code_generator_arm.cc revision 75afcdd3503a8a8518e5b23d21b6e73306ce39ce
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "gc/accounting/card_table.h"
25#include "intrinsics.h"
26#include "intrinsics_arm.h"
27#include "mirror/array-inl.h"
28#include "mirror/class-inl.h"
29#include "thread.h"
30#include "utils/arm/assembler_arm.h"
31#include "utils/arm/managed_register_arm.h"
32#include "utils/assembler.h"
33#include "utils/stack_checks.h"
34
35namespace art {
36
37template<class MirrorType>
38class GcRoot;
39
40namespace arm {
41
42static bool ExpectedPairLayout(Location location) {
43  // We expected this for both core and fpu register pairs.
44  return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
45}
46
47static constexpr int kCurrentMethodStackOffset = 0;
48static constexpr Register kMethodRegisterArgument = R0;
49
50static constexpr Register kCoreAlwaysSpillRegister = R5;
51static constexpr Register kCoreCalleeSaves[] =
52    { R5, R6, R7, R8, R10, R11, LR };
53static constexpr SRegister kFpuCalleeSaves[] =
54    { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
55
56// D31 cannot be split into two S registers, and the register allocator only works on
57// S registers. Therefore there is no need to block it.
58static constexpr DRegister DTMP = D31;
59
60static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
61
62// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
63#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())->  // NOLINT
64#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
65
66static constexpr int kRegListThreshold = 4;
67
68// SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
69// for each live D registers they treat two corresponding S registers as live ones.
70//
71// Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
72// from a list of contiguous S registers a list of contiguous D registers (processing first/last
73// S registers corner cases) and save/restore this new list treating them as D registers.
74// - decreasing code size
75// - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
76//   restored and then used in regular non SlowPath code as D register.
77//
78// For the following example (v means the S register is live):
79//   D names: |    D0   |    D1   |    D2   |    D4   | ...
80//   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
81//   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
82//
83// S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
84// as D registers.
85static size_t SaveContiguousSRegisterList(size_t first,
86                                          size_t last,
87                                          CodeGenerator* codegen,
88                                          size_t stack_offset) {
89  DCHECK_LE(first, last);
90  if ((first == last) && (first == 0)) {
91    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first);
92    return stack_offset;
93  }
94  if (first % 2 == 1) {
95    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++);
96  }
97
98  bool save_last = false;
99  if (last % 2 == 0) {
100    save_last = true;
101    --last;
102  }
103
104  if (first < last) {
105    DRegister d_reg = static_cast<DRegister>(first / 2);
106    DCHECK_EQ((last - first + 1) % 2, 0u);
107    size_t number_of_d_regs = (last - first + 1) / 2;
108
109    if (number_of_d_regs == 1) {
110      __ StoreDToOffset(d_reg, SP, stack_offset);
111    } else if (number_of_d_regs > 1) {
112      __ add(IP, SP, ShifterOperand(stack_offset));
113      __ vstmiad(IP, d_reg, number_of_d_regs);
114    }
115    stack_offset += number_of_d_regs * kArmWordSize * 2;
116  }
117
118  if (save_last) {
119    stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1);
120  }
121
122  return stack_offset;
123}
124
125static size_t RestoreContiguousSRegisterList(size_t first,
126                                             size_t last,
127                                             CodeGenerator* codegen,
128                                             size_t stack_offset) {
129  DCHECK_LE(first, last);
130  if ((first == last) && (first == 0)) {
131    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first);
132    return stack_offset;
133  }
134  if (first % 2 == 1) {
135    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++);
136  }
137
138  bool restore_last = false;
139  if (last % 2 == 0) {
140    restore_last = true;
141    --last;
142  }
143
144  if (first < last) {
145    DRegister d_reg = static_cast<DRegister>(first / 2);
146    DCHECK_EQ((last - first + 1) % 2, 0u);
147    size_t number_of_d_regs = (last - first + 1) / 2;
148    if (number_of_d_regs == 1) {
149      __ LoadDFromOffset(d_reg, SP, stack_offset);
150    } else if (number_of_d_regs > 1) {
151      __ add(IP, SP, ShifterOperand(stack_offset));
152      __ vldmiad(IP, d_reg, number_of_d_regs);
153    }
154    stack_offset += number_of_d_regs * kArmWordSize * 2;
155  }
156
157  if (restore_last) {
158    stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1);
159  }
160
161  return stack_offset;
162}
163
164void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
165  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
166  size_t orig_offset = stack_offset;
167
168  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
169  for (uint32_t i : LowToHighBits(core_spills)) {
170    // If the register holds an object, update the stack mask.
171    if (locations->RegisterContainsObject(i)) {
172      locations->SetStackBit(stack_offset / kVRegSize);
173    }
174    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
175    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
176    saved_core_stack_offsets_[i] = stack_offset;
177    stack_offset += kArmWordSize;
178  }
179
180  int reg_num = POPCOUNT(core_spills);
181  if (reg_num != 0) {
182    if (reg_num > kRegListThreshold) {
183      __ StoreList(RegList(core_spills), orig_offset);
184    } else {
185      stack_offset = orig_offset;
186      for (uint32_t i : LowToHighBits(core_spills)) {
187        stack_offset += codegen->SaveCoreRegister(stack_offset, i);
188      }
189    }
190  }
191
192  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
193  orig_offset = stack_offset;
194  for (uint32_t i : LowToHighBits(fp_spills)) {
195    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
196    saved_fpu_stack_offsets_[i] = stack_offset;
197    stack_offset += kArmWordSize;
198  }
199
200  stack_offset = orig_offset;
201  while (fp_spills != 0u) {
202    uint32_t begin = CTZ(fp_spills);
203    uint32_t tmp = fp_spills + (1u << begin);
204    fp_spills &= tmp;  // Clear the contiguous range of 1s.
205    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
206    stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
207  }
208  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
209}
210
211void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
212  size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
213  size_t orig_offset = stack_offset;
214
215  const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
216  for (uint32_t i : LowToHighBits(core_spills)) {
217    DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
218    DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
219    stack_offset += kArmWordSize;
220  }
221
222  int reg_num = POPCOUNT(core_spills);
223  if (reg_num != 0) {
224    if (reg_num > kRegListThreshold) {
225      __ LoadList(RegList(core_spills), orig_offset);
226    } else {
227      stack_offset = orig_offset;
228      for (uint32_t i : LowToHighBits(core_spills)) {
229        stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
230      }
231    }
232  }
233
234  uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
235  while (fp_spills != 0u) {
236    uint32_t begin = CTZ(fp_spills);
237    uint32_t tmp = fp_spills + (1u << begin);
238    fp_spills &= tmp;  // Clear the contiguous range of 1s.
239    uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
240    stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
241  }
242  DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
243}
244
245class NullCheckSlowPathARM : public SlowPathCodeARM {
246 public:
247  explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {}
248
249  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
250    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
251    __ Bind(GetEntryLabel());
252    if (instruction_->CanThrowIntoCatchBlock()) {
253      // Live registers will be restored in the catch block if caught.
254      SaveLiveRegisters(codegen, instruction_->GetLocations());
255    }
256    arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
257                               instruction_,
258                               instruction_->GetDexPc(),
259                               this);
260    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
261  }
262
263  bool IsFatal() const OVERRIDE { return true; }
264
265  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }
266
267 private:
268  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
269};
270
271class DivZeroCheckSlowPathARM : public SlowPathCodeARM {
272 public:
273  explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {}
274
275  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
276    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
277    __ Bind(GetEntryLabel());
278    arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
279    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
280  }
281
282  bool IsFatal() const OVERRIDE { return true; }
283
284  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }
285
286 private:
287  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
288};
289
290class SuspendCheckSlowPathARM : public SlowPathCodeARM {
291 public:
292  SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
293      : SlowPathCodeARM(instruction), successor_(successor) {}
294
295  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
296    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
297    __ Bind(GetEntryLabel());
298    arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
299    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
300    if (successor_ == nullptr) {
301      __ b(GetReturnLabel());
302    } else {
303      __ b(arm_codegen->GetLabelOf(successor_));
304    }
305  }
306
307  Label* GetReturnLabel() {
308    DCHECK(successor_ == nullptr);
309    return &return_label_;
310  }
311
312  HBasicBlock* GetSuccessor() const {
313    return successor_;
314  }
315
316  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }
317
318 private:
319  // If not null, the block to branch to after the suspend check.
320  HBasicBlock* const successor_;
321
322  // If `successor_` is null, the label to branch to after the suspend check.
323  Label return_label_;
324
325  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
326};
327
328class BoundsCheckSlowPathARM : public SlowPathCodeARM {
329 public:
330  explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
331      : SlowPathCodeARM(instruction) {}
332
333  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
334    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
335    LocationSummary* locations = instruction_->GetLocations();
336
337    __ Bind(GetEntryLabel());
338    if (instruction_->CanThrowIntoCatchBlock()) {
339      // Live registers will be restored in the catch block if caught.
340      SaveLiveRegisters(codegen, instruction_->GetLocations());
341    }
342    // We're moving two locations to locations that could overlap, so we need a parallel
343    // move resolver.
344    InvokeRuntimeCallingConvention calling_convention;
345    codegen->EmitParallelMoves(
346        locations->InAt(0),
347        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
348        Primitive::kPrimInt,
349        locations->InAt(1),
350        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
351        Primitive::kPrimInt);
352    QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
353        ? kQuickThrowStringBounds
354        : kQuickThrowArrayBounds;
355    arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
356    CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
357    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
358  }
359
360  bool IsFatal() const OVERRIDE { return true; }
361
362  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }
363
364 private:
365  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
366};
367
368class LoadClassSlowPathARM : public SlowPathCodeARM {
369 public:
370  LoadClassSlowPathARM(HLoadClass* cls,
371                       HInstruction* at,
372                       uint32_t dex_pc,
373                       bool do_clinit)
374      : SlowPathCodeARM(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
375    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
376  }
377
378  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
379    LocationSummary* locations = at_->GetLocations();
380
381    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
382    __ Bind(GetEntryLabel());
383    SaveLiveRegisters(codegen, locations);
384
385    InvokeRuntimeCallingConvention calling_convention;
386    __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
387    QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
388                                                : kQuickInitializeType;
389    arm_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this);
390    if (do_clinit_) {
391      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
392    } else {
393      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
394    }
395
396    // Move the class to the desired location.
397    Location out = locations->Out();
398    if (out.IsValid()) {
399      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
400      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
401    }
402    RestoreLiveRegisters(codegen, locations);
403    __ b(GetExitLabel());
404  }
405
406  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }
407
408 private:
409  // The class this slow path will load.
410  HLoadClass* const cls_;
411
412  // The instruction where this slow path is happening.
413  // (Might be the load class or an initialization check).
414  HInstruction* const at_;
415
416  // The dex PC of `at_`.
417  const uint32_t dex_pc_;
418
419  // Whether to initialize the class.
420  const bool do_clinit_;
421
422  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
423};
424
425class LoadStringSlowPathARM : public SlowPathCodeARM {
426 public:
427  explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {}
428
429  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
430    LocationSummary* locations = instruction_->GetLocations();
431    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
432    HLoadString* load = instruction_->AsLoadString();
433    const uint32_t string_index = load->GetStringIndex();
434    Register out = locations->Out().AsRegister<Register>();
435    Register temp = locations->GetTemp(0).AsRegister<Register>();
436    constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
437
438    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
439    __ Bind(GetEntryLabel());
440    SaveLiveRegisters(codegen, locations);
441
442    InvokeRuntimeCallingConvention calling_convention;
443    // In the unlucky case that the `temp` is R0, we preserve the address in `out` across
444    // the kSaveEverything call (or use `out` for the address after non-kSaveEverything call).
445    bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0));
446    Register entry_address = temp_is_r0 ? out : temp;
447    DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
448    if (call_saves_everything_except_r0 && temp_is_r0) {
449      __ mov(entry_address, ShifterOperand(temp));
450    }
451
452    __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index);
453    arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
454    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
455
456    // Store the resolved String to the .bss entry.
457    if (call_saves_everything_except_r0) {
458      // The string entry address was preserved in `entry_address` thanks to kSaveEverything.
459      __ str(R0, Address(entry_address));
460    } else {
461      // For non-Baker read barrier, we need to re-calculate the address of the string entry.
462      CodeGeneratorARM::PcRelativePatchInfo* labels =
463          arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
464      __ BindTrackedLabel(&labels->movw_label);
465      __ movw(entry_address, /* placeholder */ 0u);
466      __ BindTrackedLabel(&labels->movt_label);
467      __ movt(entry_address, /* placeholder */ 0u);
468      __ BindTrackedLabel(&labels->add_pc_label);
469      __ add(entry_address, entry_address, ShifterOperand(PC));
470      __ str(R0, Address(entry_address));
471    }
472
473    arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
474    RestoreLiveRegisters(codegen, locations);
475
476    __ b(GetExitLabel());
477  }
478
479  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }
480
481 private:
482  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
483};
484
485class TypeCheckSlowPathARM : public SlowPathCodeARM {
486 public:
487  TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
488      : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {}
489
490  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
491    LocationSummary* locations = instruction_->GetLocations();
492    Location arg0, arg1;
493    if (instruction_->IsInstanceOf()) {
494      arg0 = locations->InAt(1);
495      arg1 = locations->Out();
496    } else {
497      arg0 = locations->InAt(0);
498      arg1 = locations->InAt(1);
499    }
500    DCHECK(instruction_->IsCheckCast()
501           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
502
503    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
504    __ Bind(GetEntryLabel());
505
506    if (!is_fatal_) {
507      SaveLiveRegisters(codegen, locations);
508    }
509
510    // We're moving two locations to locations that could overlap, so we need a parallel
511    // move resolver.
512    InvokeRuntimeCallingConvention calling_convention;
513    codegen->EmitParallelMoves(arg0,
514                               Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
515                               Primitive::kPrimNot,
516                               arg1,
517                               Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
518                               Primitive::kPrimNot);
519    if (instruction_->IsInstanceOf()) {
520      arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
521                                 instruction_,
522                                 instruction_->GetDexPc(),
523                                 this);
524      CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Class*, mirror::Class*>();
525      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
526    } else {
527      DCHECK(instruction_->IsCheckCast());
528      arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
529                                 instruction_,
530                                 instruction_->GetDexPc(),
531                                 this);
532      CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
533    }
534
535    if (!is_fatal_) {
536      RestoreLiveRegisters(codegen, locations);
537      __ b(GetExitLabel());
538    }
539  }
540
541  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }
542
543  bool IsFatal() const OVERRIDE { return is_fatal_; }
544
545 private:
546  const bool is_fatal_;
547
548  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
549};
550
551class DeoptimizationSlowPathARM : public SlowPathCodeARM {
552 public:
553  explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
554    : SlowPathCodeARM(instruction) {}
555
556  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
557    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
558    __ Bind(GetEntryLabel());
559    arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
560    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
561  }
562
563  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }
564
565 private:
566  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
567};
568
569class ArraySetSlowPathARM : public SlowPathCodeARM {
570 public:
571  explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {}
572
573  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
574    LocationSummary* locations = instruction_->GetLocations();
575    __ Bind(GetEntryLabel());
576    SaveLiveRegisters(codegen, locations);
577
578    InvokeRuntimeCallingConvention calling_convention;
579    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
580    parallel_move.AddMove(
581        locations->InAt(0),
582        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
583        Primitive::kPrimNot,
584        nullptr);
585    parallel_move.AddMove(
586        locations->InAt(1),
587        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
588        Primitive::kPrimInt,
589        nullptr);
590    parallel_move.AddMove(
591        locations->InAt(2),
592        Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
593        Primitive::kPrimNot,
594        nullptr);
595    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
596
597    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
598    arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
599    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
600    RestoreLiveRegisters(codegen, locations);
601    __ b(GetExitLabel());
602  }
603
604  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }
605
606 private:
607  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
608};
609
610// Slow path marking an object reference `ref` during a read
611// barrier. The field `obj.field` in the object `obj` holding this
612// reference does not get updated by this slow path after marking (see
613// ReadBarrierMarkAndUpdateFieldSlowPathARM below for that).
614//
615// This means that after the execution of this slow path, `ref` will
616// always be up-to-date, but `obj.field` may not; i.e., after the
617// flip, `ref` will be a to-space reference, but `obj.field` will
618// probably still be a from-space reference (unless it gets updated by
619// another thread, or if another thread installed another object
620// reference (different from `ref`) in `obj.field`).
621class ReadBarrierMarkSlowPathARM : public SlowPathCodeARM {
622 public:
623  ReadBarrierMarkSlowPathARM(HInstruction* instruction,
624                             Location ref,
625                             Location entrypoint = Location::NoLocation())
626      : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) {
627    DCHECK(kEmitCompilerReadBarrier);
628  }
629
630  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }
631
632  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
633    LocationSummary* locations = instruction_->GetLocations();
634    Register ref_reg = ref_.AsRegister<Register>();
635    DCHECK(locations->CanCall());
636    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
637    DCHECK(instruction_->IsInstanceFieldGet() ||
638           instruction_->IsStaticFieldGet() ||
639           instruction_->IsArrayGet() ||
640           instruction_->IsArraySet() ||
641           instruction_->IsLoadClass() ||
642           instruction_->IsLoadString() ||
643           instruction_->IsInstanceOf() ||
644           instruction_->IsCheckCast() ||
645           (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
646           (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
647        << "Unexpected instruction in read barrier marking slow path: "
648        << instruction_->DebugName();
649    // The read barrier instrumentation of object ArrayGet
650    // instructions does not support the HIntermediateAddress
651    // instruction.
652    DCHECK(!(instruction_->IsArrayGet() &&
653             instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
654
655    __ Bind(GetEntryLabel());
656    // No need to save live registers; it's taken care of by the
657    // entrypoint. Also, there is no need to update the stack mask,
658    // as this runtime call will not trigger a garbage collection.
659    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
660    DCHECK_NE(ref_reg, SP);
661    DCHECK_NE(ref_reg, LR);
662    DCHECK_NE(ref_reg, PC);
663    // IP is used internally by the ReadBarrierMarkRegX entry point
664    // as a temporary, it cannot be the entry point's input/output.
665    DCHECK_NE(ref_reg, IP);
666    DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg;
667    // "Compact" slow path, saving two moves.
668    //
669    // Instead of using the standard runtime calling convention (input
670    // and output in R0):
671    //
672    //   R0 <- ref
673    //   R0 <- ReadBarrierMark(R0)
674    //   ref <- R0
675    //
676    // we just use rX (the register containing `ref`) as input and output
677    // of a dedicated entrypoint:
678    //
679    //   rX <- ReadBarrierMarkRegX(rX)
680    //
681    if (entrypoint_.IsValid()) {
682      arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
683      __ blx(entrypoint_.AsRegister<Register>());
684    } else {
685      int32_t entry_point_offset =
686          CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg);
687      // This runtime call does not require a stack map.
688      arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
689    }
690    __ b(GetExitLabel());
691  }
692
693 private:
694  // The location (register) of the marked object reference.
695  const Location ref_;
696
697  // The location of the entrypoint if already loaded.
698  const Location entrypoint_;
699
700  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
701};
702
703// Slow path marking an object reference `ref` during a read barrier,
704// and if needed, atomically updating the field `obj.field` in the
705// object `obj` holding this reference after marking (contrary to
706// ReadBarrierMarkSlowPathARM above, which never tries to update
707// `obj.field`).
708//
709// This means that after the execution of this slow path, both `ref`
710// and `obj.field` will be up-to-date; i.e., after the flip, both will
711// hold the same to-space reference (unless another thread installed
712// another object reference (different from `ref`) in `obj.field`).
713class ReadBarrierMarkAndUpdateFieldSlowPathARM : public SlowPathCodeARM {
714 public:
715  ReadBarrierMarkAndUpdateFieldSlowPathARM(HInstruction* instruction,
716                                           Location ref,
717                                           Register obj,
718                                           Location field_offset,
719                                           Register temp1,
720                                           Register temp2)
721      : SlowPathCodeARM(instruction),
722        ref_(ref),
723        obj_(obj),
724        field_offset_(field_offset),
725        temp1_(temp1),
726        temp2_(temp2) {
727    DCHECK(kEmitCompilerReadBarrier);
728  }
729
730  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathARM"; }
731
732  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
733    LocationSummary* locations = instruction_->GetLocations();
734    Register ref_reg = ref_.AsRegister<Register>();
735    DCHECK(locations->CanCall());
736    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
737    // This slow path is only used by the UnsafeCASObject intrinsic.
738    DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
739        << "Unexpected instruction in read barrier marking and field updating slow path: "
740        << instruction_->DebugName();
741    DCHECK(instruction_->GetLocations()->Intrinsified());
742    DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
743    DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
744
745    __ Bind(GetEntryLabel());
746
747    // Save the old reference.
748    // Note that we cannot use IP to save the old reference, as IP is
749    // used internally by the ReadBarrierMarkRegX entry point, and we
750    // need the old reference after the call to that entry point.
751    DCHECK_NE(temp1_, IP);
752    __ Mov(temp1_, ref_reg);
753
754    // No need to save live registers; it's taken care of by the
755    // entrypoint. Also, there is no need to update the stack mask,
756    // as this runtime call will not trigger a garbage collection.
757    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
758    DCHECK_NE(ref_reg, SP);
759    DCHECK_NE(ref_reg, LR);
760    DCHECK_NE(ref_reg, PC);
761    // IP is used internally by the ReadBarrierMarkRegX entry point
762    // as a temporary, it cannot be the entry point's input/output.
763    DCHECK_NE(ref_reg, IP);
764    DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg;
765    // "Compact" slow path, saving two moves.
766    //
767    // Instead of using the standard runtime calling convention (input
768    // and output in R0):
769    //
770    //   R0 <- ref
771    //   R0 <- ReadBarrierMark(R0)
772    //   ref <- R0
773    //
774    // we just use rX (the register containing `ref`) as input and output
775    // of a dedicated entrypoint:
776    //
777    //   rX <- ReadBarrierMarkRegX(rX)
778    //
779    int32_t entry_point_offset =
780        CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg);
781    // This runtime call does not require a stack map.
782    arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
783
784    // If the new reference is different from the old reference,
785    // update the field in the holder (`*(obj_ + field_offset_)`).
786    //
787    // Note that this field could also hold a different object, if
788    // another thread had concurrently changed it. In that case, the
789    // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set
790    // (CAS) operation below would abort the CAS, leaving the field
791    // as-is.
792    Label done;
793    __ cmp(temp1_, ShifterOperand(ref_reg));
794    __ b(&done, EQ);
795
796    // Update the the holder's field atomically.  This may fail if
797    // mutator updates before us, but it's OK.  This is achieved
798    // using a strong compare-and-set (CAS) operation with relaxed
799    // memory synchronization ordering, where the expected value is
800    // the old reference and the desired value is the new reference.
801
802    // Convenience aliases.
803    Register base = obj_;
804    // The UnsafeCASObject intrinsic uses a register pair as field
805    // offset ("long offset"), of which only the low part contains
806    // data.
807    Register offset = field_offset_.AsRegisterPairLow<Register>();
808    Register expected = temp1_;
809    Register value = ref_reg;
810    Register tmp_ptr = IP;       // Pointer to actual memory.
811    Register tmp = temp2_;       // Value in memory.
812
813    __ add(tmp_ptr, base, ShifterOperand(offset));
814
815    if (kPoisonHeapReferences) {
816      __ PoisonHeapReference(expected);
817      if (value == expected) {
818        // Do not poison `value`, as it is the same register as
819        // `expected`, which has just been poisoned.
820      } else {
821        __ PoisonHeapReference(value);
822      }
823    }
824
825    // do {
826    //   tmp = [r_ptr] - expected;
827    // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
828
829    Label loop_head, exit_loop;
830    __ Bind(&loop_head);
831
832    __ ldrex(tmp, tmp_ptr);
833
834    __ subs(tmp, tmp, ShifterOperand(expected));
835
836    __ it(NE);
837    __ clrex(NE);
838
839    __ b(&exit_loop, NE);
840
841    __ strex(tmp, value, tmp_ptr);
842    __ cmp(tmp, ShifterOperand(1));
843    __ b(&loop_head, EQ);
844
845    __ Bind(&exit_loop);
846
847    if (kPoisonHeapReferences) {
848      __ UnpoisonHeapReference(expected);
849      if (value == expected) {
850        // Do not unpoison `value`, as it is the same register as
851        // `expected`, which has just been unpoisoned.
852      } else {
853        __ UnpoisonHeapReference(value);
854      }
855    }
856
857    __ Bind(&done);
858    __ b(GetExitLabel());
859  }
860
861 private:
862  // The location (register) of the marked object reference.
863  const Location ref_;
864  // The register containing the object holding the marked object reference field.
865  const Register obj_;
866  // The location of the offset of the marked reference field within `obj_`.
867  Location field_offset_;
868
869  const Register temp1_;
870  const Register temp2_;
871
872  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathARM);
873};
874
875// Slow path generating a read barrier for a heap reference.
876class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM {
877 public:
878  ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
879                                         Location out,
880                                         Location ref,
881                                         Location obj,
882                                         uint32_t offset,
883                                         Location index)
884      : SlowPathCodeARM(instruction),
885        out_(out),
886        ref_(ref),
887        obj_(obj),
888        offset_(offset),
889        index_(index) {
890    DCHECK(kEmitCompilerReadBarrier);
891    // If `obj` is equal to `out` or `ref`, it means the initial object
892    // has been overwritten by (or after) the heap object reference load
893    // to be instrumented, e.g.:
894    //
895    //   __ LoadFromOffset(kLoadWord, out, out, offset);
896    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
897    //
898    // In that case, we have lost the information about the original
899    // object, and the emitted read barrier cannot work properly.
900    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
901    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
902  }
903
904  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
905    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
906    LocationSummary* locations = instruction_->GetLocations();
907    Register reg_out = out_.AsRegister<Register>();
908    DCHECK(locations->CanCall());
909    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
910    DCHECK(instruction_->IsInstanceFieldGet() ||
911           instruction_->IsStaticFieldGet() ||
912           instruction_->IsArrayGet() ||
913           instruction_->IsInstanceOf() ||
914           instruction_->IsCheckCast() ||
915           (instruction_->IsInvokeVirtual()) && instruction_->GetLocations()->Intrinsified())
916        << "Unexpected instruction in read barrier for heap reference slow path: "
917        << instruction_->DebugName();
918    // The read barrier instrumentation of object ArrayGet
919    // instructions does not support the HIntermediateAddress
920    // instruction.
921    DCHECK(!(instruction_->IsArrayGet() &&
922             instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
923
924    __ Bind(GetEntryLabel());
925    SaveLiveRegisters(codegen, locations);
926
927    // We may have to change the index's value, but as `index_` is a
928    // constant member (like other "inputs" of this slow path),
929    // introduce a copy of it, `index`.
930    Location index = index_;
931    if (index_.IsValid()) {
932      // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
933      if (instruction_->IsArrayGet()) {
934        // Compute the actual memory offset and store it in `index`.
935        Register index_reg = index_.AsRegister<Register>();
936        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
937        if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
938          // We are about to change the value of `index_reg` (see the
939          // calls to art::arm::Thumb2Assembler::Lsl and
940          // art::arm::Thumb2Assembler::AddConstant below), but it has
941          // not been saved by the previous call to
942          // art::SlowPathCode::SaveLiveRegisters, as it is a
943          // callee-save register --
944          // art::SlowPathCode::SaveLiveRegisters does not consider
945          // callee-save registers, as it has been designed with the
946          // assumption that callee-save registers are supposed to be
947          // handled by the called function.  So, as a callee-save
948          // register, `index_reg` _would_ eventually be saved onto
949          // the stack, but it would be too late: we would have
950          // changed its value earlier.  Therefore, we manually save
951          // it here into another freely available register,
952          // `free_reg`, chosen of course among the caller-save
953          // registers (as a callee-save `free_reg` register would
954          // exhibit the same problem).
955          //
956          // Note we could have requested a temporary register from
957          // the register allocator instead; but we prefer not to, as
958          // this is a slow path, and we know we can find a
959          // caller-save register that is available.
960          Register free_reg = FindAvailableCallerSaveRegister(codegen);
961          __ Mov(free_reg, index_reg);
962          index_reg = free_reg;
963          index = Location::RegisterLocation(index_reg);
964        } else {
965          // The initial register stored in `index_` has already been
966          // saved in the call to art::SlowPathCode::SaveLiveRegisters
967          // (as it is not a callee-save register), so we can freely
968          // use it.
969        }
970        // Shifting the index value contained in `index_reg` by the scale
971        // factor (2) cannot overflow in practice, as the runtime is
972        // unable to allocate object arrays with a size larger than
973        // 2^26 - 1 (that is, 2^28 - 4 bytes).
974        __ Lsl(index_reg, index_reg, TIMES_4);
975        static_assert(
976            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
977            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
978        __ AddConstant(index_reg, index_reg, offset_);
979      } else {
980        // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
981        // intrinsics, `index_` is not shifted by a scale factor of 2
982        // (as in the case of ArrayGet), as it is actually an offset
983        // to an object field within an object.
984        DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
985        DCHECK(instruction_->GetLocations()->Intrinsified());
986        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
987               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
988            << instruction_->AsInvoke()->GetIntrinsic();
989        DCHECK_EQ(offset_, 0U);
990        DCHECK(index_.IsRegisterPair());
991        // UnsafeGet's offset location is a register pair, the low
992        // part contains the correct offset.
993        index = index_.ToLow();
994      }
995    }
996
997    // We're moving two or three locations to locations that could
998    // overlap, so we need a parallel move resolver.
999    InvokeRuntimeCallingConvention calling_convention;
1000    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
1001    parallel_move.AddMove(ref_,
1002                          Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
1003                          Primitive::kPrimNot,
1004                          nullptr);
1005    parallel_move.AddMove(obj_,
1006                          Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
1007                          Primitive::kPrimNot,
1008                          nullptr);
1009    if (index.IsValid()) {
1010      parallel_move.AddMove(index,
1011                            Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
1012                            Primitive::kPrimInt,
1013                            nullptr);
1014      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
1015    } else {
1016      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
1017      __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
1018    }
1019    arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
1020    CheckEntrypointTypes<
1021        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
1022    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
1023
1024    RestoreLiveRegisters(codegen, locations);
1025    __ b(GetExitLabel());
1026  }
1027
1028  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }
1029
1030 private:
1031  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
1032    size_t ref = static_cast<int>(ref_.AsRegister<Register>());
1033    size_t obj = static_cast<int>(obj_.AsRegister<Register>());
1034    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
1035      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
1036        return static_cast<Register>(i);
1037      }
1038    }
1039    // We shall never fail to find a free caller-save register, as
1040    // there are more than two core caller-save registers on ARM
1041    // (meaning it is possible to find one which is different from
1042    // `ref` and `obj`).
1043    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
1044    LOG(FATAL) << "Could not find a free caller-save register";
1045    UNREACHABLE();
1046  }
1047
1048  const Location out_;
1049  const Location ref_;
1050  const Location obj_;
1051  const uint32_t offset_;
1052  // An additional location containing an index to an array.
1053  // Only used for HArrayGet and the UnsafeGetObject &
1054  // UnsafeGetObjectVolatile intrinsics.
1055  const Location index_;
1056
1057  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
1058};
1059
1060// Slow path generating a read barrier for a GC root.
1061class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM {
1062 public:
1063  ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
1064      : SlowPathCodeARM(instruction), out_(out), root_(root) {
1065    DCHECK(kEmitCompilerReadBarrier);
1066  }
1067
1068  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
1069    LocationSummary* locations = instruction_->GetLocations();
1070    Register reg_out = out_.AsRegister<Register>();
1071    DCHECK(locations->CanCall());
1072    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
1073    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
1074        << "Unexpected instruction in read barrier for GC root slow path: "
1075        << instruction_->DebugName();
1076
1077    __ Bind(GetEntryLabel());
1078    SaveLiveRegisters(codegen, locations);
1079
1080    InvokeRuntimeCallingConvention calling_convention;
1081    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
1082    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
1083    arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
1084                               instruction_,
1085                               instruction_->GetDexPc(),
1086                               this);
1087    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
1088    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
1089
1090    RestoreLiveRegisters(codegen, locations);
1091    __ b(GetExitLabel());
1092  }
1093
1094  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }
1095
1096 private:
1097  const Location out_;
1098  const Location root_;
1099
1100  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
1101};
1102
1103#undef __
1104// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
1105#define __ down_cast<ArmAssembler*>(GetAssembler())->  // NOLINT
1106
1107inline Condition ARMCondition(IfCondition cond) {
1108  switch (cond) {
1109    case kCondEQ: return EQ;
1110    case kCondNE: return NE;
1111    case kCondLT: return LT;
1112    case kCondLE: return LE;
1113    case kCondGT: return GT;
1114    case kCondGE: return GE;
1115    case kCondB:  return LO;
1116    case kCondBE: return LS;
1117    case kCondA:  return HI;
1118    case kCondAE: return HS;
1119  }
1120  LOG(FATAL) << "Unreachable";
1121  UNREACHABLE();
1122}
1123
1124// Maps signed condition to unsigned condition.
1125inline Condition ARMUnsignedCondition(IfCondition cond) {
1126  switch (cond) {
1127    case kCondEQ: return EQ;
1128    case kCondNE: return NE;
1129    // Signed to unsigned.
1130    case kCondLT: return LO;
1131    case kCondLE: return LS;
1132    case kCondGT: return HI;
1133    case kCondGE: return HS;
1134    // Unsigned remain unchanged.
1135    case kCondB:  return LO;
1136    case kCondBE: return LS;
1137    case kCondA:  return HI;
1138    case kCondAE: return HS;
1139  }
1140  LOG(FATAL) << "Unreachable";
1141  UNREACHABLE();
1142}
1143
1144inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
1145  // The ARM condition codes can express all the necessary branches, see the
1146  // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
1147  // There is no dex instruction or HIR that would need the missing conditions
1148  // "equal or unordered" or "not equal".
1149  switch (cond) {
1150    case kCondEQ: return EQ;
1151    case kCondNE: return NE /* unordered */;
1152    case kCondLT: return gt_bias ? CC : LT /* unordered */;
1153    case kCondLE: return gt_bias ? LS : LE /* unordered */;
1154    case kCondGT: return gt_bias ? HI /* unordered */ : GT;
1155    case kCondGE: return gt_bias ? CS /* unordered */ : GE;
1156    default:
1157      LOG(FATAL) << "UNREACHABLE";
1158      UNREACHABLE();
1159  }
1160}
1161
1162void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
1163  stream << Register(reg);
1164}
1165
1166void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1167  stream << SRegister(reg);
1168}
1169
1170size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1171  __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
1172  return kArmWordSize;
1173}
1174
1175size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1176  __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
1177  return kArmWordSize;
1178}
1179
1180size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1181  __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
1182  return kArmWordSize;
1183}
1184
1185size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1186  __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
1187  return kArmWordSize;
1188}
1189
1190CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
1191                                   const ArmInstructionSetFeatures& isa_features,
1192                                   const CompilerOptions& compiler_options,
1193                                   OptimizingCompilerStats* stats)
1194    : CodeGenerator(graph,
1195                    kNumberOfCoreRegisters,
1196                    kNumberOfSRegisters,
1197                    kNumberOfRegisterPairs,
1198                    ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
1199                                        arraysize(kCoreCalleeSaves)),
1200                    ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
1201                                        arraysize(kFpuCalleeSaves)),
1202                    compiler_options,
1203                    stats),
1204      block_labels_(nullptr),
1205      location_builder_(graph, this),
1206      instruction_visitor_(graph, this),
1207      move_resolver_(graph->GetArena(), this),
1208      assembler_(graph->GetArena()),
1209      isa_features_(isa_features),
1210      uint32_literals_(std::less<uint32_t>(),
1211                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1212      method_patches_(MethodReferenceComparator(),
1213                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1214      call_patches_(MethodReferenceComparator(),
1215                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1216      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1217      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1218      boot_image_string_patches_(StringReferenceValueComparator(),
1219                                 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1220      pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1221      boot_image_type_patches_(TypeReferenceValueComparator(),
1222                               graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1223      pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1224      boot_image_address_patches_(std::less<uint32_t>(),
1225                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1226      jit_string_patches_(StringReferenceValueComparator(),
1227                          graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
1228  // Always save the LR register to mimic Quick.
1229  AddAllocatedRegister(Location::RegisterLocation(LR));
1230}
1231
1232void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
1233  // Ensure that we fix up branches and literal loads and emit the literal pool.
1234  __ FinalizeCode();
1235
1236  // Adjust native pc offsets in stack maps.
1237  for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
1238    uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
1239    uint32_t new_position = __ GetAdjustedPosition(old_position);
1240    stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
1241  }
1242  // Adjust pc offsets for the disassembly information.
1243  if (disasm_info_ != nullptr) {
1244    GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
1245    frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
1246    frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
1247    for (auto& it : *disasm_info_->GetInstructionIntervals()) {
1248      it.second.start = __ GetAdjustedPosition(it.second.start);
1249      it.second.end = __ GetAdjustedPosition(it.second.end);
1250    }
1251    for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
1252      it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
1253      it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
1254    }
1255  }
1256
1257  CodeGenerator::Finalize(allocator);
1258}
1259
1260void CodeGeneratorARM::SetupBlockedRegisters() const {
1261  // Stack register, LR and PC are always reserved.
1262  blocked_core_registers_[SP] = true;
1263  blocked_core_registers_[LR] = true;
1264  blocked_core_registers_[PC] = true;
1265
1266  // Reserve thread register.
1267  blocked_core_registers_[TR] = true;
1268
1269  // Reserve temp register.
1270  blocked_core_registers_[IP] = true;
1271
1272  if (GetGraph()->IsDebuggable()) {
1273    // Stubs do not save callee-save floating point registers. If the graph
1274    // is debuggable, we need to deal with these registers differently. For
1275    // now, just block them.
1276    for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
1277      blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
1278    }
1279  }
1280}
1281
1282InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
1283      : InstructionCodeGenerator(graph, codegen),
1284        assembler_(codegen->GetAssembler()),
1285        codegen_(codegen) {}
1286
1287void CodeGeneratorARM::ComputeSpillMask() {
1288  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
1289  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
1290  // There is no easy instruction to restore just the PC on thumb2. We spill and
1291  // restore another arbitrary register.
1292  core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
1293  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
1294  // We use vpush and vpop for saving and restoring floating point registers, which take
1295  // a SRegister and the number of registers to save/restore after that SRegister. We
1296  // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
1297  // but in the range.
1298  if (fpu_spill_mask_ != 0) {
1299    uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
1300    uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
1301    for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
1302      fpu_spill_mask_ |= (1 << i);
1303    }
1304  }
1305}
1306
1307static dwarf::Reg DWARFReg(Register reg) {
1308  return dwarf::Reg::ArmCore(static_cast<int>(reg));
1309}
1310
1311static dwarf::Reg DWARFReg(SRegister reg) {
1312  return dwarf::Reg::ArmFp(static_cast<int>(reg));
1313}
1314
1315void CodeGeneratorARM::GenerateFrameEntry() {
1316  bool skip_overflow_check =
1317      IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
1318  DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1319  __ Bind(&frame_entry_label_);
1320
1321  if (HasEmptyFrame()) {
1322    return;
1323  }
1324
1325  if (!skip_overflow_check) {
1326    __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
1327    __ LoadFromOffset(kLoadWord, IP, IP, 0);
1328    RecordPcInfo(nullptr, 0);
1329  }
1330
1331  __ PushList(core_spill_mask_);
1332  __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
1333  __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
1334  if (fpu_spill_mask_ != 0) {
1335    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1336    __ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
1337    __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
1338    __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
1339  }
1340  int adjust = GetFrameSize() - FrameEntrySpillSize();
1341  __ AddConstant(SP, -adjust);
1342  __ cfi().AdjustCFAOffset(adjust);
1343
1344  // Save the current method if we need it. Note that we do not
1345  // do this in HCurrentMethod, as the instruction might have been removed
1346  // in the SSA graph.
1347  if (RequiresCurrentMethod()) {
1348    __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
1349  }
1350}
1351
1352void CodeGeneratorARM::GenerateFrameExit() {
1353  if (HasEmptyFrame()) {
1354    __ bx(LR);
1355    return;
1356  }
1357  __ cfi().RememberState();
1358  int adjust = GetFrameSize() - FrameEntrySpillSize();
1359  __ AddConstant(SP, adjust);
1360  __ cfi().AdjustCFAOffset(-adjust);
1361  if (fpu_spill_mask_ != 0) {
1362    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
1363    __ vpops(start_register, POPCOUNT(fpu_spill_mask_));
1364    __ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_));
1365    __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
1366  }
1367  // Pop LR into PC to return.
1368  DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
1369  uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
1370  __ PopList(pop_mask);
1371  __ cfi().RestoreState();
1372  __ cfi().DefCFAOffset(GetFrameSize());
1373}
1374
1375void CodeGeneratorARM::Bind(HBasicBlock* block) {
1376  Label* label = GetLabelOf(block);
1377  __ BindTrackedLabel(label);
1378}
1379
1380Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
1381  switch (type) {
1382    case Primitive::kPrimBoolean:
1383    case Primitive::kPrimByte:
1384    case Primitive::kPrimChar:
1385    case Primitive::kPrimShort:
1386    case Primitive::kPrimInt:
1387    case Primitive::kPrimNot: {
1388      uint32_t index = gp_index_++;
1389      uint32_t stack_index = stack_index_++;
1390      if (index < calling_convention.GetNumberOfRegisters()) {
1391        return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
1392      } else {
1393        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1394      }
1395    }
1396
1397    case Primitive::kPrimLong: {
1398      uint32_t index = gp_index_;
1399      uint32_t stack_index = stack_index_;
1400      gp_index_ += 2;
1401      stack_index_ += 2;
1402      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1403        if (calling_convention.GetRegisterAt(index) == R1) {
1404          // Skip R1, and use R2_R3 instead.
1405          gp_index_++;
1406          index++;
1407        }
1408      }
1409      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1410        DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
1411                  calling_convention.GetRegisterAt(index + 1));
1412
1413        return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
1414                                              calling_convention.GetRegisterAt(index + 1));
1415      } else {
1416        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1417      }
1418    }
1419
1420    case Primitive::kPrimFloat: {
1421      uint32_t stack_index = stack_index_++;
1422      if (float_index_ % 2 == 0) {
1423        float_index_ = std::max(double_index_, float_index_);
1424      }
1425      if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
1426        return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
1427      } else {
1428        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1429      }
1430    }
1431
1432    case Primitive::kPrimDouble: {
1433      double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
1434      uint32_t stack_index = stack_index_;
1435      stack_index_ += 2;
1436      if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
1437        uint32_t index = double_index_;
1438        double_index_ += 2;
1439        Location result = Location::FpuRegisterPairLocation(
1440          calling_convention.GetFpuRegisterAt(index),
1441          calling_convention.GetFpuRegisterAt(index + 1));
1442        DCHECK(ExpectedPairLayout(result));
1443        return result;
1444      } else {
1445        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1446      }
1447    }
1448
1449    case Primitive::kPrimVoid:
1450      LOG(FATAL) << "Unexpected parameter type " << type;
1451      break;
1452  }
1453  return Location::NoLocation();
1454}
1455
1456Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
1457  switch (type) {
1458    case Primitive::kPrimBoolean:
1459    case Primitive::kPrimByte:
1460    case Primitive::kPrimChar:
1461    case Primitive::kPrimShort:
1462    case Primitive::kPrimInt:
1463    case Primitive::kPrimNot: {
1464      return Location::RegisterLocation(R0);
1465    }
1466
1467    case Primitive::kPrimFloat: {
1468      return Location::FpuRegisterLocation(S0);
1469    }
1470
1471    case Primitive::kPrimLong: {
1472      return Location::RegisterPairLocation(R0, R1);
1473    }
1474
1475    case Primitive::kPrimDouble: {
1476      return Location::FpuRegisterPairLocation(S0, S1);
1477    }
1478
1479    case Primitive::kPrimVoid:
1480      return Location::NoLocation();
1481  }
1482
1483  UNREACHABLE();
1484}
1485
1486Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
1487  return Location::RegisterLocation(kMethodRegisterArgument);
1488}
1489
1490void CodeGeneratorARM::Move32(Location destination, Location source) {
1491  if (source.Equals(destination)) {
1492    return;
1493  }
1494  if (destination.IsRegister()) {
1495    if (source.IsRegister()) {
1496      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
1497    } else if (source.IsFpuRegister()) {
1498      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
1499    } else {
1500      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
1501    }
1502  } else if (destination.IsFpuRegister()) {
1503    if (source.IsRegister()) {
1504      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
1505    } else if (source.IsFpuRegister()) {
1506      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
1507    } else {
1508      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
1509    }
1510  } else {
1511    DCHECK(destination.IsStackSlot()) << destination;
1512    if (source.IsRegister()) {
1513      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
1514    } else if (source.IsFpuRegister()) {
1515      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
1516    } else {
1517      DCHECK(source.IsStackSlot()) << source;
1518      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
1519      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
1520    }
1521  }
1522}
1523
1524void CodeGeneratorARM::Move64(Location destination, Location source) {
1525  if (source.Equals(destination)) {
1526    return;
1527  }
1528  if (destination.IsRegisterPair()) {
1529    if (source.IsRegisterPair()) {
1530      EmitParallelMoves(
1531          Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1532          Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1533          Primitive::kPrimInt,
1534          Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1535          Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1536          Primitive::kPrimInt);
1537    } else if (source.IsFpuRegister()) {
1538      UNIMPLEMENTED(FATAL);
1539    } else if (source.IsFpuRegisterPair()) {
1540      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
1541                 destination.AsRegisterPairHigh<Register>(),
1542                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
1543    } else {
1544      DCHECK(source.IsDoubleStackSlot());
1545      DCHECK(ExpectedPairLayout(destination));
1546      __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
1547                        SP, source.GetStackIndex());
1548    }
1549  } else if (destination.IsFpuRegisterPair()) {
1550    if (source.IsDoubleStackSlot()) {
1551      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1552                         SP,
1553                         source.GetStackIndex());
1554    } else if (source.IsRegisterPair()) {
1555      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1556                 source.AsRegisterPairLow<Register>(),
1557                 source.AsRegisterPairHigh<Register>());
1558    } else {
1559      UNIMPLEMENTED(FATAL);
1560    }
1561  } else {
1562    DCHECK(destination.IsDoubleStackSlot());
1563    if (source.IsRegisterPair()) {
1564      // No conflict possible, so just do the moves.
1565      if (source.AsRegisterPairLow<Register>() == R1) {
1566        DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
1567        __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
1568        __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
1569      } else {
1570        __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
1571                         SP, destination.GetStackIndex());
1572      }
1573    } else if (source.IsFpuRegisterPair()) {
1574      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
1575                        SP,
1576                        destination.GetStackIndex());
1577    } else {
1578      DCHECK(source.IsDoubleStackSlot());
1579      EmitParallelMoves(
1580          Location::StackSlot(source.GetStackIndex()),
1581          Location::StackSlot(destination.GetStackIndex()),
1582          Primitive::kPrimInt,
1583          Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
1584          Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
1585          Primitive::kPrimInt);
1586    }
1587  }
1588}
1589
1590void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
1591  DCHECK(location.IsRegister());
1592  __ LoadImmediate(location.AsRegister<Register>(), value);
1593}
1594
1595void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1596  HParallelMove move(GetGraph()->GetArena());
1597  move.AddMove(src, dst, dst_type, nullptr);
1598  GetMoveResolver()->EmitNativeCode(&move);
1599}
1600
1601void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
1602  if (location.IsRegister()) {
1603    locations->AddTemp(location);
1604  } else if (location.IsRegisterPair()) {
1605    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1606    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1607  } else {
1608    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1609  }
1610}
1611
1612void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
1613                                     HInstruction* instruction,
1614                                     uint32_t dex_pc,
1615                                     SlowPathCode* slow_path) {
1616  ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1617  GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value());
1618  if (EntrypointRequiresStackMap(entrypoint)) {
1619    RecordPcInfo(instruction, dex_pc, slow_path);
1620  }
1621}
1622
1623void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1624                                                           HInstruction* instruction,
1625                                                           SlowPathCode* slow_path) {
1626  ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1627  GenerateInvokeRuntime(entry_point_offset);
1628}
1629
1630void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) {
1631  __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
1632  __ blx(LR);
1633}
1634
1635void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1636  DCHECK(!successor->IsExitBlock());
1637
1638  HBasicBlock* block = got->GetBlock();
1639  HInstruction* previous = got->GetPrevious();
1640
1641  HLoopInformation* info = block->GetLoopInformation();
1642  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1643    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
1644    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1645    return;
1646  }
1647
1648  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1649    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1650  }
1651  if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1652    __ b(codegen_->GetLabelOf(successor));
1653  }
1654}
1655
1656void LocationsBuilderARM::VisitGoto(HGoto* got) {
1657  got->SetLocations(nullptr);
1658}
1659
1660void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
1661  HandleGoto(got, got->GetSuccessor());
1662}
1663
1664void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1665  try_boundary->SetLocations(nullptr);
1666}
1667
1668void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1669  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1670  if (!successor->IsExitBlock()) {
1671    HandleGoto(try_boundary, successor);
1672  }
1673}
1674
1675void LocationsBuilderARM::VisitExit(HExit* exit) {
1676  exit->SetLocations(nullptr);
1677}
1678
1679void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1680}
1681
1682void InstructionCodeGeneratorARM::GenerateVcmp(HInstruction* instruction) {
1683  Primitive::Type type = instruction->InputAt(0)->GetType();
1684  Location lhs_loc = instruction->GetLocations()->InAt(0);
1685  Location rhs_loc = instruction->GetLocations()->InAt(1);
1686  if (rhs_loc.IsConstant()) {
1687    // 0.0 is the only immediate that can be encoded directly in
1688    // a VCMP instruction.
1689    //
1690    // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1691    // specify that in a floating-point comparison, positive zero
1692    // and negative zero are considered equal, so we can use the
1693    // literal 0.0 for both cases here.
1694    //
1695    // Note however that some methods (Float.equal, Float.compare,
1696    // Float.compareTo, Double.equal, Double.compare,
1697    // Double.compareTo, Math.max, Math.min, StrictMath.max,
1698    // StrictMath.min) consider 0.0 to be (strictly) greater than
1699    // -0.0. So if we ever translate calls to these methods into a
1700    // HCompare instruction, we must handle the -0.0 case with
1701    // care here.
1702    DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1703    if (type == Primitive::kPrimFloat) {
1704      __ vcmpsz(lhs_loc.AsFpuRegister<SRegister>());
1705    } else {
1706      DCHECK_EQ(type, Primitive::kPrimDouble);
1707      __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()));
1708    }
1709  } else {
1710    if (type == Primitive::kPrimFloat) {
1711      __ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>());
1712    } else {
1713      DCHECK_EQ(type, Primitive::kPrimDouble);
1714      __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()),
1715               FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>()));
1716    }
1717  }
1718}
1719
1720void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond,
1721                                                  Label* true_label,
1722                                                  Label* false_label ATTRIBUTE_UNUSED) {
1723  __ vmstat();  // transfer FP status register to ARM APSR.
1724  __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias()));
1725}
1726
1727void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond,
1728                                                               Label* true_label,
1729                                                               Label* false_label) {
1730  LocationSummary* locations = cond->GetLocations();
1731  Location left = locations->InAt(0);
1732  Location right = locations->InAt(1);
1733  IfCondition if_cond = cond->GetCondition();
1734
1735  Register left_high = left.AsRegisterPairHigh<Register>();
1736  Register left_low = left.AsRegisterPairLow<Register>();
1737  IfCondition true_high_cond = if_cond;
1738  IfCondition false_high_cond = cond->GetOppositeCondition();
1739  Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part
1740
1741  // Set the conditions for the test, remembering that == needs to be
1742  // decided using the low words.
1743  // TODO: consider avoiding jumps with temporary and CMP low+SBC high
1744  switch (if_cond) {
1745    case kCondEQ:
1746    case kCondNE:
1747      // Nothing to do.
1748      break;
1749    case kCondLT:
1750      false_high_cond = kCondGT;
1751      break;
1752    case kCondLE:
1753      true_high_cond = kCondLT;
1754      break;
1755    case kCondGT:
1756      false_high_cond = kCondLT;
1757      break;
1758    case kCondGE:
1759      true_high_cond = kCondGT;
1760      break;
1761    case kCondB:
1762      false_high_cond = kCondA;
1763      break;
1764    case kCondBE:
1765      true_high_cond = kCondB;
1766      break;
1767    case kCondA:
1768      false_high_cond = kCondB;
1769      break;
1770    case kCondAE:
1771      true_high_cond = kCondA;
1772      break;
1773  }
1774  if (right.IsConstant()) {
1775    int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1776    int32_t val_low = Low32Bits(value);
1777    int32_t val_high = High32Bits(value);
1778
1779    __ CmpConstant(left_high, val_high);
1780    if (if_cond == kCondNE) {
1781      __ b(true_label, ARMCondition(true_high_cond));
1782    } else if (if_cond == kCondEQ) {
1783      __ b(false_label, ARMCondition(false_high_cond));
1784    } else {
1785      __ b(true_label, ARMCondition(true_high_cond));
1786      __ b(false_label, ARMCondition(false_high_cond));
1787    }
1788    // Must be equal high, so compare the lows.
1789    __ CmpConstant(left_low, val_low);
1790  } else {
1791    Register right_high = right.AsRegisterPairHigh<Register>();
1792    Register right_low = right.AsRegisterPairLow<Register>();
1793
1794    __ cmp(left_high, ShifterOperand(right_high));
1795    if (if_cond == kCondNE) {
1796      __ b(true_label, ARMCondition(true_high_cond));
1797    } else if (if_cond == kCondEQ) {
1798      __ b(false_label, ARMCondition(false_high_cond));
1799    } else {
1800      __ b(true_label, ARMCondition(true_high_cond));
1801      __ b(false_label, ARMCondition(false_high_cond));
1802    }
1803    // Must be equal high, so compare the lows.
1804    __ cmp(left_low, ShifterOperand(right_low));
1805  }
1806  // The last comparison might be unsigned.
1807  // TODO: optimize cases where this is always true/false
1808  __ b(true_label, final_condition);
1809}
1810
1811void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
1812                                                               Label* true_target_in,
1813                                                               Label* false_target_in) {
1814  // Generated branching requires both targets to be explicit. If either of the
1815  // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1816  Label fallthrough_target;
1817  Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1818  Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1819
1820  Primitive::Type type = condition->InputAt(0)->GetType();
1821  switch (type) {
1822    case Primitive::kPrimLong:
1823      GenerateLongComparesAndJumps(condition, true_target, false_target);
1824      break;
1825    case Primitive::kPrimFloat:
1826    case Primitive::kPrimDouble:
1827      GenerateVcmp(condition);
1828      GenerateFPJumps(condition, true_target, false_target);
1829      break;
1830    default:
1831      LOG(FATAL) << "Unexpected compare type " << type;
1832  }
1833
1834  if (false_target != &fallthrough_target) {
1835    __ b(false_target);
1836  }
1837
1838  if (fallthrough_target.IsLinked()) {
1839    __ Bind(&fallthrough_target);
1840  }
1841}
1842
1843void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
1844                                                        size_t condition_input_index,
1845                                                        Label* true_target,
1846                                                        Label* false_target) {
1847  HInstruction* cond = instruction->InputAt(condition_input_index);
1848
1849  if (true_target == nullptr && false_target == nullptr) {
1850    // Nothing to do. The code always falls through.
1851    return;
1852  } else if (cond->IsIntConstant()) {
1853    // Constant condition, statically compared against "true" (integer value 1).
1854    if (cond->AsIntConstant()->IsTrue()) {
1855      if (true_target != nullptr) {
1856        __ b(true_target);
1857      }
1858    } else {
1859      DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1860      if (false_target != nullptr) {
1861        __ b(false_target);
1862      }
1863    }
1864    return;
1865  }
1866
1867  // The following code generates these patterns:
1868  //  (1) true_target == nullptr && false_target != nullptr
1869  //        - opposite condition true => branch to false_target
1870  //  (2) true_target != nullptr && false_target == nullptr
1871  //        - condition true => branch to true_target
1872  //  (3) true_target != nullptr && false_target != nullptr
1873  //        - condition true => branch to true_target
1874  //        - branch to false_target
1875  if (IsBooleanValueOrMaterializedCondition(cond)) {
1876    // Condition has been materialized, compare the output to 0.
1877    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
1878    DCHECK(cond_val.IsRegister());
1879    if (true_target == nullptr) {
1880      __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
1881    } else {
1882      __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
1883    }
1884  } else {
1885    // Condition has not been materialized. Use its inputs as the comparison and
1886    // its condition as the branch condition.
1887    HCondition* condition = cond->AsCondition();
1888
1889    // If this is a long or FP comparison that has been folded into
1890    // the HCondition, generate the comparison directly.
1891    Primitive::Type type = condition->InputAt(0)->GetType();
1892    if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1893      GenerateCompareTestAndBranch(condition, true_target, false_target);
1894      return;
1895    }
1896
1897    LocationSummary* locations = cond->GetLocations();
1898    DCHECK(locations->InAt(0).IsRegister());
1899    Register left = locations->InAt(0).AsRegister<Register>();
1900    Location right = locations->InAt(1);
1901    if (right.IsRegister()) {
1902      __ cmp(left, ShifterOperand(right.AsRegister<Register>()));
1903    } else {
1904      DCHECK(right.IsConstant());
1905      __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1906    }
1907    if (true_target == nullptr) {
1908      __ b(false_target, ARMCondition(condition->GetOppositeCondition()));
1909    } else {
1910      __ b(true_target, ARMCondition(condition->GetCondition()));
1911    }
1912  }
1913
1914  // If neither branch falls through (case 3), the conditional branch to `true_target`
1915  // was already emitted (case 2) and we need to emit a jump to `false_target`.
1916  if (true_target != nullptr && false_target != nullptr) {
1917    __ b(false_target);
1918  }
1919}
1920
1921void LocationsBuilderARM::VisitIf(HIf* if_instr) {
1922  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1923  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1924    locations->SetInAt(0, Location::RequiresRegister());
1925  }
1926}
1927
1928void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
1929  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1930  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1931  Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1932      nullptr : codegen_->GetLabelOf(true_successor);
1933  Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1934      nullptr : codegen_->GetLabelOf(false_successor);
1935  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1936}
1937
1938void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1939  LocationSummary* locations = new (GetGraph()->GetArena())
1940      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1941  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
1942  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1943    locations->SetInAt(0, Location::RequiresRegister());
1944  }
1945}
1946
1947void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1948  SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
1949  GenerateTestAndBranch(deoptimize,
1950                        /* condition_input_index */ 0,
1951                        slow_path->GetEntryLabel(),
1952                        /* false_target */ nullptr);
1953}
1954
1955void LocationsBuilderARM::VisitSelect(HSelect* select) {
1956  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1957  if (Primitive::IsFloatingPointType(select->GetType())) {
1958    locations->SetInAt(0, Location::RequiresFpuRegister());
1959    locations->SetInAt(1, Location::RequiresFpuRegister());
1960  } else {
1961    locations->SetInAt(0, Location::RequiresRegister());
1962    locations->SetInAt(1, Location::RequiresRegister());
1963  }
1964  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1965    locations->SetInAt(2, Location::RequiresRegister());
1966  }
1967  locations->SetOut(Location::SameAsFirstInput());
1968}
1969
1970void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
1971  LocationSummary* locations = select->GetLocations();
1972  Label false_target;
1973  GenerateTestAndBranch(select,
1974                        /* condition_input_index */ 2,
1975                        /* true_target */ nullptr,
1976                        &false_target);
1977  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1978  __ Bind(&false_target);
1979}
1980
1981void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1982  new (GetGraph()->GetArena()) LocationSummary(info);
1983}
1984
1985void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
1986  // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1987}
1988
1989void CodeGeneratorARM::GenerateNop() {
1990  __ nop();
1991}
1992
1993void LocationsBuilderARM::HandleCondition(HCondition* cond) {
1994  LocationSummary* locations =
1995      new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1996  // Handle the long/FP comparisons made in instruction simplification.
1997  switch (cond->InputAt(0)->GetType()) {
1998    case Primitive::kPrimLong:
1999      locations->SetInAt(0, Location::RequiresRegister());
2000      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2001      if (!cond->IsEmittedAtUseSite()) {
2002        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2003      }
2004      break;
2005
2006    case Primitive::kPrimFloat:
2007    case Primitive::kPrimDouble:
2008      locations->SetInAt(0, Location::RequiresFpuRegister());
2009      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
2010      if (!cond->IsEmittedAtUseSite()) {
2011        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2012      }
2013      break;
2014
2015    default:
2016      locations->SetInAt(0, Location::RequiresRegister());
2017      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
2018      if (!cond->IsEmittedAtUseSite()) {
2019        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2020      }
2021  }
2022}
2023
2024void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
2025  if (cond->IsEmittedAtUseSite()) {
2026    return;
2027  }
2028
2029  LocationSummary* locations = cond->GetLocations();
2030  Location left = locations->InAt(0);
2031  Location right = locations->InAt(1);
2032  Register out = locations->Out().AsRegister<Register>();
2033  Label true_label, false_label;
2034
2035  switch (cond->InputAt(0)->GetType()) {
2036    default: {
2037      // Integer case.
2038      if (right.IsRegister()) {
2039        __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>()));
2040      } else {
2041        DCHECK(right.IsConstant());
2042        __ CmpConstant(left.AsRegister<Register>(),
2043                       CodeGenerator::GetInt32ValueOf(right.GetConstant()));
2044      }
2045      __ it(ARMCondition(cond->GetCondition()), kItElse);
2046      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
2047             ARMCondition(cond->GetCondition()));
2048      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
2049             ARMCondition(cond->GetOppositeCondition()));
2050      return;
2051    }
2052    case Primitive::kPrimLong:
2053      GenerateLongComparesAndJumps(cond, &true_label, &false_label);
2054      break;
2055    case Primitive::kPrimFloat:
2056    case Primitive::kPrimDouble:
2057      GenerateVcmp(cond);
2058      GenerateFPJumps(cond, &true_label, &false_label);
2059      break;
2060  }
2061
2062  // Convert the jumps into the result.
2063  Label done_label;
2064
2065  // False case: result = 0.
2066  __ Bind(&false_label);
2067  __ LoadImmediate(out, 0);
2068  __ b(&done_label);
2069
2070  // True case: result = 1.
2071  __ Bind(&true_label);
2072  __ LoadImmediate(out, 1);
2073  __ Bind(&done_label);
2074}
2075
2076void LocationsBuilderARM::VisitEqual(HEqual* comp) {
2077  HandleCondition(comp);
2078}
2079
2080void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
2081  HandleCondition(comp);
2082}
2083
2084void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
2085  HandleCondition(comp);
2086}
2087
2088void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
2089  HandleCondition(comp);
2090}
2091
2092void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
2093  HandleCondition(comp);
2094}
2095
2096void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
2097  HandleCondition(comp);
2098}
2099
2100void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2101  HandleCondition(comp);
2102}
2103
2104void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
2105  HandleCondition(comp);
2106}
2107
2108void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
2109  HandleCondition(comp);
2110}
2111
2112void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
2113  HandleCondition(comp);
2114}
2115
2116void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2117  HandleCondition(comp);
2118}
2119
2120void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
2121  HandleCondition(comp);
2122}
2123
2124void LocationsBuilderARM::VisitBelow(HBelow* comp) {
2125  HandleCondition(comp);
2126}
2127
2128void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
2129  HandleCondition(comp);
2130}
2131
2132void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
2133  HandleCondition(comp);
2134}
2135
2136void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
2137  HandleCondition(comp);
2138}
2139
2140void LocationsBuilderARM::VisitAbove(HAbove* comp) {
2141  HandleCondition(comp);
2142}
2143
2144void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
2145  HandleCondition(comp);
2146}
2147
2148void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
2149  HandleCondition(comp);
2150}
2151
2152void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
2153  HandleCondition(comp);
2154}
2155
2156void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
2157  LocationSummary* locations =
2158      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2159  locations->SetOut(Location::ConstantLocation(constant));
2160}
2161
2162void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
2163  // Will be generated at use site.
2164}
2165
2166void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
2167  LocationSummary* locations =
2168      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2169  locations->SetOut(Location::ConstantLocation(constant));
2170}
2171
2172void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
2173  // Will be generated at use site.
2174}
2175
2176void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
2177  LocationSummary* locations =
2178      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2179  locations->SetOut(Location::ConstantLocation(constant));
2180}
2181
2182void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
2183  // Will be generated at use site.
2184}
2185
2186void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
2187  LocationSummary* locations =
2188      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2189  locations->SetOut(Location::ConstantLocation(constant));
2190}
2191
2192void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2193  // Will be generated at use site.
2194}
2195
2196void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
2197  LocationSummary* locations =
2198      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2199  locations->SetOut(Location::ConstantLocation(constant));
2200}
2201
2202void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2203  // Will be generated at use site.
2204}
2205
2206void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2207  memory_barrier->SetLocations(nullptr);
2208}
2209
2210void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2211  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
2212}
2213
2214void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
2215  ret->SetLocations(nullptr);
2216}
2217
2218void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
2219  codegen_->GenerateFrameExit();
2220}
2221
2222void LocationsBuilderARM::VisitReturn(HReturn* ret) {
2223  LocationSummary* locations =
2224      new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
2225  locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
2226}
2227
2228void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
2229  codegen_->GenerateFrameExit();
2230}
2231
2232void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2233  // The trampoline uses the same calling convention as dex calling conventions,
2234  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
2235  // the method_idx.
2236  HandleInvoke(invoke);
2237}
2238
2239void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2240  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
2241}
2242
2243void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2244  // Explicit clinit checks triggered by static invokes must have been pruned by
2245  // art::PrepareForRegisterAllocation.
2246  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2247
2248  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2249  if (intrinsic.TryDispatch(invoke)) {
2250    if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
2251      invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
2252    }
2253    return;
2254  }
2255
2256  HandleInvoke(invoke);
2257
2258  // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
2259  if (invoke->HasPcRelativeDexCache()) {
2260    invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2261  }
2262}
2263
2264static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
2265  if (invoke->GetLocations()->Intrinsified()) {
2266    IntrinsicCodeGeneratorARM intrinsic(codegen);
2267    intrinsic.Dispatch(invoke);
2268    return true;
2269  }
2270  return false;
2271}
2272
2273void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2274  // Explicit clinit checks triggered by static invokes must have been pruned by
2275  // art::PrepareForRegisterAllocation.
2276  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2277
2278  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2279    return;
2280  }
2281
2282  LocationSummary* locations = invoke->GetLocations();
2283  codegen_->GenerateStaticOrDirectCall(
2284      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
2285  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2286}
2287
2288void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
2289  InvokeDexCallingConventionVisitorARM calling_convention_visitor;
2290  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2291}
2292
2293void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2294  IntrinsicLocationsBuilderARM intrinsic(codegen_);
2295  if (intrinsic.TryDispatch(invoke)) {
2296    return;
2297  }
2298
2299  HandleInvoke(invoke);
2300}
2301
2302void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2303  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2304    return;
2305  }
2306
2307  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
2308  DCHECK(!codegen_->IsLeafMethod());
2309  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2310}
2311
2312void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2313  HandleInvoke(invoke);
2314  // Add the hidden argument.
2315  invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
2316}
2317
2318void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
2319  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2320  LocationSummary* locations = invoke->GetLocations();
2321  Register temp = locations->GetTemp(0).AsRegister<Register>();
2322  Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
2323  Location receiver = locations->InAt(0);
2324  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2325
2326  // Set the hidden argument. This is safe to do this here, as R12
2327  // won't be modified thereafter, before the `blx` (call) instruction.
2328  DCHECK_EQ(R12, hidden_reg);
2329  __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());
2330
2331  if (receiver.IsStackSlot()) {
2332    __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
2333    // /* HeapReference<Class> */ temp = temp->klass_
2334    __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
2335  } else {
2336    // /* HeapReference<Class> */ temp = receiver->klass_
2337    __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
2338  }
2339  codegen_->MaybeRecordImplicitNullCheck(invoke);
2340  // Instead of simply (possibly) unpoisoning `temp` here, we should
2341  // emit a read barrier for the previous class reference load.
2342  // However this is not required in practice, as this is an
2343  // intermediate/temporary reference and because the current
2344  // concurrent copying collector keeps the from-space memory
2345  // intact/accessible until the end of the marking phase (the
2346  // concurrent copying collector may not in the future).
2347  __ MaybeUnpoisonHeapReference(temp);
2348  __ LoadFromOffset(kLoadWord, temp, temp,
2349        mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
2350  uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2351      invoke->GetImtIndex(), kArmPointerSize));
2352  // temp = temp->GetImtEntryAt(method_offset);
2353  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
2354  uint32_t entry_point =
2355      ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
2356  // LR = temp->GetEntryPoint();
2357  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
2358  // LR();
2359  __ blx(LR);
2360  DCHECK(!codegen_->IsLeafMethod());
2361  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2362}
2363
2364void LocationsBuilderARM::VisitNeg(HNeg* neg) {
2365  LocationSummary* locations =
2366      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2367  switch (neg->GetResultType()) {
2368    case Primitive::kPrimInt: {
2369      locations->SetInAt(0, Location::RequiresRegister());
2370      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2371      break;
2372    }
2373    case Primitive::kPrimLong: {
2374      locations->SetInAt(0, Location::RequiresRegister());
2375      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2376      break;
2377    }
2378
2379    case Primitive::kPrimFloat:
2380    case Primitive::kPrimDouble:
2381      locations->SetInAt(0, Location::RequiresFpuRegister());
2382      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2383      break;
2384
2385    default:
2386      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2387  }
2388}
2389
2390void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
2391  LocationSummary* locations = neg->GetLocations();
2392  Location out = locations->Out();
2393  Location in = locations->InAt(0);
2394  switch (neg->GetResultType()) {
2395    case Primitive::kPrimInt:
2396      DCHECK(in.IsRegister());
2397      __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
2398      break;
2399
2400    case Primitive::kPrimLong:
2401      DCHECK(in.IsRegisterPair());
2402      // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
2403      __ rsbs(out.AsRegisterPairLow<Register>(),
2404              in.AsRegisterPairLow<Register>(),
2405              ShifterOperand(0));
2406      // We cannot emit an RSC (Reverse Subtract with Carry)
2407      // instruction here, as it does not exist in the Thumb-2
2408      // instruction set.  We use the following approach
2409      // using SBC and SUB instead.
2410      //
2411      // out.hi = -C
2412      __ sbc(out.AsRegisterPairHigh<Register>(),
2413             out.AsRegisterPairHigh<Register>(),
2414             ShifterOperand(out.AsRegisterPairHigh<Register>()));
2415      // out.hi = out.hi - in.hi
2416      __ sub(out.AsRegisterPairHigh<Register>(),
2417             out.AsRegisterPairHigh<Register>(),
2418             ShifterOperand(in.AsRegisterPairHigh<Register>()));
2419      break;
2420
2421    case Primitive::kPrimFloat:
2422      DCHECK(in.IsFpuRegister());
2423      __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
2424      break;
2425
2426    case Primitive::kPrimDouble:
2427      DCHECK(in.IsFpuRegisterPair());
2428      __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2429               FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2430      break;
2431
2432    default:
2433      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2434  }
2435}
2436
2437void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
2438  Primitive::Type result_type = conversion->GetResultType();
2439  Primitive::Type input_type = conversion->GetInputType();
2440  DCHECK_NE(result_type, input_type);
2441
2442  // The float-to-long, double-to-long and long-to-float type conversions
2443  // rely on a call to the runtime.
2444  LocationSummary::CallKind call_kind =
2445      (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2446        && result_type == Primitive::kPrimLong)
2447       || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
2448      ? LocationSummary::kCallOnMainOnly
2449      : LocationSummary::kNoCall;
2450  LocationSummary* locations =
2451      new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2452
2453  // The Java language does not allow treating boolean as an integral type but
2454  // our bit representation makes it safe.
2455
2456  switch (result_type) {
2457    case Primitive::kPrimByte:
2458      switch (input_type) {
2459        case Primitive::kPrimLong:
2460          // Type conversion from long to byte is a result of code transformations.
2461        case Primitive::kPrimBoolean:
2462          // Boolean input is a result of code transformations.
2463        case Primitive::kPrimShort:
2464        case Primitive::kPrimInt:
2465        case Primitive::kPrimChar:
2466          // Processing a Dex `int-to-byte' instruction.
2467          locations->SetInAt(0, Location::RequiresRegister());
2468          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2469          break;
2470
2471        default:
2472          LOG(FATAL) << "Unexpected type conversion from " << input_type
2473                     << " to " << result_type;
2474      }
2475      break;
2476
2477    case Primitive::kPrimShort:
2478      switch (input_type) {
2479        case Primitive::kPrimLong:
2480          // Type conversion from long to short is a result of code transformations.
2481        case Primitive::kPrimBoolean:
2482          // Boolean input is a result of code transformations.
2483        case Primitive::kPrimByte:
2484        case Primitive::kPrimInt:
2485        case Primitive::kPrimChar:
2486          // Processing a Dex `int-to-short' instruction.
2487          locations->SetInAt(0, Location::RequiresRegister());
2488          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2489          break;
2490
2491        default:
2492          LOG(FATAL) << "Unexpected type conversion from " << input_type
2493                     << " to " << result_type;
2494      }
2495      break;
2496
2497    case Primitive::kPrimInt:
2498      switch (input_type) {
2499        case Primitive::kPrimLong:
2500          // Processing a Dex `long-to-int' instruction.
2501          locations->SetInAt(0, Location::Any());
2502          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2503          break;
2504
2505        case Primitive::kPrimFloat:
2506          // Processing a Dex `float-to-int' instruction.
2507          locations->SetInAt(0, Location::RequiresFpuRegister());
2508          locations->SetOut(Location::RequiresRegister());
2509          locations->AddTemp(Location::RequiresFpuRegister());
2510          break;
2511
2512        case Primitive::kPrimDouble:
2513          // Processing a Dex `double-to-int' instruction.
2514          locations->SetInAt(0, Location::RequiresFpuRegister());
2515          locations->SetOut(Location::RequiresRegister());
2516          locations->AddTemp(Location::RequiresFpuRegister());
2517          break;
2518
2519        default:
2520          LOG(FATAL) << "Unexpected type conversion from " << input_type
2521                     << " to " << result_type;
2522      }
2523      break;
2524
2525    case Primitive::kPrimLong:
2526      switch (input_type) {
2527        case Primitive::kPrimBoolean:
2528          // Boolean input is a result of code transformations.
2529        case Primitive::kPrimByte:
2530        case Primitive::kPrimShort:
2531        case Primitive::kPrimInt:
2532        case Primitive::kPrimChar:
2533          // Processing a Dex `int-to-long' instruction.
2534          locations->SetInAt(0, Location::RequiresRegister());
2535          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2536          break;
2537
2538        case Primitive::kPrimFloat: {
2539          // Processing a Dex `float-to-long' instruction.
2540          InvokeRuntimeCallingConvention calling_convention;
2541          locations->SetInAt(0, Location::FpuRegisterLocation(
2542              calling_convention.GetFpuRegisterAt(0)));
2543          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2544          break;
2545        }
2546
2547        case Primitive::kPrimDouble: {
2548          // Processing a Dex `double-to-long' instruction.
2549          InvokeRuntimeCallingConvention calling_convention;
2550          locations->SetInAt(0, Location::FpuRegisterPairLocation(
2551              calling_convention.GetFpuRegisterAt(0),
2552              calling_convention.GetFpuRegisterAt(1)));
2553          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2554          break;
2555        }
2556
2557        default:
2558          LOG(FATAL) << "Unexpected type conversion from " << input_type
2559                     << " to " << result_type;
2560      }
2561      break;
2562
2563    case Primitive::kPrimChar:
2564      switch (input_type) {
2565        case Primitive::kPrimLong:
2566          // Type conversion from long to char is a result of code transformations.
2567        case Primitive::kPrimBoolean:
2568          // Boolean input is a result of code transformations.
2569        case Primitive::kPrimByte:
2570        case Primitive::kPrimShort:
2571        case Primitive::kPrimInt:
2572          // Processing a Dex `int-to-char' instruction.
2573          locations->SetInAt(0, Location::RequiresRegister());
2574          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2575          break;
2576
2577        default:
2578          LOG(FATAL) << "Unexpected type conversion from " << input_type
2579                     << " to " << result_type;
2580      }
2581      break;
2582
2583    case Primitive::kPrimFloat:
2584      switch (input_type) {
2585        case Primitive::kPrimBoolean:
2586          // Boolean input is a result of code transformations.
2587        case Primitive::kPrimByte:
2588        case Primitive::kPrimShort:
2589        case Primitive::kPrimInt:
2590        case Primitive::kPrimChar:
2591          // Processing a Dex `int-to-float' instruction.
2592          locations->SetInAt(0, Location::RequiresRegister());
2593          locations->SetOut(Location::RequiresFpuRegister());
2594          break;
2595
2596        case Primitive::kPrimLong: {
2597          // Processing a Dex `long-to-float' instruction.
2598          InvokeRuntimeCallingConvention calling_convention;
2599          locations->SetInAt(0, Location::RegisterPairLocation(
2600              calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
2601          locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2602          break;
2603        }
2604
2605        case Primitive::kPrimDouble:
2606          // Processing a Dex `double-to-float' instruction.
2607          locations->SetInAt(0, Location::RequiresFpuRegister());
2608          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2609          break;
2610
2611        default:
2612          LOG(FATAL) << "Unexpected type conversion from " << input_type
2613                     << " to " << result_type;
2614      };
2615      break;
2616
2617    case Primitive::kPrimDouble:
2618      switch (input_type) {
2619        case Primitive::kPrimBoolean:
2620          // Boolean input is a result of code transformations.
2621        case Primitive::kPrimByte:
2622        case Primitive::kPrimShort:
2623        case Primitive::kPrimInt:
2624        case Primitive::kPrimChar:
2625          // Processing a Dex `int-to-double' instruction.
2626          locations->SetInAt(0, Location::RequiresRegister());
2627          locations->SetOut(Location::RequiresFpuRegister());
2628          break;
2629
2630        case Primitive::kPrimLong:
2631          // Processing a Dex `long-to-double' instruction.
2632          locations->SetInAt(0, Location::RequiresRegister());
2633          locations->SetOut(Location::RequiresFpuRegister());
2634          locations->AddTemp(Location::RequiresFpuRegister());
2635          locations->AddTemp(Location::RequiresFpuRegister());
2636          break;
2637
2638        case Primitive::kPrimFloat:
2639          // Processing a Dex `float-to-double' instruction.
2640          locations->SetInAt(0, Location::RequiresFpuRegister());
2641          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2642          break;
2643
2644        default:
2645          LOG(FATAL) << "Unexpected type conversion from " << input_type
2646                     << " to " << result_type;
2647      };
2648      break;
2649
2650    default:
2651      LOG(FATAL) << "Unexpected type conversion from " << input_type
2652                 << " to " << result_type;
2653  }
2654}
2655
2656void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
2657  LocationSummary* locations = conversion->GetLocations();
2658  Location out = locations->Out();
2659  Location in = locations->InAt(0);
2660  Primitive::Type result_type = conversion->GetResultType();
2661  Primitive::Type input_type = conversion->GetInputType();
2662  DCHECK_NE(result_type, input_type);
2663  switch (result_type) {
2664    case Primitive::kPrimByte:
2665      switch (input_type) {
2666        case Primitive::kPrimLong:
2667          // Type conversion from long to byte is a result of code transformations.
2668          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
2669          break;
2670        case Primitive::kPrimBoolean:
2671          // Boolean input is a result of code transformations.
2672        case Primitive::kPrimShort:
2673        case Primitive::kPrimInt:
2674        case Primitive::kPrimChar:
2675          // Processing a Dex `int-to-byte' instruction.
2676          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
2677          break;
2678
2679        default:
2680          LOG(FATAL) << "Unexpected type conversion from " << input_type
2681                     << " to " << result_type;
2682      }
2683      break;
2684
2685    case Primitive::kPrimShort:
2686      switch (input_type) {
2687        case Primitive::kPrimLong:
2688          // Type conversion from long to short is a result of code transformations.
2689          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2690          break;
2691        case Primitive::kPrimBoolean:
2692          // Boolean input is a result of code transformations.
2693        case Primitive::kPrimByte:
2694        case Primitive::kPrimInt:
2695        case Primitive::kPrimChar:
2696          // Processing a Dex `int-to-short' instruction.
2697          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2698          break;
2699
2700        default:
2701          LOG(FATAL) << "Unexpected type conversion from " << input_type
2702                     << " to " << result_type;
2703      }
2704      break;
2705
2706    case Primitive::kPrimInt:
2707      switch (input_type) {
2708        case Primitive::kPrimLong:
2709          // Processing a Dex `long-to-int' instruction.
2710          DCHECK(out.IsRegister());
2711          if (in.IsRegisterPair()) {
2712            __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2713          } else if (in.IsDoubleStackSlot()) {
2714            __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
2715          } else {
2716            DCHECK(in.IsConstant());
2717            DCHECK(in.GetConstant()->IsLongConstant());
2718            int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2719            __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
2720          }
2721          break;
2722
2723        case Primitive::kPrimFloat: {
2724          // Processing a Dex `float-to-int' instruction.
2725          SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2726          __ vcvtis(temp, in.AsFpuRegister<SRegister>());
2727          __ vmovrs(out.AsRegister<Register>(), temp);
2728          break;
2729        }
2730
2731        case Primitive::kPrimDouble: {
2732          // Processing a Dex `double-to-int' instruction.
2733          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2734          __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2735          __ vmovrs(out.AsRegister<Register>(), temp_s);
2736          break;
2737        }
2738
2739        default:
2740          LOG(FATAL) << "Unexpected type conversion from " << input_type
2741                     << " to " << result_type;
2742      }
2743      break;
2744
2745    case Primitive::kPrimLong:
2746      switch (input_type) {
2747        case Primitive::kPrimBoolean:
2748          // Boolean input is a result of code transformations.
2749        case Primitive::kPrimByte:
2750        case Primitive::kPrimShort:
2751        case Primitive::kPrimInt:
2752        case Primitive::kPrimChar:
2753          // Processing a Dex `int-to-long' instruction.
2754          DCHECK(out.IsRegisterPair());
2755          DCHECK(in.IsRegister());
2756          __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
2757          // Sign extension.
2758          __ Asr(out.AsRegisterPairHigh<Register>(),
2759                 out.AsRegisterPairLow<Register>(),
2760                 31);
2761          break;
2762
2763        case Primitive::kPrimFloat:
2764          // Processing a Dex `float-to-long' instruction.
2765          codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
2766          CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2767          break;
2768
2769        case Primitive::kPrimDouble:
2770          // Processing a Dex `double-to-long' instruction.
2771          codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
2772          CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2773          break;
2774
2775        default:
2776          LOG(FATAL) << "Unexpected type conversion from " << input_type
2777                     << " to " << result_type;
2778      }
2779      break;
2780
2781    case Primitive::kPrimChar:
2782      switch (input_type) {
2783        case Primitive::kPrimLong:
2784          // Type conversion from long to char is a result of code transformations.
2785          __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2786          break;
2787        case Primitive::kPrimBoolean:
2788          // Boolean input is a result of code transformations.
2789        case Primitive::kPrimByte:
2790        case Primitive::kPrimShort:
2791        case Primitive::kPrimInt:
2792          // Processing a Dex `int-to-char' instruction.
2793          __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2794          break;
2795
2796        default:
2797          LOG(FATAL) << "Unexpected type conversion from " << input_type
2798                     << " to " << result_type;
2799      }
2800      break;
2801
2802    case Primitive::kPrimFloat:
2803      switch (input_type) {
2804        case Primitive::kPrimBoolean:
2805          // Boolean input is a result of code transformations.
2806        case Primitive::kPrimByte:
2807        case Primitive::kPrimShort:
2808        case Primitive::kPrimInt:
2809        case Primitive::kPrimChar: {
2810          // Processing a Dex `int-to-float' instruction.
2811          __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
2812          __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
2813          break;
2814        }
2815
2816        case Primitive::kPrimLong:
2817          // Processing a Dex `long-to-float' instruction.
2818          codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
2819          CheckEntrypointTypes<kQuickL2f, float, int64_t>();
2820          break;
2821
2822        case Primitive::kPrimDouble:
2823          // Processing a Dex `double-to-float' instruction.
2824          __ vcvtsd(out.AsFpuRegister<SRegister>(),
2825                    FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2826          break;
2827
2828        default:
2829          LOG(FATAL) << "Unexpected type conversion from " << input_type
2830                     << " to " << result_type;
2831      };
2832      break;
2833
2834    case Primitive::kPrimDouble:
2835      switch (input_type) {
2836        case Primitive::kPrimBoolean:
2837          // Boolean input is a result of code transformations.
2838        case Primitive::kPrimByte:
2839        case Primitive::kPrimShort:
2840        case Primitive::kPrimInt:
2841        case Primitive::kPrimChar: {
2842          // Processing a Dex `int-to-double' instruction.
2843          __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
2844          __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2845                    out.AsFpuRegisterPairLow<SRegister>());
2846          break;
2847        }
2848
2849        case Primitive::kPrimLong: {
2850          // Processing a Dex `long-to-double' instruction.
2851          Register low = in.AsRegisterPairLow<Register>();
2852          Register high = in.AsRegisterPairHigh<Register>();
2853          SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
2854          DRegister out_d = FromLowSToD(out_s);
2855          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2856          DRegister temp_d = FromLowSToD(temp_s);
2857          SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
2858          DRegister constant_d = FromLowSToD(constant_s);
2859
2860          // temp_d = int-to-double(high)
2861          __ vmovsr(temp_s, high);
2862          __ vcvtdi(temp_d, temp_s);
2863          // constant_d = k2Pow32EncodingForDouble
2864          __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
2865          // out_d = unsigned-to-double(low)
2866          __ vmovsr(out_s, low);
2867          __ vcvtdu(out_d, out_s);
2868          // out_d += temp_d * constant_d
2869          __ vmlad(out_d, temp_d, constant_d);
2870          break;
2871        }
2872
2873        case Primitive::kPrimFloat:
2874          // Processing a Dex `float-to-double' instruction.
2875          __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2876                    in.AsFpuRegister<SRegister>());
2877          break;
2878
2879        default:
2880          LOG(FATAL) << "Unexpected type conversion from " << input_type
2881                     << " to " << result_type;
2882      };
2883      break;
2884
2885    default:
2886      LOG(FATAL) << "Unexpected type conversion from " << input_type
2887                 << " to " << result_type;
2888  }
2889}
2890
2891void LocationsBuilderARM::VisitAdd(HAdd* add) {
2892  LocationSummary* locations =
2893      new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2894  switch (add->GetResultType()) {
2895    case Primitive::kPrimInt: {
2896      locations->SetInAt(0, Location::RequiresRegister());
2897      locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2898      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2899      break;
2900    }
2901
2902    case Primitive::kPrimLong: {
2903      locations->SetInAt(0, Location::RequiresRegister());
2904      locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
2905      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2906      break;
2907    }
2908
2909    case Primitive::kPrimFloat:
2910    case Primitive::kPrimDouble: {
2911      locations->SetInAt(0, Location::RequiresFpuRegister());
2912      locations->SetInAt(1, Location::RequiresFpuRegister());
2913      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2914      break;
2915    }
2916
2917    default:
2918      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2919  }
2920}
2921
2922void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
2923  LocationSummary* locations = add->GetLocations();
2924  Location out = locations->Out();
2925  Location first = locations->InAt(0);
2926  Location second = locations->InAt(1);
2927  switch (add->GetResultType()) {
2928    case Primitive::kPrimInt:
2929      if (second.IsRegister()) {
2930        __ add(out.AsRegister<Register>(),
2931               first.AsRegister<Register>(),
2932               ShifterOperand(second.AsRegister<Register>()));
2933      } else {
2934        __ AddConstant(out.AsRegister<Register>(),
2935                       first.AsRegister<Register>(),
2936                       second.GetConstant()->AsIntConstant()->GetValue());
2937      }
2938      break;
2939
2940    case Primitive::kPrimLong: {
2941      if (second.IsConstant()) {
2942        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
2943        GenerateAddLongConst(out, first, value);
2944      } else {
2945        DCHECK(second.IsRegisterPair());
2946        __ adds(out.AsRegisterPairLow<Register>(),
2947                first.AsRegisterPairLow<Register>(),
2948                ShifterOperand(second.AsRegisterPairLow<Register>()));
2949        __ adc(out.AsRegisterPairHigh<Register>(),
2950               first.AsRegisterPairHigh<Register>(),
2951               ShifterOperand(second.AsRegisterPairHigh<Register>()));
2952      }
2953      break;
2954    }
2955
2956    case Primitive::kPrimFloat:
2957      __ vadds(out.AsFpuRegister<SRegister>(),
2958               first.AsFpuRegister<SRegister>(),
2959               second.AsFpuRegister<SRegister>());
2960      break;
2961
2962    case Primitive::kPrimDouble:
2963      __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2964               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2965               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2966      break;
2967
2968    default:
2969      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2970  }
2971}
2972
2973void LocationsBuilderARM::VisitSub(HSub* sub) {
2974  LocationSummary* locations =
2975      new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2976  switch (sub->GetResultType()) {
2977    case Primitive::kPrimInt: {
2978      locations->SetInAt(0, Location::RequiresRegister());
2979      locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
2980      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2981      break;
2982    }
2983
2984    case Primitive::kPrimLong: {
2985      locations->SetInAt(0, Location::RequiresRegister());
2986      locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
2987      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2988      break;
2989    }
2990    case Primitive::kPrimFloat:
2991    case Primitive::kPrimDouble: {
2992      locations->SetInAt(0, Location::RequiresFpuRegister());
2993      locations->SetInAt(1, Location::RequiresFpuRegister());
2994      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2995      break;
2996    }
2997    default:
2998      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2999  }
3000}
3001
3002void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
3003  LocationSummary* locations = sub->GetLocations();
3004  Location out = locations->Out();
3005  Location first = locations->InAt(0);
3006  Location second = locations->InAt(1);
3007  switch (sub->GetResultType()) {
3008    case Primitive::kPrimInt: {
3009      if (second.IsRegister()) {
3010        __ sub(out.AsRegister<Register>(),
3011               first.AsRegister<Register>(),
3012               ShifterOperand(second.AsRegister<Register>()));
3013      } else {
3014        __ AddConstant(out.AsRegister<Register>(),
3015                       first.AsRegister<Register>(),
3016                       -second.GetConstant()->AsIntConstant()->GetValue());
3017      }
3018      break;
3019    }
3020
3021    case Primitive::kPrimLong: {
3022      if (second.IsConstant()) {
3023        uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
3024        GenerateAddLongConst(out, first, -value);
3025      } else {
3026        DCHECK(second.IsRegisterPair());
3027        __ subs(out.AsRegisterPairLow<Register>(),
3028                first.AsRegisterPairLow<Register>(),
3029                ShifterOperand(second.AsRegisterPairLow<Register>()));
3030        __ sbc(out.AsRegisterPairHigh<Register>(),
3031               first.AsRegisterPairHigh<Register>(),
3032               ShifterOperand(second.AsRegisterPairHigh<Register>()));
3033      }
3034      break;
3035    }
3036
3037    case Primitive::kPrimFloat: {
3038      __ vsubs(out.AsFpuRegister<SRegister>(),
3039               first.AsFpuRegister<SRegister>(),
3040               second.AsFpuRegister<SRegister>());
3041      break;
3042    }
3043
3044    case Primitive::kPrimDouble: {
3045      __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3046               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3047               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3048      break;
3049    }
3050
3051
3052    default:
3053      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3054  }
3055}
3056
3057void LocationsBuilderARM::VisitMul(HMul* mul) {
3058  LocationSummary* locations =
3059      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3060  switch (mul->GetResultType()) {
3061    case Primitive::kPrimInt:
3062    case Primitive::kPrimLong:  {
3063      locations->SetInAt(0, Location::RequiresRegister());
3064      locations->SetInAt(1, Location::RequiresRegister());
3065      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3066      break;
3067    }
3068
3069    case Primitive::kPrimFloat:
3070    case Primitive::kPrimDouble: {
3071      locations->SetInAt(0, Location::RequiresFpuRegister());
3072      locations->SetInAt(1, Location::RequiresFpuRegister());
3073      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3074      break;
3075    }
3076
3077    default:
3078      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3079  }
3080}
3081
3082void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
3083  LocationSummary* locations = mul->GetLocations();
3084  Location out = locations->Out();
3085  Location first = locations->InAt(0);
3086  Location second = locations->InAt(1);
3087  switch (mul->GetResultType()) {
3088    case Primitive::kPrimInt: {
3089      __ mul(out.AsRegister<Register>(),
3090             first.AsRegister<Register>(),
3091             second.AsRegister<Register>());
3092      break;
3093    }
3094    case Primitive::kPrimLong: {
3095      Register out_hi = out.AsRegisterPairHigh<Register>();
3096      Register out_lo = out.AsRegisterPairLow<Register>();
3097      Register in1_hi = first.AsRegisterPairHigh<Register>();
3098      Register in1_lo = first.AsRegisterPairLow<Register>();
3099      Register in2_hi = second.AsRegisterPairHigh<Register>();
3100      Register in2_lo = second.AsRegisterPairLow<Register>();
3101
3102      // Extra checks to protect caused by the existence of R1_R2.
3103      // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
3104      // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
3105      DCHECK_NE(out_hi, in1_lo);
3106      DCHECK_NE(out_hi, in2_lo);
3107
3108      // input: in1 - 64 bits, in2 - 64 bits
3109      // output: out
3110      // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3111      // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3112      // parts: out.lo = (in1.lo * in2.lo)[31:0]
3113
3114      // IP <- in1.lo * in2.hi
3115      __ mul(IP, in1_lo, in2_hi);
3116      // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3117      __ mla(out_hi, in1_hi, in2_lo, IP);
3118      // out.lo <- (in1.lo * in2.lo)[31:0];
3119      __ umull(out_lo, IP, in1_lo, in2_lo);
3120      // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3121      __ add(out_hi, out_hi, ShifterOperand(IP));
3122      break;
3123    }
3124
3125    case Primitive::kPrimFloat: {
3126      __ vmuls(out.AsFpuRegister<SRegister>(),
3127               first.AsFpuRegister<SRegister>(),
3128               second.AsFpuRegister<SRegister>());
3129      break;
3130    }
3131
3132    case Primitive::kPrimDouble: {
3133      __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3134               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3135               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3136      break;
3137    }
3138
3139    default:
3140      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3141  }
3142}
3143
3144void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3145  DCHECK(instruction->IsDiv() || instruction->IsRem());
3146  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3147
3148  LocationSummary* locations = instruction->GetLocations();
3149  Location second = locations->InAt(1);
3150  DCHECK(second.IsConstant());
3151
3152  Register out = locations->Out().AsRegister<Register>();
3153  Register dividend = locations->InAt(0).AsRegister<Register>();
3154  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3155  DCHECK(imm == 1 || imm == -1);
3156
3157  if (instruction->IsRem()) {
3158    __ LoadImmediate(out, 0);
3159  } else {
3160    if (imm == 1) {
3161      __ Mov(out, dividend);
3162    } else {
3163      __ rsb(out, dividend, ShifterOperand(0));
3164    }
3165  }
3166}
3167
3168void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
3169  DCHECK(instruction->IsDiv() || instruction->IsRem());
3170  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3171
3172  LocationSummary* locations = instruction->GetLocations();
3173  Location second = locations->InAt(1);
3174  DCHECK(second.IsConstant());
3175
3176  Register out = locations->Out().AsRegister<Register>();
3177  Register dividend = locations->InAt(0).AsRegister<Register>();
3178  Register temp = locations->GetTemp(0).AsRegister<Register>();
3179  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3180  uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3181  int ctz_imm = CTZ(abs_imm);
3182
3183  if (ctz_imm == 1) {
3184    __ Lsr(temp, dividend, 32 - ctz_imm);
3185  } else {
3186    __ Asr(temp, dividend, 31);
3187    __ Lsr(temp, temp, 32 - ctz_imm);
3188  }
3189  __ add(out, temp, ShifterOperand(dividend));
3190
3191  if (instruction->IsDiv()) {
3192    __ Asr(out, out, ctz_imm);
3193    if (imm < 0) {
3194      __ rsb(out, out, ShifterOperand(0));
3195    }
3196  } else {
3197    __ ubfx(out, out, 0, ctz_imm);
3198    __ sub(out, out, ShifterOperand(temp));
3199  }
3200}
3201
3202void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3203  DCHECK(instruction->IsDiv() || instruction->IsRem());
3204  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3205
3206  LocationSummary* locations = instruction->GetLocations();
3207  Location second = locations->InAt(1);
3208  DCHECK(second.IsConstant());
3209
3210  Register out = locations->Out().AsRegister<Register>();
3211  Register dividend = locations->InAt(0).AsRegister<Register>();
3212  Register temp1 = locations->GetTemp(0).AsRegister<Register>();
3213  Register temp2 = locations->GetTemp(1).AsRegister<Register>();
3214  int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3215
3216  int64_t magic;
3217  int shift;
3218  CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3219
3220  __ LoadImmediate(temp1, magic);
3221  __ smull(temp2, temp1, dividend, temp1);
3222
3223  if (imm > 0 && magic < 0) {
3224    __ add(temp1, temp1, ShifterOperand(dividend));
3225  } else if (imm < 0 && magic > 0) {
3226    __ sub(temp1, temp1, ShifterOperand(dividend));
3227  }
3228
3229  if (shift != 0) {
3230    __ Asr(temp1, temp1, shift);
3231  }
3232
3233  if (instruction->IsDiv()) {
3234    __ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
3235  } else {
3236    __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
3237    // TODO: Strength reduction for mls.
3238    __ LoadImmediate(temp2, imm);
3239    __ mls(out, temp1, temp2, dividend);
3240  }
3241}
3242
3243void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
3244  DCHECK(instruction->IsDiv() || instruction->IsRem());
3245  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
3246
3247  LocationSummary* locations = instruction->GetLocations();
3248  Location second = locations->InAt(1);
3249  DCHECK(second.IsConstant());
3250
3251  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3252  if (imm == 0) {
3253    // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3254  } else if (imm == 1 || imm == -1) {
3255    DivRemOneOrMinusOne(instruction);
3256  } else if (IsPowerOfTwo(AbsOrMin(imm))) {
3257    DivRemByPowerOfTwo(instruction);
3258  } else {
3259    DCHECK(imm <= -2 || imm >= 2);
3260    GenerateDivRemWithAnyConstant(instruction);
3261  }
3262}
3263
3264void LocationsBuilderARM::VisitDiv(HDiv* div) {
3265  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3266  if (div->GetResultType() == Primitive::kPrimLong) {
3267    // pLdiv runtime call.
3268    call_kind = LocationSummary::kCallOnMainOnly;
3269  } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
3270    // sdiv will be replaced by other instruction sequence.
3271  } else if (div->GetResultType() == Primitive::kPrimInt &&
3272             !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3273    // pIdivmod runtime call.
3274    call_kind = LocationSummary::kCallOnMainOnly;
3275  }
3276
3277  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3278
3279  switch (div->GetResultType()) {
3280    case Primitive::kPrimInt: {
3281      if (div->InputAt(1)->IsConstant()) {
3282        locations->SetInAt(0, Location::RequiresRegister());
3283        locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
3284        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3285        int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
3286        if (value == 1 || value == 0 || value == -1) {
3287          // No temp register required.
3288        } else {
3289          locations->AddTemp(Location::RequiresRegister());
3290          if (!IsPowerOfTwo(AbsOrMin(value))) {
3291            locations->AddTemp(Location::RequiresRegister());
3292          }
3293        }
3294      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3295        locations->SetInAt(0, Location::RequiresRegister());
3296        locations->SetInAt(1, Location::RequiresRegister());
3297        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3298      } else {
3299        InvokeRuntimeCallingConvention calling_convention;
3300        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3301        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3302        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3303        //       we only need the former.
3304        locations->SetOut(Location::RegisterLocation(R0));
3305      }
3306      break;
3307    }
3308    case Primitive::kPrimLong: {
3309      InvokeRuntimeCallingConvention calling_convention;
3310      locations->SetInAt(0, Location::RegisterPairLocation(
3311          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3312      locations->SetInAt(1, Location::RegisterPairLocation(
3313          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3314      locations->SetOut(Location::RegisterPairLocation(R0, R1));
3315      break;
3316    }
3317    case Primitive::kPrimFloat:
3318    case Primitive::kPrimDouble: {
3319      locations->SetInAt(0, Location::RequiresFpuRegister());
3320      locations->SetInAt(1, Location::RequiresFpuRegister());
3321      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3322      break;
3323    }
3324
3325    default:
3326      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3327  }
3328}
3329
3330void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
3331  LocationSummary* locations = div->GetLocations();
3332  Location out = locations->Out();
3333  Location first = locations->InAt(0);
3334  Location second = locations->InAt(1);
3335
3336  switch (div->GetResultType()) {
3337    case Primitive::kPrimInt: {
3338      if (second.IsConstant()) {
3339        GenerateDivRemConstantIntegral(div);
3340      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3341        __ sdiv(out.AsRegister<Register>(),
3342                first.AsRegister<Register>(),
3343                second.AsRegister<Register>());
3344      } else {
3345        InvokeRuntimeCallingConvention calling_convention;
3346        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3347        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3348        DCHECK_EQ(R0, out.AsRegister<Register>());
3349
3350        codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
3351        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3352      }
3353      break;
3354    }
3355
3356    case Primitive::kPrimLong: {
3357      InvokeRuntimeCallingConvention calling_convention;
3358      DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3359      DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3360      DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3361      DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3362      DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
3363      DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
3364
3365      codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
3366      CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3367      break;
3368    }
3369
3370    case Primitive::kPrimFloat: {
3371      __ vdivs(out.AsFpuRegister<SRegister>(),
3372               first.AsFpuRegister<SRegister>(),
3373               second.AsFpuRegister<SRegister>());
3374      break;
3375    }
3376
3377    case Primitive::kPrimDouble: {
3378      __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
3379               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
3380               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
3381      break;
3382    }
3383
3384    default:
3385      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3386  }
3387}
3388
3389void LocationsBuilderARM::VisitRem(HRem* rem) {
3390  Primitive::Type type = rem->GetResultType();
3391
3392  // Most remainders are implemented in the runtime.
3393  LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
3394  if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
3395    // sdiv will be replaced by other instruction sequence.
3396    call_kind = LocationSummary::kNoCall;
3397  } else if ((rem->GetResultType() == Primitive::kPrimInt)
3398             && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3399    // Have hardware divide instruction for int, do it with three instructions.
3400    call_kind = LocationSummary::kNoCall;
3401  }
3402
3403  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3404
3405  switch (type) {
3406    case Primitive::kPrimInt: {
3407      if (rem->InputAt(1)->IsConstant()) {
3408        locations->SetInAt(0, Location::RequiresRegister());
3409        locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
3410        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3411        int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
3412        if (value == 1 || value == 0 || value == -1) {
3413          // No temp register required.
3414        } else {
3415          locations->AddTemp(Location::RequiresRegister());
3416          if (!IsPowerOfTwo(AbsOrMin(value))) {
3417            locations->AddTemp(Location::RequiresRegister());
3418          }
3419        }
3420      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3421        locations->SetInAt(0, Location::RequiresRegister());
3422        locations->SetInAt(1, Location::RequiresRegister());
3423        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3424        locations->AddTemp(Location::RequiresRegister());
3425      } else {
3426        InvokeRuntimeCallingConvention calling_convention;
3427        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3428        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3429        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
3430        //       we only need the latter.
3431        locations->SetOut(Location::RegisterLocation(R1));
3432      }
3433      break;
3434    }
3435    case Primitive::kPrimLong: {
3436      InvokeRuntimeCallingConvention calling_convention;
3437      locations->SetInAt(0, Location::RegisterPairLocation(
3438          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3439      locations->SetInAt(1, Location::RegisterPairLocation(
3440          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3441      // The runtime helper puts the output in R2,R3.
3442      locations->SetOut(Location::RegisterPairLocation(R2, R3));
3443      break;
3444    }
3445    case Primitive::kPrimFloat: {
3446      InvokeRuntimeCallingConvention calling_convention;
3447      locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
3448      locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
3449      locations->SetOut(Location::FpuRegisterLocation(S0));
3450      break;
3451    }
3452
3453    case Primitive::kPrimDouble: {
3454      InvokeRuntimeCallingConvention calling_convention;
3455      locations->SetInAt(0, Location::FpuRegisterPairLocation(
3456          calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
3457      locations->SetInAt(1, Location::FpuRegisterPairLocation(
3458          calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
3459      locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
3460      break;
3461    }
3462
3463    default:
3464      LOG(FATAL) << "Unexpected rem type " << type;
3465  }
3466}
3467
3468void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
3469  LocationSummary* locations = rem->GetLocations();
3470  Location out = locations->Out();
3471  Location first = locations->InAt(0);
3472  Location second = locations->InAt(1);
3473
3474  Primitive::Type type = rem->GetResultType();
3475  switch (type) {
3476    case Primitive::kPrimInt: {
3477        if (second.IsConstant()) {
3478          GenerateDivRemConstantIntegral(rem);
3479        } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3480        Register reg1 = first.AsRegister<Register>();
3481        Register reg2 = second.AsRegister<Register>();
3482        Register temp = locations->GetTemp(0).AsRegister<Register>();
3483
3484        // temp = reg1 / reg2  (integer division)
3485        // dest = reg1 - temp * reg2
3486        __ sdiv(temp, reg1, reg2);
3487        __ mls(out.AsRegister<Register>(), temp, reg2, reg1);
3488      } else {
3489        InvokeRuntimeCallingConvention calling_convention;
3490        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3491        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3492        DCHECK_EQ(R1, out.AsRegister<Register>());
3493
3494        codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
3495        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3496      }
3497      break;
3498    }
3499
3500    case Primitive::kPrimLong: {
3501      codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
3502        CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3503      break;
3504    }
3505
3506    case Primitive::kPrimFloat: {
3507      codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
3508      CheckEntrypointTypes<kQuickFmodf, float, float, float>();
3509      break;
3510    }
3511
3512    case Primitive::kPrimDouble: {
3513      codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
3514      CheckEntrypointTypes<kQuickFmod, double, double, double>();
3515      break;
3516    }
3517
3518    default:
3519      LOG(FATAL) << "Unexpected rem type " << type;
3520  }
3521}
3522
3523void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3524  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3525  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3526}
3527
3528void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3529  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
3530  codegen_->AddSlowPath(slow_path);
3531
3532  LocationSummary* locations = instruction->GetLocations();
3533  Location value = locations->InAt(0);
3534
3535  switch (instruction->GetType()) {
3536    case Primitive::kPrimBoolean:
3537    case Primitive::kPrimByte:
3538    case Primitive::kPrimChar:
3539    case Primitive::kPrimShort:
3540    case Primitive::kPrimInt: {
3541      if (value.IsRegister()) {
3542        __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
3543      } else {
3544        DCHECK(value.IsConstant()) << value;
3545        if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3546          __ b(slow_path->GetEntryLabel());
3547        }
3548      }
3549      break;
3550    }
3551    case Primitive::kPrimLong: {
3552      if (value.IsRegisterPair()) {
3553        __ orrs(IP,
3554                value.AsRegisterPairLow<Register>(),
3555                ShifterOperand(value.AsRegisterPairHigh<Register>()));
3556        __ b(slow_path->GetEntryLabel(), EQ);
3557      } else {
3558        DCHECK(value.IsConstant()) << value;
3559        if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3560          __ b(slow_path->GetEntryLabel());
3561        }
3562      }
3563      break;
3564    default:
3565      LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3566    }
3567  }
3568}
3569
3570void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
3571  Register in = locations->InAt(0).AsRegister<Register>();
3572  Location rhs = locations->InAt(1);
3573  Register out = locations->Out().AsRegister<Register>();
3574
3575  if (rhs.IsConstant()) {
3576    // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
3577    // so map all rotations to a +ve. equivalent in that range.
3578    // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
3579    uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
3580    if (rot) {
3581      // Rotate, mapping left rotations to right equivalents if necessary.
3582      // (e.g. left by 2 bits == right by 30.)
3583      __ Ror(out, in, rot);
3584    } else if (out != in) {
3585      __ Mov(out, in);
3586    }
3587  } else {
3588    __ Ror(out, in, rhs.AsRegister<Register>());
3589  }
3590}
3591
3592// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
3593// rotates by swapping input regs (effectively rotating by the first 32-bits of
3594// a larger rotation) or flipping direction (thus treating larger right/left
3595// rotations as sub-word sized rotations in the other direction) as appropriate.
3596void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) {
3597  Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
3598  Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
3599  Location rhs = locations->InAt(1);
3600  Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
3601  Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
3602
3603  if (rhs.IsConstant()) {
3604    uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
3605    // Map all rotations to +ve. equivalents on the interval [0,63].
3606    rot &= kMaxLongShiftDistance;
3607    // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
3608    // logic below to a simple pair of binary orr.
3609    // (e.g. 34 bits == in_reg swap + 2 bits right.)
3610    if (rot >= kArmBitsPerWord) {
3611      rot -= kArmBitsPerWord;
3612      std::swap(in_reg_hi, in_reg_lo);
3613    }
3614    // Rotate, or mov to out for zero or word size rotations.
3615    if (rot != 0u) {
3616      __ Lsr(out_reg_hi, in_reg_hi, rot);
3617      __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
3618      __ Lsr(out_reg_lo, in_reg_lo, rot);
3619      __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
3620    } else {
3621      __ Mov(out_reg_lo, in_reg_lo);
3622      __ Mov(out_reg_hi, in_reg_hi);
3623    }
3624  } else {
3625    Register shift_right = locations->GetTemp(0).AsRegister<Register>();
3626    Register shift_left = locations->GetTemp(1).AsRegister<Register>();
3627    Label end;
3628    Label shift_by_32_plus_shift_right;
3629
3630    __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
3631    __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
3632    __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
3633    __ b(&shift_by_32_plus_shift_right, CC);
3634
3635    // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
3636    // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
3637    __ Lsl(out_reg_hi, in_reg_hi, shift_left);
3638    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3639    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3640    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3641    __ Lsr(shift_left, in_reg_hi, shift_right);
3642    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
3643    __ b(&end);
3644
3645    __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
3646    // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
3647    // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
3648    __ Lsr(out_reg_hi, in_reg_hi, shift_right);
3649    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3650    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3651    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3652    __ Lsl(shift_right, in_reg_hi, shift_left);
3653    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));
3654
3655    __ Bind(&end);
3656  }
3657}
3658
3659void LocationsBuilderARM::VisitRor(HRor* ror) {
3660  LocationSummary* locations =
3661      new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3662  switch (ror->GetResultType()) {
3663    case Primitive::kPrimInt: {
3664      locations->SetInAt(0, Location::RequiresRegister());
3665      locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
3666      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3667      break;
3668    }
3669    case Primitive::kPrimLong: {
3670      locations->SetInAt(0, Location::RequiresRegister());
3671      if (ror->InputAt(1)->IsConstant()) {
3672        locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
3673      } else {
3674        locations->SetInAt(1, Location::RequiresRegister());
3675        locations->AddTemp(Location::RequiresRegister());
3676        locations->AddTemp(Location::RequiresRegister());
3677      }
3678      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3679      break;
3680    }
3681    default:
3682      LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3683  }
3684}
3685
3686void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
3687  LocationSummary* locations = ror->GetLocations();
3688  Primitive::Type type = ror->GetResultType();
3689  switch (type) {
3690    case Primitive::kPrimInt: {
3691      HandleIntegerRotate(locations);
3692      break;
3693    }
3694    case Primitive::kPrimLong: {
3695      HandleLongRotate(locations);
3696      break;
3697    }
3698    default:
3699      LOG(FATAL) << "Unexpected operation type " << type;
3700      UNREACHABLE();
3701  }
3702}
3703
3704void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
3705  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3706
3707  LocationSummary* locations =
3708      new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3709
3710  switch (op->GetResultType()) {
3711    case Primitive::kPrimInt: {
3712      locations->SetInAt(0, Location::RequiresRegister());
3713      if (op->InputAt(1)->IsConstant()) {
3714        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3715        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3716      } else {
3717        locations->SetInAt(1, Location::RequiresRegister());
3718        // Make the output overlap, as it will be used to hold the masked
3719        // second input.
3720        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3721      }
3722      break;
3723    }
3724    case Primitive::kPrimLong: {
3725      locations->SetInAt(0, Location::RequiresRegister());
3726      if (op->InputAt(1)->IsConstant()) {
3727        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3728        // For simplicity, use kOutputOverlap even though we only require that low registers
3729        // don't clash with high registers which the register allocator currently guarantees.
3730        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3731      } else {
3732        locations->SetInAt(1, Location::RequiresRegister());
3733        locations->AddTemp(Location::RequiresRegister());
3734        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3735      }
3736      break;
3737    }
3738    default:
3739      LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
3740  }
3741}
3742
3743void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
3744  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3745
3746  LocationSummary* locations = op->GetLocations();
3747  Location out = locations->Out();
3748  Location first = locations->InAt(0);
3749  Location second = locations->InAt(1);
3750
3751  Primitive::Type type = op->GetResultType();
3752  switch (type) {
3753    case Primitive::kPrimInt: {
3754      Register out_reg = out.AsRegister<Register>();
3755      Register first_reg = first.AsRegister<Register>();
3756      if (second.IsRegister()) {
3757        Register second_reg = second.AsRegister<Register>();
3758        // ARM doesn't mask the shift count so we need to do it ourselves.
3759        __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
3760        if (op->IsShl()) {
3761          __ Lsl(out_reg, first_reg, out_reg);
3762        } else if (op->IsShr()) {
3763          __ Asr(out_reg, first_reg, out_reg);
3764        } else {
3765          __ Lsr(out_reg, first_reg, out_reg);
3766        }
3767      } else {
3768        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3769        uint32_t shift_value = cst & kMaxIntShiftDistance;
3770        if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
3771          __ Mov(out_reg, first_reg);
3772        } else if (op->IsShl()) {
3773          __ Lsl(out_reg, first_reg, shift_value);
3774        } else if (op->IsShr()) {
3775          __ Asr(out_reg, first_reg, shift_value);
3776        } else {
3777          __ Lsr(out_reg, first_reg, shift_value);
3778        }
3779      }
3780      break;
3781    }
3782    case Primitive::kPrimLong: {
3783      Register o_h = out.AsRegisterPairHigh<Register>();
3784      Register o_l = out.AsRegisterPairLow<Register>();
3785
3786      Register high = first.AsRegisterPairHigh<Register>();
3787      Register low = first.AsRegisterPairLow<Register>();
3788
3789      if (second.IsRegister()) {
3790        Register temp = locations->GetTemp(0).AsRegister<Register>();
3791
3792        Register second_reg = second.AsRegister<Register>();
3793
3794        if (op->IsShl()) {
3795          __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
3796          // Shift the high part
3797          __ Lsl(o_h, high, o_l);
3798          // Shift the low part and `or` what overflew on the high part
3799          __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
3800          __ Lsr(temp, low, temp);
3801          __ orr(o_h, o_h, ShifterOperand(temp));
3802          // If the shift is > 32 bits, override the high part
3803          __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
3804          __ it(PL);
3805          __ Lsl(o_h, low, temp, PL);
3806          // Shift the low part
3807          __ Lsl(o_l, low, o_l);
3808        } else if (op->IsShr()) {
3809          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3810          // Shift the low part
3811          __ Lsr(o_l, low, o_h);
3812          // Shift the high part and `or` what underflew on the low part
3813          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3814          __ Lsl(temp, high, temp);
3815          __ orr(o_l, o_l, ShifterOperand(temp));
3816          // If the shift is > 32 bits, override the low part
3817          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3818          __ it(PL);
3819          __ Asr(o_l, high, temp, PL);
3820          // Shift the high part
3821          __ Asr(o_h, high, o_h);
3822        } else {
3823          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3824          // same as Shr except we use `Lsr`s and not `Asr`s
3825          __ Lsr(o_l, low, o_h);
3826          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3827          __ Lsl(temp, high, temp);
3828          __ orr(o_l, o_l, ShifterOperand(temp));
3829          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3830          __ it(PL);
3831          __ Lsr(o_l, high, temp, PL);
3832          __ Lsr(o_h, high, o_h);
3833        }
3834      } else {
3835        // Register allocator doesn't create partial overlap.
3836        DCHECK_NE(o_l, high);
3837        DCHECK_NE(o_h, low);
3838        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3839        uint32_t shift_value = cst & kMaxLongShiftDistance;
3840        if (shift_value > 32) {
3841          if (op->IsShl()) {
3842            __ Lsl(o_h, low, shift_value - 32);
3843            __ LoadImmediate(o_l, 0);
3844          } else if (op->IsShr()) {
3845            __ Asr(o_l, high, shift_value - 32);
3846            __ Asr(o_h, high, 31);
3847          } else {
3848            __ Lsr(o_l, high, shift_value - 32);
3849            __ LoadImmediate(o_h, 0);
3850          }
3851        } else if (shift_value == 32) {
3852          if (op->IsShl()) {
3853            __ mov(o_h, ShifterOperand(low));
3854            __ LoadImmediate(o_l, 0);
3855          } else if (op->IsShr()) {
3856            __ mov(o_l, ShifterOperand(high));
3857            __ Asr(o_h, high, 31);
3858          } else {
3859            __ mov(o_l, ShifterOperand(high));
3860            __ LoadImmediate(o_h, 0);
3861          }
3862        } else if (shift_value == 1) {
3863          if (op->IsShl()) {
3864            __ Lsls(o_l, low, 1);
3865            __ adc(o_h, high, ShifterOperand(high));
3866          } else if (op->IsShr()) {
3867            __ Asrs(o_h, high, 1);
3868            __ Rrx(o_l, low);
3869          } else {
3870            __ Lsrs(o_h, high, 1);
3871            __ Rrx(o_l, low);
3872          }
3873        } else {
3874          DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
3875          if (op->IsShl()) {
3876            __ Lsl(o_h, high, shift_value);
3877            __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
3878            __ Lsl(o_l, low, shift_value);
3879          } else if (op->IsShr()) {
3880            __ Lsr(o_l, low, shift_value);
3881            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3882            __ Asr(o_h, high, shift_value);
3883          } else {
3884            __ Lsr(o_l, low, shift_value);
3885            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3886            __ Lsr(o_h, high, shift_value);
3887          }
3888        }
3889      }
3890      break;
3891    }
3892    default:
3893      LOG(FATAL) << "Unexpected operation type " << type;
3894      UNREACHABLE();
3895  }
3896}
3897
3898void LocationsBuilderARM::VisitShl(HShl* shl) {
3899  HandleShift(shl);
3900}
3901
3902void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
3903  HandleShift(shl);
3904}
3905
3906void LocationsBuilderARM::VisitShr(HShr* shr) {
3907  HandleShift(shr);
3908}
3909
3910void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
3911  HandleShift(shr);
3912}
3913
3914void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
3915  HandleShift(ushr);
3916}
3917
3918void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
3919  HandleShift(ushr);
3920}
3921
3922void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
3923  LocationSummary* locations =
3924      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3925  if (instruction->IsStringAlloc()) {
3926    locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3927  } else {
3928    InvokeRuntimeCallingConvention calling_convention;
3929    locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3930    locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3931  }
3932  locations->SetOut(Location::RegisterLocation(R0));
3933}
3934
3935void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
3936  // Note: if heap poisoning is enabled, the entry point takes cares
3937  // of poisoning the reference.
3938  if (instruction->IsStringAlloc()) {
3939    // String is allocated through StringFactory. Call NewEmptyString entry point.
3940    Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
3941    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
3942    __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
3943    __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
3944    __ blx(LR);
3945    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
3946  } else {
3947    codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3948    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
3949  }
3950}
3951
3952void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
3953  LocationSummary* locations =
3954      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
3955  InvokeRuntimeCallingConvention calling_convention;
3956  locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3957  locations->SetOut(Location::RegisterLocation(R0));
3958  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3959  locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
3960}
3961
3962void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
3963  InvokeRuntimeCallingConvention calling_convention;
3964  __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
3965  // Note: if heap poisoning is enabled, the entry point takes cares
3966  // of poisoning the reference.
3967  codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
3968  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
3969}
3970
3971void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
3972  LocationSummary* locations =
3973      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3974  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
3975  if (location.IsStackSlot()) {
3976    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3977  } else if (location.IsDoubleStackSlot()) {
3978    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3979  }
3980  locations->SetOut(location);
3981}
3982
3983void InstructionCodeGeneratorARM::VisitParameterValue(
3984    HParameterValue* instruction ATTRIBUTE_UNUSED) {
3985  // Nothing to do, the parameter is already at its location.
3986}
3987
3988void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
3989  LocationSummary* locations =
3990      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3991  locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
3992}
3993
3994void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
3995  // Nothing to do, the method is already at its location.
3996}
3997
3998void LocationsBuilderARM::VisitNot(HNot* not_) {
3999  LocationSummary* locations =
4000      new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4001  locations->SetInAt(0, Location::RequiresRegister());
4002  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4003}
4004
4005void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
4006  LocationSummary* locations = not_->GetLocations();
4007  Location out = locations->Out();
4008  Location in = locations->InAt(0);
4009  switch (not_->GetResultType()) {
4010    case Primitive::kPrimInt:
4011      __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
4012      break;
4013
4014    case Primitive::kPrimLong:
4015      __ mvn(out.AsRegisterPairLow<Register>(),
4016             ShifterOperand(in.AsRegisterPairLow<Register>()));
4017      __ mvn(out.AsRegisterPairHigh<Register>(),
4018             ShifterOperand(in.AsRegisterPairHigh<Register>()));
4019      break;
4020
4021    default:
4022      LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4023  }
4024}
4025
4026void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
4027  LocationSummary* locations =
4028      new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4029  locations->SetInAt(0, Location::RequiresRegister());
4030  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4031}
4032
4033void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
4034  LocationSummary* locations = bool_not->GetLocations();
4035  Location out = locations->Out();
4036  Location in = locations->InAt(0);
4037  __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
4038}
4039
4040void LocationsBuilderARM::VisitCompare(HCompare* compare) {
4041  LocationSummary* locations =
4042      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4043  switch (compare->InputAt(0)->GetType()) {
4044    case Primitive::kPrimBoolean:
4045    case Primitive::kPrimByte:
4046    case Primitive::kPrimShort:
4047    case Primitive::kPrimChar:
4048    case Primitive::kPrimInt:
4049    case Primitive::kPrimLong: {
4050      locations->SetInAt(0, Location::RequiresRegister());
4051      locations->SetInAt(1, Location::RequiresRegister());
4052      // Output overlaps because it is written before doing the low comparison.
4053      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4054      break;
4055    }
4056    case Primitive::kPrimFloat:
4057    case Primitive::kPrimDouble: {
4058      locations->SetInAt(0, Location::RequiresFpuRegister());
4059      locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
4060      locations->SetOut(Location::RequiresRegister());
4061      break;
4062    }
4063    default:
4064      LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4065  }
4066}
4067
4068void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
4069  LocationSummary* locations = compare->GetLocations();
4070  Register out = locations->Out().AsRegister<Register>();
4071  Location left = locations->InAt(0);
4072  Location right = locations->InAt(1);
4073
4074  Label less, greater, done;
4075  Primitive::Type type = compare->InputAt(0)->GetType();
4076  Condition less_cond;
4077  switch (type) {
4078    case Primitive::kPrimBoolean:
4079    case Primitive::kPrimByte:
4080    case Primitive::kPrimShort:
4081    case Primitive::kPrimChar:
4082    case Primitive::kPrimInt: {
4083      __ LoadImmediate(out, 0);
4084      __ cmp(left.AsRegister<Register>(),
4085             ShifterOperand(right.AsRegister<Register>()));  // Signed compare.
4086      less_cond = LT;
4087      break;
4088    }
4089    case Primitive::kPrimLong: {
4090      __ cmp(left.AsRegisterPairHigh<Register>(),
4091             ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare.
4092      __ b(&less, LT);
4093      __ b(&greater, GT);
4094      // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
4095      __ LoadImmediate(out, 0);
4096      __ cmp(left.AsRegisterPairLow<Register>(),
4097             ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare.
4098      less_cond = LO;
4099      break;
4100    }
4101    case Primitive::kPrimFloat:
4102    case Primitive::kPrimDouble: {
4103      __ LoadImmediate(out, 0);
4104      GenerateVcmp(compare);
4105      __ vmstat();  // transfer FP status register to ARM APSR.
4106      less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
4107      break;
4108    }
4109    default:
4110      LOG(FATAL) << "Unexpected compare type " << type;
4111      UNREACHABLE();
4112  }
4113
4114  __ b(&done, EQ);
4115  __ b(&less, less_cond);
4116
4117  __ Bind(&greater);
4118  __ LoadImmediate(out, 1);
4119  __ b(&done);
4120
4121  __ Bind(&less);
4122  __ LoadImmediate(out, -1);
4123
4124  __ Bind(&done);
4125}
4126
4127void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
4128  LocationSummary* locations =
4129      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4130  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
4131    locations->SetInAt(i, Location::Any());
4132  }
4133  locations->SetOut(Location::Any());
4134}
4135
4136void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4137  LOG(FATAL) << "Unreachable";
4138}
4139
4140void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
4141  // TODO (ported from quick): revisit ARM barrier kinds.
4142  DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
4143  switch (kind) {
4144    case MemBarrierKind::kAnyStore:
4145    case MemBarrierKind::kLoadAny:
4146    case MemBarrierKind::kAnyAny: {
4147      flavor = DmbOptions::ISH;
4148      break;
4149    }
4150    case MemBarrierKind::kStoreStore: {
4151      flavor = DmbOptions::ISHST;
4152      break;
4153    }
4154    default:
4155      LOG(FATAL) << "Unexpected memory barrier " << kind;
4156  }
4157  __ dmb(flavor);
4158}
4159
4160void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
4161                                                         uint32_t offset,
4162                                                         Register out_lo,
4163                                                         Register out_hi) {
4164  if (offset != 0) {
4165    // Ensure `out_lo` is different from `addr`, so that loading
4166    // `offset` into `out_lo` does not clutter `addr`.
4167    DCHECK_NE(out_lo, addr);
4168    __ LoadImmediate(out_lo, offset);
4169    __ add(IP, addr, ShifterOperand(out_lo));
4170    addr = IP;
4171  }
4172  __ ldrexd(out_lo, out_hi, addr);
4173}
4174
4175void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
4176                                                          uint32_t offset,
4177                                                          Register value_lo,
4178                                                          Register value_hi,
4179                                                          Register temp1,
4180                                                          Register temp2,
4181                                                          HInstruction* instruction) {
4182  Label fail;
4183  if (offset != 0) {
4184    __ LoadImmediate(temp1, offset);
4185    __ add(IP, addr, ShifterOperand(temp1));
4186    addr = IP;
4187  }
4188  __ Bind(&fail);
4189  // We need a load followed by store. (The address used in a STREX instruction must
4190  // be the same as the address in the most recently executed LDREX instruction.)
4191  __ ldrexd(temp1, temp2, addr);
4192  codegen_->MaybeRecordImplicitNullCheck(instruction);
4193  __ strexd(temp1, value_lo, value_hi, addr);
4194  __ CompareAndBranchIfNonZero(temp1, &fail);
4195}
4196
4197void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4198  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4199
4200  LocationSummary* locations =
4201      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4202  locations->SetInAt(0, Location::RequiresRegister());
4203
4204  Primitive::Type field_type = field_info.GetFieldType();
4205  if (Primitive::IsFloatingPointType(field_type)) {
4206    locations->SetInAt(1, Location::RequiresFpuRegister());
4207  } else {
4208    locations->SetInAt(1, Location::RequiresRegister());
4209  }
4210
4211  bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
4212  bool generate_volatile = field_info.IsVolatile()
4213      && is_wide
4214      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4215  bool needs_write_barrier =
4216      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4217  // Temporary registers for the write barrier.
4218  // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
4219  if (needs_write_barrier) {
4220    locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
4221    locations->AddTemp(Location::RequiresRegister());
4222  } else if (generate_volatile) {
4223    // ARM encoding have some additional constraints for ldrexd/strexd:
4224    // - registers need to be consecutive
4225    // - the first register should be even but not R14.
4226    // We don't test for ARM yet, and the assertion makes sure that we
4227    // revisit this if we ever enable ARM encoding.
4228    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4229
4230    locations->AddTemp(Location::RequiresRegister());
4231    locations->AddTemp(Location::RequiresRegister());
4232    if (field_type == Primitive::kPrimDouble) {
4233      // For doubles we need two more registers to copy the value.
4234      locations->AddTemp(Location::RegisterLocation(R2));
4235      locations->AddTemp(Location::RegisterLocation(R3));
4236    }
4237  }
4238}
4239
4240void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
4241                                                 const FieldInfo& field_info,
4242                                                 bool value_can_be_null) {
4243  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4244
4245  LocationSummary* locations = instruction->GetLocations();
4246  Register base = locations->InAt(0).AsRegister<Register>();
4247  Location value = locations->InAt(1);
4248
4249  bool is_volatile = field_info.IsVolatile();
4250  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4251  Primitive::Type field_type = field_info.GetFieldType();
4252  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4253  bool needs_write_barrier =
4254      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4255
4256  if (is_volatile) {
4257    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4258  }
4259
4260  switch (field_type) {
4261    case Primitive::kPrimBoolean:
4262    case Primitive::kPrimByte: {
4263      __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
4264      break;
4265    }
4266
4267    case Primitive::kPrimShort:
4268    case Primitive::kPrimChar: {
4269      __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
4270      break;
4271    }
4272
4273    case Primitive::kPrimInt:
4274    case Primitive::kPrimNot: {
4275      if (kPoisonHeapReferences && needs_write_barrier) {
4276        // Note that in the case where `value` is a null reference,
4277        // we do not enter this block, as a null reference does not
4278        // need poisoning.
4279        DCHECK_EQ(field_type, Primitive::kPrimNot);
4280        Register temp = locations->GetTemp(0).AsRegister<Register>();
4281        __ Mov(temp, value.AsRegister<Register>());
4282        __ PoisonHeapReference(temp);
4283        __ StoreToOffset(kStoreWord, temp, base, offset);
4284      } else {
4285        __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
4286      }
4287      break;
4288    }
4289
4290    case Primitive::kPrimLong: {
4291      if (is_volatile && !atomic_ldrd_strd) {
4292        GenerateWideAtomicStore(base, offset,
4293                                value.AsRegisterPairLow<Register>(),
4294                                value.AsRegisterPairHigh<Register>(),
4295                                locations->GetTemp(0).AsRegister<Register>(),
4296                                locations->GetTemp(1).AsRegister<Register>(),
4297                                instruction);
4298      } else {
4299        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
4300        codegen_->MaybeRecordImplicitNullCheck(instruction);
4301      }
4302      break;
4303    }
4304
4305    case Primitive::kPrimFloat: {
4306      __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
4307      break;
4308    }
4309
4310    case Primitive::kPrimDouble: {
4311      DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
4312      if (is_volatile && !atomic_ldrd_strd) {
4313        Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
4314        Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
4315
4316        __ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
4317
4318        GenerateWideAtomicStore(base, offset,
4319                                value_reg_lo,
4320                                value_reg_hi,
4321                                locations->GetTemp(2).AsRegister<Register>(),
4322                                locations->GetTemp(3).AsRegister<Register>(),
4323                                instruction);
4324      } else {
4325        __ StoreDToOffset(value_reg, base, offset);
4326        codegen_->MaybeRecordImplicitNullCheck(instruction);
4327      }
4328      break;
4329    }
4330
4331    case Primitive::kPrimVoid:
4332      LOG(FATAL) << "Unreachable type " << field_type;
4333      UNREACHABLE();
4334  }
4335
4336  // Longs and doubles are handled in the switch.
4337  if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
4338    codegen_->MaybeRecordImplicitNullCheck(instruction);
4339  }
4340
4341  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4342    Register temp = locations->GetTemp(0).AsRegister<Register>();
4343    Register card = locations->GetTemp(1).AsRegister<Register>();
4344    codegen_->MarkGCCard(
4345        temp, card, base, value.AsRegister<Register>(), value_can_be_null);
4346  }
4347
4348  if (is_volatile) {
4349    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
4350  }
4351}
4352
4353void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4354  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4355
4356  bool object_field_get_with_read_barrier =
4357      kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
4358  LocationSummary* locations =
4359      new (GetGraph()->GetArena()) LocationSummary(instruction,
4360                                                   object_field_get_with_read_barrier ?
4361                                                       LocationSummary::kCallOnSlowPath :
4362                                                       LocationSummary::kNoCall);
4363  if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4364    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4365  }
4366  locations->SetInAt(0, Location::RequiresRegister());
4367
4368  bool volatile_for_double = field_info.IsVolatile()
4369      && (field_info.GetFieldType() == Primitive::kPrimDouble)
4370      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4371  // The output overlaps in case of volatile long: we don't want the
4372  // code generated by GenerateWideAtomicLoad to overwrite the
4373  // object's location.  Likewise, in the case of an object field get
4374  // with read barriers enabled, we do not want the load to overwrite
4375  // the object's location, as we need it to emit the read barrier.
4376  bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
4377      object_field_get_with_read_barrier;
4378
4379  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4380    locations->SetOut(Location::RequiresFpuRegister());
4381  } else {
4382    locations->SetOut(Location::RequiresRegister(),
4383                      (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
4384  }
4385  if (volatile_for_double) {
4386    // ARM encoding have some additional constraints for ldrexd/strexd:
4387    // - registers need to be consecutive
4388    // - the first register should be even but not R14.
4389    // We don't test for ARM yet, and the assertion makes sure that we
4390    // revisit this if we ever enable ARM encoding.
4391    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
4392    locations->AddTemp(Location::RequiresRegister());
4393    locations->AddTemp(Location::RequiresRegister());
4394  } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4395    // We need a temporary register for the read barrier marking slow
4396    // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
4397    locations->AddTemp(Location::RequiresRegister());
4398  }
4399}
4400
4401Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) {
4402  DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat)
4403      << input->GetType();
4404  if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
4405      (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
4406    return Location::ConstantLocation(input->AsConstant());
4407  } else {
4408    return Location::RequiresFpuRegister();
4409  }
4410}
4411
4412Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
4413                                                             Opcode opcode) {
4414  DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
4415  if (constant->IsConstant() &&
4416      CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
4417    return Location::ConstantLocation(constant->AsConstant());
4418  }
4419  return Location::RequiresRegister();
4420}
4421
4422bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
4423                                                       Opcode opcode) {
4424  uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
4425  if (Primitive::Is64BitType(input_cst->GetType())) {
4426    Opcode high_opcode = opcode;
4427    SetCc low_set_cc = kCcDontCare;
4428    switch (opcode) {
4429      case SUB:
4430        // Flip the operation to an ADD.
4431        value = -value;
4432        opcode = ADD;
4433        FALLTHROUGH_INTENDED;
4434      case ADD:
4435        if (Low32Bits(value) == 0u) {
4436          return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
4437        }
4438        high_opcode = ADC;
4439        low_set_cc = kCcSet;
4440        break;
4441      default:
4442        break;
4443    }
4444    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
4445        CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
4446  } else {
4447    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
4448  }
4449}
4450
4451bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value,
4452                                                       Opcode opcode,
4453                                                       SetCc set_cc) {
4454  ShifterOperand so;
4455  ArmAssembler* assembler = codegen_->GetAssembler();
4456  if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) {
4457    return true;
4458  }
4459  Opcode neg_opcode = kNoOperand;
4460  switch (opcode) {
4461    case AND: neg_opcode = BIC; value = ~value; break;
4462    case ORR: neg_opcode = ORN; value = ~value; break;
4463    case ADD: neg_opcode = SUB; value = -value; break;
4464    case ADC: neg_opcode = SBC; value = ~value; break;
4465    case SUB: neg_opcode = ADD; value = -value; break;
4466    case SBC: neg_opcode = ADC; value = ~value; break;
4467    default:
4468      return false;
4469  }
4470  return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, value, set_cc, &so);
4471}
4472
4473void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
4474                                                 const FieldInfo& field_info) {
4475  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4476
4477  LocationSummary* locations = instruction->GetLocations();
4478  Location base_loc = locations->InAt(0);
4479  Register base = base_loc.AsRegister<Register>();
4480  Location out = locations->Out();
4481  bool is_volatile = field_info.IsVolatile();
4482  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4483  Primitive::Type field_type = field_info.GetFieldType();
4484  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4485
4486  switch (field_type) {
4487    case Primitive::kPrimBoolean:
4488      __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
4489      break;
4490
4491    case Primitive::kPrimByte:
4492      __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
4493      break;
4494
4495    case Primitive::kPrimShort:
4496      __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
4497      break;
4498
4499    case Primitive::kPrimChar:
4500      __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
4501      break;
4502
4503    case Primitive::kPrimInt:
4504      __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4505      break;
4506
4507    case Primitive::kPrimNot: {
4508      // /* HeapReference<Object> */ out = *(base + offset)
4509      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4510        Location temp_loc = locations->GetTemp(0);
4511        // Note that a potential implicit null check is handled in this
4512        // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
4513        codegen_->GenerateFieldLoadWithBakerReadBarrier(
4514            instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4515        if (is_volatile) {
4516          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4517        }
4518      } else {
4519        __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4520        codegen_->MaybeRecordImplicitNullCheck(instruction);
4521        if (is_volatile) {
4522          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4523        }
4524        // If read barriers are enabled, emit read barriers other than
4525        // Baker's using a slow path (and also unpoison the loaded
4526        // reference, if heap poisoning is enabled).
4527        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4528      }
4529      break;
4530    }
4531
4532    case Primitive::kPrimLong:
4533      if (is_volatile && !atomic_ldrd_strd) {
4534        GenerateWideAtomicLoad(base, offset,
4535                               out.AsRegisterPairLow<Register>(),
4536                               out.AsRegisterPairHigh<Register>());
4537      } else {
4538        __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
4539      }
4540      break;
4541
4542    case Primitive::kPrimFloat:
4543      __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
4544      break;
4545
4546    case Primitive::kPrimDouble: {
4547      DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
4548      if (is_volatile && !atomic_ldrd_strd) {
4549        Register lo = locations->GetTemp(0).AsRegister<Register>();
4550        Register hi = locations->GetTemp(1).AsRegister<Register>();
4551        GenerateWideAtomicLoad(base, offset, lo, hi);
4552        codegen_->MaybeRecordImplicitNullCheck(instruction);
4553        __ vmovdrr(out_reg, lo, hi);
4554      } else {
4555        __ LoadDFromOffset(out_reg, base, offset);
4556        codegen_->MaybeRecordImplicitNullCheck(instruction);
4557      }
4558      break;
4559    }
4560
4561    case Primitive::kPrimVoid:
4562      LOG(FATAL) << "Unreachable type " << field_type;
4563      UNREACHABLE();
4564  }
4565
4566  if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
4567    // Potential implicit null checks, in the case of reference or
4568    // double fields, are handled in the previous switch statement.
4569  } else {
4570    codegen_->MaybeRecordImplicitNullCheck(instruction);
4571  }
4572
4573  if (is_volatile) {
4574    if (field_type == Primitive::kPrimNot) {
4575      // Memory barriers, in the case of references, are also handled
4576      // in the previous switch statement.
4577    } else {
4578      codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4579    }
4580  }
4581}
4582
4583void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4584  HandleFieldSet(instruction, instruction->GetFieldInfo());
4585}
4586
4587void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4588  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4589}
4590
4591void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4592  HandleFieldGet(instruction, instruction->GetFieldInfo());
4593}
4594
4595void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4596  HandleFieldGet(instruction, instruction->GetFieldInfo());
4597}
4598
4599void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4600  HandleFieldGet(instruction, instruction->GetFieldInfo());
4601}
4602
4603void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4604  HandleFieldGet(instruction, instruction->GetFieldInfo());
4605}
4606
4607void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4608  HandleFieldSet(instruction, instruction->GetFieldInfo());
4609}
4610
4611void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4612  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4613}
4614
4615void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
4616    HUnresolvedInstanceFieldGet* instruction) {
4617  FieldAccessCallingConventionARM calling_convention;
4618  codegen_->CreateUnresolvedFieldLocationSummary(
4619      instruction, instruction->GetFieldType(), calling_convention);
4620}
4621
4622void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
4623    HUnresolvedInstanceFieldGet* instruction) {
4624  FieldAccessCallingConventionARM calling_convention;
4625  codegen_->GenerateUnresolvedFieldAccess(instruction,
4626                                          instruction->GetFieldType(),
4627                                          instruction->GetFieldIndex(),
4628                                          instruction->GetDexPc(),
4629                                          calling_convention);
4630}
4631
4632void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
4633    HUnresolvedInstanceFieldSet* instruction) {
4634  FieldAccessCallingConventionARM calling_convention;
4635  codegen_->CreateUnresolvedFieldLocationSummary(
4636      instruction, instruction->GetFieldType(), calling_convention);
4637}
4638
4639void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
4640    HUnresolvedInstanceFieldSet* instruction) {
4641  FieldAccessCallingConventionARM calling_convention;
4642  codegen_->GenerateUnresolvedFieldAccess(instruction,
4643                                          instruction->GetFieldType(),
4644                                          instruction->GetFieldIndex(),
4645                                          instruction->GetDexPc(),
4646                                          calling_convention);
4647}
4648
4649void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
4650    HUnresolvedStaticFieldGet* instruction) {
4651  FieldAccessCallingConventionARM calling_convention;
4652  codegen_->CreateUnresolvedFieldLocationSummary(
4653      instruction, instruction->GetFieldType(), calling_convention);
4654}
4655
4656void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
4657    HUnresolvedStaticFieldGet* instruction) {
4658  FieldAccessCallingConventionARM calling_convention;
4659  codegen_->GenerateUnresolvedFieldAccess(instruction,
4660                                          instruction->GetFieldType(),
4661                                          instruction->GetFieldIndex(),
4662                                          instruction->GetDexPc(),
4663                                          calling_convention);
4664}
4665
4666void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
4667    HUnresolvedStaticFieldSet* instruction) {
4668  FieldAccessCallingConventionARM calling_convention;
4669  codegen_->CreateUnresolvedFieldLocationSummary(
4670      instruction, instruction->GetFieldType(), calling_convention);
4671}
4672
4673void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
4674    HUnresolvedStaticFieldSet* instruction) {
4675  FieldAccessCallingConventionARM calling_convention;
4676  codegen_->GenerateUnresolvedFieldAccess(instruction,
4677                                          instruction->GetFieldType(),
4678                                          instruction->GetFieldIndex(),
4679                                          instruction->GetDexPc(),
4680                                          calling_convention);
4681}
4682
4683void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
4684  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4685  locations->SetInAt(0, Location::RequiresRegister());
4686}
4687
4688void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
4689  if (CanMoveNullCheckToUser(instruction)) {
4690    return;
4691  }
4692  Location obj = instruction->GetLocations()->InAt(0);
4693
4694  __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
4695  RecordPcInfo(instruction, instruction->GetDexPc());
4696}
4697
4698void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
4699  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
4700  AddSlowPath(slow_path);
4701
4702  LocationSummary* locations = instruction->GetLocations();
4703  Location obj = locations->InAt(0);
4704
4705  __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
4706}
4707
4708void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
4709  codegen_->GenerateNullCheck(instruction);
4710}
4711
4712static LoadOperandType GetLoadOperandType(Primitive::Type type) {
4713  switch (type) {
4714    case Primitive::kPrimNot:
4715      return kLoadWord;
4716    case Primitive::kPrimBoolean:
4717      return kLoadUnsignedByte;
4718    case Primitive::kPrimByte:
4719      return kLoadSignedByte;
4720    case Primitive::kPrimChar:
4721      return kLoadUnsignedHalfword;
4722    case Primitive::kPrimShort:
4723      return kLoadSignedHalfword;
4724    case Primitive::kPrimInt:
4725      return kLoadWord;
4726    case Primitive::kPrimLong:
4727      return kLoadWordPair;
4728    case Primitive::kPrimFloat:
4729      return kLoadSWord;
4730    case Primitive::kPrimDouble:
4731      return kLoadDWord;
4732    default:
4733      LOG(FATAL) << "Unreachable type " << type;
4734      UNREACHABLE();
4735  }
4736}
4737
4738static StoreOperandType GetStoreOperandType(Primitive::Type type) {
4739  switch (type) {
4740    case Primitive::kPrimNot:
4741      return kStoreWord;
4742    case Primitive::kPrimBoolean:
4743    case Primitive::kPrimByte:
4744      return kStoreByte;
4745    case Primitive::kPrimChar:
4746    case Primitive::kPrimShort:
4747      return kStoreHalfword;
4748    case Primitive::kPrimInt:
4749      return kStoreWord;
4750    case Primitive::kPrimLong:
4751      return kStoreWordPair;
4752    case Primitive::kPrimFloat:
4753      return kStoreSWord;
4754    case Primitive::kPrimDouble:
4755      return kStoreDWord;
4756    default:
4757      LOG(FATAL) << "Unreachable type " << type;
4758      UNREACHABLE();
4759  }
4760}
4761
4762void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type,
4763                                                Location out_loc,
4764                                                Register base,
4765                                                Register reg_offset,
4766                                                Condition cond) {
4767  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4768  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4769
4770  switch (type) {
4771    case Primitive::kPrimByte:
4772      __ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond);
4773      break;
4774    case Primitive::kPrimBoolean:
4775      __ ldrb(out_loc.AsRegister<Register>(), mem_address, cond);
4776      break;
4777    case Primitive::kPrimShort:
4778      __ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond);
4779      break;
4780    case Primitive::kPrimChar:
4781      __ ldrh(out_loc.AsRegister<Register>(), mem_address, cond);
4782      break;
4783    case Primitive::kPrimNot:
4784    case Primitive::kPrimInt:
4785      __ ldr(out_loc.AsRegister<Register>(), mem_address, cond);
4786      break;
4787    // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
4788    case Primitive::kPrimLong:
4789    case Primitive::kPrimFloat:
4790    case Primitive::kPrimDouble:
4791    default:
4792      LOG(FATAL) << "Unreachable type " << type;
4793      UNREACHABLE();
4794  }
4795}
4796
4797void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type,
4798                                               Location loc,
4799                                               Register base,
4800                                               Register reg_offset,
4801                                               Condition cond) {
4802  uint32_t shift_count = Primitive::ComponentSizeShift(type);
4803  Address mem_address(base, reg_offset, Shift::LSL, shift_count);
4804
4805  switch (type) {
4806    case Primitive::kPrimByte:
4807    case Primitive::kPrimBoolean:
4808      __ strb(loc.AsRegister<Register>(), mem_address, cond);
4809      break;
4810    case Primitive::kPrimShort:
4811    case Primitive::kPrimChar:
4812      __ strh(loc.AsRegister<Register>(), mem_address, cond);
4813      break;
4814    case Primitive::kPrimNot:
4815    case Primitive::kPrimInt:
4816      __ str(loc.AsRegister<Register>(), mem_address, cond);
4817      break;
4818    // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
4819    case Primitive::kPrimLong:
4820    case Primitive::kPrimFloat:
4821    case Primitive::kPrimDouble:
4822    default:
4823      LOG(FATAL) << "Unreachable type " << type;
4824      UNREACHABLE();
4825  }
4826}
4827
4828void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
4829  bool object_array_get_with_read_barrier =
4830      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4831  LocationSummary* locations =
4832      new (GetGraph()->GetArena()) LocationSummary(instruction,
4833                                                   object_array_get_with_read_barrier ?
4834                                                       LocationSummary::kCallOnSlowPath :
4835                                                       LocationSummary::kNoCall);
4836  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
4837    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4838  }
4839  locations->SetInAt(0, Location::RequiresRegister());
4840  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4841  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4842    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4843  } else {
4844    // The output overlaps in the case of an object array get with
4845    // read barriers enabled: we do not want the move to overwrite the
4846    // array's location, as we need it to emit the read barrier.
4847    locations->SetOut(
4848        Location::RequiresRegister(),
4849        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
4850  }
4851  // We need a temporary register for the read barrier marking slow
4852  // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
4853  // Also need for String compression feature.
4854  if ((object_array_get_with_read_barrier && kUseBakerReadBarrier)
4855      || (mirror::kUseStringCompression && instruction->IsStringCharAt())) {
4856    locations->AddTemp(Location::RequiresRegister());
4857  }
4858}
4859
4860void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
4861  LocationSummary* locations = instruction->GetLocations();
4862  Location obj_loc = locations->InAt(0);
4863  Register obj = obj_loc.AsRegister<Register>();
4864  Location index = locations->InAt(1);
4865  Location out_loc = locations->Out();
4866  uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
4867  Primitive::Type type = instruction->GetType();
4868  const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
4869                                        instruction->IsStringCharAt();
4870  HInstruction* array_instr = instruction->GetArray();
4871  bool has_intermediate_address = array_instr->IsIntermediateAddress();
4872
4873  switch (type) {
4874    case Primitive::kPrimBoolean:
4875    case Primitive::kPrimByte:
4876    case Primitive::kPrimShort:
4877    case Primitive::kPrimChar:
4878    case Primitive::kPrimInt: {
4879      Register length;
4880      if (maybe_compressed_char_at) {
4881        length = locations->GetTemp(0).AsRegister<Register>();
4882        uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
4883        __ LoadFromOffset(kLoadWord, length, obj, count_offset);
4884        codegen_->MaybeRecordImplicitNullCheck(instruction);
4885      }
4886      if (index.IsConstant()) {
4887        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
4888        if (maybe_compressed_char_at) {
4889          Label uncompressed_load, done;
4890          __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
4891          static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
4892                        "Expecting 0=compressed, 1=uncompressed");
4893          __ b(&uncompressed_load, CS);
4894          __ LoadFromOffset(kLoadUnsignedByte,
4895                            out_loc.AsRegister<Register>(),
4896                            obj,
4897                            data_offset + const_index);
4898          __ b(&done);
4899          __ Bind(&uncompressed_load);
4900          __ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar),
4901                            out_loc.AsRegister<Register>(),
4902                            obj,
4903                            data_offset + (const_index << 1));
4904          __ Bind(&done);
4905        } else {
4906          uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
4907
4908          LoadOperandType load_type = GetLoadOperandType(type);
4909          __ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset);
4910        }
4911      } else {
4912        Register temp = IP;
4913
4914        if (has_intermediate_address) {
4915          // We do not need to compute the intermediate address from the array: the
4916          // input instruction has done it already. See the comment in
4917          // `TryExtractArrayAccessAddress()`.
4918          if (kIsDebugBuild) {
4919            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4920            DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
4921          }
4922          temp = obj;
4923        } else {
4924          __ add(temp, obj, ShifterOperand(data_offset));
4925        }
4926        if (maybe_compressed_char_at) {
4927          Label uncompressed_load, done;
4928          __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
4929          static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
4930                        "Expecting 0=compressed, 1=uncompressed");
4931          __ b(&uncompressed_load, CS);
4932          __ ldrb(out_loc.AsRegister<Register>(),
4933                  Address(temp, index.AsRegister<Register>(), Shift::LSL, 0));
4934          __ b(&done);
4935          __ Bind(&uncompressed_load);
4936          __ ldrh(out_loc.AsRegister<Register>(),
4937                  Address(temp, index.AsRegister<Register>(), Shift::LSL, 1));
4938          __ Bind(&done);
4939        } else {
4940          codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
4941        }
4942      }
4943      break;
4944    }
4945
4946    case Primitive::kPrimNot: {
4947      // The read barrier instrumentation of object ArrayGet
4948      // instructions does not support the HIntermediateAddress
4949      // instruction.
4950      DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
4951
4952      static_assert(
4953          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4954          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4955      // /* HeapReference<Object> */ out =
4956      //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4957      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4958        Location temp = locations->GetTemp(0);
4959        // Note that a potential implicit null check is handled in this
4960        // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
4961        codegen_->GenerateArrayLoadWithBakerReadBarrier(
4962            instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
4963      } else {
4964        Register out = out_loc.AsRegister<Register>();
4965        if (index.IsConstant()) {
4966          size_t offset =
4967              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4968          __ LoadFromOffset(kLoadWord, out, obj, offset);
4969          codegen_->MaybeRecordImplicitNullCheck(instruction);
4970          // If read barriers are enabled, emit read barriers other than
4971          // Baker's using a slow path (and also unpoison the loaded
4972          // reference, if heap poisoning is enabled).
4973          codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
4974        } else {
4975          Register temp = IP;
4976
4977          if (has_intermediate_address) {
4978            // We do not need to compute the intermediate address from the array: the
4979            // input instruction has done it already. See the comment in
4980            // `TryExtractArrayAccessAddress()`.
4981            if (kIsDebugBuild) {
4982              HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
4983              DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
4984            }
4985            temp = obj;
4986          } else {
4987            __ add(temp, obj, ShifterOperand(data_offset));
4988          }
4989          codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
4990
4991          codegen_->MaybeRecordImplicitNullCheck(instruction);
4992          // If read barriers are enabled, emit read barriers other than
4993          // Baker's using a slow path (and also unpoison the loaded
4994          // reference, if heap poisoning is enabled).
4995          codegen_->MaybeGenerateReadBarrierSlow(
4996              instruction, out_loc, out_loc, obj_loc, data_offset, index);
4997        }
4998      }
4999      break;
5000    }
5001
5002    case Primitive::kPrimLong: {
5003      if (index.IsConstant()) {
5004        size_t offset =
5005            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5006        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
5007      } else {
5008        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5009        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
5010      }
5011      break;
5012    }
5013
5014    case Primitive::kPrimFloat: {
5015      SRegister out = out_loc.AsFpuRegister<SRegister>();
5016      if (index.IsConstant()) {
5017        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5018        __ LoadSFromOffset(out, obj, offset);
5019      } else {
5020        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
5021        __ LoadSFromOffset(out, IP, data_offset);
5022      }
5023      break;
5024    }
5025
5026    case Primitive::kPrimDouble: {
5027      SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
5028      if (index.IsConstant()) {
5029        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5030        __ LoadDFromOffset(FromLowSToD(out), obj, offset);
5031      } else {
5032        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5033        __ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
5034      }
5035      break;
5036    }
5037
5038    case Primitive::kPrimVoid:
5039      LOG(FATAL) << "Unreachable type " << type;
5040      UNREACHABLE();
5041  }
5042
5043  if (type == Primitive::kPrimNot) {
5044    // Potential implicit null checks, in the case of reference
5045    // arrays, are handled in the previous switch statement.
5046  } else if (!maybe_compressed_char_at) {
5047    codegen_->MaybeRecordImplicitNullCheck(instruction);
5048  }
5049}
5050
5051void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
5052  Primitive::Type value_type = instruction->GetComponentType();
5053
5054  bool needs_write_barrier =
5055      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5056  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5057
5058  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5059      instruction,
5060      may_need_runtime_call_for_type_check ?
5061          LocationSummary::kCallOnSlowPath :
5062          LocationSummary::kNoCall);
5063
5064  locations->SetInAt(0, Location::RequiresRegister());
5065  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5066  if (Primitive::IsFloatingPointType(value_type)) {
5067    locations->SetInAt(2, Location::RequiresFpuRegister());
5068  } else {
5069    locations->SetInAt(2, Location::RequiresRegister());
5070  }
5071  if (needs_write_barrier) {
5072    // Temporary registers for the write barrier.
5073    locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
5074    locations->AddTemp(Location::RequiresRegister());
5075  }
5076}
5077
5078void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
5079  LocationSummary* locations = instruction->GetLocations();
5080  Location array_loc = locations->InAt(0);
5081  Register array = array_loc.AsRegister<Register>();
5082  Location index = locations->InAt(1);
5083  Primitive::Type value_type = instruction->GetComponentType();
5084  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5085  bool needs_write_barrier =
5086      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5087  uint32_t data_offset =
5088      mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
5089  Location value_loc = locations->InAt(2);
5090  HInstruction* array_instr = instruction->GetArray();
5091  bool has_intermediate_address = array_instr->IsIntermediateAddress();
5092
5093  switch (value_type) {
5094    case Primitive::kPrimBoolean:
5095    case Primitive::kPrimByte:
5096    case Primitive::kPrimShort:
5097    case Primitive::kPrimChar:
5098    case Primitive::kPrimInt: {
5099      if (index.IsConstant()) {
5100        int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
5101        uint32_t full_offset =
5102            data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
5103        StoreOperandType store_type = GetStoreOperandType(value_type);
5104        __ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset);
5105      } else {
5106        Register temp = IP;
5107
5108        if (has_intermediate_address) {
5109          // We do not need to compute the intermediate address from the array: the
5110          // input instruction has done it already. See the comment in
5111          // `TryExtractArrayAccessAddress()`.
5112          if (kIsDebugBuild) {
5113            HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
5114            DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset);
5115          }
5116          temp = array;
5117        } else {
5118          __ add(temp, array, ShifterOperand(data_offset));
5119        }
5120        codegen_->StoreToShiftedRegOffset(value_type,
5121                                          value_loc,
5122                                          temp,
5123                                          index.AsRegister<Register>());
5124      }
5125      break;
5126    }
5127
5128    case Primitive::kPrimNot: {
5129      Register value = value_loc.AsRegister<Register>();
5130      // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
5131      // See the comment in instruction_simplifier_shared.cc.
5132      DCHECK(!has_intermediate_address);
5133
5134      if (instruction->InputAt(2)->IsNullConstant()) {
5135        // Just setting null.
5136        if (index.IsConstant()) {
5137          size_t offset =
5138              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5139          __ StoreToOffset(kStoreWord, value, array, offset);
5140        } else {
5141          DCHECK(index.IsRegister()) << index;
5142          __ add(IP, array, ShifterOperand(data_offset));
5143          codegen_->StoreToShiftedRegOffset(value_type,
5144                                            value_loc,
5145                                            IP,
5146                                            index.AsRegister<Register>());
5147        }
5148        codegen_->MaybeRecordImplicitNullCheck(instruction);
5149        DCHECK(!needs_write_barrier);
5150        DCHECK(!may_need_runtime_call_for_type_check);
5151        break;
5152      }
5153
5154      DCHECK(needs_write_barrier);
5155      Location temp1_loc = locations->GetTemp(0);
5156      Register temp1 = temp1_loc.AsRegister<Register>();
5157      Location temp2_loc = locations->GetTemp(1);
5158      Register temp2 = temp2_loc.AsRegister<Register>();
5159      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5160      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5161      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5162      Label done;
5163      SlowPathCodeARM* slow_path = nullptr;
5164
5165      if (may_need_runtime_call_for_type_check) {
5166        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
5167        codegen_->AddSlowPath(slow_path);
5168        if (instruction->GetValueCanBeNull()) {
5169          Label non_zero;
5170          __ CompareAndBranchIfNonZero(value, &non_zero);
5171          if (index.IsConstant()) {
5172            size_t offset =
5173               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5174            __ StoreToOffset(kStoreWord, value, array, offset);
5175          } else {
5176            DCHECK(index.IsRegister()) << index;
5177            __ add(IP, array, ShifterOperand(data_offset));
5178            codegen_->StoreToShiftedRegOffset(value_type,
5179                                              value_loc,
5180                                              IP,
5181                                              index.AsRegister<Register>());
5182          }
5183          codegen_->MaybeRecordImplicitNullCheck(instruction);
5184          __ b(&done);
5185          __ Bind(&non_zero);
5186        }
5187
5188        // Note that when read barriers are enabled, the type checks
5189        // are performed without read barriers.  This is fine, even in
5190        // the case where a class object is in the from-space after
5191        // the flip, as a comparison involving such a type would not
5192        // produce a false positive; it may of course produce a false
5193        // negative, in which case we would take the ArraySet slow
5194        // path.
5195
5196        // /* HeapReference<Class> */ temp1 = array->klass_
5197        __ LoadFromOffset(kLoadWord, temp1, array, class_offset);
5198        codegen_->MaybeRecordImplicitNullCheck(instruction);
5199        __ MaybeUnpoisonHeapReference(temp1);
5200
5201        // /* HeapReference<Class> */ temp1 = temp1->component_type_
5202        __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
5203        // /* HeapReference<Class> */ temp2 = value->klass_
5204        __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
5205        // If heap poisoning is enabled, no need to unpoison `temp1`
5206        // nor `temp2`, as we are comparing two poisoned references.
5207        __ cmp(temp1, ShifterOperand(temp2));
5208
5209        if (instruction->StaticTypeOfArrayIsObjectArray()) {
5210          Label do_put;
5211          __ b(&do_put, EQ);
5212          // If heap poisoning is enabled, the `temp1` reference has
5213          // not been unpoisoned yet; unpoison it now.
5214          __ MaybeUnpoisonHeapReference(temp1);
5215
5216          // /* HeapReference<Class> */ temp1 = temp1->super_class_
5217          __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
5218          // If heap poisoning is enabled, no need to unpoison
5219          // `temp1`, as we are comparing against null below.
5220          __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
5221          __ Bind(&do_put);
5222        } else {
5223          __ b(slow_path->GetEntryLabel(), NE);
5224        }
5225      }
5226
5227      Register source = value;
5228      if (kPoisonHeapReferences) {
5229        // Note that in the case where `value` is a null reference,
5230        // we do not enter this block, as a null reference does not
5231        // need poisoning.
5232        DCHECK_EQ(value_type, Primitive::kPrimNot);
5233        __ Mov(temp1, value);
5234        __ PoisonHeapReference(temp1);
5235        source = temp1;
5236      }
5237
5238      if (index.IsConstant()) {
5239        size_t offset =
5240            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5241        __ StoreToOffset(kStoreWord, source, array, offset);
5242      } else {
5243        DCHECK(index.IsRegister()) << index;
5244
5245        __ add(IP, array, ShifterOperand(data_offset));
5246        codegen_->StoreToShiftedRegOffset(value_type,
5247                                          Location::RegisterLocation(source),
5248                                          IP,
5249                                          index.AsRegister<Register>());
5250      }
5251
5252      if (!may_need_runtime_call_for_type_check) {
5253        codegen_->MaybeRecordImplicitNullCheck(instruction);
5254      }
5255
5256      codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
5257
5258      if (done.IsLinked()) {
5259        __ Bind(&done);
5260      }
5261
5262      if (slow_path != nullptr) {
5263        __ Bind(slow_path->GetExitLabel());
5264      }
5265
5266      break;
5267    }
5268
5269    case Primitive::kPrimLong: {
5270      Location value = locations->InAt(2);
5271      if (index.IsConstant()) {
5272        size_t offset =
5273            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5274        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
5275      } else {
5276        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5277        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
5278      }
5279      break;
5280    }
5281
5282    case Primitive::kPrimFloat: {
5283      Location value = locations->InAt(2);
5284      DCHECK(value.IsFpuRegister());
5285      if (index.IsConstant()) {
5286        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5287        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
5288      } else {
5289        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
5290        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
5291      }
5292      break;
5293    }
5294
5295    case Primitive::kPrimDouble: {
5296      Location value = locations->InAt(2);
5297      DCHECK(value.IsFpuRegisterPair());
5298      if (index.IsConstant()) {
5299        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
5300        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
5301      } else {
5302        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
5303        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
5304      }
5305
5306      break;
5307    }
5308
5309    case Primitive::kPrimVoid:
5310      LOG(FATAL) << "Unreachable type " << value_type;
5311      UNREACHABLE();
5312  }
5313
5314  // Objects are handled in the switch.
5315  if (value_type != Primitive::kPrimNot) {
5316    codegen_->MaybeRecordImplicitNullCheck(instruction);
5317  }
5318}
5319
5320void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
5321  LocationSummary* locations =
5322      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5323  locations->SetInAt(0, Location::RequiresRegister());
5324  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5325}
5326
5327void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
5328  LocationSummary* locations = instruction->GetLocations();
5329  uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
5330  Register obj = locations->InAt(0).AsRegister<Register>();
5331  Register out = locations->Out().AsRegister<Register>();
5332  __ LoadFromOffset(kLoadWord, out, obj, offset);
5333  codegen_->MaybeRecordImplicitNullCheck(instruction);
5334  // Mask out compression flag from String's array length.
5335  if (mirror::kUseStringCompression && instruction->IsStringLength()) {
5336    __ Lsr(out, out, 1u);
5337  }
5338}
5339
5340void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5341  LocationSummary* locations =
5342      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5343
5344  locations->SetInAt(0, Location::RequiresRegister());
5345  locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
5346  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5347}
5348
5349void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
5350  LocationSummary* locations = instruction->GetLocations();
5351  Location out = locations->Out();
5352  Location first = locations->InAt(0);
5353  Location second = locations->InAt(1);
5354
5355  if (second.IsRegister()) {
5356    __ add(out.AsRegister<Register>(),
5357           first.AsRegister<Register>(),
5358           ShifterOperand(second.AsRegister<Register>()));
5359  } else {
5360    __ AddConstant(out.AsRegister<Register>(),
5361                   first.AsRegister<Register>(),
5362                   second.GetConstant()->AsIntConstant()->GetValue());
5363  }
5364}
5365
5366void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5367  RegisterSet caller_saves = RegisterSet::Empty();
5368  InvokeRuntimeCallingConvention calling_convention;
5369  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5370  caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
5371  LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
5372  locations->SetInAt(0, Location::RequiresRegister());
5373  locations->SetInAt(1, Location::RequiresRegister());
5374}
5375
5376void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
5377  LocationSummary* locations = instruction->GetLocations();
5378  SlowPathCodeARM* slow_path =
5379      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
5380  codegen_->AddSlowPath(slow_path);
5381
5382  Register index = locations->InAt(0).AsRegister<Register>();
5383  Register length = locations->InAt(1).AsRegister<Register>();
5384
5385  __ cmp(index, ShifterOperand(length));
5386  __ b(slow_path->GetEntryLabel(), HS);
5387}
5388
5389void CodeGeneratorARM::MarkGCCard(Register temp,
5390                                  Register card,
5391                                  Register object,
5392                                  Register value,
5393                                  bool can_be_null) {
5394  Label is_null;
5395  if (can_be_null) {
5396    __ CompareAndBranchIfZero(value, &is_null);
5397  }
5398  __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
5399  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
5400  __ strb(card, Address(card, temp));
5401  if (can_be_null) {
5402    __ Bind(&is_null);
5403  }
5404}
5405
5406void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5407  LOG(FATAL) << "Unreachable";
5408}
5409
5410void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
5411  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5412}
5413
5414void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5415  LocationSummary* locations =
5416      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5417  locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5418}
5419
5420void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
5421  HBasicBlock* block = instruction->GetBlock();
5422  if (block->GetLoopInformation() != nullptr) {
5423    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5424    // The back edge will generate the suspend check.
5425    return;
5426  }
5427  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5428    // The goto will generate the suspend check.
5429    return;
5430  }
5431  GenerateSuspendCheck(instruction, nullptr);
5432}
5433
5434void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
5435                                                       HBasicBlock* successor) {
5436  SuspendCheckSlowPathARM* slow_path =
5437      down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
5438  if (slow_path == nullptr) {
5439    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
5440    instruction->SetSlowPath(slow_path);
5441    codegen_->AddSlowPath(slow_path);
5442    if (successor != nullptr) {
5443      DCHECK(successor->IsLoopHeader());
5444      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5445    }
5446  } else {
5447    DCHECK_EQ(slow_path->GetSuccessor(), successor);
5448  }
5449
5450  __ LoadFromOffset(
5451      kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
5452  if (successor == nullptr) {
5453    __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
5454    __ Bind(slow_path->GetReturnLabel());
5455  } else {
5456    __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
5457    __ b(slow_path->GetEntryLabel());
5458  }
5459}
5460
5461ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
5462  return codegen_->GetAssembler();
5463}
5464
5465void ParallelMoveResolverARM::EmitMove(size_t index) {
5466  MoveOperands* move = moves_[index];
5467  Location source = move->GetSource();
5468  Location destination = move->GetDestination();
5469
5470  if (source.IsRegister()) {
5471    if (destination.IsRegister()) {
5472      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
5473    } else if (destination.IsFpuRegister()) {
5474      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
5475    } else {
5476      DCHECK(destination.IsStackSlot());
5477      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
5478                       SP, destination.GetStackIndex());
5479    }
5480  } else if (source.IsStackSlot()) {
5481    if (destination.IsRegister()) {
5482      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
5483                        SP, source.GetStackIndex());
5484    } else if (destination.IsFpuRegister()) {
5485      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
5486    } else {
5487      DCHECK(destination.IsStackSlot());
5488      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
5489      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5490    }
5491  } else if (source.IsFpuRegister()) {
5492    if (destination.IsRegister()) {
5493      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
5494    } else if (destination.IsFpuRegister()) {
5495      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
5496    } else {
5497      DCHECK(destination.IsStackSlot());
5498      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
5499    }
5500  } else if (source.IsDoubleStackSlot()) {
5501    if (destination.IsDoubleStackSlot()) {
5502      __ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
5503      __ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
5504    } else if (destination.IsRegisterPair()) {
5505      DCHECK(ExpectedPairLayout(destination));
5506      __ LoadFromOffset(
5507          kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
5508    } else {
5509      DCHECK(destination.IsFpuRegisterPair()) << destination;
5510      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5511                         SP,
5512                         source.GetStackIndex());
5513    }
5514  } else if (source.IsRegisterPair()) {
5515    if (destination.IsRegisterPair()) {
5516      __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
5517      __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
5518    } else if (destination.IsFpuRegisterPair()) {
5519      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5520                 source.AsRegisterPairLow<Register>(),
5521                 source.AsRegisterPairHigh<Register>());
5522    } else {
5523      DCHECK(destination.IsDoubleStackSlot()) << destination;
5524      DCHECK(ExpectedPairLayout(source));
5525      __ StoreToOffset(
5526          kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
5527    }
5528  } else if (source.IsFpuRegisterPair()) {
5529    if (destination.IsRegisterPair()) {
5530      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5531                 destination.AsRegisterPairHigh<Register>(),
5532                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5533    } else if (destination.IsFpuRegisterPair()) {
5534      __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
5535               FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
5536    } else {
5537      DCHECK(destination.IsDoubleStackSlot()) << destination;
5538      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
5539                        SP,
5540                        destination.GetStackIndex());
5541    }
5542  } else {
5543    DCHECK(source.IsConstant()) << source;
5544    HConstant* constant = source.GetConstant();
5545    if (constant->IsIntConstant() || constant->IsNullConstant()) {
5546      int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5547      if (destination.IsRegister()) {
5548        __ LoadImmediate(destination.AsRegister<Register>(), value);
5549      } else {
5550        DCHECK(destination.IsStackSlot());
5551        __ LoadImmediate(IP, value);
5552        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5553      }
5554    } else if (constant->IsLongConstant()) {
5555      int64_t value = constant->AsLongConstant()->GetValue();
5556      if (destination.IsRegisterPair()) {
5557        __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
5558        __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
5559      } else {
5560        DCHECK(destination.IsDoubleStackSlot()) << destination;
5561        __ LoadImmediate(IP, Low32Bits(value));
5562        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5563        __ LoadImmediate(IP, High32Bits(value));
5564        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5565      }
5566    } else if (constant->IsDoubleConstant()) {
5567      double value = constant->AsDoubleConstant()->GetValue();
5568      if (destination.IsFpuRegisterPair()) {
5569        __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
5570      } else {
5571        DCHECK(destination.IsDoubleStackSlot()) << destination;
5572        uint64_t int_value = bit_cast<uint64_t, double>(value);
5573        __ LoadImmediate(IP, Low32Bits(int_value));
5574        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5575        __ LoadImmediate(IP, High32Bits(int_value));
5576        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
5577      }
5578    } else {
5579      DCHECK(constant->IsFloatConstant()) << constant->DebugName();
5580      float value = constant->AsFloatConstant()->GetValue();
5581      if (destination.IsFpuRegister()) {
5582        __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
5583      } else {
5584        DCHECK(destination.IsStackSlot());
5585        __ LoadImmediate(IP, bit_cast<int32_t, float>(value));
5586        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
5587      }
5588    }
5589  }
5590}
5591
5592void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
5593  __ Mov(IP, reg);
5594  __ LoadFromOffset(kLoadWord, reg, SP, mem);
5595  __ StoreToOffset(kStoreWord, IP, SP, mem);
5596}
5597
5598void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
5599  ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
5600  int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
5601  __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
5602                    SP, mem1 + stack_offset);
5603  __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
5604  __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
5605                   SP, mem2 + stack_offset);
5606  __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
5607}
5608
5609void ParallelMoveResolverARM::EmitSwap(size_t index) {
5610  MoveOperands* move = moves_[index];
5611  Location source = move->GetSource();
5612  Location destination = move->GetDestination();
5613
5614  if (source.IsRegister() && destination.IsRegister()) {
5615    DCHECK_NE(source.AsRegister<Register>(), IP);
5616    DCHECK_NE(destination.AsRegister<Register>(), IP);
5617    __ Mov(IP, source.AsRegister<Register>());
5618    __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
5619    __ Mov(destination.AsRegister<Register>(), IP);
5620  } else if (source.IsRegister() && destination.IsStackSlot()) {
5621    Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5622  } else if (source.IsStackSlot() && destination.IsRegister()) {
5623    Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5624  } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5625    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5626  } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5627    __ vmovrs(IP, source.AsFpuRegister<SRegister>());
5628    __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
5629    __ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
5630  } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
5631    __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
5632    __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
5633    __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
5634    __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5635               destination.AsRegisterPairHigh<Register>(),
5636               DTMP);
5637  } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
5638    Register low_reg = source.IsRegisterPair()
5639        ? source.AsRegisterPairLow<Register>()
5640        : destination.AsRegisterPairLow<Register>();
5641    int mem = source.IsRegisterPair()
5642        ? destination.GetStackIndex()
5643        : source.GetStackIndex();
5644    DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
5645    __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
5646    __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
5647    __ StoreDToOffset(DTMP, SP, mem);
5648  } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
5649    DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
5650    DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5651    __ vmovd(DTMP, first);
5652    __ vmovd(first, second);
5653    __ vmovd(second, DTMP);
5654  } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
5655    DRegister reg = source.IsFpuRegisterPair()
5656        ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
5657        : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5658    int mem = source.IsFpuRegisterPair()
5659        ? destination.GetStackIndex()
5660        : source.GetStackIndex();
5661    __ vmovd(DTMP, reg);
5662    __ LoadDFromOffset(reg, SP, mem);
5663    __ StoreDToOffset(DTMP, SP, mem);
5664  } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
5665    SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
5666                                           : destination.AsFpuRegister<SRegister>();
5667    int mem = source.IsFpuRegister()
5668        ? destination.GetStackIndex()
5669        : source.GetStackIndex();
5670
5671    __ vmovrs(IP, reg);
5672    __ LoadSFromOffset(reg, SP, mem);
5673    __ StoreToOffset(kStoreWord, IP, SP, mem);
5674  } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
5675    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5676    Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
5677  } else {
5678    LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
5679  }
5680}
5681
5682void ParallelMoveResolverARM::SpillScratch(int reg) {
5683  __ Push(static_cast<Register>(reg));
5684}
5685
5686void ParallelMoveResolverARM::RestoreScratch(int reg) {
5687  __ Pop(static_cast<Register>(reg));
5688}
5689
5690HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind(
5691    HLoadClass::LoadKind desired_class_load_kind) {
5692  switch (desired_class_load_kind) {
5693    case HLoadClass::LoadKind::kReferrersClass:
5694      break;
5695    case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
5696      DCHECK(!GetCompilerOptions().GetCompilePic());
5697      break;
5698    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5699      DCHECK(GetCompilerOptions().GetCompilePic());
5700      break;
5701    case HLoadClass::LoadKind::kBootImageAddress:
5702      break;
5703    case HLoadClass::LoadKind::kDexCacheAddress:
5704      DCHECK(Runtime::Current()->UseJitCompilation());
5705      break;
5706    case HLoadClass::LoadKind::kDexCachePcRelative:
5707      DCHECK(!Runtime::Current()->UseJitCompilation());
5708      // We disable pc-relative load when there is an irreducible loop, as the optimization
5709      // is incompatible with it.
5710      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
5711      // with irreducible loops.
5712      if (GetGraph()->HasIrreducibleLoops()) {
5713        return HLoadClass::LoadKind::kDexCacheViaMethod;
5714      }
5715      break;
5716    case HLoadClass::LoadKind::kDexCacheViaMethod:
5717      break;
5718  }
5719  return desired_class_load_kind;
5720}
5721
5722void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
5723  if (cls->NeedsAccessCheck()) {
5724    InvokeRuntimeCallingConvention calling_convention;
5725    CodeGenerator::CreateLoadClassLocationSummary(
5726        cls,
5727        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5728        Location::RegisterLocation(R0),
5729        /* code_generator_supports_read_barrier */ true);
5730    return;
5731  }
5732
5733  const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
5734  LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5735      ? LocationSummary::kCallOnSlowPath
5736      : LocationSummary::kNoCall;
5737  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
5738  if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5739    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5740  }
5741
5742  HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5743  if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
5744      load_kind == HLoadClass::LoadKind::kDexCacheViaMethod ||
5745      load_kind == HLoadClass::LoadKind::kDexCachePcRelative) {
5746    locations->SetInAt(0, Location::RequiresRegister());
5747  }
5748  locations->SetOut(Location::RequiresRegister());
5749}
5750
5751void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
5752  LocationSummary* locations = cls->GetLocations();
5753  if (cls->NeedsAccessCheck()) {
5754    codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5755    codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
5756    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5757    return;
5758  }
5759
5760  Location out_loc = locations->Out();
5761  Register out = out_loc.AsRegister<Register>();
5762
5763  const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
5764      ? kWithoutReadBarrier
5765      : kCompilerReadBarrierOption;
5766  bool generate_null_check = false;
5767  switch (cls->GetLoadKind()) {
5768    case HLoadClass::LoadKind::kReferrersClass: {
5769      DCHECK(!cls->CanCallRuntime());
5770      DCHECK(!cls->MustGenerateClinitCheck());
5771      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5772      Register current_method = locations->InAt(0).AsRegister<Register>();
5773      GenerateGcRootFieldLoad(cls,
5774                              out_loc,
5775                              current_method,
5776                              ArtMethod::DeclaringClassOffset().Int32Value(),
5777                              read_barrier_option);
5778      break;
5779    }
5780    case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
5781      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5782      __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
5783                                                                    cls->GetTypeIndex()));
5784      break;
5785    }
5786    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5787      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5788      CodeGeneratorARM::PcRelativePatchInfo* labels =
5789          codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
5790      __ BindTrackedLabel(&labels->movw_label);
5791      __ movw(out, /* placeholder */ 0u);
5792      __ BindTrackedLabel(&labels->movt_label);
5793      __ movt(out, /* placeholder */ 0u);
5794      __ BindTrackedLabel(&labels->add_pc_label);
5795      __ add(out, out, ShifterOperand(PC));
5796      break;
5797    }
5798    case HLoadClass::LoadKind::kBootImageAddress: {
5799      DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5800      DCHECK_NE(cls->GetAddress(), 0u);
5801      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5802      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5803      break;
5804    }
5805    case HLoadClass::LoadKind::kDexCacheAddress: {
5806      DCHECK_NE(cls->GetAddress(), 0u);
5807      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5808      // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives
5809      // a 128B range. To try and reduce the number of literals if we load multiple types,
5810      // simply split the dex cache address to a 128B aligned base loaded from a literal
5811      // and the remaining offset embedded in the load.
5812      static_assert(sizeof(GcRoot<mirror::Class>) == 4u, "Expected GC root to be 4 bytes.");
5813      DCHECK_ALIGNED(cls->GetAddress(), 4u);
5814      constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2;
5815      uint32_t base_address = address & ~MaxInt<uint32_t>(offset_bits);
5816      uint32_t offset = address & MaxInt<uint32_t>(offset_bits);
5817      __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address));
5818      // /* GcRoot<mirror::Class> */ out = *(base_address + offset)
5819      GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option);
5820      generate_null_check = !cls->IsInDexCache();
5821      break;
5822    }
5823    case HLoadClass::LoadKind::kDexCachePcRelative: {
5824      Register base_reg = locations->InAt(0).AsRegister<Register>();
5825      HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase();
5826      int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset();
5827      // /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset)
5828      GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset, read_barrier_option);
5829      generate_null_check = !cls->IsInDexCache();
5830      break;
5831    }
5832    case HLoadClass::LoadKind::kDexCacheViaMethod: {
5833      // /* GcRoot<mirror::Class>[] */ out =
5834      //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5835      Register current_method = locations->InAt(0).AsRegister<Register>();
5836      __ LoadFromOffset(kLoadWord,
5837                        out,
5838                        current_method,
5839                        ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
5840      // /* GcRoot<mirror::Class> */ out = out[type_index]
5841      size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex());
5842      GenerateGcRootFieldLoad(cls, out_loc, out, offset, read_barrier_option);
5843      generate_null_check = !cls->IsInDexCache();
5844    }
5845  }
5846
5847  if (generate_null_check || cls->MustGenerateClinitCheck()) {
5848    DCHECK(cls->CanCallRuntime());
5849    SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5850        cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5851    codegen_->AddSlowPath(slow_path);
5852    if (generate_null_check) {
5853      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5854    }
5855    if (cls->MustGenerateClinitCheck()) {
5856      GenerateClassInitializationCheck(slow_path, out);
5857    } else {
5858      __ Bind(slow_path->GetExitLabel());
5859    }
5860  }
5861}
5862
5863void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
5864  LocationSummary* locations =
5865      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5866  locations->SetInAt(0, Location::RequiresRegister());
5867  if (check->HasUses()) {
5868    locations->SetOut(Location::SameAsFirstInput());
5869  }
5870}
5871
5872void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
5873  // We assume the class is not null.
5874  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5875      check->GetLoadClass(), check, check->GetDexPc(), true);
5876  codegen_->AddSlowPath(slow_path);
5877  GenerateClassInitializationCheck(slow_path,
5878                                   check->GetLocations()->InAt(0).AsRegister<Register>());
5879}
5880
5881void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
5882    SlowPathCodeARM* slow_path, Register class_reg) {
5883  __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
5884  __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
5885  __ b(slow_path->GetEntryLabel(), LT);
5886  // Even if the initialized flag is set, we may be in a situation where caches are not synced
5887  // properly. Therefore, we do a memory fence.
5888  __ dmb(ISH);
5889  __ Bind(slow_path->GetExitLabel());
5890}
5891
5892HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
5893    HLoadString::LoadKind desired_string_load_kind) {
5894  switch (desired_string_load_kind) {
5895    case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5896      DCHECK(!GetCompilerOptions().GetCompilePic());
5897      break;
5898    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5899      DCHECK(GetCompilerOptions().GetCompilePic());
5900      break;
5901    case HLoadString::LoadKind::kBootImageAddress:
5902      break;
5903    case HLoadString::LoadKind::kBssEntry:
5904      DCHECK(!Runtime::Current()->UseJitCompilation());
5905      break;
5906    case HLoadString::LoadKind::kJitTableAddress:
5907      DCHECK(Runtime::Current()->UseJitCompilation());
5908      break;
5909    case HLoadString::LoadKind::kDexCacheViaMethod:
5910      break;
5911  }
5912  return desired_string_load_kind;
5913}
5914
5915void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
5916  LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
5917  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
5918  HLoadString::LoadKind load_kind = load->GetLoadKind();
5919  if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) {
5920    locations->SetOut(Location::RegisterLocation(R0));
5921  } else {
5922    locations->SetOut(Location::RequiresRegister());
5923    if (load_kind == HLoadString::LoadKind::kBssEntry) {
5924      if (!kUseReadBarrier || kUseBakerReadBarrier) {
5925        // Rely on the pResolveString and/or marking to save everything, including temps.
5926        // Note that IP may theoretically be clobbered by saving/restoring the live register
5927        // (only one thanks to the custom calling convention), so we request a different temp.
5928        locations->AddTemp(Location::RequiresRegister());
5929        RegisterSet caller_saves = RegisterSet::Empty();
5930        InvokeRuntimeCallingConvention calling_convention;
5931        caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5932        // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
5933        // that the the kPrimNot result register is the same as the first argument register.
5934        locations->SetCustomSlowPathCallerSaves(caller_saves);
5935      } else {
5936        // For non-Baker read barrier we have a temp-clobbering call.
5937      }
5938    }
5939  }
5940}
5941
5942void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
5943  LocationSummary* locations = load->GetLocations();
5944  Location out_loc = locations->Out();
5945  Register out = out_loc.AsRegister<Register>();
5946  HLoadString::LoadKind load_kind = load->GetLoadKind();
5947
5948  switch (load_kind) {
5949    case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
5950      __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
5951                                                                      load->GetStringIndex()));
5952      return;  // No dex cache slow path.
5953    }
5954    case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5955      DCHECK(codegen_->GetCompilerOptions().IsBootImage());
5956      CodeGeneratorARM::PcRelativePatchInfo* labels =
5957          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
5958      __ BindTrackedLabel(&labels->movw_label);
5959      __ movw(out, /* placeholder */ 0u);
5960      __ BindTrackedLabel(&labels->movt_label);
5961      __ movt(out, /* placeholder */ 0u);
5962      __ BindTrackedLabel(&labels->add_pc_label);
5963      __ add(out, out, ShifterOperand(PC));
5964      return;  // No dex cache slow path.
5965    }
5966    case HLoadString::LoadKind::kBootImageAddress: {
5967      DCHECK_NE(load->GetAddress(), 0u);
5968      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
5969      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5970      return;  // No dex cache slow path.
5971    }
5972    case HLoadString::LoadKind::kBssEntry: {
5973      DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5974      Register temp = locations->GetTemp(0).AsRegister<Register>();
5975      CodeGeneratorARM::PcRelativePatchInfo* labels =
5976          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
5977      __ BindTrackedLabel(&labels->movw_label);
5978      __ movw(temp, /* placeholder */ 0u);
5979      __ BindTrackedLabel(&labels->movt_label);
5980      __ movt(temp, /* placeholder */ 0u);
5981      __ BindTrackedLabel(&labels->add_pc_label);
5982      __ add(temp, temp, ShifterOperand(PC));
5983      GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption);
5984      SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
5985      codegen_->AddSlowPath(slow_path);
5986      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5987      __ Bind(slow_path->GetExitLabel());
5988      return;
5989    }
5990    case HLoadString::LoadKind::kJitTableAddress: {
5991      __ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5992                                                                load->GetStringIndex()));
5993      // /* GcRoot<mirror::String> */ out = *out
5994      GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
5995      return;
5996    }
5997    default:
5998      break;
5999  }
6000
6001  // TODO: Consider re-adding the compiler code to do string dex cache lookup again.
6002  DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod);
6003  InvokeRuntimeCallingConvention calling_convention;
6004  DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
6005  __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex());
6006  codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
6007  CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
6008}
6009
6010static int32_t GetExceptionTlsOffset() {
6011  return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
6012}
6013
6014void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
6015  LocationSummary* locations =
6016      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6017  locations->SetOut(Location::RequiresRegister());
6018}
6019
6020void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
6021  Register out = load->GetLocations()->Out().AsRegister<Register>();
6022  __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
6023}
6024
6025void LocationsBuilderARM::VisitClearException(HClearException* clear) {
6026  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6027}
6028
6029void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6030  __ LoadImmediate(IP, 0);
6031  __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
6032}
6033
6034void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
6035  LocationSummary* locations =
6036      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6037  InvokeRuntimeCallingConvention calling_convention;
6038  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6039}
6040
6041void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
6042  codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6043  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6044}
6045
6046// Temp is used for read barrier.
6047static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
6048  if (kEmitCompilerReadBarrier &&
6049       (kUseBakerReadBarrier ||
6050          type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6051          type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6052          type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
6053    return 1;
6054  }
6055  return 0;
6056}
6057
6058// Interface case has 3 temps, one for holding the number of interfaces, one for the current
6059// interface pointer, one for loading the current interface.
6060// The other checks have one temp for loading the object's class.
6061static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
6062  if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
6063    return 3;
6064  }
6065  return 1 + NumberOfInstanceOfTemps(type_check_kind);
6066}
6067
6068void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
6069  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6070  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6071  bool baker_read_barrier_slow_path = false;
6072  switch (type_check_kind) {
6073    case TypeCheckKind::kExactCheck:
6074    case TypeCheckKind::kAbstractClassCheck:
6075    case TypeCheckKind::kClassHierarchyCheck:
6076    case TypeCheckKind::kArrayObjectCheck:
6077      call_kind =
6078          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6079      baker_read_barrier_slow_path = kUseBakerReadBarrier;
6080      break;
6081    case TypeCheckKind::kArrayCheck:
6082    case TypeCheckKind::kUnresolvedCheck:
6083    case TypeCheckKind::kInterfaceCheck:
6084      call_kind = LocationSummary::kCallOnSlowPath;
6085      break;
6086  }
6087
6088  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6089  if (baker_read_barrier_slow_path) {
6090    locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6091  }
6092  locations->SetInAt(0, Location::RequiresRegister());
6093  locations->SetInAt(1, Location::RequiresRegister());
6094  // The "out" register is used as a temporary, so it overlaps with the inputs.
6095  // Note that TypeCheckSlowPathARM uses this register too.
6096  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
6097  locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
6098}
6099
6100void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
6101  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6102  LocationSummary* locations = instruction->GetLocations();
6103  Location obj_loc = locations->InAt(0);
6104  Register obj = obj_loc.AsRegister<Register>();
6105  Register cls = locations->InAt(1).AsRegister<Register>();
6106  Location out_loc = locations->Out();
6107  Register out = out_loc.AsRegister<Register>();
6108  const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
6109  DCHECK_LE(num_temps, 1u);
6110  Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
6111  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6112  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6113  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6114  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6115  Label done, zero;
6116  SlowPathCodeARM* slow_path = nullptr;
6117
6118  // Return 0 if `obj` is null.
6119  // avoid null check if we know obj is not null.
6120  if (instruction->MustDoNullCheck()) {
6121    __ CompareAndBranchIfZero(obj, &zero);
6122  }
6123
6124  // /* HeapReference<Class> */ out = obj->klass_
6125  GenerateReferenceLoadTwoRegisters(instruction,
6126                                    out_loc,
6127                                    obj_loc,
6128                                    class_offset,
6129                                    maybe_temp_loc,
6130                                    kCompilerReadBarrierOption);
6131
6132  switch (type_check_kind) {
6133    case TypeCheckKind::kExactCheck: {
6134      __ cmp(out, ShifterOperand(cls));
6135      // Classes must be equal for the instanceof to succeed.
6136      __ b(&zero, NE);
6137      __ LoadImmediate(out, 1);
6138      __ b(&done);
6139      break;
6140    }
6141
6142    case TypeCheckKind::kAbstractClassCheck: {
6143      // If the class is abstract, we eagerly fetch the super class of the
6144      // object to avoid doing a comparison we know will fail.
6145      Label loop;
6146      __ Bind(&loop);
6147      // /* HeapReference<Class> */ out = out->super_class_
6148      GenerateReferenceLoadOneRegister(instruction,
6149                                       out_loc,
6150                                       super_offset,
6151                                       maybe_temp_loc,
6152                                       kCompilerReadBarrierOption);
6153      // If `out` is null, we use it for the result, and jump to `done`.
6154      __ CompareAndBranchIfZero(out, &done);
6155      __ cmp(out, ShifterOperand(cls));
6156      __ b(&loop, NE);
6157      __ LoadImmediate(out, 1);
6158      if (zero.IsLinked()) {
6159        __ b(&done);
6160      }
6161      break;
6162    }
6163
6164    case TypeCheckKind::kClassHierarchyCheck: {
6165      // Walk over the class hierarchy to find a match.
6166      Label loop, success;
6167      __ Bind(&loop);
6168      __ cmp(out, ShifterOperand(cls));
6169      __ b(&success, EQ);
6170      // /* HeapReference<Class> */ out = out->super_class_
6171      GenerateReferenceLoadOneRegister(instruction,
6172                                       out_loc,
6173                                       super_offset,
6174                                       maybe_temp_loc,
6175                                       kCompilerReadBarrierOption);
6176      __ CompareAndBranchIfNonZero(out, &loop);
6177      // If `out` is null, we use it for the result, and jump to `done`.
6178      __ b(&done);
6179      __ Bind(&success);
6180      __ LoadImmediate(out, 1);
6181      if (zero.IsLinked()) {
6182        __ b(&done);
6183      }
6184      break;
6185    }
6186
6187    case TypeCheckKind::kArrayObjectCheck: {
6188      // Do an exact check.
6189      Label exact_check;
6190      __ cmp(out, ShifterOperand(cls));
6191      __ b(&exact_check, EQ);
6192      // Otherwise, we need to check that the object's class is a non-primitive array.
6193      // /* HeapReference<Class> */ out = out->component_type_
6194      GenerateReferenceLoadOneRegister(instruction,
6195                                       out_loc,
6196                                       component_offset,
6197                                       maybe_temp_loc,
6198                                       kCompilerReadBarrierOption);
6199      // If `out` is null, we use it for the result, and jump to `done`.
6200      __ CompareAndBranchIfZero(out, &done);
6201      __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
6202      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
6203      __ CompareAndBranchIfNonZero(out, &zero);
6204      __ Bind(&exact_check);
6205      __ LoadImmediate(out, 1);
6206      __ b(&done);
6207      break;
6208    }
6209
6210    case TypeCheckKind::kArrayCheck: {
6211      __ cmp(out, ShifterOperand(cls));
6212      DCHECK(locations->OnlyCallsOnSlowPath());
6213      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6214                                                                    /* is_fatal */ false);
6215      codegen_->AddSlowPath(slow_path);
6216      __ b(slow_path->GetEntryLabel(), NE);
6217      __ LoadImmediate(out, 1);
6218      if (zero.IsLinked()) {
6219        __ b(&done);
6220      }
6221      break;
6222    }
6223
6224    case TypeCheckKind::kUnresolvedCheck:
6225    case TypeCheckKind::kInterfaceCheck: {
6226      // Note that we indeed only call on slow path, but we always go
6227      // into the slow path for the unresolved and interface check
6228      // cases.
6229      //
6230      // We cannot directly call the InstanceofNonTrivial runtime
6231      // entry point without resorting to a type checking slow path
6232      // here (i.e. by calling InvokeRuntime directly), as it would
6233      // require to assign fixed registers for the inputs of this
6234      // HInstanceOf instruction (following the runtime calling
6235      // convention), which might be cluttered by the potential first
6236      // read barrier emission at the beginning of this method.
6237      //
6238      // TODO: Introduce a new runtime entry point taking the object
6239      // to test (instead of its class) as argument, and let it deal
6240      // with the read barrier issues. This will let us refactor this
6241      // case of the `switch` code as it was previously (with a direct
6242      // call to the runtime not using a type checking slow path).
6243      // This should also be beneficial for the other cases above.
6244      DCHECK(locations->OnlyCallsOnSlowPath());
6245      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6246                                                                    /* is_fatal */ false);
6247      codegen_->AddSlowPath(slow_path);
6248      __ b(slow_path->GetEntryLabel());
6249      if (zero.IsLinked()) {
6250        __ b(&done);
6251      }
6252      break;
6253    }
6254  }
6255
6256  if (zero.IsLinked()) {
6257    __ Bind(&zero);
6258    __ LoadImmediate(out, 0);
6259  }
6260
6261  if (done.IsLinked()) {
6262    __ Bind(&done);
6263  }
6264
6265  if (slow_path != nullptr) {
6266    __ Bind(slow_path->GetExitLabel());
6267  }
6268}
6269
6270void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
6271  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6272  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6273
6274  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6275  switch (type_check_kind) {
6276    case TypeCheckKind::kExactCheck:
6277    case TypeCheckKind::kAbstractClassCheck:
6278    case TypeCheckKind::kClassHierarchyCheck:
6279    case TypeCheckKind::kArrayObjectCheck:
6280      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
6281          LocationSummary::kCallOnSlowPath :
6282          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
6283      break;
6284    case TypeCheckKind::kArrayCheck:
6285    case TypeCheckKind::kUnresolvedCheck:
6286    case TypeCheckKind::kInterfaceCheck:
6287      call_kind = LocationSummary::kCallOnSlowPath;
6288      break;
6289  }
6290
6291  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6292  locations->SetInAt(0, Location::RequiresRegister());
6293  locations->SetInAt(1, Location::RequiresRegister());
6294  locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
6295}
6296
6297void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
6298  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6299  LocationSummary* locations = instruction->GetLocations();
6300  Location obj_loc = locations->InAt(0);
6301  Register obj = obj_loc.AsRegister<Register>();
6302  Register cls = locations->InAt(1).AsRegister<Register>();
6303  Location temp_loc = locations->GetTemp(0);
6304  Register temp = temp_loc.AsRegister<Register>();
6305  const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
6306  DCHECK_LE(num_temps, 3u);
6307  Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
6308  Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
6309  const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6310  const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6311  const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6312  const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6313  const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
6314  const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
6315  const uint32_t object_array_data_offset =
6316      mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
6317
6318  // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
6319  // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
6320  // read barriers is done for performance and code size reasons.
6321  bool is_type_check_slow_path_fatal = false;
6322  if (!kEmitCompilerReadBarrier) {
6323    is_type_check_slow_path_fatal =
6324        (type_check_kind == TypeCheckKind::kExactCheck ||
6325         type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6326         type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6327         type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
6328        !instruction->CanThrowIntoCatchBlock();
6329  }
6330  SlowPathCodeARM* type_check_slow_path =
6331      new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
6332                                                        is_type_check_slow_path_fatal);
6333  codegen_->AddSlowPath(type_check_slow_path);
6334
6335  Label done;
6336  // Avoid null check if we know obj is not null.
6337  if (instruction->MustDoNullCheck()) {
6338    __ CompareAndBranchIfZero(obj, &done);
6339  }
6340
6341  switch (type_check_kind) {
6342    case TypeCheckKind::kExactCheck:
6343    case TypeCheckKind::kArrayCheck: {
6344      // /* HeapReference<Class> */ temp = obj->klass_
6345      GenerateReferenceLoadTwoRegisters(instruction,
6346                                        temp_loc,
6347                                        obj_loc,
6348                                        class_offset,
6349                                        maybe_temp2_loc,
6350                                        kWithoutReadBarrier);
6351
6352      __ cmp(temp, ShifterOperand(cls));
6353      // Jump to slow path for throwing the exception or doing a
6354      // more involved array check.
6355      __ b(type_check_slow_path->GetEntryLabel(), NE);
6356      break;
6357    }
6358
6359    case TypeCheckKind::kAbstractClassCheck: {
6360      // /* HeapReference<Class> */ temp = obj->klass_
6361      GenerateReferenceLoadTwoRegisters(instruction,
6362                                        temp_loc,
6363                                        obj_loc,
6364                                        class_offset,
6365                                        maybe_temp2_loc,
6366                                        kWithoutReadBarrier);
6367
6368      // If the class is abstract, we eagerly fetch the super class of the
6369      // object to avoid doing a comparison we know will fail.
6370      Label loop;
6371      __ Bind(&loop);
6372      // /* HeapReference<Class> */ temp = temp->super_class_
6373      GenerateReferenceLoadOneRegister(instruction,
6374                                       temp_loc,
6375                                       super_offset,
6376                                       maybe_temp2_loc,
6377                                       kWithoutReadBarrier);
6378
6379      // If the class reference currently in `temp` is null, jump to the slow path to throw the
6380      // exception.
6381      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6382
6383      // Otherwise, compare the classes.
6384      __ cmp(temp, ShifterOperand(cls));
6385      __ b(&loop, NE);
6386      break;
6387    }
6388
6389    case TypeCheckKind::kClassHierarchyCheck: {
6390      // /* HeapReference<Class> */ temp = obj->klass_
6391      GenerateReferenceLoadTwoRegisters(instruction,
6392                                        temp_loc,
6393                                        obj_loc,
6394                                        class_offset,
6395                                        maybe_temp2_loc,
6396                                        kWithoutReadBarrier);
6397
6398      // Walk over the class hierarchy to find a match.
6399      Label loop;
6400      __ Bind(&loop);
6401      __ cmp(temp, ShifterOperand(cls));
6402      __ b(&done, EQ);
6403
6404      // /* HeapReference<Class> */ temp = temp->super_class_
6405      GenerateReferenceLoadOneRegister(instruction,
6406                                       temp_loc,
6407                                       super_offset,
6408                                       maybe_temp2_loc,
6409                                       kWithoutReadBarrier);
6410
6411      // If the class reference currently in `temp` is null, jump to the slow path to throw the
6412      // exception.
6413      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6414      // Otherwise, jump to the beginning of the loop.
6415      __ b(&loop);
6416      break;
6417    }
6418
6419    case TypeCheckKind::kArrayObjectCheck: {
6420      // /* HeapReference<Class> */ temp = obj->klass_
6421      GenerateReferenceLoadTwoRegisters(instruction,
6422                                        temp_loc,
6423                                        obj_loc,
6424                                        class_offset,
6425                                        maybe_temp2_loc,
6426                                        kWithoutReadBarrier);
6427
6428      // Do an exact check.
6429      __ cmp(temp, ShifterOperand(cls));
6430      __ b(&done, EQ);
6431
6432      // Otherwise, we need to check that the object's class is a non-primitive array.
6433      // /* HeapReference<Class> */ temp = temp->component_type_
6434      GenerateReferenceLoadOneRegister(instruction,
6435                                       temp_loc,
6436                                       component_offset,
6437                                       maybe_temp2_loc,
6438                                       kWithoutReadBarrier);
6439      // If the component type is null, jump to the slow path to throw the exception.
6440      __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
6441      // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
6442      // to further check that this component type is not a primitive type.
6443      __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
6444      static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
6445      __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
6446      break;
6447    }
6448
6449    case TypeCheckKind::kUnresolvedCheck:
6450      // We always go into the type check slow path for the unresolved check case.
6451      // We cannot directly call the CheckCast runtime entry point
6452      // without resorting to a type checking slow path here (i.e. by
6453      // calling InvokeRuntime directly), as it would require to
6454      // assign fixed registers for the inputs of this HInstanceOf
6455      // instruction (following the runtime calling convention), which
6456      // might be cluttered by the potential first read barrier
6457      // emission at the beginning of this method.
6458
6459      __ b(type_check_slow_path->GetEntryLabel());
6460      break;
6461
6462    case TypeCheckKind::kInterfaceCheck: {
6463      // Avoid read barriers to improve performance of the fast path. We can not get false
6464      // positives by doing this.
6465      // /* HeapReference<Class> */ temp = obj->klass_
6466      GenerateReferenceLoadTwoRegisters(instruction,
6467                                        temp_loc,
6468                                        obj_loc,
6469                                        class_offset,
6470                                        maybe_temp2_loc,
6471                                        kWithoutReadBarrier);
6472
6473      // /* HeapReference<Class> */ temp = temp->iftable_
6474      GenerateReferenceLoadTwoRegisters(instruction,
6475                                        temp_loc,
6476                                        temp_loc,
6477                                        iftable_offset,
6478                                        maybe_temp2_loc,
6479                                        kWithoutReadBarrier);
6480      Label is_null;
6481      // Null iftable means it is empty and will always fail the check.
6482      // Not cbz since the temp may not be a low register.
6483      __ CompareAndBranchIfZero(temp, &is_null);
6484
6485      // Loop through the iftable and check if any class matches.
6486      __ ldr(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
6487
6488      Label start_loop;
6489      __ Bind(&start_loop);
6490      __ ldr(maybe_temp3_loc.AsRegister<Register>(), Address(temp, object_array_data_offset));
6491      __ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister<Register>());
6492      __ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister<Register>()));
6493      __ b(&done, EQ);  // Return if same class.
6494      // Go to next interface.
6495      __ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize));
6496      __ sub(maybe_temp2_loc.AsRegister<Register>(),
6497             maybe_temp2_loc.AsRegister<Register>(),
6498             ShifterOperand(2));
6499      // Not cbnz since the temp may not be a low register.
6500      __ CompareAndBranchIfNonZero(maybe_temp2_loc.AsRegister<Register>(), &start_loop);
6501      __ Bind(&is_null);
6502
6503      __ b(type_check_slow_path->GetEntryLabel());
6504      break;
6505    }
6506  }
6507  __ Bind(&done);
6508
6509  __ Bind(type_check_slow_path->GetExitLabel());
6510}
6511
6512void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6513  LocationSummary* locations =
6514      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6515  InvokeRuntimeCallingConvention calling_convention;
6516  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6517}
6518
6519void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
6520  codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
6521                          instruction,
6522                          instruction->GetDexPc());
6523  if (instruction->IsEnter()) {
6524    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6525  } else {
6526    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6527  }
6528}
6529
6530void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
6531void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
6532void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }
6533
6534void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
6535  LocationSummary* locations =
6536      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6537  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6538         || instruction->GetResultType() == Primitive::kPrimLong);
6539  // Note: GVN reorders commutative operations to have the constant on the right hand side.
6540  locations->SetInAt(0, Location::RequiresRegister());
6541  locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
6542  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6543}
6544
6545void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
6546  HandleBitwiseOperation(instruction);
6547}
6548
6549void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
6550  HandleBitwiseOperation(instruction);
6551}
6552
6553void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
6554  HandleBitwiseOperation(instruction);
6555}
6556
6557
6558void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6559  LocationSummary* locations =
6560      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6561  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6562         || instruction->GetResultType() == Primitive::kPrimLong);
6563
6564  locations->SetInAt(0, Location::RequiresRegister());
6565  locations->SetInAt(1, Location::RequiresRegister());
6566  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6567}
6568
6569void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
6570  LocationSummary* locations = instruction->GetLocations();
6571  Location first = locations->InAt(0);
6572  Location second = locations->InAt(1);
6573  Location out = locations->Out();
6574
6575  if (instruction->GetResultType() == Primitive::kPrimInt) {
6576    Register first_reg = first.AsRegister<Register>();
6577    ShifterOperand second_reg(second.AsRegister<Register>());
6578    Register out_reg = out.AsRegister<Register>();
6579
6580    switch (instruction->GetOpKind()) {
6581      case HInstruction::kAnd:
6582        __ bic(out_reg, first_reg, second_reg);
6583        break;
6584      case HInstruction::kOr:
6585        __ orn(out_reg, first_reg, second_reg);
6586        break;
6587      // There is no EON on arm.
6588      case HInstruction::kXor:
6589      default:
6590        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6591        UNREACHABLE();
6592    }
6593    return;
6594
6595  } else {
6596    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6597    Register first_low = first.AsRegisterPairLow<Register>();
6598    Register first_high = first.AsRegisterPairHigh<Register>();
6599    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6600    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6601    Register out_low = out.AsRegisterPairLow<Register>();
6602    Register out_high = out.AsRegisterPairHigh<Register>();
6603
6604    switch (instruction->GetOpKind()) {
6605      case HInstruction::kAnd:
6606        __ bic(out_low, first_low, second_low);
6607        __ bic(out_high, first_high, second_high);
6608        break;
6609      case HInstruction::kOr:
6610        __ orn(out_low, first_low, second_low);
6611        __ orn(out_high, first_high, second_high);
6612        break;
6613      // There is no EON on arm.
6614      case HInstruction::kXor:
6615      default:
6616        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
6617        UNREACHABLE();
6618    }
6619  }
6620}
6621
6622void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
6623  // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
6624  if (value == 0xffffffffu) {
6625    if (out != first) {
6626      __ mov(out, ShifterOperand(first));
6627    }
6628    return;
6629  }
6630  if (value == 0u) {
6631    __ mov(out, ShifterOperand(0));
6632    return;
6633  }
6634  ShifterOperand so;
6635  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
6636    __ and_(out, first, so);
6637  } else {
6638    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so));
6639    __ bic(out, first, ShifterOperand(~value));
6640  }
6641}
6642
6643void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
6644  // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
6645  if (value == 0u) {
6646    if (out != first) {
6647      __ mov(out, ShifterOperand(first));
6648    }
6649    return;
6650  }
6651  if (value == 0xffffffffu) {
6652    __ mvn(out, ShifterOperand(0));
6653    return;
6654  }
6655  ShifterOperand so;
6656  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
6657    __ orr(out, first, so);
6658  } else {
6659    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
6660    __ orn(out, first, ShifterOperand(~value));
6661  }
6662}
6663
6664void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
6665  // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
6666  if (value == 0u) {
6667    if (out != first) {
6668      __ mov(out, ShifterOperand(first));
6669    }
6670    return;
6671  }
6672  __ eor(out, first, ShifterOperand(value));
6673}
6674
6675void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out,
6676                                                       Location first,
6677                                                       uint64_t value) {
6678  Register out_low = out.AsRegisterPairLow<Register>();
6679  Register out_high = out.AsRegisterPairHigh<Register>();
6680  Register first_low = first.AsRegisterPairLow<Register>();
6681  Register first_high = first.AsRegisterPairHigh<Register>();
6682  uint32_t value_low = Low32Bits(value);
6683  uint32_t value_high = High32Bits(value);
6684  if (value_low == 0u) {
6685    if (out_low != first_low) {
6686      __ mov(out_low, ShifterOperand(first_low));
6687    }
6688    __ AddConstant(out_high, first_high, value_high);
6689    return;
6690  }
6691  __ AddConstantSetFlags(out_low, first_low, value_low);
6692  ShifterOperand so;
6693  if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) {
6694    __ adc(out_high, first_high, so);
6695  } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) {
6696    __ sbc(out_high, first_high, so);
6697  } else {
6698    LOG(FATAL) << "Unexpected constant " << value_high;
6699    UNREACHABLE();
6700  }
6701}
6702
6703void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
6704  LocationSummary* locations = instruction->GetLocations();
6705  Location first = locations->InAt(0);
6706  Location second = locations->InAt(1);
6707  Location out = locations->Out();
6708
6709  if (second.IsConstant()) {
6710    uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
6711    uint32_t value_low = Low32Bits(value);
6712    if (instruction->GetResultType() == Primitive::kPrimInt) {
6713      Register first_reg = first.AsRegister<Register>();
6714      Register out_reg = out.AsRegister<Register>();
6715      if (instruction->IsAnd()) {
6716        GenerateAndConst(out_reg, first_reg, value_low);
6717      } else if (instruction->IsOr()) {
6718        GenerateOrrConst(out_reg, first_reg, value_low);
6719      } else {
6720        DCHECK(instruction->IsXor());
6721        GenerateEorConst(out_reg, first_reg, value_low);
6722      }
6723    } else {
6724      DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6725      uint32_t value_high = High32Bits(value);
6726      Register first_low = first.AsRegisterPairLow<Register>();
6727      Register first_high = first.AsRegisterPairHigh<Register>();
6728      Register out_low = out.AsRegisterPairLow<Register>();
6729      Register out_high = out.AsRegisterPairHigh<Register>();
6730      if (instruction->IsAnd()) {
6731        GenerateAndConst(out_low, first_low, value_low);
6732        GenerateAndConst(out_high, first_high, value_high);
6733      } else if (instruction->IsOr()) {
6734        GenerateOrrConst(out_low, first_low, value_low);
6735        GenerateOrrConst(out_high, first_high, value_high);
6736      } else {
6737        DCHECK(instruction->IsXor());
6738        GenerateEorConst(out_low, first_low, value_low);
6739        GenerateEorConst(out_high, first_high, value_high);
6740      }
6741    }
6742    return;
6743  }
6744
6745  if (instruction->GetResultType() == Primitive::kPrimInt) {
6746    Register first_reg = first.AsRegister<Register>();
6747    ShifterOperand second_reg(second.AsRegister<Register>());
6748    Register out_reg = out.AsRegister<Register>();
6749    if (instruction->IsAnd()) {
6750      __ and_(out_reg, first_reg, second_reg);
6751    } else if (instruction->IsOr()) {
6752      __ orr(out_reg, first_reg, second_reg);
6753    } else {
6754      DCHECK(instruction->IsXor());
6755      __ eor(out_reg, first_reg, second_reg);
6756    }
6757  } else {
6758    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6759    Register first_low = first.AsRegisterPairLow<Register>();
6760    Register first_high = first.AsRegisterPairHigh<Register>();
6761    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6762    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6763    Register out_low = out.AsRegisterPairLow<Register>();
6764    Register out_high = out.AsRegisterPairHigh<Register>();
6765    if (instruction->IsAnd()) {
6766      __ and_(out_low, first_low, second_low);
6767      __ and_(out_high, first_high, second_high);
6768    } else if (instruction->IsOr()) {
6769      __ orr(out_low, first_low, second_low);
6770      __ orr(out_high, first_high, second_high);
6771    } else {
6772      DCHECK(instruction->IsXor());
6773      __ eor(out_low, first_low, second_low);
6774      __ eor(out_high, first_high, second_high);
6775    }
6776  }
6777}
6778
6779void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(
6780    HInstruction* instruction,
6781    Location out,
6782    uint32_t offset,
6783    Location maybe_temp,
6784    ReadBarrierOption read_barrier_option) {
6785  Register out_reg = out.AsRegister<Register>();
6786  if (read_barrier_option == kWithReadBarrier) {
6787    CHECK(kEmitCompilerReadBarrier);
6788    DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6789    if (kUseBakerReadBarrier) {
6790      // Load with fast path based Baker's read barrier.
6791      // /* HeapReference<Object> */ out = *(out + offset)
6792      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6793          instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6794    } else {
6795      // Load with slow path based read barrier.
6796      // Save the value of `out` into `maybe_temp` before overwriting it
6797      // in the following move operation, as we will need it for the
6798      // read barrier below.
6799      __ Mov(maybe_temp.AsRegister<Register>(), out_reg);
6800      // /* HeapReference<Object> */ out = *(out + offset)
6801      __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6802      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6803    }
6804  } else {
6805    // Plain load with no read barrier.
6806    // /* HeapReference<Object> */ out = *(out + offset)
6807    __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6808    __ MaybeUnpoisonHeapReference(out_reg);
6809  }
6810}
6811
6812void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(
6813    HInstruction* instruction,
6814    Location out,
6815    Location obj,
6816    uint32_t offset,
6817    Location maybe_temp,
6818    ReadBarrierOption read_barrier_option) {
6819  Register out_reg = out.AsRegister<Register>();
6820  Register obj_reg = obj.AsRegister<Register>();
6821  if (read_barrier_option == kWithReadBarrier) {
6822    CHECK(kEmitCompilerReadBarrier);
6823    if (kUseBakerReadBarrier) {
6824      DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6825      // Load with fast path based Baker's read barrier.
6826      // /* HeapReference<Object> */ out = *(obj + offset)
6827      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6828          instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6829    } else {
6830      // Load with slow path based read barrier.
6831      // /* HeapReference<Object> */ out = *(obj + offset)
6832      __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6833      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6834    }
6835  } else {
6836    // Plain load with no read barrier.
6837    // /* HeapReference<Object> */ out = *(obj + offset)
6838    __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6839    __ MaybeUnpoisonHeapReference(out_reg);
6840  }
6841}
6842
6843void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
6844                                                          Location root,
6845                                                          Register obj,
6846                                                          uint32_t offset,
6847                                                          ReadBarrierOption read_barrier_option) {
6848  Register root_reg = root.AsRegister<Register>();
6849  if (read_barrier_option == kWithReadBarrier) {
6850    DCHECK(kEmitCompilerReadBarrier);
6851    if (kUseBakerReadBarrier) {
6852      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6853      // Baker's read barrier are used:
6854      //
6855      //   root = obj.field;
6856      //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
6857      //   if (temp != null) {
6858      //     root = temp(root)
6859      //   }
6860
6861      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6862      __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6863      static_assert(
6864          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6865          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6866          "have different sizes.");
6867      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6868                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
6869                    "have different sizes.");
6870
6871      // Slow path marking the GC root `root`.
6872      Location temp = Location::RegisterLocation(LR);
6873      SlowPathCodeARM* slow_path =
6874          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(
6875              instruction,
6876              root,
6877              /*entrypoint*/ temp);
6878      codegen_->AddSlowPath(slow_path);
6879
6880      // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
6881      const int32_t entry_point_offset =
6882          CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg());
6883      // Loading the entrypoint does not require a load acquire since it is only changed when
6884      // threads are suspended or running a checkpoint.
6885      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
6886      // The entrypoint is null when the GC is not marking, this prevents one load compared to
6887      // checking GetIsGcMarking.
6888      __ CompareAndBranchIfNonZero(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
6889      __ Bind(slow_path->GetExitLabel());
6890    } else {
6891      // GC root loaded through a slow path for read barriers other
6892      // than Baker's.
6893      // /* GcRoot<mirror::Object>* */ root = obj + offset
6894      __ AddConstant(root_reg, obj, offset);
6895      // /* mirror::Object* */ root = root->Read()
6896      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6897    }
6898  } else {
6899    // Plain GC root load with no read barrier.
6900    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6901    __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6902    // Note that GC roots are not affected by heap poisoning, thus we
6903    // do not have to unpoison `root_reg` here.
6904  }
6905}
6906
6907void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6908                                                             Location ref,
6909                                                             Register obj,
6910                                                             uint32_t offset,
6911                                                             Location temp,
6912                                                             bool needs_null_check) {
6913  DCHECK(kEmitCompilerReadBarrier);
6914  DCHECK(kUseBakerReadBarrier);
6915
6916  // /* HeapReference<Object> */ ref = *(obj + offset)
6917  Location no_index = Location::NoLocation();
6918  ScaleFactor no_scale_factor = TIMES_1;
6919  GenerateReferenceLoadWithBakerReadBarrier(
6920      instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
6921}
6922
6923void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6924                                                             Location ref,
6925                                                             Register obj,
6926                                                             uint32_t data_offset,
6927                                                             Location index,
6928                                                             Location temp,
6929                                                             bool needs_null_check) {
6930  DCHECK(kEmitCompilerReadBarrier);
6931  DCHECK(kUseBakerReadBarrier);
6932
6933  static_assert(
6934      sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6935      "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6936  // /* HeapReference<Object> */ ref =
6937  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6938  ScaleFactor scale_factor = TIMES_4;
6939  GenerateReferenceLoadWithBakerReadBarrier(
6940      instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
6941}
6942
6943void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6944                                                                 Location ref,
6945                                                                 Register obj,
6946                                                                 uint32_t offset,
6947                                                                 Location index,
6948                                                                 ScaleFactor scale_factor,
6949                                                                 Location temp,
6950                                                                 bool needs_null_check,
6951                                                                 bool always_update_field,
6952                                                                 Register* temp2) {
6953  DCHECK(kEmitCompilerReadBarrier);
6954  DCHECK(kUseBakerReadBarrier);
6955
6956  // In slow path based read barriers, the read barrier call is
6957  // inserted after the original load. However, in fast path based
6958  // Baker's read barriers, we need to perform the load of
6959  // mirror::Object::monitor_ *before* the original reference load.
6960  // This load-load ordering is required by the read barrier.
6961  // The fast path/slow path (for Baker's algorithm) should look like:
6962  //
6963  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6964  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6965  //   HeapReference<Object> ref = *src;  // Original reference load.
6966  //   bool is_gray = (rb_state == ReadBarrier::GrayState());
6967  //   if (is_gray) {
6968  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6969  //   }
6970  //
6971  // Note: the original implementation in ReadBarrier::Barrier is
6972  // slightly more complex as it performs additional checks that we do
6973  // not do here for performance reasons.
6974
6975  Register ref_reg = ref.AsRegister<Register>();
6976  Register temp_reg = temp.AsRegister<Register>();
6977  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6978
6979  // /* int32_t */ monitor = obj->monitor_
6980  __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
6981  if (needs_null_check) {
6982    MaybeRecordImplicitNullCheck(instruction);
6983  }
6984  // /* LockWord */ lock_word = LockWord(monitor)
6985  static_assert(sizeof(LockWord) == sizeof(int32_t),
6986                "art::LockWord and int32_t have different sizes.");
6987
6988  // Introduce a dependency on the lock_word including the rb_state,
6989  // which shall prevent load-load reordering without using
6990  // a memory barrier (which would be more expensive).
6991  // `obj` is unchanged by this operation, but its value now depends
6992  // on `temp_reg`.
6993  __ add(obj, obj, ShifterOperand(temp_reg, LSR, 32));
6994
6995  // The actual reference load.
6996  if (index.IsValid()) {
6997    // Load types involving an "index": ArrayGet,
6998    // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
6999    // intrinsics.
7000    // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
7001    if (index.IsConstant()) {
7002      size_t computed_offset =
7003          (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
7004      __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
7005    } else {
7006      // Handle the special case of the
7007      // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
7008      // intrinsics, which use a register pair as index ("long
7009      // offset"), of which only the low part contains data.
7010      Register index_reg = index.IsRegisterPair()
7011          ? index.AsRegisterPairLow<Register>()
7012          : index.AsRegister<Register>();
7013      __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor));
7014      __ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
7015    }
7016  } else {
7017    // /* HeapReference<Object> */ ref = *(obj + offset)
7018    __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
7019  }
7020
7021  // Object* ref = ref_addr->AsMirrorPtr()
7022  __ MaybeUnpoisonHeapReference(ref_reg);
7023
7024  // Slow path marking the object `ref` when it is gray.
7025  SlowPathCodeARM* slow_path;
7026  if (always_update_field) {
7027    DCHECK(temp2 != nullptr);
7028    // ReadBarrierMarkAndUpdateFieldSlowPathARM only supports address
7029    // of the form `obj + field_offset`, where `obj` is a register and
7030    // `field_offset` is a register pair (of which only the lower half
7031    // is used). Thus `offset` and `scale_factor` above are expected
7032    // to be null in this code path.
7033    DCHECK_EQ(offset, 0u);
7034    DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
7035    slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathARM(
7036        instruction, ref, obj, /* field_offset */ index, temp_reg, *temp2);
7037  } else {
7038    slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref);
7039  }
7040  AddSlowPath(slow_path);
7041
7042  // if (rb_state == ReadBarrier::GrayState())
7043  //   ref = ReadBarrier::Mark(ref);
7044  // Given the numeric representation, it's enough to check the low bit of the
7045  // rb_state. We do that by shifting the bit out of the lock word with LSRS
7046  // which can be a 16-bit instruction unlike the TST immediate.
7047  static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
7048  static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7049  __ Lsrs(temp_reg, temp_reg, LockWord::kReadBarrierStateShift + 1);
7050  __ b(slow_path->GetEntryLabel(), CS);  // Carry flag is the last bit shifted out by LSRS.
7051  __ Bind(slow_path->GetExitLabel());
7052}
7053
7054void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
7055                                               Location out,
7056                                               Location ref,
7057                                               Location obj,
7058                                               uint32_t offset,
7059                                               Location index) {
7060  DCHECK(kEmitCompilerReadBarrier);
7061
7062  // Insert a slow path based read barrier *after* the reference load.
7063  //
7064  // If heap poisoning is enabled, the unpoisoning of the loaded
7065  // reference will be carried out by the runtime within the slow
7066  // path.
7067  //
7068  // Note that `ref` currently does not get unpoisoned (when heap
7069  // poisoning is enabled), which is alright as the `ref` argument is
7070  // not used by the artReadBarrierSlow entry point.
7071  //
7072  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7073  SlowPathCodeARM* slow_path = new (GetGraph()->GetArena())
7074      ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
7075  AddSlowPath(slow_path);
7076
7077  __ b(slow_path->GetEntryLabel());
7078  __ Bind(slow_path->GetExitLabel());
7079}
7080
7081void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7082                                                    Location out,
7083                                                    Location ref,
7084                                                    Location obj,
7085                                                    uint32_t offset,
7086                                                    Location index) {
7087  if (kEmitCompilerReadBarrier) {
7088    // Baker's read barriers shall be handled by the fast path
7089    // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
7090    DCHECK(!kUseBakerReadBarrier);
7091    // If heap poisoning is enabled, unpoisoning will be taken care of
7092    // by the runtime within the slow path.
7093    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7094  } else if (kPoisonHeapReferences) {
7095    __ UnpoisonHeapReference(out.AsRegister<Register>());
7096  }
7097}
7098
7099void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7100                                                      Location out,
7101                                                      Location root) {
7102  DCHECK(kEmitCompilerReadBarrier);
7103
7104  // Insert a slow path based read barrier *after* the GC root load.
7105  //
7106  // Note that GC roots are not affected by heap poisoning, so we do
7107  // not need to do anything special for this here.
7108  SlowPathCodeARM* slow_path =
7109      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
7110  AddSlowPath(slow_path);
7111
7112  __ b(slow_path->GetEntryLabel());
7113  __ Bind(slow_path->GetExitLabel());
7114}
7115
7116HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
7117      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
7118      HInvokeStaticOrDirect* invoke) {
7119  HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
7120  // We disable pc-relative load when there is an irreducible loop, as the optimization
7121  // is incompatible with it.
7122  // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
7123  // with irreducible loops.
7124  if (GetGraph()->HasIrreducibleLoops() &&
7125      (dispatch_info.method_load_kind ==
7126          HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
7127    dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
7128  }
7129
7130  if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) {
7131    const DexFile& outer_dex_file = GetGraph()->GetDexFile();
7132    if (&outer_dex_file != invoke->GetTargetMethod().dex_file) {
7133      // Calls across dex files are more likely to exceed the available BL range,
7134      // so use absolute patch with fixup if available and kCallArtMethod otherwise.
7135      HInvokeStaticOrDirect::CodePtrLocation code_ptr_location =
7136          (desired_dispatch_info.method_load_kind ==
7137           HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup)
7138          ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup
7139          : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
7140      return HInvokeStaticOrDirect::DispatchInfo {
7141        dispatch_info.method_load_kind,
7142        code_ptr_location,
7143        dispatch_info.method_load_data,
7144        0u
7145      };
7146    }
7147  }
7148  return dispatch_info;
7149}
7150
7151Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
7152                                                                 Register temp) {
7153  DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
7154  Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7155  if (!invoke->GetLocations()->Intrinsified()) {
7156    return location.AsRegister<Register>();
7157  }
7158  // For intrinsics we allow any location, so it may be on the stack.
7159  if (!location.IsRegister()) {
7160    __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
7161    return temp;
7162  }
7163  // For register locations, check if the register was saved. If so, get it from the stack.
7164  // Note: There is a chance that the register was saved but not overwritten, so we could
7165  // save one load. However, since this is just an intrinsic slow path we prefer this
7166  // simple and more robust approach rather that trying to determine if that's the case.
7167  SlowPathCode* slow_path = GetCurrentSlowPath();
7168  DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
7169  if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
7170    int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
7171    __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
7172    return temp;
7173  }
7174  return location.AsRegister<Register>();
7175}
7176
7177void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
7178  // For better instruction scheduling we load the direct code pointer before the method pointer.
7179  switch (invoke->GetCodePtrLocation()) {
7180    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
7181      // LR = code address from literal pool with link-time patch.
7182      __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
7183      break;
7184    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
7185      // LR = invoke->GetDirectCodePtr();
7186      __ LoadImmediate(LR, invoke->GetDirectCodePtr());
7187      break;
7188    default:
7189      break;
7190  }
7191
7192  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
7193  switch (invoke->GetMethodLoadKind()) {
7194    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
7195      uint32_t offset =
7196          GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
7197      // temp = thread->string_init_entrypoint
7198      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset);
7199      break;
7200    }
7201    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
7202      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7203      break;
7204    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
7205      __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
7206      break;
7207    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
7208      __ LoadLiteral(temp.AsRegister<Register>(),
7209                     DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
7210      break;
7211    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
7212      HArmDexCacheArraysBase* base =
7213          invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
7214      Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
7215                                                                temp.AsRegister<Register>());
7216      int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
7217      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
7218      break;
7219    }
7220    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
7221      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7222      Register method_reg;
7223      Register reg = temp.AsRegister<Register>();
7224      if (current_method.IsRegister()) {
7225        method_reg = current_method.AsRegister<Register>();
7226      } else {
7227        DCHECK(invoke->GetLocations()->Intrinsified());
7228        DCHECK(!current_method.IsValid());
7229        method_reg = reg;
7230        __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
7231      }
7232      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
7233      __ LoadFromOffset(kLoadWord,
7234                        reg,
7235                        method_reg,
7236                        ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
7237      // temp = temp[index_in_cache];
7238      // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
7239      uint32_t index_in_cache = invoke->GetDexMethodIndex();
7240      __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
7241      break;
7242    }
7243  }
7244
7245  switch (invoke->GetCodePtrLocation()) {
7246    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
7247      __ bl(GetFrameEntryLabel());
7248      break;
7249    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
7250      relative_call_patches_.emplace_back(*invoke->GetTargetMethod().dex_file,
7251                                          invoke->GetTargetMethod().dex_method_index);
7252      __ BindTrackedLabel(&relative_call_patches_.back().label);
7253      // Arbitrarily branch to the BL itself, override at link time.
7254      __ bl(&relative_call_patches_.back().label);
7255      break;
7256    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
7257    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
7258      // LR prepared above for better instruction scheduling.
7259      // LR()
7260      __ blx(LR);
7261      break;
7262    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
7263      // LR = callee_method->entry_point_from_quick_compiled_code_
7264      __ LoadFromOffset(
7265          kLoadWord, LR, callee_method.AsRegister<Register>(),
7266          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
7267      // LR()
7268      __ blx(LR);
7269      break;
7270  }
7271
7272  DCHECK(!IsLeafMethod());
7273}
7274
7275void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
7276  Register temp = temp_location.AsRegister<Register>();
7277  uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7278      invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
7279
7280  // Use the calling convention instead of the location of the receiver, as
7281  // intrinsics may have put the receiver in a different register. In the intrinsics
7282  // slow path, the arguments have been moved to the right place, so here we are
7283  // guaranteed that the receiver is the first register of the calling convention.
7284  InvokeDexCallingConvention calling_convention;
7285  Register receiver = calling_convention.GetRegisterAt(0);
7286  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7287  // /* HeapReference<Class> */ temp = receiver->klass_
7288  __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
7289  MaybeRecordImplicitNullCheck(invoke);
7290  // Instead of simply (possibly) unpoisoning `temp` here, we should
7291  // emit a read barrier for the previous class reference load.
7292  // However this is not required in practice, as this is an
7293  // intermediate/temporary reference and because the current
7294  // concurrent copying collector keeps the from-space memory
7295  // intact/accessible until the end of the marking phase (the
7296  // concurrent copying collector may not in the future).
7297  __ MaybeUnpoisonHeapReference(temp);
7298  // temp = temp->GetMethodAt(method_offset);
7299  uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
7300      kArmPointerSize).Int32Value();
7301  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
7302  // LR = temp->GetEntryPoint();
7303  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
7304  // LR();
7305  __ blx(LR);
7306}
7307
7308CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
7309    const DexFile& dex_file, uint32_t string_index) {
7310  return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
7311}
7312
7313CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch(
7314    const DexFile& dex_file, uint32_t type_index) {
7315  return NewPcRelativePatch(dex_file, type_index, &pc_relative_type_patches_);
7316}
7317
7318CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch(
7319    const DexFile& dex_file, uint32_t element_offset) {
7320  return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
7321}
7322
7323CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
7324    const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
7325  patches->emplace_back(dex_file, offset_or_index);
7326  return &patches->back();
7327}
7328
7329Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
7330                                                             uint32_t string_index) {
7331  return boot_image_string_patches_.GetOrCreate(
7332      StringReference(&dex_file, string_index),
7333      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7334}
7335
7336Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
7337                                                           uint32_t type_index) {
7338  return boot_image_type_patches_.GetOrCreate(
7339      TypeReference(&dex_file, type_index),
7340      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7341}
7342
7343Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
7344  bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
7345  Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
7346  return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
7347}
7348
7349Literal* CodeGeneratorARM::DeduplicateDexCacheAddressLiteral(uint32_t address) {
7350  return DeduplicateUint32Literal(address, &uint32_literals_);
7351}
7352
7353Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file,
7354                                                       uint32_t string_index) {
7355  jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), /* placeholder */ 0u);
7356  return jit_string_patches_.GetOrCreate(
7357      StringReference(&dex_file, string_index),
7358      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7359}
7360
7361template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
7362inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches(
7363    const ArenaDeque<PcRelativePatchInfo>& infos,
7364    ArenaVector<LinkerPatch>* linker_patches) {
7365  for (const PcRelativePatchInfo& info : infos) {
7366    const DexFile& dex_file = info.target_dex_file;
7367    size_t offset_or_index = info.offset_or_index;
7368    DCHECK(info.add_pc_label.IsBound());
7369    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
7370    // Add MOVW patch.
7371    DCHECK(info.movw_label.IsBound());
7372    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
7373    linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
7374    // Add MOVT patch.
7375    DCHECK(info.movt_label.IsBound());
7376    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
7377    linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
7378  }
7379}
7380
7381void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
7382  DCHECK(linker_patches->empty());
7383  size_t size =
7384      method_patches_.size() +
7385      call_patches_.size() +
7386      relative_call_patches_.size() +
7387      /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() +
7388      boot_image_string_patches_.size() +
7389      /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
7390      boot_image_type_patches_.size() +
7391      /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
7392      boot_image_address_patches_.size();
7393  linker_patches->reserve(size);
7394  for (const auto& entry : method_patches_) {
7395    const MethodReference& target_method = entry.first;
7396    Literal* literal = entry.second;
7397    DCHECK(literal->GetLabel()->IsBound());
7398    uint32_t literal_offset = literal->GetLabel()->Position();
7399    linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
7400                                                       target_method.dex_file,
7401                                                       target_method.dex_method_index));
7402  }
7403  for (const auto& entry : call_patches_) {
7404    const MethodReference& target_method = entry.first;
7405    Literal* literal = entry.second;
7406    DCHECK(literal->GetLabel()->IsBound());
7407    uint32_t literal_offset = literal->GetLabel()->Position();
7408    linker_patches->push_back(LinkerPatch::CodePatch(literal_offset,
7409                                                     target_method.dex_file,
7410                                                     target_method.dex_method_index));
7411  }
7412  for (const PatchInfo<Label>& info : relative_call_patches_) {
7413    uint32_t literal_offset = info.label.Position();
7414    linker_patches->push_back(
7415        LinkerPatch::RelativeCodePatch(literal_offset, &info.dex_file, info.index));
7416  }
7417  EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_,
7418                                                               linker_patches);
7419  for (const auto& entry : boot_image_string_patches_) {
7420    const StringReference& target_string = entry.first;
7421    Literal* literal = entry.second;
7422    DCHECK(literal->GetLabel()->IsBound());
7423    uint32_t literal_offset = literal->GetLabel()->Position();
7424    linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
7425                                                       target_string.dex_file,
7426                                                       target_string.string_index));
7427  }
7428  if (!GetCompilerOptions().IsBootImage()) {
7429    EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
7430                                                                  linker_patches);
7431  } else {
7432    EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
7433                                                                  linker_patches);
7434  }
7435  for (const auto& entry : boot_image_type_patches_) {
7436    const TypeReference& target_type = entry.first;
7437    Literal* literal = entry.second;
7438    DCHECK(literal->GetLabel()->IsBound());
7439    uint32_t literal_offset = literal->GetLabel()->Position();
7440    linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
7441                                                     target_type.dex_file,
7442                                                     target_type.type_index));
7443  }
7444  EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
7445                                                              linker_patches);
7446  for (const auto& entry : boot_image_address_patches_) {
7447    DCHECK(GetCompilerOptions().GetIncludePatchInformation());
7448    Literal* literal = entry.second;
7449    DCHECK(literal->GetLabel()->IsBound());
7450    uint32_t literal_offset = literal->GetLabel()->Position();
7451    linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
7452  }
7453}
7454
7455Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
7456  return map->GetOrCreate(
7457      value,
7458      [this, value]() { return __ NewLiteral<uint32_t>(value); });
7459}
7460
7461Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method,
7462                                                    MethodToLiteralMap* map) {
7463  return map->GetOrCreate(
7464      target_method,
7465      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
7466}
7467
7468Literal* CodeGeneratorARM::DeduplicateMethodAddressLiteral(MethodReference target_method) {
7469  return DeduplicateMethodLiteral(target_method, &method_patches_);
7470}
7471
7472Literal* CodeGeneratorARM::DeduplicateMethodCodeLiteral(MethodReference target_method) {
7473  return DeduplicateMethodLiteral(target_method, &call_patches_);
7474}
7475
7476void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7477  LocationSummary* locations =
7478      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
7479  locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
7480                     Location::RequiresRegister());
7481  locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
7482  locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
7483  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
7484}
7485
7486void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
7487  LocationSummary* locations = instr->GetLocations();
7488  Register res = locations->Out().AsRegister<Register>();
7489  Register accumulator =
7490      locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
7491  Register mul_left =
7492      locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
7493  Register mul_right =
7494      locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();
7495
7496  if (instr->GetOpKind() == HInstruction::kAdd) {
7497    __ mla(res, mul_left, mul_right, accumulator);
7498  } else {
7499    __ mls(res, mul_left, mul_right, accumulator);
7500  }
7501}
7502
7503void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7504  // Nothing to do, this should be removed during prepare for register allocator.
7505  LOG(FATAL) << "Unreachable";
7506}
7507
7508void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7509  // Nothing to do, this should be removed during prepare for register allocator.
7510  LOG(FATAL) << "Unreachable";
7511}
7512
7513// Simple implementation of packed switch - generate cascaded compare/jumps.
7514void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7515  LocationSummary* locations =
7516      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7517  locations->SetInAt(0, Location::RequiresRegister());
7518  if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
7519      codegen_->GetAssembler()->IsThumb()) {
7520    locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
7521    if (switch_instr->GetStartValue() != 0) {
7522      locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
7523    }
7524  }
7525}
7526
7527void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7528  int32_t lower_bound = switch_instr->GetStartValue();
7529  uint32_t num_entries = switch_instr->GetNumEntries();
7530  LocationSummary* locations = switch_instr->GetLocations();
7531  Register value_reg = locations->InAt(0).AsRegister<Register>();
7532  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7533
7534  if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
7535    // Create a series of compare/jumps.
7536    Register temp_reg = IP;
7537    // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
7538    // the immediate, because IP is used as the destination register. For the other
7539    // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
7540    // and they can be encoded in the instruction without making use of IP register.
7541    __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);
7542
7543    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7544    // Jump to successors[0] if value == lower_bound.
7545    __ b(codegen_->GetLabelOf(successors[0]), EQ);
7546    int32_t last_index = 0;
7547    for (; num_entries - last_index > 2; last_index += 2) {
7548      __ AddConstantSetFlags(temp_reg, temp_reg, -2);
7549      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
7550      __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
7551      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
7552      __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
7553    }
7554    if (num_entries - last_index == 2) {
7555      // The last missing case_value.
7556      __ CmpConstant(temp_reg, 1);
7557      __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
7558    }
7559
7560    // And the default for any other value.
7561    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
7562      __ b(codegen_->GetLabelOf(default_block));
7563    }
7564  } else {
7565    // Create a table lookup.
7566    Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7567
7568    // Materialize a pointer to the switch table
7569    std::vector<Label*> labels(num_entries);
7570    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
7571    for (uint32_t i = 0; i < num_entries; i++) {
7572      labels[i] = codegen_->GetLabelOf(successors[i]);
7573    }
7574    JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);
7575
7576    // Remove the bias.
7577    Register key_reg;
7578    if (lower_bound != 0) {
7579      key_reg = locations->GetTemp(1).AsRegister<Register>();
7580      __ AddConstant(key_reg, value_reg, -lower_bound);
7581    } else {
7582      key_reg = value_reg;
7583    }
7584
7585    // Check whether the value is in the table, jump to default block if not.
7586    __ CmpConstant(key_reg, num_entries - 1);
7587    __ b(codegen_->GetLabelOf(default_block), Condition::HI);
7588
7589    // Load the displacement from the table.
7590    __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));
7591
7592    // Dispatch is a direct add to the PC (for Thumb2).
7593    __ EmitJumpTableDispatch(table, temp_reg);
7594  }
7595}
7596
7597void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7598  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
7599  locations->SetOut(Location::RequiresRegister());
7600}
7601
7602void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
7603  Register base_reg = base->GetLocations()->Out().AsRegister<Register>();
7604  CodeGeneratorARM::PcRelativePatchInfo* labels =
7605      codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
7606  __ BindTrackedLabel(&labels->movw_label);
7607  __ movw(base_reg, /* placeholder */ 0u);
7608  __ BindTrackedLabel(&labels->movt_label);
7609  __ movt(base_reg, /* placeholder */ 0u);
7610  __ BindTrackedLabel(&labels->add_pc_label);
7611  __ add(base_reg, base_reg, ShifterOperand(PC));
7612}
7613
7614void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
7615  if (!trg.IsValid()) {
7616    DCHECK_EQ(type, Primitive::kPrimVoid);
7617    return;
7618  }
7619
7620  DCHECK_NE(type, Primitive::kPrimVoid);
7621
7622  Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
7623  if (return_loc.Equals(trg)) {
7624    return;
7625  }
7626
7627  // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7628  //       with the last branch.
7629  if (type == Primitive::kPrimLong) {
7630    HParallelMove parallel_move(GetGraph()->GetArena());
7631    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
7632    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
7633    GetMoveResolver()->EmitNativeCode(&parallel_move);
7634  } else if (type == Primitive::kPrimDouble) {
7635    HParallelMove parallel_move(GetGraph()->GetArena());
7636    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
7637    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
7638    GetMoveResolver()->EmitNativeCode(&parallel_move);
7639  } else {
7640    // Let the parallel move resolver take care of all of this.
7641    HParallelMove parallel_move(GetGraph()->GetArena());
7642    parallel_move.AddMove(return_loc, trg, type, nullptr);
7643    GetMoveResolver()->EmitNativeCode(&parallel_move);
7644  }
7645}
7646
7647void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
7648  LocationSummary* locations =
7649      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
7650  locations->SetInAt(0, Location::RequiresRegister());
7651  locations->SetOut(Location::RequiresRegister());
7652}
7653
7654void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
7655  LocationSummary* locations = instruction->GetLocations();
7656  if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7657    uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7658        instruction->GetIndex(), kArmPointerSize).SizeValue();
7659    __ LoadFromOffset(kLoadWord,
7660                      locations->Out().AsRegister<Register>(),
7661                      locations->InAt(0).AsRegister<Register>(),
7662                      method_offset);
7663  } else {
7664    uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7665        instruction->GetIndex(), kArmPointerSize));
7666    __ LoadFromOffset(kLoadWord,
7667                      locations->Out().AsRegister<Register>(),
7668                      locations->InAt(0).AsRegister<Register>(),
7669                      mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
7670    __ LoadFromOffset(kLoadWord,
7671                      locations->Out().AsRegister<Register>(),
7672                      locations->Out().AsRegister<Register>(),
7673                      method_offset);
7674  }
7675}
7676
7677void CodeGeneratorARM::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
7678  for (const auto& entry : jit_string_patches_) {
7679    const auto& it = jit_string_roots_.find(entry.first);
7680    DCHECK(it != jit_string_roots_.end());
7681    size_t index_in_table = it->second;
7682    Literal* literal = entry.second;
7683    DCHECK(literal->GetLabel()->IsBound());
7684    uint32_t literal_offset = literal->GetLabel()->Position();
7685    uintptr_t address =
7686        reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
7687    uint8_t* data = code + literal_offset;
7688    reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
7689  }
7690}
7691
7692#undef __
7693#undef QUICK_ENTRY_POINT
7694
7695}  // namespace arm
7696}  // namespace art
7697