      break;
5819    }
5820    case HLoadClass::LoadKind::kJitTableAddress: {
5821      __ LoadLiteral(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5822                                                               cls->GetTypeIndex(),
5823                                                               cls->GetAddress()));
5824      // /* GcRoot<mirror::Class> */ out = *out
5825      GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
5826      break;
5827    }
5828    case HLoadClass::LoadKind::kDexCachePcRelative: {
5829      Register base_reg = locations->InAt(0).AsRegister<Register>();
5830      HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase();
5831      int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset();
5832      // /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset)
5833      GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset, read_barrier_option);
5834      generate_null_check = !cls->IsInDexCache();
5835      break;
5836    }
5837    case HLoadClass::LoadKind::kDexCacheViaMethod: {
5838      // /* GcRoot<mirror::Class>[] */ out =
5839      //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5840      Register current_method = locations->InAt(0).AsRegister<Register>();
5841      __ LoadFromOffset(kLoadWord,
5842                        out,
5843                        current_method,
5844                        ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
5845      // /* GcRoot<mirror::Class> */ out = out[type_index]
5846      size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex().index_);
5847      GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option);
5848      generate_null_check = !cls->IsInDexCache();
5849    }
5850  }
5851
5852  if (generate_null_check || cls->MustGenerateClinitCheck()) {
5853    DCHECK(cls->CanCallRuntime());
5854    SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5855        cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5856    codegen_->AddSlowPath(slow_path);
5857    if (generate_null_check) {
5858      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5859    }
5860    if (cls->MustGenerateClinitCheck()) {
5861      GenerateClassInitializationCheck(slow_path, out);
5862    } else {
5863      __ Bind(slow_path->GetExitLabel());
5864    }
5865  }
5866}
5867
5868void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
5869  LocationSummary* locations =
5870      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5871  locations->SetInAt(0, Location::RequiresRegister());
5872  if (check->HasUses()) {
5873    locations->SetOut(Location::SameAsFirstInput());
5874  }
5875}
5876
5877void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
5878  // We assume the class is not null.
5879  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5880      check->GetLoadClass(), check, check->GetDexPc(), true);
5881  codegen_->AddSlowPath(slow_path);
5882  GenerateClassInitializationCheck(slow_path,
5883                                   check->GetLocations()->InAt(0).AsRegister<Register>());
5884}
5885
5886void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
5887    SlowPathCodeARM* slow_path, Register class_reg) {
5888  __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
5889  __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
5890  __ b(slow_path->GetEntryLabel(), LT);
5891  // Even if the initialized flag is set, we may be in a situation where caches are not synced
5892  // properly. Therefore, we do a memory fence.
5893  __ dmb(ISH);
5894  __ Bind(slow_path->GetExitLabel());
5895}
5896
5897HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
5898    HLoadString::LoadKind desired_string_load_kind) {
5899  switch (desired_string_load_kind) {
5900    case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5901      DCHECK(!GetCompilerOptions().GetCompilePic());
5902      break;
5903    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5904      DCHECK(GetCompilerOptions().GetCompilePic());
5905      break;
5906    case HLoadString::LoadKind::kBootImageAddress:
5907      break;
5908    case HLoadString::LoadKind::kBssEntry:
5909      DCHECK(!Runtime::Current()->UseJitCompilation());
5910      break;
5911    case HLoadString::LoadKind::kJitTableAddress:
5912      DCHECK(Runtime::Current()->UseJitCompilation());
5913      break;
5914    case HLoadString::LoadKind::kDexCacheViaMethod:
5915      break;
5916  }
5917  return desired_string_load_kind;
5918}
5919
5920void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
5921  LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
5922  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
5923  HLoadString::LoadKind load_kind = load->GetLoadKind();
5924  if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
5925    locations->SetOut(Location::RegisterLocation(R0));
5926  } else {
5927    locations->SetOut(Location::RequiresRegister());
5928    if (load_kind == HLoadString::LoadKind::kBssEntry) {
5929      if (!kUseReadBarrier || kUseBakerReadBarrier) {
5930        // Rely on the pResolveString and/or marking to save everything, including temps.
5931        // Note that IP may theoretically be clobbered by saving/restoring the live register
5932        // (only one thanks to the custom calling convention), so we request a different temp.
5933        locations->AddTemp(Location::RequiresRegister());
5934        RegisterSet caller_saves = RegisterSet::Empty();
5935        InvokeRuntimeCallingConvention calling_convention;
5936        caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5937        // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
5938        // that the the kPrimNot result register is the same as the first argument register.
5939        locations->SetCustomSlowPathCallerSaves(caller_saves);
5940      } else {
5941        // For non-Baker read barrier we have a temp-clobbering call.
5942      }
5943    }
5944  }
5945}
5946
5947void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
5948  LocationSummary* locations = load->GetLocations();
5949  Location out_loc = locations->Out();
5950  Register out = out_loc.AsRegister<Register>();
5951  HLoadString::LoadKind load_kind = load->GetLoadKind();
5952
5953  switch (load_kind) {
5954    case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
5955      __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
5956                                                                      load->GetStringIndex()));
5957      return;  // No dex cache slow path.
5958    }
5959    case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5960      DCHECK(codegen_->GetCompilerOptions().IsBootImage());
5961      CodeGeneratorARM::PcRelativePatchInfo* labels =
5962          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex().index_);
5963      __ BindTrackedLabel(&labels->movw_label);
5964      __ movw(out, /* placeholder */ 0u);
5965      __ BindTrackedLabel(&labels->movt_label);
5966      __ movt(out, /* placeholder */ 0u);
5967      __ BindTrackedLabel(&labels->add_pc_label);
5968      __ add(out, out, ShifterOperand(PC));
5969      return;  // No dex cache slow path.
5970    }
5971    case HLoadString::LoadKind::kBootImageAddress: {
5972      DCHECK_NE(load->GetAddress(), 0u);
5973      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
5974      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5975      return;  // No dex cache slow path.
5976    }
5977    case HLoadString::LoadKind::kBssEntry: {
5978      DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5979      Register temp = locations->GetTemp(0).AsRegister<Register>();
5980      CodeGeneratorARM::PcRelativePatchInfo* labels =
5981          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex().index_);
5982      __ BindTrackedLabel(&labels->movw_label);
5983      __ movw(temp, /* placeholder */ 0u);
5984      __ BindTrackedLabel(&labels->movt_label);
5985      __ movt(temp, /* placeholder */ 0u);
5986      __ BindTrackedLabel(&labels->add_pc_label);
5987      __ add(temp, temp, ShifterOperand(PC));
5988      GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption);
5989      SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
5990      codegen_->AddSlowPath(slow_path);
5991      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5992      __ Bind(slow_path->GetExitLabel());
5993      return;
5994    }
5995    case HLoadString::LoadKind::kJitTableAddress: {
5996      __ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5997                                                                load->GetStringIndex()));
5998      // /* GcRoot<mirror::String> */ out = *out
5999      GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
6000      return;
6001    }
6002    default:
6003      break;
6004  }
6005
6006  // TODO: Consider re-adding the compiler code to do string dex cache lookup again.
6007  DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod);
6008  InvokeRuntimeCallingConvention calling_convention;
6009  DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
6010  __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
6011  codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
6012  CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
6013}
6014
6015static int32_t GetExceptionTlsOffset() {
6016  return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
6017}
6018
6019void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
6020  LocationSummary* locations =
6021      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6022  locations->SetOut(Location::RequiresRegister());
6023}
6024
6025void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
6026  Register out = load->GetLocations()->Out().AsRegister<Register>();
6027  __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
6028}
6029
6030void LocationsBuilderARM::VisitClearException(HClearException* clear) {
6031  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6032}
6033
6034void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6035  __ LoadImmediate(IP, 0);
6036  __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
6037}
6038
6039void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
6040  LocationSummary* locations =
6041      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6042  InvokeRuntimeCallingConvention calling_convention;
6043  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6044}
6045
6046void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
6047  codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6048  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6049}
6050
6051// Temp is used for read barrier.
6052static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
6053  if (kEmitCompilerReadBarrier &&
6054       (kUseBakerReadBarrier ||
6055          type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6056          type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6057          type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
6058    return 1;
6059  }
6060  return 0;
6061}
6062
6063// Interface case has 3 temps, one for holding the number of interfaces, one for the current
6064// interface pointer, one for loading the current interface.
6065// The other checks have one temp for loading the object's class.
6066static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
6067  if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
6068    return 3;
6069  }
6070  return 1 + NumberOfInstanceOfTemps(type_check_kind);
6071}
6072
6073void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
6074  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6075  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6076  bool baker_read_barrier_slow_path = false;
6077  switch (type_check_kind) {
6078    case TypeCheckKind::kExactCheck:
6079    case TypeCheckKind::kAbstractClassCheck:
6080    case TypeCheckKind::kClassHierarchyCheck:
6081    case TypeCheckKind::kArrayObjectCheck:
6082      call_kind =
6083          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6084      baker_read_barrier_slow_path = kUseBakerReadBarrier;
6085      break;
6086    case TypeCheckKind::kArrayCheck:
6087    case TypeCheckKind::kUnresolvedCheck:
6088    case TypeCheckKind::kInterfaceCheck:
6089      call_kind = LocationSummary::kCallOnSlowPath;
6090      break;
6091  }
6092
6093  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6094  if (baker_read_barrier_slow_path) {
6095    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6096  }
6097  locations->SetInAt(0, Location::RequiresRegister());
6098  locations->SetInAt(1, Location::RequiresRegister());
6099  // The "out" register is used as a temporary, so it overlaps with the inputs.
6100  // Note that TypeCheckSlowPathARM uses this register too.
6101  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
6102  locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
6103}
6104
6105void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
6106  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6107  LocationSummary* locations = instruction->GetLocations();
6108  Location obj_loc = locations->InAt(0);
6109  Register obj = obj_loc.AsRegister<Register>();
6110  Register cls = locations->InAt(1).AsRegister<Register>();
6111  Location out_loc = locations->Out();
6112  Register out = out_loc.AsRegister<Register>();
6113  const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
6114  DCHECK_LE(num_temps, 1u);
6115  Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
6116  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6117  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6118  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6119  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6120  Label done, zero;
6121  SlowPathCodeARM* slow_path = nullptr;
6122
6123  // Return 0 if `obj` is null.
6124  // avoid null check if we know obj is not null.
6125  if (instruction->MustDoNullCheck()) {
6126    __ CompareAndBranchIfZero(obj, &zero);
6127  }
6128
6129  switch (type_check_kind) {
6130    case TypeCheckKind::kExactCheck: {
6131      // /* HeapReference<Class> */ out = obj->klass_
6132      GenerateReferenceLoadTwoRegisters(instruction,
6133                                        out_loc,
6134                                        obj_loc,
6135                                        class_offset,
6136                                        maybe_temp_loc,
6137                                        kCompilerReadBarrierOption);
6138      __ cmp(out, ShifterOperand(cls));
6139      // Classes must be equal for the instanceof to succeed.
6140      __ b(&zero, NE);
6141      __ LoadImmediate(out, 1);
6142      __ b(&done);
6143      break;
6144    }
6145
6146    case TypeCheckKind::kAbstractClassCheck: {
6147      // /* HeapReference<Class> */ out = obj->klass_
6148      GenerateReferenceLoadTwoRegisters(instruction,
6149                                        out_loc,
6150                                        obj_loc,
6151                                        class_offset,
6152                                        maybe_temp_loc,
6153                                        kCompilerReadBarrierOption);
6154      // If the class is abstract, we eagerly fetch the super class of the
6155      // object to avoid doing a comparison we know will fail.
6156      Label loop;
6157      __ Bind(&loop);
6158      // /* HeapReference<Class> */ out = out->super_class_
6159      GenerateReferenceLoadOneRegister(instruction,
6160                                       out_loc,
6161                                       super_offset,
6162                                       maybe_temp_loc,
6163                                       kCompilerReadBarrierOption);
6164      // If `out` is null, we use it for the result, and jump to `done`.
6165      __ CompareAndBranchIfZero(out, &done);
6166      __ cmp(out, ShifterOperand(cls));
6167      __ b(&loop, NE);
6168      __ LoadImmediate(out, 1);
6169      if (zero.IsLinked()) {
6170        __ b(&done);
6171      }
6172      break;
6173    }
6174
6175    case TypeCheckKind::kClassHierarchyCheck: {
6176      // /* HeapReference<Class> */ out = obj->klass_
6177      GenerateReferenceLoadTwoRegisters(instruction,
6178                                        out_loc,
6179                                        obj_loc,
6180                                        class_offset,
6181                                        maybe_temp_loc,
6182                                        kCompilerReadBarrierOption);
6183      // Walk over the class hierarchy to find a match.
6184      Label loop, success;
6185      __ Bind(&loop);
6186      __ cmp(out, ShifterOperand(cls));
6187      __ b(&success, EQ);
6188      // /* HeapReference<Class> */ out = out->super_class_
6189      GenerateReferenceLoadOneRegister(instruction,
6190                                       out_loc,
6191                                       super_offset,
6192                                       maybe_temp_loc,
6193                                       kCompilerReadBarrierOption);
6194      __ CompareAndBranchIfNonZero(out, &loop);
6195      // If `out` is null, we use it for the result, and jump to `done`.
6196      __ b(&done);
6197      __ Bind(&success);
6198      __ LoadImmediate(out, 1);
6199      if (zero.IsLinked()) {
6200        __ b(&done);
6201      }
6202      break;
6203    }
6204
6205    case TypeCheckKind::kArrayObjectCheck: {
6206      // /* HeapReference<Class> */ out = obj->klass_
6207      GenerateReferenceLoadTwoRegisters(instruction,
6208                                        out_loc,
6209                                        obj_loc,
6210                                        class_offset,
6211                                        maybe_temp_loc,
6212                                        kCompilerReadBarrierOption);
6213      // Do an exact check.
6214      Label exact_check;
6215      __ cmp(out, ShifterOperand(cls));
6216      __ b(&exact_check, EQ);
6217      // Otherwise, we need to check that the object's class is a non-primitive array.
6218      // /* HeapReference<Class> */ out = out->component_type_
6219      GenerateReferenceLoadOneRegister(instruction,
6220                                       out_loc,
6221                                       component_offset,
6222                                       maybe_temp_loc,
6223                                       kCompilerReadBarrierOption);
6224      // If `out` is null, we use it for the result, and jump to `done`.
6225      __ CompareAndBranchIfZero(out, &done);
6226      __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
6227      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
6228      __ CompareAndBranchIfNonZero(out, &zero);
6229      __ Bind(&exact_check);
6230      __ LoadImmediate(out, 1);
6231      __ b(&done);
6232      break;
6233    }
6234
6235    case TypeCheckKind::kArrayCheck: {
6236      // No read barrier since the slow path will retry upon failure.
6237      // /* HeapReference<Class> */ out = obj->klass_
6238      GenerateReferenceLoadTwoRegisters(instruction,
6239                                        out_loc,
6240                                        obj_loc,
6241                                        class_offset,
6242                                        maybe_temp_loc,
6243                                        kWithoutReadBarrier);
6244      __ cmp(out, ShifterOperand(cls));
6245      DCHECK(locations->OnlyCallsOnSlowPath());
6246      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6247                                                                    /* is_fatal */ false);
6248      codegen_->AddSlowPath(slow_path);
6249      __ b(slow_path->GetEntryLabel(), NE);
6250      __ LoadImmediate(out, 1);
6251      if (zero.IsLinked()) {
6252        __ b(&done);
6253      }
6254      break;
6255    }
6256
6257    case TypeCheckKind::kUnresolvedCheck:
6258    case TypeCheckKind::kInterfaceCheck: {
6259      // Note that we indeed only call on slow path, but we always go
6260      // into the slow path for the unresolved and interface check
6261      // cases.
6262      //
6263      // We cannot directly call the InstanceofNonTrivial runtime
6264      // entry point without resorting to a type checking slow path
6265      // here (i.e. by calling InvokeRuntime directly), as it would
6266      // require to assign fixed registers for the inputs of this
6267      // HInstanceOf instruction (following the runtime calling
6268      // convention), which might be cluttered by the potential first
6269      // read barrier emission at the beginning of this method.
6270      //
6271      // TODO: Introduce a new runtime entry point taking the object
6272      // to test (instead of its class) as argument, and let it deal
6273      // with the read barrier issues. This will let us refactor this
6274      // case of the `switch` code as it was previously (with a direct
6275      // call to the runtime not using a type checking slow path).
6276      // This should also be beneficial for the other cases above.
6277      DCHECK(locations->OnlyCallsOnSlowPath());
6278      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6279                                                                    /* is_fatal */ false);
6280      codegen_->AddSlowPath(slow_path);
6281      __ b(slow_path->GetEntryLabel());
6282      if (zero.IsLinked()) {
6283        __ b(&done);
6284      }
6285      break;
6286    }
6287  }
6288
6289  if (zero.IsLinked()) {
6290    __ Bind(&zero);
6291    __ LoadImmediate(out, 0);
6292  }
6293
6294  if (done.IsLinked()) {
6295    __ Bind(&done);
6296  }
6297
6298  if (slow_path != nullptr) {
6299    __ Bind(slow_path->GetExitLabel());
6300  }
6301}
6302
6303void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
6304  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6305  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6306
6307  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6308  switch (type_check_kind) {
6309    case TypeCheckKind::kExactCheck:
6310    case TypeCheckKind::kAbstractClassCheck:
6311    case TypeCheckKind::kClassHierarchyCheck:
6312    case TypeCheckKind::kArrayObjectCheck:
6313      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
6314          LocationSummary::kCallOnSlowPath :
6315          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
6316      break;
6317    case TypeCheckKind::kArrayCheck:
6318    case TypeCheckKind::kUnresolvedCheck:
6319    case TypeCheckKind::kInterfaceCheck:
6320      call_kind = LocationSummary::kCallOnSlowPath;
6321      break;
6322  }
6323
6324  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6325  locations->SetInAt(0, Location::RequiresRegister());
6326  locations->SetInAt(1, Location::RequiresRegister());
6327  locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
6328}
6329
6330void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
6331  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6332  LocationSummary* locations = instruction->GetLocations();
6333  Location obj_loc = locations->InAt(0);
6334  Register obj = obj_loc.AsRegister<Register>();
6335  Register cls = locations->InAt(1).AsRegister<Register>();
6336  Location temp_loc = locations->GetTemp(0);
6337  Register temp = temp_loc.AsRegister<Register>();
6338  const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
6339  DCHECK_LE(num_temps, 3u);
6340  Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
6341  Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
6342  const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6343  const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6344  const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6345  const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6346  const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
6347  const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
6348  const uint32_t object_array_data_offset =
6349      mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
6350
6351  // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
6352  // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
6353  // read barriers is done for performance and code size reasons.
6354  bool is_type_check_slow_path_fatal = false;
6355  if (!kEmitCompilerReadBarrier) {
6356    is_type_check_slow_path_fatal =
6357        (type_check_kind == TypeCheckKind::kExactCheck ||
6358         type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6359         type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6360         type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6361        !instruction->CanThrowIntoCatchBlock();
6362  }
6363  SlowPathCodeARM* type_check_slow_path =
6364      new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6365                                                        is_type_check_slow_path_fatal);
6366  codegen_->AddSlowPath(type_check_slow_path);
6367
6368  Label done;
6369  // Avoid null check if we know obj is not null.
6370  if (instruction->MustDoNullCheck()) {
6371    __ CompareAndBranchIfZero(obj, &done);
6372  }
6373
6374  switch (type_check_kind) {
6375    case TypeCheckKind::kExactCheck:
6376    case TypeCheckKind::kArrayCheck: {
6377      // /* HeapReference<Class> */ temp = obj->klass_
6378      GenerateReferenceLoadTwoRegisters(instruction,
6379                                        temp_loc,
6380                                        obj_loc,
6381                                        class_offset,
6382                                        maybe_temp2_loc,
6383                                        kWithoutReadBarrier);
6384
6385      __ cmp(temp, ShifterOperand(cls));
6386      // Jump to slow path for throwing the exception or doing a
6387      // more involved array check.
6388      __ b(type_check_slow_path->GetEntryLabel(), NE);
6389      break;
6390    }
6391
6392    case TypeCheckKind::kAbstractClassCheck: {
6393      // /* HeapReference<Class> */ temp = obj->klass_
6394      GenerateReferenceLoadTwoRegisters(instruction,
6395                                        temp_loc,
6396                                        obj_loc,
6397                                        class_offset,
6398                                        maybe_temp2_loc,
6399                                        kWithoutReadBarrier);
6400
6401      // If the class is abstract, we eagerly fetch the super class of the
6402      // object to avoid doing a comparison we know will fail.
6403      Label loop;
6404      __ Bind(&loop);
6405      // /* HeapReference<Class> */ temp = temp->super_class_
6406      GenerateReferenceLoadOneRegister(instruction,
6407                                       temp_loc,
6408                                       super_offset,
6409                                       maybe_temp2_loc,
6410                                       kWithoutReadBarrier);
6411
6412      // If the class reference currently in `temp` is null, jump to the slow path to throw the
6413      // exception.
6414      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6415
6416      // Otherwise, compare the classes.
6417      __ cmp(temp, ShifterOperand(cls));
6418      __ b(&loop, NE);
6419      break;
6420    }
6421
6422    case TypeCheckKind::kClassHierarchyCheck: {
6423      // /* HeapReference<Class> */ temp = obj->klass_
6424      GenerateReferenceLoadTwoRegisters(instruction,
6425                                        temp_loc,
6426                                        obj_loc,
6427                                        class_offset,
6428                                        maybe_temp2_loc,
6429                                        kWithoutReadBarrier);
6430
6431      // Walk over the class hierarchy to find a match.
6432      Label loop;
6433      __ Bind(&loop);
6434      __ cmp(temp, ShifterOperand(cls));
6435      __ b(&done, EQ);
6436
6437      // /* HeapReference<Class> */ temp = temp->super_class_
6438      GenerateReferenceLoadOneRegister(instruction,
6439                                       temp_loc,
6440                                       super_offset,
6441                                       maybe_temp2_loc,
6442                                       kWithoutReadBarrier);
6443
6444      // If the class reference currently in `temp` is null, jump to the slow path to throw the
6445      // exception.
6446      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6447      // Otherwise, jump to the beginning of the loop.
6448      __ b(&loop);
6449      break;
6450    }
6451
6452    case TypeCheckKind::kArrayObjectCheck: {
6453      // /* HeapReference<Class> */ temp = obj->klass_
6454      GenerateReferenceLoadTwoRegisters(instruction,
6455                                        temp_loc,
6456                                        obj_loc,
6457                                        class_offset,
6458                                        maybe_temp2_loc,
6459                                        kWithoutReadBarrier);
6460
6461      // Do an exact check.
6462      __ cmp(temp, ShifterOperand(cls));
6463      __ b(&done, EQ);
6464
6465      // Otherwise, we need to check that the object's class is a non-primitive array.
6466      // /* HeapReference<Class> */ temp = temp->component_type_
6467      GenerateReferenceLoadOneRegister(instruction,
6468                                       temp_loc,
6469                                       component_offset,
6470                                       maybe_temp2_loc,
6471                                       kWithoutReadBarrier);
6472      // If the component type is null, jump to the slow path to throw the exception.
6473      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6474      // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
6475      // to further check that this component type is not a primitive type.
6476      __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
6477      static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
6478      __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
6479      break;
6480    }
6481
6482    case TypeCheckKind::kUnresolvedCheck:
6483      // We always go into the type check slow path for the unresolved check case.
6484      // We cannot directly call the CheckCast runtime entry point
6485      // without resorting to a type checking slow path here (i.e. by
6486      // calling InvokeRuntime directly), as it would require to
6487      // assign fixed registers for the inputs of this HInstanceOf
6488      // instruction (following the runtime calling convention), which
6489      // might be cluttered by the potential first read barrier
6490      // emission at the beginning of this method.
6491
6492      __ b(type_check_slow_path->GetEntryLabel());
6493      break;
6494
6495    case TypeCheckKind::kInterfaceCheck: {
6496      // Avoid read barriers to improve performance of the fast path. We can not get false
6497      // positives by doing this.
6498      // /* HeapReference<Class> */ temp = obj->klass_
6499      GenerateReferenceLoadTwoRegisters(instruction,
6500                                        temp_loc,
6501                                        obj_loc,
6502                                        class_offset,
6503                                        maybe_temp2_loc,
6504                                        kWithoutReadBarrier);
6505
6506      // /* HeapReference<Class> */ temp = temp->iftable_
6507      GenerateReferenceLoadTwoRegisters(instruction,
6508                                        temp_loc,
6509                                        temp_loc,
6510                                        iftable_offset,
6511                                        maybe_temp2_loc,
6512                                        kWithoutReadBarrier);
6513      // Iftable is never null.
6514      __ ldr(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
6515      // Loop through the iftable and check if any class matches.
6516      Label start_loop;
6517      __ Bind(&start_loop);
6518      __ CompareAndBranchIfZero(maybe_temp2_loc.AsRegister<Register>(),
6519                                type_check_slow_path->GetEntryLabel());
6520      __ ldr(maybe_temp3_loc.AsRegister<Register>(), Address(temp, object_array_data_offset));
6521      __ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister<Register>());
6522      // Go to next interface.
6523      __ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize));
6524      __ sub(maybe_temp2_loc.AsRegister<Register>(),
6525             maybe_temp2_loc.AsRegister<Register>(),
6526             ShifterOperand(2));
6527      // Compare the classes and continue the loop if they do not match.
6528      __ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister<Register>()));
6529      __ b(&start_loop, NE);
6530      break;
6531    }
6532  }
6533  __ Bind(&done);
6534
6535  __ Bind(type_check_slow_path->GetExitLabel());
6536}
6537
6538void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6539  LocationSummary* locations =
6540      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6541  InvokeRuntimeCallingConvention calling_convention;
6542  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6543}
6544
6545void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6546  codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
6547                          instruction,
6548                          instruction->GetDexPc());
6549  if (instruction->IsEnter()) {
6550    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6551  } else {
6552    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6553  }
6554}
6555
6556void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
6557void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
6558void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }
6559
6560void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
6561  LocationSummary* locations =
6562      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6563  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6564         || instruction->GetResultType() == Primitive::kPrimLong);
6565  // Note: GVN reorders commutative operations to have the constant on the right hand side.
6566  locations->SetInAt(0, Location::RequiresRegister());
6567  locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
6568  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6569}
6570
6571void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
6572  HandleBitwiseOperation(instruction);
6573}
6574
6575void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
6576  HandleBitwiseOperation(instruction);
6577}
6578
6579void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
6580  HandleBitwiseOperation(instruction);
6581}
6582
6583
6584void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6585  LocationSummary* locations =
6586      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6587  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6588         || instruction->GetResultType() == Primitive::kPrimLong);
6589
6590  locations->SetInAt(0, Location::RequiresRegister());
6591  locations->SetInAt(1, Location::RequiresRegister());
6592  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6593}
6594
6595void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6596  LocationSummary* locations = instruction->GetLocations();
6597  Location first = locations->InAt(0);
6598  Location second = locations->InAt(1);
6599  Location out = locations->Out();
6600
6601  if (instruction->GetResultType() == Primitive::kPrimInt) {
6602    Register first_reg = first.AsRegister<Register>();
6603    ShifterOperand second_reg(second.AsRegister<Register>());
6604    Register out_reg = out.AsRegister<Register>();
6605
6606    switch (instruction->GetOpKind()) {
6607      case HInstruction::kAnd:
6608        __ bic(out_reg, first_reg, second_reg);
6609        break;
6610      case HInstruction::kOr:
6611        __ orn(out_reg, first_reg, second_reg);
6612        break;
6613      // There is no EON on arm.
6614      case HInstruction::kXor:
6615      default:
6616        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6617        UNREACHABLE();
6618    }
6619    return;
6620
6621  } else {
6622    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6623    Register first_low = first.AsRegisterPairLow<Register>();
6624    Register first_high = first.AsRegisterPairHigh<Register>();
6625    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6626    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6627    Register out_low = out.AsRegisterPairLow<Register>();
6628    Register out_high = out.AsRegisterPairHigh<Register>();
6629
6630    switch (instruction->GetOpKind()) {
6631      case HInstruction::kAnd:
6632        __ bic(out_low, first_low, second_low);
6633        __ bic(out_high, first_high, second_high);
6634        break;
6635      case HInstruction::kOr:
6636        __ orn(out_low, first_low, second_low);
6637        __ orn(out_high, first_high, second_high);
6638        break;
6639      // There is no EON on arm.
6640      case HInstruction::kXor:
6641      default:
6642        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6643        UNREACHABLE();
6644    }
6645  }
6646}
6647
6648void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
6649  // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
6650  if (value == 0xffffffffu) {
6651    if (out != first) {
6652      __ mov(out, ShifterOperand(first));
6653    }
6654    return;
6655  }
6656  if (value == 0u) {
6657    __ mov(out, ShifterOperand(0));
6658    return;
6659  }
6660  ShifterOperand so;
6661  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
6662    __ and_(out, first, so);
6663  } else {
6664    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so));
6665    __ bic(out, first, ShifterOperand(~value));
6666  }
6667}
6668
6669void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
6670  // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
6671  if (value == 0u) {
6672    if (out != first) {
6673      __ mov(out, ShifterOperand(first));
6674    }
6675    return;
6676  }
6677  if (value == 0xffffffffu) {
6678    __ mvn(out, ShifterOperand(0));
6679    return;
6680  }
6681  ShifterOperand so;
6682  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
6683    __ orr(out, first, so);
6684  } else {
6685    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
6686    __ orn(out, first, ShifterOperand(~value));
6687  }
6688}
6689
6690void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
6691  // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
6692  if (value == 0u) {
6693    if (out != first) {
6694      __ mov(out, ShifterOperand(first));
6695    }
6696    return;
6697  }
6698  __ eor(out, first, ShifterOperand(value));
6699}
6700
6701void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out,
6702                                                       Location first,
6703                                                       uint64_t value) {
6704  Register out_low = out.AsRegisterPairLow<Register>();
6705  Register out_high = out.AsRegisterPairHigh<Register>();
6706  Register first_low = first.AsRegisterPairLow<Register>();
6707  Register first_high = first.AsRegisterPairHigh<Register>();
6708  uint32_t value_low = Low32Bits(value);
6709  uint32_t value_high = High32Bits(value);
6710  if (value_low == 0u) {
6711    if (out_low != first_low) {
6712      __ mov(out_low, ShifterOperand(first_low));
6713    }
6714    __ AddConstant(out_high, first_high, value_high);
6715    return;
6716  }
6717  __ AddConstantSetFlags(out_low, first_low, value_low);
6718  ShifterOperand so;
6719  if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) {
6720    __ adc(out_high, first_high, so);
6721  } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) {
6722    __ sbc(out_high, first_high, so);
6723  } else {
6724    LOG(FATAL) << "Unexpected constant " << value_high;
6725    UNREACHABLE();
6726  }
6727}
6728
6729void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
6730  LocationSummary* locations = instruction->GetLocations();
6731  Location first = locations->InAt(0);
6732  Location second = locations->InAt(1);
6733  Location out = locations->Out();
6734
6735  if (second.IsConstant()) {
6736    uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
6737    uint32_t value_low = Low32Bits(value);
6738    if (instruction->GetResultType() == Primitive::kPrimInt) {
6739      Register first_reg = first.AsRegister<Register>();
6740      Register out_reg = out.AsRegister<Register>();
6741      if (instruction->IsAnd()) {
6742        GenerateAndConst(out_reg, first_reg, value_low);
6743      } else if (instruction->IsOr()) {
6744        GenerateOrrConst(out_reg, first_reg, value_low);
6745      } else {
6746        DCHECK(instruction->IsXor());
6747        GenerateEorConst(out_reg, first_reg, value_low);
6748      }
6749    } else {
6750      DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6751      uint32_t value_high = High32Bits(value);
6752      Register first_low = first.AsRegisterPairLow<Register>();
6753      Register first_high = first.AsRegisterPairHigh<Register>();
6754      Register out_low = out.AsRegisterPairLow<Register>();
6755      Register out_high = out.AsRegisterPairHigh<Register>();
6756      if (instruction->IsAnd()) {
6757        GenerateAndConst(out_low, first_low, value_low);
6758        GenerateAndConst(out_high, first_high, value_high);
6759      } else if (instruction->IsOr()) {
6760        GenerateOrrConst(out_low, first_low, value_low);
6761        GenerateOrrConst(out_high, first_high, value_high);
6762      } else {
6763        DCHECK(instruction->IsXor());
6764        GenerateEorConst(out_low, first_low, value_low);
6765        GenerateEorConst(out_high, first_high, value_high);
6766      }
6767    }
6768    return;
6769  }
6770
6771  if (instruction->GetResultType() == Primitive::kPrimInt) {
6772    Register first_reg = first.AsRegister<Register>();
6773    ShifterOperand second_reg(second.AsRegister<Register>());
6774    Register out_reg = out.AsRegister<Register>();
6775    if (instruction->IsAnd()) {
6776      __ and_(out_reg, first_reg, second_reg);
6777    } else if (instruction->IsOr()) {
6778      __ orr(out_reg, first_reg, second_reg);
6779    } else {
6780      DCHECK(instruction->IsXor());
6781      __ eor(out_reg, first_reg, second_reg);
6782    }
6783  } else {
6784    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6785    Register first_low = first.AsRegisterPairLow<Register>();
6786    Register first_high = first.AsRegisterPairHigh<Register>();
6787    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6788    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6789    Register out_low = out.AsRegisterPairLow<Register>();
6790    Register out_high = out.AsRegisterPairHigh<Register>();
6791    if (instruction->IsAnd()) {
6792      __ and_(out_low, first_low, second_low);
6793      __ and_(out_high, first_high, second_high);
6794    } else if (instruction->IsOr()) {
6795      __ orr(out_low, first_low, second_low);
6796      __ orr(out_high, first_high, second_high);
6797    } else {
6798      DCHECK(instruction->IsXor());
6799      __ eor(out_low, first_low, second_low);
6800      __ eor(out_high, first_high, second_high);
6801    }
6802  }
6803}
6804
6805void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(
6806    HInstruction* instruction,
6807    Location out,
6808    uint32_t offset,
6809    Location maybe_temp,
6810    ReadBarrierOption read_barrier_option) {
6811  Register out_reg = out.AsRegister<Register>();
6812  if (read_barrier_option == kWithReadBarrier) {
6813    CHECK(kEmitCompilerReadBarrier);
6814    DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6815    if (kUseBakerReadBarrier) {
6816      // Load with fast path based Baker's read barrier.
6817      // /* HeapReference<Object> */ out = *(out + offset)
6818      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6819          instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6820    } else {
6821      // Load with slow path based read barrier.
6822      // Save the value of `out` into `maybe_temp` before overwriting it
6823      // in the following move operation, as we will need it for the
6824      // read barrier below.
6825      __ Mov(maybe_temp.AsRegister<Register>(), out_reg);
6826      // /* HeapReference<Object> */ out = *(out + offset)
6827      __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6828      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6829    }
6830  } else {
6831    // Plain load with no read barrier.
6832    // /* HeapReference<Object> */ out = *(out + offset)
6833    __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6834    __ MaybeUnpoisonHeapReference(out_reg);
6835  }
6836}
6837
6838void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(
6839    HInstruction* instruction,
6840    Location out,
6841    Location obj,
6842    uint32_t offset,
6843    Location maybe_temp,
6844    ReadBarrierOption read_barrier_option) {
6845  Register out_reg = out.AsRegister<Register>();
6846  Register obj_reg = obj.AsRegister<Register>();
6847  if (read_barrier_option == kWithReadBarrier) {
6848    CHECK(kEmitCompilerReadBarrier);
6849    if (kUseBakerReadBarrier) {
6850      DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6851      // Load with fast path based Baker's read barrier.
6852      // /* HeapReference<Object> */ out = *(obj + offset)
6853      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6854          instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6855    } else {
6856      // Load with slow path based read barrier.
6857      // /* HeapReference<Object> */ out = *(obj + offset)
6858      __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6859      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6860    }
6861  } else {
6862    // Plain load with no read barrier.
6863    // /* HeapReference<Object> */ out = *(obj + offset)
6864    __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6865    __ MaybeUnpoisonHeapReference(out_reg);
6866  }
6867}
6868
6869void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
6870                                                          Location root,
6871                                                          Register obj,
6872                                                          uint32_t offset,
6873                                                          ReadBarrierOption read_barrier_option) {
6874  Register root_reg = root.AsRegister<Register>();
6875  if (read_barrier_option == kWithReadBarrier) {
6876    DCHECK(kEmitCompilerReadBarrier);
6877    if (kUseBakerReadBarrier) {
6878      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6879      // Baker's read barrier are used:
6880      //
6881      //   root = obj.field;
6882      //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
6883      //   if (temp != null) {
6884      //     root = temp(root)
6885      //   }
6886
6887      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6888      __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6889      static_assert(
6890          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6891          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6892          "have different sizes.");
6893      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6894                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
6895                    "have different sizes.");
6896
6897      // Slow path marking the GC root `root`.
6898      Location temp = Location::RegisterLocation(LR);
6899      SlowPathCodeARM* slow_path =
6900          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(
6901              instruction,
6902              root,
6903              /*entrypoint*/ temp);
6904      codegen_->AddSlowPath(slow_path);
6905
6906      // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
6907      const int32_t entry_point_offset =
6908          CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg());
6909      // Loading the entrypoint does not require a load acquire since it is only changed when
6910      // threads are suspended or running a checkpoint.
6911      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
6912      // The entrypoint is null when the GC is not marking, this prevents one load compared to
6913      // checking GetIsGcMarking.
6914      __ CompareAndBranchIfNonZero(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
6915      __ Bind(slow_path->GetExitLabel());
6916    } else {
6917      // GC root loaded through a slow path for read barriers other
6918      // than Baker's.
6919      // /* GcRoot<mirror::Object>* */ root = obj + offset
6920      __ AddConstant(root_reg, obj, offset);
6921      // /* mirror::Object* */ root = root->Read()
6922      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6923    }
6924  } else {
6925    // Plain GC root load with no read barrier.
6926    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6927    __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6928    // Note that GC roots are not affected by heap poisoning, thus we
6929    // do not have to unpoison `root_reg` here.
6930  }
6931}
6932
6933void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6934                                                             Location ref,
6935                                                             Register obj,
6936                                                             uint32_t offset,
6937                                                             Location temp,
6938                                                             bool needs_null_check) {
6939  DCHECK(kEmitCompilerReadBarrier);
6940  DCHECK(kUseBakerReadBarrier);
6941
6942  // /* HeapReference<Object> */ ref = *(obj + offset)
6943  Location no_index = Location::NoLocation();
6944  ScaleFactor no_scale_factor = TIMES_1;
6945  GenerateReferenceLoadWithBakerReadBarrier(
6946      instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
6947}
6948
6949void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6950                                                             Location ref,
6951                                                             Register obj,
6952                                                             uint32_t data_offset,
6953                                                             Location index,
6954                                                             Location temp,
6955                                                             bool needs_null_check) {
6956  DCHECK(kEmitCompilerReadBarrier);
6957  DCHECK(kUseBakerReadBarrier);
6958
6959  static_assert(
6960      sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6961      "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6962  // /* HeapReference<Object> */ ref =
6963  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6964  ScaleFactor scale_factor = TIMES_4;
6965  GenerateReferenceLoadWithBakerReadBarrier(
6966      instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
6967}
6968
6969void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6970                                                                 Location ref,
6971                                                                 Register obj,
6972                                                                 uint32_t offset,
6973                                                                 Location index,
6974                                                                 ScaleFactor scale_factor,
6975                                                                 Location temp,
6976                                                                 bool needs_null_check,
6977                                                                 bool always_update_field,
6978                                                                 Register* temp2) {
6979  DCHECK(kEmitCompilerReadBarrier);
6980  DCHECK(kUseBakerReadBarrier);
6981
6982  // In slow path based read barriers, the read barrier call is
6983  // inserted after the original load. However, in fast path based
6984  // Baker's read barriers, we need to perform the load of
6985  // mirror::Object::monitor_ *before* the original reference load.
6986  // This load-load ordering is required by the read barrier.
6987  // The fast path/slow path (for Baker's algorithm) should look like:
6988  //
6989  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6990  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6991  //   HeapReference<Object> ref = *src;  // Original reference load.
6992  //   bool is_gray = (rb_state == ReadBarrier::GrayState());
6993  //   if (is_gray) {
6994  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6995  //   }
6996  //
6997  // Note: the original implementation in ReadBarrier::Barrier is
6998  // slightly more complex as it performs additional checks that we do
6999  // not do here for performance reasons.
7000
7001  Register ref_reg = ref.AsRegister<Register>();
7002  Register temp_reg = temp.AsRegister<Register>();
7003  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
7004
7005  // /* int32_t */ monitor = obj->monitor_
7006  __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
7007  if (needs_null_check) {
7008    MaybeRecordImplicitNullCheck(instruction);
7009  }
7010  // /* LockWord */ lock_word = LockWord(monitor)
7011  static_assert(sizeof(LockWord) == sizeof(int32_t),
7012                "art::LockWord and int32_t have different sizes.");
7013
7014  // Introduce a dependency on the lock_word including the rb_state,
7015  // which shall prevent load-load reordering without using
7016  // a memory barrier (which would be more expensive).
7017  // `obj` is unchanged by this operation, but its value now depends
7018  // on `temp_reg`.
7019  __ add(obj, obj, ShifterOperand(temp_reg, LSR, 32));
7020
7021  // The actual reference load.
7022  if (index.IsValid()) {
7023    // Load types involving an "index": ArrayGet,
7024    // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
7025    // intrinsics.
7026    // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
7027    if (index.IsConstant()) {
7028      size_t computed_offset =
7029          (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
7030      __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
7031    } else {
7032      // Handle the special case of the
7033      // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
7034      // intrinsics, which use a register pair as index ("long
7035      // offset"), of which only the low part contains data.
7036      Register index_reg = index.IsRegisterPair()
7037          ? index.AsRegisterPairLow<Register>()
7038          : index.AsRegister<Register>();
7039      __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor));
7040      __ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
7041    }
7042  } else {
7043    // /* HeapReference<Object> */ ref = *(obj + offset)
7044    __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
7045  }
7046
7047  // Object* ref = ref_addr->AsMirrorPtr()
7048  __ MaybeUnpoisonHeapReference(ref_reg);
7049
7050  // Slow path marking the object `ref` when it is gray.
7051  SlowPathCodeARM* slow_path;
7052  if (always_update_field) {
7053    DCHECK(temp2 != nullptr);
7054    // ReadBarrierMarkAndUpdateFieldSlowPathARM only supports address
7055    // of the form `obj + field_offset`, where `obj` is a register and
7056    // `field_offset` is a register pair (of which only the lower half
7057    // is used). Thus `offset` and `scale_factor` above are expected
7058    // to be null in this code path.
7059    DCHECK_EQ(offset, 0u);
7060    DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
7061    slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathARM(
7062        instruction, ref, obj, /* field_offset */ index, temp_reg, *temp2);
7063  } else {
7064    slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref);
7065  }
7066  AddSlowPath(slow_path);
7067
7068  // if (rb_state == ReadBarrier::GrayState())
7069  //   ref = ReadBarrier::Mark(ref);
7070  // Given the numeric representation, it's enough to check the low bit of the
7071  // rb_state. We do that by shifting the bit out of the lock word with LSRS
7072  // which can be a 16-bit instruction unlike the TST immediate.
7073  static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
7074  static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7075  __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1);
7076  __ b(slow_path->GetEntryLabel(), CS);  // Carry flag is the last bit shifted out by LSRS.
7077  __ Bind(slow_path->GetExitLabel());
7078}
7079
7080void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
7081                                               Location out,
7082                                               Location ref,
7083                                               Location obj,
7084                                               uint32_t offset,
7085                                               Location index) {
7086  DCHECK(kEmitCompilerReadBarrier);
7087
7088  // Insert a slow path based read barrier *after* the reference load.
7089  //
7090  // If heap poisoning is enabled, the unpoisoning of the loaded
7091  // reference will be carried out by the runtime within the slow
7092  // path.
7093  //
7094  // Note that `ref` currently does not get unpoisoned (when heap
7095  // poisoning is enabled), which is alright as the `ref` argument is
7096  // not used by the artReadBarrierSlow entry point.
7097  //
7098  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7099  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena())
7100      ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
7101  AddSlowPath(slow_path);
7102
7103  __ b(slow_path->GetEntryLabel());
7104  __ Bind(slow_path->GetExitLabel());
7105}
7106
7107void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7108                                                    Location out,
7109                                                    Location ref,
7110                                                    Location obj,
7111                                                    uint32_t offset,
7112                                                    Location index) {
7113  if (kEmitCompilerReadBarrier) {
7114    // Baker's read barriers shall be handled by the fast path
7115    // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
7116    DCHECK(!kUseBakerReadBarrier);
7117    // If heap poisoning is enabled, unpoisoning will be taken care of
7118    // by the runtime within the slow path.
7119    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7120  } else if (kPoisonHeapReferences) {
7121    __ UnpoisonHeapReference(out.AsRegister<Register>());
7122  }
7123}
7124
7125void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7126                                                      Location out,
7127                                                      Location root) {
7128  DCHECK(kEmitCompilerReadBarrier);
7129
7130  // Insert a slow path based read barrier *after* the GC root load.
7131  //
7132  // Note that GC roots are not affected by heap poisoning, so we do
7133  // not need to do anything special for this here.
7134  SlowPathCodeARM* slow_path =
7135      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
7136  AddSlowPath(slow_path);
7137
7138  __ b(slow_path->GetEntryLabel());
7139  __ Bind(slow_path->GetExitLabel());
7140}
7141
7142HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
7143      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
7144      HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
7145  HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
7146  // We disable pc-relative load when there is an irreducible loop, as the optimization
7147  // is incompatible with it.
7148  // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
7149  // with irreducible loops.
7150  if (GetGraph()->HasIrreducibleLoops() &&
7151      (dispatch_info.method_load_kind ==
7152          HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
7153    dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
7154  }
7155
7156  return dispatch_info;
7157}
7158
7159Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
7160                                                                 Register temp) {
7161  DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
7162  Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7163  if (!invoke->GetLocations()->Intrinsified()) {
7164    return location.AsRegister<Register>();
7165  }
7166  // For intrinsics we allow any location, so it may be on the stack.
7167  if (!location.IsRegister()) {
7168    __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
7169    return temp;
7170  }
7171  // For register locations, check if the register was saved. If so, get it from the stack.
7172  // Note: There is a chance that the register was saved but not overwritten, so we could
7173  // save one load. However, since this is just an intrinsic slow path we prefer this
7174  // simple and more robust approach rather that trying to determine if that's the case.
7175  SlowPathCode* slow_path = GetCurrentSlowPath();
7176  DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
7177  if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
7178    int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
7179    __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
7180    return temp;
7181  }
7182  return location.AsRegister<Register>();
7183}
7184
7185void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
7186  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
7187  switch (invoke->GetMethodLoadKind()) {
7188    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
7189      uint32_t offset =
7190          GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
7191      // temp = thread->string_init_entrypoint
7192      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset);
7193      break;
7194    }
7195    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
7196      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7197      break;
7198    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
7199      __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
7200      break;
7201    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
7202      HArmDexCacheArraysBase* base =
7203          invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
7204      Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
7205                                                                temp.AsRegister<Register>());
7206      int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
7207      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
7208      break;
7209    }
7210    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
7211      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7212      Register method_reg;
7213      Register reg = temp.AsRegister<Register>();
7214      if (current_method.IsRegister()) {
7215        method_reg = current_method.AsRegister<Register>();
7216      } else {
7217        DCHECK(invoke->GetLocations()->Intrinsified());
7218        DCHECK(!current_method.IsValid());
7219        method_reg = reg;
7220        __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
7221      }
7222      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
7223      __ LoadFromOffset(kLoadWord,
7224                        reg,
7225                        method_reg,
7226                        ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
7227      // temp = temp[index_in_cache];
7228      // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
7229      uint32_t index_in_cache = invoke->GetDexMethodIndex();
7230      __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
7231      break;
7232    }
7233  }
7234
7235  switch (invoke->GetCodePtrLocation()) {
7236    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
7237      __ bl(GetFrameEntryLabel());
7238      break;
7239    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
7240      // LR = callee_method->entry_point_from_quick_compiled_code_
7241      __ LoadFromOffset(
7242          kLoadWord, LR, callee_method.AsRegister<Register>(),
7243          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
7244      // LR()
7245      __ blx(LR);
7246      break;
7247  }
7248
7249  DCHECK(!IsLeafMethod());
7250}
7251
7252void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
7253  Register temp = temp_location.AsRegister<Register>();
7254  uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7255      invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
7256
7257  // Use the calling convention instead of the location of the receiver, as
7258  // intrinsics may have put the receiver in a different register. In the intrinsics
7259  // slow path, the arguments have been moved to the right place, so here we are
7260  // guaranteed that the receiver is the first register of the calling convention.
7261  InvokeDexCallingConvention calling_convention;
7262  Register receiver = calling_convention.GetRegisterAt(0);
7263  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7264  // /* HeapReference<Class> */ temp = receiver->klass_
7265  __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
7266  MaybeRecordImplicitNullCheck(invoke);
7267  // Instead of simply (possibly) unpoisoning `temp` here, we should
7268  // emit a read barrier for the previous class reference load.
7269  // However this is not required in practice, as this is an
7270  // intermediate/temporary reference and because the current
7271  // concurrent copying collector keeps the from-space memory
7272  // intact/accessible until the end of the marking phase (the
7273  // concurrent copying collector may not in the future).
7274  __ MaybeUnpoisonHeapReference(temp);
7275  // temp = temp->GetMethodAt(method_offset);
7276  uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
7277      kArmPointerSize).Int32Value();
7278  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
7279  // LR = temp->GetEntryPoint();
7280  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
7281  // LR();
7282  __ blx(LR);
7283}
7284
7285CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
7286    const DexFile& dex_file, uint32_t string_index) {
7287  return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
7288}
7289
7290CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch(
7291    const DexFile& dex_file, dex::TypeIndex type_index) {
7292  return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_);
7293}
7294
7295CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch(
7296    const DexFile& dex_file, uint32_t element_offset) {
7297  return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
7298}
7299
7300CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
7301    const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
7302  patches->emplace_back(dex_file, offset_or_index);
7303  return &patches->back();
7304}
7305
7306Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
7307                                                             dex::StringIndex string_index) {
7308  return boot_image_string_patches_.GetOrCreate(
7309      StringReference(&dex_file, string_index),
7310      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7311}
7312
7313Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
7314                                                           dex::TypeIndex type_index) {
7315  return boot_image_type_patches_.GetOrCreate(
7316      TypeReference(&dex_file, type_index),
7317      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7318}
7319
7320Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
7321  bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
7322  Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
7323  return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
7324}
7325
7326Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file,
7327                                                       dex::StringIndex string_index) {
7328  jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), /* placeholder */ 0u);
7329  return jit_string_patches_.GetOrCreate(
7330      StringReference(&dex_file, string_index),
7331      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7332}
7333
7334Literal* CodeGeneratorARM::DeduplicateJitClassLiteral(const DexFile& dex_file,
7335                                                      dex::TypeIndex type_index,
7336                                                      uint64_t address) {
7337  jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index), address);
7338  return jit_class_patches_.GetOrCreate(
7339      TypeReference(&dex_file, type_index),
7340      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7341}
7342
7343template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
7344inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches(
7345    const ArenaDeque<PcRelativePatchInfo>& infos,
7346    ArenaVector<LinkerPatch>* linker_patches) {
7347  for (const PcRelativePatchInfo& info : infos) {
7348    const DexFile& dex_file = info.target_dex_file;
7349    size_t offset_or_index = info.offset_or_index;
7350    DCHECK(info.add_pc_label.IsBound());
7351    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
7352    // Add MOVW patch.
7353    DCHECK(info.movw_label.IsBound());
7354    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
7355    linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
7356    // Add MOVT patch.
7357    DCHECK(info.movt_label.IsBound());
7358    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
7359    linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
7360  }
7361}
7362
7363void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
7364  DCHECK(linker_patches->empty());
7365  size_t size =
7366      /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() +
7367      boot_image_string_patches_.size() +
7368      /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
7369      boot_image_type_patches_.size() +
7370      /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
7371      boot_image_address_patches_.size();
7372  linker_patches->reserve(size);
7373  EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
7374                                                               linker_patches);
7375  for (const auto& entry : boot_image_string_patches_) {
7376    const StringReference& target_string = entry.first;
7377    Literal* literal = entry.second;
7378    DCHECK(literal->GetLabel()->IsBound());
7379    uint32_t literal_offset = literal->GetLabel()->Position();
7380    linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
7381                                                       target_string.dex_file,
7382                                                       target_string.string_index.index_));
7383  }
7384  if (!GetCompilerOptions().IsBootImage()) {
7385    EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
7386                                                                  linker_patches);
7387  } else {
7388    EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
7389                                                                  linker_patches);
7390  }
7391  for (const auto& entry : boot_image_type_patches_) {
7392    const TypeReference& target_type = entry.first;
7393    Literal* literal = entry.second;
7394    DCHECK(literal->GetLabel()->IsBound());
7395    uint32_t literal_offset = literal->GetLabel()->Position();
7396    linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
7397                                                     target_type.dex_file,
7398                                                     target_type.type_index.index_));
7399  }
7400  EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
7401                                                              linker_patches);
7402  for (const auto& entry : boot_image_address_patches_) {
7403    DCHECK(GetCompilerOptions().GetIncludePatchInformation());
7404    Literal* literal = entry.second;
7405    DCHECK(literal->GetLabel()->IsBound());
7406    uint32_t literal_offset = literal->GetLabel()->Position();
7407    linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
7408  }
7409}
7410
7411Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
7412  return map->GetOrCreate(
7413      value,
7414      [this, value]() { return __ NewLiteral<uint32_t>(value); });
7415}
7416
7417Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method,
7418                                                    MethodToLiteralMap* map) {
7419  return map->GetOrCreate(
7420      target_method,
7421      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7422}
7423
7424void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7425  LocationSummary* locations =
7426      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
7427  locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
7428                     Location::RequiresRegister());
7429  locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
7430  locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
7431  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7432}
7433
7434void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7435  LocationSummary* locations = instr->GetLocations();
7436  Register res = locations->Out().AsRegister<Register>();
7437  Register accumulator =
7438      locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
7439  Register mul_left =
7440      locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
7441  Register mul_right =
7442      locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();
7443
7444  if (instr->GetOpKind() == HInstruction::kAdd) {
7445    __ mla(res, mul_left, mul_right, accumulator);
7446  } else {
7447    __ mls(res, mul_left, mul_right, accumulator);
7448  }
7449}
7450
7451void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7452  // Nothing to do, this should be removed during prepare for register allocator.
7453  LOG(FATAL) << "Unreachable";
7454}
7455
7456void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7457  // Nothing to do, this should be removed during prepare for register allocator.
7458  LOG(FATAL) << "Unreachable";
7459}
7460
7461// Simple implementation of packed switch - generate cascaded compare/jumps.
7462void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7463  LocationSummary* locations =
7464      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7465  locations->SetInAt(0, Location::RequiresRegister());
7466  if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
7467      codegen_->GetAssembler()->IsThumb()) {
7468    locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
7469    if (switch_instr->GetStartValue() != 0) {
7470      locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
7471    }
7472  }
7473}
7474
7475void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7476  int32_t lower_bound = switch_instr->GetStartValue();
7477  uint32_t num_entries = switch_instr->GetNumEntries();
7478  LocationSummary* locations = switch_instr->GetLocations();
7479  Register value_reg = locations->InAt(0).AsRegister<Register>();
7480  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7481
7482  if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
7483    // Create a series of compare/jumps.
7484    Register temp_reg = IP;
7485    // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
7486    // the immediate, because IP is used as the destination register. For the other
7487    // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
7488    // and they can be encoded in the instruction without making use of IP register.
7489    __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);
7490
7491    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7492    // Jump to successors[0] if value == lower_bound.
7493    __ b(codegen_->GetLabelOf(successors[0]), EQ);
7494    int32_t last_index = 0;
7495    for (; num_entries - last_index > 2; last_index += 2) {
7496      __ AddConstantSetFlags(temp_reg, temp_reg, -2);
7497      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
7498      __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
7499      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
7500      __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
7501    }
7502    if (num_entries - last_index == 2) {
7503      // The last missing case_value.
7504      __ CmpConstant(temp_reg, 1);
7505      __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
7506    }
7507
7508    // And the default for any other value.
7509    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
7510      __ b(codegen_->GetLabelOf(default_block));
7511    }
7512  } else {
7513    // Create a table lookup.
7514    Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7515
7516    // Materialize a pointer to the switch table
7517    std::vector<Label*> labels(num_entries);
7518    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7519    for (uint32_t i = 0; i < num_entries; i++) {
7520      labels[i] = codegen_->GetLabelOf(successors[i]);
7521    }
7522    JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);
7523
7524    // Remove the bias.
7525    Register key_reg;
7526    if (lower_bound != 0) {
7527      key_reg = locations->GetTemp(1).AsRegister<Register>();
7528      __ AddConstant(key_reg, value_reg, -lower_bound);
7529    } else {
7530      key_reg = value_reg;
7531    }
7532
7533    // Check whether the value is in the table, jump to default block if not.
7534    __ CmpConstant(key_reg, num_entries - 1);
7535    __ b(codegen_->GetLabelOf(default_block), Condition::HI);
7536
7537    // Load the displacement from the table.
7538    __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));
7539
7540    // Dispatch is a direct add to the PC (for Thumb2).
7541    __ EmitJumpTableDispatch(table, temp_reg);
7542  }
7543}
7544
7545void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7546  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
7547  locations->SetOut(Location::RequiresRegister());
7548}
7549
7550void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7551  Register base_reg = base->GetLocations()->Out().AsRegister<Register>();
7552  CodeGeneratorARM::PcRelativePatchInfo* labels =
7553      codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
7554  __ BindTrackedLabel(&labels->movw_label);
7555  __ movw(base_reg, /* placeholder */ 0u);
7556  __ BindTrackedLabel(&labels->movt_label);
7557  __ movt(base_reg, /* placeholder */ 0u);
7558  __ BindTrackedLabel(&labels->add_pc_label);
7559  __ add(base_reg, base_reg, ShifterOperand(PC));
7560}
7561
7562void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
7563  if (!trg.IsValid()) {
7564    DCHECK_EQ(type, Primitive::kPrimVoid);
7565    return;
7566  }
7567
7568  DCHECK_NE(type, Primitive::kPrimVoid);
7569
7570  Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
7571  if (return_loc.Equals(trg)) {
7572    return;
7573  }
7574
7575  // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7576  //       with the last branch.
7577  if (type == Primitive::kPrimLong) {
7578    HParallelMove parallel_move(GetGraph()->GetArena());
7579    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
7580    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
7581    GetMoveResolver()->EmitNativeCode(&parallel_move);
7582  } else if (type == Primitive::kPrimDouble) {
7583    HParallelMove parallel_move(GetGraph()->GetArena());
7584    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
7585    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
7586    GetMoveResolver()->EmitNativeCode(&parallel_move);
7587  } else {
7588    // Let the parallel move resolver take care of all of this.
7589    HParallelMove parallel_move(GetGraph()->GetArena());
7590    parallel_move.AddMove(return_loc, trg, type, nullptr);
7591    GetMoveResolver()->EmitNativeCode(&parallel_move);
7592  }
7593}
7594
7595void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
7596  LocationSummary* locations =
7597      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7598  locations->SetInAt(0, Location::RequiresRegister());
7599  locations->SetOut(Location::RequiresRegister());
7600}
7601
7602void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
7603  LocationSummary* locations = instruction->GetLocations();
7604  if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7605    uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7606        instruction->GetIndex(), kArmPointerSize).SizeValue();
7607    __ LoadFromOffset(kLoadWord,
7608                      locations->Out().AsRegister<Register>(),
7609                      locations->InAt(0).AsRegister<Register>(),
7610                      method_offset);
7611  } else {
7612    uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7613        instruction->GetIndex(), kArmPointerSize));
7614    __ LoadFromOffset(kLoadWord,
7615                      locations->Out().AsRegister<Register>(),
7616                      locations->InAt(0).AsRegister<Register>(),
7617                      mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
7618    __ LoadFromOffset(kLoadWord,
7619                      locations->Out().AsRegister<Register>(),
7620                      locations->Out().AsRegister<Register>(),
7621                      method_offset);
7622  }
7623}
7624
7625static void PatchJitRootUse(uint8_t* code,
7626                            const uint8_t* roots_data,
7627                            Literal* literal,
7628                            uint64_t index_in_table) {
7629  DCHECK(literal->GetLabel()->IsBound());
7630  uint32_t literal_offset = literal->GetLabel()->Position();
7631  uintptr_t address =
7632      reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
7633  uint8_t* data = code + literal_offset;
7634  reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
7635}
7636
7637void CodeGeneratorARM::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
7638  for (const auto& entry : jit_string_patches_) {
7639    const auto& it = jit_string_roots_.find(entry.first);
7640    DCHECK(it != jit_string_roots_.end());
7641    PatchJitRootUse(code, roots_data, entry.second, it->second);
7642  }
7643  for (const auto& entry : jit_class_patches_) {
7644    const auto& it = jit_class_roots_.find(entry.first);
7645    DCHECK(it != jit_class_roots_.end());
7646    PatchJitRootUse(code, roots_data, entry.second, it->second);
7647  }
7648}
7649
7650#undef __
7651#undef QUICK_ENTRY_POINT
7652
7653}  // namespace arm
7654}  // namespace art
7655