code_generator_arm.cc revision 63dccbbefef3014c99c22748d18befcc7bcb3b41
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "gc/accounting/card_table.h"
25#include "intrinsics.h"
26#include "intrinsics_arm.h"
27#include "mirror/array-inl.h"
28#include "mirror/class-inl.h"
29#include "thread.h"
30#include "utils/arm/assembler_arm.h"
31#include "utils/arm/managed_register_arm.h"
32#include "utils/assembler.h"
33#include "utils/stack_checks.h"
34
35namespace art {
36
37template<class MirrorType>
38class GcRoot;
39
40namespace arm {
41
42static bool ExpectedPairLayout(Location location) {
43  // We expected this for both core and fpu register pairs.
44  return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
45}
46
47static constexpr int kCurrentMethodStackOffset = 0;
48static constexpr Register kMethodRegisterArgument = R0;
49
50static constexpr Register kCoreAlwaysSpillRegister = R5;
51static constexpr Register kCoreCalleeSaves[] =
52    { R5, R6, R7, R8, R10, R11, LR };
53static constexpr SRegister kFpuCalleeSaves[] =
54    { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
55
56// D31 cannot be split into two S registers, and the register allocator only works on
57// S registers. Therefore there is no need to block it.
58static constexpr DRegister DTMP = D31;
59
60static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
61
62// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
63#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())->  // NOLINT
64#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
65
66static constexpr int kRegListThreshold = 4;
67
68// SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
69// for each live D registers they treat two corresponding S registers as live ones.
70//
71// Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
72// from a list of contiguous S registers a list of contiguous D registers (processing first/last
73// S registers corner cases) and save/restore this new list treating them as D registers.
74// - decreasing code size
75// - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
76//   restored and then used in regular non SlowPath code as D register.
77//
78// For the following example (v means the S register is live):
79//   D names: |    D0   |    D1   |    D2   |    D4   | ...
80//   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
81//   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
82//
83// S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
84// as D registers.
85static size_t SaveContiguousSRegisterList(size_t first,
86                                          size_t last,
87                                          CodeGenerator* codegen,
88                                          size_t stack_offset) {
89  DCHECK_LE(first, last);
90  if ((first == last) && (first == 0)) {
91    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first);
92    return stack_offset;
93  }
94  if (first % 2 == 1) {
95    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++);
96  }
97
98  bool save_last = false;
99  if (last % 2 == 0) {
100    save_last = true;
101    --last;
102  }
103
104  if (first < last) {
105    DRegister d_reg = static_cast<DRegister>(first / 2);
106    DCHECK_EQ((last - first + 1) % 2, 0u);
107    size_t number_of_d_regs = (last - first + 1) / 2;
108
109    if (number_of_d_regs == 1) {
110       __ StoreDToOffset(d_reg, SP, stack_offset);
111    } else if (number_of_d_regs > 1) {
112      __ add(IP, SP, ShifterOperand(stack_offset));
113      __ vstmiad(IP, d_reg, number_of_d_regs);
114    }
115    stack_offset += number_of_d_regs * kArmWordSize * 2;
116  }
117
118  if (save_last) {
119    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1);
120  }
121
122  return stack_offset;
123}
124
125static size_t RestoreContiguousSRegisterList(size_t first,
126                                             size_t last,
127                                             CodeGenerator* codegen,
128                                             size_t stack_offset) {
129  DCHECK_LE(first, last);
130  if ((first == last) && (first == 0)) {
131    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first);
132    return stack_offset;
133  }
134  if (first % 2 == 1) {
135    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++);
136  }
137
138  bool restore_last = false;
139  if (last % 2 == 0) {
140    restore_last = true;
141    --last;
142  }
143
144  if (first < last) {
145    DRegister d_reg = static_cast<DRegister>(first / 2);
146    DCHECK_EQ((last - first + 1) % 2, 0u);
147    size_t number_of_d_regs = (last - first + 1) / 2;
148    if (number_of_d_regs == 1) {
149      __ LoadDFromOffset(d_reg, SP, stack_offset);
150    } else if (number_of_d_regs > 1) {
151      __ add(IP, SP, ShifterOperand(stack_offset));
152      __ vldmiad(IP, d_reg, number_of_d_regs);
153    }
154    stack_offset += number_of_d_regs * kArmWordSize * 2;
155  }
156
157  if (restore_last) {
158    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1);
159  }
160
161  return stack_offset;
162}
163
164void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
165  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
166  size_t orig_offset = stack_offset;
167
168  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
169  for (uint32_t i : LowToHighBits(core_spills)) {
170    // If the register holds an object, update the stack mask.
171    if (locations->RegisterContainsObject(i)) {
172      locations->SetStackBit(stack_offset / kVRegSize);
173    }
174    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
175    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
176    saved_core_stack_offsets_[i] = stack_offset;
177    stack_offset += kArmWordSize;
178  }
179
180  int reg_num = POPCOUNT(core_spills);
181  if (reg_num != 0) {
182    if (reg_num > kRegListThreshold) {
183      __ StoreList(RegList(core_spills), orig_offset);
184    } else {
185      stack_offset = orig_offset;
186      for (uint32_t i : LowToHighBits(core_spills)) {
187        stack_offset += codegen->SaveCoreRegister(stack_offset, i);
188      }
189    }
190  }
191
192  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
193  orig_offset = stack_offset;
194  for (uint32_t i : LowToHighBits(fp_spills)) {
195    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
196    saved_fpu_stack_offsets_[i] = stack_offset;
197    stack_offset += kArmWordSize;
198  }
199
200  stack_offset = orig_offset;
201  while (fp_spills != 0u) {
202    uint32_t begin = CTZ(fp_spills);
203    uint32_t tmp = fp_spills + (1u << begin);
204    fp_spills &= tmp;  // Clear the contiguous range of 1s.
205    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
206    stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
207  }
208  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
209}
210
211void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
212  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
213  size_t orig_offset = stack_offset;
214
215  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
216  for (uint32_t i : LowToHighBits(core_spills)) {
217    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
218    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
219    stack_offset += kArmWordSize;
220  }
221
222  int reg_num = POPCOUNT(core_spills);
223  if (reg_num != 0) {
224    if (reg_num > kRegListThreshold) {
225      __ LoadList(RegList(core_spills), orig_offset);
226    } else {
227      stack_offset = orig_offset;
228      for (uint32_t i : LowToHighBits(core_spills)) {
229        stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
230      }
231    }
232  }
233
234  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
235  while (fp_spills != 0u) {
236    uint32_t begin = CTZ(fp_spills);
237    uint32_t tmp = fp_spills + (1u << begin);
238    fp_spills &= tmp;  // Clear the contiguous range of 1s.
239    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
240    stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
241  }
242  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
243}
244
245class NullCheckSlowPathARM : public SlowPathCodeARM {
246 public:
247  explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {}
248
249  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
250    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
251    __ Bind(GetEntryLabel());
252    if (instruction_->CanThrowIntoCatchBlock()) {
253      // Live registers will be restored in the catch block if caught.
254      SaveLiveRegisters(codegen, instruction_->GetLocations());
255    }
256    arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
257                               instruction_,
258                               instruction_->GetDexPc(),
259                               this);
260    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
261  }
262
263  bool IsFatal() const OVERRIDE { return true; }
264
265  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }
266
267 private:
268  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
269};
270
271class DivZeroCheckSlowPathARM : public SlowPathCodeARM {
272 public:
273  explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {}
274
275  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
276    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
277    __ Bind(GetEntryLabel());
278    arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
279    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
280  }
281
282  bool IsFatal() const OVERRIDE { return true; }
283
284  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }
285
286 private:
287  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
288};
289
290class SuspendCheckSlowPathARM : public SlowPathCodeARM {
291 public:
292  SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
293      : SlowPathCodeARM(instruction), successor_(successor) {}
294
295  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
296    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
297    __ Bind(GetEntryLabel());
298    arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
299    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
300    if (successor_ == nullptr) {
301      __ b(GetReturnLabel());
302    } else {
303      __ b(arm_codegen->GetLabelOf(successor_));
304    }
305  }
306
307  Label* GetReturnLabel() {
308    DCHECK(successor_ == nullptr);
309    return &return_label_;
310  }
311
312  HBasicBlock* GetSuccessor() const {
313    return successor_;
314  }
315
316  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }
317
318 private:
319  // If not null, the block to branch to after the suspend check.
320  HBasicBlock* const successor_;
321
322  // If `successor_` is null, the label to branch to after the suspend check.
323  Label return_label_;
324
325  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
326};
327
328class BoundsCheckSlowPathARM : public SlowPathCodeARM {
329 public:
330  explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
331      : SlowPathCodeARM(instruction) {}
332
333  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
334    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
335    LocationSummary* locations = instruction_->GetLocations();
336
337    __ Bind(GetEntryLabel());
338    if (instruction_->CanThrowIntoCatchBlock()) {
339      // Live registers will be restored in the catch block if caught.
340      SaveLiveRegisters(codegen, instruction_->GetLocations());
341    }
342    // We're moving two locations to locations that could overlap, so we need a parallel
343    // move resolver.
344    InvokeRuntimeCallingConvention calling_convention;
345    codegen->EmitParallelMoves(
346        locations->InAt(0),
347        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
348        Primitive::kPrimInt,
349        locations->InAt(1),
350        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
351        Primitive::kPrimInt);
352    QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
353        ? kQuickThrowStringBounds
354        : kQuickThrowArrayBounds;
355    arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
356    CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
357    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
358  }
359
360  bool IsFatal() const OVERRIDE { return true; }
361
362  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }
363
364 private:
365  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
366};
367
368class LoadClassSlowPathARM : public SlowPathCodeARM {
369 public:
370  LoadClassSlowPathARM(HLoadClass* cls,
371                       HInstruction* at,
372                       uint32_t dex_pc,
373                       bool do_clinit)
374      : SlowPathCodeARM(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
375    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
376  }
377
378  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
379    LocationSummary* locations = at_->GetLocations();
380
381    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
382    __ Bind(GetEntryLabel());
383    SaveLiveRegisters(codegen, locations);
384
385    InvokeRuntimeCallingConvention calling_convention;
386    __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
387    QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
388                                                : kQuickInitializeType;
389    arm_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this);
390    if (do_clinit_) {
391      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
392    } else {
393      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
394    }
395
396    // Move the class to the desired location.
397    Location out = locations->Out();
398    if (out.IsValid()) {
399      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
400      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
401    }
402    RestoreLiveRegisters(codegen, locations);
403    __ b(GetExitLabel());
404  }
405
406  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }
407
408 private:
409  // The class this slow path will load.
410  HLoadClass* const cls_;
411
412  // The instruction where this slow path is happening.
413  // (Might be the load class or an initialization check).
414  HInstruction* const at_;
415
416  // The dex PC of `at_`.
417  const uint32_t dex_pc_;
418
419  // Whether to initialize the class.
420  const bool do_clinit_;
421
422  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
423};
424
425class LoadStringSlowPathARM : public SlowPathCodeARM {
426 public:
427  explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {}
428
429  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
430    LocationSummary* locations = instruction_->GetLocations();
431    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
432
433    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
434    __ Bind(GetEntryLabel());
435    SaveLiveRegisters(codegen, locations);
436
437    InvokeRuntimeCallingConvention calling_convention;
438    HLoadString* load = instruction_->AsLoadString();
439    const uint32_t string_index = load->GetStringIndex();
440    __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index);
441    arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
442    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
443    arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
444
445    RestoreLiveRegisters(codegen, locations);
446
447    // Store the resolved String to the BSS entry.
448    // TODO: Change art_quick_resolve_string to kSaveEverything and use a temporary for the
449    // .bss entry address in the fast path, so that we can avoid another calculation here.
450    CodeGeneratorARM::PcRelativePatchInfo* labels =
451        arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
452    __ BindTrackedLabel(&labels->movw_label);
453    __ movw(IP, /* placeholder */ 0u);
454    __ BindTrackedLabel(&labels->movt_label);
455    __ movt(IP, /* placeholder */ 0u);
456    __ BindTrackedLabel(&labels->add_pc_label);
457    __ add(IP, IP, ShifterOperand(PC));
458    __ str(locations->Out().AsRegister<Register>(), Address(IP));
459
460    __ b(GetExitLabel());
461  }
462
463  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }
464
465 private:
466  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
467};
468
469class TypeCheckSlowPathARM : public SlowPathCodeARM {
470 public:
471  TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
472      : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {}
473
474  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
475    LocationSummary* locations = instruction_->GetLocations();
476    Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
477                                                        : locations->Out();
478    DCHECK(instruction_->IsCheckCast()
479           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
480
481    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
482    __ Bind(GetEntryLabel());
483
484    if (!is_fatal_) {
485      SaveLiveRegisters(codegen, locations);
486    }
487
488    // We're moving two locations to locations that could overlap, so we need a parallel
489    // move resolver.
490    InvokeRuntimeCallingConvention calling_convention;
491    codegen->EmitParallelMoves(
492        locations->InAt(1),
493        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
494        Primitive::kPrimNot,
495        object_class,
496        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
497        Primitive::kPrimNot);
498
499    if (instruction_->IsInstanceOf()) {
500      arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
501                                 instruction_,
502                                 instruction_->GetDexPc(),
503                                 this);
504      CheckEntrypointTypes<
505          kQuickInstanceofNonTrivial, size_t, const mirror::Class*, const mirror::Class*>();
506      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
507    } else {
508      DCHECK(instruction_->IsCheckCast());
509      arm_codegen->InvokeRuntime(kQuickCheckCast, instruction_, instruction_->GetDexPc(), this);
510      CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
511    }
512
513    if (!is_fatal_) {
514      RestoreLiveRegisters(codegen, locations);
515      __ b(GetExitLabel());
516    }
517  }
518
519  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }
520
521  bool IsFatal() const OVERRIDE { return is_fatal_; }
522
523 private:
524  const bool is_fatal_;
525
526  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
527};
528
529class DeoptimizationSlowPathARM : public SlowPathCodeARM {
530 public:
531  explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
532    : SlowPathCodeARM(instruction) {}
533
534  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
535    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
536    __ Bind(GetEntryLabel());
537    arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
538    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
539  }
540
541  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }
542
543 private:
544  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
545};
546
547class ArraySetSlowPathARM : public SlowPathCodeARM {
548 public:
549  explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {}
550
551  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
552    LocationSummary* locations = instruction_->GetLocations();
553    __ Bind(GetEntryLabel());
554    SaveLiveRegisters(codegen, locations);
555
556    InvokeRuntimeCallingConvention calling_convention;
557    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
558    parallel_move.AddMove(
559        locations->InAt(0),
560        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
561        Primitive::kPrimNot,
562        nullptr);
563    parallel_move.AddMove(
564        locations->InAt(1),
565        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
566        Primitive::kPrimInt,
567        nullptr);
568    parallel_move.AddMove(
569        locations->InAt(2),
570        Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
571        Primitive::kPrimNot,
572        nullptr);
573    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
574
575    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
576    arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
577    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
578    RestoreLiveRegisters(codegen, locations);
579    __ b(GetExitLabel());
580  }
581
582  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }
583
584 private:
585  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
586};
587
588// Slow path marking an object during a read barrier.
589class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM {
590 public:
591  ReadBarrierMarkSlowPathARM(HInstruction* instruction, Location obj)
592      : SlowPathCodeARM(instruction), obj_(obj) {
593    DCHECK(kEmitCompilerReadBarrier);
594  }
595
596  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }
597
598  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
599    LocationSummary* locations = instruction_->GetLocations();
600    Register reg = obj_.AsRegister<Register>();
601    DCHECK(locations->CanCall());
602    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg));
603    DCHECK(instruction_->IsInstanceFieldGet() ||
604           instruction_->IsStaticFieldGet() ||
605           instruction_->IsArrayGet() ||
606           instruction_->IsArraySet() ||
607           instruction_->IsLoadClass() ||
608           instruction_->IsLoadString() ||
609           instruction_->IsInstanceOf() ||
610           instruction_->IsCheckCast() ||
611           (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
612           (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
613        << "Unexpected instruction in read barrier marking slow path: "
614        << instruction_->DebugName();
615
616    __ Bind(GetEntryLabel());
617    // No need to save live registers; it's taken care of by the
618    // entrypoint. Also, there is no need to update the stack mask,
619    // as this runtime call will not trigger a garbage collection.
620    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
621    DCHECK_NE(reg, SP);
622    DCHECK_NE(reg, LR);
623    DCHECK_NE(reg, PC);
624    // IP is used internally by the ReadBarrierMarkRegX entry point
625    // as a temporary, it cannot be the entry point's input/output.
626    DCHECK_NE(reg, IP);
627    DCHECK(0 <= reg && reg < kNumberOfCoreRegisters) << reg;
628    // "Compact" slow path, saving two moves.
629    //
630    // Instead of using the standard runtime calling convention (input
631    // and output in R0):
632    //
633    //   R0 <- obj
634    //   R0 <- ReadBarrierMark(R0)
635    //   obj <- R0
636    //
637    // we just use rX (the register holding `obj`) as input and output
638    // of a dedicated entrypoint:
639    //
640    //   rX <- ReadBarrierMarkRegX(rX)
641    //
642    int32_t entry_point_offset =
643        CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(reg);
644    // This runtime call does not require a stack map.
645    arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
646    __ b(GetExitLabel());
647  }
648
649 private:
650  const Location obj_;
651
652  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
653};
654
655// Slow path generating a read barrier for a heap reference.
656class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM {
657 public:
658  ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
659                                         Location out,
660                                         Location ref,
661                                         Location obj,
662                                         uint32_t offset,
663                                         Location index)
664      : SlowPathCodeARM(instruction),
665        out_(out),
666        ref_(ref),
667        obj_(obj),
668        offset_(offset),
669        index_(index) {
670    DCHECK(kEmitCompilerReadBarrier);
671    // If `obj` is equal to `out` or `ref`, it means the initial object
672    // has been overwritten by (or after) the heap object reference load
673    // to be instrumented, e.g.:
674    //
675    //   __ LoadFromOffset(kLoadWord, out, out, offset);
676    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
677    //
678    // In that case, we have lost the information about the original
679    // object, and the emitted read barrier cannot work properly.
680    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
681    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
682  }
683
684  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
685    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
686    LocationSummary* locations = instruction_->GetLocations();
687    Register reg_out = out_.AsRegister<Register>();
688    DCHECK(locations->CanCall());
689    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
690    DCHECK(instruction_->IsInstanceFieldGet() ||
691           instruction_->IsStaticFieldGet() ||
692           instruction_->IsArrayGet() ||
693           instruction_->IsInstanceOf() ||
694           instruction_->IsCheckCast() ||
695           (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified())
696        << "Unexpected instruction in read barrier for heap reference slow path: "
697        << instruction_->DebugName();
698
699    __ Bind(GetEntryLabel());
700    SaveLiveRegisters(codegen, locations);
701
702    // We may have to change the index's value, but as `index_` is a
703    // constant member (like other "inputs" of this slow path),
704    // introduce a copy of it, `index`.
705    Location index = index_;
706    if (index_.IsValid()) {
707      // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
708      if (instruction_->IsArrayGet()) {
709        // Compute the actual memory offset and store it in `index`.
710        Register index_reg = index_.AsRegister<Register>();
711        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
712        if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
713          // We are about to change the value of `index_reg` (see the
714          // calls to art::arm::Thumb2Assembler::Lsl and
715          // art::arm::Thumb2Assembler::AddConstant below), but it has
716          // not been saved by the previous call to
717          // art::SlowPathCode::SaveLiveRegisters, as it is a
718          // callee-save register --
719          // art::SlowPathCode::SaveLiveRegisters does not consider
720          // callee-save registers, as it has been designed with the
721          // assumption that callee-save registers are supposed to be
722          // handled by the called function.  So, as a callee-save
723          // register, `index_reg` _would_ eventually be saved onto
724          // the stack, but it would be too late: we would have
725          // changed its value earlier.  Therefore, we manually save
726          // it here into another freely available register,
727          // `free_reg`, chosen of course among the caller-save
728          // registers (as a callee-save `free_reg` register would
729          // exhibit the same problem).
730          //
731          // Note we could have requested a temporary register from
732          // the register allocator instead; but we prefer not to, as
733          // this is a slow path, and we know we can find a
734          // caller-save register that is available.
735          Register free_reg = FindAvailableCallerSaveRegister(codegen);
736          __ Mov(free_reg, index_reg);
737          index_reg = free_reg;
738          index = Location::RegisterLocation(index_reg);
739        } else {
740          // The initial register stored in `index_` has already been
741          // saved in the call to art::SlowPathCode::SaveLiveRegisters
742          // (as it is not a callee-save register), so we can freely
743          // use it.
744        }
745        // Shifting the index value contained in `index_reg` by the scale
746        // factor (2) cannot overflow in practice, as the runtime is
747        // unable to allocate object arrays with a size larger than
748        // 2^26 - 1 (that is, 2^28 - 4 bytes).
749        __ Lsl(index_reg, index_reg, TIMES_4);
750        static_assert(
751            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
752            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
753        __ AddConstant(index_reg, index_reg, offset_);
754      } else {
755        // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
756        // intrinsics, `index_` is not shifted by a scale factor of 2
757        // (as in the case of ArrayGet), as it is actually an offset
758        // to an object field within an object.
759        DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
760        DCHECK(instruction_->GetLocations()->Intrinsified());
761        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
762               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
763            << instruction_->AsInvoke()->GetIntrinsic();
764        DCHECK_EQ(offset_, 0U);
765        DCHECK(index_.IsRegisterPair());
766        // UnsafeGet's offset location is a register pair, the low
767        // part contains the correct offset.
768        index = index_.ToLow();
769      }
770    }
771
772    // We're moving two or three locations to locations that could
773    // overlap, so we need a parallel move resolver.
774    InvokeRuntimeCallingConvention calling_convention;
775    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
776    parallel_move.AddMove(ref_,
777                          Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
778                          Primitive::kPrimNot,
779                          nullptr);
780    parallel_move.AddMove(obj_,
781                          Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
782                          Primitive::kPrimNot,
783                          nullptr);
784    if (index.IsValid()) {
785      parallel_move.AddMove(index,
786                            Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
787                            Primitive::kPrimInt,
788                            nullptr);
789      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
790    } else {
791      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
792      __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
793    }
794    arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
795    CheckEntrypointTypes<
796        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
797    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
798
799    RestoreLiveRegisters(codegen, locations);
800    __ b(GetExitLabel());
801  }
802
803  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }
804
805 private:
806  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
807    size_t ref = static_cast<int>(ref_.AsRegister<Register>());
808    size_t obj = static_cast<int>(obj_.AsRegister<Register>());
809    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
810      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
811        return static_cast<Register>(i);
812      }
813    }
814    // We shall never fail to find a free caller-save register, as
815    // there are more than two core caller-save registers on ARM
816    // (meaning it is possible to find one which is different from
817    // `ref` and `obj`).
818    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
819    LOG(FATAL) << "Could not find a free caller-save register";
820    UNREACHABLE();
821  }
822
823  const Location out_;
824  const Location ref_;
825  const Location obj_;
826  const uint32_t offset_;
827  // An additional location containing an index to an array.
828  // Only used for HArrayGet and the UnsafeGetObject &
829  // UnsafeGetObjectVolatile intrinsics.
830  const Location index_;
831
832  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
833};
834
835// Slow path generating a read barrier for a GC root.
836class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM {
837 public:
838  ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
839      : SlowPathCodeARM(instruction), out_(out), root_(root) {
840    DCHECK(kEmitCompilerReadBarrier);
841  }
842
843  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
844    LocationSummary* locations = instruction_->GetLocations();
845    Register reg_out = out_.AsRegister<Register>();
846    DCHECK(locations->CanCall());
847    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
848    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
849        << "Unexpected instruction in read barrier for GC root slow path: "
850        << instruction_->DebugName();
851
852    __ Bind(GetEntryLabel());
853    SaveLiveRegisters(codegen, locations);
854
855    InvokeRuntimeCallingConvention calling_convention;
856    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
857    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
858    arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
859                               instruction_,
860                               instruction_->GetDexPc(),
861                               this);
862    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
863    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
864
865    RestoreLiveRegisters(codegen, locations);
866    __ b(GetExitLabel());
867  }
868
869  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }
870
871 private:
872  const Location out_;
873  const Location root_;
874
875  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
876};
877
878#undef __
879// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
880#define __ down_cast<ArmAssembler*>(GetAssembler())->  // NOLINT
881
882inline Condition ARMCondition(IfCondition cond) {
883  switch (cond) {
884    case kCondEQ: return EQ;
885    case kCondNE: return NE;
886    case kCondLT: return LT;
887    case kCondLE: return LE;
888    case kCondGT: return GT;
889    case kCondGE: return GE;
890    case kCondB:  return LO;
891    case kCondBE: return LS;
892    case kCondA:  return HI;
893    case kCondAE: return HS;
894  }
895  LOG(FATAL) << "Unreachable";
896  UNREACHABLE();
897}
898
899// Maps signed condition to unsigned condition.
900inline Condition ARMUnsignedCondition(IfCondition cond) {
901  switch (cond) {
902    case kCondEQ: return EQ;
903    case kCondNE: return NE;
904    // Signed to unsigned.
905    case kCondLT: return LO;
906    case kCondLE: return LS;
907    case kCondGT: return HI;
908    case kCondGE: return HS;
909    // Unsigned remain unchanged.
910    case kCondB:  return LO;
911    case kCondBE: return LS;
912    case kCondA:  return HI;
913    case kCondAE: return HS;
914  }
915  LOG(FATAL) << "Unreachable";
916  UNREACHABLE();
917}
918
919inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
920  // The ARM condition codes can express all the necessary branches, see the
921  // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
922  // There is no dex instruction or HIR that would need the missing conditions
923  // "equal or unordered" or "not equal".
924  switch (cond) {
925    case kCondEQ: return EQ;
926    case kCondNE: return NE /* unordered */;
927    case kCondLT: return gt_bias ? CC : LT /* unordered */;
928    case kCondLE: return gt_bias ? LS : LE /* unordered */;
929    case kCondGT: return gt_bias ? HI /* unordered */ : GT;
930    case kCondGE: return gt_bias ? CS /* unordered */ : GE;
931    default:
932      LOG(FATAL) << "UNREACHABLE";
933      UNREACHABLE();
934  }
935}
936
937void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
938  stream << Register(reg);
939}
940
941void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
942  stream << SRegister(reg);
943}
944
945size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
946  __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
947  return kArmWordSize;
948}
949
950size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
951  __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
952  return kArmWordSize;
953}
954
955size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
956  __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
957  return kArmWordSize;
958}
959
960size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
961  __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
962  return kArmWordSize;
963}
964
965CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
966                                   const ArmInstructionSetFeatures& isa_features,
967                                   const CompilerOptions& compiler_options,
968                                   OptimizingCompilerStats* stats)
969    : CodeGenerator(graph,
970                    kNumberOfCoreRegisters,
971                    kNumberOfSRegisters,
972                    kNumberOfRegisterPairs,
973                    ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
974                                        arraysize(kCoreCalleeSaves)),
975                    ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
976                                        arraysize(kFpuCalleeSaves)),
977                    compiler_options,
978                    stats),
979      block_labels_(nullptr),
980      location_builder_(graph, this),
981      instruction_visitor_(graph, this),
982      move_resolver_(graph->GetArena(), this),
983      assembler_(graph->GetArena()),
984      isa_features_(isa_features),
985      uint32_literals_(std::less<uint32_t>(),
986                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
987      method_patches_(MethodReferenceComparator(),
988                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
989      call_patches_(MethodReferenceComparator(),
990                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
991      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
992      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
993      boot_image_string_patches_(StringReferenceValueComparator(),
994                                 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
995      pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
996      boot_image_type_patches_(TypeReferenceValueComparator(),
997                               graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
998      pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
999      boot_image_address_patches_(std::less<uint32_t>(),
1000                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
1001  // Always save the LR register to mimic Quick.
1002  AddAllocatedRegister(Location::RegisterLocation(LR));
1003}
1004
1005void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
1006  // Ensure that we fix up branches and literal loads and emit the literal pool.
1007  __ FinalizeCode();
1008
1009  // Adjust native pc offsets in stack maps.
1010  for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
1011    uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
1012    uint32_t new_position = __ GetAdjustedPosition(old_position);
1013    stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
1014  }
1015  // Adjust pc offsets for the disassembly information.
1016  if (disasm_info_ != nullptr) {
1017    GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
1018    frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
1019    frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
1020    for (auto& it : *disasm_info_->GetInstructionIntervals()) {
1021      it.second.start = __ GetAdjustedPosition(it.second.start);
1022      it.second.end = __ GetAdjustedPosition(it.second.end);
1023    }
1024    for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
1025      it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
1026      it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
1027    }
1028  }
1029
1030  CodeGenerator::Finalize(allocator);
1031}
1032
1033void CodeGeneratorARM::SetupBlockedRegisters() const {
1034  // Don't allocate the dalvik style register pair passing.
1035  blocked_register_pairs_[R1_R2] = true;
1036
1037  // Stack register, LR and PC are always reserved.
1038  blocked_core_registers_[SP] = true;
1039  blocked_core_registers_[LR] = true;
1040  blocked_core_registers_[PC] = true;
1041
1042  // Reserve thread register.
1043  blocked_core_registers_[TR] = true;
1044
1045  // Reserve temp register.
1046  blocked_core_registers_[IP] = true;
1047
1048  if (GetGraph()->IsDebuggable()) {
1049    // Stubs do not save callee-save floating point registers. If the graph
1050    // is debuggable, we need to deal with these registers differently. For
1051    // now, just block them.
1052    for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
1053      blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
1054    }
1055  }
1056
1057  UpdateBlockedPairRegisters();
1058}
1059
1060void CodeGeneratorARM::UpdateBlockedPairRegisters() const {
1061  for (int i = 0; i < kNumberOfRegisterPairs; i++) {
1062    ArmManagedRegister current =
1063        ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
1064    if (blocked_core_registers_[current.AsRegisterPairLow()]
1065        || blocked_core_registers_[current.AsRegisterPairHigh()]) {
1066      blocked_register_pairs_[i] = true;
1067    }
1068  }
1069}
1070
1071InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
1072      : InstructionCodeGenerator(graph, codegen),
1073        assembler_(codegen->GetAssembler()),
1074        codegen_(codegen) {}
1075
1076void CodeGeneratorARM::ComputeSpillMask() {
1077  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
1078  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
1079  // There is no easy instruction to restore just the PC on thumb2. We spill and
1080  // restore another arbitrary register.
1081  core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
1082  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
1083  // We use vpush and vpop for saving and restoring floating point registers, which take
1084  // a SRegister and the number of registers to save/restore after that SRegister. We
1085  // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
1086  // but in the range.
1087  if (fpu_spill_mask_ != 0) {
1088    uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
1089    uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
1090    for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
1091      fpu_spill_mask_ |= (1 << i);
1092    }
1093  }
1094}
1095
1096static dwarf::Reg DWARFReg(Register reg) {
1097  return dwarf::Reg::ArmCore(static_cast<int>(reg));
1098}
1099
1100static dwarf::Reg DWARFReg(SRegister reg) {
1101  return dwarf::Reg::ArmFp(static_cast<int>(reg));
1102}
1103
1104void CodeGeneratorARM::GenerateFrameEntry() {
1105  bool skip_overflow_check =
1106      IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
1107  DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1108  __ Bind(&frame_entry_label_);
1109
1110  if (HasEmptyFrame()) {
1111    return;
1112  }
1113
1114  if (!skip_overflow_check) {
1115    __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
1116    __ LoadFromOffset(kLoadWord, IP, IP, 0);
1117    RecordPcInfo(nullptr, 0);
1118  }
1119
1120  __ PushList(core_spill_mask_);
1121  __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
1122  __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
1123  if (fpu_spill_mask_ != 0) {
1124    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1125    __ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
1126    __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
1127    __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
1128  }
1129  int adjust = GetFrameSize() - FrameEntrySpillSize();
1130  __ AddConstant(SP, -adjust);
1131  __ cfi().AdjustCFAOffset(adjust);
1132  __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
1133}
1134
1135void CodeGeneratorARM::GenerateFrameExit() {
1136  if (HasEmptyFrame()) {
1137    __ bx(LR);
1138    return;
1139  }
1140  __ cfi().RememberState();
1141  int adjust = GetFrameSize() - FrameEntrySpillSize();
1142  __ AddConstant(SP, adjust);
1143  __ cfi().AdjustCFAOffset(-adjust);
1144  if (fpu_spill_mask_ != 0) {
1145    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1146    __ vpops(start_register, POPCOUNT(fpu_spill_mask_));
1147    __ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_));
1148    __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
1149  }
1150  // Pop LR into PC to return.
1151  DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
1152  uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
1153  __ PopList(pop_mask);
1154  __ cfi().RestoreState();
1155  __ cfi().DefCFAOffset(GetFrameSize());
1156}
1157
1158void CodeGeneratorARM::Bind(HBasicBlock* block) {
1159  Label* label = GetLabelOf(block);
1160  __ BindTrackedLabel(label);
1161}
1162
1163Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
1164  switch (type) {
1165    case Primitive::kPrimBoolean:
1166    case Primitive::kPrimByte:
1167    case Primitive::kPrimChar:
1168    case Primitive::kPrimShort:
1169    case Primitive::kPrimInt:
1170    case Primitive::kPrimNot: {
1171      uint32_t index = gp_index_++;
1172      uint32_t stack_index = stack_index_++;
1173      if (index < calling_convention.GetNumberOfRegisters()) {
1174        return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
1175      } else {
1176        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1177      }
1178    }
1179
1180    case Primitive::kPrimLong: {
1181      uint32_t index = gp_index_;
1182      uint32_t stack_index = stack_index_;
1183      gp_index_ += 2;
1184      stack_index_ += 2;
1185      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1186        if (calling_convention.GetRegisterAt(index) == R1) {
1187          // Skip R1, and use R2_R3 instead.
1188          gp_index_++;
1189          index++;
1190        }
1191      }
1192      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1193        DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
1194                  calling_convention.GetRegisterAt(index + 1));
1195
1196        return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
1197                                              calling_convention.GetRegisterAt(index + 1));
1198      } else {
1199        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1200      }
1201    }
1202
1203    case Primitive::kPrimFloat: {
1204      uint32_t stack_index = stack_index_++;
1205      if (float_index_ % 2 == 0) {
1206        float_index_ = std::max(double_index_, float_index_);
1207      }
1208      if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
1209        return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
1210      } else {
1211        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1212      }
1213    }
1214
1215    case Primitive::kPrimDouble: {
1216      double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
1217      uint32_t stack_index = stack_index_;
1218      stack_index_ += 2;
1219      if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
1220        uint32_t index = double_index_;
1221        double_index_ += 2;
1222        Location result = Location::FpuRegisterPairLocation(
1223          calling_convention.GetFpuRegisterAt(index),
1224          calling_convention.GetFpuRegisterAt(index + 1));
1225        DCHECK(ExpectedPairLayout(result));
1226        return result;
1227      } else {
1228        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1229      }
1230    }
1231
1232    case Primitive::kPrimVoid:
1233      LOG(FATAL) << "Unexpected parameter type " << type;
1234      break;
1235  }
1236  return Location::NoLocation();
1237}
1238
1239Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
1240  switch (type) {
1241    case Primitive::kPrimBoolean:
1242    case Primitive::kPrimByte:
1243    case Primitive::kPrimChar:
1244    case Primitive::kPrimShort:
1245    case Primitive::kPrimInt:
1246    case Primitive::kPrimNot: {
1247      return Location::RegisterLocation(R0);
1248    }
1249
1250    case Primitive::kPrimFloat: {
1251      return Location::FpuRegisterLocation(S0);
1252    }
1253
1254    case Primitive::kPrimLong: {
1255      return Location::RegisterPairLocation(R0, R1);
1256    }
1257
1258    case Primitive::kPrimDouble: {
1259      return Location::FpuRegisterPairLocation(S0, S1);
1260    }
1261
1262    case Primitive::kPrimVoid:
1263      return Location::NoLocation();
1264  }
1265
1266  UNREACHABLE();
1267}
1268
1269Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
1270  return Location::RegisterLocation(kMethodRegisterArgument);
1271}
1272
1273void CodeGeneratorARM::Move32(Location destination, Location source) {
1274  if (source.Equals(destination)) {
1275    return;
1276  }
1277  if (destination.IsRegister()) {
1278    if (source.IsRegister()) {
1279      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
1280    } else if (source.IsFpuRegister()) {
1281      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
1282    } else {
1283      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
1284    }
1285  } else if (destination.IsFpuRegister()) {
1286    if (source.IsRegister()) {
1287      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
1288    } else if (source.IsFpuRegister()) {
1289      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
1290    } else {
1291      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
1292    }
1293  } else {
1294    DCHECK(destination.IsStackSlot()) << destination;
1295    if (source.IsRegister()) {
1296      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
1297    } else if (source.IsFpuRegister()) {
1298      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
1299    } else {
1300      DCHECK(source.IsStackSlot()) << source;
1301      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
1302      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
1303    }
1304  }
1305}
1306
1307void CodeGeneratorARM::Move64(Location destination, Location source) {
1308  if (source.Equals(destination)) {
1309    return;
1310  }
1311  if (destination.IsRegisterPair()) {
1312    if (source.IsRegisterPair()) {
1313      EmitParallelMoves(
1314          Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1315          Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1316          Primitive::kPrimInt,
1317          Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1318          Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1319          Primitive::kPrimInt);
1320    } else if (source.IsFpuRegister()) {
1321      UNIMPLEMENTED(FATAL);
1322    } else if (source.IsFpuRegisterPair()) {
1323      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
1324                 destination.AsRegisterPairHigh<Register>(),
1325                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
1326    } else {
1327      DCHECK(source.IsDoubleStackSlot());
1328      DCHECK(ExpectedPairLayout(destination));
1329      __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
1330                        SP, source.GetStackIndex());
1331    }
1332  } else if (destination.IsFpuRegisterPair()) {
1333    if (source.IsDoubleStackSlot()) {
1334      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1335                         SP,
1336                         source.GetStackIndex());
1337    } else if (source.IsRegisterPair()) {
1338      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1339                 source.AsRegisterPairLow<Register>(),
1340                 source.AsRegisterPairHigh<Register>());
1341    } else {
1342      UNIMPLEMENTED(FATAL);
1343    }
1344  } else {
1345    DCHECK(destination.IsDoubleStackSlot());
1346    if (source.IsRegisterPair()) {
1347      // No conflict possible, so just do the moves.
1348      if (source.AsRegisterPairLow<Register>() == R1) {
1349        DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
1350        __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
1351        __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
1352      } else {
1353        __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
1354                         SP, destination.GetStackIndex());
1355      }
1356    } else if (source.IsFpuRegisterPair()) {
1357      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
1358                        SP,
1359                        destination.GetStackIndex());
1360    } else {
1361      DCHECK(source.IsDoubleStackSlot());
1362      EmitParallelMoves(
1363          Location::StackSlot(source.GetStackIndex()),
1364          Location::StackSlot(destination.GetStackIndex()),
1365          Primitive::kPrimInt,
1366          Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
1367          Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
1368          Primitive::kPrimInt);
1369    }
1370  }
1371}
1372
1373void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
1374  DCHECK(location.IsRegister());
1375  __ LoadImmediate(location.AsRegister<Register>(), value);
1376}
1377
1378void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1379  HParallelMove move(GetGraph()->GetArena());
1380  move.AddMove(src, dst, dst_type, nullptr);
1381  GetMoveResolver()->EmitNativeCode(&move);
1382}
1383
1384void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
1385  if (location.IsRegister()) {
1386    locations->AddTemp(location);
1387  } else if (location.IsRegisterPair()) {
1388    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1389    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1390  } else {
1391    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1392  }
1393}
1394
1395void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
1396                                     HInstruction* instruction,
1397                                     uint32_t dex_pc,
1398                                     SlowPathCode* slow_path) {
1399  ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1400  GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value());
1401  if (EntrypointRequiresStackMap(entrypoint)) {
1402    RecordPcInfo(instruction, dex_pc, slow_path);
1403  }
1404}
1405
1406void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1407                                                           HInstruction* instruction,
1408                                                           SlowPathCode* slow_path) {
1409  ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1410  GenerateInvokeRuntime(entry_point_offset);
1411}
1412
1413void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) {
1414  __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
1415  __ blx(LR);
1416}
1417
1418void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1419  DCHECK(!successor->IsExitBlock());
1420
1421  HBasicBlock* block = got->GetBlock();
1422  HInstruction* previous = got->GetPrevious();
1423
1424  HLoopInformation* info = block->GetLoopInformation();
1425  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1426    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
1427    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1428    return;
1429  }
1430
1431  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1432    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1433  }
1434  if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1435    __ b(codegen_->GetLabelOf(successor));
1436  }
1437}
1438
1439void LocationsBuilderARM::VisitGoto(HGoto* got) {
1440  got->SetLocations(nullptr);
1441}
1442
1443void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
1444  HandleGoto(got, got->GetSuccessor());
1445}
1446
1447void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1448  try_boundary->SetLocations(nullptr);
1449}
1450
1451void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1452  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1453  if (!successor->IsExitBlock()) {
1454    HandleGoto(try_boundary, successor);
1455  }
1456}
1457
1458void LocationsBuilderARM::VisitExit(HExit* exit) {
1459  exit->SetLocations(nullptr);
1460}
1461
1462void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1463}
1464
1465void InstructionCodeGeneratorARM::GenerateVcmp(HInstruction* instruction) {
1466  Primitive::Type type = instruction->InputAt(0)->GetType();
1467  Location lhs_loc = instruction->GetLocations()->InAt(0);
1468  Location rhs_loc = instruction->GetLocations()->InAt(1);
1469  if (rhs_loc.IsConstant()) {
1470    // 0.0 is the only immediate that can be encoded directly in
1471    // a VCMP instruction.
1472    //
1473    // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1474    // specify that in a floating-point comparison, positive zero
1475    // and negative zero are considered equal, so we can use the
1476    // literal 0.0 for both cases here.
1477    //
1478    // Note however that some methods (Float.equal, Float.compare,
1479    // Float.compareTo, Double.equal, Double.compare,
1480    // Double.compareTo, Math.max, Math.min, StrictMath.max,
1481    // StrictMath.min) consider 0.0 to be (strictly) greater than
1482    // -0.0. So if we ever translate calls to these methods into a
1483    // HCompare instruction, we must handle the -0.0 case with
1484    // care here.
1485    DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1486    if (type == Primitive::kPrimFloat) {
1487      __ vcmpsz(lhs_loc.AsFpuRegister<SRegister>());
1488    } else {
1489      DCHECK_EQ(type, Primitive::kPrimDouble);
1490      __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()));
1491    }
1492  } else {
1493    if (type == Primitive::kPrimFloat) {
1494      __ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>());
1495    } else {
1496      DCHECK_EQ(type, Primitive::kPrimDouble);
1497      __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()),
1498               FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>()));
1499    }
1500  }
1501}
1502
1503void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond,
1504                                                  Label* true_label,
1505                                                  Label* false_label ATTRIBUTE_UNUSED) {
1506  __ vmstat();  // transfer FP status register to ARM APSR.
1507  __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias()));
1508}
1509
1510void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond,
1511                                                               Label* true_label,
1512                                                               Label* false_label) {
1513  LocationSummary* locations = cond->GetLocations();
1514  Location left = locations->InAt(0);
1515  Location right = locations->InAt(1);
1516  IfCondition if_cond = cond->GetCondition();
1517
1518  Register left_high = left.AsRegisterPairHigh<Register>();
1519  Register left_low = left.AsRegisterPairLow<Register>();
1520  IfCondition true_high_cond = if_cond;
1521  IfCondition false_high_cond = cond->GetOppositeCondition();
1522  Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part
1523
1524  // Set the conditions for the test, remembering that == needs to be
1525  // decided using the low words.
1526  // TODO: consider avoiding jumps with temporary and CMP low+SBC high
1527  switch (if_cond) {
1528    case kCondEQ:
1529    case kCondNE:
1530      // Nothing to do.
1531      break;
1532    case kCondLT:
1533      false_high_cond = kCondGT;
1534      break;
1535    case kCondLE:
1536      true_high_cond = kCondLT;
1537      break;
1538    case kCondGT:
1539      false_high_cond = kCondLT;
1540      break;
1541    case kCondGE:
1542      true_high_cond = kCondGT;
1543      break;
1544    case kCondB:
1545      false_high_cond = kCondA;
1546      break;
1547    case kCondBE:
1548      true_high_cond = kCondB;
1549      break;
1550    case kCondA:
1551      false_high_cond = kCondB;
1552      break;
1553    case kCondAE:
1554      true_high_cond = kCondA;
1555      break;
1556  }
1557  if (right.IsConstant()) {
1558    int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1559    int32_t val_low = Low32Bits(value);
1560    int32_t val_high = High32Bits(value);
1561
1562    __ CmpConstant(left_high, val_high);
1563    if (if_cond == kCondNE) {
1564      __ b(true_label, ARMCondition(true_high_cond));
1565    } else if (if_cond == kCondEQ) {
1566      __ b(false_label, ARMCondition(false_high_cond));
1567    } else {
1568      __ b(true_label, ARMCondition(true_high_cond));
1569      __ b(false_label, ARMCondition(false_high_cond));
1570    }
1571    // Must be equal high, so compare the lows.
1572    __ CmpConstant(left_low, val_low);
1573  } else {
1574    Register right_high = right.AsRegisterPairHigh<Register>();
1575    Register right_low = right.AsRegisterPairLow<Register>();
1576
1577    __ cmp(left_high, ShifterOperand(right_high));
1578    if (if_cond == kCondNE) {
1579      __ b(true_label, ARMCondition(true_high_cond));
1580    } else if (if_cond == kCondEQ) {
1581      __ b(false_label, ARMCondition(false_high_cond));
1582    } else {
1583      __ b(true_label, ARMCondition(true_high_cond));
1584      __ b(false_label, ARMCondition(false_high_cond));
1585    }
1586    // Must be equal high, so compare the lows.
1587    __ cmp(left_low, ShifterOperand(right_low));
1588  }
1589  // The last comparison might be unsigned.
1590  // TODO: optimize cases where this is always true/false
1591  __ b(true_label, final_condition);
1592}
1593
1594void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
1595                                                               Label* true_target_in,
1596                                                               Label* false_target_in) {
1597  // Generated branching requires both targets to be explicit. If either of the
1598  // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1599  Label fallthrough_target;
1600  Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1601  Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1602
1603  Primitive::Type type = condition->InputAt(0)->GetType();
1604  switch (type) {
1605    case Primitive::kPrimLong:
1606      GenerateLongComparesAndJumps(condition, true_target, false_target);
1607      break;
1608    case Primitive::kPrimFloat:
1609    case Primitive::kPrimDouble:
1610      GenerateVcmp(condition);
1611      GenerateFPJumps(condition, true_target, false_target);
1612      break;
1613    default:
1614      LOG(FATAL) << "Unexpected compare type " << type;
1615  }
1616
1617  if (false_target != &fallthrough_target) {
1618    __ b(false_target);
1619  }
1620
1621  if (fallthrough_target.IsLinked()) {
1622    __ Bind(&fallthrough_target);
1623  }
1624}
1625
1626void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
1627                                                        size_t condition_input_index,
1628                                                        Label* true_target,
1629                                                        Label* false_target) {
1630  HInstruction* cond = instruction->InputAt(condition_input_index);
1631
1632  if (true_target == nullptr && false_target == nullptr) {
1633    // Nothing to do. The code always falls through.
1634    return;
1635  } else if (cond->IsIntConstant()) {
1636    // Constant condition, statically compared against "true" (integer value 1).
1637    if (cond->AsIntConstant()->IsTrue()) {
1638      if (true_target != nullptr) {
1639        __ b(true_target);
1640      }
1641    } else {
1642      DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1643      if (false_target != nullptr) {
1644        __ b(false_target);
1645      }
1646    }
1647    return;
1648  }
1649
1650  // The following code generates these patterns:
1651  //  (1) true_target == nullptr && false_target != nullptr
1652  //        - opposite condition true => branch to false_target
1653  //  (2) true_target != nullptr && false_target == nullptr
1654  //        - condition true => branch to true_target
1655  //  (3) true_target != nullptr && false_target != nullptr
1656  //        - condition true => branch to true_target
1657  //        - branch to false_target
1658  if (IsBooleanValueOrMaterializedCondition(cond)) {
1659    // Condition has been materialized, compare the output to 0.
1660    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
1661    DCHECK(cond_val.IsRegister());
1662    if (true_target == nullptr) {
1663      __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
1664    } else {
1665      __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
1666    }
1667  } else {
1668    // Condition has not been materialized. Use its inputs as the comparison and
1669    // its condition as the branch condition.
1670    HCondition* condition = cond->AsCondition();
1671
1672    // If this is a long or FP comparison that has been folded into
1673    // the HCondition, generate the comparison directly.
1674    Primitive::Type type = condition->InputAt(0)->GetType();
1675    if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1676      GenerateCompareTestAndBranch(condition, true_target, false_target);
1677      return;
1678    }
1679
1680    LocationSummary* locations = cond->GetLocations();
1681    DCHECK(locations->InAt(0).IsRegister());
1682    Register left = locations->InAt(0).AsRegister<Register>();
1683    Location right = locations->InAt(1);
1684    if (right.IsRegister()) {
1685      __ cmp(left, ShifterOperand(right.AsRegister<Register>()));
1686    } else {
1687      DCHECK(right.IsConstant());
1688      __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1689    }
1690    if (true_target == nullptr) {
1691      __ b(false_target, ARMCondition(condition->GetOppositeCondition()));
1692    } else {
1693      __ b(true_target, ARMCondition(condition->GetCondition()));
1694    }
1695  }
1696
1697  // If neither branch falls through (case 3), the conditional branch to `true_target`
1698  // was already emitted (case 2) and we need to emit a jump to `false_target`.
1699  if (true_target != nullptr && false_target != nullptr) {
1700    __ b(false_target);
1701  }
1702}
1703
1704void LocationsBuilderARM::VisitIf(HIf* if_instr) {
1705  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1706  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1707    locations->SetInAt(0, Location::RequiresRegister());
1708  }
1709}
1710
1711void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
1712  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1713  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1714  Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1715      nullptr : codegen_->GetLabelOf(true_successor);
1716  Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1717      nullptr : codegen_->GetLabelOf(false_successor);
1718  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1719}
1720
1721void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1722  LocationSummary* locations = new (GetGraph()->GetArena())
1723      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1724  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
1725  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1726    locations->SetInAt(0, Location::RequiresRegister());
1727  }
1728}
1729
1730void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1731  SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
1732  GenerateTestAndBranch(deoptimize,
1733                        /* condition_input_index */ 0,
1734                        slow_path->GetEntryLabel(),
1735                        /* false_target */ nullptr);
1736}
1737
1738void LocationsBuilderARM::VisitSelect(HSelect* select) {
1739  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1740  if (Primitive::IsFloatingPointType(select->GetType())) {
1741    locations->SetInAt(0, Location::RequiresFpuRegister());
1742    locations->SetInAt(1, Location::RequiresFpuRegister());
1743  } else {
1744    locations->SetInAt(0, Location::RequiresRegister());
1745    locations->SetInAt(1, Location::RequiresRegister());
1746  }
1747  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1748    locations->SetInAt(2, Location::RequiresRegister());
1749  }
1750  locations->SetOut(Location::SameAsFirstInput());
1751}
1752
1753void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
1754  LocationSummary* locations = select->GetLocations();
1755  Label false_target;
1756  GenerateTestAndBranch(select,
1757                        /* condition_input_index */ 2,
1758                        /* true_target */ nullptr,
1759                        &false_target);
1760  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1761  __ Bind(&false_target);
1762}
1763
1764void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1765  new (GetGraph()->GetArena()) LocationSummary(info);
1766}
1767
1768void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
1769  // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1770}
1771
1772void CodeGeneratorARM::GenerateNop() {
1773  __ nop();
1774}
1775
1776void LocationsBuilderARM::HandleCondition(HCondition* cond) {
1777  LocationSummary* locations =
1778      new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1779  // Handle the long/FP comparisons made in instruction simplification.
1780  switch (cond->InputAt(0)->GetType()) {
1781    case Primitive::kPrimLong:
1782      locations->SetInAt(0, Location::RequiresRegister());
1783      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
1784      if (!cond->IsEmittedAtUseSite()) {
1785        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1786      }
1787      break;
1788
1789    case Primitive::kPrimFloat:
1790    case Primitive::kPrimDouble:
1791      locations->SetInAt(0, Location::RequiresFpuRegister());
1792      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
1793      if (!cond->IsEmittedAtUseSite()) {
1794        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1795      }
1796      break;
1797
1798    default:
1799      locations->SetInAt(0, Location::RequiresRegister());
1800      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
1801      if (!cond->IsEmittedAtUseSite()) {
1802        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1803      }
1804  }
1805}
1806
1807void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
1808  if (cond->IsEmittedAtUseSite()) {
1809    return;
1810  }
1811
1812  LocationSummary* locations = cond->GetLocations();
1813  Location left = locations->InAt(0);
1814  Location right = locations->InAt(1);
1815  Register out = locations->Out().AsRegister<Register>();
1816  Label true_label, false_label;
1817
1818  switch (cond->InputAt(0)->GetType()) {
1819    default: {
1820      // Integer case.
1821      if (right.IsRegister()) {
1822        __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>()));
1823      } else {
1824        DCHECK(right.IsConstant());
1825        __ CmpConstant(left.AsRegister<Register>(),
1826                       CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1827      }
1828      __ it(ARMCondition(cond->GetCondition()), kItElse);
1829      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
1830             ARMCondition(cond->GetCondition()));
1831      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
1832             ARMCondition(cond->GetOppositeCondition()));
1833      return;
1834    }
1835    case Primitive::kPrimLong:
1836      GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1837      break;
1838    case Primitive::kPrimFloat:
1839    case Primitive::kPrimDouble:
1840      GenerateVcmp(cond);
1841      GenerateFPJumps(cond, &true_label, &false_label);
1842      break;
1843  }
1844
1845  // Convert the jumps into the result.
1846  Label done_label;
1847
1848  // False case: result = 0.
1849  __ Bind(&false_label);
1850  __ LoadImmediate(out, 0);
1851  __ b(&done_label);
1852
1853  // True case: result = 1.
1854  __ Bind(&true_label);
1855  __ LoadImmediate(out, 1);
1856  __ Bind(&done_label);
1857}
1858
1859void LocationsBuilderARM::VisitEqual(HEqual* comp) {
1860  HandleCondition(comp);
1861}
1862
1863void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
1864  HandleCondition(comp);
1865}
1866
1867void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
1868  HandleCondition(comp);
1869}
1870
1871void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
1872  HandleCondition(comp);
1873}
1874
1875void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
1876  HandleCondition(comp);
1877}
1878
1879void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
1880  HandleCondition(comp);
1881}
1882
1883void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1884  HandleCondition(comp);
1885}
1886
1887void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1888  HandleCondition(comp);
1889}
1890
1891void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
1892  HandleCondition(comp);
1893}
1894
1895void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
1896  HandleCondition(comp);
1897}
1898
1899void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1900  HandleCondition(comp);
1901}
1902
1903void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1904  HandleCondition(comp);
1905}
1906
1907void LocationsBuilderARM::VisitBelow(HBelow* comp) {
1908  HandleCondition(comp);
1909}
1910
1911void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
1912  HandleCondition(comp);
1913}
1914
1915void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
1916  HandleCondition(comp);
1917}
1918
1919void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
1920  HandleCondition(comp);
1921}
1922
1923void LocationsBuilderARM::VisitAbove(HAbove* comp) {
1924  HandleCondition(comp);
1925}
1926
1927void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
1928  HandleCondition(comp);
1929}
1930
1931void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
1932  HandleCondition(comp);
1933}
1934
1935void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
1936  HandleCondition(comp);
1937}
1938
1939void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
1940  LocationSummary* locations =
1941      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1942  locations->SetOut(Location::ConstantLocation(constant));
1943}
1944
1945void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
1946  // Will be generated at use site.
1947}
1948
1949void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
1950  LocationSummary* locations =
1951      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1952  locations->SetOut(Location::ConstantLocation(constant));
1953}
1954
1955void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
1956  // Will be generated at use site.
1957}
1958
1959void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
1960  LocationSummary* locations =
1961      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1962  locations->SetOut(Location::ConstantLocation(constant));
1963}
1964
1965void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
1966  // Will be generated at use site.
1967}
1968
1969void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
1970  LocationSummary* locations =
1971      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1972  locations->SetOut(Location::ConstantLocation(constant));
1973}
1974
1975void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
1976  // Will be generated at use site.
1977}
1978
1979void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
1980  LocationSummary* locations =
1981      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1982  locations->SetOut(Location::ConstantLocation(constant));
1983}
1984
1985void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
1986  // Will be generated at use site.
1987}
1988
1989void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1990  memory_barrier->SetLocations(nullptr);
1991}
1992
1993void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1994  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
1995}
1996
1997void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
1998  ret->SetLocations(nullptr);
1999}
2000
2001void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
2002  codegen_->GenerateFrameExit();
2003}
2004
2005void LocationsBuilderARM::VisitReturn(HReturn* ret) {
2006  LocationSummary* locations =
2007      new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
2008  locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
2009}
2010
2011void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
2012  codegen_->GenerateFrameExit();
2013}
2014
2015void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2016  // The trampoline uses the same calling convention as dex calling conventions,
2017  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
2018  // the method_idx.
2019  HandleInvoke(invoke);
2020}
2021
2022void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2023  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
2024}
2025
2026void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2027  // Explicit clinit checks triggered by static invokes must have been pruned by
2028  // art::PrepareForRegisterAllocation.
2029  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2030
2031  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2032  if (intrinsic.TryDispatch(invoke)) {
2033    if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
2034      invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
2035    }
2036    return;
2037  }
2038
2039  HandleInvoke(invoke);
2040
2041  // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
2042  if (invoke->HasPcRelativeDexCache()) {
2043    invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2044  }
2045}
2046
2047static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
2048  if (invoke->GetLocations()->Intrinsified()) {
2049    IntrinsicCodeGeneratorARM intrinsic(codegen);
2050    intrinsic.Dispatch(invoke);
2051    return true;
2052  }
2053  return false;
2054}
2055
2056void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2057  // Explicit clinit checks triggered by static invokes must have been pruned by
2058  // art::PrepareForRegisterAllocation.
2059  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2060
2061  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2062    return;
2063  }
2064
2065  LocationSummary* locations = invoke->GetLocations();
2066  codegen_->GenerateStaticOrDirectCall(
2067      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
2068  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2069}
2070
2071void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
2072  InvokeDexCallingConventionVisitorARM calling_convention_visitor;
2073  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2074}
2075
2076void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2077  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2078  if (intrinsic.TryDispatch(invoke)) {
2079    return;
2080  }
2081
2082  HandleInvoke(invoke);
2083}
2084
2085void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2086  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2087    return;
2088  }
2089
2090  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
2091  DCHECK(!codegen_->IsLeafMethod());
2092  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2093}
2094
2095void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2096  HandleInvoke(invoke);
2097  // Add the hidden argument.
2098  invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
2099}
2100
2101void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2102  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2103  LocationSummary* locations = invoke->GetLocations();
2104  Register temp = locations->GetTemp(0).AsRegister<Register>();
2105  Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
2106  Location receiver = locations->InAt(0);
2107  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2108
2109  // Set the hidden argument. This is safe to do this here, as R12
2110  // won't be modified thereafter, before the `blx` (call) instruction.
2111  DCHECK_EQ(R12, hidden_reg);
2112  __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());
2113
2114  if (receiver.IsStackSlot()) {
2115    __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
2116    // /* HeapReference<Class> */ temp = temp->klass_
2117    __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
2118  } else {
2119    // /* HeapReference<Class> */ temp = receiver->klass_
2120    __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
2121  }
2122  codegen_->MaybeRecordImplicitNullCheck(invoke);
2123  // Instead of simply (possibly) unpoisoning `temp` here, we should
2124  // emit a read barrier for the previous class reference load.
2125  // However this is not required in practice, as this is an
2126  // intermediate/temporary reference and because the current
2127  // concurrent copying collector keeps the from-space memory
2128  // intact/accessible until the end of the marking phase (the
2129  // concurrent copying collector may not in the future).
2130  __ MaybeUnpoisonHeapReference(temp);
2131  __ LoadFromOffset(kLoadWord, temp, temp,
2132        mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
2133  uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2134      invoke->GetImtIndex(), kArmPointerSize));
2135  // temp = temp->GetImtEntryAt(method_offset);
2136  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
2137  uint32_t entry_point =
2138      ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
2139  // LR = temp->GetEntryPoint();
2140  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
2141  // LR();
2142  __ blx(LR);
2143  DCHECK(!codegen_->IsLeafMethod());
2144  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2145}
2146
2147void LocationsBuilderARM::VisitNeg(HNeg* neg) {
2148  LocationSummary* locations =
2149      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2150  switch (neg->GetResultType()) {
2151    case Primitive::kPrimInt: {
2152      locations->SetInAt(0, Location::RequiresRegister());
2153      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2154      break;
2155    }
2156    case Primitive::kPrimLong: {
2157      locations->SetInAt(0, Location::RequiresRegister());
2158      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2159      break;
2160    }
2161
2162    case Primitive::kPrimFloat:
2163    case Primitive::kPrimDouble:
2164      locations->SetInAt(0, Location::RequiresFpuRegister());
2165      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2166      break;
2167
2168    default:
2169      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2170  }
2171}
2172
2173void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
2174  LocationSummary* locations = neg->GetLocations();
2175  Location out = locations->Out();
2176  Location in = locations->InAt(0);
2177  switch (neg->GetResultType()) {
2178    case Primitive::kPrimInt:
2179      DCHECK(in.IsRegister());
2180      __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
2181      break;
2182
2183    case Primitive::kPrimLong:
2184      DCHECK(in.IsRegisterPair());
2185      // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
2186      __ rsbs(out.AsRegisterPairLow<Register>(),
2187              in.AsRegisterPairLow<Register>(),
2188              ShifterOperand(0));
2189      // We cannot emit an RSC (Reverse Subtract with Carry)
2190      // instruction here, as it does not exist in the Thumb-2
2191      // instruction set.  We use the following approach
2192      // using SBC and SUB instead.
2193      //
2194      // out.hi = -C
2195      __ sbc(out.AsRegisterPairHigh<Register>(),
2196             out.AsRegisterPairHigh<Register>(),
2197             ShifterOperand(out.AsRegisterPairHigh<Register>()));
2198      // out.hi = out.hi - in.hi
2199      __ sub(out.AsRegisterPairHigh<Register>(),
2200             out.AsRegisterPairHigh<Register>(),
2201             ShifterOperand(in.AsRegisterPairHigh<Register>()));
2202      break;
2203
2204    case Primitive::kPrimFloat:
2205      DCHECK(in.IsFpuRegister());
2206      __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
2207      break;
2208
2209    case Primitive::kPrimDouble:
2210      DCHECK(in.IsFpuRegisterPair());
2211      __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2212               FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2213      break;
2214
2215    default:
2216      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2217  }
2218}
2219
2220void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
2221  Primitive::Type result_type = conversion->GetResultType();
2222  Primitive::Type input_type = conversion->GetInputType();
2223  DCHECK_NE(result_type, input_type);
2224
2225  // The float-to-long, double-to-long and long-to-float type conversions
2226  // rely on a call to the runtime.
2227  LocationSummary::CallKind call_kind =
2228      (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2229        && result_type == Primitive::kPrimLong)
2230       || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
2231      ? LocationSummary::kCallOnMainOnly
2232      : LocationSummary::kNoCall;
2233  LocationSummary* locations =
2234      new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2235
2236  // The Java language does not allow treating boolean as an integral type but
2237  // our bit representation makes it safe.
2238
2239  switch (result_type) {
2240    case Primitive::kPrimByte:
2241      switch (input_type) {
2242        case Primitive::kPrimLong:
2243          // Type conversion from long to byte is a result of code transformations.
2244        case Primitive::kPrimBoolean:
2245          // Boolean input is a result of code transformations.
2246        case Primitive::kPrimShort:
2247        case Primitive::kPrimInt:
2248        case Primitive::kPrimChar:
2249          // Processing a Dex `int-to-byte' instruction.
2250          locations->SetInAt(0, Location::RequiresRegister());
2251          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2252          break;
2253
2254        default:
2255          LOG(FATAL) << "Unexpected type conversion from " << input_type
2256                     << " to " << result_type;
2257      }
2258      break;
2259
2260    case Primitive::kPrimShort:
2261      switch (input_type) {
2262        case Primitive::kPrimLong:
2263          // Type conversion from long to short is a result of code transformations.
2264        case Primitive::kPrimBoolean:
2265          // Boolean input is a result of code transformations.
2266        case Primitive::kPrimByte:
2267        case Primitive::kPrimInt:
2268        case Primitive::kPrimChar:
2269          // Processing a Dex `int-to-short' instruction.
2270          locations->SetInAt(0, Location::RequiresRegister());
2271          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2272          break;
2273
2274        default:
2275          LOG(FATAL) << "Unexpected type conversion from " << input_type
2276                     << " to " << result_type;
2277      }
2278      break;
2279
2280    case Primitive::kPrimInt:
2281      switch (input_type) {
2282        case Primitive::kPrimLong:
2283          // Processing a Dex `long-to-int' instruction.
2284          locations->SetInAt(0, Location::Any());
2285          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2286          break;
2287
2288        case Primitive::kPrimFloat:
2289          // Processing a Dex `float-to-int' instruction.
2290          locations->SetInAt(0, Location::RequiresFpuRegister());
2291          locations->SetOut(Location::RequiresRegister());
2292          locations->AddTemp(Location::RequiresFpuRegister());
2293          break;
2294
2295        case Primitive::kPrimDouble:
2296          // Processing a Dex `double-to-int' instruction.
2297          locations->SetInAt(0, Location::RequiresFpuRegister());
2298          locations->SetOut(Location::RequiresRegister());
2299          locations->AddTemp(Location::RequiresFpuRegister());
2300          break;
2301
2302        default:
2303          LOG(FATAL) << "Unexpected type conversion from " << input_type
2304                     << " to " << result_type;
2305      }
2306      break;
2307
2308    case Primitive::kPrimLong:
2309      switch (input_type) {
2310        case Primitive::kPrimBoolean:
2311          // Boolean input is a result of code transformations.
2312        case Primitive::kPrimByte:
2313        case Primitive::kPrimShort:
2314        case Primitive::kPrimInt:
2315        case Primitive::kPrimChar:
2316          // Processing a Dex `int-to-long' instruction.
2317          locations->SetInAt(0, Location::RequiresRegister());
2318          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2319          break;
2320
2321        case Primitive::kPrimFloat: {
2322          // Processing a Dex `float-to-long' instruction.
2323          InvokeRuntimeCallingConvention calling_convention;
2324          locations->SetInAt(0, Location::FpuRegisterLocation(
2325              calling_convention.GetFpuRegisterAt(0)));
2326          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2327          break;
2328        }
2329
2330        case Primitive::kPrimDouble: {
2331          // Processing a Dex `double-to-long' instruction.
2332          InvokeRuntimeCallingConvention calling_convention;
2333          locations->SetInAt(0, Location::FpuRegisterPairLocation(
2334              calling_convention.GetFpuRegisterAt(0),
2335              calling_convention.GetFpuRegisterAt(1)));
2336          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2337          break;
2338        }
2339
2340        default:
2341          LOG(FATAL) << "Unexpected type conversion from " << input_type
2342                     << " to " << result_type;
2343      }
2344      break;
2345
2346    case Primitive::kPrimChar:
2347      switch (input_type) {
2348        case Primitive::kPrimLong:
2349          // Type conversion from long to char is a result of code transformations.
2350        case Primitive::kPrimBoolean:
2351          // Boolean input is a result of code transformations.
2352        case Primitive::kPrimByte:
2353        case Primitive::kPrimShort:
2354        case Primitive::kPrimInt:
2355          // Processing a Dex `int-to-char' instruction.
2356          locations->SetInAt(0, Location::RequiresRegister());
2357          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2358          break;
2359
2360        default:
2361          LOG(FATAL) << "Unexpected type conversion from " << input_type
2362                     << " to " << result_type;
2363      }
2364      break;
2365
2366    case Primitive::kPrimFloat:
2367      switch (input_type) {
2368        case Primitive::kPrimBoolean:
2369          // Boolean input is a result of code transformations.
2370        case Primitive::kPrimByte:
2371        case Primitive::kPrimShort:
2372        case Primitive::kPrimInt:
2373        case Primitive::kPrimChar:
2374          // Processing a Dex `int-to-float' instruction.
2375          locations->SetInAt(0, Location::RequiresRegister());
2376          locations->SetOut(Location::RequiresFpuRegister());
2377          break;
2378
2379        case Primitive::kPrimLong: {
2380          // Processing a Dex `long-to-float' instruction.
2381          InvokeRuntimeCallingConvention calling_convention;
2382          locations->SetInAt(0, Location::RegisterPairLocation(
2383              calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
2384          locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2385          break;
2386        }
2387
2388        case Primitive::kPrimDouble:
2389          // Processing a Dex `double-to-float' instruction.
2390          locations->SetInAt(0, Location::RequiresFpuRegister());
2391          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2392          break;
2393
2394        default:
2395          LOG(FATAL) << "Unexpected type conversion from " << input_type
2396                     << " to " << result_type;
2397      };
2398      break;
2399
2400    case Primitive::kPrimDouble:
2401      switch (input_type) {
2402        case Primitive::kPrimBoolean:
2403          // Boolean input is a result of code transformations.
2404        case Primitive::kPrimByte:
2405        case Primitive::kPrimShort:
2406        case Primitive::kPrimInt:
2407        case Primitive::kPrimChar:
2408          // Processing a Dex `int-to-double' instruction.
2409          locations->SetInAt(0, Location::RequiresRegister());
2410          locations->SetOut(Location::RequiresFpuRegister());
2411          break;
2412
2413        case Primitive::kPrimLong:
2414          // Processing a Dex `long-to-double' instruction.
2415          locations->SetInAt(0, Location::RequiresRegister());
2416          locations->SetOut(Location::RequiresFpuRegister());
2417          locations->AddTemp(Location::RequiresFpuRegister());
2418          locations->AddTemp(Location::RequiresFpuRegister());
2419          break;
2420
2421        case Primitive::kPrimFloat:
2422          // Processing a Dex `float-to-double' instruction.
2423          locations->SetInAt(0, Location::RequiresFpuRegister());
2424          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2425          break;
2426
2427        default:
2428          LOG(FATAL) << "Unexpected type conversion from " << input_type
2429                     << " to " << result_type;
2430      };
2431      break;
2432
2433    default:
2434      LOG(FATAL) << "Unexpected type conversion from " << input_type
2435                 << " to " << result_type;
2436  }
2437}
2438
2439void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
2440  LocationSummary* locations = conversion->GetLocations();
2441  Location out = locations->Out();
2442  Location in = locations->InAt(0);
2443  Primitive::Type result_type = conversion->GetResultType();
2444  Primitive::Type input_type = conversion->GetInputType();
2445  DCHECK_NE(result_type, input_type);
2446  switch (result_type) {
2447    case Primitive::kPrimByte:
2448      switch (input_type) {
2449        case Primitive::kPrimLong:
2450          // Type conversion from long to byte is a result of code transformations.
2451          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
2452          break;
2453        case Primitive::kPrimBoolean:
2454          // Boolean input is a result of code transformations.
2455        case Primitive::kPrimShort:
2456        case Primitive::kPrimInt:
2457        case Primitive::kPrimChar:
2458          // Processing a Dex `int-to-byte' instruction.
2459          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
2460          break;
2461
2462        default:
2463          LOG(FATAL) << "Unexpected type conversion from " << input_type
2464                     << " to " << result_type;
2465      }
2466      break;
2467
2468    case Primitive::kPrimShort:
2469      switch (input_type) {
2470        case Primitive::kPrimLong:
2471          // Type conversion from long to short is a result of code transformations.
2472          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2473          break;
2474        case Primitive::kPrimBoolean:
2475          // Boolean input is a result of code transformations.
2476        case Primitive::kPrimByte:
2477        case Primitive::kPrimInt:
2478        case Primitive::kPrimChar:
2479          // Processing a Dex `int-to-short' instruction.
2480          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2481          break;
2482
2483        default:
2484          LOG(FATAL) << "Unexpected type conversion from " << input_type
2485                     << " to " << result_type;
2486      }
2487      break;
2488
2489    case Primitive::kPrimInt:
2490      switch (input_type) {
2491        case Primitive::kPrimLong:
2492          // Processing a Dex `long-to-int' instruction.
2493          DCHECK(out.IsRegister());
2494          if (in.IsRegisterPair()) {
2495            __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2496          } else if (in.IsDoubleStackSlot()) {
2497            __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
2498          } else {
2499            DCHECK(in.IsConstant());
2500            DCHECK(in.GetConstant()->IsLongConstant());
2501            int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2502            __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
2503          }
2504          break;
2505
2506        case Primitive::kPrimFloat: {
2507          // Processing a Dex `float-to-int' instruction.
2508          SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2509          __ vcvtis(temp, in.AsFpuRegister<SRegister>());
2510          __ vmovrs(out.AsRegister<Register>(), temp);
2511          break;
2512        }
2513
2514        case Primitive::kPrimDouble: {
2515          // Processing a Dex `double-to-int' instruction.
2516          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2517          __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2518          __ vmovrs(out.AsRegister<Register>(), temp_s);
2519          break;
2520        }
2521
2522        default:
2523          LOG(FATAL) << "Unexpected type conversion from " << input_type
2524                     << " to " << result_type;
2525      }
2526      break;
2527
2528    case Primitive::kPrimLong:
2529      switch (input_type) {
2530        case Primitive::kPrimBoolean:
2531          // Boolean input is a result of code transformations.
2532        case Primitive::kPrimByte:
2533        case Primitive::kPrimShort:
2534        case Primitive::kPrimInt:
2535        case Primitive::kPrimChar:
2536          // Processing a Dex `int-to-long' instruction.
2537          DCHECK(out.IsRegisterPair());
2538          DCHECK(in.IsRegister());
2539          __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
2540          // Sign extension.
2541          __ Asr(out.AsRegisterPairHigh<Register>(),
2542                 out.AsRegisterPairLow<Register>(),
2543                 31);
2544          break;
2545
2546        case Primitive::kPrimFloat:
2547          // Processing a Dex `float-to-long' instruction.
2548          codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
2549          CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2550          break;
2551
2552        case Primitive::kPrimDouble:
2553          // Processing a Dex `double-to-long' instruction.
2554          codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
2555          CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2556          break;
2557
2558        default:
2559          LOG(FATAL) << "Unexpected type conversion from " << input_type
2560                     << " to " << result_type;
2561      }
2562      break;
2563
2564    case Primitive::kPrimChar:
2565      switch (input_type) {
2566        case Primitive::kPrimLong:
2567          // Type conversion from long to char is a result of code transformations.
2568          __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2569          break;
2570        case Primitive::kPrimBoolean:
2571          // Boolean input is a result of code transformations.
2572        case Primitive::kPrimByte:
2573        case Primitive::kPrimShort:
2574        case Primitive::kPrimInt:
2575          // Processing a Dex `int-to-char' instruction.
2576          __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2577          break;
2578
2579        default:
2580          LOG(FATAL) << "Unexpected type conversion from " << input_type
2581                     << " to " << result_type;
2582      }
2583      break;
2584
2585    case Primitive::kPrimFloat:
2586      switch (input_type) {
2587        case Primitive::kPrimBoolean:
2588          // Boolean input is a result of code transformations.
2589        case Primitive::kPrimByte:
2590        case Primitive::kPrimShort:
2591        case Primitive::kPrimInt:
2592        case Primitive::kPrimChar: {
2593          // Processing a Dex `int-to-float' instruction.
2594          __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
2595          __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
2596          break;
2597        }
2598
2599        case Primitive::kPrimLong:
2600          // Processing a Dex `long-to-float' instruction.
2601          codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
2602          CheckEntrypointTypes<kQuickL2f, float, int64_t>();
2603          break;
2604
2605        case Primitive::kPrimDouble:
2606          // Processing a Dex `double-to-float' instruction.
2607          __ vcvtsd(out.AsFpuRegister<SRegister>(),
2608                    FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2609          break;
2610
2611        default:
2612          LOG(FATAL) << "Unexpected type conversion from " << input_type
2613                     << " to " << result_type;
2614      };
2615      break;
2616
2617    case Primitive::kPrimDouble:
2618      switch (input_type) {
2619        case Primitive::kPrimBoolean:
2620          // Boolean input is a result of code transformations.
2621        case Primitive::kPrimByte:
2622        case Primitive::kPrimShort:
2623        case Primitive::kPrimInt:
2624        case Primitive::kPrimChar: {
2625          // Processing a Dex `int-to-double' instruction.
2626          __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
2627          __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2628                    out.AsFpuRegisterPairLow<SRegister>());
2629          break;
2630        }
2631
2632        case Primitive::kPrimLong: {
2633          // Processing a Dex `long-to-double' instruction.
2634          Register low = in.AsRegisterPairLow<Register>();
2635          Register high = in.AsRegisterPairHigh<Register>();
2636          SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
2637          DRegister out_d = FromLowSToD(out_s);
2638          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2639          DRegister temp_d = FromLowSToD(temp_s);
2640          SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
2641          DRegister constant_d = FromLowSToD(constant_s);
2642
2643          // temp_d = int-to-double(high)
2644          __ vmovsr(temp_s, high);
2645          __ vcvtdi(temp_d, temp_s);
2646          // constant_d = k2Pow32EncodingForDouble
2647          __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
2648          // out_d = unsigned-to-double(low)
2649          __ vmovsr(out_s, low);
2650          __ vcvtdu(out_d, out_s);
2651          // out_d += temp_d * constant_d
2652          __ vmlad(out_d, temp_d, constant_d);
2653          break;
2654        }
2655
2656        case Primitive::kPrimFloat:
2657          // Processing a Dex `float-to-double' instruction.
2658          __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2659                    in.AsFpuRegister<SRegister>());
2660          break;
2661
2662        default:
2663          LOG(FATAL) << "Unexpected type conversion from " << input_type
2664                     << " to " << result_type;
2665      };
2666      break;
2667
2668    default:
2669      LOG(FATAL) << "Unexpected type conversion from " << input_type
2670                 << " to " << result_type;
2671  }
2672}
2673
2674void LocationsBuilderARM::VisitAdd(HAdd* add) {
2675  LocationSummary* locations =
2676      new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2677  switch (add->GetResultType()) {
2678    case Primitive::kPrimInt: {
2679      locations->SetInAt(0, Location::RequiresRegister());
2680      locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2681      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2682      break;
2683    }
2684
2685    case Primitive::kPrimLong: {
2686      locations->SetInAt(0, Location::RequiresRegister());
2687      locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
2688      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2689      break;
2690    }
2691
2692    case Primitive::kPrimFloat:
2693    case Primitive::kPrimDouble: {
2694      locations->SetInAt(0, Location::RequiresFpuRegister());
2695      locations->SetInAt(1, Location::RequiresFpuRegister());
2696      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2697      break;
2698    }
2699
2700    default:
2701      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2702  }
2703}
2704
2705void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
2706  LocationSummary* locations = add->GetLocations();
2707  Location out = locations->Out();
2708  Location first = locations->InAt(0);
2709  Location second = locations->InAt(1);
2710  switch (add->GetResultType()) {
2711    case Primitive::kPrimInt:
2712      if (second.IsRegister()) {
2713        __ add(out.AsRegister<Register>(),
2714               first.AsRegister<Register>(),
2715               ShifterOperand(second.AsRegister<Register>()));
2716      } else {
2717        __ AddConstant(out.AsRegister<Register>(),
2718                       first.AsRegister<Register>(),
2719                       second.GetConstant()->AsIntConstant()->GetValue());
2720      }
2721      break;
2722
2723    case Primitive::kPrimLong: {
2724      if (second.IsConstant()) {
2725        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
2726        GenerateAddLongConst(out, first, value);
2727      } else {
2728        DCHECK(second.IsRegisterPair());
2729        __ adds(out.AsRegisterPairLow<Register>(),
2730                first.AsRegisterPairLow<Register>(),
2731                ShifterOperand(second.AsRegisterPairLow<Register>()));
2732        __ adc(out.AsRegisterPairHigh<Register>(),
2733               first.AsRegisterPairHigh<Register>(),
2734               ShifterOperand(second.AsRegisterPairHigh<Register>()));
2735      }
2736      break;
2737    }
2738
2739    case Primitive::kPrimFloat:
2740      __ vadds(out.AsFpuRegister<SRegister>(),
2741               first.AsFpuRegister<SRegister>(),
2742               second.AsFpuRegister<SRegister>());
2743      break;
2744
2745    case Primitive::kPrimDouble:
2746      __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2747               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2748               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2749      break;
2750
2751    default:
2752      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2753  }
2754}
2755
2756void LocationsBuilderARM::VisitSub(HSub* sub) {
2757  LocationSummary* locations =
2758      new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2759  switch (sub->GetResultType()) {
2760    case Primitive::kPrimInt: {
2761      locations->SetInAt(0, Location::RequiresRegister());
2762      locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
2763      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2764      break;
2765    }
2766
2767    case Primitive::kPrimLong: {
2768      locations->SetInAt(0, Location::RequiresRegister());
2769      locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
2770      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2771      break;
2772    }
2773    case Primitive::kPrimFloat:
2774    case Primitive::kPrimDouble: {
2775      locations->SetInAt(0, Location::RequiresFpuRegister());
2776      locations->SetInAt(1, Location::RequiresFpuRegister());
2777      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2778      break;
2779    }
2780    default:
2781      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2782  }
2783}
2784
2785void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
2786  LocationSummary* locations = sub->GetLocations();
2787  Location out = locations->Out();
2788  Location first = locations->InAt(0);
2789  Location second = locations->InAt(1);
2790  switch (sub->GetResultType()) {
2791    case Primitive::kPrimInt: {
2792      if (second.IsRegister()) {
2793        __ sub(out.AsRegister<Register>(),
2794               first.AsRegister<Register>(),
2795               ShifterOperand(second.AsRegister<Register>()));
2796      } else {
2797        __ AddConstant(out.AsRegister<Register>(),
2798                       first.AsRegister<Register>(),
2799                       -second.GetConstant()->AsIntConstant()->GetValue());
2800      }
2801      break;
2802    }
2803
2804    case Primitive::kPrimLong: {
2805      if (second.IsConstant()) {
2806        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
2807        GenerateAddLongConst(out, first, -value);
2808      } else {
2809        DCHECK(second.IsRegisterPair());
2810        __ subs(out.AsRegisterPairLow<Register>(),
2811                first.AsRegisterPairLow<Register>(),
2812                ShifterOperand(second.AsRegisterPairLow<Register>()));
2813        __ sbc(out.AsRegisterPairHigh<Register>(),
2814               first.AsRegisterPairHigh<Register>(),
2815               ShifterOperand(second.AsRegisterPairHigh<Register>()));
2816      }
2817      break;
2818    }
2819
2820    case Primitive::kPrimFloat: {
2821      __ vsubs(out.AsFpuRegister<SRegister>(),
2822               first.AsFpuRegister<SRegister>(),
2823               second.AsFpuRegister<SRegister>());
2824      break;
2825    }
2826
2827    case Primitive::kPrimDouble: {
2828      __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2829               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2830               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2831      break;
2832    }
2833
2834
2835    default:
2836      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2837  }
2838}
2839
2840void LocationsBuilderARM::VisitMul(HMul* mul) {
2841  LocationSummary* locations =
2842      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
2843  switch (mul->GetResultType()) {
2844    case Primitive::kPrimInt:
2845    case Primitive::kPrimLong:  {
2846      locations->SetInAt(0, Location::RequiresRegister());
2847      locations->SetInAt(1, Location::RequiresRegister());
2848      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2849      break;
2850    }
2851
2852    case Primitive::kPrimFloat:
2853    case Primitive::kPrimDouble: {
2854      locations->SetInAt(0, Location::RequiresFpuRegister());
2855      locations->SetInAt(1, Location::RequiresFpuRegister());
2856      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2857      break;
2858    }
2859
2860    default:
2861      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2862  }
2863}
2864
2865void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
2866  LocationSummary* locations = mul->GetLocations();
2867  Location out = locations->Out();
2868  Location first = locations->InAt(0);
2869  Location second = locations->InAt(1);
2870  switch (mul->GetResultType()) {
2871    case Primitive::kPrimInt: {
2872      __ mul(out.AsRegister<Register>(),
2873             first.AsRegister<Register>(),
2874             second.AsRegister<Register>());
2875      break;
2876    }
2877    case Primitive::kPrimLong: {
2878      Register out_hi = out.AsRegisterPairHigh<Register>();
2879      Register out_lo = out.AsRegisterPairLow<Register>();
2880      Register in1_hi = first.AsRegisterPairHigh<Register>();
2881      Register in1_lo = first.AsRegisterPairLow<Register>();
2882      Register in2_hi = second.AsRegisterPairHigh<Register>();
2883      Register in2_lo = second.AsRegisterPairLow<Register>();
2884
2885      // Extra checks to protect caused by the existence of R1_R2.
2886      // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
2887      // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
2888      DCHECK_NE(out_hi, in1_lo);
2889      DCHECK_NE(out_hi, in2_lo);
2890
2891      // input: in1 - 64 bits, in2 - 64 bits
2892      // output: out
2893      // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
2894      // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
2895      // parts: out.lo = (in1.lo * in2.lo)[31:0]
2896
2897      // IP <- in1.lo * in2.hi
2898      __ mul(IP, in1_lo, in2_hi);
2899      // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
2900      __ mla(out_hi, in1_hi, in2_lo, IP);
2901      // out.lo <- (in1.lo * in2.lo)[31:0];
2902      __ umull(out_lo, IP, in1_lo, in2_lo);
2903      // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
2904      __ add(out_hi, out_hi, ShifterOperand(IP));
2905      break;
2906    }
2907
2908    case Primitive::kPrimFloat: {
2909      __ vmuls(out.AsFpuRegister<SRegister>(),
2910               first.AsFpuRegister<SRegister>(),
2911               second.AsFpuRegister<SRegister>());
2912      break;
2913    }
2914
2915    case Primitive::kPrimDouble: {
2916      __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2917               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2918               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2919      break;
2920    }
2921
2922    default:
2923      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2924  }
2925}
2926
2927void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
2928  DCHECK(instruction->IsDiv() || instruction->IsRem());
2929  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2930
2931  LocationSummary* locations = instruction->GetLocations();
2932  Location second = locations->InAt(1);
2933  DCHECK(second.IsConstant());
2934
2935  Register out = locations->Out().AsRegister<Register>();
2936  Register dividend = locations->InAt(0).AsRegister<Register>();
2937  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2938  DCHECK(imm == 1 || imm == -1);
2939
2940  if (instruction->IsRem()) {
2941    __ LoadImmediate(out, 0);
2942  } else {
2943    if (imm == 1) {
2944      __ Mov(out, dividend);
2945    } else {
2946      __ rsb(out, dividend, ShifterOperand(0));
2947    }
2948  }
2949}
2950
2951void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
2952  DCHECK(instruction->IsDiv() || instruction->IsRem());
2953  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2954
2955  LocationSummary* locations = instruction->GetLocations();
2956  Location second = locations->InAt(1);
2957  DCHECK(second.IsConstant());
2958
2959  Register out = locations->Out().AsRegister<Register>();
2960  Register dividend = locations->InAt(0).AsRegister<Register>();
2961  Register temp = locations->GetTemp(0).AsRegister<Register>();
2962  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2963  uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
2964  int ctz_imm = CTZ(abs_imm);
2965
2966  if (ctz_imm == 1) {
2967    __ Lsr(temp, dividend, 32 - ctz_imm);
2968  } else {
2969    __ Asr(temp, dividend, 31);
2970    __ Lsr(temp, temp, 32 - ctz_imm);
2971  }
2972  __ add(out, temp, ShifterOperand(dividend));
2973
2974  if (instruction->IsDiv()) {
2975    __ Asr(out, out, ctz_imm);
2976    if (imm < 0) {
2977      __ rsb(out, out, ShifterOperand(0));
2978    }
2979  } else {
2980    __ ubfx(out, out, 0, ctz_imm);
2981    __ sub(out, out, ShifterOperand(temp));
2982  }
2983}
2984
2985void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
2986  DCHECK(instruction->IsDiv() || instruction->IsRem());
2987  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2988
2989  LocationSummary* locations = instruction->GetLocations();
2990  Location second = locations->InAt(1);
2991  DCHECK(second.IsConstant());
2992
2993  Register out = locations->Out().AsRegister<Register>();
2994  Register dividend = locations->InAt(0).AsRegister<Register>();
2995  Register temp1 = locations->GetTemp(0).AsRegister<Register>();
2996  Register temp2 = locations->GetTemp(1).AsRegister<Register>();
2997  int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2998
2999  int64_t magic;
3000  int shift;
3001  CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3002
3003  __ LoadImmediate(temp1, magic);
3004  __ smull(temp2, temp1, dividend, temp1);
3005
3006  if (imm > 0 && magic < 0) {
3007    __ add(temp1, temp1, ShifterOperand(dividend));
3008  } else if (imm < 0 && magic > 0) {
3009    __ sub(temp1, temp1, ShifterOperand(dividend));
3010  }
3011
3012  if (shift != 0) {
3013    __ Asr(temp1, temp1, shift);
3014  }
3015
3016  if (instruction->IsDiv()) {
3017    __ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
3018  } else {
3019    __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
3020    // TODO: Strength reduction for mls.
3021    __ LoadImmediate(temp2, imm);
3022    __ mls(out, temp1, temp2, dividend);
3023  }
3024}
3025
3026void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
3027  DCHECK(instruction->IsDiv() || instruction->IsRem());
3028  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3029
3030  LocationSummary* locations = instruction->GetLocations();
3031  Location second = locations->InAt(1);
3032  DCHECK(second.IsConstant());
3033
3034  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3035  if (imm == 0) {
3036    // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3037  } else if (imm == 1 || imm == -1) {
3038    DivRemOneOrMinusOne(instruction);
3039  } else if (IsPowerOfTwo(AbsOrMin(imm))) {
3040    DivRemByPowerOfTwo(instruction);
3041  } else {
3042    DCHECK(imm <= -2 || imm >= 2);
3043    GenerateDivRemWithAnyConstant(instruction);
3044  }
3045}
3046
3047void LocationsBuilderARM::VisitDiv(HDiv* div) {
3048  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3049  if (div->GetResultType() == Primitive::kPrimLong) {
3050    // pLdiv runtime call.
3051    call_kind = LocationSummary::kCallOnMainOnly;
3052  } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
3053    // sdiv will be replaced by other instruction sequence.
3054  } else if (div->GetResultType() == Primitive::kPrimInt &&
3055             !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3056    // pIdivmod runtime call.
3057    call_kind = LocationSummary::kCallOnMainOnly;
3058  }
3059
3060  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3061
3062  switch (div->GetResultType()) {
3063    case Primitive::kPrimInt: {
3064      if (div->InputAt(1)->IsConstant()) {
3065        locations->SetInAt(0, Location::RequiresRegister());
3066        locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
3067        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3068        int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
3069        if (value == 1 || value == 0 || value == -1) {
3070          // No temp register required.
3071        } else {
3072          locations->AddTemp(Location::RequiresRegister());
3073          if (!IsPowerOfTwo(AbsOrMin(value))) {
3074            locations->AddTemp(Location::RequiresRegister());
3075          }
3076        }
3077      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3078        locations->SetInAt(0, Location::RequiresRegister());
3079        locations->SetInAt(1, Location::RequiresRegister());
3080        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3081      } else {
3082        InvokeRuntimeCallingConvention calling_convention;
3083        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3084        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3085        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3086        //       we only need the former.
3087        locations->SetOut(Location::RegisterLocation(R0));
3088      }
3089      break;
3090    }
3091    case Primitive::kPrimLong: {
3092      InvokeRuntimeCallingConvention calling_convention;
3093      locations->SetInAt(0, Location::RegisterPairLocation(
3094          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3095      locations->SetInAt(1, Location::RegisterPairLocation(
3096          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3097      locations->SetOut(Location::RegisterPairLocation(R0, R1));
3098      break;
3099    }
3100    case Primitive::kPrimFloat:
3101    case Primitive::kPrimDouble: {
3102      locations->SetInAt(0, Location::RequiresFpuRegister());
3103      locations->SetInAt(1, Location::RequiresFpuRegister());
3104      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3105      break;
3106    }
3107
3108    default:
3109      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3110  }
3111}
3112
3113void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
3114  LocationSummary* locations = div->GetLocations();
3115  Location out = locations->Out();
3116  Location first = locations->InAt(0);
3117  Location second = locations->InAt(1);
3118
3119  switch (div->GetResultType()) {
3120    case Primitive::kPrimInt: {
3121      if (second.IsConstant()) {
3122        GenerateDivRemConstantIntegral(div);
3123      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3124        __ sdiv(out.AsRegister<Register>(),
3125                first.AsRegister<Register>(),
3126                second.AsRegister<Register>());
3127      } else {
3128        InvokeRuntimeCallingConvention calling_convention;
3129        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3130        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3131        DCHECK_EQ(R0, out.AsRegister<Register>());
3132
3133        codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
3134        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3135      }
3136      break;
3137    }
3138
3139    case Primitive::kPrimLong: {
3140      InvokeRuntimeCallingConvention calling_convention;
3141      DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3142      DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3143      DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3144      DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3145      DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
3146      DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
3147
3148      codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
3149      CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3150      break;
3151    }
3152
3153    case Primitive::kPrimFloat: {
3154      __ vdivs(out.AsFpuRegister<SRegister>(),
3155               first.AsFpuRegister<SRegister>(),
3156               second.AsFpuRegister<SRegister>());
3157      break;
3158    }
3159
3160    case Primitive::kPrimDouble: {
3161      __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3162               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3163               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3164      break;
3165    }
3166
3167    default:
3168      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3169  }
3170}
3171
3172void LocationsBuilderARM::VisitRem(HRem* rem) {
3173  Primitive::Type type = rem->GetResultType();
3174
3175  // Most remainders are implemented in the runtime.
3176  LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
3177  if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
3178    // sdiv will be replaced by other instruction sequence.
3179    call_kind = LocationSummary::kNoCall;
3180  } else if ((rem->GetResultType() == Primitive::kPrimInt)
3181             && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3182    // Have hardware divide instruction for int, do it with three instructions.
3183    call_kind = LocationSummary::kNoCall;
3184  }
3185
3186  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3187
3188  switch (type) {
3189    case Primitive::kPrimInt: {
3190      if (rem->InputAt(1)->IsConstant()) {
3191        locations->SetInAt(0, Location::RequiresRegister());
3192        locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
3193        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3194        int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
3195        if (value == 1 || value == 0 || value == -1) {
3196          // No temp register required.
3197        } else {
3198          locations->AddTemp(Location::RequiresRegister());
3199          if (!IsPowerOfTwo(AbsOrMin(value))) {
3200            locations->AddTemp(Location::RequiresRegister());
3201          }
3202        }
3203      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3204        locations->SetInAt(0, Location::RequiresRegister());
3205        locations->SetInAt(1, Location::RequiresRegister());
3206        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3207        locations->AddTemp(Location::RequiresRegister());
3208      } else {
3209        InvokeRuntimeCallingConvention calling_convention;
3210        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3211        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3212        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3213        //       we only need the latter.
3214        locations->SetOut(Location::RegisterLocation(R1));
3215      }
3216      break;
3217    }
3218    case Primitive::kPrimLong: {
3219      InvokeRuntimeCallingConvention calling_convention;
3220      locations->SetInAt(0, Location::RegisterPairLocation(
3221          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3222      locations->SetInAt(1, Location::RegisterPairLocation(
3223          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3224      // The runtime helper puts the output in R2,R3.
3225      locations->SetOut(Location::RegisterPairLocation(R2, R3));
3226      break;
3227    }
3228    case Primitive::kPrimFloat: {
3229      InvokeRuntimeCallingConvention calling_convention;
3230      locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
3231      locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
3232      locations->SetOut(Location::FpuRegisterLocation(S0));
3233      break;
3234    }
3235
3236    case Primitive::kPrimDouble: {
3237      InvokeRuntimeCallingConvention calling_convention;
3238      locations->SetInAt(0, Location::FpuRegisterPairLocation(
3239          calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
3240      locations->SetInAt(1, Location::FpuRegisterPairLocation(
3241          calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
3242      locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
3243      break;
3244    }
3245
3246    default:
3247      LOG(FATAL) << "Unexpected rem type " << type;
3248  }
3249}
3250
3251void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
3252  LocationSummary* locations = rem->GetLocations();
3253  Location out = locations->Out();
3254  Location first = locations->InAt(0);
3255  Location second = locations->InAt(1);
3256
3257  Primitive::Type type = rem->GetResultType();
3258  switch (type) {
3259    case Primitive::kPrimInt: {
3260        if (second.IsConstant()) {
3261          GenerateDivRemConstantIntegral(rem);
3262        } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3263        Register reg1 = first.AsRegister<Register>();
3264        Register reg2 = second.AsRegister<Register>();
3265        Register temp = locations->GetTemp(0).AsRegister<Register>();
3266
3267        // temp = reg1 / reg2  (integer division)
3268        // dest = reg1 - temp * reg2
3269        __ sdiv(temp, reg1, reg2);
3270        __ mls(out.AsRegister<Register>(), temp, reg2, reg1);
3271      } else {
3272        InvokeRuntimeCallingConvention calling_convention;
3273        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3274        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3275        DCHECK_EQ(R1, out.AsRegister<Register>());
3276
3277        codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
3278        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3279      }
3280      break;
3281    }
3282
3283    case Primitive::kPrimLong: {
3284      codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
3285        CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3286      break;
3287    }
3288
3289    case Primitive::kPrimFloat: {
3290      codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
3291      CheckEntrypointTypes<kQuickFmodf, float, float, float>();
3292      break;
3293    }
3294
3295    case Primitive::kPrimDouble: {
3296      codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
3297      CheckEntrypointTypes<kQuickFmod, double, double, double>();
3298      break;
3299    }
3300
3301    default:
3302      LOG(FATAL) << "Unexpected rem type " << type;
3303  }
3304}
3305
3306void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3307  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3308  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3309}
3310
3311void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3312  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
3313  codegen_->AddSlowPath(slow_path);
3314
3315  LocationSummary* locations = instruction->GetLocations();
3316  Location value = locations->InAt(0);
3317
3318  switch (instruction->GetType()) {
3319    case Primitive::kPrimBoolean:
3320    case Primitive::kPrimByte:
3321    case Primitive::kPrimChar:
3322    case Primitive::kPrimShort:
3323    case Primitive::kPrimInt: {
3324      if (value.IsRegister()) {
3325        __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
3326      } else {
3327        DCHECK(value.IsConstant()) << value;
3328        if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3329          __ b(slow_path->GetEntryLabel());
3330        }
3331      }
3332      break;
3333    }
3334    case Primitive::kPrimLong: {
3335      if (value.IsRegisterPair()) {
3336        __ orrs(IP,
3337                value.AsRegisterPairLow<Register>(),
3338                ShifterOperand(value.AsRegisterPairHigh<Register>()));
3339        __ b(slow_path->GetEntryLabel(), EQ);
3340      } else {
3341        DCHECK(value.IsConstant()) << value;
3342        if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3343          __ b(slow_path->GetEntryLabel());
3344        }
3345      }
3346      break;
3347    default:
3348      LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3349    }
3350  }
3351}
3352
3353void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
3354  Register in = locations->InAt(0).AsRegister<Register>();
3355  Location rhs = locations->InAt(1);
3356  Register out = locations->Out().AsRegister<Register>();
3357
3358  if (rhs.IsConstant()) {
3359    // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
3360    // so map all rotations to a +ve. equivalent in that range.
3361    // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
3362    uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
3363    if (rot) {
3364      // Rotate, mapping left rotations to right equivalents if necessary.
3365      // (e.g. left by 2 bits == right by 30.)
3366      __ Ror(out, in, rot);
3367    } else if (out != in) {
3368      __ Mov(out, in);
3369    }
3370  } else {
3371    __ Ror(out, in, rhs.AsRegister<Register>());
3372  }
3373}
3374
3375// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
3376// rotates by swapping input regs (effectively rotating by the first 32-bits of
3377// a larger rotation) or flipping direction (thus treating larger right/left
3378// rotations as sub-word sized rotations in the other direction) as appropriate.
3379void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) {
3380  Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
3381  Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
3382  Location rhs = locations->InAt(1);
3383  Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
3384  Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
3385
3386  if (rhs.IsConstant()) {
3387    uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
3388    // Map all rotations to +ve. equivalents on the interval [0,63].
3389    rot &= kMaxLongShiftDistance;
3390    // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
3391    // logic below to a simple pair of binary orr.
3392    // (e.g. 34 bits == in_reg swap + 2 bits right.)
3393    if (rot >= kArmBitsPerWord) {
3394      rot -= kArmBitsPerWord;
3395      std::swap(in_reg_hi, in_reg_lo);
3396    }
3397    // Rotate, or mov to out for zero or word size rotations.
3398    if (rot != 0u) {
3399      __ Lsr(out_reg_hi, in_reg_hi, rot);
3400      __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
3401      __ Lsr(out_reg_lo, in_reg_lo, rot);
3402      __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
3403    } else {
3404      __ Mov(out_reg_lo, in_reg_lo);
3405      __ Mov(out_reg_hi, in_reg_hi);
3406    }
3407  } else {
3408    Register shift_right = locations->GetTemp(0).AsRegister<Register>();
3409    Register shift_left = locations->GetTemp(1).AsRegister<Register>();
3410    Label end;
3411    Label shift_by_32_plus_shift_right;
3412
3413    __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
3414    __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
3415    __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
3416    __ b(&shift_by_32_plus_shift_right, CC);
3417
3418    // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
3419    // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
3420    __ Lsl(out_reg_hi, in_reg_hi, shift_left);
3421    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3422    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3423    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3424    __ Lsr(shift_left, in_reg_hi, shift_right);
3425    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
3426    __ b(&end);
3427
3428    __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
3429    // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
3430    // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
3431    __ Lsr(out_reg_hi, in_reg_hi, shift_right);
3432    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3433    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3434    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3435    __ Lsl(shift_right, in_reg_hi, shift_left);
3436    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));
3437
3438    __ Bind(&end);
3439  }
3440}
3441
3442void LocationsBuilderARM::VisitRor(HRor* ror) {
3443  LocationSummary* locations =
3444      new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3445  switch (ror->GetResultType()) {
3446    case Primitive::kPrimInt: {
3447      locations->SetInAt(0, Location::RequiresRegister());
3448      locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
3449      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3450      break;
3451    }
3452    case Primitive::kPrimLong: {
3453      locations->SetInAt(0, Location::RequiresRegister());
3454      if (ror->InputAt(1)->IsConstant()) {
3455        locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
3456      } else {
3457        locations->SetInAt(1, Location::RequiresRegister());
3458        locations->AddTemp(Location::RequiresRegister());
3459        locations->AddTemp(Location::RequiresRegister());
3460      }
3461      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3462      break;
3463    }
3464    default:
3465      LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3466  }
3467}
3468
3469void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
3470  LocationSummary* locations = ror->GetLocations();
3471  Primitive::Type type = ror->GetResultType();
3472  switch (type) {
3473    case Primitive::kPrimInt: {
3474      HandleIntegerRotate(locations);
3475      break;
3476    }
3477    case Primitive::kPrimLong: {
3478      HandleLongRotate(locations);
3479      break;
3480    }
3481    default:
3482      LOG(FATAL) << "Unexpected operation type " << type;
3483      UNREACHABLE();
3484  }
3485}
3486
3487void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
3488  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3489
3490  LocationSummary* locations =
3491      new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3492
3493  switch (op->GetResultType()) {
3494    case Primitive::kPrimInt: {
3495      locations->SetInAt(0, Location::RequiresRegister());
3496      if (op->InputAt(1)->IsConstant()) {
3497        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3498        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3499      } else {
3500        locations->SetInAt(1, Location::RequiresRegister());
3501        // Make the output overlap, as it will be used to hold the masked
3502        // second input.
3503        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3504      }
3505      break;
3506    }
3507    case Primitive::kPrimLong: {
3508      locations->SetInAt(0, Location::RequiresRegister());
3509      if (op->InputAt(1)->IsConstant()) {
3510        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3511        // For simplicity, use kOutputOverlap even though we only require that low registers
3512        // don't clash with high registers which the register allocator currently guarantees.
3513        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3514      } else {
3515        locations->SetInAt(1, Location::RequiresRegister());
3516        locations->AddTemp(Location::RequiresRegister());
3517        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3518      }
3519      break;
3520    }
3521    default:
3522      LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
3523  }
3524}
3525
3526void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
3527  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3528
3529  LocationSummary* locations = op->GetLocations();
3530  Location out = locations->Out();
3531  Location first = locations->InAt(0);
3532  Location second = locations->InAt(1);
3533
3534  Primitive::Type type = op->GetResultType();
3535  switch (type) {
3536    case Primitive::kPrimInt: {
3537      Register out_reg = out.AsRegister<Register>();
3538      Register first_reg = first.AsRegister<Register>();
3539      if (second.IsRegister()) {
3540        Register second_reg = second.AsRegister<Register>();
3541        // ARM doesn't mask the shift count so we need to do it ourselves.
3542        __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
3543        if (op->IsShl()) {
3544          __ Lsl(out_reg, first_reg, out_reg);
3545        } else if (op->IsShr()) {
3546          __ Asr(out_reg, first_reg, out_reg);
3547        } else {
3548          __ Lsr(out_reg, first_reg, out_reg);
3549        }
3550      } else {
3551        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3552        uint32_t shift_value = cst & kMaxIntShiftDistance;
3553        if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
3554          __ Mov(out_reg, first_reg);
3555        } else if (op->IsShl()) {
3556          __ Lsl(out_reg, first_reg, shift_value);
3557        } else if (op->IsShr()) {
3558          __ Asr(out_reg, first_reg, shift_value);
3559        } else {
3560          __ Lsr(out_reg, first_reg, shift_value);
3561        }
3562      }
3563      break;
3564    }
3565    case Primitive::kPrimLong: {
3566      Register o_h = out.AsRegisterPairHigh<Register>();
3567      Register o_l = out.AsRegisterPairLow<Register>();
3568
3569      Register high = first.AsRegisterPairHigh<Register>();
3570      Register low = first.AsRegisterPairLow<Register>();
3571
3572      if (second.IsRegister()) {
3573        Register temp = locations->GetTemp(0).AsRegister<Register>();
3574
3575        Register second_reg = second.AsRegister<Register>();
3576
3577        if (op->IsShl()) {
3578          __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
3579          // Shift the high part
3580          __ Lsl(o_h, high, o_l);
3581          // Shift the low part and `or` what overflew on the high part
3582          __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
3583          __ Lsr(temp, low, temp);
3584          __ orr(o_h, o_h, ShifterOperand(temp));
3585          // If the shift is > 32 bits, override the high part
3586          __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
3587          __ it(PL);
3588          __ Lsl(o_h, low, temp, PL);
3589          // Shift the low part
3590          __ Lsl(o_l, low, o_l);
3591        } else if (op->IsShr()) {
3592          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3593          // Shift the low part
3594          __ Lsr(o_l, low, o_h);
3595          // Shift the high part and `or` what underflew on the low part
3596          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3597          __ Lsl(temp, high, temp);
3598          __ orr(o_l, o_l, ShifterOperand(temp));
3599          // If the shift is > 32 bits, override the low part
3600          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3601          __ it(PL);
3602          __ Asr(o_l, high, temp, PL);
3603          // Shift the high part
3604          __ Asr(o_h, high, o_h);
3605        } else {
3606          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3607          // same as Shr except we use `Lsr`s and not `Asr`s
3608          __ Lsr(o_l, low, o_h);
3609          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3610          __ Lsl(temp, high, temp);
3611          __ orr(o_l, o_l, ShifterOperand(temp));
3612          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3613          __ it(PL);
3614          __ Lsr(o_l, high, temp, PL);
3615          __ Lsr(o_h, high, o_h);
3616        }
3617      } else {
3618        // Register allocator doesn't create partial overlap.
3619        DCHECK_NE(o_l, high);
3620        DCHECK_NE(o_h, low);
3621        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3622        uint32_t shift_value = cst & kMaxLongShiftDistance;
3623        if (shift_value > 32) {
3624          if (op->IsShl()) {
3625            __ Lsl(o_h, low, shift_value - 32);
3626            __ LoadImmediate(o_l, 0);
3627          } else if (op->IsShr()) {
3628            __ Asr(o_l, high, shift_value - 32);
3629            __ Asr(o_h, high, 31);
3630          } else {
3631            __ Lsr(o_l, high, shift_value - 32);
3632            __ LoadImmediate(o_h, 0);
3633          }
3634        } else if (shift_value == 32) {
3635          if (op->IsShl()) {
3636            __ mov(o_h, ShifterOperand(low));
3637            __ LoadImmediate(o_l, 0);
3638          } else if (op->IsShr()) {
3639            __ mov(o_l, ShifterOperand(high));
3640            __ Asr(o_h, high, 31);
3641          } else {
3642            __ mov(o_l, ShifterOperand(high));
3643            __ LoadImmediate(o_h, 0);
3644          }
3645        } else if (shift_value == 1) {
3646          if (op->IsShl()) {
3647            __ Lsls(o_l, low, 1);
3648            __ adc(o_h, high, ShifterOperand(high));
3649          } else if (op->IsShr()) {
3650            __ Asrs(o_h, high, 1);
3651            __ Rrx(o_l, low);
3652          } else {
3653            __ Lsrs(o_h, high, 1);
3654            __ Rrx(o_l, low);
3655          }
3656        } else {
3657          DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
3658          if (op->IsShl()) {
3659            __ Lsl(o_h, high, shift_value);
3660            __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
3661            __ Lsl(o_l, low, shift_value);
3662          } else if (op->IsShr()) {
3663            __ Lsr(o_l, low, shift_value);
3664            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3665            __ Asr(o_h, high, shift_value);
3666          } else {
3667            __ Lsr(o_l, low, shift_value);
3668            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3669            __ Lsr(o_h, high, shift_value);
3670          }
3671        }
3672      }
3673      break;
3674    }
3675    default:
3676      LOG(FATAL) << "Unexpected operation type " << type;
3677      UNREACHABLE();
3678  }
3679}
3680
3681void LocationsBuilderARM::VisitShl(HShl* shl) {
3682  HandleShift(shl);
3683}
3684
3685void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
3686  HandleShift(shl);
3687}
3688
3689void LocationsBuilderARM::VisitShr(HShr* shr) {
3690  HandleShift(shr);
3691}
3692
3693void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
3694  HandleShift(shr);
3695}
3696
3697void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
3698  HandleShift(ushr);
3699}
3700
3701void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
3702  HandleShift(ushr);
3703}
3704
3705void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
3706  LocationSummary* locations =
3707      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3708  if (instruction->IsStringAlloc()) {
3709    locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3710  } else {
3711    InvokeRuntimeCallingConvention calling_convention;
3712    locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3713    locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3714  }
3715  locations->SetOut(Location::RegisterLocation(R0));
3716}
3717
3718void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
3719  // Note: if heap poisoning is enabled, the entry point takes cares
3720  // of poisoning the reference.
3721  if (instruction->IsStringAlloc()) {
3722    // String is allocated through StringFactory. Call NewEmptyString entry point.
3723    Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
3724    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
3725    __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
3726    __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
3727    __ blx(LR);
3728    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
3729  } else {
3730    codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3731    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
3732  }
3733}
3734
3735void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
3736  LocationSummary* locations =
3737      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3738  InvokeRuntimeCallingConvention calling_convention;
3739  locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3740  locations->SetOut(Location::RegisterLocation(R0));
3741  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3742  locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
3743}
3744
3745void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
3746  InvokeRuntimeCallingConvention calling_convention;
3747  __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
3748  // Note: if heap poisoning is enabled, the entry point takes cares
3749  // of poisoning the reference.
3750  codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3751  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
3752}
3753
3754void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
3755  LocationSummary* locations =
3756      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3757  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
3758  if (location.IsStackSlot()) {
3759    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3760  } else if (location.IsDoubleStackSlot()) {
3761    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3762  }
3763  locations->SetOut(location);
3764}
3765
3766void InstructionCodeGeneratorARM::VisitParameterValue(
3767    HParameterValue* instruction ATTRIBUTE_UNUSED) {
3768  // Nothing to do, the parameter is already at its location.
3769}
3770
3771void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
3772  LocationSummary* locations =
3773      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3774  locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
3775}
3776
3777void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
3778  // Nothing to do, the method is already at its location.
3779}
3780
3781void LocationsBuilderARM::VisitNot(HNot* not_) {
3782  LocationSummary* locations =
3783      new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
3784  locations->SetInAt(0, Location::RequiresRegister());
3785  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3786}
3787
3788void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
3789  LocationSummary* locations = not_->GetLocations();
3790  Location out = locations->Out();
3791  Location in = locations->InAt(0);
3792  switch (not_->GetResultType()) {
3793    case Primitive::kPrimInt:
3794      __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
3795      break;
3796
3797    case Primitive::kPrimLong:
3798      __ mvn(out.AsRegisterPairLow<Register>(),
3799             ShifterOperand(in.AsRegisterPairLow<Register>()));
3800      __ mvn(out.AsRegisterPairHigh<Register>(),
3801             ShifterOperand(in.AsRegisterPairHigh<Register>()));
3802      break;
3803
3804    default:
3805      LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
3806  }
3807}
3808
3809void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
3810  LocationSummary* locations =
3811      new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
3812  locations->SetInAt(0, Location::RequiresRegister());
3813  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3814}
3815
3816void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
3817  LocationSummary* locations = bool_not->GetLocations();
3818  Location out = locations->Out();
3819  Location in = locations->InAt(0);
3820  __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
3821}
3822
3823void LocationsBuilderARM::VisitCompare(HCompare* compare) {
3824  LocationSummary* locations =
3825      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
3826  switch (compare->InputAt(0)->GetType()) {
3827    case Primitive::kPrimBoolean:
3828    case Primitive::kPrimByte:
3829    case Primitive::kPrimShort:
3830    case Primitive::kPrimChar:
3831    case Primitive::kPrimInt:
3832    case Primitive::kPrimLong: {
3833      locations->SetInAt(0, Location::RequiresRegister());
3834      locations->SetInAt(1, Location::RequiresRegister());
3835      // Output overlaps because it is written before doing the low comparison.
3836      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3837      break;
3838    }
3839    case Primitive::kPrimFloat:
3840    case Primitive::kPrimDouble: {
3841      locations->SetInAt(0, Location::RequiresFpuRegister());
3842      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
3843      locations->SetOut(Location::RequiresRegister());
3844      break;
3845    }
3846    default:
3847      LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
3848  }
3849}
3850
3851void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
3852  LocationSummary* locations = compare->GetLocations();
3853  Register out = locations->Out().AsRegister<Register>();
3854  Location left = locations->InAt(0);
3855  Location right = locations->InAt(1);
3856
3857  Label less, greater, done;
3858  Primitive::Type type = compare->InputAt(0)->GetType();
3859  Condition less_cond;
3860  switch (type) {
3861    case Primitive::kPrimBoolean:
3862    case Primitive::kPrimByte:
3863    case Primitive::kPrimShort:
3864    case Primitive::kPrimChar:
3865    case Primitive::kPrimInt: {
3866      __ LoadImmediate(out, 0);
3867      __ cmp(left.AsRegister<Register>(),
3868             ShifterOperand(right.AsRegister<Register>()));  // Signed compare.
3869      less_cond = LT;
3870      break;
3871    }
3872    case Primitive::kPrimLong: {
3873      __ cmp(left.AsRegisterPairHigh<Register>(),
3874             ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare.
3875      __ b(&less, LT);
3876      __ b(&greater, GT);
3877      // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
3878      __ LoadImmediate(out, 0);
3879      __ cmp(left.AsRegisterPairLow<Register>(),
3880             ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare.
3881      less_cond = LO;
3882      break;
3883    }
3884    case Primitive::kPrimFloat:
3885    case Primitive::kPrimDouble: {
3886      __ LoadImmediate(out, 0);
3887      GenerateVcmp(compare);
3888      __ vmstat();  // transfer FP status register to ARM APSR.
3889      less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
3890      break;
3891    }
3892    default:
3893      LOG(FATAL) << "Unexpected compare type " << type;
3894      UNREACHABLE();
3895  }
3896
3897  __ b(&done, EQ);
3898  __ b(&less, less_cond);
3899
3900  __ Bind(&greater);
3901  __ LoadImmediate(out, 1);
3902  __ b(&done);
3903
3904  __ Bind(&less);
3905  __ LoadImmediate(out, -1);
3906
3907  __ Bind(&done);
3908}
3909
3910void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
3911  LocationSummary* locations =
3912      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3913  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
3914    locations->SetInAt(i, Location::Any());
3915  }
3916  locations->SetOut(Location::Any());
3917}
3918
3919void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
3920  LOG(FATAL) << "Unreachable";
3921}
3922
3923void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
3924  // TODO (ported from quick): revisit ARM barrier kinds.
3925  DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
3926  switch (kind) {
3927    case MemBarrierKind::kAnyStore:
3928    case MemBarrierKind::kLoadAny:
3929    case MemBarrierKind::kAnyAny: {
3930      flavor = DmbOptions::ISH;
3931      break;
3932    }
3933    case MemBarrierKind::kStoreStore: {
3934      flavor = DmbOptions::ISHST;
3935      break;
3936    }
3937    default:
3938      LOG(FATAL) << "Unexpected memory barrier " << kind;
3939  }
3940  __ dmb(flavor);
3941}
3942
3943void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
3944                                                         uint32_t offset,
3945                                                         Register out_lo,
3946                                                         Register out_hi) {
3947  if (offset != 0) {
3948    // Ensure `out_lo` is different from `addr`, so that loading
3949    // `offset` into `out_lo` does not clutter `addr`.
3950    DCHECK_NE(out_lo, addr);
3951    __ LoadImmediate(out_lo, offset);
3952    __ add(IP, addr, ShifterOperand(out_lo));
3953    addr = IP;
3954  }
3955  __ ldrexd(out_lo, out_hi, addr);
3956}
3957
3958void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
3959                                                          uint32_t offset,
3960                                                          Register value_lo,
3961                                                          Register value_hi,
3962                                                          Register temp1,
3963                                                          Register temp2,
3964                                                          HInstruction* instruction) {
3965  Label fail;
3966  if (offset != 0) {
3967    __ LoadImmediate(temp1, offset);
3968    __ add(IP, addr, ShifterOperand(temp1));
3969    addr = IP;
3970  }
3971  __ Bind(&fail);
3972  // We need a load followed by store. (The address used in a STREX instruction must
3973  // be the same as the address in the most recently executed LDREX instruction.)
3974  __ ldrexd(temp1, temp2, addr);
3975  codegen_->MaybeRecordImplicitNullCheck(instruction);
3976  __ strexd(temp1, value_lo, value_hi, addr);
3977  __ CompareAndBranchIfNonZero(temp1, &fail);
3978}
3979
3980void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
3981  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
3982
3983  LocationSummary* locations =
3984      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3985  locations->SetInAt(0, Location::RequiresRegister());
3986
3987  Primitive::Type field_type = field_info.GetFieldType();
3988  if (Primitive::IsFloatingPointType(field_type)) {
3989    locations->SetInAt(1, Location::RequiresFpuRegister());
3990  } else {
3991    locations->SetInAt(1, Location::RequiresRegister());
3992  }
3993
3994  bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
3995  bool generate_volatile = field_info.IsVolatile()
3996      && is_wide
3997      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
3998  bool needs_write_barrier =
3999      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4000  // Temporary registers for the write barrier.
4001  // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
4002  if (needs_write_barrier) {
4003    locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
4004    locations->AddTemp(Location::RequiresRegister());
4005  } else if (generate_volatile) {
4006    // ARM encoding have some additional constraints for ldrexd/strexd:
4007    // - registers need to be consecutive
4008    // - the first register should be even but not R14.
4009    // We don't test for ARM yet, and the assertion makes sure that we
4010    // revisit this if we ever enable ARM encoding.
4011    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4012
4013    locations->AddTemp(Location::RequiresRegister());
4014    locations->AddTemp(Location::RequiresRegister());
4015    if (field_type == Primitive::kPrimDouble) {
4016      // For doubles we need two more registers to copy the value.
4017      locations->AddTemp(Location::RegisterLocation(R2));
4018      locations->AddTemp(Location::RegisterLocation(R3));
4019    }
4020  }
4021}
4022
4023void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
4024                                                 const FieldInfo& field_info,
4025                                                 bool value_can_be_null) {
4026  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4027
4028  LocationSummary* locations = instruction->GetLocations();
4029  Register base = locations->InAt(0).AsRegister<Register>();
4030  Location value = locations->InAt(1);
4031
4032  bool is_volatile = field_info.IsVolatile();
4033  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4034  Primitive::Type field_type = field_info.GetFieldType();
4035  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4036  bool needs_write_barrier =
4037      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4038
4039  if (is_volatile) {
4040    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4041  }
4042
4043  switch (field_type) {
4044    case Primitive::kPrimBoolean:
4045    case Primitive::kPrimByte: {
4046      __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
4047      break;
4048    }
4049
4050    case Primitive::kPrimShort:
4051    case Primitive::kPrimChar: {
4052      __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
4053      break;
4054    }
4055
4056    case Primitive::kPrimInt:
4057    case Primitive::kPrimNot: {
4058      if (kPoisonHeapReferences && needs_write_barrier) {
4059        // Note that in the case where `value` is a null reference,
4060        // we do not enter this block, as a null reference does not
4061        // need poisoning.
4062        DCHECK_EQ(field_type, Primitive::kPrimNot);
4063        Register temp = locations->GetTemp(0).AsRegister<Register>();
4064        __ Mov(temp, value.AsRegister<Register>());
4065        __ PoisonHeapReference(temp);
4066        __ StoreToOffset(kStoreWord, temp, base, offset);
4067      } else {
4068        __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
4069      }
4070      break;
4071    }
4072
4073    case Primitive::kPrimLong: {
4074      if (is_volatile && !atomic_ldrd_strd) {
4075        GenerateWideAtomicStore(base, offset,
4076                                value.AsRegisterPairLow<Register>(),
4077                                value.AsRegisterPairHigh<Register>(),
4078                                locations->GetTemp(0).AsRegister<Register>(),
4079                                locations->GetTemp(1).AsRegister<Register>(),
4080                                instruction);
4081      } else {
4082        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
4083        codegen_->MaybeRecordImplicitNullCheck(instruction);
4084      }
4085      break;
4086    }
4087
4088    case Primitive::kPrimFloat: {
4089      __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
4090      break;
4091    }
4092
4093    case Primitive::kPrimDouble: {
4094      DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
4095      if (is_volatile && !atomic_ldrd_strd) {
4096        Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
4097        Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
4098
4099        __ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
4100
4101        GenerateWideAtomicStore(base, offset,
4102                                value_reg_lo,
4103                                value_reg_hi,
4104                                locations->GetTemp(2).AsRegister<Register>(),
4105                                locations->GetTemp(3).AsRegister<Register>(),
4106                                instruction);
4107      } else {
4108        __ StoreDToOffset(value_reg, base, offset);
4109        codegen_->MaybeRecordImplicitNullCheck(instruction);
4110      }
4111      break;
4112    }
4113
4114    case Primitive::kPrimVoid:
4115      LOG(FATAL) << "Unreachable type " << field_type;
4116      UNREACHABLE();
4117  }
4118
4119  // Longs and doubles are handled in the switch.
4120  if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
4121    codegen_->MaybeRecordImplicitNullCheck(instruction);
4122  }
4123
4124  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4125    Register temp = locations->GetTemp(0).AsRegister<Register>();
4126    Register card = locations->GetTemp(1).AsRegister<Register>();
4127    codegen_->MarkGCCard(
4128        temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4129  }
4130
4131  if (is_volatile) {
4132    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4133  }
4134}
4135
4136void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4137  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4138
4139  bool object_field_get_with_read_barrier =
4140      kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
4141  LocationSummary* locations =
4142      new (GetGraph()->GetArena()) LocationSummary(instruction,
4143                                                   object_field_get_with_read_barrier ?
4144                                                       LocationSummary::kCallOnSlowPath :
4145                                                       LocationSummary::kNoCall);
4146  if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4147    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4148  }
4149  locations->SetInAt(0, Location::RequiresRegister());
4150
4151  bool volatile_for_double = field_info.IsVolatile()
4152      && (field_info.GetFieldType() == Primitive::kPrimDouble)
4153      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4154  // The output overlaps in case of volatile long: we don't want the
4155  // code generated by GenerateWideAtomicLoad to overwrite the
4156  // object's location.  Likewise, in the case of an object field get
4157  // with read barriers enabled, we do not want the load to overwrite
4158  // the object's location, as we need it to emit the read barrier.
4159  bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
4160      object_field_get_with_read_barrier;
4161
4162  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4163    locations->SetOut(Location::RequiresFpuRegister());
4164  } else {
4165    locations->SetOut(Location::RequiresRegister(),
4166                      (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
4167  }
4168  if (volatile_for_double) {
4169    // ARM encoding have some additional constraints for ldrexd/strexd:
4170    // - registers need to be consecutive
4171    // - the first register should be even but not R14.
4172    // We don't test for ARM yet, and the assertion makes sure that we
4173    // revisit this if we ever enable ARM encoding.
4174    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4175    locations->AddTemp(Location::RequiresRegister());
4176    locations->AddTemp(Location::RequiresRegister());
4177  } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4178    // We need a temporary register for the read barrier marking slow
4179    // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
4180    locations->AddTemp(Location::RequiresRegister());
4181  }
4182}
4183
4184Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) {
4185  DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat)
4186      << input->GetType();
4187  if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
4188      (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
4189    return Location::ConstantLocation(input->AsConstant());
4190  } else {
4191    return Location::RequiresFpuRegister();
4192  }
4193}
4194
4195Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
4196                                                             Opcode opcode) {
4197  DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
4198  if (constant->IsConstant() &&
4199      CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
4200    return Location::ConstantLocation(constant->AsConstant());
4201  }
4202  return Location::RequiresRegister();
4203}
4204
4205bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
4206                                                       Opcode opcode) {
4207  uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
4208  if (Primitive::Is64BitType(input_cst->GetType())) {
4209    Opcode high_opcode = opcode;
4210    SetCc low_set_cc = kCcDontCare;
4211    switch (opcode) {
4212      case SUB:
4213        // Flip the operation to an ADD.
4214        value = -value;
4215        opcode = ADD;
4216        FALLTHROUGH_INTENDED;
4217      case ADD:
4218        if (Low32Bits(value) == 0u) {
4219          return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
4220        }
4221        high_opcode = ADC;
4222        low_set_cc = kCcSet;
4223        break;
4224      default:
4225        break;
4226    }
4227    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
4228        CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
4229  } else {
4230    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
4231  }
4232}
4233
4234bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value,
4235                                                       Opcode opcode,
4236                                                       SetCc set_cc) {
4237  ShifterOperand so;
4238  ArmAssembler* assembler = codegen_->GetAssembler();
4239  if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) {
4240    return true;
4241  }
4242  Opcode neg_opcode = kNoOperand;
4243  switch (opcode) {
4244    case AND: neg_opcode = BIC; value = ~value; break;
4245    case ORR: neg_opcode = ORN; value = ~value; break;
4246    case ADD: neg_opcode = SUB; value = -value; break;
4247    case ADC: neg_opcode = SBC; value = ~value; break;
4248    case SUB: neg_opcode = ADD; value = -value; break;
4249    case SBC: neg_opcode = ADC; value = ~value; break;
4250    default:
4251      return false;
4252  }
4253  return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, value, set_cc, &so);
4254}
4255
4256void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
4257                                                 const FieldInfo& field_info) {
4258  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4259
4260  LocationSummary* locations = instruction->GetLocations();
4261  Location base_loc = locations->InAt(0);
4262  Register base = base_loc.AsRegister<Register>();
4263  Location out = locations->Out();
4264  bool is_volatile = field_info.IsVolatile();
4265  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4266  Primitive::Type field_type = field_info.GetFieldType();
4267  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4268
4269  switch (field_type) {
4270    case Primitive::kPrimBoolean:
4271      __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
4272      break;
4273
4274    case Primitive::kPrimByte:
4275      __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
4276      break;
4277
4278    case Primitive::kPrimShort:
4279      __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
4280      break;
4281
4282    case Primitive::kPrimChar:
4283      __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
4284      break;
4285
4286    case Primitive::kPrimInt:
4287      __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4288      break;
4289
4290    case Primitive::kPrimNot: {
4291      // /* HeapReference<Object> */ out = *(base + offset)
4292      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4293        Location temp_loc = locations->GetTemp(0);
4294        // Note that a potential implicit null check is handled in this
4295        // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
4296        codegen_->GenerateFieldLoadWithBakerReadBarrier(
4297            instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4298        if (is_volatile) {
4299          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4300        }
4301      } else {
4302        __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4303        codegen_->MaybeRecordImplicitNullCheck(instruction);
4304        if (is_volatile) {
4305          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4306        }
4307        // If read barriers are enabled, emit read barriers other than
4308        // Baker's using a slow path (and also unpoison the loaded
4309        // reference, if heap poisoning is enabled).
4310        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4311      }
4312      break;
4313    }
4314
4315    case Primitive::kPrimLong:
4316      if (is_volatile && !atomic_ldrd_strd) {
4317        GenerateWideAtomicLoad(base, offset,
4318                               out.AsRegisterPairLow<Register>(),
4319                               out.AsRegisterPairHigh<Register>());
4320      } else {
4321        __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
4322      }
4323      break;
4324
4325    case Primitive::kPrimFloat:
4326      __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
4327      break;
4328
4329    case Primitive::kPrimDouble: {
4330      DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
4331      if (is_volatile && !atomic_ldrd_strd) {
4332        Register lo = locations->GetTemp(0).AsRegister<Register>();
4333        Register hi = locations->GetTemp(1).AsRegister<Register>();
4334        GenerateWideAtomicLoad(base, offset, lo, hi);
4335        codegen_->MaybeRecordImplicitNullCheck(instruction);
4336        __ vmovdrr(out_reg, lo, hi);
4337      } else {
4338        __ LoadDFromOffset(out_reg, base, offset);
4339        codegen_->MaybeRecordImplicitNullCheck(instruction);
4340      }
4341      break;
4342    }
4343
4344    case Primitive::kPrimVoid:
4345      LOG(FATAL) << "Unreachable type " << field_type;
4346      UNREACHABLE();
4347  }
4348
4349  if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
4350    // Potential implicit null checks, in the case of reference or
4351    // double fields, are handled in the previous switch statement.
4352  } else {
4353    codegen_->MaybeRecordImplicitNullCheck(instruction);
4354  }
4355
4356  if (is_volatile) {
4357    if (field_type == Primitive::kPrimNot) {
4358      // Memory barriers, in the case of references, are also handled
4359      // in the previous switch statement.
4360    } else {
4361      codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4362    }
4363  }
4364}
4365
4366void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4367  HandleFieldSet(instruction, instruction->GetFieldInfo());
4368}
4369
4370void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4371  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4372}
4373
4374void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4375  HandleFieldGet(instruction, instruction->GetFieldInfo());
4376}
4377
4378void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4379  HandleFieldGet(instruction, instruction->GetFieldInfo());
4380}
4381
4382void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4383  HandleFieldGet(instruction, instruction->GetFieldInfo());
4384}
4385
4386void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4387  HandleFieldGet(instruction, instruction->GetFieldInfo());
4388}
4389
4390void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4391  HandleFieldSet(instruction, instruction->GetFieldInfo());
4392}
4393
4394void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4395  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4396}
4397
4398void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
4399    HUnresolvedInstanceFieldGet* instruction) {
4400  FieldAccessCallingConventionARM calling_convention;
4401  codegen_->CreateUnresolvedFieldLocationSummary(
4402      instruction, instruction->GetFieldType(), calling_convention);
4403}
4404
4405void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
4406    HUnresolvedInstanceFieldGet* instruction) {
4407  FieldAccessCallingConventionARM calling_convention;
4408  codegen_->GenerateUnresolvedFieldAccess(instruction,
4409                                          instruction->GetFieldType(),
4410                                          instruction->GetFieldIndex(),
4411                                          instruction->GetDexPc(),
4412                                          calling_convention);
4413}
4414
4415void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
4416    HUnresolvedInstanceFieldSet* instruction) {
4417  FieldAccessCallingConventionARM calling_convention;
4418  codegen_->CreateUnresolvedFieldLocationSummary(
4419      instruction, instruction->GetFieldType(), calling_convention);
4420}
4421
4422void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
4423    HUnresolvedInstanceFieldSet* instruction) {
4424  FieldAccessCallingConventionARM calling_convention;
4425  codegen_->GenerateUnresolvedFieldAccess(instruction,
4426                                          instruction->GetFieldType(),
4427                                          instruction->GetFieldIndex(),
4428                                          instruction->GetDexPc(),
4429                                          calling_convention);
4430}
4431
4432void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
4433    HUnresolvedStaticFieldGet* instruction) {
4434  FieldAccessCallingConventionARM calling_convention;
4435  codegen_->CreateUnresolvedFieldLocationSummary(
4436      instruction, instruction->GetFieldType(), calling_convention);
4437}
4438
4439void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
4440    HUnresolvedStaticFieldGet* instruction) {
4441  FieldAccessCallingConventionARM calling_convention;
4442  codegen_->GenerateUnresolvedFieldAccess(instruction,
4443                                          instruction->GetFieldType(),
4444                                          instruction->GetFieldIndex(),
4445                                          instruction->GetDexPc(),
4446                                          calling_convention);
4447}
4448
4449void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
4450    HUnresolvedStaticFieldSet* instruction) {
4451  FieldAccessCallingConventionARM calling_convention;
4452  codegen_->CreateUnresolvedFieldLocationSummary(
4453      instruction, instruction->GetFieldType(), calling_convention);
4454}
4455
4456void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
4457    HUnresolvedStaticFieldSet* instruction) {
4458  FieldAccessCallingConventionARM calling_convention;
4459  codegen_->GenerateUnresolvedFieldAccess(instruction,
4460                                          instruction->GetFieldType(),
4461                                          instruction->GetFieldIndex(),
4462                                          instruction->GetDexPc(),
4463                                          calling_convention);
4464}
4465
4466void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
4467  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4468  locations->SetInAt(0, Location::RequiresRegister());
4469}
4470
4471void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
4472  if (CanMoveNullCheckToUser(instruction)) {
4473    return;
4474  }
4475  Location obj = instruction->GetLocations()->InAt(0);
4476
4477  __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
4478  RecordPcInfo(instruction, instruction->GetDexPc());
4479}
4480
4481void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
4482  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
4483  AddSlowPath(slow_path);
4484
4485  LocationSummary* locations = instruction->GetLocations();
4486  Location obj = locations->InAt(0);
4487
4488  __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
4489}
4490
4491void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
4492  codegen_->GenerateNullCheck(instruction);
4493}
4494
4495static LoadOperandType GetLoadOperandType(Primitive::Type type) {
4496  switch (type) {
4497    case Primitive::kPrimNot:
4498      return kLoadWord;
4499    case Primitive::kPrimBoolean:
4500      return kLoadUnsignedByte;
4501    case Primitive::kPrimByte:
4502      return kLoadSignedByte;
4503    case Primitive::kPrimChar:
4504      return kLoadUnsignedHalfword;
4505    case Primitive::kPrimShort:
4506      return kLoadSignedHalfword;
4507    case Primitive::kPrimInt:
4508      return kLoadWord;
4509    case Primitive::kPrimLong:
4510      return kLoadWordPair;
4511    case Primitive::kPrimFloat:
4512      return kLoadSWord;
4513    case Primitive::kPrimDouble:
4514      return kLoadDWord;
4515    default:
4516      LOG(FATAL) << "Unreachable type " << type;
4517      UNREACHABLE();
4518  }
4519}
4520
4521static StoreOperandType GetStoreOperandType(Primitive::Type type) {
4522  switch (type) {
4523    case Primitive::kPrimNot:
4524      return kStoreWord;
4525    case Primitive::kPrimBoolean:
4526    case Primitive::kPrimByte:
4527      return kStoreByte;
4528    case Primitive::kPrimChar:
4529    case Primitive::kPrimShort:
4530      return kStoreHalfword;
4531    case Primitive::kPrimInt:
4532      return kStoreWord;
4533    case Primitive::kPrimLong:
4534      return kStoreWordPair;
4535    case Primitive::kPrimFloat:
4536      return kStoreSWord;
4537    case Primitive::kPrimDouble:
4538      return kStoreDWord;
4539    default:
4540      LOG(FATAL) << "Unreachable type " << type;
4541      UNREACHABLE();
4542  }
4543}
4544
4545void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type,
4546                                                Location out_loc,
4547                                                Register base,
4548                                                Register reg_offset,
4549                                                Condition cond) {
4550  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4551  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4552
4553  switch (type) {
4554    case Primitive::kPrimByte:
4555      __ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond);
4556      break;
4557    case Primitive::kPrimBoolean:
4558      __ ldrb(out_loc.AsRegister<Register>(), mem_address, cond);
4559      break;
4560    case Primitive::kPrimShort:
4561      __ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond);
4562      break;
4563    case Primitive::kPrimChar:
4564      __ ldrh(out_loc.AsRegister<Register>(), mem_address, cond);
4565      break;
4566    case Primitive::kPrimNot:
4567    case Primitive::kPrimInt:
4568      __ ldr(out_loc.AsRegister<Register>(), mem_address, cond);
4569      break;
4570    // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
4571    case Primitive::kPrimLong:
4572    case Primitive::kPrimFloat:
4573    case Primitive::kPrimDouble:
4574    default:
4575      LOG(FATAL) << "Unreachable type " << type;
4576      UNREACHABLE();
4577  }
4578}
4579
4580void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type,
4581                                               Location loc,
4582                                               Register base,
4583                                               Register reg_offset,
4584                                               Condition cond) {
4585  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4586  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4587
4588  switch (type) {
4589    case Primitive::kPrimByte:
4590    case Primitive::kPrimBoolean:
4591      __ strb(loc.AsRegister<Register>(), mem_address, cond);
4592      break;
4593    case Primitive::kPrimShort:
4594    case Primitive::kPrimChar:
4595      __ strh(loc.AsRegister<Register>(), mem_address, cond);
4596      break;
4597    case Primitive::kPrimNot:
4598    case Primitive::kPrimInt:
4599      __ str(loc.AsRegister<Register>(), mem_address, cond);
4600      break;
4601    // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
4602    case Primitive::kPrimLong:
4603    case Primitive::kPrimFloat:
4604    case Primitive::kPrimDouble:
4605    default:
4606      LOG(FATAL) << "Unreachable type " << type;
4607      UNREACHABLE();
4608  }
4609}
4610
4611void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
4612  bool object_array_get_with_read_barrier =
4613      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4614  LocationSummary* locations =
4615      new (GetGraph()->GetArena()) LocationSummary(instruction,
4616                                                   object_array_get_with_read_barrier ?
4617                                                       LocationSummary::kCallOnSlowPath :
4618                                                       LocationSummary::kNoCall);
4619  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
4620    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4621  }
4622  locations->SetInAt(0, Location::RequiresRegister());
4623  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4624  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4625    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4626  } else {
4627    // The output overlaps in the case of an object array get with
4628    // read barriers enabled: we do not want the move to overwrite the
4629    // array's location, as we need it to emit the read barrier.
4630    locations->SetOut(
4631        Location::RequiresRegister(),
4632        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
4633  }
4634  // We need a temporary register for the read barrier marking slow
4635  // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
4636  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
4637    locations->AddTemp(Location::RequiresRegister());
4638  }
4639}
4640
4641void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
4642  LocationSummary* locations = instruction->GetLocations();
4643  Location obj_loc = locations->InAt(0);
4644  Register obj = obj_loc.AsRegister<Register>();
4645  Location index = locations->InAt(1);
4646  Location out_loc = locations->Out();
4647  uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
4648  Primitive::Type type = instruction->GetType();
4649  HInstruction* array_instr = instruction->GetArray();
4650  bool has_intermediate_address = array_instr->IsIntermediateAddress();
4651  // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
4652  DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
4653
4654  switch (type) {
4655    case Primitive::kPrimBoolean:
4656    case Primitive::kPrimByte:
4657    case Primitive::kPrimShort:
4658    case Primitive::kPrimChar:
4659    case Primitive::kPrimInt: {
4660      if (index.IsConstant()) {
4661        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
4662        uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
4663
4664        LoadOperandType load_type = GetLoadOperandType(type);
4665        __ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset);
4666      } else {
4667        Register temp = IP;
4668
4669        if (has_intermediate_address) {
4670          // We do not need to compute the intermediate address from the array: the
4671          // input instruction has done it already. See the comment in
4672          // `TryExtractArrayAccessAddress()`.
4673          if (kIsDebugBuild) {
4674            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4675            DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
4676          }
4677          temp = obj;
4678        } else {
4679          __ add(temp, obj, ShifterOperand(data_offset));
4680        }
4681        codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
4682      }
4683      break;
4684    }
4685
4686    case Primitive::kPrimNot: {
4687      static_assert(
4688          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4689          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4690      // /* HeapReference<Object> */ out =
4691      //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4692      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4693        Location temp = locations->GetTemp(0);
4694        // Note that a potential implicit null check is handled in this
4695        // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
4696        codegen_->GenerateArrayLoadWithBakerReadBarrier(
4697            instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
4698      } else {
4699        Register out = out_loc.AsRegister<Register>();
4700        if (index.IsConstant()) {
4701          size_t offset =
4702              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4703          __ LoadFromOffset(kLoadWord, out, obj, offset);
4704          codegen_->MaybeRecordImplicitNullCheck(instruction);
4705          // If read barriers are enabled, emit read barriers other than
4706          // Baker's using a slow path (and also unpoison the loaded
4707          // reference, if heap poisoning is enabled).
4708          codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
4709        } else {
4710          Register temp = IP;
4711
4712          if (has_intermediate_address) {
4713            // We do not need to compute the intermediate address from the array: the
4714            // input instruction has done it already. See the comment in
4715            // `TryExtractArrayAccessAddress()`.
4716            if (kIsDebugBuild) {
4717              HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4718              DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
4719            }
4720            temp = obj;
4721          } else {
4722            __ add(temp, obj, ShifterOperand(data_offset));
4723          }
4724          codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
4725
4726          codegen_->MaybeRecordImplicitNullCheck(instruction);
4727          // If read barriers are enabled, emit read barriers other than
4728          // Baker's using a slow path (and also unpoison the loaded
4729          // reference, if heap poisoning is enabled).
4730          codegen_->MaybeGenerateReadBarrierSlow(
4731              instruction, out_loc, out_loc, obj_loc, data_offset, index);
4732        }
4733      }
4734      break;
4735    }
4736
4737    case Primitive::kPrimLong: {
4738      if (index.IsConstant()) {
4739        size_t offset =
4740            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4741        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
4742      } else {
4743        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4744        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
4745      }
4746      break;
4747    }
4748
4749    case Primitive::kPrimFloat: {
4750      SRegister out = out_loc.AsFpuRegister<SRegister>();
4751      if (index.IsConstant()) {
4752        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4753        __ LoadSFromOffset(out, obj, offset);
4754      } else {
4755        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4756        __ LoadSFromOffset(out, IP, data_offset);
4757      }
4758      break;
4759    }
4760
4761    case Primitive::kPrimDouble: {
4762      SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
4763      if (index.IsConstant()) {
4764        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4765        __ LoadDFromOffset(FromLowSToD(out), obj, offset);
4766      } else {
4767        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4768        __ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
4769      }
4770      break;
4771    }
4772
4773    case Primitive::kPrimVoid:
4774      LOG(FATAL) << "Unreachable type " << type;
4775      UNREACHABLE();
4776  }
4777
4778  if (type == Primitive::kPrimNot) {
4779    // Potential implicit null checks, in the case of reference
4780    // arrays, are handled in the previous switch statement.
4781  } else {
4782    codegen_->MaybeRecordImplicitNullCheck(instruction);
4783  }
4784}
4785
4786void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
4787  Primitive::Type value_type = instruction->GetComponentType();
4788
4789  bool needs_write_barrier =
4790      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
4791  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
4792
4793  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
4794      instruction,
4795      may_need_runtime_call_for_type_check ?
4796          LocationSummary::kCallOnSlowPath :
4797          LocationSummary::kNoCall);
4798
4799  locations->SetInAt(0, Location::RequiresRegister());
4800  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4801  if (Primitive::IsFloatingPointType(value_type)) {
4802    locations->SetInAt(2, Location::RequiresFpuRegister());
4803  } else {
4804    locations->SetInAt(2, Location::RequiresRegister());
4805  }
4806  if (needs_write_barrier) {
4807    // Temporary registers for the write barrier.
4808    locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
4809    locations->AddTemp(Location::RequiresRegister());
4810  }
4811}
4812
4813void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
4814  LocationSummary* locations = instruction->GetLocations();
4815  Location array_loc = locations->InAt(0);
4816  Register array = array_loc.AsRegister<Register>();
4817  Location index = locations->InAt(1);
4818  Primitive::Type value_type = instruction->GetComponentType();
4819  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
4820  bool needs_write_barrier =
4821      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
4822  uint32_t data_offset =
4823      mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
4824  Location value_loc = locations->InAt(2);
4825  HInstruction* array_instr = instruction->GetArray();
4826  bool has_intermediate_address = array_instr->IsIntermediateAddress();
4827  // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
4828  DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
4829
4830  switch (value_type) {
4831    case Primitive::kPrimBoolean:
4832    case Primitive::kPrimByte:
4833    case Primitive::kPrimShort:
4834    case Primitive::kPrimChar:
4835    case Primitive::kPrimInt: {
4836      if (index.IsConstant()) {
4837        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
4838        uint32_t full_offset =
4839            data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
4840        StoreOperandType store_type = GetStoreOperandType(value_type);
4841        __ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset);
4842      } else {
4843        Register temp = IP;
4844
4845        if (has_intermediate_address) {
4846          // We do not need to compute the intermediate address from the array: the
4847          // input instruction has done it already. See the comment in
4848          // `TryExtractArrayAccessAddress()`.
4849          if (kIsDebugBuild) {
4850            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4851            DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset);
4852          }
4853          temp = array;
4854        } else {
4855          __ add(temp, array, ShifterOperand(data_offset));
4856        }
4857        codegen_->StoreToShiftedRegOffset(value_type,
4858                                          value_loc,
4859                                          temp,
4860                                          index.AsRegister<Register>());
4861      }
4862      break;
4863    }
4864
4865    case Primitive::kPrimNot: {
4866      Register value = value_loc.AsRegister<Register>();
4867      // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
4868      // See the comment in instruction_simplifier_shared.cc.
4869      DCHECK(!has_intermediate_address);
4870
4871      if (instruction->InputAt(2)->IsNullConstant()) {
4872        // Just setting null.
4873        if (index.IsConstant()) {
4874          size_t offset =
4875              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4876          __ StoreToOffset(kStoreWord, value, array, offset);
4877        } else {
4878          DCHECK(index.IsRegister()) << index;
4879          __ add(IP, array, ShifterOperand(data_offset));
4880          codegen_->StoreToShiftedRegOffset(value_type,
4881                                            value_loc,
4882                                            IP,
4883                                            index.AsRegister<Register>());
4884        }
4885        codegen_->MaybeRecordImplicitNullCheck(instruction);
4886        DCHECK(!needs_write_barrier);
4887        DCHECK(!may_need_runtime_call_for_type_check);
4888        break;
4889      }
4890
4891      DCHECK(needs_write_barrier);
4892      Location temp1_loc = locations->GetTemp(0);
4893      Register temp1 = temp1_loc.AsRegister<Register>();
4894      Location temp2_loc = locations->GetTemp(1);
4895      Register temp2 = temp2_loc.AsRegister<Register>();
4896      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4897      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4898      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4899      Label done;
4900      SlowPathCodeARM* slow_path = nullptr;
4901
4902      if (may_need_runtime_call_for_type_check) {
4903        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
4904        codegen_->AddSlowPath(slow_path);
4905        if (instruction->GetValueCanBeNull()) {
4906          Label non_zero;
4907          __ CompareAndBranchIfNonZero(value, &non_zero);
4908          if (index.IsConstant()) {
4909            size_t offset =
4910               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4911            __ StoreToOffset(kStoreWord, value, array, offset);
4912          } else {
4913            DCHECK(index.IsRegister()) << index;
4914            __ add(IP, array, ShifterOperand(data_offset));
4915            codegen_->StoreToShiftedRegOffset(value_type,
4916                                              value_loc,
4917                                              IP,
4918                                              index.AsRegister<Register>());
4919          }
4920          codegen_->MaybeRecordImplicitNullCheck(instruction);
4921          __ b(&done);
4922          __ Bind(&non_zero);
4923        }
4924
4925        // Note that when read barriers are enabled, the type checks
4926        // are performed without read barriers.  This is fine, even in
4927        // the case where a class object is in the from-space after
4928        // the flip, as a comparison involving such a type would not
4929        // produce a false positive; it may of course produce a false
4930        // negative, in which case we would take the ArraySet slow
4931        // path.
4932
4933        // /* HeapReference<Class> */ temp1 = array->klass_
4934        __ LoadFromOffset(kLoadWord, temp1, array, class_offset);
4935        codegen_->MaybeRecordImplicitNullCheck(instruction);
4936        __ MaybeUnpoisonHeapReference(temp1);
4937
4938        // /* HeapReference<Class> */ temp1 = temp1->component_type_
4939        __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
4940        // /* HeapReference<Class> */ temp2 = value->klass_
4941        __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
4942        // If heap poisoning is enabled, no need to unpoison `temp1`
4943        // nor `temp2`, as we are comparing two poisoned references.
4944        __ cmp(temp1, ShifterOperand(temp2));
4945
4946        if (instruction->StaticTypeOfArrayIsObjectArray()) {
4947          Label do_put;
4948          __ b(&do_put, EQ);
4949          // If heap poisoning is enabled, the `temp1` reference has
4950          // not been unpoisoned yet; unpoison it now.
4951          __ MaybeUnpoisonHeapReference(temp1);
4952
4953          // /* HeapReference<Class> */ temp1 = temp1->super_class_
4954          __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
4955          // If heap poisoning is enabled, no need to unpoison
4956          // `temp1`, as we are comparing against null below.
4957          __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
4958          __ Bind(&do_put);
4959        } else {
4960          __ b(slow_path->GetEntryLabel(), NE);
4961        }
4962      }
4963
4964      Register source = value;
4965      if (kPoisonHeapReferences) {
4966        // Note that in the case where `value` is a null reference,
4967        // we do not enter this block, as a null reference does not
4968        // need poisoning.
4969        DCHECK_EQ(value_type, Primitive::kPrimNot);
4970        __ Mov(temp1, value);
4971        __ PoisonHeapReference(temp1);
4972        source = temp1;
4973      }
4974
4975      if (index.IsConstant()) {
4976        size_t offset =
4977            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4978        __ StoreToOffset(kStoreWord, source, array, offset);
4979      } else {
4980        DCHECK(index.IsRegister()) << index;
4981
4982        __ add(IP, array, ShifterOperand(data_offset));
4983        codegen_->StoreToShiftedRegOffset(value_type,
4984                                          Location::RegisterLocation(source),
4985                                          IP,
4986                                          index.AsRegister<Register>());
4987      }
4988
4989      if (!may_need_runtime_call_for_type_check) {
4990        codegen_->MaybeRecordImplicitNullCheck(instruction);
4991      }
4992
4993      codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
4994
4995      if (done.IsLinked()) {
4996        __ Bind(&done);
4997      }
4998
4999      if (slow_path != nullptr) {
5000        __ Bind(slow_path->GetExitLabel());
5001      }
5002
5003      break;
5004    }
5005
5006    case Primitive::kPrimLong: {
5007      Location value = locations->InAt(2);
5008      if (index.IsConstant()) {
5009        size_t offset =
5010            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5011        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
5012      } else {
5013        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5014        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
5015      }
5016      break;
5017    }
5018
5019    case Primitive::kPrimFloat: {
5020      Location value = locations->InAt(2);
5021      DCHECK(value.IsFpuRegister());
5022      if (index.IsConstant()) {
5023        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5024        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
5025      } else {
5026        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
5027        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
5028      }
5029      break;
5030    }
5031
5032    case Primitive::kPrimDouble: {
5033      Location value = locations->InAt(2);
5034      DCHECK(value.IsFpuRegisterPair());
5035      if (index.IsConstant()) {
5036        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5037        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
5038      } else {
5039        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5040        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
5041      }
5042
5043      break;
5044    }
5045
5046    case Primitive::kPrimVoid:
5047      LOG(FATAL) << "Unreachable type " << value_type;
5048      UNREACHABLE();
5049  }
5050
5051  // Objects are handled in the switch.
5052  if (value_type != Primitive::kPrimNot) {
5053    codegen_->MaybeRecordImplicitNullCheck(instruction);
5054  }
5055}
5056
5057void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
5058  LocationSummary* locations =
5059      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5060  locations->SetInAt(0, Location::RequiresRegister());
5061  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5062}
5063
5064void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
5065  LocationSummary* locations = instruction->GetLocations();
5066  uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
5067  Register obj = locations->InAt(0).AsRegister<Register>();
5068  Register out = locations->Out().AsRegister<Register>();
5069  __ LoadFromOffset(kLoadWord, out, obj, offset);
5070  codegen_->MaybeRecordImplicitNullCheck(instruction);
5071}
5072
5073void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5074  // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
5075  DCHECK(!kEmitCompilerReadBarrier);
5076  LocationSummary* locations =
5077      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5078
5079  locations->SetInAt(0, Location::RequiresRegister());
5080  locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
5081  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5082}
5083
5084void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5085  LocationSummary* locations = instruction->GetLocations();
5086  Location out = locations->Out();
5087  Location first = locations->InAt(0);
5088  Location second = locations->InAt(1);
5089
5090  // The read barrier instrumentation does not support the HIntermediateAddress instruction yet.
5091  DCHECK(!kEmitCompilerReadBarrier);
5092
5093  if (second.IsRegister()) {
5094    __ add(out.AsRegister<Register>(),
5095           first.AsRegister<Register>(),
5096           ShifterOperand(second.AsRegister<Register>()));
5097  } else {
5098    __ AddConstant(out.AsRegister<Register>(),
5099                   first.AsRegister<Register>(),
5100                   second.GetConstant()->AsIntConstant()->GetValue());
5101  }
5102}
5103
5104void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5105  RegisterSet caller_saves = RegisterSet::Empty();
5106  InvokeRuntimeCallingConvention calling_convention;
5107  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5108  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
5109  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
5110  locations->SetInAt(0, Location::RequiresRegister());
5111  locations->SetInAt(1, Location::RequiresRegister());
5112}
5113
5114void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5115  LocationSummary* locations = instruction->GetLocations();
5116  SlowPathCodeARM* slow_path =
5117      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
5118  codegen_->AddSlowPath(slow_path);
5119
5120  Register index = locations->InAt(0).AsRegister<Register>();
5121  Register length = locations->InAt(1).AsRegister<Register>();
5122
5123  __ cmp(index, ShifterOperand(length));
5124  __ b(slow_path->GetEntryLabel(), HS);
5125}
5126
5127void CodeGeneratorARM::MarkGCCard(Register temp,
5128                                  Register card,
5129                                  Register object,
5130                                  Register value,
5131                                  bool can_be_null) {
5132  Label is_null;
5133  if (can_be_null) {
5134    __ CompareAndBranchIfZero(value, &is_null);
5135  }
5136  __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
5137  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
5138  __ strb(card, Address(card, temp));
5139  if (can_be_null) {
5140    __ Bind(&is_null);
5141  }
5142}
5143
5144void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5145  LOG(FATAL) << "Unreachable";
5146}
5147
5148void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
5149  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5150}
5151
5152void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5153  LocationSummary* locations =
5154      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5155  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5156}
5157
5158void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5159  HBasicBlock* block = instruction->GetBlock();
5160  if (block->GetLoopInformation() != nullptr) {
5161    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5162    // The back edge will generate the suspend check.
5163    return;
5164  }
5165  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5166    // The goto will generate the suspend check.
5167    return;
5168  }
5169  GenerateSuspendCheck(instruction, nullptr);
5170}
5171
5172void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
5173                                                       HBasicBlock* successor) {
5174  SuspendCheckSlowPathARM* slow_path =
5175      down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
5176  if (slow_path == nullptr) {
5177    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
5178    instruction->SetSlowPath(slow_path);
5179    codegen_->AddSlowPath(slow_path);
5180    if (successor != nullptr) {
5181      DCHECK(successor->IsLoopHeader());
5182      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5183    }
5184  } else {
5185    DCHECK_EQ(slow_path->GetSuccessor(), successor);
5186  }
5187
5188  __ LoadFromOffset(
5189      kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
5190  if (successor == nullptr) {
5191    __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
5192    __ Bind(slow_path->GetReturnLabel());
5193  } else {
5194    __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
5195    __ b(slow_path->GetEntryLabel());
5196  }
5197}
5198
5199ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
5200  return codegen_->GetAssembler();
5201}
5202
5203void ParallelMoveResolverARM::EmitMove(size_t index) {
5204  MoveOperands* move = moves_[index];
5205  Location source = move->GetSource();
5206  Location destination = move->GetDestination();
5207
5208  if (source.IsRegister()) {
5209    if (destination.IsRegister()) {
5210      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
5211    } else if (destination.IsFpuRegister()) {
5212      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
5213    } else {
5214      DCHECK(destination.IsStackSlot());
5215      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
5216                       SP, destination.GetStackIndex());
5217    }
5218  } else if (source.IsStackSlot()) {
5219    if (destination.IsRegister()) {
5220      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
5221                        SP, source.GetStackIndex());
5222    } else if (destination.IsFpuRegister()) {
5223      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
5224    } else {
5225      DCHECK(destination.IsStackSlot());
5226      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
5227      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5228    }
5229  } else if (source.IsFpuRegister()) {
5230    if (destination.IsRegister()) {
5231      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
5232    } else if (destination.IsFpuRegister()) {
5233      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
5234    } else {
5235      DCHECK(destination.IsStackSlot());
5236      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
5237    }
5238  } else if (source.IsDoubleStackSlot()) {
5239    if (destination.IsDoubleStackSlot()) {
5240      __ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
5241      __ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
5242    } else if (destination.IsRegisterPair()) {
5243      DCHECK(ExpectedPairLayout(destination));
5244      __ LoadFromOffset(
5245          kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
5246    } else {
5247      DCHECK(destination.IsFpuRegisterPair()) << destination;
5248      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5249                         SP,
5250                         source.GetStackIndex());
5251    }
5252  } else if (source.IsRegisterPair()) {
5253    if (destination.IsRegisterPair()) {
5254      __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
5255      __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
5256    } else if (destination.IsFpuRegisterPair()) {
5257      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5258                 source.AsRegisterPairLow<Register>(),
5259                 source.AsRegisterPairHigh<Register>());
5260    } else {
5261      DCHECK(destination.IsDoubleStackSlot()) << destination;
5262      DCHECK(ExpectedPairLayout(source));
5263      __ StoreToOffset(
5264          kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
5265    }
5266  } else if (source.IsFpuRegisterPair()) {
5267    if (destination.IsRegisterPair()) {
5268      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5269                 destination.AsRegisterPairHigh<Register>(),
5270                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5271    } else if (destination.IsFpuRegisterPair()) {
5272      __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5273               FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5274    } else {
5275      DCHECK(destination.IsDoubleStackSlot()) << destination;
5276      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
5277                        SP,
5278                        destination.GetStackIndex());
5279    }
5280  } else {
5281    DCHECK(source.IsConstant()) << source;
5282    HConstant* constant = source.GetConstant();
5283    if (constant->IsIntConstant() || constant->IsNullConstant()) {
5284      int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5285      if (destination.IsRegister()) {
5286        __ LoadImmediate(destination.AsRegister<Register>(), value);
5287      } else {
5288        DCHECK(destination.IsStackSlot());
5289        __ LoadImmediate(IP, value);
5290        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5291      }
5292    } else if (constant->IsLongConstant()) {
5293      int64_t value = constant->AsLongConstant()->GetValue();
5294      if (destination.IsRegisterPair()) {
5295        __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
5296        __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
5297      } else {
5298        DCHECK(destination.IsDoubleStackSlot()) << destination;
5299        __ LoadImmediate(IP, Low32Bits(value));
5300        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5301        __ LoadImmediate(IP, High32Bits(value));
5302        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5303      }
5304    } else if (constant->IsDoubleConstant()) {
5305      double value = constant->AsDoubleConstant()->GetValue();
5306      if (destination.IsFpuRegisterPair()) {
5307        __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
5308      } else {
5309        DCHECK(destination.IsDoubleStackSlot()) << destination;
5310        uint64_t int_value = bit_cast<uint64_t, double>(value);
5311        __ LoadImmediate(IP, Low32Bits(int_value));
5312        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5313        __ LoadImmediate(IP, High32Bits(int_value));
5314        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5315      }
5316    } else {
5317      DCHECK(constant->IsFloatConstant()) << constant->DebugName();
5318      float value = constant->AsFloatConstant()->GetValue();
5319      if (destination.IsFpuRegister()) {
5320        __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
5321      } else {
5322        DCHECK(destination.IsStackSlot());
5323        __ LoadImmediate(IP, bit_cast<int32_t, float>(value));
5324        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5325      }
5326    }
5327  }
5328}
5329
5330void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
5331  __ Mov(IP, reg);
5332  __ LoadFromOffset(kLoadWord, reg, SP, mem);
5333  __ StoreToOffset(kStoreWord, IP, SP, mem);
5334}
5335
5336void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
5337  ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
5338  int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
5339  __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
5340                    SP, mem1 + stack_offset);
5341  __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
5342  __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
5343                   SP, mem2 + stack_offset);
5344  __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
5345}
5346
5347void ParallelMoveResolverARM::EmitSwap(size_t index) {
5348  MoveOperands* move = moves_[index];
5349  Location source = move->GetSource();
5350  Location destination = move->GetDestination();
5351
5352  if (source.IsRegister() && destination.IsRegister()) {
5353    DCHECK_NE(source.AsRegister<Register>(), IP);
5354    DCHECK_NE(destination.AsRegister<Register>(), IP);
5355    __ Mov(IP, source.AsRegister<Register>());
5356    __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
5357    __ Mov(destination.AsRegister<Register>(), IP);
5358  } else if (source.IsRegister() && destination.IsStackSlot()) {
5359    Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5360  } else if (source.IsStackSlot() && destination.IsRegister()) {
5361    Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5362  } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5363    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5364  } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5365    __ vmovrs(IP, source.AsFpuRegister<SRegister>());
5366    __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
5367    __ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
5368  } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
5369    __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
5370    __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
5371    __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
5372    __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5373               destination.AsRegisterPairHigh<Register>(),
5374               DTMP);
5375  } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
5376    Register low_reg = source.IsRegisterPair()
5377        ? source.AsRegisterPairLow<Register>()
5378        : destination.AsRegisterPairLow<Register>();
5379    int mem = source.IsRegisterPair()
5380        ? destination.GetStackIndex()
5381        : source.GetStackIndex();
5382    DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
5383    __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
5384    __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
5385    __ StoreDToOffset(DTMP, SP, mem);
5386  } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
5387    DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
5388    DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5389    __ vmovd(DTMP, first);
5390    __ vmovd(first, second);
5391    __ vmovd(second, DTMP);
5392  } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
5393    DRegister reg = source.IsFpuRegisterPair()
5394        ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
5395        : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5396    int mem = source.IsFpuRegisterPair()
5397        ? destination.GetStackIndex()
5398        : source.GetStackIndex();
5399    __ vmovd(DTMP, reg);
5400    __ LoadDFromOffset(reg, SP, mem);
5401    __ StoreDToOffset(DTMP, SP, mem);
5402  } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
5403    SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
5404                                           : destination.AsFpuRegister<SRegister>();
5405    int mem = source.IsFpuRegister()
5406        ? destination.GetStackIndex()
5407        : source.GetStackIndex();
5408
5409    __ vmovrs(IP, reg);
5410    __ LoadSFromOffset(reg, SP, mem);
5411    __ StoreToOffset(kStoreWord, IP, SP, mem);
5412  } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
5413    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5414    Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
5415  } else {
5416    LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
5417  }
5418}
5419
5420void ParallelMoveResolverARM::SpillScratch(int reg) {
5421  __ Push(static_cast<Register>(reg));
5422}
5423
5424void ParallelMoveResolverARM::RestoreScratch(int reg) {
5425  __ Pop(static_cast<Register>(reg));
5426}
5427
5428HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind(
5429    HLoadClass::LoadKind desired_class_load_kind) {
5430  switch (desired_class_load_kind) {
5431    case HLoadClass::LoadKind::kReferrersClass:
5432      break;
5433    case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
5434      DCHECK(!GetCompilerOptions().GetCompilePic());
5435      break;
5436    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5437      DCHECK(GetCompilerOptions().GetCompilePic());
5438      break;
5439    case HLoadClass::LoadKind::kBootImageAddress:
5440      break;
5441    case HLoadClass::LoadKind::kDexCacheAddress:
5442      DCHECK(Runtime::Current()->UseJitCompilation());
5443      break;
5444    case HLoadClass::LoadKind::kDexCachePcRelative:
5445      DCHECK(!Runtime::Current()->UseJitCompilation());
5446      // We disable pc-relative load when there is an irreducible loop, as the optimization
5447      // is incompatible with it.
5448      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
5449      // with irreducible loops.
5450      if (GetGraph()->HasIrreducibleLoops()) {
5451        return HLoadClass::LoadKind::kDexCacheViaMethod;
5452      }
5453      break;
5454    case HLoadClass::LoadKind::kDexCacheViaMethod:
5455      break;
5456  }
5457  return desired_class_load_kind;
5458}
5459
5460void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
5461  if (cls->NeedsAccessCheck()) {
5462    InvokeRuntimeCallingConvention calling_convention;
5463    CodeGenerator::CreateLoadClassLocationSummary(
5464        cls,
5465        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5466        Location::RegisterLocation(R0),
5467        /* code_generator_supports_read_barrier */ true);
5468    return;
5469  }
5470
5471  const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5472  LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5473      ? LocationSummary::kCallOnSlowPath
5474      : LocationSummary::kNoCall;
5475  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
5476  if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5477    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5478  }
5479
5480  HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5481  if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
5482      load_kind == HLoadClass::LoadKind::kDexCacheViaMethod ||
5483      load_kind == HLoadClass::LoadKind::kDexCachePcRelative) {
5484    locations->SetInAt(0, Location::RequiresRegister());
5485  }
5486  locations->SetOut(Location::RequiresRegister());
5487}
5488
5489void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
5490  LocationSummary* locations = cls->GetLocations();
5491  if (cls->NeedsAccessCheck()) {
5492    codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5493    codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
5494    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5495    return;
5496  }
5497
5498  Location out_loc = locations->Out();
5499  Register out = out_loc.AsRegister<Register>();
5500
5501  const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5502  bool generate_null_check = false;
5503  switch (cls->GetLoadKind()) {
5504    case HLoadClass::LoadKind::kReferrersClass: {
5505      DCHECK(!cls->CanCallRuntime());
5506      DCHECK(!cls->MustGenerateClinitCheck());
5507      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5508      Register current_method = locations->InAt(0).AsRegister<Register>();
5509      GenerateGcRootFieldLoad(cls,
5510                              out_loc,
5511                              current_method,
5512                              ArtMethod::DeclaringClassOffset().Int32Value(),
5513                              requires_read_barrier);
5514      break;
5515    }
5516    case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
5517      DCHECK(!requires_read_barrier);
5518      __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
5519                                                                    cls->GetTypeIndex()));
5520      break;
5521    }
5522    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5523      DCHECK(!requires_read_barrier);
5524      CodeGeneratorARM::PcRelativePatchInfo* labels =
5525          codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
5526      __ BindTrackedLabel(&labels->movw_label);
5527      __ movw(out, /* placeholder */ 0u);
5528      __ BindTrackedLabel(&labels->movt_label);
5529      __ movt(out, /* placeholder */ 0u);
5530      __ BindTrackedLabel(&labels->add_pc_label);
5531      __ add(out, out, ShifterOperand(PC));
5532      break;
5533    }
5534    case HLoadClass::LoadKind::kBootImageAddress: {
5535      DCHECK(!requires_read_barrier);
5536      DCHECK_NE(cls->GetAddress(), 0u);
5537      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5538      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5539      break;
5540    }
5541    case HLoadClass::LoadKind::kDexCacheAddress: {
5542      DCHECK_NE(cls->GetAddress(), 0u);
5543      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5544      // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives
5545      // a 128B range. To try and reduce the number of literals if we load multiple types,
5546      // simply split the dex cache address to a 128B aligned base loaded from a literal
5547      // and the remaining offset embedded in the load.
5548      static_assert(sizeof(GcRoot<mirror::Class>) == 4u, "Expected GC root to be 4 bytes.");
5549      DCHECK_ALIGNED(cls->GetAddress(), 4u);
5550      constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2;
5551      uint32_t base_address = address & ~MaxInt<uint32_t>(offset_bits);
5552      uint32_t offset = address & MaxInt<uint32_t>(offset_bits);
5553      __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address));
5554      // /* GcRoot<mirror::Class> */ out = *(base_address + offset)
5555      GenerateGcRootFieldLoad(cls, out_loc, out, offset, requires_read_barrier);
5556      generate_null_check = !cls->IsInDexCache();
5557      break;
5558    }
5559    case HLoadClass::LoadKind::kDexCachePcRelative: {
5560      Register base_reg = locations->InAt(0).AsRegister<Register>();
5561      HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase();
5562      int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset();
5563      // /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset)
5564      GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset, requires_read_barrier);
5565      generate_null_check = !cls->IsInDexCache();
5566      break;
5567    }
5568    case HLoadClass::LoadKind::kDexCacheViaMethod: {
5569      // /* GcRoot<mirror::Class>[] */ out =
5570      //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5571      Register current_method = locations->InAt(0).AsRegister<Register>();
5572      __ LoadFromOffset(kLoadWord,
5573                        out,
5574                        current_method,
5575                        ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
5576      // /* GcRoot<mirror::Class> */ out = out[type_index]
5577      size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex());
5578      GenerateGcRootFieldLoad(cls, out_loc, out, offset, requires_read_barrier);
5579      generate_null_check = !cls->IsInDexCache();
5580    }
5581  }
5582
5583  if (generate_null_check || cls->MustGenerateClinitCheck()) {
5584    DCHECK(cls->CanCallRuntime());
5585    SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5586        cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5587    codegen_->AddSlowPath(slow_path);
5588    if (generate_null_check) {
5589      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5590    }
5591    if (cls->MustGenerateClinitCheck()) {
5592      GenerateClassInitializationCheck(slow_path, out);
5593    } else {
5594      __ Bind(slow_path->GetExitLabel());
5595    }
5596  }
5597}
5598
5599void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
5600  LocationSummary* locations =
5601      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5602  locations->SetInAt(0, Location::RequiresRegister());
5603  if (check->HasUses()) {
5604    locations->SetOut(Location::SameAsFirstInput());
5605  }
5606}
5607
5608void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
5609  // We assume the class is not null.
5610  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5611      check->GetLoadClass(), check, check->GetDexPc(), true);
5612  codegen_->AddSlowPath(slow_path);
5613  GenerateClassInitializationCheck(slow_path,
5614                                   check->GetLocations()->InAt(0).AsRegister<Register>());
5615}
5616
5617void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
5618    SlowPathCodeARM* slow_path, Register class_reg) {
5619  __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
5620  __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
5621  __ b(slow_path->GetEntryLabel(), LT);
5622  // Even if the initialized flag is set, we may be in a situation where caches are not synced
5623  // properly. Therefore, we do a memory fence.
5624  __ dmb(ISH);
5625  __ Bind(slow_path->GetExitLabel());
5626}
5627
5628HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
5629    HLoadString::LoadKind desired_string_load_kind) {
5630  switch (desired_string_load_kind) {
5631    case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5632      DCHECK(!GetCompilerOptions().GetCompilePic());
5633      break;
5634    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5635      DCHECK(GetCompilerOptions().GetCompilePic());
5636      break;
5637    case HLoadString::LoadKind::kBootImageAddress:
5638      break;
5639    case HLoadString::LoadKind::kDexCacheAddress:
5640      DCHECK(Runtime::Current()->UseJitCompilation());
5641      break;
5642    case HLoadString::LoadKind::kBssEntry:
5643      DCHECK(!Runtime::Current()->UseJitCompilation());
5644      break;
5645    case HLoadString::LoadKind::kDexCacheViaMethod:
5646      break;
5647  }
5648  return desired_string_load_kind;
5649}
5650
5651void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
5652  LocationSummary::CallKind call_kind = load->NeedsEnvironment()
5653      ? ((load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod)
5654          ? LocationSummary::kCallOnMainOnly
5655          : LocationSummary::kCallOnSlowPath)
5656      : LocationSummary::kNoCall;
5657  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
5658
5659  HLoadString::LoadKind load_kind = load->GetLoadKind();
5660  if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
5661    locations->SetInAt(0, Location::RequiresRegister());
5662    locations->SetOut(Location::RegisterLocation(R0));
5663  } else {
5664    locations->SetOut(Location::RequiresRegister());
5665  }
5666}
5667
5668void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
5669  LocationSummary* locations = load->GetLocations();
5670  Location out_loc = locations->Out();
5671  Register out = out_loc.AsRegister<Register>();
5672  HLoadString::LoadKind load_kind = load->GetLoadKind();
5673
5674  switch (load_kind) {
5675    case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
5676      __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
5677                                                                      load->GetStringIndex()));
5678      return;  // No dex cache slow path.
5679    }
5680    case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5681      DCHECK(codegen_->GetCompilerOptions().IsBootImage());
5682      CodeGeneratorARM::PcRelativePatchInfo* labels =
5683          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
5684      __ BindTrackedLabel(&labels->movw_label);
5685      __ movw(out, /* placeholder */ 0u);
5686      __ BindTrackedLabel(&labels->movt_label);
5687      __ movt(out, /* placeholder */ 0u);
5688      __ BindTrackedLabel(&labels->add_pc_label);
5689      __ add(out, out, ShifterOperand(PC));
5690      return;  // No dex cache slow path.
5691    }
5692    case HLoadString::LoadKind::kBootImageAddress: {
5693      DCHECK_NE(load->GetAddress(), 0u);
5694      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
5695      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5696      return;  // No dex cache slow path.
5697    }
5698    case HLoadString::LoadKind::kBssEntry: {
5699      DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5700      CodeGeneratorARM::PcRelativePatchInfo* labels =
5701          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
5702      __ BindTrackedLabel(&labels->movw_label);
5703      __ movw(out, /* placeholder */ 0u);
5704      __ BindTrackedLabel(&labels->movt_label);
5705      __ movt(out, /* placeholder */ 0u);
5706      __ BindTrackedLabel(&labels->add_pc_label);
5707      __ add(out, out, ShifterOperand(PC));
5708      GenerateGcRootFieldLoad(load, out_loc, out, 0);
5709      SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
5710      codegen_->AddSlowPath(slow_path);
5711      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5712      __ Bind(slow_path->GetExitLabel());
5713      return;
5714    }
5715    default:
5716      break;
5717  }
5718
5719  // TODO: Consider re-adding the compiler code to do string dex cache lookup again.
5720  DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod);
5721  InvokeRuntimeCallingConvention calling_convention;
5722  __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex());
5723  codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
5724  CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
5725}
5726
5727static int32_t GetExceptionTlsOffset() {
5728  return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
5729}
5730
5731void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
5732  LocationSummary* locations =
5733      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
5734  locations->SetOut(Location::RequiresRegister());
5735}
5736
5737void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
5738  Register out = load->GetLocations()->Out().AsRegister<Register>();
5739  __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
5740}
5741
5742void LocationsBuilderARM::VisitClearException(HClearException* clear) {
5743  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
5744}
5745
5746void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
5747  __ LoadImmediate(IP, 0);
5748  __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
5749}
5750
5751void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
5752  LocationSummary* locations =
5753      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
5754  InvokeRuntimeCallingConvention calling_convention;
5755  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5756}
5757
5758void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
5759  codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
5760  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5761}
5762
5763static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
5764  return kEmitCompilerReadBarrier &&
5765      (kUseBakerReadBarrier ||
5766       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
5767       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
5768       type_check_kind == TypeCheckKind::kArrayObjectCheck);
5769}
5770
5771void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
5772  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
5773  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5774  bool baker_read_barrier_slow_path = false;
5775  switch (type_check_kind) {
5776    case TypeCheckKind::kExactCheck:
5777    case TypeCheckKind::kAbstractClassCheck:
5778    case TypeCheckKind::kClassHierarchyCheck:
5779    case TypeCheckKind::kArrayObjectCheck:
5780      call_kind =
5781          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
5782      baker_read_barrier_slow_path = kUseBakerReadBarrier;
5783      break;
5784    case TypeCheckKind::kArrayCheck:
5785    case TypeCheckKind::kUnresolvedCheck:
5786    case TypeCheckKind::kInterfaceCheck:
5787      call_kind = LocationSummary::kCallOnSlowPath;
5788      break;
5789  }
5790
5791  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5792  if (baker_read_barrier_slow_path) {
5793    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5794  }
5795  locations->SetInAt(0, Location::RequiresRegister());
5796  locations->SetInAt(1, Location::RequiresRegister());
5797  // The "out" register is used as a temporary, so it overlaps with the inputs.
5798  // Note that TypeCheckSlowPathARM uses this register too.
5799  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5800  // When read barriers are enabled, we need a temporary register for
5801  // some cases.
5802  if (TypeCheckNeedsATemporary(type_check_kind)) {
5803    locations->AddTemp(Location::RequiresRegister());
5804  }
5805}
5806
5807void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
5808  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5809  LocationSummary* locations = instruction->GetLocations();
5810  Location obj_loc = locations->InAt(0);
5811  Register obj = obj_loc.AsRegister<Register>();
5812  Register cls = locations->InAt(1).AsRegister<Register>();
5813  Location out_loc = locations->Out();
5814  Register out = out_loc.AsRegister<Register>();
5815  Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
5816      locations->GetTemp(0) :
5817      Location::NoLocation();
5818  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5819  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5820  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5821  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
5822  Label done, zero;
5823  SlowPathCodeARM* slow_path = nullptr;
5824
5825  // Return 0 if `obj` is null.
5826  // avoid null check if we know obj is not null.
5827  if (instruction->MustDoNullCheck()) {
5828    __ CompareAndBranchIfZero(obj, &zero);
5829  }
5830
5831  // /* HeapReference<Class> */ out = obj->klass_
5832  GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
5833
5834  switch (type_check_kind) {
5835    case TypeCheckKind::kExactCheck: {
5836      __ cmp(out, ShifterOperand(cls));
5837      // Classes must be equal for the instanceof to succeed.
5838      __ b(&zero, NE);
5839      __ LoadImmediate(out, 1);
5840      __ b(&done);
5841      break;
5842    }
5843
5844    case TypeCheckKind::kAbstractClassCheck: {
5845      // If the class is abstract, we eagerly fetch the super class of the
5846      // object to avoid doing a comparison we know will fail.
5847      Label loop;
5848      __ Bind(&loop);
5849      // /* HeapReference<Class> */ out = out->super_class_
5850      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
5851      // If `out` is null, we use it for the result, and jump to `done`.
5852      __ CompareAndBranchIfZero(out, &done);
5853      __ cmp(out, ShifterOperand(cls));
5854      __ b(&loop, NE);
5855      __ LoadImmediate(out, 1);
5856      if (zero.IsLinked()) {
5857        __ b(&done);
5858      }
5859      break;
5860    }
5861
5862    case TypeCheckKind::kClassHierarchyCheck: {
5863      // Walk over the class hierarchy to find a match.
5864      Label loop, success;
5865      __ Bind(&loop);
5866      __ cmp(out, ShifterOperand(cls));
5867      __ b(&success, EQ);
5868      // /* HeapReference<Class> */ out = out->super_class_
5869      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
5870      __ CompareAndBranchIfNonZero(out, &loop);
5871      // If `out` is null, we use it for the result, and jump to `done`.
5872      __ b(&done);
5873      __ Bind(&success);
5874      __ LoadImmediate(out, 1);
5875      if (zero.IsLinked()) {
5876        __ b(&done);
5877      }
5878      break;
5879    }
5880
5881    case TypeCheckKind::kArrayObjectCheck: {
5882      // Do an exact check.
5883      Label exact_check;
5884      __ cmp(out, ShifterOperand(cls));
5885      __ b(&exact_check, EQ);
5886      // Otherwise, we need to check that the object's class is a non-primitive array.
5887      // /* HeapReference<Class> */ out = out->component_type_
5888      GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
5889      // If `out` is null, we use it for the result, and jump to `done`.
5890      __ CompareAndBranchIfZero(out, &done);
5891      __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
5892      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
5893      __ CompareAndBranchIfNonZero(out, &zero);
5894      __ Bind(&exact_check);
5895      __ LoadImmediate(out, 1);
5896      __ b(&done);
5897      break;
5898    }
5899
5900    case TypeCheckKind::kArrayCheck: {
5901      __ cmp(out, ShifterOperand(cls));
5902      DCHECK(locations->OnlyCallsOnSlowPath());
5903      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
5904                                                                    /* is_fatal */ false);
5905      codegen_->AddSlowPath(slow_path);
5906      __ b(slow_path->GetEntryLabel(), NE);
5907      __ LoadImmediate(out, 1);
5908      if (zero.IsLinked()) {
5909        __ b(&done);
5910      }
5911      break;
5912    }
5913
5914    case TypeCheckKind::kUnresolvedCheck:
5915    case TypeCheckKind::kInterfaceCheck: {
5916      // Note that we indeed only call on slow path, but we always go
5917      // into the slow path for the unresolved and interface check
5918      // cases.
5919      //
5920      // We cannot directly call the InstanceofNonTrivial runtime
5921      // entry point without resorting to a type checking slow path
5922      // here (i.e. by calling InvokeRuntime directly), as it would
5923      // require to assign fixed registers for the inputs of this
5924      // HInstanceOf instruction (following the runtime calling
5925      // convention), which might be cluttered by the potential first
5926      // read barrier emission at the beginning of this method.
5927      //
5928      // TODO: Introduce a new runtime entry point taking the object
5929      // to test (instead of its class) as argument, and let it deal
5930      // with the read barrier issues. This will let us refactor this
5931      // case of the `switch` code as it was previously (with a direct
5932      // call to the runtime not using a type checking slow path).
5933      // This should also be beneficial for the other cases above.
5934      DCHECK(locations->OnlyCallsOnSlowPath());
5935      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
5936                                                                    /* is_fatal */ false);
5937      codegen_->AddSlowPath(slow_path);
5938      __ b(slow_path->GetEntryLabel());
5939      if (zero.IsLinked()) {
5940        __ b(&done);
5941      }
5942      break;
5943    }
5944  }
5945
5946  if (zero.IsLinked()) {
5947    __ Bind(&zero);
5948    __ LoadImmediate(out, 0);
5949  }
5950
5951  if (done.IsLinked()) {
5952    __ Bind(&done);
5953  }
5954
5955  if (slow_path != nullptr) {
5956    __ Bind(slow_path->GetExitLabel());
5957  }
5958}
5959
5960void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
5961  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
5962  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
5963
5964  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5965  switch (type_check_kind) {
5966    case TypeCheckKind::kExactCheck:
5967    case TypeCheckKind::kAbstractClassCheck:
5968    case TypeCheckKind::kClassHierarchyCheck:
5969    case TypeCheckKind::kArrayObjectCheck:
5970      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
5971          LocationSummary::kCallOnSlowPath :
5972          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
5973      break;
5974    case TypeCheckKind::kArrayCheck:
5975    case TypeCheckKind::kUnresolvedCheck:
5976    case TypeCheckKind::kInterfaceCheck:
5977      call_kind = LocationSummary::kCallOnSlowPath;
5978      break;
5979  }
5980
5981  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5982  locations->SetInAt(0, Location::RequiresRegister());
5983  locations->SetInAt(1, Location::RequiresRegister());
5984  // Note that TypeCheckSlowPathARM uses this "temp" register too.
5985  locations->AddTemp(Location::RequiresRegister());
5986  // When read barriers are enabled, we need an additional temporary
5987  // register for some cases.
5988  if (TypeCheckNeedsATemporary(type_check_kind)) {
5989    locations->AddTemp(Location::RequiresRegister());
5990  }
5991}
5992
5993void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
5994  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5995  LocationSummary* locations = instruction->GetLocations();
5996  Location obj_loc = locations->InAt(0);
5997  Register obj = obj_loc.AsRegister<Register>();
5998  Register cls = locations->InAt(1).AsRegister<Register>();
5999  Location temp_loc = locations->GetTemp(0);
6000  Register temp = temp_loc.AsRegister<Register>();
6001  Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
6002      locations->GetTemp(1) :
6003      Location::NoLocation();
6004  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6005  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6006  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6007  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6008
6009  bool is_type_check_slow_path_fatal =
6010      (type_check_kind == TypeCheckKind::kExactCheck ||
6011       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6012       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6013       type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6014      !instruction->CanThrowIntoCatchBlock();
6015  SlowPathCodeARM* type_check_slow_path =
6016      new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6017                                                        is_type_check_slow_path_fatal);
6018  codegen_->AddSlowPath(type_check_slow_path);
6019
6020  Label done;
6021  // Avoid null check if we know obj is not null.
6022  if (instruction->MustDoNullCheck()) {
6023    __ CompareAndBranchIfZero(obj, &done);
6024  }
6025
6026  // /* HeapReference<Class> */ temp = obj->klass_
6027  GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6028
6029  switch (type_check_kind) {
6030    case TypeCheckKind::kExactCheck:
6031    case TypeCheckKind::kArrayCheck: {
6032      __ cmp(temp, ShifterOperand(cls));
6033      // Jump to slow path for throwing the exception or doing a
6034      // more involved array check.
6035      __ b(type_check_slow_path->GetEntryLabel(), NE);
6036      break;
6037    }
6038
6039    case TypeCheckKind::kAbstractClassCheck: {
6040      // If the class is abstract, we eagerly fetch the super class of the
6041      // object to avoid doing a comparison we know will fail.
6042      Label loop, compare_classes;
6043      __ Bind(&loop);
6044      // /* HeapReference<Class> */ temp = temp->super_class_
6045      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6046
6047      // If the class reference currently in `temp` is not null, jump
6048      // to the `compare_classes` label to compare it with the checked
6049      // class.
6050      __ CompareAndBranchIfNonZero(temp, &compare_classes);
6051      // Otherwise, jump to the slow path to throw the exception.
6052      //
6053      // But before, move back the object's class into `temp` before
6054      // going into the slow path, as it has been overwritten in the
6055      // meantime.
6056      // /* HeapReference<Class> */ temp = obj->klass_
6057      GenerateReferenceLoadTwoRegisters(
6058          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6059      __ b(type_check_slow_path->GetEntryLabel());
6060
6061      __ Bind(&compare_classes);
6062      __ cmp(temp, ShifterOperand(cls));
6063      __ b(&loop, NE);
6064      break;
6065    }
6066
6067    case TypeCheckKind::kClassHierarchyCheck: {
6068      // Walk over the class hierarchy to find a match.
6069      Label loop;
6070      __ Bind(&loop);
6071      __ cmp(temp, ShifterOperand(cls));
6072      __ b(&done, EQ);
6073
6074      // /* HeapReference<Class> */ temp = temp->super_class_
6075      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
6076
6077      // If the class reference currently in `temp` is not null, jump
6078      // back at the beginning of the loop.
6079      __ CompareAndBranchIfNonZero(temp, &loop);
6080      // Otherwise, jump to the slow path to throw the exception.
6081      //
6082      // But before, move back the object's class into `temp` before
6083      // going into the slow path, as it has been overwritten in the
6084      // meantime.
6085      // /* HeapReference<Class> */ temp = obj->klass_
6086      GenerateReferenceLoadTwoRegisters(
6087          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6088      __ b(type_check_slow_path->GetEntryLabel());
6089      break;
6090    }
6091
6092    case TypeCheckKind::kArrayObjectCheck: {
6093      // Do an exact check.
6094      Label check_non_primitive_component_type;
6095      __ cmp(temp, ShifterOperand(cls));
6096      __ b(&done, EQ);
6097
6098      // Otherwise, we need to check that the object's class is a non-primitive array.
6099      // /* HeapReference<Class> */ temp = temp->component_type_
6100      GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
6101
6102      // If the component type is not null (i.e. the object is indeed
6103      // an array), jump to label `check_non_primitive_component_type`
6104      // to further check that this component type is not a primitive
6105      // type.
6106      __ CompareAndBranchIfNonZero(temp, &check_non_primitive_component_type);
6107      // Otherwise, jump to the slow path to throw the exception.
6108      //
6109      // But before, move back the object's class into `temp` before
6110      // going into the slow path, as it has been overwritten in the
6111      // meantime.
6112      // /* HeapReference<Class> */ temp = obj->klass_
6113      GenerateReferenceLoadTwoRegisters(
6114          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6115      __ b(type_check_slow_path->GetEntryLabel());
6116
6117      __ Bind(&check_non_primitive_component_type);
6118      __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
6119      static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
6120      __ CompareAndBranchIfZero(temp, &done);
6121      // Same comment as above regarding `temp` and the slow path.
6122      // /* HeapReference<Class> */ temp = obj->klass_
6123      GenerateReferenceLoadTwoRegisters(
6124          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
6125      __ b(type_check_slow_path->GetEntryLabel());
6126      break;
6127    }
6128
6129    case TypeCheckKind::kUnresolvedCheck:
6130    case TypeCheckKind::kInterfaceCheck:
6131      // We always go into the type check slow path for the unresolved
6132      // and interface check cases.
6133      //
6134      // We cannot directly call the CheckCast runtime entry point
6135      // without resorting to a type checking slow path here (i.e. by
6136      // calling InvokeRuntime directly), as it would require to
6137      // assign fixed registers for the inputs of this HInstanceOf
6138      // instruction (following the runtime calling convention), which
6139      // might be cluttered by the potential first read barrier
6140      // emission at the beginning of this method.
6141      //
6142      // TODO: Introduce a new runtime entry point taking the object
6143      // to test (instead of its class) as argument, and let it deal
6144      // with the read barrier issues. This will let us refactor this
6145      // case of the `switch` code as it was previously (with a direct
6146      // call to the runtime not using a type checking slow path).
6147      // This should also be beneficial for the other cases above.
6148      __ b(type_check_slow_path->GetEntryLabel());
6149      break;
6150  }
6151  __ Bind(&done);
6152
6153  __ Bind(type_check_slow_path->GetExitLabel());
6154}
6155
6156void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6157  LocationSummary* locations =
6158      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6159  InvokeRuntimeCallingConvention calling_convention;
6160  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6161}
6162
6163void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6164  codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
6165                          instruction,
6166                          instruction->GetDexPc());
6167  if (instruction->IsEnter()) {
6168    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6169  } else {
6170    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6171  }
6172}
6173
6174void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
6175void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
6176void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }
6177
6178void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
6179  LocationSummary* locations =
6180      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6181  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6182         || instruction->GetResultType() == Primitive::kPrimLong);
6183  // Note: GVN reorders commutative operations to have the constant on the right hand side.
6184  locations->SetInAt(0, Location::RequiresRegister());
6185  locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
6186  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6187}
6188
6189void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
6190  HandleBitwiseOperation(instruction);
6191}
6192
6193void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
6194  HandleBitwiseOperation(instruction);
6195}
6196
6197void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
6198  HandleBitwiseOperation(instruction);
6199}
6200
6201
6202void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6203  LocationSummary* locations =
6204      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6205  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6206         || instruction->GetResultType() == Primitive::kPrimLong);
6207
6208  locations->SetInAt(0, Location::RequiresRegister());
6209  locations->SetInAt(1, Location::RequiresRegister());
6210  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6211}
6212
6213void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6214  LocationSummary* locations = instruction->GetLocations();
6215  Location first = locations->InAt(0);
6216  Location second = locations->InAt(1);
6217  Location out = locations->Out();
6218
6219  if (instruction->GetResultType() == Primitive::kPrimInt) {
6220    Register first_reg = first.AsRegister<Register>();
6221    ShifterOperand second_reg(second.AsRegister<Register>());
6222    Register out_reg = out.AsRegister<Register>();
6223
6224    switch (instruction->GetOpKind()) {
6225      case HInstruction::kAnd:
6226        __ bic(out_reg, first_reg, second_reg);
6227        break;
6228      case HInstruction::kOr:
6229        __ orn(out_reg, first_reg, second_reg);
6230        break;
6231      // There is no EON on arm.
6232      case HInstruction::kXor:
6233      default:
6234        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6235        UNREACHABLE();
6236    }
6237    return;
6238
6239  } else {
6240    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6241    Register first_low = first.AsRegisterPairLow<Register>();
6242    Register first_high = first.AsRegisterPairHigh<Register>();
6243    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6244    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6245    Register out_low = out.AsRegisterPairLow<Register>();
6246    Register out_high = out.AsRegisterPairHigh<Register>();
6247
6248    switch (instruction->GetOpKind()) {
6249      case HInstruction::kAnd:
6250        __ bic(out_low, first_low, second_low);
6251        __ bic(out_high, first_high, second_high);
6252        break;
6253      case HInstruction::kOr:
6254        __ orn(out_low, first_low, second_low);
6255        __ orn(out_high, first_high, second_high);
6256        break;
6257      // There is no EON on arm.
6258      case HInstruction::kXor:
6259      default:
6260        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6261        UNREACHABLE();
6262    }
6263  }
6264}
6265
6266void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
6267  // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
6268  if (value == 0xffffffffu) {
6269    if (out != first) {
6270      __ mov(out, ShifterOperand(first));
6271    }
6272    return;
6273  }
6274  if (value == 0u) {
6275    __ mov(out, ShifterOperand(0));
6276    return;
6277  }
6278  ShifterOperand so;
6279  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
6280    __ and_(out, first, so);
6281  } else {
6282    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so));
6283    __ bic(out, first, ShifterOperand(~value));
6284  }
6285}
6286
6287void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
6288  // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
6289  if (value == 0u) {
6290    if (out != first) {
6291      __ mov(out, ShifterOperand(first));
6292    }
6293    return;
6294  }
6295  if (value == 0xffffffffu) {
6296    __ mvn(out, ShifterOperand(0));
6297    return;
6298  }
6299  ShifterOperand so;
6300  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
6301    __ orr(out, first, so);
6302  } else {
6303    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
6304    __ orn(out, first, ShifterOperand(~value));
6305  }
6306}
6307
6308void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
6309  // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
6310  if (value == 0u) {
6311    if (out != first) {
6312      __ mov(out, ShifterOperand(first));
6313    }
6314    return;
6315  }
6316  __ eor(out, first, ShifterOperand(value));
6317}
6318
6319void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out,
6320                                                       Location first,
6321                                                       uint64_t value) {
6322  Register out_low = out.AsRegisterPairLow<Register>();
6323  Register out_high = out.AsRegisterPairHigh<Register>();
6324  Register first_low = first.AsRegisterPairLow<Register>();
6325  Register first_high = first.AsRegisterPairHigh<Register>();
6326  uint32_t value_low = Low32Bits(value);
6327  uint32_t value_high = High32Bits(value);
6328  if (value_low == 0u) {
6329    if (out_low != first_low) {
6330      __ mov(out_low, ShifterOperand(first_low));
6331    }
6332    __ AddConstant(out_high, first_high, value_high);
6333    return;
6334  }
6335  __ AddConstantSetFlags(out_low, first_low, value_low);
6336  ShifterOperand so;
6337  if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) {
6338    __ adc(out_high, first_high, so);
6339  } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) {
6340    __ sbc(out_high, first_high, so);
6341  } else {
6342    LOG(FATAL) << "Unexpected constant " << value_high;
6343    UNREACHABLE();
6344  }
6345}
6346
6347void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
6348  LocationSummary* locations = instruction->GetLocations();
6349  Location first = locations->InAt(0);
6350  Location second = locations->InAt(1);
6351  Location out = locations->Out();
6352
6353  if (second.IsConstant()) {
6354    uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
6355    uint32_t value_low = Low32Bits(value);
6356    if (instruction->GetResultType() == Primitive::kPrimInt) {
6357      Register first_reg = first.AsRegister<Register>();
6358      Register out_reg = out.AsRegister<Register>();
6359      if (instruction->IsAnd()) {
6360        GenerateAndConst(out_reg, first_reg, value_low);
6361      } else if (instruction->IsOr()) {
6362        GenerateOrrConst(out_reg, first_reg, value_low);
6363      } else {
6364        DCHECK(instruction->IsXor());
6365        GenerateEorConst(out_reg, first_reg, value_low);
6366      }
6367    } else {
6368      DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6369      uint32_t value_high = High32Bits(value);
6370      Register first_low = first.AsRegisterPairLow<Register>();
6371      Register first_high = first.AsRegisterPairHigh<Register>();
6372      Register out_low = out.AsRegisterPairLow<Register>();
6373      Register out_high = out.AsRegisterPairHigh<Register>();
6374      if (instruction->IsAnd()) {
6375        GenerateAndConst(out_low, first_low, value_low);
6376        GenerateAndConst(out_high, first_high, value_high);
6377      } else if (instruction->IsOr()) {
6378        GenerateOrrConst(out_low, first_low, value_low);
6379        GenerateOrrConst(out_high, first_high, value_high);
6380      } else {
6381        DCHECK(instruction->IsXor());
6382        GenerateEorConst(out_low, first_low, value_low);
6383        GenerateEorConst(out_high, first_high, value_high);
6384      }
6385    }
6386    return;
6387  }
6388
6389  if (instruction->GetResultType() == Primitive::kPrimInt) {
6390    Register first_reg = first.AsRegister<Register>();
6391    ShifterOperand second_reg(second.AsRegister<Register>());
6392    Register out_reg = out.AsRegister<Register>();
6393    if (instruction->IsAnd()) {
6394      __ and_(out_reg, first_reg, second_reg);
6395    } else if (instruction->IsOr()) {
6396      __ orr(out_reg, first_reg, second_reg);
6397    } else {
6398      DCHECK(instruction->IsXor());
6399      __ eor(out_reg, first_reg, second_reg);
6400    }
6401  } else {
6402    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6403    Register first_low = first.AsRegisterPairLow<Register>();
6404    Register first_high = first.AsRegisterPairHigh<Register>();
6405    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6406    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6407    Register out_low = out.AsRegisterPairLow<Register>();
6408    Register out_high = out.AsRegisterPairHigh<Register>();
6409    if (instruction->IsAnd()) {
6410      __ and_(out_low, first_low, second_low);
6411      __ and_(out_high, first_high, second_high);
6412    } else if (instruction->IsOr()) {
6413      __ orr(out_low, first_low, second_low);
6414      __ orr(out_high, first_high, second_high);
6415    } else {
6416      DCHECK(instruction->IsXor());
6417      __ eor(out_low, first_low, second_low);
6418      __ eor(out_high, first_high, second_high);
6419    }
6420  }
6421}
6422
6423void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(HInstruction* instruction,
6424                                                                   Location out,
6425                                                                   uint32_t offset,
6426                                                                   Location maybe_temp) {
6427  Register out_reg = out.AsRegister<Register>();
6428  if (kEmitCompilerReadBarrier) {
6429    DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6430    if (kUseBakerReadBarrier) {
6431      // Load with fast path based Baker's read barrier.
6432      // /* HeapReference<Object> */ out = *(out + offset)
6433      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6434          instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6435    } else {
6436      // Load with slow path based read barrier.
6437      // Save the value of `out` into `maybe_temp` before overwriting it
6438      // in the following move operation, as we will need it for the
6439      // read barrier below.
6440      __ Mov(maybe_temp.AsRegister<Register>(), out_reg);
6441      // /* HeapReference<Object> */ out = *(out + offset)
6442      __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6443      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6444    }
6445  } else {
6446    // Plain load with no read barrier.
6447    // /* HeapReference<Object> */ out = *(out + offset)
6448    __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6449    __ MaybeUnpoisonHeapReference(out_reg);
6450  }
6451}
6452
6453void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
6454                                                                    Location out,
6455                                                                    Location obj,
6456                                                                    uint32_t offset,
6457                                                                    Location maybe_temp) {
6458  Register out_reg = out.AsRegister<Register>();
6459  Register obj_reg = obj.AsRegister<Register>();
6460  if (kEmitCompilerReadBarrier) {
6461    if (kUseBakerReadBarrier) {
6462      DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6463      // Load with fast path based Baker's read barrier.
6464      // /* HeapReference<Object> */ out = *(obj + offset)
6465      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6466          instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6467    } else {
6468      // Load with slow path based read barrier.
6469      // /* HeapReference<Object> */ out = *(obj + offset)
6470      __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6471      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6472    }
6473  } else {
6474    // Plain load with no read barrier.
6475    // /* HeapReference<Object> */ out = *(obj + offset)
6476    __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6477    __ MaybeUnpoisonHeapReference(out_reg);
6478  }
6479}
6480
6481void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
6482                                                          Location root,
6483                                                          Register obj,
6484                                                          uint32_t offset,
6485                                                          bool requires_read_barrier) {
6486  Register root_reg = root.AsRegister<Register>();
6487  if (requires_read_barrier) {
6488    DCHECK(kEmitCompilerReadBarrier);
6489    if (kUseBakerReadBarrier) {
6490      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6491      // Baker's read barrier are used:
6492      //
6493      //   root = obj.field;
6494      //   if (Thread::Current()->GetIsGcMarking()) {
6495      //     root = ReadBarrier::Mark(root)
6496      //   }
6497
6498      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6499      __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6500      static_assert(
6501          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6502          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6503          "have different sizes.");
6504      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6505                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
6506                    "have different sizes.");
6507
6508      // Slow path marking the GC root `root`.
6509      SlowPathCodeARM* slow_path =
6510          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, root);
6511      codegen_->AddSlowPath(slow_path);
6512
6513      // IP = Thread::Current()->GetIsGcMarking()
6514      __ LoadFromOffset(
6515          kLoadWord, IP, TR, Thread::IsGcMarkingOffset<kArmPointerSize>().Int32Value());
6516      __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
6517      __ Bind(slow_path->GetExitLabel());
6518    } else {
6519      // GC root loaded through a slow path for read barriers other
6520      // than Baker's.
6521      // /* GcRoot<mirror::Object>* */ root = obj + offset
6522      __ AddConstant(root_reg, obj, offset);
6523      // /* mirror::Object* */ root = root->Read()
6524      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6525    }
6526  } else {
6527    // Plain GC root load with no read barrier.
6528    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6529    __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6530    // Note that GC roots are not affected by heap poisoning, thus we
6531    // do not have to unpoison `root_reg` here.
6532  }
6533}
6534
6535void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6536                                                             Location ref,
6537                                                             Register obj,
6538                                                             uint32_t offset,
6539                                                             Location temp,
6540                                                             bool needs_null_check) {
6541  DCHECK(kEmitCompilerReadBarrier);
6542  DCHECK(kUseBakerReadBarrier);
6543
6544  // /* HeapReference<Object> */ ref = *(obj + offset)
6545  Location no_index = Location::NoLocation();
6546  ScaleFactor no_scale_factor = TIMES_1;
6547  GenerateReferenceLoadWithBakerReadBarrier(
6548      instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
6549}
6550
6551void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6552                                                             Location ref,
6553                                                             Register obj,
6554                                                             uint32_t data_offset,
6555                                                             Location index,
6556                                                             Location temp,
6557                                                             bool needs_null_check) {
6558  DCHECK(kEmitCompilerReadBarrier);
6559  DCHECK(kUseBakerReadBarrier);
6560
6561  static_assert(
6562      sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6563      "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6564  // /* HeapReference<Object> */ ref =
6565  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6566  ScaleFactor scale_factor = TIMES_4;
6567  GenerateReferenceLoadWithBakerReadBarrier(
6568      instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
6569}
6570
6571void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6572                                                                 Location ref,
6573                                                                 Register obj,
6574                                                                 uint32_t offset,
6575                                                                 Location index,
6576                                                                 ScaleFactor scale_factor,
6577                                                                 Location temp,
6578                                                                 bool needs_null_check) {
6579  DCHECK(kEmitCompilerReadBarrier);
6580  DCHECK(kUseBakerReadBarrier);
6581
6582  // In slow path based read barriers, the read barrier call is
6583  // inserted after the original load. However, in fast path based
6584  // Baker's read barriers, we need to perform the load of
6585  // mirror::Object::monitor_ *before* the original reference load.
6586  // This load-load ordering is required by the read barrier.
6587  // The fast path/slow path (for Baker's algorithm) should look like:
6588  //
6589  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6590  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6591  //   HeapReference<Object> ref = *src;  // Original reference load.
6592  //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
6593  //   if (is_gray) {
6594  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6595  //   }
6596  //
6597  // Note: the original implementation in ReadBarrier::Barrier is
6598  // slightly more complex as it performs additional checks that we do
6599  // not do here for performance reasons.
6600
6601  Register ref_reg = ref.AsRegister<Register>();
6602  Register temp_reg = temp.AsRegister<Register>();
6603  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6604
6605  // /* int32_t */ monitor = obj->monitor_
6606  __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
6607  if (needs_null_check) {
6608    MaybeRecordImplicitNullCheck(instruction);
6609  }
6610  // /* LockWord */ lock_word = LockWord(monitor)
6611  static_assert(sizeof(LockWord) == sizeof(int32_t),
6612                "art::LockWord and int32_t have different sizes.");
6613
6614  // Introduce a dependency on the lock_word including the rb_state,
6615  // which shall prevent load-load reordering without using
6616  // a memory barrier (which would be more expensive).
6617  // `obj` is unchanged by this operation, but its value now depends
6618  // on `temp_reg`.
6619  __ add(obj, obj, ShifterOperand(temp_reg, LSR, 32));
6620
6621  // The actual reference load.
6622  if (index.IsValid()) {
6623    // Load types involving an "index": ArrayGet and
6624    // UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
6625    // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
6626    if (index.IsConstant()) {
6627      size_t computed_offset =
6628          (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
6629      __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
6630    } else {
6631      // Handle the special case of the
6632      // UnsafeGetObject/UnsafeGetObjectVolatile intrinsics, which use
6633      // a register pair as index ("long offset"), of which only the low
6634      // part contains data.
6635      Register index_reg = index.IsRegisterPair()
6636          ? index.AsRegisterPairLow<Register>()
6637          : index.AsRegister<Register>();
6638      __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor));
6639      __ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
6640    }
6641  } else {
6642    // /* HeapReference<Object> */ ref = *(obj + offset)
6643    __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
6644  }
6645
6646  // Object* ref = ref_addr->AsMirrorPtr()
6647  __ MaybeUnpoisonHeapReference(ref_reg);
6648
6649  // Slow path marking the object `ref` when it is gray.
6650  SlowPathCodeARM* slow_path =
6651      new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref);
6652  AddSlowPath(slow_path);
6653
6654  // if (rb_state == ReadBarrier::gray_ptr_)
6655  //   ref = ReadBarrier::Mark(ref);
6656  // Given the numeric representation, it's enough to check the low bit of the
6657  // rb_state. We do that by shifting the bit out of the lock word with LSRS
6658  // which can be a 16-bit instruction unlike the TST immediate.
6659  static_assert(ReadBarrier::white_ptr_ == 0, "Expecting white to have value 0");
6660  static_assert(ReadBarrier::gray_ptr_ == 1, "Expecting gray to have value 1");
6661  static_assert(ReadBarrier::black_ptr_ == 2, "Expecting black to have value 2");
6662  __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1);
6663  __ b(slow_path->GetEntryLabel(), CS);  // Carry flag is the last bit shifted out by LSRS.
6664  __ Bind(slow_path->GetExitLabel());
6665}
6666
6667void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
6668                                               Location out,
6669                                               Location ref,
6670                                               Location obj,
6671                                               uint32_t offset,
6672                                               Location index) {
6673  DCHECK(kEmitCompilerReadBarrier);
6674
6675  // Insert a slow path based read barrier *after* the reference load.
6676  //
6677  // If heap poisoning is enabled, the unpoisoning of the loaded
6678  // reference will be carried out by the runtime within the slow
6679  // path.
6680  //
6681  // Note that `ref` currently does not get unpoisoned (when heap
6682  // poisoning is enabled), which is alright as the `ref` argument is
6683  // not used by the artReadBarrierSlow entry point.
6684  //
6685  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6686  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena())
6687      ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
6688  AddSlowPath(slow_path);
6689
6690  __ b(slow_path->GetEntryLabel());
6691  __ Bind(slow_path->GetExitLabel());
6692}
6693
6694void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6695                                                    Location out,
6696                                                    Location ref,
6697                                                    Location obj,
6698                                                    uint32_t offset,
6699                                                    Location index) {
6700  if (kEmitCompilerReadBarrier) {
6701    // Baker's read barriers shall be handled by the fast path
6702    // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
6703    DCHECK(!kUseBakerReadBarrier);
6704    // If heap poisoning is enabled, unpoisoning will be taken care of
6705    // by the runtime within the slow path.
6706    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6707  } else if (kPoisonHeapReferences) {
6708    __ UnpoisonHeapReference(out.AsRegister<Register>());
6709  }
6710}
6711
6712void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6713                                                      Location out,
6714                                                      Location root) {
6715  DCHECK(kEmitCompilerReadBarrier);
6716
6717  // Insert a slow path based read barrier *after* the GC root load.
6718  //
6719  // Note that GC roots are not affected by heap poisoning, so we do
6720  // not need to do anything special for this here.
6721  SlowPathCodeARM* slow_path =
6722      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
6723  AddSlowPath(slow_path);
6724
6725  __ b(slow_path->GetEntryLabel());
6726  __ Bind(slow_path->GetExitLabel());
6727}
6728
6729HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
6730      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
6731      HInvokeStaticOrDirect* invoke) {
6732  HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
6733  // We disable pc-relative load when there is an irreducible loop, as the optimization
6734  // is incompatible with it.
6735  // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
6736  // with irreducible loops.
6737  if (GetGraph()->HasIrreducibleLoops() &&
6738      (dispatch_info.method_load_kind ==
6739          HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
6740    dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
6741  }
6742
6743  if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) {
6744    const DexFile& outer_dex_file = GetGraph()->GetDexFile();
6745    if (&outer_dex_file != invoke->GetTargetMethod().dex_file) {
6746      // Calls across dex files are more likely to exceed the available BL range,
6747      // so use absolute patch with fixup if available and kCallArtMethod otherwise.
6748      HInvokeStaticOrDirect::CodePtrLocation code_ptr_location =
6749          (desired_dispatch_info.method_load_kind ==
6750           HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup)
6751          ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup
6752          : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
6753      return HInvokeStaticOrDirect::DispatchInfo {
6754        dispatch_info.method_load_kind,
6755        code_ptr_location,
6756        dispatch_info.method_load_data,
6757        0u
6758      };
6759    }
6760  }
6761  return dispatch_info;
6762}
6763
6764Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
6765                                                                 Register temp) {
6766  DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
6767  Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6768  if (!invoke->GetLocations()->Intrinsified()) {
6769    return location.AsRegister<Register>();
6770  }
6771  // For intrinsics we allow any location, so it may be on the stack.
6772  if (!location.IsRegister()) {
6773    __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
6774    return temp;
6775  }
6776  // For register locations, check if the register was saved. If so, get it from the stack.
6777  // Note: There is a chance that the register was saved but not overwritten, so we could
6778  // save one load. However, since this is just an intrinsic slow path we prefer this
6779  // simple and more robust approach rather that trying to determine if that's the case.
6780  SlowPathCode* slow_path = GetCurrentSlowPath();
6781  DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
6782  if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
6783    int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
6784    __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
6785    return temp;
6786  }
6787  return location.AsRegister<Register>();
6788}
6789
6790void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
6791  // For better instruction scheduling we load the direct code pointer before the method pointer.
6792  switch (invoke->GetCodePtrLocation()) {
6793    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
6794      // LR = code address from literal pool with link-time patch.
6795      __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
6796      break;
6797    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
6798      // LR = invoke->GetDirectCodePtr();
6799      __ LoadImmediate(LR, invoke->GetDirectCodePtr());
6800      break;
6801    default:
6802      break;
6803  }
6804
6805  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
6806  switch (invoke->GetMethodLoadKind()) {
6807    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
6808      uint32_t offset =
6809          GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
6810      // temp = thread->string_init_entrypoint
6811      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset);
6812      break;
6813    }
6814    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
6815      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6816      break;
6817    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
6818      __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
6819      break;
6820    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
6821      __ LoadLiteral(temp.AsRegister<Register>(),
6822                     DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
6823      break;
6824    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
6825      HArmDexCacheArraysBase* base =
6826          invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
6827      Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
6828                                                                temp.AsRegister<Register>());
6829      int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
6830      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
6831      break;
6832    }
6833    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
6834      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6835      Register method_reg;
6836      Register reg = temp.AsRegister<Register>();
6837      if (current_method.IsRegister()) {
6838        method_reg = current_method.AsRegister<Register>();
6839      } else {
6840        DCHECK(invoke->GetLocations()->Intrinsified());
6841        DCHECK(!current_method.IsValid());
6842        method_reg = reg;
6843        __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
6844      }
6845      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
6846      __ LoadFromOffset(kLoadWord,
6847                        reg,
6848                        method_reg,
6849                        ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
6850      // temp = temp[index_in_cache];
6851      // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
6852      uint32_t index_in_cache = invoke->GetDexMethodIndex();
6853      __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
6854      break;
6855    }
6856  }
6857
6858  switch (invoke->GetCodePtrLocation()) {
6859    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
6860      __ bl(GetFrameEntryLabel());
6861      break;
6862    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
6863      relative_call_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
6864                                          invoke->GetTargetMethod().dex_method_index);
6865      __ BindTrackedLabel(&relative_call_patches_.back().label);
6866      // Arbitrarily branch to the BL itself, override at link time.
6867      __ bl(&relative_call_patches_.back().label);
6868      break;
6869    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
6870    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
6871      // LR prepared above for better instruction scheduling.
6872      // LR()
6873      __ blx(LR);
6874      break;
6875    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
6876      // LR = callee_method->entry_point_from_quick_compiled_code_
6877      __ LoadFromOffset(
6878          kLoadWord, LR, callee_method.AsRegister<Register>(),
6879          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
6880      // LR()
6881      __ blx(LR);
6882      break;
6883  }
6884
6885  DCHECK(!IsLeafMethod());
6886}
6887
6888void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
6889  Register temp = temp_location.AsRegister<Register>();
6890  uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6891      invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
6892
6893  // Use the calling convention instead of the location of the receiver, as
6894  // intrinsics may have put the receiver in a different register. In the intrinsics
6895  // slow path, the arguments have been moved to the right place, so here we are
6896  // guaranteed that the receiver is the first register of the calling convention.
6897  InvokeDexCallingConvention calling_convention;
6898  Register receiver = calling_convention.GetRegisterAt(0);
6899  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6900  // /* HeapReference<Class> */ temp = receiver->klass_
6901  __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
6902  MaybeRecordImplicitNullCheck(invoke);
6903  // Instead of simply (possibly) unpoisoning `temp` here, we should
6904  // emit a read barrier for the previous class reference load.
6905  // However this is not required in practice, as this is an
6906  // intermediate/temporary reference and because the current
6907  // concurrent copying collector keeps the from-space memory
6908  // intact/accessible until the end of the marking phase (the
6909  // concurrent copying collector may not in the future).
6910  __ MaybeUnpoisonHeapReference(temp);
6911  // temp = temp->GetMethodAt(method_offset);
6912  uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
6913      kArmPointerSize).Int32Value();
6914  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
6915  // LR = temp->GetEntryPoint();
6916  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
6917  // LR();
6918  __ blx(LR);
6919}
6920
6921CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
6922    const DexFile& dex_file, uint32_t string_index) {
6923  return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
6924}
6925
6926CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch(
6927    const DexFile& dex_file, uint32_t type_index) {
6928  return NewPcRelativePatch(dex_file, type_index, &pc_relative_type_patches_);
6929}
6930
6931CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch(
6932    const DexFile& dex_file, uint32_t element_offset) {
6933  return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
6934}
6935
6936CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
6937    const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
6938  patches->emplace_back(dex_file, offset_or_index);
6939  return &patches->back();
6940}
6941
6942Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
6943                                                             uint32_t string_index) {
6944  return boot_image_string_patches_.GetOrCreate(
6945      StringReference(&dex_file, string_index),
6946      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
6947}
6948
6949Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
6950                                                           uint32_t type_index) {
6951  return boot_image_type_patches_.GetOrCreate(
6952      TypeReference(&dex_file, type_index),
6953      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
6954}
6955
6956Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
6957  bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
6958  Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
6959  return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
6960}
6961
6962Literal* CodeGeneratorARM::DeduplicateDexCacheAddressLiteral(uint32_t address) {
6963  return DeduplicateUint32Literal(address, &uint32_literals_);
6964}
6965
6966template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
6967inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches(
6968    const ArenaDeque<PcRelativePatchInfo>& infos,
6969    ArenaVector<LinkerPatch>* linker_patches) {
6970  for (const PcRelativePatchInfo& info : infos) {
6971    const DexFile& dex_file = info.target_dex_file;
6972    size_t offset_or_index = info.offset_or_index;
6973    DCHECK(info.add_pc_label.IsBound());
6974    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
6975    // Add MOVW patch.
6976    DCHECK(info.movw_label.IsBound());
6977    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
6978    linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
6979    // Add MOVT patch.
6980    DCHECK(info.movt_label.IsBound());
6981    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
6982    linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
6983  }
6984}
6985
6986void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
6987  DCHECK(linker_patches->empty());
6988  size_t size =
6989      method_patches_.size() +
6990      call_patches_.size() +
6991      relative_call_patches_.size() +
6992      /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() +
6993      boot_image_string_patches_.size() +
6994      /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
6995      boot_image_type_patches_.size() +
6996      /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
6997      boot_image_address_patches_.size();
6998  linker_patches->reserve(size);
6999  for (const auto& entry : method_patches_) {
7000    const MethodReference& target_method = entry.first;
7001    Literal* literal = entry.second;
7002    DCHECK(literal->GetLabel()->IsBound());
7003    uint32_t literal_offset = literal->GetLabel()->Position();
7004    linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
7005                                                       target_method.dex_file,
7006                                                       target_method.dex_method_index));
7007  }
7008  for (const auto& entry : call_patches_) {
7009    const MethodReference& target_method = entry.first;
7010    Literal* literal = entry.second;
7011    DCHECK(literal->GetLabel()->IsBound());
7012    uint32_t literal_offset = literal->GetLabel()->Position();
7013    linker_patches->push_back(LinkerPatch::CodePatch(literal_offset,
7014                                                     target_method.dex_file,
7015                                                     target_method.dex_method_index));
7016  }
7017  for (const PatchInfo<Label>& info : relative_call_patches_) {
7018    uint32_t literal_offset = info.label.Position();
7019    linker_patches->push_back(
7020        LinkerPatch::RelativeCodePatch(literal_offset, &info.dex_file, info.index));
7021  }
7022  EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
7023                                                               linker_patches);
7024  for (const auto& entry : boot_image_string_patches_) {
7025    const StringReference& target_string = entry.first;
7026    Literal* literal = entry.second;
7027    DCHECK(literal->GetLabel()->IsBound());
7028    uint32_t literal_offset = literal->GetLabel()->Position();
7029    linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
7030                                                       target_string.dex_file,
7031                                                       target_string.string_index));
7032  }
7033  if (!GetCompilerOptions().IsBootImage()) {
7034    EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
7035                                                                  linker_patches);
7036  } else {
7037    EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
7038                                                                  linker_patches);
7039  }
7040  for (const auto& entry : boot_image_type_patches_) {
7041    const TypeReference& target_type = entry.first;
7042    Literal* literal = entry.second;
7043    DCHECK(literal->GetLabel()->IsBound());
7044    uint32_t literal_offset = literal->GetLabel()->Position();
7045    linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
7046                                                     target_type.dex_file,
7047                                                     target_type.type_index));
7048  }
7049  EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
7050                                                              linker_patches);
7051  for (const auto& entry : boot_image_address_patches_) {
7052    DCHECK(GetCompilerOptions().GetIncludePatchInformation());
7053    Literal* literal = entry.second;
7054    DCHECK(literal->GetLabel()->IsBound());
7055    uint32_t literal_offset = literal->GetLabel()->Position();
7056    linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
7057  }
7058}
7059
7060Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
7061  return map->GetOrCreate(
7062      value,
7063      [this, value]() { return __ NewLiteral<uint32_t>(value); });
7064}
7065
7066Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method,
7067                                                    MethodToLiteralMap* map) {
7068  return map->GetOrCreate(
7069      target_method,
7070      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7071}
7072
7073Literal* CodeGeneratorARM::DeduplicateMethodAddressLiteral(MethodReference target_method) {
7074  return DeduplicateMethodLiteral(target_method, &method_patches_);
7075}
7076
7077Literal* CodeGeneratorARM::DeduplicateMethodCodeLiteral(MethodReference target_method) {
7078  return DeduplicateMethodLiteral(target_method, &call_patches_);
7079}
7080
7081void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7082  LocationSummary* locations =
7083      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
7084  locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
7085                     Location::RequiresRegister());
7086  locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
7087  locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
7088  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7089}
7090
7091void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7092  LocationSummary* locations = instr->GetLocations();
7093  Register res = locations->Out().AsRegister<Register>();
7094  Register accumulator =
7095      locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
7096  Register mul_left =
7097      locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
7098  Register mul_right =
7099      locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();
7100
7101  if (instr->GetOpKind() == HInstruction::kAdd) {
7102    __ mla(res, mul_left, mul_right, accumulator);
7103  } else {
7104    __ mls(res, mul_left, mul_right, accumulator);
7105  }
7106}
7107
7108void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7109  // Nothing to do, this should be removed during prepare for register allocator.
7110  LOG(FATAL) << "Unreachable";
7111}
7112
7113void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7114  // Nothing to do, this should be removed during prepare for register allocator.
7115  LOG(FATAL) << "Unreachable";
7116}
7117
7118// Simple implementation of packed switch - generate cascaded compare/jumps.
7119void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7120  LocationSummary* locations =
7121      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7122  locations->SetInAt(0, Location::RequiresRegister());
7123  if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
7124      codegen_->GetAssembler()->IsThumb()) {
7125    locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
7126    if (switch_instr->GetStartValue() != 0) {
7127      locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
7128    }
7129  }
7130}
7131
7132void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7133  int32_t lower_bound = switch_instr->GetStartValue();
7134  uint32_t num_entries = switch_instr->GetNumEntries();
7135  LocationSummary* locations = switch_instr->GetLocations();
7136  Register value_reg = locations->InAt(0).AsRegister<Register>();
7137  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7138
7139  if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
7140    // Create a series of compare/jumps.
7141    Register temp_reg = IP;
7142    // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
7143    // the immediate, because IP is used as the destination register. For the other
7144    // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
7145    // and they can be encoded in the instruction without making use of IP register.
7146    __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);
7147
7148    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7149    // Jump to successors[0] if value == lower_bound.
7150    __ b(codegen_->GetLabelOf(successors[0]), EQ);
7151    int32_t last_index = 0;
7152    for (; num_entries - last_index > 2; last_index += 2) {
7153      __ AddConstantSetFlags(temp_reg, temp_reg, -2);
7154      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
7155      __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
7156      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
7157      __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
7158    }
7159    if (num_entries - last_index == 2) {
7160      // The last missing case_value.
7161      __ CmpConstant(temp_reg, 1);
7162      __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
7163    }
7164
7165    // And the default for any other value.
7166    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
7167      __ b(codegen_->GetLabelOf(default_block));
7168    }
7169  } else {
7170    // Create a table lookup.
7171    Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7172
7173    // Materialize a pointer to the switch table
7174    std::vector<Label*> labels(num_entries);
7175    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7176    for (uint32_t i = 0; i < num_entries; i++) {
7177      labels[i] = codegen_->GetLabelOf(successors[i]);
7178    }
7179    JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);
7180
7181    // Remove the bias.
7182    Register key_reg;
7183    if (lower_bound != 0) {
7184      key_reg = locations->GetTemp(1).AsRegister<Register>();
7185      __ AddConstant(key_reg, value_reg, -lower_bound);
7186    } else {
7187      key_reg = value_reg;
7188    }
7189
7190    // Check whether the value is in the table, jump to default block if not.
7191    __ CmpConstant(key_reg, num_entries - 1);
7192    __ b(codegen_->GetLabelOf(default_block), Condition::HI);
7193
7194    // Load the displacement from the table.
7195    __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));
7196
7197    // Dispatch is a direct add to the PC (for Thumb2).
7198    __ EmitJumpTableDispatch(table, temp_reg);
7199  }
7200}
7201
7202void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7203  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
7204  locations->SetOut(Location::RequiresRegister());
7205}
7206
7207void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7208  Register base_reg = base->GetLocations()->Out().AsRegister<Register>();
7209  CodeGeneratorARM::PcRelativePatchInfo* labels =
7210      codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
7211  __ BindTrackedLabel(&labels->movw_label);
7212  __ movw(base_reg, /* placeholder */ 0u);
7213  __ BindTrackedLabel(&labels->movt_label);
7214  __ movt(base_reg, /* placeholder */ 0u);
7215  __ BindTrackedLabel(&labels->add_pc_label);
7216  __ add(base_reg, base_reg, ShifterOperand(PC));
7217}
7218
7219void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
7220  if (!trg.IsValid()) {
7221    DCHECK_EQ(type, Primitive::kPrimVoid);
7222    return;
7223  }
7224
7225  DCHECK_NE(type, Primitive::kPrimVoid);
7226
7227  Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
7228  if (return_loc.Equals(trg)) {
7229    return;
7230  }
7231
7232  // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7233  //       with the last branch.
7234  if (type == Primitive::kPrimLong) {
7235    HParallelMove parallel_move(GetGraph()->GetArena());
7236    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
7237    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
7238    GetMoveResolver()->EmitNativeCode(&parallel_move);
7239  } else if (type == Primitive::kPrimDouble) {
7240    HParallelMove parallel_move(GetGraph()->GetArena());
7241    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
7242    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
7243    GetMoveResolver()->EmitNativeCode(&parallel_move);
7244  } else {
7245    // Let the parallel move resolver take care of all of this.
7246    HParallelMove parallel_move(GetGraph()->GetArena());
7247    parallel_move.AddMove(return_loc, trg, type, nullptr);
7248    GetMoveResolver()->EmitNativeCode(&parallel_move);
7249  }
7250}
7251
7252void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
7253  LocationSummary* locations =
7254      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7255  locations->SetInAt(0, Location::RequiresRegister());
7256  locations->SetOut(Location::RequiresRegister());
7257}
7258
7259void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
7260  LocationSummary* locations = instruction->GetLocations();
7261  if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7262    uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7263        instruction->GetIndex(), kArmPointerSize).SizeValue();
7264    __ LoadFromOffset(kLoadWord,
7265                      locations->Out().AsRegister<Register>(),
7266                      locations->InAt(0).AsRegister<Register>(),
7267                      method_offset);
7268  } else {
7269    uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7270        instruction->GetIndex(), kArmPointerSize));
7271    __ LoadFromOffset(kLoadWord,
7272                      locations->Out().AsRegister<Register>(),
7273                      locations->InAt(0).AsRegister<Register>(),
7274                      mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
7275    __ LoadFromOffset(kLoadWord,
7276                      locations->Out().AsRegister<Register>(),
7277                      locations->Out().AsRegister<Register>(),
7278                      method_offset);
7279  }
7280}
7281
7282#undef __
7283#undef QUICK_ENTRY_POINT
7284
7285}  // namespace arm
7286}  // namespace art
7287