code_generator_arm.cc revision 88f288e3564d79d87c0cd8bb831ec5a791ba4861
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "code_generator_arm.h"
18
19#include "arch/arm/instruction_set_features_arm.h"
20#include "art_method.h"
21#include "code_generator_utils.h"
22#include "compiled_method.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "gc/accounting/card_table.h"
25#include "intrinsics.h"
26#include "intrinsics_arm.h"
27#include "mirror/array-inl.h"
28#include "mirror/class-inl.h"
29#include "thread.h"
30#include "utils/arm/assembler_arm.h"
31#include "utils/arm/managed_register_arm.h"
32#include "utils/assembler.h"
33#include "utils/stack_checks.h"
34
35namespace art {
36
37template<class MirrorType>
38class GcRoot;
39
40namespace arm {
41
42static bool ExpectedPairLayout(Location location) {
43  // We expected this for both core and fpu register pairs.
44  return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
45}
46
47static constexpr int kCurrentMethodStackOffset = 0;
48static constexpr Register kMethodRegisterArgument = R0;
49
50static constexpr Register kCoreAlwaysSpillRegister = R5;
51static constexpr Register kCoreCalleeSaves[] =
52    { R5, R6, R7, R8, R10, R11, LR };
53static constexpr SRegister kFpuCalleeSaves[] =
54    { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
55
56// D31 cannot be split into two S registers, and the register allocator only works on
57// S registers. Therefore there is no need to block it.
58static constexpr DRegister DTMP = D31;
59
60static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
61
62// NOLINT on __ macro to suppress wrong warning/fix from clang-tidy.
63#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())-> // NOLINT
64#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmWordSize, x).Int32Value()
65
66class NullCheckSlowPathARM : public SlowPathCode {
67 public:
68  explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCode(instruction) {}
69
70  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
71    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
72    __ Bind(GetEntryLabel());
73    if (instruction_->CanThrowIntoCatchBlock()) {
74      // Live registers will be restored in the catch block if caught.
75      SaveLiveRegisters(codegen, instruction_->GetLocations());
76    }
77    arm_codegen->InvokeRuntime(
78        QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
79    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
80  }
81
82  bool IsFatal() const OVERRIDE { return true; }
83
84  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }
85
86 private:
87  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
88};
89
90class DivZeroCheckSlowPathARM : public SlowPathCode {
91 public:
92  explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
93
94  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
95    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
96    __ Bind(GetEntryLabel());
97    if (instruction_->CanThrowIntoCatchBlock()) {
98      // Live registers will be restored in the catch block if caught.
99      SaveLiveRegisters(codegen, instruction_->GetLocations());
100    }
101    arm_codegen->InvokeRuntime(
102        QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
103    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
104  }
105
106  bool IsFatal() const OVERRIDE { return true; }
107
108  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }
109
110 private:
111  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
112};
113
114class SuspendCheckSlowPathARM : public SlowPathCode {
115 public:
116  SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
117      : SlowPathCode(instruction), successor_(successor) {}
118
119  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
120    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
121    __ Bind(GetEntryLabel());
122    SaveLiveRegisters(codegen, instruction_->GetLocations());
123    arm_codegen->InvokeRuntime(
124        QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
125    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
126    RestoreLiveRegisters(codegen, instruction_->GetLocations());
127    if (successor_ == nullptr) {
128      __ b(GetReturnLabel());
129    } else {
130      __ b(arm_codegen->GetLabelOf(successor_));
131    }
132  }
133
134  Label* GetReturnLabel() {
135    DCHECK(successor_ == nullptr);
136    return &return_label_;
137  }
138
139  HBasicBlock* GetSuccessor() const {
140    return successor_;
141  }
142
143  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }
144
145 private:
146  // If not null, the block to branch to after the suspend check.
147  HBasicBlock* const successor_;
148
149  // If `successor_` is null, the label to branch to after the suspend check.
150  Label return_label_;
151
152  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
153};
154
155class BoundsCheckSlowPathARM : public SlowPathCode {
156 public:
157  explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
158      : SlowPathCode(instruction) {}
159
160  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
161    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
162    LocationSummary* locations = instruction_->GetLocations();
163
164    __ Bind(GetEntryLabel());
165    if (instruction_->CanThrowIntoCatchBlock()) {
166      // Live registers will be restored in the catch block if caught.
167      SaveLiveRegisters(codegen, instruction_->GetLocations());
168    }
169    // We're moving two locations to locations that could overlap, so we need a parallel
170    // move resolver.
171    InvokeRuntimeCallingConvention calling_convention;
172    codegen->EmitParallelMoves(
173        locations->InAt(0),
174        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
175        Primitive::kPrimInt,
176        locations->InAt(1),
177        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
178        Primitive::kPrimInt);
179    uint32_t entry_point_offset = instruction_->AsBoundsCheck()->IsStringCharAt()
180        ? QUICK_ENTRY_POINT(pThrowStringBounds)
181        : QUICK_ENTRY_POINT(pThrowArrayBounds);
182    arm_codegen->InvokeRuntime(entry_point_offset, instruction_, instruction_->GetDexPc(), this);
183    CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
184    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
185  }
186
187  bool IsFatal() const OVERRIDE { return true; }
188
189  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }
190
191 private:
192  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
193};
194
195class LoadClassSlowPathARM : public SlowPathCode {
196 public:
197  LoadClassSlowPathARM(HLoadClass* cls,
198                       HInstruction* at,
199                       uint32_t dex_pc,
200                       bool do_clinit)
201      : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
202    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
203  }
204
205  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
206    LocationSummary* locations = at_->GetLocations();
207
208    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
209    __ Bind(GetEntryLabel());
210    SaveLiveRegisters(codegen, locations);
211
212    InvokeRuntimeCallingConvention calling_convention;
213    __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
214    int32_t entry_point_offset = do_clinit_
215        ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
216        : QUICK_ENTRY_POINT(pInitializeType);
217    arm_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
218    if (do_clinit_) {
219      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
220    } else {
221      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
222    }
223
224    // Move the class to the desired location.
225    Location out = locations->Out();
226    if (out.IsValid()) {
227      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
228      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
229    }
230    RestoreLiveRegisters(codegen, locations);
231    __ b(GetExitLabel());
232  }
233
234  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }
235
236 private:
237  // The class this slow path will load.
238  HLoadClass* const cls_;
239
240  // The instruction where this slow path is happening.
241  // (Might be the load class or an initialization check).
242  HInstruction* const at_;
243
244  // The dex PC of `at_`.
245  const uint32_t dex_pc_;
246
247  // Whether to initialize the class.
248  const bool do_clinit_;
249
250  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
251};
252
253class LoadStringSlowPathARM : public SlowPathCode {
254 public:
255  explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCode(instruction) {}
256
257  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
258    LocationSummary* locations = instruction_->GetLocations();
259    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
260
261    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
262    __ Bind(GetEntryLabel());
263    SaveLiveRegisters(codegen, locations);
264
265    InvokeRuntimeCallingConvention calling_convention;
266    const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
267    __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index);
268    arm_codegen->InvokeRuntime(
269        QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
270    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
271    arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
272
273    RestoreLiveRegisters(codegen, locations);
274    __ b(GetExitLabel());
275  }
276
277  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }
278
279 private:
280  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
281};
282
283class TypeCheckSlowPathARM : public SlowPathCode {
284 public:
285  TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
286      : SlowPathCode(instruction), is_fatal_(is_fatal) {}
287
288  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
289    LocationSummary* locations = instruction_->GetLocations();
290    Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
291                                                        : locations->Out();
292    DCHECK(instruction_->IsCheckCast()
293           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
294
295    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
296    __ Bind(GetEntryLabel());
297
298    if (!is_fatal_) {
299      SaveLiveRegisters(codegen, locations);
300    }
301
302    // We're moving two locations to locations that could overlap, so we need a parallel
303    // move resolver.
304    InvokeRuntimeCallingConvention calling_convention;
305    codegen->EmitParallelMoves(
306        locations->InAt(1),
307        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
308        Primitive::kPrimNot,
309        object_class,
310        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
311        Primitive::kPrimNot);
312
313    if (instruction_->IsInstanceOf()) {
314      arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
315                                 instruction_,
316                                 instruction_->GetDexPc(),
317                                 this);
318      CheckEntrypointTypes<
319          kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
320      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
321    } else {
322      DCHECK(instruction_->IsCheckCast());
323      arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
324                                 instruction_,
325                                 instruction_->GetDexPc(),
326                                 this);
327      CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
328    }
329
330    if (!is_fatal_) {
331      RestoreLiveRegisters(codegen, locations);
332      __ b(GetExitLabel());
333    }
334  }
335
336  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }
337
338  bool IsFatal() const OVERRIDE { return is_fatal_; }
339
340 private:
341  const bool is_fatal_;
342
343  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
344};
345
346class DeoptimizationSlowPathARM : public SlowPathCode {
347 public:
348  explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
349    : SlowPathCode(instruction) {}
350
351  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
352    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
353    __ Bind(GetEntryLabel());
354    SaveLiveRegisters(codegen, instruction_->GetLocations());
355    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
356                               instruction_,
357                               instruction_->GetDexPc(),
358                               this);
359    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
360  }
361
362  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }
363
364 private:
365  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
366};
367
368class ArraySetSlowPathARM : public SlowPathCode {
369 public:
370  explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCode(instruction) {}
371
372  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
373    LocationSummary* locations = instruction_->GetLocations();
374    __ Bind(GetEntryLabel());
375    SaveLiveRegisters(codegen, locations);
376
377    InvokeRuntimeCallingConvention calling_convention;
378    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
379    parallel_move.AddMove(
380        locations->InAt(0),
381        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
382        Primitive::kPrimNot,
383        nullptr);
384    parallel_move.AddMove(
385        locations->InAt(1),
386        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
387        Primitive::kPrimInt,
388        nullptr);
389    parallel_move.AddMove(
390        locations->InAt(2),
391        Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
392        Primitive::kPrimNot,
393        nullptr);
394    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
395
396    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
397    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
398                               instruction_,
399                               instruction_->GetDexPc(),
400                               this);
401    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
402    RestoreLiveRegisters(codegen, locations);
403    __ b(GetExitLabel());
404  }
405
406  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }
407
408 private:
409  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
410};
411
412// Slow path marking an object during a read barrier.
413class ReadBarrierMarkSlowPathARM : public SlowPathCode {
414 public:
415  ReadBarrierMarkSlowPathARM(HInstruction* instruction, Location out, Location obj)
416      : SlowPathCode(instruction), out_(out), obj_(obj) {
417    DCHECK(kEmitCompilerReadBarrier);
418  }
419
420  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }
421
422  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
423    LocationSummary* locations = instruction_->GetLocations();
424    Register reg_out = out_.AsRegister<Register>();
425    DCHECK(locations->CanCall());
426    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
427    DCHECK(instruction_->IsInstanceFieldGet() ||
428           instruction_->IsStaticFieldGet() ||
429           instruction_->IsArrayGet() ||
430           instruction_->IsLoadClass() ||
431           instruction_->IsLoadString() ||
432           instruction_->IsInstanceOf() ||
433           instruction_->IsCheckCast() ||
434           ((instruction_->IsInvokeStaticOrDirect() || instruction_->IsInvokeVirtual()) &&
435            instruction_->GetLocations()->Intrinsified()))
436        << "Unexpected instruction in read barrier marking slow path: "
437        << instruction_->DebugName();
438
439    __ Bind(GetEntryLabel());
440    SaveLiveRegisters(codegen, locations);
441
442    InvokeRuntimeCallingConvention calling_convention;
443    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
444    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
445    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
446                               instruction_,
447                               instruction_->GetDexPc(),
448                               this);
449    CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
450    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
451
452    RestoreLiveRegisters(codegen, locations);
453    __ b(GetExitLabel());
454  }
455
456 private:
457  const Location out_;
458  const Location obj_;
459
460  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
461};
462
463// Slow path generating a read barrier for a heap reference.
464class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCode {
465 public:
466  ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
467                                         Location out,
468                                         Location ref,
469                                         Location obj,
470                                         uint32_t offset,
471                                         Location index)
472      : SlowPathCode(instruction),
473        out_(out),
474        ref_(ref),
475        obj_(obj),
476        offset_(offset),
477        index_(index) {
478    DCHECK(kEmitCompilerReadBarrier);
479    // If `obj` is equal to `out` or `ref`, it means the initial object
480    // has been overwritten by (or after) the heap object reference load
481    // to be instrumented, e.g.:
482    //
483    //   __ LoadFromOffset(kLoadWord, out, out, offset);
484    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
485    //
486    // In that case, we have lost the information about the original
487    // object, and the emitted read barrier cannot work properly.
488    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
489    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
490  }
491
492  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
493    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
494    LocationSummary* locations = instruction_->GetLocations();
495    Register reg_out = out_.AsRegister<Register>();
496    DCHECK(locations->CanCall());
497    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
498    DCHECK(instruction_->IsInstanceFieldGet() ||
499           instruction_->IsStaticFieldGet() ||
500           instruction_->IsArrayGet() ||
501           instruction_->IsInstanceOf() ||
502           instruction_->IsCheckCast() ||
503           ((instruction_->IsInvokeStaticOrDirect() || instruction_->IsInvokeVirtual()) &&
504            instruction_->GetLocations()->Intrinsified()))
505        << "Unexpected instruction in read barrier for heap reference slow path: "
506        << instruction_->DebugName();
507
508    __ Bind(GetEntryLabel());
509    SaveLiveRegisters(codegen, locations);
510
511    // We may have to change the index's value, but as `index_` is a
512    // constant member (like other "inputs" of this slow path),
513    // introduce a copy of it, `index`.
514    Location index = index_;
515    if (index_.IsValid()) {
516      // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
517      if (instruction_->IsArrayGet()) {
518        // Compute the actual memory offset and store it in `index`.
519        Register index_reg = index_.AsRegister<Register>();
520        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
521        if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
522          // We are about to change the value of `index_reg` (see the
523          // calls to art::arm::Thumb2Assembler::Lsl and
524          // art::arm::Thumb2Assembler::AddConstant below), but it has
525          // not been saved by the previous call to
526          // art::SlowPathCode::SaveLiveRegisters, as it is a
527          // callee-save register --
528          // art::SlowPathCode::SaveLiveRegisters does not consider
529          // callee-save registers, as it has been designed with the
530          // assumption that callee-save registers are supposed to be
531          // handled by the called function.  So, as a callee-save
532          // register, `index_reg` _would_ eventually be saved onto
533          // the stack, but it would be too late: we would have
534          // changed its value earlier.  Therefore, we manually save
535          // it here into another freely available register,
536          // `free_reg`, chosen of course among the caller-save
537          // registers (as a callee-save `free_reg` register would
538          // exhibit the same problem).
539          //
540          // Note we could have requested a temporary register from
541          // the register allocator instead; but we prefer not to, as
542          // this is a slow path, and we know we can find a
543          // caller-save register that is available.
544          Register free_reg = FindAvailableCallerSaveRegister(codegen);
545          __ Mov(free_reg, index_reg);
546          index_reg = free_reg;
547          index = Location::RegisterLocation(index_reg);
548        } else {
549          // The initial register stored in `index_` has already been
550          // saved in the call to art::SlowPathCode::SaveLiveRegisters
551          // (as it is not a callee-save register), so we can freely
552          // use it.
553        }
554        // Shifting the index value contained in `index_reg` by the scale
555        // factor (2) cannot overflow in practice, as the runtime is
556        // unable to allocate object arrays with a size larger than
557        // 2^26 - 1 (that is, 2^28 - 4 bytes).
558        __ Lsl(index_reg, index_reg, TIMES_4);
559        static_assert(
560            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
561            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
562        __ AddConstant(index_reg, index_reg, offset_);
563      } else {
564        // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
565        // intrinsics, `index_` is not shifted by a scale factor of 2
566        // (as in the case of ArrayGet), as it is actually an offset
567        // to an object field within an object.
568        DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
569        DCHECK(instruction_->GetLocations()->Intrinsified());
570        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
571               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
572            << instruction_->AsInvoke()->GetIntrinsic();
573        DCHECK_EQ(offset_, 0U);
574        DCHECK(index_.IsRegisterPair());
575        // UnsafeGet's offset location is a register pair, the low
576        // part contains the correct offset.
577        index = index_.ToLow();
578      }
579    }
580
581    // We're moving two or three locations to locations that could
582    // overlap, so we need a parallel move resolver.
583    InvokeRuntimeCallingConvention calling_convention;
584    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
585    parallel_move.AddMove(ref_,
586                          Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
587                          Primitive::kPrimNot,
588                          nullptr);
589    parallel_move.AddMove(obj_,
590                          Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
591                          Primitive::kPrimNot,
592                          nullptr);
593    if (index.IsValid()) {
594      parallel_move.AddMove(index,
595                            Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
596                            Primitive::kPrimInt,
597                            nullptr);
598      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
599    } else {
600      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
601      __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
602    }
603    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
604                               instruction_,
605                               instruction_->GetDexPc(),
606                               this);
607    CheckEntrypointTypes<
608        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
609    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
610
611    RestoreLiveRegisters(codegen, locations);
612    __ b(GetExitLabel());
613  }
614
615  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }
616
617 private:
618  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
619    size_t ref = static_cast<int>(ref_.AsRegister<Register>());
620    size_t obj = static_cast<int>(obj_.AsRegister<Register>());
621    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
622      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
623        return static_cast<Register>(i);
624      }
625    }
626    // We shall never fail to find a free caller-save register, as
627    // there are more than two core caller-save registers on ARM
628    // (meaning it is possible to find one which is different from
629    // `ref` and `obj`).
630    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
631    LOG(FATAL) << "Could not find a free caller-save register";
632    UNREACHABLE();
633  }
634
635  const Location out_;
636  const Location ref_;
637  const Location obj_;
638  const uint32_t offset_;
639  // An additional location containing an index to an array.
640  // Only used for HArrayGet and the UnsafeGetObject &
641  // UnsafeGetObjectVolatile intrinsics.
642  const Location index_;
643
644  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
645};
646
647// Slow path generating a read barrier for a GC root.
648class ReadBarrierForRootSlowPathARM : public SlowPathCode {
649 public:
650  ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
651      : SlowPathCode(instruction), out_(out), root_(root) {
652    DCHECK(kEmitCompilerReadBarrier);
653  }
654
655  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
656    LocationSummary* locations = instruction_->GetLocations();
657    Register reg_out = out_.AsRegister<Register>();
658    DCHECK(locations->CanCall());
659    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
660    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
661        << "Unexpected instruction in read barrier for GC root slow path: "
662        << instruction_->DebugName();
663
664    __ Bind(GetEntryLabel());
665    SaveLiveRegisters(codegen, locations);
666
667    InvokeRuntimeCallingConvention calling_convention;
668    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
669    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
670    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
671                               instruction_,
672                               instruction_->GetDexPc(),
673                               this);
674    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
675    arm_codegen->Move32(out_, Location::RegisterLocation(R0));
676
677    RestoreLiveRegisters(codegen, locations);
678    __ b(GetExitLabel());
679  }
680
681  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }
682
683 private:
684  const Location out_;
685  const Location root_;
686
687  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
688};
689
690#undef __
691// NOLINT on __ macro to suppress wrong warning/fix from clang-tidy.
692#define __ down_cast<ArmAssembler*>(GetAssembler())-> // NOLINT
693
694inline Condition ARMCondition(IfCondition cond) {
695  switch (cond) {
696    case kCondEQ: return EQ;
697    case kCondNE: return NE;
698    case kCondLT: return LT;
699    case kCondLE: return LE;
700    case kCondGT: return GT;
701    case kCondGE: return GE;
702    case kCondB:  return LO;
703    case kCondBE: return LS;
704    case kCondA:  return HI;
705    case kCondAE: return HS;
706  }
707  LOG(FATAL) << "Unreachable";
708  UNREACHABLE();
709}
710
711// Maps signed condition to unsigned condition.
712inline Condition ARMUnsignedCondition(IfCondition cond) {
713  switch (cond) {
714    case kCondEQ: return EQ;
715    case kCondNE: return NE;
716    // Signed to unsigned.
717    case kCondLT: return LO;
718    case kCondLE: return LS;
719    case kCondGT: return HI;
720    case kCondGE: return HS;
721    // Unsigned remain unchanged.
722    case kCondB:  return LO;
723    case kCondBE: return LS;
724    case kCondA:  return HI;
725    case kCondAE: return HS;
726  }
727  LOG(FATAL) << "Unreachable";
728  UNREACHABLE();
729}
730
731inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
732  // The ARM condition codes can express all the necessary branches, see the
733  // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
734  // There is no dex instruction or HIR that would need the missing conditions
735  // "equal or unordered" or "not equal".
736  switch (cond) {
737    case kCondEQ: return EQ;
738    case kCondNE: return NE /* unordered */;
739    case kCondLT: return gt_bias ? CC : LT /* unordered */;
740    case kCondLE: return gt_bias ? LS : LE /* unordered */;
741    case kCondGT: return gt_bias ? HI /* unordered */ : GT;
742    case kCondGE: return gt_bias ? CS /* unordered */ : GE;
743    default:
744      LOG(FATAL) << "UNREACHABLE";
745      UNREACHABLE();
746  }
747}
748
749void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
750  stream << Register(reg);
751}
752
753void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
754  stream << SRegister(reg);
755}
756
757size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
758  __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
759  return kArmWordSize;
760}
761
762size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
763  __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
764  return kArmWordSize;
765}
766
767size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
768  __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
769  return kArmWordSize;
770}
771
772size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
773  __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
774  return kArmWordSize;
775}
776
777CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
778                                   const ArmInstructionSetFeatures& isa_features,
779                                   const CompilerOptions& compiler_options,
780                                   OptimizingCompilerStats* stats)
781    : CodeGenerator(graph,
782                    kNumberOfCoreRegisters,
783                    kNumberOfSRegisters,
784                    kNumberOfRegisterPairs,
785                    ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
786                                        arraysize(kCoreCalleeSaves)),
787                    ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
788                                        arraysize(kFpuCalleeSaves)),
789                    compiler_options,
790                    stats),
791      block_labels_(nullptr),
792      location_builder_(graph, this),
793      instruction_visitor_(graph, this),
794      move_resolver_(graph->GetArena(), this),
795      assembler_(graph->GetArena()),
796      isa_features_(isa_features),
797      uint32_literals_(std::less<uint32_t>(),
798                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
799      method_patches_(MethodReferenceComparator(),
800                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
801      call_patches_(MethodReferenceComparator(),
802                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
803      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
804      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
805      boot_image_string_patches_(StringReferenceValueComparator(),
806                                 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
807      pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
808      boot_image_type_patches_(TypeReferenceValueComparator(),
809                               graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
810      pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
811      boot_image_address_patches_(std::less<uint32_t>(),
812                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
813  // Always save the LR register to mimic Quick.
814  AddAllocatedRegister(Location::RegisterLocation(LR));
815}
816
817void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
818  // Ensure that we fix up branches and literal loads and emit the literal pool.
819  __ FinalizeCode();
820
821  // Adjust native pc offsets in stack maps.
822  for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
823    uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
824    uint32_t new_position = __ GetAdjustedPosition(old_position);
825    stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
826  }
827  // Adjust pc offsets for the disassembly information.
828  if (disasm_info_ != nullptr) {
829    GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
830    frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
831    frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
832    for (auto& it : *disasm_info_->GetInstructionIntervals()) {
833      it.second.start = __ GetAdjustedPosition(it.second.start);
834      it.second.end = __ GetAdjustedPosition(it.second.end);
835    }
836    for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
837      it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
838      it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
839    }
840  }
841
842  CodeGenerator::Finalize(allocator);
843}
844
845void CodeGeneratorARM::SetupBlockedRegisters() const {
846  // Don't allocate the dalvik style register pair passing.
847  blocked_register_pairs_[R1_R2] = true;
848
849  // Stack register, LR and PC are always reserved.
850  blocked_core_registers_[SP] = true;
851  blocked_core_registers_[LR] = true;
852  blocked_core_registers_[PC] = true;
853
854  // Reserve thread register.
855  blocked_core_registers_[TR] = true;
856
857  // Reserve temp register.
858  blocked_core_registers_[IP] = true;
859
860  if (GetGraph()->IsDebuggable()) {
861    // Stubs do not save callee-save floating point registers. If the graph
862    // is debuggable, we need to deal with these registers differently. For
863    // now, just block them.
864    for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
865      blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
866    }
867  }
868
869  UpdateBlockedPairRegisters();
870}
871
872void CodeGeneratorARM::UpdateBlockedPairRegisters() const {
873  for (int i = 0; i < kNumberOfRegisterPairs; i++) {
874    ArmManagedRegister current =
875        ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
876    if (blocked_core_registers_[current.AsRegisterPairLow()]
877        || blocked_core_registers_[current.AsRegisterPairHigh()]) {
878      blocked_register_pairs_[i] = true;
879    }
880  }
881}
882
883InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
884      : InstructionCodeGenerator(graph, codegen),
885        assembler_(codegen->GetAssembler()),
886        codegen_(codegen) {}
887
888void CodeGeneratorARM::ComputeSpillMask() {
889  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
890  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
891  // There is no easy instruction to restore just the PC on thumb2. We spill and
892  // restore another arbitrary register.
893  core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
894  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
895  // We use vpush and vpop for saving and restoring floating point registers, which take
896  // a SRegister and the number of registers to save/restore after that SRegister. We
897  // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
898  // but in the range.
899  if (fpu_spill_mask_ != 0) {
900    uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
901    uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
902    for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
903      fpu_spill_mask_ |= (1 << i);
904    }
905  }
906}
907
908static dwarf::Reg DWARFReg(Register reg) {
909  return dwarf::Reg::ArmCore(static_cast<int>(reg));
910}
911
912static dwarf::Reg DWARFReg(SRegister reg) {
913  return dwarf::Reg::ArmFp(static_cast<int>(reg));
914}
915
916void CodeGeneratorARM::GenerateFrameEntry() {
917  bool skip_overflow_check =
918      IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
919  DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
920  __ Bind(&frame_entry_label_);
921
922  if (HasEmptyFrame()) {
923    return;
924  }
925
926  if (!skip_overflow_check) {
927    __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
928    __ LoadFromOffset(kLoadWord, IP, IP, 0);
929    RecordPcInfo(nullptr, 0);
930  }
931
932  __ PushList(core_spill_mask_);
933  __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
934  __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
935  if (fpu_spill_mask_ != 0) {
936    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
937    __ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
938    __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
939    __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
940  }
941  int adjust = GetFrameSize() - FrameEntrySpillSize();
942  __ AddConstant(SP, -adjust);
943  __ cfi().AdjustCFAOffset(adjust);
944  __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
945}
946
947void CodeGeneratorARM::GenerateFrameExit() {
948  if (HasEmptyFrame()) {
949    __ bx(LR);
950    return;
951  }
952  __ cfi().RememberState();
953  int adjust = GetFrameSize() - FrameEntrySpillSize();
954  __ AddConstant(SP, adjust);
955  __ cfi().AdjustCFAOffset(-adjust);
956  if (fpu_spill_mask_ != 0) {
957    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
958    __ vpops(start_register, POPCOUNT(fpu_spill_mask_));
959    __ cfi().AdjustCFAOffset(-kArmPointerSize * POPCOUNT(fpu_spill_mask_));
960    __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
961  }
962  // Pop LR into PC to return.
963  DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
964  uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
965  __ PopList(pop_mask);
966  __ cfi().RestoreState();
967  __ cfi().DefCFAOffset(GetFrameSize());
968}
969
970void CodeGeneratorARM::Bind(HBasicBlock* block) {
971  Label* label = GetLabelOf(block);
972  __ BindTrackedLabel(label);
973}
974
975Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
976  switch (type) {
977    case Primitive::kPrimBoolean:
978    case Primitive::kPrimByte:
979    case Primitive::kPrimChar:
980    case Primitive::kPrimShort:
981    case Primitive::kPrimInt:
982    case Primitive::kPrimNot: {
983      uint32_t index = gp_index_++;
984      uint32_t stack_index = stack_index_++;
985      if (index < calling_convention.GetNumberOfRegisters()) {
986        return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
987      } else {
988        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
989      }
990    }
991
992    case Primitive::kPrimLong: {
993      uint32_t index = gp_index_;
994      uint32_t stack_index = stack_index_;
995      gp_index_ += 2;
996      stack_index_ += 2;
997      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
998        if (calling_convention.GetRegisterAt(index) == R1) {
999          // Skip R1, and use R2_R3 instead.
1000          gp_index_++;
1001          index++;
1002        }
1003      }
1004      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1005        DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
1006                  calling_convention.GetRegisterAt(index + 1));
1007
1008        return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
1009                                              calling_convention.GetRegisterAt(index + 1));
1010      } else {
1011        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1012      }
1013    }
1014
1015    case Primitive::kPrimFloat: {
1016      uint32_t stack_index = stack_index_++;
1017      if (float_index_ % 2 == 0) {
1018        float_index_ = std::max(double_index_, float_index_);
1019      }
1020      if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
1021        return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
1022      } else {
1023        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
1024      }
1025    }
1026
1027    case Primitive::kPrimDouble: {
1028      double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
1029      uint32_t stack_index = stack_index_;
1030      stack_index_ += 2;
1031      if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
1032        uint32_t index = double_index_;
1033        double_index_ += 2;
1034        Location result = Location::FpuRegisterPairLocation(
1035          calling_convention.GetFpuRegisterAt(index),
1036          calling_convention.GetFpuRegisterAt(index + 1));
1037        DCHECK(ExpectedPairLayout(result));
1038        return result;
1039      } else {
1040        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
1041      }
1042    }
1043
1044    case Primitive::kPrimVoid:
1045      LOG(FATAL) << "Unexpected parameter type " << type;
1046      break;
1047  }
1048  return Location::NoLocation();
1049}
1050
1051Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
1052  switch (type) {
1053    case Primitive::kPrimBoolean:
1054    case Primitive::kPrimByte:
1055    case Primitive::kPrimChar:
1056    case Primitive::kPrimShort:
1057    case Primitive::kPrimInt:
1058    case Primitive::kPrimNot: {
1059      return Location::RegisterLocation(R0);
1060    }
1061
1062    case Primitive::kPrimFloat: {
1063      return Location::FpuRegisterLocation(S0);
1064    }
1065
1066    case Primitive::kPrimLong: {
1067      return Location::RegisterPairLocation(R0, R1);
1068    }
1069
1070    case Primitive::kPrimDouble: {
1071      return Location::FpuRegisterPairLocation(S0, S1);
1072    }
1073
1074    case Primitive::kPrimVoid:
1075      return Location::NoLocation();
1076  }
1077
1078  UNREACHABLE();
1079}
1080
1081Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
1082  return Location::RegisterLocation(kMethodRegisterArgument);
1083}
1084
1085void CodeGeneratorARM::Move32(Location destination, Location source) {
1086  if (source.Equals(destination)) {
1087    return;
1088  }
1089  if (destination.IsRegister()) {
1090    if (source.IsRegister()) {
1091      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
1092    } else if (source.IsFpuRegister()) {
1093      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
1094    } else {
1095      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
1096    }
1097  } else if (destination.IsFpuRegister()) {
1098    if (source.IsRegister()) {
1099      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
1100    } else if (source.IsFpuRegister()) {
1101      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
1102    } else {
1103      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
1104    }
1105  } else {
1106    DCHECK(destination.IsStackSlot()) << destination;
1107    if (source.IsRegister()) {
1108      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
1109    } else if (source.IsFpuRegister()) {
1110      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
1111    } else {
1112      DCHECK(source.IsStackSlot()) << source;
1113      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
1114      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
1115    }
1116  }
1117}
1118
1119void CodeGeneratorARM::Move64(Location destination, Location source) {
1120  if (source.Equals(destination)) {
1121    return;
1122  }
1123  if (destination.IsRegisterPair()) {
1124    if (source.IsRegisterPair()) {
1125      EmitParallelMoves(
1126          Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1127          Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1128          Primitive::kPrimInt,
1129          Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1130          Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1131          Primitive::kPrimInt);
1132    } else if (source.IsFpuRegister()) {
1133      UNIMPLEMENTED(FATAL);
1134    } else if (source.IsFpuRegisterPair()) {
1135      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
1136                 destination.AsRegisterPairHigh<Register>(),
1137                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
1138    } else {
1139      DCHECK(source.IsDoubleStackSlot());
1140      DCHECK(ExpectedPairLayout(destination));
1141      __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
1142                        SP, source.GetStackIndex());
1143    }
1144  } else if (destination.IsFpuRegisterPair()) {
1145    if (source.IsDoubleStackSlot()) {
1146      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1147                         SP,
1148                         source.GetStackIndex());
1149    } else if (source.IsRegisterPair()) {
1150      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
1151                 source.AsRegisterPairLow<Register>(),
1152                 source.AsRegisterPairHigh<Register>());
1153    } else {
1154      UNIMPLEMENTED(FATAL);
1155    }
1156  } else {
1157    DCHECK(destination.IsDoubleStackSlot());
1158    if (source.IsRegisterPair()) {
1159      // No conflict possible, so just do the moves.
1160      if (source.AsRegisterPairLow<Register>() == R1) {
1161        DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
1162        __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
1163        __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
1164      } else {
1165        __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
1166                         SP, destination.GetStackIndex());
1167      }
1168    } else if (source.IsFpuRegisterPair()) {
1169      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
1170                        SP,
1171                        destination.GetStackIndex());
1172    } else {
1173      DCHECK(source.IsDoubleStackSlot());
1174      EmitParallelMoves(
1175          Location::StackSlot(source.GetStackIndex()),
1176          Location::StackSlot(destination.GetStackIndex()),
1177          Primitive::kPrimInt,
1178          Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
1179          Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
1180          Primitive::kPrimInt);
1181    }
1182  }
1183}
1184
1185void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
1186  DCHECK(location.IsRegister());
1187  __ LoadImmediate(location.AsRegister<Register>(), value);
1188}
1189
1190void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1191  HParallelMove move(GetGraph()->GetArena());
1192  move.AddMove(src, dst, dst_type, nullptr);
1193  GetMoveResolver()->EmitNativeCode(&move);
1194}
1195
1196void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
1197  if (location.IsRegister()) {
1198    locations->AddTemp(location);
1199  } else if (location.IsRegisterPair()) {
1200    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1201    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1202  } else {
1203    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1204  }
1205}
1206
1207void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
1208                                     HInstruction* instruction,
1209                                     uint32_t dex_pc,
1210                                     SlowPathCode* slow_path) {
1211  InvokeRuntime(GetThreadOffset<kArmWordSize>(entrypoint).Int32Value(),
1212                instruction,
1213                dex_pc,
1214                slow_path);
1215}
1216
1217void CodeGeneratorARM::InvokeRuntime(int32_t entry_point_offset,
1218                                     HInstruction* instruction,
1219                                     uint32_t dex_pc,
1220                                     SlowPathCode* slow_path) {
1221  ValidateInvokeRuntime(instruction, slow_path);
1222  __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
1223  __ blx(LR);
1224  RecordPcInfo(instruction, dex_pc, slow_path);
1225}
1226
1227void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1228  DCHECK(!successor->IsExitBlock());
1229
1230  HBasicBlock* block = got->GetBlock();
1231  HInstruction* previous = got->GetPrevious();
1232
1233  HLoopInformation* info = block->GetLoopInformation();
1234  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1235    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
1236    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1237    return;
1238  }
1239
1240  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1241    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1242  }
1243  if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1244    __ b(codegen_->GetLabelOf(successor));
1245  }
1246}
1247
1248void LocationsBuilderARM::VisitGoto(HGoto* got) {
1249  got->SetLocations(nullptr);
1250}
1251
1252void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
1253  HandleGoto(got, got->GetSuccessor());
1254}
1255
1256void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1257  try_boundary->SetLocations(nullptr);
1258}
1259
1260void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
1261  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1262  if (!successor->IsExitBlock()) {
1263    HandleGoto(try_boundary, successor);
1264  }
1265}
1266
1267void LocationsBuilderARM::VisitExit(HExit* exit) {
1268  exit->SetLocations(nullptr);
1269}
1270
1271void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1272}
1273
1274void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond,
1275                                                  Label* true_label,
1276                                                  Label* false_label ATTRIBUTE_UNUSED) {
1277  __ vmstat();  // transfer FP status register to ARM APSR.
1278  __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias()));
1279}
1280
1281void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond,
1282                                                               Label* true_label,
1283                                                               Label* false_label) {
1284  LocationSummary* locations = cond->GetLocations();
1285  Location left = locations->InAt(0);
1286  Location right = locations->InAt(1);
1287  IfCondition if_cond = cond->GetCondition();
1288
1289  Register left_high = left.AsRegisterPairHigh<Register>();
1290  Register left_low = left.AsRegisterPairLow<Register>();
1291  IfCondition true_high_cond = if_cond;
1292  IfCondition false_high_cond = cond->GetOppositeCondition();
1293  Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part
1294
1295  // Set the conditions for the test, remembering that == needs to be
1296  // decided using the low words.
1297  // TODO: consider avoiding jumps with temporary and CMP low+SBC high
1298  switch (if_cond) {
1299    case kCondEQ:
1300    case kCondNE:
1301      // Nothing to do.
1302      break;
1303    case kCondLT:
1304      false_high_cond = kCondGT;
1305      break;
1306    case kCondLE:
1307      true_high_cond = kCondLT;
1308      break;
1309    case kCondGT:
1310      false_high_cond = kCondLT;
1311      break;
1312    case kCondGE:
1313      true_high_cond = kCondGT;
1314      break;
1315    case kCondB:
1316      false_high_cond = kCondA;
1317      break;
1318    case kCondBE:
1319      true_high_cond = kCondB;
1320      break;
1321    case kCondA:
1322      false_high_cond = kCondB;
1323      break;
1324    case kCondAE:
1325      true_high_cond = kCondA;
1326      break;
1327  }
1328  if (right.IsConstant()) {
1329    int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1330    int32_t val_low = Low32Bits(value);
1331    int32_t val_high = High32Bits(value);
1332
1333    __ CmpConstant(left_high, val_high);
1334    if (if_cond == kCondNE) {
1335      __ b(true_label, ARMCondition(true_high_cond));
1336    } else if (if_cond == kCondEQ) {
1337      __ b(false_label, ARMCondition(false_high_cond));
1338    } else {
1339      __ b(true_label, ARMCondition(true_high_cond));
1340      __ b(false_label, ARMCondition(false_high_cond));
1341    }
1342    // Must be equal high, so compare the lows.
1343    __ CmpConstant(left_low, val_low);
1344  } else {
1345    Register right_high = right.AsRegisterPairHigh<Register>();
1346    Register right_low = right.AsRegisterPairLow<Register>();
1347
1348    __ cmp(left_high, ShifterOperand(right_high));
1349    if (if_cond == kCondNE) {
1350      __ b(true_label, ARMCondition(true_high_cond));
1351    } else if (if_cond == kCondEQ) {
1352      __ b(false_label, ARMCondition(false_high_cond));
1353    } else {
1354      __ b(true_label, ARMCondition(true_high_cond));
1355      __ b(false_label, ARMCondition(false_high_cond));
1356    }
1357    // Must be equal high, so compare the lows.
1358    __ cmp(left_low, ShifterOperand(right_low));
1359  }
1360  // The last comparison might be unsigned.
1361  // TODO: optimize cases where this is always true/false
1362  __ b(true_label, final_condition);
1363}
1364
1365void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
1366                                                               Label* true_target_in,
1367                                                               Label* false_target_in) {
1368  // Generated branching requires both targets to be explicit. If either of the
1369  // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1370  Label fallthrough_target;
1371  Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1372  Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1373
1374  LocationSummary* locations = condition->GetLocations();
1375  Location left = locations->InAt(0);
1376  Location right = locations->InAt(1);
1377
1378  Primitive::Type type = condition->InputAt(0)->GetType();
1379  switch (type) {
1380    case Primitive::kPrimLong:
1381      GenerateLongComparesAndJumps(condition, true_target, false_target);
1382      break;
1383    case Primitive::kPrimFloat:
1384      __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
1385      GenerateFPJumps(condition, true_target, false_target);
1386      break;
1387    case Primitive::kPrimDouble:
1388      __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
1389               FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
1390      GenerateFPJumps(condition, true_target, false_target);
1391      break;
1392    default:
1393      LOG(FATAL) << "Unexpected compare type " << type;
1394  }
1395
1396  if (false_target != &fallthrough_target) {
1397    __ b(false_target);
1398  }
1399
1400  if (fallthrough_target.IsLinked()) {
1401    __ Bind(&fallthrough_target);
1402  }
1403}
1404
1405void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
1406                                                        size_t condition_input_index,
1407                                                        Label* true_target,
1408                                                        Label* false_target) {
1409  HInstruction* cond = instruction->InputAt(condition_input_index);
1410
1411  if (true_target == nullptr && false_target == nullptr) {
1412    // Nothing to do. The code always falls through.
1413    return;
1414  } else if (cond->IsIntConstant()) {
1415    // Constant condition, statically compared against "true" (integer value 1).
1416    if (cond->AsIntConstant()->IsTrue()) {
1417      if (true_target != nullptr) {
1418        __ b(true_target);
1419      }
1420    } else {
1421      DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1422      if (false_target != nullptr) {
1423        __ b(false_target);
1424      }
1425    }
1426    return;
1427  }
1428
1429  // The following code generates these patterns:
1430  //  (1) true_target == nullptr && false_target != nullptr
1431  //        - opposite condition true => branch to false_target
1432  //  (2) true_target != nullptr && false_target == nullptr
1433  //        - condition true => branch to true_target
1434  //  (3) true_target != nullptr && false_target != nullptr
1435  //        - condition true => branch to true_target
1436  //        - branch to false_target
1437  if (IsBooleanValueOrMaterializedCondition(cond)) {
1438    // Condition has been materialized, compare the output to 0.
1439    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
1440    DCHECK(cond_val.IsRegister());
1441    if (true_target == nullptr) {
1442      __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
1443    } else {
1444      __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
1445    }
1446  } else {
1447    // Condition has not been materialized. Use its inputs as the comparison and
1448    // its condition as the branch condition.
1449    HCondition* condition = cond->AsCondition();
1450
1451    // If this is a long or FP comparison that has been folded into
1452    // the HCondition, generate the comparison directly.
1453    Primitive::Type type = condition->InputAt(0)->GetType();
1454    if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1455      GenerateCompareTestAndBranch(condition, true_target, false_target);
1456      return;
1457    }
1458
1459    LocationSummary* locations = cond->GetLocations();
1460    DCHECK(locations->InAt(0).IsRegister());
1461    Register left = locations->InAt(0).AsRegister<Register>();
1462    Location right = locations->InAt(1);
1463    if (right.IsRegister()) {
1464      __ cmp(left, ShifterOperand(right.AsRegister<Register>()));
1465    } else {
1466      DCHECK(right.IsConstant());
1467      __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1468    }
1469    if (true_target == nullptr) {
1470      __ b(false_target, ARMCondition(condition->GetOppositeCondition()));
1471    } else {
1472      __ b(true_target, ARMCondition(condition->GetCondition()));
1473    }
1474  }
1475
1476  // If neither branch falls through (case 3), the conditional branch to `true_target`
1477  // was already emitted (case 2) and we need to emit a jump to `false_target`.
1478  if (true_target != nullptr && false_target != nullptr) {
1479    __ b(false_target);
1480  }
1481}
1482
1483void LocationsBuilderARM::VisitIf(HIf* if_instr) {
1484  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1485  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1486    locations->SetInAt(0, Location::RequiresRegister());
1487  }
1488}
1489
1490void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
1491  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1492  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1493  Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1494      nullptr : codegen_->GetLabelOf(true_successor);
1495  Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1496      nullptr : codegen_->GetLabelOf(false_successor);
1497  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1498}
1499
1500void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1501  LocationSummary* locations = new (GetGraph()->GetArena())
1502      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1503  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1504    locations->SetInAt(0, Location::RequiresRegister());
1505  }
1506}
1507
1508void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
1509  SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
1510  GenerateTestAndBranch(deoptimize,
1511                        /* condition_input_index */ 0,
1512                        slow_path->GetEntryLabel(),
1513                        /* false_target */ nullptr);
1514}
1515
1516void LocationsBuilderARM::VisitSelect(HSelect* select) {
1517  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1518  if (Primitive::IsFloatingPointType(select->GetType())) {
1519    locations->SetInAt(0, Location::RequiresFpuRegister());
1520    locations->SetInAt(1, Location::RequiresFpuRegister());
1521  } else {
1522    locations->SetInAt(0, Location::RequiresRegister());
1523    locations->SetInAt(1, Location::RequiresRegister());
1524  }
1525  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1526    locations->SetInAt(2, Location::RequiresRegister());
1527  }
1528  locations->SetOut(Location::SameAsFirstInput());
1529}
1530
1531void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
1532  LocationSummary* locations = select->GetLocations();
1533  Label false_target;
1534  GenerateTestAndBranch(select,
1535                        /* condition_input_index */ 2,
1536                        /* true_target */ nullptr,
1537                        &false_target);
1538  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1539  __ Bind(&false_target);
1540}
1541
1542void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1543  new (GetGraph()->GetArena()) LocationSummary(info);
1544}
1545
1546void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
1547  // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1548}
1549
1550void CodeGeneratorARM::GenerateNop() {
1551  __ nop();
1552}
1553
1554void LocationsBuilderARM::HandleCondition(HCondition* cond) {
1555  LocationSummary* locations =
1556      new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1557  // Handle the long/FP comparisons made in instruction simplification.
1558  switch (cond->InputAt(0)->GetType()) {
1559    case Primitive::kPrimLong:
1560      locations->SetInAt(0, Location::RequiresRegister());
1561      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
1562      if (!cond->IsEmittedAtUseSite()) {
1563        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1564      }
1565      break;
1566
1567    case Primitive::kPrimFloat:
1568    case Primitive::kPrimDouble:
1569      locations->SetInAt(0, Location::RequiresFpuRegister());
1570      locations->SetInAt(1, Location::RequiresFpuRegister());
1571      if (!cond->IsEmittedAtUseSite()) {
1572        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1573      }
1574      break;
1575
1576    default:
1577      locations->SetInAt(0, Location::RequiresRegister());
1578      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
1579      if (!cond->IsEmittedAtUseSite()) {
1580        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1581      }
1582  }
1583}
1584
1585void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
1586  if (cond->IsEmittedAtUseSite()) {
1587    return;
1588  }
1589
1590  LocationSummary* locations = cond->GetLocations();
1591  Location left = locations->InAt(0);
1592  Location right = locations->InAt(1);
1593  Register out = locations->Out().AsRegister<Register>();
1594  Label true_label, false_label;
1595
1596  switch (cond->InputAt(0)->GetType()) {
1597    default: {
1598      // Integer case.
1599      if (right.IsRegister()) {
1600        __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>()));
1601      } else {
1602        DCHECK(right.IsConstant());
1603        __ CmpConstant(left.AsRegister<Register>(),
1604                       CodeGenerator::GetInt32ValueOf(right.GetConstant()));
1605      }
1606      __ it(ARMCondition(cond->GetCondition()), kItElse);
1607      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
1608             ARMCondition(cond->GetCondition()));
1609      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
1610             ARMCondition(cond->GetOppositeCondition()));
1611      return;
1612    }
1613    case Primitive::kPrimLong:
1614      GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1615      break;
1616    case Primitive::kPrimFloat:
1617      __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
1618      GenerateFPJumps(cond, &true_label, &false_label);
1619      break;
1620    case Primitive::kPrimDouble:
1621      __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
1622               FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
1623      GenerateFPJumps(cond, &true_label, &false_label);
1624      break;
1625  }
1626
1627  // Convert the jumps into the result.
1628  Label done_label;
1629
1630  // False case: result = 0.
1631  __ Bind(&false_label);
1632  __ LoadImmediate(out, 0);
1633  __ b(&done_label);
1634
1635  // True case: result = 1.
1636  __ Bind(&true_label);
1637  __ LoadImmediate(out, 1);
1638  __ Bind(&done_label);
1639}
1640
1641void LocationsBuilderARM::VisitEqual(HEqual* comp) {
1642  HandleCondition(comp);
1643}
1644
1645void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
1646  HandleCondition(comp);
1647}
1648
1649void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
1650  HandleCondition(comp);
1651}
1652
1653void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
1654  HandleCondition(comp);
1655}
1656
1657void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
1658  HandleCondition(comp);
1659}
1660
1661void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
1662  HandleCondition(comp);
1663}
1664
1665void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1666  HandleCondition(comp);
1667}
1668
1669void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1670  HandleCondition(comp);
1671}
1672
1673void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
1674  HandleCondition(comp);
1675}
1676
1677void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
1678  HandleCondition(comp);
1679}
1680
1681void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1682  HandleCondition(comp);
1683}
1684
1685void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1686  HandleCondition(comp);
1687}
1688
1689void LocationsBuilderARM::VisitBelow(HBelow* comp) {
1690  HandleCondition(comp);
1691}
1692
1693void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
1694  HandleCondition(comp);
1695}
1696
1697void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
1698  HandleCondition(comp);
1699}
1700
1701void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
1702  HandleCondition(comp);
1703}
1704
1705void LocationsBuilderARM::VisitAbove(HAbove* comp) {
1706  HandleCondition(comp);
1707}
1708
1709void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
1710  HandleCondition(comp);
1711}
1712
1713void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
1714  HandleCondition(comp);
1715}
1716
1717void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
1718  HandleCondition(comp);
1719}
1720
1721void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
1722  LocationSummary* locations =
1723      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1724  locations->SetOut(Location::ConstantLocation(constant));
1725}
1726
1727void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
1728  // Will be generated at use site.
1729}
1730
1731void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
1732  LocationSummary* locations =
1733      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1734  locations->SetOut(Location::ConstantLocation(constant));
1735}
1736
1737void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
1738  // Will be generated at use site.
1739}
1740
1741void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
1742  LocationSummary* locations =
1743      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1744  locations->SetOut(Location::ConstantLocation(constant));
1745}
1746
1747void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
1748  // Will be generated at use site.
1749}
1750
1751void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
1752  LocationSummary* locations =
1753      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1754  locations->SetOut(Location::ConstantLocation(constant));
1755}
1756
1757void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
1758  // Will be generated at use site.
1759}
1760
1761void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
1762  LocationSummary* locations =
1763      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
1764  locations->SetOut(Location::ConstantLocation(constant));
1765}
1766
1767void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
1768  // Will be generated at use site.
1769}
1770
1771void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1772  memory_barrier->SetLocations(nullptr);
1773}
1774
1775void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
1776  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
1777}
1778
1779void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
1780  ret->SetLocations(nullptr);
1781}
1782
1783void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
1784  codegen_->GenerateFrameExit();
1785}
1786
1787void LocationsBuilderARM::VisitReturn(HReturn* ret) {
1788  LocationSummary* locations =
1789      new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
1790  locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
1791}
1792
1793void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
1794  codegen_->GenerateFrameExit();
1795}
1796
1797void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1798  // The trampoline uses the same calling convention as dex calling conventions,
1799  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
1800  // the method_idx.
1801  HandleInvoke(invoke);
1802}
1803
1804void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
1805  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
1806}
1807
1808void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1809  // Explicit clinit checks triggered by static invokes must have been pruned by
1810  // art::PrepareForRegisterAllocation.
1811  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1812
1813  IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
1814                                         codegen_->GetAssembler(),
1815                                         codegen_->GetInstructionSetFeatures());
1816  if (intrinsic.TryDispatch(invoke)) {
1817    if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
1818      invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
1819    }
1820    return;
1821  }
1822
1823  HandleInvoke(invoke);
1824
1825  // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
1826  if (invoke->HasPcRelativeDexCache()) {
1827    invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
1828  }
1829}
1830
1831static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
1832  if (invoke->GetLocations()->Intrinsified()) {
1833    IntrinsicCodeGeneratorARM intrinsic(codegen);
1834    intrinsic.Dispatch(invoke);
1835    return true;
1836  }
1837  return false;
1838}
1839
1840void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
1841  // Explicit clinit checks triggered by static invokes must have been pruned by
1842  // art::PrepareForRegisterAllocation.
1843  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
1844
1845  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1846    return;
1847  }
1848
1849  LocationSummary* locations = invoke->GetLocations();
1850  codegen_->GenerateStaticOrDirectCall(
1851      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
1852  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1853}
1854
1855void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
1856  InvokeDexCallingConventionVisitorARM calling_convention_visitor;
1857  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
1858}
1859
1860void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1861  IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
1862                                         codegen_->GetAssembler(),
1863                                         codegen_->GetInstructionSetFeatures());
1864  if (intrinsic.TryDispatch(invoke)) {
1865    return;
1866  }
1867
1868  HandleInvoke(invoke);
1869}
1870
1871void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
1872  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
1873    return;
1874  }
1875
1876  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
1877  DCHECK(!codegen_->IsLeafMethod());
1878  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1879}
1880
1881void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
1882  HandleInvoke(invoke);
1883  // Add the hidden argument.
1884  invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
1885}
1886
1887void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
1888  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
1889  LocationSummary* locations = invoke->GetLocations();
1890  Register temp = locations->GetTemp(0).AsRegister<Register>();
1891  Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
1892  uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset(
1893      invoke->GetImtIndex() % mirror::Class::kImtSize, kArmPointerSize).Uint32Value();
1894  Location receiver = locations->InAt(0);
1895  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
1896
1897  // Set the hidden argument. This is safe to do this here, as R12
1898  // won't be modified thereafter, before the `blx` (call) instruction.
1899  DCHECK_EQ(R12, hidden_reg);
1900  __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());
1901
1902  if (receiver.IsStackSlot()) {
1903    __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
1904    // /* HeapReference<Class> */ temp = temp->klass_
1905    __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
1906  } else {
1907    // /* HeapReference<Class> */ temp = receiver->klass_
1908    __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
1909  }
1910  codegen_->MaybeRecordImplicitNullCheck(invoke);
1911  // Instead of simply (possibly) unpoisoning `temp` here, we should
1912  // emit a read barrier for the previous class reference load.
1913  // However this is not required in practice, as this is an
1914  // intermediate/temporary reference and because the current
1915  // concurrent copying collector keeps the from-space memory
1916  // intact/accessible until the end of the marking phase (the
1917  // concurrent copying collector may not in the future).
1918  __ MaybeUnpoisonHeapReference(temp);
1919  // temp = temp->GetImtEntryAt(method_offset);
1920  uint32_t entry_point =
1921      ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize).Int32Value();
1922  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
1923  // LR = temp->GetEntryPoint();
1924  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
1925  // LR();
1926  __ blx(LR);
1927  DCHECK(!codegen_->IsLeafMethod());
1928  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1929}
1930
1931void LocationsBuilderARM::VisitNeg(HNeg* neg) {
1932  LocationSummary* locations =
1933      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
1934  switch (neg->GetResultType()) {
1935    case Primitive::kPrimInt: {
1936      locations->SetInAt(0, Location::RequiresRegister());
1937      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1938      break;
1939    }
1940    case Primitive::kPrimLong: {
1941      locations->SetInAt(0, Location::RequiresRegister());
1942      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1943      break;
1944    }
1945
1946    case Primitive::kPrimFloat:
1947    case Primitive::kPrimDouble:
1948      locations->SetInAt(0, Location::RequiresFpuRegister());
1949      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
1950      break;
1951
1952    default:
1953      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
1954  }
1955}
1956
1957void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
1958  LocationSummary* locations = neg->GetLocations();
1959  Location out = locations->Out();
1960  Location in = locations->InAt(0);
1961  switch (neg->GetResultType()) {
1962    case Primitive::kPrimInt:
1963      DCHECK(in.IsRegister());
1964      __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
1965      break;
1966
1967    case Primitive::kPrimLong:
1968      DCHECK(in.IsRegisterPair());
1969      // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
1970      __ rsbs(out.AsRegisterPairLow<Register>(),
1971              in.AsRegisterPairLow<Register>(),
1972              ShifterOperand(0));
1973      // We cannot emit an RSC (Reverse Subtract with Carry)
1974      // instruction here, as it does not exist in the Thumb-2
1975      // instruction set.  We use the following approach
1976      // using SBC and SUB instead.
1977      //
1978      // out.hi = -C
1979      __ sbc(out.AsRegisterPairHigh<Register>(),
1980             out.AsRegisterPairHigh<Register>(),
1981             ShifterOperand(out.AsRegisterPairHigh<Register>()));
1982      // out.hi = out.hi - in.hi
1983      __ sub(out.AsRegisterPairHigh<Register>(),
1984             out.AsRegisterPairHigh<Register>(),
1985             ShifterOperand(in.AsRegisterPairHigh<Register>()));
1986      break;
1987
1988    case Primitive::kPrimFloat:
1989      DCHECK(in.IsFpuRegister());
1990      __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
1991      break;
1992
1993    case Primitive::kPrimDouble:
1994      DCHECK(in.IsFpuRegisterPair());
1995      __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
1996               FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
1997      break;
1998
1999    default:
2000      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2001  }
2002}
2003
2004void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
2005  Primitive::Type result_type = conversion->GetResultType();
2006  Primitive::Type input_type = conversion->GetInputType();
2007  DCHECK_NE(result_type, input_type);
2008
2009  // The float-to-long, double-to-long and long-to-float type conversions
2010  // rely on a call to the runtime.
2011  LocationSummary::CallKind call_kind =
2012      (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2013        && result_type == Primitive::kPrimLong)
2014       || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
2015      ? LocationSummary::kCall
2016      : LocationSummary::kNoCall;
2017  LocationSummary* locations =
2018      new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2019
2020  // The Java language does not allow treating boolean as an integral type but
2021  // our bit representation makes it safe.
2022
2023  switch (result_type) {
2024    case Primitive::kPrimByte:
2025      switch (input_type) {
2026        case Primitive::kPrimLong:
2027          // Type conversion from long to byte is a result of code transformations.
2028        case Primitive::kPrimBoolean:
2029          // Boolean input is a result of code transformations.
2030        case Primitive::kPrimShort:
2031        case Primitive::kPrimInt:
2032        case Primitive::kPrimChar:
2033          // Processing a Dex `int-to-byte' instruction.
2034          locations->SetInAt(0, Location::RequiresRegister());
2035          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2036          break;
2037
2038        default:
2039          LOG(FATAL) << "Unexpected type conversion from " << input_type
2040                     << " to " << result_type;
2041      }
2042      break;
2043
2044    case Primitive::kPrimShort:
2045      switch (input_type) {
2046        case Primitive::kPrimLong:
2047          // Type conversion from long to short is a result of code transformations.
2048        case Primitive::kPrimBoolean:
2049          // Boolean input is a result of code transformations.
2050        case Primitive::kPrimByte:
2051        case Primitive::kPrimInt:
2052        case Primitive::kPrimChar:
2053          // Processing a Dex `int-to-short' instruction.
2054          locations->SetInAt(0, Location::RequiresRegister());
2055          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2056          break;
2057
2058        default:
2059          LOG(FATAL) << "Unexpected type conversion from " << input_type
2060                     << " to " << result_type;
2061      }
2062      break;
2063
2064    case Primitive::kPrimInt:
2065      switch (input_type) {
2066        case Primitive::kPrimLong:
2067          // Processing a Dex `long-to-int' instruction.
2068          locations->SetInAt(0, Location::Any());
2069          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2070          break;
2071
2072        case Primitive::kPrimFloat:
2073          // Processing a Dex `float-to-int' instruction.
2074          locations->SetInAt(0, Location::RequiresFpuRegister());
2075          locations->SetOut(Location::RequiresRegister());
2076          locations->AddTemp(Location::RequiresFpuRegister());
2077          break;
2078
2079        case Primitive::kPrimDouble:
2080          // Processing a Dex `double-to-int' instruction.
2081          locations->SetInAt(0, Location::RequiresFpuRegister());
2082          locations->SetOut(Location::RequiresRegister());
2083          locations->AddTemp(Location::RequiresFpuRegister());
2084          break;
2085
2086        default:
2087          LOG(FATAL) << "Unexpected type conversion from " << input_type
2088                     << " to " << result_type;
2089      }
2090      break;
2091
2092    case Primitive::kPrimLong:
2093      switch (input_type) {
2094        case Primitive::kPrimBoolean:
2095          // Boolean input is a result of code transformations.
2096        case Primitive::kPrimByte:
2097        case Primitive::kPrimShort:
2098        case Primitive::kPrimInt:
2099        case Primitive::kPrimChar:
2100          // Processing a Dex `int-to-long' instruction.
2101          locations->SetInAt(0, Location::RequiresRegister());
2102          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2103          break;
2104
2105        case Primitive::kPrimFloat: {
2106          // Processing a Dex `float-to-long' instruction.
2107          InvokeRuntimeCallingConvention calling_convention;
2108          locations->SetInAt(0, Location::FpuRegisterLocation(
2109              calling_convention.GetFpuRegisterAt(0)));
2110          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2111          break;
2112        }
2113
2114        case Primitive::kPrimDouble: {
2115          // Processing a Dex `double-to-long' instruction.
2116          InvokeRuntimeCallingConvention calling_convention;
2117          locations->SetInAt(0, Location::FpuRegisterPairLocation(
2118              calling_convention.GetFpuRegisterAt(0),
2119              calling_convention.GetFpuRegisterAt(1)));
2120          locations->SetOut(Location::RegisterPairLocation(R0, R1));
2121          break;
2122        }
2123
2124        default:
2125          LOG(FATAL) << "Unexpected type conversion from " << input_type
2126                     << " to " << result_type;
2127      }
2128      break;
2129
2130    case Primitive::kPrimChar:
2131      switch (input_type) {
2132        case Primitive::kPrimLong:
2133          // Type conversion from long to char is a result of code transformations.
2134        case Primitive::kPrimBoolean:
2135          // Boolean input is a result of code transformations.
2136        case Primitive::kPrimByte:
2137        case Primitive::kPrimShort:
2138        case Primitive::kPrimInt:
2139          // Processing a Dex `int-to-char' instruction.
2140          locations->SetInAt(0, Location::RequiresRegister());
2141          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2142          break;
2143
2144        default:
2145          LOG(FATAL) << "Unexpected type conversion from " << input_type
2146                     << " to " << result_type;
2147      }
2148      break;
2149
2150    case Primitive::kPrimFloat:
2151      switch (input_type) {
2152        case Primitive::kPrimBoolean:
2153          // Boolean input is a result of code transformations.
2154        case Primitive::kPrimByte:
2155        case Primitive::kPrimShort:
2156        case Primitive::kPrimInt:
2157        case Primitive::kPrimChar:
2158          // Processing a Dex `int-to-float' instruction.
2159          locations->SetInAt(0, Location::RequiresRegister());
2160          locations->SetOut(Location::RequiresFpuRegister());
2161          break;
2162
2163        case Primitive::kPrimLong: {
2164          // Processing a Dex `long-to-float' instruction.
2165          InvokeRuntimeCallingConvention calling_convention;
2166          locations->SetInAt(0, Location::RegisterPairLocation(
2167              calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
2168          locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2169          break;
2170        }
2171
2172        case Primitive::kPrimDouble:
2173          // Processing a Dex `double-to-float' instruction.
2174          locations->SetInAt(0, Location::RequiresFpuRegister());
2175          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2176          break;
2177
2178        default:
2179          LOG(FATAL) << "Unexpected type conversion from " << input_type
2180                     << " to " << result_type;
2181      };
2182      break;
2183
2184    case Primitive::kPrimDouble:
2185      switch (input_type) {
2186        case Primitive::kPrimBoolean:
2187          // Boolean input is a result of code transformations.
2188        case Primitive::kPrimByte:
2189        case Primitive::kPrimShort:
2190        case Primitive::kPrimInt:
2191        case Primitive::kPrimChar:
2192          // Processing a Dex `int-to-double' instruction.
2193          locations->SetInAt(0, Location::RequiresRegister());
2194          locations->SetOut(Location::RequiresFpuRegister());
2195          break;
2196
2197        case Primitive::kPrimLong:
2198          // Processing a Dex `long-to-double' instruction.
2199          locations->SetInAt(0, Location::RequiresRegister());
2200          locations->SetOut(Location::RequiresFpuRegister());
2201          locations->AddTemp(Location::RequiresFpuRegister());
2202          locations->AddTemp(Location::RequiresFpuRegister());
2203          break;
2204
2205        case Primitive::kPrimFloat:
2206          // Processing a Dex `float-to-double' instruction.
2207          locations->SetInAt(0, Location::RequiresFpuRegister());
2208          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2209          break;
2210
2211        default:
2212          LOG(FATAL) << "Unexpected type conversion from " << input_type
2213                     << " to " << result_type;
2214      };
2215      break;
2216
2217    default:
2218      LOG(FATAL) << "Unexpected type conversion from " << input_type
2219                 << " to " << result_type;
2220  }
2221}
2222
2223void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
2224  LocationSummary* locations = conversion->GetLocations();
2225  Location out = locations->Out();
2226  Location in = locations->InAt(0);
2227  Primitive::Type result_type = conversion->GetResultType();
2228  Primitive::Type input_type = conversion->GetInputType();
2229  DCHECK_NE(result_type, input_type);
2230  switch (result_type) {
2231    case Primitive::kPrimByte:
2232      switch (input_type) {
2233        case Primitive::kPrimLong:
2234          // Type conversion from long to byte is a result of code transformations.
2235          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
2236          break;
2237        case Primitive::kPrimBoolean:
2238          // Boolean input is a result of code transformations.
2239        case Primitive::kPrimShort:
2240        case Primitive::kPrimInt:
2241        case Primitive::kPrimChar:
2242          // Processing a Dex `int-to-byte' instruction.
2243          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
2244          break;
2245
2246        default:
2247          LOG(FATAL) << "Unexpected type conversion from " << input_type
2248                     << " to " << result_type;
2249      }
2250      break;
2251
2252    case Primitive::kPrimShort:
2253      switch (input_type) {
2254        case Primitive::kPrimLong:
2255          // Type conversion from long to short is a result of code transformations.
2256          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2257          break;
2258        case Primitive::kPrimBoolean:
2259          // Boolean input is a result of code transformations.
2260        case Primitive::kPrimByte:
2261        case Primitive::kPrimInt:
2262        case Primitive::kPrimChar:
2263          // Processing a Dex `int-to-short' instruction.
2264          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2265          break;
2266
2267        default:
2268          LOG(FATAL) << "Unexpected type conversion from " << input_type
2269                     << " to " << result_type;
2270      }
2271      break;
2272
2273    case Primitive::kPrimInt:
2274      switch (input_type) {
2275        case Primitive::kPrimLong:
2276          // Processing a Dex `long-to-int' instruction.
2277          DCHECK(out.IsRegister());
2278          if (in.IsRegisterPair()) {
2279            __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2280          } else if (in.IsDoubleStackSlot()) {
2281            __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
2282          } else {
2283            DCHECK(in.IsConstant());
2284            DCHECK(in.GetConstant()->IsLongConstant());
2285            int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2286            __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
2287          }
2288          break;
2289
2290        case Primitive::kPrimFloat: {
2291          // Processing a Dex `float-to-int' instruction.
2292          SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2293          __ vmovs(temp, in.AsFpuRegister<SRegister>());
2294          __ vcvtis(temp, temp);
2295          __ vmovrs(out.AsRegister<Register>(), temp);
2296          break;
2297        }
2298
2299        case Primitive::kPrimDouble: {
2300          // Processing a Dex `double-to-int' instruction.
2301          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2302          DRegister temp_d = FromLowSToD(temp_s);
2303          __ vmovd(temp_d, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2304          __ vcvtid(temp_s, temp_d);
2305          __ vmovrs(out.AsRegister<Register>(), temp_s);
2306          break;
2307        }
2308
2309        default:
2310          LOG(FATAL) << "Unexpected type conversion from " << input_type
2311                     << " to " << result_type;
2312      }
2313      break;
2314
2315    case Primitive::kPrimLong:
2316      switch (input_type) {
2317        case Primitive::kPrimBoolean:
2318          // Boolean input is a result of code transformations.
2319        case Primitive::kPrimByte:
2320        case Primitive::kPrimShort:
2321        case Primitive::kPrimInt:
2322        case Primitive::kPrimChar:
2323          // Processing a Dex `int-to-long' instruction.
2324          DCHECK(out.IsRegisterPair());
2325          DCHECK(in.IsRegister());
2326          __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
2327          // Sign extension.
2328          __ Asr(out.AsRegisterPairHigh<Register>(),
2329                 out.AsRegisterPairLow<Register>(),
2330                 31);
2331          break;
2332
2333        case Primitive::kPrimFloat:
2334          // Processing a Dex `float-to-long' instruction.
2335          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
2336                                  conversion,
2337                                  conversion->GetDexPc(),
2338                                  nullptr);
2339          CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2340          break;
2341
2342        case Primitive::kPrimDouble:
2343          // Processing a Dex `double-to-long' instruction.
2344          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
2345                                  conversion,
2346                                  conversion->GetDexPc(),
2347                                  nullptr);
2348          CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2349          break;
2350
2351        default:
2352          LOG(FATAL) << "Unexpected type conversion from " << input_type
2353                     << " to " << result_type;
2354      }
2355      break;
2356
2357    case Primitive::kPrimChar:
2358      switch (input_type) {
2359        case Primitive::kPrimLong:
2360          // Type conversion from long to char is a result of code transformations.
2361          __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
2362          break;
2363        case Primitive::kPrimBoolean:
2364          // Boolean input is a result of code transformations.
2365        case Primitive::kPrimByte:
2366        case Primitive::kPrimShort:
2367        case Primitive::kPrimInt:
2368          // Processing a Dex `int-to-char' instruction.
2369          __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
2370          break;
2371
2372        default:
2373          LOG(FATAL) << "Unexpected type conversion from " << input_type
2374                     << " to " << result_type;
2375      }
2376      break;
2377
2378    case Primitive::kPrimFloat:
2379      switch (input_type) {
2380        case Primitive::kPrimBoolean:
2381          // Boolean input is a result of code transformations.
2382        case Primitive::kPrimByte:
2383        case Primitive::kPrimShort:
2384        case Primitive::kPrimInt:
2385        case Primitive::kPrimChar: {
2386          // Processing a Dex `int-to-float' instruction.
2387          __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
2388          __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
2389          break;
2390        }
2391
2392        case Primitive::kPrimLong:
2393          // Processing a Dex `long-to-float' instruction.
2394          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pL2f),
2395                                  conversion,
2396                                  conversion->GetDexPc(),
2397                                  nullptr);
2398          CheckEntrypointTypes<kQuickL2f, float, int64_t>();
2399          break;
2400
2401        case Primitive::kPrimDouble:
2402          // Processing a Dex `double-to-float' instruction.
2403          __ vcvtsd(out.AsFpuRegister<SRegister>(),
2404                    FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
2405          break;
2406
2407        default:
2408          LOG(FATAL) << "Unexpected type conversion from " << input_type
2409                     << " to " << result_type;
2410      };
2411      break;
2412
2413    case Primitive::kPrimDouble:
2414      switch (input_type) {
2415        case Primitive::kPrimBoolean:
2416          // Boolean input is a result of code transformations.
2417        case Primitive::kPrimByte:
2418        case Primitive::kPrimShort:
2419        case Primitive::kPrimInt:
2420        case Primitive::kPrimChar: {
2421          // Processing a Dex `int-to-double' instruction.
2422          __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
2423          __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2424                    out.AsFpuRegisterPairLow<SRegister>());
2425          break;
2426        }
2427
2428        case Primitive::kPrimLong: {
2429          // Processing a Dex `long-to-double' instruction.
2430          Register low = in.AsRegisterPairLow<Register>();
2431          Register high = in.AsRegisterPairHigh<Register>();
2432          SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
2433          DRegister out_d = FromLowSToD(out_s);
2434          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
2435          DRegister temp_d = FromLowSToD(temp_s);
2436          SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
2437          DRegister constant_d = FromLowSToD(constant_s);
2438
2439          // temp_d = int-to-double(high)
2440          __ vmovsr(temp_s, high);
2441          __ vcvtdi(temp_d, temp_s);
2442          // constant_d = k2Pow32EncodingForDouble
2443          __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
2444          // out_d = unsigned-to-double(low)
2445          __ vmovsr(out_s, low);
2446          __ vcvtdu(out_d, out_s);
2447          // out_d += temp_d * constant_d
2448          __ vmlad(out_d, temp_d, constant_d);
2449          break;
2450        }
2451
2452        case Primitive::kPrimFloat:
2453          // Processing a Dex `float-to-double' instruction.
2454          __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2455                    in.AsFpuRegister<SRegister>());
2456          break;
2457
2458        default:
2459          LOG(FATAL) << "Unexpected type conversion from " << input_type
2460                     << " to " << result_type;
2461      };
2462      break;
2463
2464    default:
2465      LOG(FATAL) << "Unexpected type conversion from " << input_type
2466                 << " to " << result_type;
2467  }
2468}
2469
2470void LocationsBuilderARM::VisitAdd(HAdd* add) {
2471  LocationSummary* locations =
2472      new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2473  switch (add->GetResultType()) {
2474    case Primitive::kPrimInt: {
2475      locations->SetInAt(0, Location::RequiresRegister());
2476      locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2477      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2478      break;
2479    }
2480
2481    case Primitive::kPrimLong: {
2482      locations->SetInAt(0, Location::RequiresRegister());
2483      locations->SetInAt(1, Location::RequiresRegister());
2484      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2485      break;
2486    }
2487
2488    case Primitive::kPrimFloat:
2489    case Primitive::kPrimDouble: {
2490      locations->SetInAt(0, Location::RequiresFpuRegister());
2491      locations->SetInAt(1, Location::RequiresFpuRegister());
2492      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2493      break;
2494    }
2495
2496    default:
2497      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2498  }
2499}
2500
2501void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
2502  LocationSummary* locations = add->GetLocations();
2503  Location out = locations->Out();
2504  Location first = locations->InAt(0);
2505  Location second = locations->InAt(1);
2506  switch (add->GetResultType()) {
2507    case Primitive::kPrimInt:
2508      if (second.IsRegister()) {
2509        __ add(out.AsRegister<Register>(),
2510               first.AsRegister<Register>(),
2511               ShifterOperand(second.AsRegister<Register>()));
2512      } else {
2513        __ AddConstant(out.AsRegister<Register>(),
2514                       first.AsRegister<Register>(),
2515                       second.GetConstant()->AsIntConstant()->GetValue());
2516      }
2517      break;
2518
2519    case Primitive::kPrimLong: {
2520      DCHECK(second.IsRegisterPair());
2521      __ adds(out.AsRegisterPairLow<Register>(),
2522              first.AsRegisterPairLow<Register>(),
2523              ShifterOperand(second.AsRegisterPairLow<Register>()));
2524      __ adc(out.AsRegisterPairHigh<Register>(),
2525             first.AsRegisterPairHigh<Register>(),
2526             ShifterOperand(second.AsRegisterPairHigh<Register>()));
2527      break;
2528    }
2529
2530    case Primitive::kPrimFloat:
2531      __ vadds(out.AsFpuRegister<SRegister>(),
2532               first.AsFpuRegister<SRegister>(),
2533               second.AsFpuRegister<SRegister>());
2534      break;
2535
2536    case Primitive::kPrimDouble:
2537      __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2538               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2539               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2540      break;
2541
2542    default:
2543      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2544  }
2545}
2546
2547void LocationsBuilderARM::VisitSub(HSub* sub) {
2548  LocationSummary* locations =
2549      new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
2550  switch (sub->GetResultType()) {
2551    case Primitive::kPrimInt: {
2552      locations->SetInAt(0, Location::RequiresRegister());
2553      locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
2554      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2555      break;
2556    }
2557
2558    case Primitive::kPrimLong: {
2559      locations->SetInAt(0, Location::RequiresRegister());
2560      locations->SetInAt(1, Location::RequiresRegister());
2561      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2562      break;
2563    }
2564    case Primitive::kPrimFloat:
2565    case Primitive::kPrimDouble: {
2566      locations->SetInAt(0, Location::RequiresFpuRegister());
2567      locations->SetInAt(1, Location::RequiresFpuRegister());
2568      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2569      break;
2570    }
2571    default:
2572      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2573  }
2574}
2575
2576void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
2577  LocationSummary* locations = sub->GetLocations();
2578  Location out = locations->Out();
2579  Location first = locations->InAt(0);
2580  Location second = locations->InAt(1);
2581  switch (sub->GetResultType()) {
2582    case Primitive::kPrimInt: {
2583      if (second.IsRegister()) {
2584        __ sub(out.AsRegister<Register>(),
2585               first.AsRegister<Register>(),
2586               ShifterOperand(second.AsRegister<Register>()));
2587      } else {
2588        __ AddConstant(out.AsRegister<Register>(),
2589                       first.AsRegister<Register>(),
2590                       -second.GetConstant()->AsIntConstant()->GetValue());
2591      }
2592      break;
2593    }
2594
2595    case Primitive::kPrimLong: {
2596      DCHECK(second.IsRegisterPair());
2597      __ subs(out.AsRegisterPairLow<Register>(),
2598              first.AsRegisterPairLow<Register>(),
2599              ShifterOperand(second.AsRegisterPairLow<Register>()));
2600      __ sbc(out.AsRegisterPairHigh<Register>(),
2601             first.AsRegisterPairHigh<Register>(),
2602             ShifterOperand(second.AsRegisterPairHigh<Register>()));
2603      break;
2604    }
2605
2606    case Primitive::kPrimFloat: {
2607      __ vsubs(out.AsFpuRegister<SRegister>(),
2608               first.AsFpuRegister<SRegister>(),
2609               second.AsFpuRegister<SRegister>());
2610      break;
2611    }
2612
2613    case Primitive::kPrimDouble: {
2614      __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2615               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2616               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2617      break;
2618    }
2619
2620
2621    default:
2622      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
2623  }
2624}
2625
2626void LocationsBuilderARM::VisitMul(HMul* mul) {
2627  LocationSummary* locations =
2628      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
2629  switch (mul->GetResultType()) {
2630    case Primitive::kPrimInt:
2631    case Primitive::kPrimLong:  {
2632      locations->SetInAt(0, Location::RequiresRegister());
2633      locations->SetInAt(1, Location::RequiresRegister());
2634      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2635      break;
2636    }
2637
2638    case Primitive::kPrimFloat:
2639    case Primitive::kPrimDouble: {
2640      locations->SetInAt(0, Location::RequiresFpuRegister());
2641      locations->SetInAt(1, Location::RequiresFpuRegister());
2642      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2643      break;
2644    }
2645
2646    default:
2647      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2648  }
2649}
2650
2651void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
2652  LocationSummary* locations = mul->GetLocations();
2653  Location out = locations->Out();
2654  Location first = locations->InAt(0);
2655  Location second = locations->InAt(1);
2656  switch (mul->GetResultType()) {
2657    case Primitive::kPrimInt: {
2658      __ mul(out.AsRegister<Register>(),
2659             first.AsRegister<Register>(),
2660             second.AsRegister<Register>());
2661      break;
2662    }
2663    case Primitive::kPrimLong: {
2664      Register out_hi = out.AsRegisterPairHigh<Register>();
2665      Register out_lo = out.AsRegisterPairLow<Register>();
2666      Register in1_hi = first.AsRegisterPairHigh<Register>();
2667      Register in1_lo = first.AsRegisterPairLow<Register>();
2668      Register in2_hi = second.AsRegisterPairHigh<Register>();
2669      Register in2_lo = second.AsRegisterPairLow<Register>();
2670
2671      // Extra checks to protect caused by the existence of R1_R2.
2672      // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
2673      // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
2674      DCHECK_NE(out_hi, in1_lo);
2675      DCHECK_NE(out_hi, in2_lo);
2676
2677      // input: in1 - 64 bits, in2 - 64 bits
2678      // output: out
2679      // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
2680      // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
2681      // parts: out.lo = (in1.lo * in2.lo)[31:0]
2682
2683      // IP <- in1.lo * in2.hi
2684      __ mul(IP, in1_lo, in2_hi);
2685      // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
2686      __ mla(out_hi, in1_hi, in2_lo, IP);
2687      // out.lo <- (in1.lo * in2.lo)[31:0];
2688      __ umull(out_lo, IP, in1_lo, in2_lo);
2689      // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
2690      __ add(out_hi, out_hi, ShifterOperand(IP));
2691      break;
2692    }
2693
2694    case Primitive::kPrimFloat: {
2695      __ vmuls(out.AsFpuRegister<SRegister>(),
2696               first.AsFpuRegister<SRegister>(),
2697               second.AsFpuRegister<SRegister>());
2698      break;
2699    }
2700
2701    case Primitive::kPrimDouble: {
2702      __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2703               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2704               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2705      break;
2706    }
2707
2708    default:
2709      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
2710  }
2711}
2712
2713void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
2714  DCHECK(instruction->IsDiv() || instruction->IsRem());
2715  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2716
2717  LocationSummary* locations = instruction->GetLocations();
2718  Location second = locations->InAt(1);
2719  DCHECK(second.IsConstant());
2720
2721  Register out = locations->Out().AsRegister<Register>();
2722  Register dividend = locations->InAt(0).AsRegister<Register>();
2723  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2724  DCHECK(imm == 1 || imm == -1);
2725
2726  if (instruction->IsRem()) {
2727    __ LoadImmediate(out, 0);
2728  } else {
2729    if (imm == 1) {
2730      __ Mov(out, dividend);
2731    } else {
2732      __ rsb(out, dividend, ShifterOperand(0));
2733    }
2734  }
2735}
2736
2737void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
2738  DCHECK(instruction->IsDiv() || instruction->IsRem());
2739  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2740
2741  LocationSummary* locations = instruction->GetLocations();
2742  Location second = locations->InAt(1);
2743  DCHECK(second.IsConstant());
2744
2745  Register out = locations->Out().AsRegister<Register>();
2746  Register dividend = locations->InAt(0).AsRegister<Register>();
2747  Register temp = locations->GetTemp(0).AsRegister<Register>();
2748  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2749  uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
2750  int ctz_imm = CTZ(abs_imm);
2751
2752  if (ctz_imm == 1) {
2753    __ Lsr(temp, dividend, 32 - ctz_imm);
2754  } else {
2755    __ Asr(temp, dividend, 31);
2756    __ Lsr(temp, temp, 32 - ctz_imm);
2757  }
2758  __ add(out, temp, ShifterOperand(dividend));
2759
2760  if (instruction->IsDiv()) {
2761    __ Asr(out, out, ctz_imm);
2762    if (imm < 0) {
2763      __ rsb(out, out, ShifterOperand(0));
2764    }
2765  } else {
2766    __ ubfx(out, out, 0, ctz_imm);
2767    __ sub(out, out, ShifterOperand(temp));
2768  }
2769}
2770
2771void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
2772  DCHECK(instruction->IsDiv() || instruction->IsRem());
2773  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2774
2775  LocationSummary* locations = instruction->GetLocations();
2776  Location second = locations->InAt(1);
2777  DCHECK(second.IsConstant());
2778
2779  Register out = locations->Out().AsRegister<Register>();
2780  Register dividend = locations->InAt(0).AsRegister<Register>();
2781  Register temp1 = locations->GetTemp(0).AsRegister<Register>();
2782  Register temp2 = locations->GetTemp(1).AsRegister<Register>();
2783  int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2784
2785  int64_t magic;
2786  int shift;
2787  CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
2788
2789  __ LoadImmediate(temp1, magic);
2790  __ smull(temp2, temp1, dividend, temp1);
2791
2792  if (imm > 0 && magic < 0) {
2793    __ add(temp1, temp1, ShifterOperand(dividend));
2794  } else if (imm < 0 && magic > 0) {
2795    __ sub(temp1, temp1, ShifterOperand(dividend));
2796  }
2797
2798  if (shift != 0) {
2799    __ Asr(temp1, temp1, shift);
2800  }
2801
2802  if (instruction->IsDiv()) {
2803    __ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
2804  } else {
2805    __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
2806    // TODO: Strength reduction for mls.
2807    __ LoadImmediate(temp2, imm);
2808    __ mls(out, temp1, temp2, dividend);
2809  }
2810}
2811
2812void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
2813  DCHECK(instruction->IsDiv() || instruction->IsRem());
2814  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
2815
2816  LocationSummary* locations = instruction->GetLocations();
2817  Location second = locations->InAt(1);
2818  DCHECK(second.IsConstant());
2819
2820  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
2821  if (imm == 0) {
2822    // Do not generate anything. DivZeroCheck would prevent any code to be executed.
2823  } else if (imm == 1 || imm == -1) {
2824    DivRemOneOrMinusOne(instruction);
2825  } else if (IsPowerOfTwo(AbsOrMin(imm))) {
2826    DivRemByPowerOfTwo(instruction);
2827  } else {
2828    DCHECK(imm <= -2 || imm >= 2);
2829    GenerateDivRemWithAnyConstant(instruction);
2830  }
2831}
2832
2833void LocationsBuilderARM::VisitDiv(HDiv* div) {
2834  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
2835  if (div->GetResultType() == Primitive::kPrimLong) {
2836    // pLdiv runtime call.
2837    call_kind = LocationSummary::kCall;
2838  } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
2839    // sdiv will be replaced by other instruction sequence.
2840  } else if (div->GetResultType() == Primitive::kPrimInt &&
2841             !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
2842    // pIdivmod runtime call.
2843    call_kind = LocationSummary::kCall;
2844  }
2845
2846  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
2847
2848  switch (div->GetResultType()) {
2849    case Primitive::kPrimInt: {
2850      if (div->InputAt(1)->IsConstant()) {
2851        locations->SetInAt(0, Location::RequiresRegister());
2852        locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
2853        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2854        int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
2855        if (value == 1 || value == 0 || value == -1) {
2856          // No temp register required.
2857        } else {
2858          locations->AddTemp(Location::RequiresRegister());
2859          if (!IsPowerOfTwo(AbsOrMin(value))) {
2860            locations->AddTemp(Location::RequiresRegister());
2861          }
2862        }
2863      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
2864        locations->SetInAt(0, Location::RequiresRegister());
2865        locations->SetInAt(1, Location::RequiresRegister());
2866        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2867      } else {
2868        InvokeRuntimeCallingConvention calling_convention;
2869        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2870        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2871        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
2872        //       we only need the former.
2873        locations->SetOut(Location::RegisterLocation(R0));
2874      }
2875      break;
2876    }
2877    case Primitive::kPrimLong: {
2878      InvokeRuntimeCallingConvention calling_convention;
2879      locations->SetInAt(0, Location::RegisterPairLocation(
2880          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
2881      locations->SetInAt(1, Location::RegisterPairLocation(
2882          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
2883      locations->SetOut(Location::RegisterPairLocation(R0, R1));
2884      break;
2885    }
2886    case Primitive::kPrimFloat:
2887    case Primitive::kPrimDouble: {
2888      locations->SetInAt(0, Location::RequiresFpuRegister());
2889      locations->SetInAt(1, Location::RequiresFpuRegister());
2890      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2891      break;
2892    }
2893
2894    default:
2895      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
2896  }
2897}
2898
2899void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
2900  LocationSummary* locations = div->GetLocations();
2901  Location out = locations->Out();
2902  Location first = locations->InAt(0);
2903  Location second = locations->InAt(1);
2904
2905  switch (div->GetResultType()) {
2906    case Primitive::kPrimInt: {
2907      if (second.IsConstant()) {
2908        GenerateDivRemConstantIntegral(div);
2909      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
2910        __ sdiv(out.AsRegister<Register>(),
2911                first.AsRegister<Register>(),
2912                second.AsRegister<Register>());
2913      } else {
2914        InvokeRuntimeCallingConvention calling_convention;
2915        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
2916        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
2917        DCHECK_EQ(R0, out.AsRegister<Register>());
2918
2919        codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), div, div->GetDexPc(), nullptr);
2920        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
2921      }
2922      break;
2923    }
2924
2925    case Primitive::kPrimLong: {
2926      InvokeRuntimeCallingConvention calling_convention;
2927      DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
2928      DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
2929      DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
2930      DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
2931      DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
2932      DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
2933
2934      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), div, div->GetDexPc(), nullptr);
2935      CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
2936      break;
2937    }
2938
2939    case Primitive::kPrimFloat: {
2940      __ vdivs(out.AsFpuRegister<SRegister>(),
2941               first.AsFpuRegister<SRegister>(),
2942               second.AsFpuRegister<SRegister>());
2943      break;
2944    }
2945
2946    case Primitive::kPrimDouble: {
2947      __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
2948               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
2949               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
2950      break;
2951    }
2952
2953    default:
2954      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
2955  }
2956}
2957
2958void LocationsBuilderARM::VisitRem(HRem* rem) {
2959  Primitive::Type type = rem->GetResultType();
2960
2961  // Most remainders are implemented in the runtime.
2962  LocationSummary::CallKind call_kind = LocationSummary::kCall;
2963  if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
2964    // sdiv will be replaced by other instruction sequence.
2965    call_kind = LocationSummary::kNoCall;
2966  } else if ((rem->GetResultType() == Primitive::kPrimInt)
2967             && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
2968    // Have hardware divide instruction for int, do it with three instructions.
2969    call_kind = LocationSummary::kNoCall;
2970  }
2971
2972  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
2973
2974  switch (type) {
2975    case Primitive::kPrimInt: {
2976      if (rem->InputAt(1)->IsConstant()) {
2977        locations->SetInAt(0, Location::RequiresRegister());
2978        locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
2979        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2980        int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
2981        if (value == 1 || value == 0 || value == -1) {
2982          // No temp register required.
2983        } else {
2984          locations->AddTemp(Location::RequiresRegister());
2985          if (!IsPowerOfTwo(AbsOrMin(value))) {
2986            locations->AddTemp(Location::RequiresRegister());
2987          }
2988        }
2989      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
2990        locations->SetInAt(0, Location::RequiresRegister());
2991        locations->SetInAt(1, Location::RequiresRegister());
2992        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2993        locations->AddTemp(Location::RequiresRegister());
2994      } else {
2995        InvokeRuntimeCallingConvention calling_convention;
2996        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2997        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2998        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
2999        //       we only need the latter.
3000        locations->SetOut(Location::RegisterLocation(R1));
3001      }
3002      break;
3003    }
3004    case Primitive::kPrimLong: {
3005      InvokeRuntimeCallingConvention calling_convention;
3006      locations->SetInAt(0, Location::RegisterPairLocation(
3007          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3008      locations->SetInAt(1, Location::RegisterPairLocation(
3009          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3010      // The runtime helper puts the output in R2,R3.
3011      locations->SetOut(Location::RegisterPairLocation(R2, R3));
3012      break;
3013    }
3014    case Primitive::kPrimFloat: {
3015      InvokeRuntimeCallingConvention calling_convention;
3016      locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
3017      locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
3018      locations->SetOut(Location::FpuRegisterLocation(S0));
3019      break;
3020    }
3021
3022    case Primitive::kPrimDouble: {
3023      InvokeRuntimeCallingConvention calling_convention;
3024      locations->SetInAt(0, Location::FpuRegisterPairLocation(
3025          calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
3026      locations->SetInAt(1, Location::FpuRegisterPairLocation(
3027          calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
3028      locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
3029      break;
3030    }
3031
3032    default:
3033      LOG(FATAL) << "Unexpected rem type " << type;
3034  }
3035}
3036
3037void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
3038  LocationSummary* locations = rem->GetLocations();
3039  Location out = locations->Out();
3040  Location first = locations->InAt(0);
3041  Location second = locations->InAt(1);
3042
3043  Primitive::Type type = rem->GetResultType();
3044  switch (type) {
3045    case Primitive::kPrimInt: {
3046        if (second.IsConstant()) {
3047          GenerateDivRemConstantIntegral(rem);
3048        } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
3049        Register reg1 = first.AsRegister<Register>();
3050        Register reg2 = second.AsRegister<Register>();
3051        Register temp = locations->GetTemp(0).AsRegister<Register>();
3052
3053        // temp = reg1 / reg2  (integer division)
3054        // dest = reg1 - temp * reg2
3055        __ sdiv(temp, reg1, reg2);
3056        __ mls(out.AsRegister<Register>(), temp, reg2, reg1);
3057      } else {
3058        InvokeRuntimeCallingConvention calling_convention;
3059        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
3060        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
3061        DCHECK_EQ(R1, out.AsRegister<Register>());
3062
3063        codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), rem, rem->GetDexPc(), nullptr);
3064        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
3065      }
3066      break;
3067    }
3068
3069    case Primitive::kPrimLong: {
3070      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), rem, rem->GetDexPc(), nullptr);
3071        CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3072      break;
3073    }
3074
3075    case Primitive::kPrimFloat: {
3076      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf), rem, rem->GetDexPc(), nullptr);
3077      CheckEntrypointTypes<kQuickFmodf, float, float, float>();
3078      break;
3079    }
3080
3081    case Primitive::kPrimDouble: {
3082      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod), rem, rem->GetDexPc(), nullptr);
3083      CheckEntrypointTypes<kQuickFmod, double, double, double>();
3084      break;
3085    }
3086
3087    default:
3088      LOG(FATAL) << "Unexpected rem type " << type;
3089  }
3090}
3091
3092void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3093  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
3094      ? LocationSummary::kCallOnSlowPath
3095      : LocationSummary::kNoCall;
3096  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
3097  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3098  if (instruction->HasUses()) {
3099    locations->SetOut(Location::SameAsFirstInput());
3100  }
3101}
3102
3103void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3104  SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
3105  codegen_->AddSlowPath(slow_path);
3106
3107  LocationSummary* locations = instruction->GetLocations();
3108  Location value = locations->InAt(0);
3109
3110  switch (instruction->GetType()) {
3111    case Primitive::kPrimBoolean:
3112    case Primitive::kPrimByte:
3113    case Primitive::kPrimChar:
3114    case Primitive::kPrimShort:
3115    case Primitive::kPrimInt: {
3116      if (value.IsRegister()) {
3117        __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
3118      } else {
3119        DCHECK(value.IsConstant()) << value;
3120        if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3121          __ b(slow_path->GetEntryLabel());
3122        }
3123      }
3124      break;
3125    }
3126    case Primitive::kPrimLong: {
3127      if (value.IsRegisterPair()) {
3128        __ orrs(IP,
3129                value.AsRegisterPairLow<Register>(),
3130                ShifterOperand(value.AsRegisterPairHigh<Register>()));
3131        __ b(slow_path->GetEntryLabel(), EQ);
3132      } else {
3133        DCHECK(value.IsConstant()) << value;
3134        if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3135          __ b(slow_path->GetEntryLabel());
3136        }
3137      }
3138      break;
3139    default:
3140      LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3141    }
3142  }
3143}
3144
3145void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
3146  Register in = locations->InAt(0).AsRegister<Register>();
3147  Location rhs = locations->InAt(1);
3148  Register out = locations->Out().AsRegister<Register>();
3149
3150  if (rhs.IsConstant()) {
3151    // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
3152    // so map all rotations to a +ve. equivalent in that range.
3153    // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
3154    uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
3155    if (rot) {
3156      // Rotate, mapping left rotations to right equivalents if necessary.
3157      // (e.g. left by 2 bits == right by 30.)
3158      __ Ror(out, in, rot);
3159    } else if (out != in) {
3160      __ Mov(out, in);
3161    }
3162  } else {
3163    __ Ror(out, in, rhs.AsRegister<Register>());
3164  }
3165}
3166
3167// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
3168// rotates by swapping input regs (effectively rotating by the first 32-bits of
3169// a larger rotation) or flipping direction (thus treating larger right/left
3170// rotations as sub-word sized rotations in the other direction) as appropriate.
3171void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) {
3172  Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
3173  Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
3174  Location rhs = locations->InAt(1);
3175  Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
3176  Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
3177
3178  if (rhs.IsConstant()) {
3179    uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
3180    // Map all rotations to +ve. equivalents on the interval [0,63].
3181    rot &= kMaxLongShiftDistance;
3182    // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
3183    // logic below to a simple pair of binary orr.
3184    // (e.g. 34 bits == in_reg swap + 2 bits right.)
3185    if (rot >= kArmBitsPerWord) {
3186      rot -= kArmBitsPerWord;
3187      std::swap(in_reg_hi, in_reg_lo);
3188    }
3189    // Rotate, or mov to out for zero or word size rotations.
3190    if (rot != 0u) {
3191      __ Lsr(out_reg_hi, in_reg_hi, rot);
3192      __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
3193      __ Lsr(out_reg_lo, in_reg_lo, rot);
3194      __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
3195    } else {
3196      __ Mov(out_reg_lo, in_reg_lo);
3197      __ Mov(out_reg_hi, in_reg_hi);
3198    }
3199  } else {
3200    Register shift_right = locations->GetTemp(0).AsRegister<Register>();
3201    Register shift_left = locations->GetTemp(1).AsRegister<Register>();
3202    Label end;
3203    Label shift_by_32_plus_shift_right;
3204
3205    __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
3206    __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
3207    __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
3208    __ b(&shift_by_32_plus_shift_right, CC);
3209
3210    // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
3211    // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
3212    __ Lsl(out_reg_hi, in_reg_hi, shift_left);
3213    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3214    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3215    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3216    __ Lsr(shift_left, in_reg_hi, shift_right);
3217    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
3218    __ b(&end);
3219
3220    __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
3221    // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
3222    // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
3223    __ Lsr(out_reg_hi, in_reg_hi, shift_right);
3224    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
3225    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
3226    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
3227    __ Lsl(shift_right, in_reg_hi, shift_left);
3228    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));
3229
3230    __ Bind(&end);
3231  }
3232}
3233
3234void LocationsBuilderARM::VisitRor(HRor* ror) {
3235  LocationSummary* locations =
3236      new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
3237  switch (ror->GetResultType()) {
3238    case Primitive::kPrimInt: {
3239      locations->SetInAt(0, Location::RequiresRegister());
3240      locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
3241      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3242      break;
3243    }
3244    case Primitive::kPrimLong: {
3245      locations->SetInAt(0, Location::RequiresRegister());
3246      if (ror->InputAt(1)->IsConstant()) {
3247        locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
3248      } else {
3249        locations->SetInAt(1, Location::RequiresRegister());
3250        locations->AddTemp(Location::RequiresRegister());
3251        locations->AddTemp(Location::RequiresRegister());
3252      }
3253      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3254      break;
3255    }
3256    default:
3257      LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
3258  }
3259}
3260
3261void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
3262  LocationSummary* locations = ror->GetLocations();
3263  Primitive::Type type = ror->GetResultType();
3264  switch (type) {
3265    case Primitive::kPrimInt: {
3266      HandleIntegerRotate(locations);
3267      break;
3268    }
3269    case Primitive::kPrimLong: {
3270      HandleLongRotate(locations);
3271      break;
3272    }
3273    default:
3274      LOG(FATAL) << "Unexpected operation type " << type;
3275      UNREACHABLE();
3276  }
3277}
3278
3279void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
3280  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3281
3282  LocationSummary* locations =
3283      new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3284
3285  switch (op->GetResultType()) {
3286    case Primitive::kPrimInt: {
3287      locations->SetInAt(0, Location::RequiresRegister());
3288      if (op->InputAt(1)->IsConstant()) {
3289        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3290        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3291      } else {
3292        locations->SetInAt(1, Location::RequiresRegister());
3293        // Make the output overlap, as it will be used to hold the masked
3294        // second input.
3295        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3296      }
3297      break;
3298    }
3299    case Primitive::kPrimLong: {
3300      locations->SetInAt(0, Location::RequiresRegister());
3301      if (op->InputAt(1)->IsConstant()) {
3302        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
3303        // For simplicity, use kOutputOverlap even though we only require that low registers
3304        // don't clash with high registers which the register allocator currently guarantees.
3305        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3306      } else {
3307        locations->SetInAt(1, Location::RequiresRegister());
3308        locations->AddTemp(Location::RequiresRegister());
3309        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3310      }
3311      break;
3312    }
3313    default:
3314      LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
3315  }
3316}
3317
3318void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
3319  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3320
3321  LocationSummary* locations = op->GetLocations();
3322  Location out = locations->Out();
3323  Location first = locations->InAt(0);
3324  Location second = locations->InAt(1);
3325
3326  Primitive::Type type = op->GetResultType();
3327  switch (type) {
3328    case Primitive::kPrimInt: {
3329      Register out_reg = out.AsRegister<Register>();
3330      Register first_reg = first.AsRegister<Register>();
3331      if (second.IsRegister()) {
3332        Register second_reg = second.AsRegister<Register>();
3333        // ARM doesn't mask the shift count so we need to do it ourselves.
3334        __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
3335        if (op->IsShl()) {
3336          __ Lsl(out_reg, first_reg, out_reg);
3337        } else if (op->IsShr()) {
3338          __ Asr(out_reg, first_reg, out_reg);
3339        } else {
3340          __ Lsr(out_reg, first_reg, out_reg);
3341        }
3342      } else {
3343        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3344        uint32_t shift_value = cst & kMaxIntShiftDistance;
3345        if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
3346          __ Mov(out_reg, first_reg);
3347        } else if (op->IsShl()) {
3348          __ Lsl(out_reg, first_reg, shift_value);
3349        } else if (op->IsShr()) {
3350          __ Asr(out_reg, first_reg, shift_value);
3351        } else {
3352          __ Lsr(out_reg, first_reg, shift_value);
3353        }
3354      }
3355      break;
3356    }
3357    case Primitive::kPrimLong: {
3358      Register o_h = out.AsRegisterPairHigh<Register>();
3359      Register o_l = out.AsRegisterPairLow<Register>();
3360
3361      Register high = first.AsRegisterPairHigh<Register>();
3362      Register low = first.AsRegisterPairLow<Register>();
3363
3364      if (second.IsRegister()) {
3365        Register temp = locations->GetTemp(0).AsRegister<Register>();
3366
3367        Register second_reg = second.AsRegister<Register>();
3368
3369        if (op->IsShl()) {
3370          __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
3371          // Shift the high part
3372          __ Lsl(o_h, high, o_l);
3373          // Shift the low part and `or` what overflew on the high part
3374          __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
3375          __ Lsr(temp, low, temp);
3376          __ orr(o_h, o_h, ShifterOperand(temp));
3377          // If the shift is > 32 bits, override the high part
3378          __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
3379          __ it(PL);
3380          __ Lsl(o_h, low, temp, PL);
3381          // Shift the low part
3382          __ Lsl(o_l, low, o_l);
3383        } else if (op->IsShr()) {
3384          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3385          // Shift the low part
3386          __ Lsr(o_l, low, o_h);
3387          // Shift the high part and `or` what underflew on the low part
3388          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3389          __ Lsl(temp, high, temp);
3390          __ orr(o_l, o_l, ShifterOperand(temp));
3391          // If the shift is > 32 bits, override the low part
3392          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3393          __ it(PL);
3394          __ Asr(o_l, high, temp, PL);
3395          // Shift the high part
3396          __ Asr(o_h, high, o_h);
3397        } else {
3398          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
3399          // same as Shr except we use `Lsr`s and not `Asr`s
3400          __ Lsr(o_l, low, o_h);
3401          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
3402          __ Lsl(temp, high, temp);
3403          __ orr(o_l, o_l, ShifterOperand(temp));
3404          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
3405          __ it(PL);
3406          __ Lsr(o_l, high, temp, PL);
3407          __ Lsr(o_h, high, o_h);
3408        }
3409      } else {
3410        // Register allocator doesn't create partial overlap.
3411        DCHECK_NE(o_l, high);
3412        DCHECK_NE(o_h, low);
3413        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
3414        uint32_t shift_value = cst & kMaxLongShiftDistance;
3415        if (shift_value > 32) {
3416          if (op->IsShl()) {
3417            __ Lsl(o_h, low, shift_value - 32);
3418            __ LoadImmediate(o_l, 0);
3419          } else if (op->IsShr()) {
3420            __ Asr(o_l, high, shift_value - 32);
3421            __ Asr(o_h, high, 31);
3422          } else {
3423            __ Lsr(o_l, high, shift_value - 32);
3424            __ LoadImmediate(o_h, 0);
3425          }
3426        } else if (shift_value == 32) {
3427          if (op->IsShl()) {
3428            __ mov(o_h, ShifterOperand(low));
3429            __ LoadImmediate(o_l, 0);
3430          } else if (op->IsShr()) {
3431            __ mov(o_l, ShifterOperand(high));
3432            __ Asr(o_h, high, 31);
3433          } else {
3434            __ mov(o_l, ShifterOperand(high));
3435            __ LoadImmediate(o_h, 0);
3436          }
3437        } else if (shift_value == 1) {
3438          if (op->IsShl()) {
3439            __ Lsls(o_l, low, 1);
3440            __ adc(o_h, high, ShifterOperand(high));
3441          } else if (op->IsShr()) {
3442            __ Asrs(o_h, high, 1);
3443            __ Rrx(o_l, low);
3444          } else {
3445            __ Lsrs(o_h, high, 1);
3446            __ Rrx(o_l, low);
3447          }
3448        } else {
3449          DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
3450          if (op->IsShl()) {
3451            __ Lsl(o_h, high, shift_value);
3452            __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
3453            __ Lsl(o_l, low, shift_value);
3454          } else if (op->IsShr()) {
3455            __ Lsr(o_l, low, shift_value);
3456            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3457            __ Asr(o_h, high, shift_value);
3458          } else {
3459            __ Lsr(o_l, low, shift_value);
3460            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
3461            __ Lsr(o_h, high, shift_value);
3462          }
3463        }
3464      }
3465      break;
3466    }
3467    default:
3468      LOG(FATAL) << "Unexpected operation type " << type;
3469      UNREACHABLE();
3470  }
3471}
3472
3473void LocationsBuilderARM::VisitShl(HShl* shl) {
3474  HandleShift(shl);
3475}
3476
3477void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
3478  HandleShift(shl);
3479}
3480
3481void LocationsBuilderARM::VisitShr(HShr* shr) {
3482  HandleShift(shr);
3483}
3484
3485void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
3486  HandleShift(shr);
3487}
3488
3489void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
3490  HandleShift(ushr);
3491}
3492
3493void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
3494  HandleShift(ushr);
3495}
3496
3497void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
3498  LocationSummary* locations =
3499      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3500  if (instruction->IsStringAlloc()) {
3501    locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
3502  } else {
3503    InvokeRuntimeCallingConvention calling_convention;
3504    locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3505    locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3506  }
3507  locations->SetOut(Location::RegisterLocation(R0));
3508}
3509
3510void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
3511  // Note: if heap poisoning is enabled, the entry point takes cares
3512  // of poisoning the reference.
3513  if (instruction->IsStringAlloc()) {
3514    // String is allocated through StringFactory. Call NewEmptyString entry point.
3515    Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
3516    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize);
3517    __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
3518    __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
3519    __ blx(LR);
3520    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
3521  } else {
3522    codegen_->InvokeRuntime(instruction->GetEntrypoint(),
3523                            instruction,
3524                            instruction->GetDexPc(),
3525                            nullptr);
3526    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
3527  }
3528}
3529
3530void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
3531  LocationSummary* locations =
3532      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
3533  InvokeRuntimeCallingConvention calling_convention;
3534  locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3535  locations->SetOut(Location::RegisterLocation(R0));
3536  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3537  locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
3538}
3539
3540void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
3541  InvokeRuntimeCallingConvention calling_convention;
3542  __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
3543  // Note: if heap poisoning is enabled, the entry point takes cares
3544  // of poisoning the reference.
3545  codegen_->InvokeRuntime(instruction->GetEntrypoint(),
3546                          instruction,
3547                          instruction->GetDexPc(),
3548                          nullptr);
3549  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
3550}
3551
3552void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
3553  LocationSummary* locations =
3554      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3555  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
3556  if (location.IsStackSlot()) {
3557    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3558  } else if (location.IsDoubleStackSlot()) {
3559    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
3560  }
3561  locations->SetOut(location);
3562}
3563
3564void InstructionCodeGeneratorARM::VisitParameterValue(
3565    HParameterValue* instruction ATTRIBUTE_UNUSED) {
3566  // Nothing to do, the parameter is already at its location.
3567}
3568
3569void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
3570  LocationSummary* locations =
3571      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3572  locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
3573}
3574
3575void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
3576  // Nothing to do, the method is already at its location.
3577}
3578
3579void LocationsBuilderARM::VisitNot(HNot* not_) {
3580  LocationSummary* locations =
3581      new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
3582  locations->SetInAt(0, Location::RequiresRegister());
3583  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3584}
3585
3586void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
3587  LocationSummary* locations = not_->GetLocations();
3588  Location out = locations->Out();
3589  Location in = locations->InAt(0);
3590  switch (not_->GetResultType()) {
3591    case Primitive::kPrimInt:
3592      __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
3593      break;
3594
3595    case Primitive::kPrimLong:
3596      __ mvn(out.AsRegisterPairLow<Register>(),
3597             ShifterOperand(in.AsRegisterPairLow<Register>()));
3598      __ mvn(out.AsRegisterPairHigh<Register>(),
3599             ShifterOperand(in.AsRegisterPairHigh<Register>()));
3600      break;
3601
3602    default:
3603      LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
3604  }
3605}
3606
3607void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
3608  LocationSummary* locations =
3609      new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
3610  locations->SetInAt(0, Location::RequiresRegister());
3611  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3612}
3613
3614void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
3615  LocationSummary* locations = bool_not->GetLocations();
3616  Location out = locations->Out();
3617  Location in = locations->InAt(0);
3618  __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
3619}
3620
3621void LocationsBuilderARM::VisitCompare(HCompare* compare) {
3622  LocationSummary* locations =
3623      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
3624  switch (compare->InputAt(0)->GetType()) {
3625    case Primitive::kPrimBoolean:
3626    case Primitive::kPrimByte:
3627    case Primitive::kPrimShort:
3628    case Primitive::kPrimChar:
3629    case Primitive::kPrimInt:
3630    case Primitive::kPrimLong: {
3631      locations->SetInAt(0, Location::RequiresRegister());
3632      locations->SetInAt(1, Location::RequiresRegister());
3633      // Output overlaps because it is written before doing the low comparison.
3634      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3635      break;
3636    }
3637    case Primitive::kPrimFloat:
3638    case Primitive::kPrimDouble: {
3639      locations->SetInAt(0, Location::RequiresFpuRegister());
3640      locations->SetInAt(1, Location::RequiresFpuRegister());
3641      locations->SetOut(Location::RequiresRegister());
3642      break;
3643    }
3644    default:
3645      LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
3646  }
3647}
3648
3649void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
3650  LocationSummary* locations = compare->GetLocations();
3651  Register out = locations->Out().AsRegister<Register>();
3652  Location left = locations->InAt(0);
3653  Location right = locations->InAt(1);
3654
3655  Label less, greater, done;
3656  Primitive::Type type = compare->InputAt(0)->GetType();
3657  Condition less_cond;
3658  switch (type) {
3659    case Primitive::kPrimBoolean:
3660    case Primitive::kPrimByte:
3661    case Primitive::kPrimShort:
3662    case Primitive::kPrimChar:
3663    case Primitive::kPrimInt: {
3664      __ LoadImmediate(out, 0);
3665      __ cmp(left.AsRegister<Register>(),
3666             ShifterOperand(right.AsRegister<Register>()));  // Signed compare.
3667      less_cond = LT;
3668      break;
3669    }
3670    case Primitive::kPrimLong: {
3671      __ cmp(left.AsRegisterPairHigh<Register>(),
3672             ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare.
3673      __ b(&less, LT);
3674      __ b(&greater, GT);
3675      // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
3676      __ LoadImmediate(out, 0);
3677      __ cmp(left.AsRegisterPairLow<Register>(),
3678             ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare.
3679      less_cond = LO;
3680      break;
3681    }
3682    case Primitive::kPrimFloat:
3683    case Primitive::kPrimDouble: {
3684      __ LoadImmediate(out, 0);
3685      if (type == Primitive::kPrimFloat) {
3686        __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
3687      } else {
3688        __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
3689                 FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
3690      }
3691      __ vmstat();  // transfer FP status register to ARM APSR.
3692      less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
3693      break;
3694    }
3695    default:
3696      LOG(FATAL) << "Unexpected compare type " << type;
3697      UNREACHABLE();
3698  }
3699
3700  __ b(&done, EQ);
3701  __ b(&less, less_cond);
3702
3703  __ Bind(&greater);
3704  __ LoadImmediate(out, 1);
3705  __ b(&done);
3706
3707  __ Bind(&less);
3708  __ LoadImmediate(out, -1);
3709
3710  __ Bind(&done);
3711}
3712
3713void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
3714  LocationSummary* locations =
3715      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3716  for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
3717    locations->SetInAt(i, Location::Any());
3718  }
3719  locations->SetOut(Location::Any());
3720}
3721
3722void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
3723  LOG(FATAL) << "Unreachable";
3724}
3725
3726void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
3727  // TODO (ported from quick): revisit ARM barrier kinds.
3728  DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
3729  switch (kind) {
3730    case MemBarrierKind::kAnyStore:
3731    case MemBarrierKind::kLoadAny:
3732    case MemBarrierKind::kAnyAny: {
3733      flavor = DmbOptions::ISH;
3734      break;
3735    }
3736    case MemBarrierKind::kStoreStore: {
3737      flavor = DmbOptions::ISHST;
3738      break;
3739    }
3740    default:
3741      LOG(FATAL) << "Unexpected memory barrier " << kind;
3742  }
3743  __ dmb(flavor);
3744}
3745
3746void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
3747                                                         uint32_t offset,
3748                                                         Register out_lo,
3749                                                         Register out_hi) {
3750  if (offset != 0) {
3751    // Ensure `out_lo` is different from `addr`, so that loading
3752    // `offset` into `out_lo` does not clutter `addr`.
3753    DCHECK_NE(out_lo, addr);
3754    __ LoadImmediate(out_lo, offset);
3755    __ add(IP, addr, ShifterOperand(out_lo));
3756    addr = IP;
3757  }
3758  __ ldrexd(out_lo, out_hi, addr);
3759}
3760
3761void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
3762                                                          uint32_t offset,
3763                                                          Register value_lo,
3764                                                          Register value_hi,
3765                                                          Register temp1,
3766                                                          Register temp2,
3767                                                          HInstruction* instruction) {
3768  Label fail;
3769  if (offset != 0) {
3770    __ LoadImmediate(temp1, offset);
3771    __ add(IP, addr, ShifterOperand(temp1));
3772    addr = IP;
3773  }
3774  __ Bind(&fail);
3775  // We need a load followed by store. (The address used in a STREX instruction must
3776  // be the same as the address in the most recently executed LDREX instruction.)
3777  __ ldrexd(temp1, temp2, addr);
3778  codegen_->MaybeRecordImplicitNullCheck(instruction);
3779  __ strexd(temp1, value_lo, value_hi, addr);
3780  __ CompareAndBranchIfNonZero(temp1, &fail);
3781}
3782
3783void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
3784  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
3785
3786  LocationSummary* locations =
3787      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
3788  locations->SetInAt(0, Location::RequiresRegister());
3789
3790  Primitive::Type field_type = field_info.GetFieldType();
3791  if (Primitive::IsFloatingPointType(field_type)) {
3792    locations->SetInAt(1, Location::RequiresFpuRegister());
3793  } else {
3794    locations->SetInAt(1, Location::RequiresRegister());
3795  }
3796
3797  bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
3798  bool generate_volatile = field_info.IsVolatile()
3799      && is_wide
3800      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
3801  bool needs_write_barrier =
3802      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
3803  // Temporary registers for the write barrier.
3804  // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
3805  if (needs_write_barrier) {
3806    locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
3807    locations->AddTemp(Location::RequiresRegister());
3808  } else if (generate_volatile) {
3809    // ARM encoding have some additional constraints for ldrexd/strexd:
3810    // - registers need to be consecutive
3811    // - the first register should be even but not R14.
3812    // We don't test for ARM yet, and the assertion makes sure that we
3813    // revisit this if we ever enable ARM encoding.
3814    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
3815
3816    locations->AddTemp(Location::RequiresRegister());
3817    locations->AddTemp(Location::RequiresRegister());
3818    if (field_type == Primitive::kPrimDouble) {
3819      // For doubles we need two more registers to copy the value.
3820      locations->AddTemp(Location::RegisterLocation(R2));
3821      locations->AddTemp(Location::RegisterLocation(R3));
3822    }
3823  }
3824}
3825
3826void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
3827                                                 const FieldInfo& field_info,
3828                                                 bool value_can_be_null) {
3829  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
3830
3831  LocationSummary* locations = instruction->GetLocations();
3832  Register base = locations->InAt(0).AsRegister<Register>();
3833  Location value = locations->InAt(1);
3834
3835  bool is_volatile = field_info.IsVolatile();
3836  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
3837  Primitive::Type field_type = field_info.GetFieldType();
3838  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
3839  bool needs_write_barrier =
3840      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
3841
3842  if (is_volatile) {
3843    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
3844  }
3845
3846  switch (field_type) {
3847    case Primitive::kPrimBoolean:
3848    case Primitive::kPrimByte: {
3849      __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
3850      break;
3851    }
3852
3853    case Primitive::kPrimShort:
3854    case Primitive::kPrimChar: {
3855      __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
3856      break;
3857    }
3858
3859    case Primitive::kPrimInt:
3860    case Primitive::kPrimNot: {
3861      if (kPoisonHeapReferences && needs_write_barrier) {
3862        // Note that in the case where `value` is a null reference,
3863        // we do not enter this block, as a null reference does not
3864        // need poisoning.
3865        DCHECK_EQ(field_type, Primitive::kPrimNot);
3866        Register temp = locations->GetTemp(0).AsRegister<Register>();
3867        __ Mov(temp, value.AsRegister<Register>());
3868        __ PoisonHeapReference(temp);
3869        __ StoreToOffset(kStoreWord, temp, base, offset);
3870      } else {
3871        __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
3872      }
3873      break;
3874    }
3875
3876    case Primitive::kPrimLong: {
3877      if (is_volatile && !atomic_ldrd_strd) {
3878        GenerateWideAtomicStore(base, offset,
3879                                value.AsRegisterPairLow<Register>(),
3880                                value.AsRegisterPairHigh<Register>(),
3881                                locations->GetTemp(0).AsRegister<Register>(),
3882                                locations->GetTemp(1).AsRegister<Register>(),
3883                                instruction);
3884      } else {
3885        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
3886        codegen_->MaybeRecordImplicitNullCheck(instruction);
3887      }
3888      break;
3889    }
3890
3891    case Primitive::kPrimFloat: {
3892      __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
3893      break;
3894    }
3895
3896    case Primitive::kPrimDouble: {
3897      DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
3898      if (is_volatile && !atomic_ldrd_strd) {
3899        Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
3900        Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
3901
3902        __ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
3903
3904        GenerateWideAtomicStore(base, offset,
3905                                value_reg_lo,
3906                                value_reg_hi,
3907                                locations->GetTemp(2).AsRegister<Register>(),
3908                                locations->GetTemp(3).AsRegister<Register>(),
3909                                instruction);
3910      } else {
3911        __ StoreDToOffset(value_reg, base, offset);
3912        codegen_->MaybeRecordImplicitNullCheck(instruction);
3913      }
3914      break;
3915    }
3916
3917    case Primitive::kPrimVoid:
3918      LOG(FATAL) << "Unreachable type " << field_type;
3919      UNREACHABLE();
3920  }
3921
3922  // Longs and doubles are handled in the switch.
3923  if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
3924    codegen_->MaybeRecordImplicitNullCheck(instruction);
3925  }
3926
3927  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
3928    Register temp = locations->GetTemp(0).AsRegister<Register>();
3929    Register card = locations->GetTemp(1).AsRegister<Register>();
3930    codegen_->MarkGCCard(
3931        temp, card, base, value.AsRegister<Register>(), value_can_be_null);
3932  }
3933
3934  if (is_volatile) {
3935    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
3936  }
3937}
3938
3939void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
3940  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
3941
3942  bool object_field_get_with_read_barrier =
3943      kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
3944  LocationSummary* locations =
3945      new (GetGraph()->GetArena()) LocationSummary(instruction,
3946                                                   object_field_get_with_read_barrier ?
3947                                                       LocationSummary::kCallOnSlowPath :
3948                                                       LocationSummary::kNoCall);
3949  locations->SetInAt(0, Location::RequiresRegister());
3950
3951  bool volatile_for_double = field_info.IsVolatile()
3952      && (field_info.GetFieldType() == Primitive::kPrimDouble)
3953      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
3954  // The output overlaps in case of volatile long: we don't want the
3955  // code generated by GenerateWideAtomicLoad to overwrite the
3956  // object's location.  Likewise, in the case of an object field get
3957  // with read barriers enabled, we do not want the load to overwrite
3958  // the object's location, as we need it to emit the read barrier.
3959  bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
3960      object_field_get_with_read_barrier;
3961
3962  if (Primitive::IsFloatingPointType(instruction->GetType())) {
3963    locations->SetOut(Location::RequiresFpuRegister());
3964  } else {
3965    locations->SetOut(Location::RequiresRegister(),
3966                      (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
3967  }
3968  if (volatile_for_double) {
3969    // ARM encoding have some additional constraints for ldrexd/strexd:
3970    // - registers need to be consecutive
3971    // - the first register should be even but not R14.
3972    // We don't test for ARM yet, and the assertion makes sure that we
3973    // revisit this if we ever enable ARM encoding.
3974    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
3975    locations->AddTemp(Location::RequiresRegister());
3976    locations->AddTemp(Location::RequiresRegister());
3977  } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
3978    // We need a temporary register for the read barrier marking slow
3979    // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
3980    locations->AddTemp(Location::RequiresRegister());
3981  }
3982}
3983
3984Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
3985                                                             Opcode opcode) {
3986  DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
3987  if (constant->IsConstant() &&
3988      CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
3989    return Location::ConstantLocation(constant->AsConstant());
3990  }
3991  return Location::RequiresRegister();
3992}
3993
3994bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
3995                                                       Opcode opcode) {
3996  uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
3997  if (Primitive::Is64BitType(input_cst->GetType())) {
3998    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode) &&
3999        CanEncodeConstantAsImmediate(High32Bits(value), opcode);
4000  } else {
4001    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
4002  }
4003}
4004
4005bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value, Opcode opcode) {
4006  ShifterOperand so;
4007  ArmAssembler* assembler = codegen_->GetAssembler();
4008  if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, &so)) {
4009    return true;
4010  }
4011  Opcode neg_opcode = kNoOperand;
4012  switch (opcode) {
4013    case AND:
4014      neg_opcode = BIC;
4015      break;
4016    case ORR:
4017      neg_opcode = ORN;
4018      break;
4019    default:
4020      return false;
4021  }
4022  return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, ~value, &so);
4023}
4024
4025void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
4026                                                 const FieldInfo& field_info) {
4027  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4028
4029  LocationSummary* locations = instruction->GetLocations();
4030  Location base_loc = locations->InAt(0);
4031  Register base = base_loc.AsRegister<Register>();
4032  Location out = locations->Out();
4033  bool is_volatile = field_info.IsVolatile();
4034  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
4035  Primitive::Type field_type = field_info.GetFieldType();
4036  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4037
4038  switch (field_type) {
4039    case Primitive::kPrimBoolean:
4040      __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
4041      break;
4042
4043    case Primitive::kPrimByte:
4044      __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
4045      break;
4046
4047    case Primitive::kPrimShort:
4048      __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
4049      break;
4050
4051    case Primitive::kPrimChar:
4052      __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
4053      break;
4054
4055    case Primitive::kPrimInt:
4056      __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4057      break;
4058
4059    case Primitive::kPrimNot: {
4060      // /* HeapReference<Object> */ out = *(base + offset)
4061      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4062        Location temp_loc = locations->GetTemp(0);
4063        // Note that a potential implicit null check is handled in this
4064        // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
4065        codegen_->GenerateFieldLoadWithBakerReadBarrier(
4066            instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
4067        if (is_volatile) {
4068          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4069        }
4070      } else {
4071        __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
4072        codegen_->MaybeRecordImplicitNullCheck(instruction);
4073        if (is_volatile) {
4074          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4075        }
4076        // If read barriers are enabled, emit read barriers other than
4077        // Baker's using a slow path (and also unpoison the loaded
4078        // reference, if heap poisoning is enabled).
4079        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4080      }
4081      break;
4082    }
4083
4084    case Primitive::kPrimLong:
4085      if (is_volatile && !atomic_ldrd_strd) {
4086        GenerateWideAtomicLoad(base, offset,
4087                               out.AsRegisterPairLow<Register>(),
4088                               out.AsRegisterPairHigh<Register>());
4089      } else {
4090        __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
4091      }
4092      break;
4093
4094    case Primitive::kPrimFloat:
4095      __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
4096      break;
4097
4098    case Primitive::kPrimDouble: {
4099      DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
4100      if (is_volatile && !atomic_ldrd_strd) {
4101        Register lo = locations->GetTemp(0).AsRegister<Register>();
4102        Register hi = locations->GetTemp(1).AsRegister<Register>();
4103        GenerateWideAtomicLoad(base, offset, lo, hi);
4104        codegen_->MaybeRecordImplicitNullCheck(instruction);
4105        __ vmovdrr(out_reg, lo, hi);
4106      } else {
4107        __ LoadDFromOffset(out_reg, base, offset);
4108        codegen_->MaybeRecordImplicitNullCheck(instruction);
4109      }
4110      break;
4111    }
4112
4113    case Primitive::kPrimVoid:
4114      LOG(FATAL) << "Unreachable type " << field_type;
4115      UNREACHABLE();
4116  }
4117
4118  if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
4119    // Potential implicit null checks, in the case of reference or
4120    // double fields, are handled in the previous switch statement.
4121  } else {
4122    codegen_->MaybeRecordImplicitNullCheck(instruction);
4123  }
4124
4125  if (is_volatile) {
4126    if (field_type == Primitive::kPrimNot) {
4127      // Memory barriers, in the case of references, are also handled
4128      // in the previous switch statement.
4129    } else {
4130      codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4131    }
4132  }
4133}
4134
4135void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4136  HandleFieldSet(instruction, instruction->GetFieldInfo());
4137}
4138
4139void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4140  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4141}
4142
4143void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4144  HandleFieldGet(instruction, instruction->GetFieldInfo());
4145}
4146
4147void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
4148  HandleFieldGet(instruction, instruction->GetFieldInfo());
4149}
4150
4151void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4152  HandleFieldGet(instruction, instruction->GetFieldInfo());
4153}
4154
4155void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
4156  HandleFieldGet(instruction, instruction->GetFieldInfo());
4157}
4158
4159void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4160  HandleFieldSet(instruction, instruction->GetFieldInfo());
4161}
4162
4163void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
4164  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
4165}
4166
4167void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
4168    HUnresolvedInstanceFieldGet* instruction) {
4169  FieldAccessCallingConventionARM calling_convention;
4170  codegen_->CreateUnresolvedFieldLocationSummary(
4171      instruction, instruction->GetFieldType(), calling_convention);
4172}
4173
4174void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
4175    HUnresolvedInstanceFieldGet* instruction) {
4176  FieldAccessCallingConventionARM calling_convention;
4177  codegen_->GenerateUnresolvedFieldAccess(instruction,
4178                                          instruction->GetFieldType(),
4179                                          instruction->GetFieldIndex(),
4180                                          instruction->GetDexPc(),
4181                                          calling_convention);
4182}
4183
4184void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
4185    HUnresolvedInstanceFieldSet* instruction) {
4186  FieldAccessCallingConventionARM calling_convention;
4187  codegen_->CreateUnresolvedFieldLocationSummary(
4188      instruction, instruction->GetFieldType(), calling_convention);
4189}
4190
4191void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
4192    HUnresolvedInstanceFieldSet* instruction) {
4193  FieldAccessCallingConventionARM calling_convention;
4194  codegen_->GenerateUnresolvedFieldAccess(instruction,
4195                                          instruction->GetFieldType(),
4196                                          instruction->GetFieldIndex(),
4197                                          instruction->GetDexPc(),
4198                                          calling_convention);
4199}
4200
4201void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
4202    HUnresolvedStaticFieldGet* instruction) {
4203  FieldAccessCallingConventionARM calling_convention;
4204  codegen_->CreateUnresolvedFieldLocationSummary(
4205      instruction, instruction->GetFieldType(), calling_convention);
4206}
4207
4208void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
4209    HUnresolvedStaticFieldGet* instruction) {
4210  FieldAccessCallingConventionARM calling_convention;
4211  codegen_->GenerateUnresolvedFieldAccess(instruction,
4212                                          instruction->GetFieldType(),
4213                                          instruction->GetFieldIndex(),
4214                                          instruction->GetDexPc(),
4215                                          calling_convention);
4216}
4217
4218void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
4219    HUnresolvedStaticFieldSet* instruction) {
4220  FieldAccessCallingConventionARM calling_convention;
4221  codegen_->CreateUnresolvedFieldLocationSummary(
4222      instruction, instruction->GetFieldType(), calling_convention);
4223}
4224
4225void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
4226    HUnresolvedStaticFieldSet* instruction) {
4227  FieldAccessCallingConventionARM calling_convention;
4228  codegen_->GenerateUnresolvedFieldAccess(instruction,
4229                                          instruction->GetFieldType(),
4230                                          instruction->GetFieldIndex(),
4231                                          instruction->GetDexPc(),
4232                                          calling_convention);
4233}
4234
4235void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
4236  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4237      ? LocationSummary::kCallOnSlowPath
4238      : LocationSummary::kNoCall;
4239  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4240  locations->SetInAt(0, Location::RequiresRegister());
4241  if (instruction->HasUses()) {
4242    locations->SetOut(Location::SameAsFirstInput());
4243  }
4244}
4245
4246void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
4247  if (CanMoveNullCheckToUser(instruction)) {
4248    return;
4249  }
4250  Location obj = instruction->GetLocations()->InAt(0);
4251
4252  __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
4253  RecordPcInfo(instruction, instruction->GetDexPc());
4254}
4255
4256void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
4257  SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
4258  AddSlowPath(slow_path);
4259
4260  LocationSummary* locations = instruction->GetLocations();
4261  Location obj = locations->InAt(0);
4262
4263  __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
4264}
4265
4266void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
4267  codegen_->GenerateNullCheck(instruction);
4268}
4269
4270void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
4271  bool object_array_get_with_read_barrier =
4272      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4273  LocationSummary* locations =
4274      new (GetGraph()->GetArena()) LocationSummary(instruction,
4275                                                   object_array_get_with_read_barrier ?
4276                                                       LocationSummary::kCallOnSlowPath :
4277                                                       LocationSummary::kNoCall);
4278  locations->SetInAt(0, Location::RequiresRegister());
4279  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4280  if (Primitive::IsFloatingPointType(instruction->GetType())) {
4281    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4282  } else {
4283    // The output overlaps in the case of an object array get with
4284    // read barriers enabled: we do not want the move to overwrite the
4285    // array's location, as we need it to emit the read barrier.
4286    locations->SetOut(
4287        Location::RequiresRegister(),
4288        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
4289  }
4290  // We need a temporary register for the read barrier marking slow
4291  // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
4292  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
4293    locations->AddTemp(Location::RequiresRegister());
4294  }
4295}
4296
4297void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
4298  LocationSummary* locations = instruction->GetLocations();
4299  Location obj_loc = locations->InAt(0);
4300  Register obj = obj_loc.AsRegister<Register>();
4301  Location index = locations->InAt(1);
4302  Location out_loc = locations->Out();
4303  uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
4304
4305  Primitive::Type type = instruction->GetType();
4306  switch (type) {
4307    case Primitive::kPrimBoolean: {
4308      Register out = out_loc.AsRegister<Register>();
4309      if (index.IsConstant()) {
4310        size_t offset =
4311            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
4312        __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset);
4313      } else {
4314        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
4315        __ LoadFromOffset(kLoadUnsignedByte, out, IP, data_offset);
4316      }
4317      break;
4318    }
4319
4320    case Primitive::kPrimByte: {
4321      Register out = out_loc.AsRegister<Register>();
4322      if (index.IsConstant()) {
4323        size_t offset =
4324            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
4325        __ LoadFromOffset(kLoadSignedByte, out, obj, offset);
4326      } else {
4327        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
4328        __ LoadFromOffset(kLoadSignedByte, out, IP, data_offset);
4329      }
4330      break;
4331    }
4332
4333    case Primitive::kPrimShort: {
4334      Register out = out_loc.AsRegister<Register>();
4335      if (index.IsConstant()) {
4336        size_t offset =
4337            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
4338        __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset);
4339      } else {
4340        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
4341        __ LoadFromOffset(kLoadSignedHalfword, out, IP, data_offset);
4342      }
4343      break;
4344    }
4345
4346    case Primitive::kPrimChar: {
4347      Register out = out_loc.AsRegister<Register>();
4348      if (index.IsConstant()) {
4349        size_t offset =
4350            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
4351        __ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset);
4352      } else {
4353        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
4354        __ LoadFromOffset(kLoadUnsignedHalfword, out, IP, data_offset);
4355      }
4356      break;
4357    }
4358
4359    case Primitive::kPrimInt: {
4360      Register out = out_loc.AsRegister<Register>();
4361      if (index.IsConstant()) {
4362        size_t offset =
4363            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4364        __ LoadFromOffset(kLoadWord, out, obj, offset);
4365      } else {
4366        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4367        __ LoadFromOffset(kLoadWord, out, IP, data_offset);
4368      }
4369      break;
4370    }
4371
4372    case Primitive::kPrimNot: {
4373      static_assert(
4374          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
4375          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
4376      // /* HeapReference<Object> */ out =
4377      //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
4378      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4379        Location temp = locations->GetTemp(0);
4380        // Note that a potential implicit null check is handled in this
4381        // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
4382        codegen_->GenerateArrayLoadWithBakerReadBarrier(
4383            instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
4384      } else {
4385        Register out = out_loc.AsRegister<Register>();
4386        if (index.IsConstant()) {
4387          size_t offset =
4388              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4389          __ LoadFromOffset(kLoadWord, out, obj, offset);
4390          codegen_->MaybeRecordImplicitNullCheck(instruction);
4391          // If read barriers are enabled, emit read barriers other than
4392          // Baker's using a slow path (and also unpoison the loaded
4393          // reference, if heap poisoning is enabled).
4394          codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
4395        } else {
4396          __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4397          __ LoadFromOffset(kLoadWord, out, IP, data_offset);
4398          codegen_->MaybeRecordImplicitNullCheck(instruction);
4399          // If read barriers are enabled, emit read barriers other than
4400          // Baker's using a slow path (and also unpoison the loaded
4401          // reference, if heap poisoning is enabled).
4402          codegen_->MaybeGenerateReadBarrierSlow(
4403              instruction, out_loc, out_loc, obj_loc, data_offset, index);
4404        }
4405      }
4406      break;
4407    }
4408
4409    case Primitive::kPrimLong: {
4410      if (index.IsConstant()) {
4411        size_t offset =
4412            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4413        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
4414      } else {
4415        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4416        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
4417      }
4418      break;
4419    }
4420
4421    case Primitive::kPrimFloat: {
4422      SRegister out = out_loc.AsFpuRegister<SRegister>();
4423      if (index.IsConstant()) {
4424        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4425        __ LoadSFromOffset(out, obj, offset);
4426      } else {
4427        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4428        __ LoadSFromOffset(out, IP, data_offset);
4429      }
4430      break;
4431    }
4432
4433    case Primitive::kPrimDouble: {
4434      SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
4435      if (index.IsConstant()) {
4436        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4437        __ LoadDFromOffset(FromLowSToD(out), obj, offset);
4438      } else {
4439        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4440        __ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
4441      }
4442      break;
4443    }
4444
4445    case Primitive::kPrimVoid:
4446      LOG(FATAL) << "Unreachable type " << type;
4447      UNREACHABLE();
4448  }
4449
4450  if (type == Primitive::kPrimNot) {
4451    // Potential implicit null checks, in the case of reference
4452    // arrays, are handled in the previous switch statement.
4453  } else {
4454    codegen_->MaybeRecordImplicitNullCheck(instruction);
4455  }
4456}
4457
4458void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
4459  Primitive::Type value_type = instruction->GetComponentType();
4460
4461  bool needs_write_barrier =
4462      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
4463  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
4464  bool object_array_set_with_read_barrier =
4465      kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
4466
4467  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
4468      instruction,
4469      (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
4470          LocationSummary::kCallOnSlowPath :
4471          LocationSummary::kNoCall);
4472
4473  locations->SetInAt(0, Location::RequiresRegister());
4474  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4475  if (Primitive::IsFloatingPointType(value_type)) {
4476    locations->SetInAt(2, Location::RequiresFpuRegister());
4477  } else {
4478    locations->SetInAt(2, Location::RequiresRegister());
4479  }
4480  if (needs_write_barrier) {
4481    // Temporary registers for the write barrier.
4482    locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
4483    locations->AddTemp(Location::RequiresRegister());
4484  }
4485}
4486
4487void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
4488  LocationSummary* locations = instruction->GetLocations();
4489  Location array_loc = locations->InAt(0);
4490  Register array = array_loc.AsRegister<Register>();
4491  Location index = locations->InAt(1);
4492  Primitive::Type value_type = instruction->GetComponentType();
4493  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
4494  bool needs_write_barrier =
4495      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
4496
4497  switch (value_type) {
4498    case Primitive::kPrimBoolean:
4499    case Primitive::kPrimByte: {
4500      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
4501      Register value = locations->InAt(2).AsRegister<Register>();
4502      if (index.IsConstant()) {
4503        size_t offset =
4504            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
4505        __ StoreToOffset(kStoreByte, value, array, offset);
4506      } else {
4507        __ add(IP, array, ShifterOperand(index.AsRegister<Register>()));
4508        __ StoreToOffset(kStoreByte, value, IP, data_offset);
4509      }
4510      break;
4511    }
4512
4513    case Primitive::kPrimShort:
4514    case Primitive::kPrimChar: {
4515      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
4516      Register value = locations->InAt(2).AsRegister<Register>();
4517      if (index.IsConstant()) {
4518        size_t offset =
4519            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
4520        __ StoreToOffset(kStoreHalfword, value, array, offset);
4521      } else {
4522        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
4523        __ StoreToOffset(kStoreHalfword, value, IP, data_offset);
4524      }
4525      break;
4526    }
4527
4528    case Primitive::kPrimNot: {
4529      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
4530      Location value_loc = locations->InAt(2);
4531      Register value = value_loc.AsRegister<Register>();
4532      Register source = value;
4533
4534      if (instruction->InputAt(2)->IsNullConstant()) {
4535        // Just setting null.
4536        if (index.IsConstant()) {
4537          size_t offset =
4538              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4539          __ StoreToOffset(kStoreWord, source, array, offset);
4540        } else {
4541          DCHECK(index.IsRegister()) << index;
4542          __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4543          __ StoreToOffset(kStoreWord, source, IP, data_offset);
4544        }
4545        codegen_->MaybeRecordImplicitNullCheck(instruction);
4546        DCHECK(!needs_write_barrier);
4547        DCHECK(!may_need_runtime_call_for_type_check);
4548        break;
4549      }
4550
4551      DCHECK(needs_write_barrier);
4552      Register temp1 = locations->GetTemp(0).AsRegister<Register>();
4553      Register temp2 = locations->GetTemp(1).AsRegister<Register>();
4554      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4555      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4556      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4557      Label done;
4558      SlowPathCode* slow_path = nullptr;
4559
4560      if (may_need_runtime_call_for_type_check) {
4561        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
4562        codegen_->AddSlowPath(slow_path);
4563        if (instruction->GetValueCanBeNull()) {
4564          Label non_zero;
4565          __ CompareAndBranchIfNonZero(value, &non_zero);
4566          if (index.IsConstant()) {
4567            size_t offset =
4568               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4569            __ StoreToOffset(kStoreWord, value, array, offset);
4570          } else {
4571            DCHECK(index.IsRegister()) << index;
4572            __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4573            __ StoreToOffset(kStoreWord, value, IP, data_offset);
4574          }
4575          codegen_->MaybeRecordImplicitNullCheck(instruction);
4576          __ b(&done);
4577          __ Bind(&non_zero);
4578        }
4579
4580        if (kEmitCompilerReadBarrier) {
4581          // When read barriers are enabled, the type checking
4582          // instrumentation requires two read barriers:
4583          //
4584          //   __ Mov(temp2, temp1);
4585          //   // /* HeapReference<Class> */ temp1 = temp1->component_type_
4586          //   __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
4587          //   codegen_->GenerateReadBarrierSlow(
4588          //       instruction, temp1_loc, temp1_loc, temp2_loc, component_offset);
4589          //
4590          //   // /* HeapReference<Class> */ temp2 = value->klass_
4591          //   __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
4592          //   codegen_->GenerateReadBarrierSlow(
4593          //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp1_loc);
4594          //
4595          //   __ cmp(temp1, ShifterOperand(temp2));
4596          //
4597          // However, the second read barrier may trash `temp`, as it
4598          // is a temporary register, and as such would not be saved
4599          // along with live registers before calling the runtime (nor
4600          // restored afterwards).  So in this case, we bail out and
4601          // delegate the work to the array set slow path.
4602          //
4603          // TODO: Extend the register allocator to support a new
4604          // "(locally) live temp" location so as to avoid always
4605          // going into the slow path when read barriers are enabled.
4606          __ b(slow_path->GetEntryLabel());
4607        } else {
4608          // /* HeapReference<Class> */ temp1 = array->klass_
4609          __ LoadFromOffset(kLoadWord, temp1, array, class_offset);
4610          codegen_->MaybeRecordImplicitNullCheck(instruction);
4611          __ MaybeUnpoisonHeapReference(temp1);
4612
4613          // /* HeapReference<Class> */ temp1 = temp1->component_type_
4614          __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
4615          // /* HeapReference<Class> */ temp2 = value->klass_
4616          __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
4617          // If heap poisoning is enabled, no need to unpoison `temp1`
4618          // nor `temp2`, as we are comparing two poisoned references.
4619          __ cmp(temp1, ShifterOperand(temp2));
4620
4621          if (instruction->StaticTypeOfArrayIsObjectArray()) {
4622            Label do_put;
4623            __ b(&do_put, EQ);
4624            // If heap poisoning is enabled, the `temp1` reference has
4625            // not been unpoisoned yet; unpoison it now.
4626            __ MaybeUnpoisonHeapReference(temp1);
4627
4628            // /* HeapReference<Class> */ temp1 = temp1->super_class_
4629            __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
4630            // If heap poisoning is enabled, no need to unpoison
4631            // `temp1`, as we are comparing against null below.
4632            __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
4633            __ Bind(&do_put);
4634          } else {
4635            __ b(slow_path->GetEntryLabel(), NE);
4636          }
4637        }
4638      }
4639
4640      if (kPoisonHeapReferences) {
4641        // Note that in the case where `value` is a null reference,
4642        // we do not enter this block, as a null reference does not
4643        // need poisoning.
4644        DCHECK_EQ(value_type, Primitive::kPrimNot);
4645        __ Mov(temp1, value);
4646        __ PoisonHeapReference(temp1);
4647        source = temp1;
4648      }
4649
4650      if (index.IsConstant()) {
4651        size_t offset =
4652            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4653        __ StoreToOffset(kStoreWord, source, array, offset);
4654      } else {
4655        DCHECK(index.IsRegister()) << index;
4656        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4657        __ StoreToOffset(kStoreWord, source, IP, data_offset);
4658      }
4659
4660      if (!may_need_runtime_call_for_type_check) {
4661        codegen_->MaybeRecordImplicitNullCheck(instruction);
4662      }
4663
4664      codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
4665
4666      if (done.IsLinked()) {
4667        __ Bind(&done);
4668      }
4669
4670      if (slow_path != nullptr) {
4671        __ Bind(slow_path->GetExitLabel());
4672      }
4673
4674      break;
4675    }
4676
4677    case Primitive::kPrimInt: {
4678      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
4679      Register value = locations->InAt(2).AsRegister<Register>();
4680      if (index.IsConstant()) {
4681        size_t offset =
4682            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4683        __ StoreToOffset(kStoreWord, value, array, offset);
4684      } else {
4685        DCHECK(index.IsRegister()) << index;
4686        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4687        __ StoreToOffset(kStoreWord, value, IP, data_offset);
4688      }
4689      break;
4690    }
4691
4692    case Primitive::kPrimLong: {
4693      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
4694      Location value = locations->InAt(2);
4695      if (index.IsConstant()) {
4696        size_t offset =
4697            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4698        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
4699      } else {
4700        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4701        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
4702      }
4703      break;
4704    }
4705
4706    case Primitive::kPrimFloat: {
4707      uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
4708      Location value = locations->InAt(2);
4709      DCHECK(value.IsFpuRegister());
4710      if (index.IsConstant()) {
4711        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
4712        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
4713      } else {
4714        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
4715        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
4716      }
4717      break;
4718    }
4719
4720    case Primitive::kPrimDouble: {
4721      uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
4722      Location value = locations->InAt(2);
4723      DCHECK(value.IsFpuRegisterPair());
4724      if (index.IsConstant()) {
4725        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
4726        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
4727      } else {
4728        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
4729        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
4730      }
4731
4732      break;
4733    }
4734
4735    case Primitive::kPrimVoid:
4736      LOG(FATAL) << "Unreachable type " << value_type;
4737      UNREACHABLE();
4738  }
4739
4740  // Objects are handled in the switch.
4741  if (value_type != Primitive::kPrimNot) {
4742    codegen_->MaybeRecordImplicitNullCheck(instruction);
4743  }
4744}
4745
4746void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
4747  LocationSummary* locations =
4748      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4749  locations->SetInAt(0, Location::RequiresRegister());
4750  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4751}
4752
4753void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
4754  LocationSummary* locations = instruction->GetLocations();
4755  uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
4756  Register obj = locations->InAt(0).AsRegister<Register>();
4757  Register out = locations->Out().AsRegister<Register>();
4758  __ LoadFromOffset(kLoadWord, out, obj, offset);
4759  codegen_->MaybeRecordImplicitNullCheck(instruction);
4760}
4761
4762void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
4763  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
4764      ? LocationSummary::kCallOnSlowPath
4765      : LocationSummary::kNoCall;
4766  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
4767  locations->SetInAt(0, Location::RequiresRegister());
4768  locations->SetInAt(1, Location::RequiresRegister());
4769  if (instruction->HasUses()) {
4770    locations->SetOut(Location::SameAsFirstInput());
4771  }
4772}
4773
4774void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
4775  LocationSummary* locations = instruction->GetLocations();
4776  SlowPathCode* slow_path =
4777      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
4778  codegen_->AddSlowPath(slow_path);
4779
4780  Register index = locations->InAt(0).AsRegister<Register>();
4781  Register length = locations->InAt(1).AsRegister<Register>();
4782
4783  __ cmp(index, ShifterOperand(length));
4784  __ b(slow_path->GetEntryLabel(), HS);
4785}
4786
4787void CodeGeneratorARM::MarkGCCard(Register temp,
4788                                  Register card,
4789                                  Register object,
4790                                  Register value,
4791                                  bool can_be_null) {
4792  Label is_null;
4793  if (can_be_null) {
4794    __ CompareAndBranchIfZero(value, &is_null);
4795  }
4796  __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmWordSize>().Int32Value());
4797  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
4798  __ strb(card, Address(card, temp));
4799  if (can_be_null) {
4800    __ Bind(&is_null);
4801  }
4802}
4803
4804void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
4805  LOG(FATAL) << "Unreachable";
4806}
4807
4808void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
4809  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
4810}
4811
4812void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
4813  new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4814}
4815
4816void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
4817  HBasicBlock* block = instruction->GetBlock();
4818  if (block->GetLoopInformation() != nullptr) {
4819    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
4820    // The back edge will generate the suspend check.
4821    return;
4822  }
4823  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
4824    // The goto will generate the suspend check.
4825    return;
4826  }
4827  GenerateSuspendCheck(instruction, nullptr);
4828}
4829
4830void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
4831                                                       HBasicBlock* successor) {
4832  SuspendCheckSlowPathARM* slow_path =
4833      down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
4834  if (slow_path == nullptr) {
4835    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
4836    instruction->SetSlowPath(slow_path);
4837    codegen_->AddSlowPath(slow_path);
4838    if (successor != nullptr) {
4839      DCHECK(successor->IsLoopHeader());
4840      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
4841    }
4842  } else {
4843    DCHECK_EQ(slow_path->GetSuccessor(), successor);
4844  }
4845
4846  __ LoadFromOffset(
4847      kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmWordSize>().Int32Value());
4848  if (successor == nullptr) {
4849    __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
4850    __ Bind(slow_path->GetReturnLabel());
4851  } else {
4852    __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
4853    __ b(slow_path->GetEntryLabel());
4854  }
4855}
4856
4857ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
4858  return codegen_->GetAssembler();
4859}
4860
4861void ParallelMoveResolverARM::EmitMove(size_t index) {
4862  MoveOperands* move = moves_[index];
4863  Location source = move->GetSource();
4864  Location destination = move->GetDestination();
4865
4866  if (source.IsRegister()) {
4867    if (destination.IsRegister()) {
4868      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
4869    } else if (destination.IsFpuRegister()) {
4870      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
4871    } else {
4872      DCHECK(destination.IsStackSlot());
4873      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
4874                       SP, destination.GetStackIndex());
4875    }
4876  } else if (source.IsStackSlot()) {
4877    if (destination.IsRegister()) {
4878      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
4879                        SP, source.GetStackIndex());
4880    } else if (destination.IsFpuRegister()) {
4881      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
4882    } else {
4883      DCHECK(destination.IsStackSlot());
4884      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
4885      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
4886    }
4887  } else if (source.IsFpuRegister()) {
4888    if (destination.IsRegister()) {
4889      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
4890    } else if (destination.IsFpuRegister()) {
4891      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
4892    } else {
4893      DCHECK(destination.IsStackSlot());
4894      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
4895    }
4896  } else if (source.IsDoubleStackSlot()) {
4897    if (destination.IsDoubleStackSlot()) {
4898      __ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
4899      __ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
4900    } else if (destination.IsRegisterPair()) {
4901      DCHECK(ExpectedPairLayout(destination));
4902      __ LoadFromOffset(
4903          kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
4904    } else {
4905      DCHECK(destination.IsFpuRegisterPair()) << destination;
4906      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
4907                         SP,
4908                         source.GetStackIndex());
4909    }
4910  } else if (source.IsRegisterPair()) {
4911    if (destination.IsRegisterPair()) {
4912      __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
4913      __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
4914    } else if (destination.IsFpuRegisterPair()) {
4915      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
4916                 source.AsRegisterPairLow<Register>(),
4917                 source.AsRegisterPairHigh<Register>());
4918    } else {
4919      DCHECK(destination.IsDoubleStackSlot()) << destination;
4920      DCHECK(ExpectedPairLayout(source));
4921      __ StoreToOffset(
4922          kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
4923    }
4924  } else if (source.IsFpuRegisterPair()) {
4925    if (destination.IsRegisterPair()) {
4926      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
4927                 destination.AsRegisterPairHigh<Register>(),
4928                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
4929    } else if (destination.IsFpuRegisterPair()) {
4930      __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
4931               FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
4932    } else {
4933      DCHECK(destination.IsDoubleStackSlot()) << destination;
4934      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
4935                        SP,
4936                        destination.GetStackIndex());
4937    }
4938  } else {
4939    DCHECK(source.IsConstant()) << source;
4940    HConstant* constant = source.GetConstant();
4941    if (constant->IsIntConstant() || constant->IsNullConstant()) {
4942      int32_t value = CodeGenerator::GetInt32ValueOf(constant);
4943      if (destination.IsRegister()) {
4944        __ LoadImmediate(destination.AsRegister<Register>(), value);
4945      } else {
4946        DCHECK(destination.IsStackSlot());
4947        __ LoadImmediate(IP, value);
4948        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
4949      }
4950    } else if (constant->IsLongConstant()) {
4951      int64_t value = constant->AsLongConstant()->GetValue();
4952      if (destination.IsRegisterPair()) {
4953        __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
4954        __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
4955      } else {
4956        DCHECK(destination.IsDoubleStackSlot()) << destination;
4957        __ LoadImmediate(IP, Low32Bits(value));
4958        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
4959        __ LoadImmediate(IP, High32Bits(value));
4960        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
4961      }
4962    } else if (constant->IsDoubleConstant()) {
4963      double value = constant->AsDoubleConstant()->GetValue();
4964      if (destination.IsFpuRegisterPair()) {
4965        __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
4966      } else {
4967        DCHECK(destination.IsDoubleStackSlot()) << destination;
4968        uint64_t int_value = bit_cast<uint64_t, double>(value);
4969        __ LoadImmediate(IP, Low32Bits(int_value));
4970        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
4971        __ LoadImmediate(IP, High32Bits(int_value));
4972        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
4973      }
4974    } else {
4975      DCHECK(constant->IsFloatConstant()) << constant->DebugName();
4976      float value = constant->AsFloatConstant()->GetValue();
4977      if (destination.IsFpuRegister()) {
4978        __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
4979      } else {
4980        DCHECK(destination.IsStackSlot());
4981        __ LoadImmediate(IP, bit_cast<int32_t, float>(value));
4982        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
4983      }
4984    }
4985  }
4986}
4987
4988void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
4989  __ Mov(IP, reg);
4990  __ LoadFromOffset(kLoadWord, reg, SP, mem);
4991  __ StoreToOffset(kStoreWord, IP, SP, mem);
4992}
4993
4994void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
4995  ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
4996  int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
4997  __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
4998                    SP, mem1 + stack_offset);
4999  __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
5000  __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
5001                   SP, mem2 + stack_offset);
5002  __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
5003}
5004
5005void ParallelMoveResolverARM::EmitSwap(size_t index) {
5006  MoveOperands* move = moves_[index];
5007  Location source = move->GetSource();
5008  Location destination = move->GetDestination();
5009
5010  if (source.IsRegister() && destination.IsRegister()) {
5011    DCHECK_NE(source.AsRegister<Register>(), IP);
5012    DCHECK_NE(destination.AsRegister<Register>(), IP);
5013    __ Mov(IP, source.AsRegister<Register>());
5014    __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
5015    __ Mov(destination.AsRegister<Register>(), IP);
5016  } else if (source.IsRegister() && destination.IsStackSlot()) {
5017    Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5018  } else if (source.IsStackSlot() && destination.IsRegister()) {
5019    Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5020  } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5021    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5022  } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5023    __ vmovrs(IP, source.AsFpuRegister<SRegister>());
5024    __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
5025    __ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
5026  } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
5027    __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
5028    __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
5029    __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
5030    __ vmovrrd(destination.AsRegisterPairLow<Register>(),
5031               destination.AsRegisterPairHigh<Register>(),
5032               DTMP);
5033  } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
5034    Register low_reg = source.IsRegisterPair()
5035        ? source.AsRegisterPairLow<Register>()
5036        : destination.AsRegisterPairLow<Register>();
5037    int mem = source.IsRegisterPair()
5038        ? destination.GetStackIndex()
5039        : source.GetStackIndex();
5040    DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
5041    __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
5042    __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
5043    __ StoreDToOffset(DTMP, SP, mem);
5044  } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
5045    DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
5046    DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5047    __ vmovd(DTMP, first);
5048    __ vmovd(first, second);
5049    __ vmovd(second, DTMP);
5050  } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
5051    DRegister reg = source.IsFpuRegisterPair()
5052        ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
5053        : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
5054    int mem = source.IsFpuRegisterPair()
5055        ? destination.GetStackIndex()
5056        : source.GetStackIndex();
5057    __ vmovd(DTMP, reg);
5058    __ LoadDFromOffset(reg, SP, mem);
5059    __ StoreDToOffset(DTMP, SP, mem);
5060  } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
5061    SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
5062                                           : destination.AsFpuRegister<SRegister>();
5063    int mem = source.IsFpuRegister()
5064        ? destination.GetStackIndex()
5065        : source.GetStackIndex();
5066
5067    __ vmovrs(IP, reg);
5068    __ LoadSFromOffset(reg, SP, mem);
5069    __ StoreToOffset(kStoreWord, IP, SP, mem);
5070  } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
5071    Exchange(source.GetStackIndex(), destination.GetStackIndex());
5072    Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
5073  } else {
5074    LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
5075  }
5076}
5077
5078void ParallelMoveResolverARM::SpillScratch(int reg) {
5079  __ Push(static_cast<Register>(reg));
5080}
5081
5082void ParallelMoveResolverARM::RestoreScratch(int reg) {
5083  __ Pop(static_cast<Register>(reg));
5084}
5085
5086HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind(
5087    HLoadClass::LoadKind desired_class_load_kind) {
5088  if (kEmitCompilerReadBarrier) {
5089    switch (desired_class_load_kind) {
5090      case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
5091      case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5092      case HLoadClass::LoadKind::kBootImageAddress:
5093        // TODO: Implement for read barrier.
5094        return HLoadClass::LoadKind::kDexCacheViaMethod;
5095      default:
5096        break;
5097    }
5098  }
5099  switch (desired_class_load_kind) {
5100    case HLoadClass::LoadKind::kReferrersClass:
5101      break;
5102    case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
5103      DCHECK(!GetCompilerOptions().GetCompilePic());
5104      break;
5105    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5106      DCHECK(GetCompilerOptions().GetCompilePic());
5107      break;
5108    case HLoadClass::LoadKind::kBootImageAddress:
5109      break;
5110    case HLoadClass::LoadKind::kDexCacheAddress:
5111      DCHECK(Runtime::Current()->UseJitCompilation());
5112      break;
5113    case HLoadClass::LoadKind::kDexCachePcRelative:
5114      DCHECK(!Runtime::Current()->UseJitCompilation());
5115      // We disable pc-relative load when there is an irreducible loop, as the optimization
5116      // is incompatible with it.
5117      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
5118      // with irreducible loops.
5119      if (GetGraph()->HasIrreducibleLoops()) {
5120        return HLoadClass::LoadKind::kDexCacheViaMethod;
5121      }
5122      break;
5123    case HLoadClass::LoadKind::kDexCacheViaMethod:
5124      break;
5125  }
5126  return desired_class_load_kind;
5127}
5128
5129void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
5130  if (cls->NeedsAccessCheck()) {
5131    InvokeRuntimeCallingConvention calling_convention;
5132    CodeGenerator::CreateLoadClassLocationSummary(
5133        cls,
5134        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
5135        Location::RegisterLocation(R0),
5136        /* code_generator_supports_read_barrier */ true);
5137    return;
5138  }
5139
5140  LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || kEmitCompilerReadBarrier)
5141      ? LocationSummary::kCallOnSlowPath
5142      : LocationSummary::kNoCall;
5143  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
5144  HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5145  if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
5146      load_kind == HLoadClass::LoadKind::kDexCacheViaMethod ||
5147      load_kind == HLoadClass::LoadKind::kDexCachePcRelative) {
5148    locations->SetInAt(0, Location::RequiresRegister());
5149  }
5150  locations->SetOut(Location::RequiresRegister());
5151}
5152
5153void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
5154  LocationSummary* locations = cls->GetLocations();
5155  if (cls->NeedsAccessCheck()) {
5156    codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
5157    codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
5158                            cls,
5159                            cls->GetDexPc(),
5160                            nullptr);
5161    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
5162    return;
5163  }
5164
5165  Location out_loc = locations->Out();
5166  Register out = out_loc.AsRegister<Register>();
5167
5168  bool generate_null_check = false;
5169  switch (cls->GetLoadKind()) {
5170    case HLoadClass::LoadKind::kReferrersClass: {
5171      DCHECK(!cls->CanCallRuntime());
5172      DCHECK(!cls->MustGenerateClinitCheck());
5173      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5174      Register current_method = locations->InAt(0).AsRegister<Register>();
5175      GenerateGcRootFieldLoad(
5176          cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
5177      break;
5178    }
5179    case HLoadClass::LoadKind::kBootImageLinkTimeAddress: {
5180      DCHECK(!kEmitCompilerReadBarrier);
5181      __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
5182                                                                    cls->GetTypeIndex()));
5183      break;
5184    }
5185    case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5186      DCHECK(!kEmitCompilerReadBarrier);
5187      CodeGeneratorARM::PcRelativePatchInfo* labels =
5188          codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
5189      __ BindTrackedLabel(&labels->movw_label);
5190      __ movw(out, /* placeholder */ 0u);
5191      __ BindTrackedLabel(&labels->movt_label);
5192      __ movt(out, /* placeholder */ 0u);
5193      __ BindTrackedLabel(&labels->add_pc_label);
5194      __ add(out, out, ShifterOperand(PC));
5195      break;
5196    }
5197    case HLoadClass::LoadKind::kBootImageAddress: {
5198      DCHECK(!kEmitCompilerReadBarrier);
5199      DCHECK_NE(cls->GetAddress(), 0u);
5200      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5201      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5202      break;
5203    }
5204    case HLoadClass::LoadKind::kDexCacheAddress: {
5205      DCHECK_NE(cls->GetAddress(), 0u);
5206      uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
5207      // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives
5208      // a 128B range. To try and reduce the number of literals if we load multiple types,
5209      // simply split the dex cache address to a 128B aligned base loaded from a literal
5210      // and the remaining offset embedded in the load.
5211      static_assert(sizeof(GcRoot<mirror::Class>) == 4u, "Expected GC root to be 4 bytes.");
5212      DCHECK_ALIGNED(cls->GetAddress(), 4u);
5213      constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2;
5214      uint32_t base_address = address & ~MaxInt<uint32_t>(offset_bits);
5215      uint32_t offset = address & MaxInt<uint32_t>(offset_bits);
5216      __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address));
5217      // /* GcRoot<mirror::Class> */ out = *(base_address + offset)
5218      GenerateGcRootFieldLoad(cls, out_loc, out, offset);
5219      generate_null_check = !cls->IsInDexCache();
5220      break;
5221    }
5222    case HLoadClass::LoadKind::kDexCachePcRelative: {
5223      Register base_reg = locations->InAt(0).AsRegister<Register>();
5224      HArmDexCacheArraysBase* base = cls->InputAt(0)->AsArmDexCacheArraysBase();
5225      int32_t offset = cls->GetDexCacheElementOffset() - base->GetElementOffset();
5226      // /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset)
5227      GenerateGcRootFieldLoad(cls, out_loc, base_reg, offset);
5228      generate_null_check = !cls->IsInDexCache();
5229      break;
5230    }
5231    case HLoadClass::LoadKind::kDexCacheViaMethod: {
5232      // /* GcRoot<mirror::Class>[] */ out =
5233      //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
5234      Register current_method = locations->InAt(0).AsRegister<Register>();
5235      __ LoadFromOffset(kLoadWord,
5236                        out,
5237                        current_method,
5238                        ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
5239      // /* GcRoot<mirror::Class> */ out = out[type_index]
5240      size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex());
5241      GenerateGcRootFieldLoad(cls, out_loc, out, offset);
5242      generate_null_check = !cls->IsInDexCache();
5243    }
5244  }
5245
5246  if (generate_null_check || cls->MustGenerateClinitCheck()) {
5247    DCHECK(cls->CanCallRuntime());
5248    SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5249        cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
5250    codegen_->AddSlowPath(slow_path);
5251    if (generate_null_check) {
5252      __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5253    }
5254    if (cls->MustGenerateClinitCheck()) {
5255      GenerateClassInitializationCheck(slow_path, out);
5256    } else {
5257      __ Bind(slow_path->GetExitLabel());
5258    }
5259  }
5260}
5261
5262void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
5263  LocationSummary* locations =
5264      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
5265  locations->SetInAt(0, Location::RequiresRegister());
5266  if (check->HasUses()) {
5267    locations->SetOut(Location::SameAsFirstInput());
5268  }
5269}
5270
5271void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
5272  // We assume the class is not null.
5273  SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
5274      check->GetLoadClass(), check, check->GetDexPc(), true);
5275  codegen_->AddSlowPath(slow_path);
5276  GenerateClassInitializationCheck(slow_path,
5277                                   check->GetLocations()->InAt(0).AsRegister<Register>());
5278}
5279
5280void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
5281    SlowPathCode* slow_path, Register class_reg) {
5282  __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
5283  __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
5284  __ b(slow_path->GetEntryLabel(), LT);
5285  // Even if the initialized flag is set, we may be in a situation where caches are not synced
5286  // properly. Therefore, we do a memory fence.
5287  __ dmb(ISH);
5288  __ Bind(slow_path->GetExitLabel());
5289}
5290
5291HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
5292    HLoadString::LoadKind desired_string_load_kind) {
5293  if (kEmitCompilerReadBarrier) {
5294    switch (desired_string_load_kind) {
5295      case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5296      case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5297      case HLoadString::LoadKind::kBootImageAddress:
5298        // TODO: Implement for read barrier.
5299        return HLoadString::LoadKind::kDexCacheViaMethod;
5300      default:
5301        break;
5302    }
5303  }
5304  switch (desired_string_load_kind) {
5305    case HLoadString::LoadKind::kBootImageLinkTimeAddress:
5306      DCHECK(!GetCompilerOptions().GetCompilePic());
5307      break;
5308    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5309      DCHECK(GetCompilerOptions().GetCompilePic());
5310      break;
5311    case HLoadString::LoadKind::kBootImageAddress:
5312      break;
5313    case HLoadString::LoadKind::kDexCacheAddress:
5314      DCHECK(Runtime::Current()->UseJitCompilation());
5315      break;
5316    case HLoadString::LoadKind::kDexCachePcRelative:
5317      DCHECK(!Runtime::Current()->UseJitCompilation());
5318      // We disable pc-relative load when there is an irreducible loop, as the optimization
5319      // is incompatible with it.
5320      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
5321      // with irreducible loops.
5322      if (GetGraph()->HasIrreducibleLoops()) {
5323        return HLoadString::LoadKind::kDexCacheViaMethod;
5324      }
5325      break;
5326    case HLoadString::LoadKind::kDexCacheViaMethod:
5327      break;
5328  }
5329  return desired_string_load_kind;
5330}
5331
5332void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
5333  LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
5334      ? LocationSummary::kCallOnSlowPath
5335      : LocationSummary::kNoCall;
5336  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
5337  HLoadString::LoadKind load_kind = load->GetLoadKind();
5338  if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
5339      load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
5340    locations->SetInAt(0, Location::RequiresRegister());
5341  }
5342  locations->SetOut(Location::RequiresRegister());
5343}
5344
5345void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
5346  LocationSummary* locations = load->GetLocations();
5347  Location out_loc = locations->Out();
5348  Register out = out_loc.AsRegister<Register>();
5349
5350  switch (load->GetLoadKind()) {
5351    case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
5352      DCHECK(!kEmitCompilerReadBarrier);
5353      __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
5354                                                                      load->GetStringIndex()));
5355      return;  // No dex cache slow path.
5356    }
5357    case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5358      DCHECK(!kEmitCompilerReadBarrier);
5359      CodeGeneratorARM::PcRelativePatchInfo* labels =
5360          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
5361      __ BindTrackedLabel(&labels->movw_label);
5362      __ movw(out, /* placeholder */ 0u);
5363      __ BindTrackedLabel(&labels->movt_label);
5364      __ movt(out, /* placeholder */ 0u);
5365      __ BindTrackedLabel(&labels->add_pc_label);
5366      __ add(out, out, ShifterOperand(PC));
5367      return;  // No dex cache slow path.
5368    }
5369    case HLoadString::LoadKind::kBootImageAddress: {
5370      DCHECK(!kEmitCompilerReadBarrier);
5371      DCHECK_NE(load->GetAddress(), 0u);
5372      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
5373      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
5374      return;  // No dex cache slow path.
5375    }
5376    case HLoadString::LoadKind::kDexCacheAddress: {
5377      DCHECK_NE(load->GetAddress(), 0u);
5378      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
5379      // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives
5380      // a 128B range. To try and reduce the number of literals if we load multiple strings,
5381      // simply split the dex cache address to a 128B aligned base loaded from a literal
5382      // and the remaining offset embedded in the load.
5383      static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes.");
5384      DCHECK_ALIGNED(load->GetAddress(), 4u);
5385      constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2;
5386      uint32_t base_address = address & ~MaxInt<uint32_t>(offset_bits);
5387      uint32_t offset = address & MaxInt<uint32_t>(offset_bits);
5388      __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address));
5389      // /* GcRoot<mirror::String> */ out = *(base_address + offset)
5390      GenerateGcRootFieldLoad(load, out_loc, out, offset);
5391      break;
5392    }
5393    case HLoadString::LoadKind::kDexCachePcRelative: {
5394      Register base_reg = locations->InAt(0).AsRegister<Register>();
5395      HArmDexCacheArraysBase* base = load->InputAt(0)->AsArmDexCacheArraysBase();
5396      int32_t offset = load->GetDexCacheElementOffset() - base->GetElementOffset();
5397      // /* GcRoot<mirror::String> */ out = *(dex_cache_arrays_base + offset)
5398      GenerateGcRootFieldLoad(load, out_loc, base_reg, offset);
5399      break;
5400    }
5401    case HLoadString::LoadKind::kDexCacheViaMethod: {
5402      Register current_method = locations->InAt(0).AsRegister<Register>();
5403
5404      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5405      GenerateGcRootFieldLoad(
5406          load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
5407      // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
5408      __ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value());
5409      // /* GcRoot<mirror::String> */ out = out[string_index]
5410      GenerateGcRootFieldLoad(
5411          load, out_loc, out, CodeGenerator::GetCacheOffset(load->GetStringIndex()));
5412      break;
5413    }
5414    default:
5415      LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
5416      UNREACHABLE();
5417  }
5418
5419  if (!load->IsInDexCache()) {
5420    SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
5421    codegen_->AddSlowPath(slow_path);
5422    __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
5423    __ Bind(slow_path->GetExitLabel());
5424  }
5425}
5426
5427static int32_t GetExceptionTlsOffset() {
5428  return Thread::ExceptionOffset<kArmWordSize>().Int32Value();
5429}
5430
5431void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
5432  LocationSummary* locations =
5433      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
5434  locations->SetOut(Location::RequiresRegister());
5435}
5436
5437void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
5438  Register out = load->GetLocations()->Out().AsRegister<Register>();
5439  __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
5440}
5441
5442void LocationsBuilderARM::VisitClearException(HClearException* clear) {
5443  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
5444}
5445
5446void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
5447  __ LoadImmediate(IP, 0);
5448  __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
5449}
5450
5451void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
5452  LocationSummary* locations =
5453      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
5454  InvokeRuntimeCallingConvention calling_convention;
5455  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5456}
5457
5458void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
5459  codegen_->InvokeRuntime(
5460      QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
5461  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5462}
5463
5464static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
5465  return kEmitCompilerReadBarrier &&
5466      (kUseBakerReadBarrier ||
5467       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
5468       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
5469       type_check_kind == TypeCheckKind::kArrayObjectCheck);
5470}
5471
5472void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
5473  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
5474  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5475  switch (type_check_kind) {
5476    case TypeCheckKind::kExactCheck:
5477    case TypeCheckKind::kAbstractClassCheck:
5478    case TypeCheckKind::kClassHierarchyCheck:
5479    case TypeCheckKind::kArrayObjectCheck:
5480      call_kind =
5481          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
5482      break;
5483    case TypeCheckKind::kArrayCheck:
5484    case TypeCheckKind::kUnresolvedCheck:
5485    case TypeCheckKind::kInterfaceCheck:
5486      call_kind = LocationSummary::kCallOnSlowPath;
5487      break;
5488  }
5489
5490  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5491  locations->SetInAt(0, Location::RequiresRegister());
5492  locations->SetInAt(1, Location::RequiresRegister());
5493  // The "out" register is used as a temporary, so it overlaps with the inputs.
5494  // Note that TypeCheckSlowPathARM uses this register too.
5495  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5496  // When read barriers are enabled, we need a temporary register for
5497  // some cases.
5498  if (TypeCheckNeedsATemporary(type_check_kind)) {
5499    locations->AddTemp(Location::RequiresRegister());
5500  }
5501}
5502
5503void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
5504  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5505  LocationSummary* locations = instruction->GetLocations();
5506  Location obj_loc = locations->InAt(0);
5507  Register obj = obj_loc.AsRegister<Register>();
5508  Register cls = locations->InAt(1).AsRegister<Register>();
5509  Location out_loc = locations->Out();
5510  Register out = out_loc.AsRegister<Register>();
5511  Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
5512      locations->GetTemp(0) :
5513      Location::NoLocation();
5514  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5515  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5516  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5517  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
5518  Label done, zero;
5519  SlowPathCode* slow_path = nullptr;
5520
5521  // Return 0 if `obj` is null.
5522  // avoid null check if we know obj is not null.
5523  if (instruction->MustDoNullCheck()) {
5524    __ CompareAndBranchIfZero(obj, &zero);
5525  }
5526
5527  // /* HeapReference<Class> */ out = obj->klass_
5528  GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
5529
5530  switch (type_check_kind) {
5531    case TypeCheckKind::kExactCheck: {
5532      __ cmp(out, ShifterOperand(cls));
5533      // Classes must be equal for the instanceof to succeed.
5534      __ b(&zero, NE);
5535      __ LoadImmediate(out, 1);
5536      __ b(&done);
5537      break;
5538    }
5539
5540    case TypeCheckKind::kAbstractClassCheck: {
5541      // If the class is abstract, we eagerly fetch the super class of the
5542      // object to avoid doing a comparison we know will fail.
5543      Label loop;
5544      __ Bind(&loop);
5545      // /* HeapReference<Class> */ out = out->super_class_
5546      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
5547      // If `out` is null, we use it for the result, and jump to `done`.
5548      __ CompareAndBranchIfZero(out, &done);
5549      __ cmp(out, ShifterOperand(cls));
5550      __ b(&loop, NE);
5551      __ LoadImmediate(out, 1);
5552      if (zero.IsLinked()) {
5553        __ b(&done);
5554      }
5555      break;
5556    }
5557
5558    case TypeCheckKind::kClassHierarchyCheck: {
5559      // Walk over the class hierarchy to find a match.
5560      Label loop, success;
5561      __ Bind(&loop);
5562      __ cmp(out, ShifterOperand(cls));
5563      __ b(&success, EQ);
5564      // /* HeapReference<Class> */ out = out->super_class_
5565      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
5566      __ CompareAndBranchIfNonZero(out, &loop);
5567      // If `out` is null, we use it for the result, and jump to `done`.
5568      __ b(&done);
5569      __ Bind(&success);
5570      __ LoadImmediate(out, 1);
5571      if (zero.IsLinked()) {
5572        __ b(&done);
5573      }
5574      break;
5575    }
5576
5577    case TypeCheckKind::kArrayObjectCheck: {
5578      // Do an exact check.
5579      Label exact_check;
5580      __ cmp(out, ShifterOperand(cls));
5581      __ b(&exact_check, EQ);
5582      // Otherwise, we need to check that the object's class is a non-primitive array.
5583      // /* HeapReference<Class> */ out = out->component_type_
5584      GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
5585      // If `out` is null, we use it for the result, and jump to `done`.
5586      __ CompareAndBranchIfZero(out, &done);
5587      __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
5588      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
5589      __ CompareAndBranchIfNonZero(out, &zero);
5590      __ Bind(&exact_check);
5591      __ LoadImmediate(out, 1);
5592      __ b(&done);
5593      break;
5594    }
5595
5596    case TypeCheckKind::kArrayCheck: {
5597      __ cmp(out, ShifterOperand(cls));
5598      DCHECK(locations->OnlyCallsOnSlowPath());
5599      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
5600                                                                    /* is_fatal */ false);
5601      codegen_->AddSlowPath(slow_path);
5602      __ b(slow_path->GetEntryLabel(), NE);
5603      __ LoadImmediate(out, 1);
5604      if (zero.IsLinked()) {
5605        __ b(&done);
5606      }
5607      break;
5608    }
5609
5610    case TypeCheckKind::kUnresolvedCheck:
5611    case TypeCheckKind::kInterfaceCheck: {
5612      // Note that we indeed only call on slow path, but we always go
5613      // into the slow path for the unresolved and interface check
5614      // cases.
5615      //
5616      // We cannot directly call the InstanceofNonTrivial runtime
5617      // entry point without resorting to a type checking slow path
5618      // here (i.e. by calling InvokeRuntime directly), as it would
5619      // require to assign fixed registers for the inputs of this
5620      // HInstanceOf instruction (following the runtime calling
5621      // convention), which might be cluttered by the potential first
5622      // read barrier emission at the beginning of this method.
5623      //
5624      // TODO: Introduce a new runtime entry point taking the object
5625      // to test (instead of its class) as argument, and let it deal
5626      // with the read barrier issues. This will let us refactor this
5627      // case of the `switch` code as it was previously (with a direct
5628      // call to the runtime not using a type checking slow path).
5629      // This should also be beneficial for the other cases above.
5630      DCHECK(locations->OnlyCallsOnSlowPath());
5631      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
5632                                                                    /* is_fatal */ false);
5633      codegen_->AddSlowPath(slow_path);
5634      __ b(slow_path->GetEntryLabel());
5635      if (zero.IsLinked()) {
5636        __ b(&done);
5637      }
5638      break;
5639    }
5640  }
5641
5642  if (zero.IsLinked()) {
5643    __ Bind(&zero);
5644    __ LoadImmediate(out, 0);
5645  }
5646
5647  if (done.IsLinked()) {
5648    __ Bind(&done);
5649  }
5650
5651  if (slow_path != nullptr) {
5652    __ Bind(slow_path->GetExitLabel());
5653  }
5654}
5655
5656void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
5657  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
5658  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
5659
5660  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5661  switch (type_check_kind) {
5662    case TypeCheckKind::kExactCheck:
5663    case TypeCheckKind::kAbstractClassCheck:
5664    case TypeCheckKind::kClassHierarchyCheck:
5665    case TypeCheckKind::kArrayObjectCheck:
5666      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
5667          LocationSummary::kCallOnSlowPath :
5668          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
5669      break;
5670    case TypeCheckKind::kArrayCheck:
5671    case TypeCheckKind::kUnresolvedCheck:
5672    case TypeCheckKind::kInterfaceCheck:
5673      call_kind = LocationSummary::kCallOnSlowPath;
5674      break;
5675  }
5676
5677  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
5678  locations->SetInAt(0, Location::RequiresRegister());
5679  locations->SetInAt(1, Location::RequiresRegister());
5680  // Note that TypeCheckSlowPathARM uses this "temp" register too.
5681  locations->AddTemp(Location::RequiresRegister());
5682  // When read barriers are enabled, we need an additional temporary
5683  // register for some cases.
5684  if (TypeCheckNeedsATemporary(type_check_kind)) {
5685    locations->AddTemp(Location::RequiresRegister());
5686  }
5687}
5688
5689void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
5690  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
5691  LocationSummary* locations = instruction->GetLocations();
5692  Location obj_loc = locations->InAt(0);
5693  Register obj = obj_loc.AsRegister<Register>();
5694  Register cls = locations->InAt(1).AsRegister<Register>();
5695  Location temp_loc = locations->GetTemp(0);
5696  Register temp = temp_loc.AsRegister<Register>();
5697  Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
5698      locations->GetTemp(1) :
5699      Location::NoLocation();
5700  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5701  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5702  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5703  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
5704
5705  bool is_type_check_slow_path_fatal =
5706      (type_check_kind == TypeCheckKind::kExactCheck ||
5707       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
5708       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
5709       type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
5710      !instruction->CanThrowIntoCatchBlock();
5711  SlowPathCode* type_check_slow_path =
5712      new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
5713                                                        is_type_check_slow_path_fatal);
5714  codegen_->AddSlowPath(type_check_slow_path);
5715
5716  Label done;
5717  // Avoid null check if we know obj is not null.
5718  if (instruction->MustDoNullCheck()) {
5719    __ CompareAndBranchIfZero(obj, &done);
5720  }
5721
5722  // /* HeapReference<Class> */ temp = obj->klass_
5723  GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
5724
5725  switch (type_check_kind) {
5726    case TypeCheckKind::kExactCheck:
5727    case TypeCheckKind::kArrayCheck: {
5728      __ cmp(temp, ShifterOperand(cls));
5729      // Jump to slow path for throwing the exception or doing a
5730      // more involved array check.
5731      __ b(type_check_slow_path->GetEntryLabel(), NE);
5732      break;
5733    }
5734
5735    case TypeCheckKind::kAbstractClassCheck: {
5736      // If the class is abstract, we eagerly fetch the super class of the
5737      // object to avoid doing a comparison we know will fail.
5738      Label loop, compare_classes;
5739      __ Bind(&loop);
5740      // /* HeapReference<Class> */ temp = temp->super_class_
5741      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
5742
5743      // If the class reference currently in `temp` is not null, jump
5744      // to the `compare_classes` label to compare it with the checked
5745      // class.
5746      __ CompareAndBranchIfNonZero(temp, &compare_classes);
5747      // Otherwise, jump to the slow path to throw the exception.
5748      //
5749      // But before, move back the object's class into `temp` before
5750      // going into the slow path, as it has been overwritten in the
5751      // meantime.
5752      // /* HeapReference<Class> */ temp = obj->klass_
5753      GenerateReferenceLoadTwoRegisters(
5754          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
5755      __ b(type_check_slow_path->GetEntryLabel());
5756
5757      __ Bind(&compare_classes);
5758      __ cmp(temp, ShifterOperand(cls));
5759      __ b(&loop, NE);
5760      break;
5761    }
5762
5763    case TypeCheckKind::kClassHierarchyCheck: {
5764      // Walk over the class hierarchy to find a match.
5765      Label loop;
5766      __ Bind(&loop);
5767      __ cmp(temp, ShifterOperand(cls));
5768      __ b(&done, EQ);
5769
5770      // /* HeapReference<Class> */ temp = temp->super_class_
5771      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
5772
5773      // If the class reference currently in `temp` is not null, jump
5774      // back at the beginning of the loop.
5775      __ CompareAndBranchIfNonZero(temp, &loop);
5776      // Otherwise, jump to the slow path to throw the exception.
5777      //
5778      // But before, move back the object's class into `temp` before
5779      // going into the slow path, as it has been overwritten in the
5780      // meantime.
5781      // /* HeapReference<Class> */ temp = obj->klass_
5782      GenerateReferenceLoadTwoRegisters(
5783          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
5784      __ b(type_check_slow_path->GetEntryLabel());
5785      break;
5786    }
5787
5788    case TypeCheckKind::kArrayObjectCheck: {
5789      // Do an exact check.
5790      Label check_non_primitive_component_type;
5791      __ cmp(temp, ShifterOperand(cls));
5792      __ b(&done, EQ);
5793
5794      // Otherwise, we need to check that the object's class is a non-primitive array.
5795      // /* HeapReference<Class> */ temp = temp->component_type_
5796      GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
5797
5798      // If the component type is not null (i.e. the object is indeed
5799      // an array), jump to label `check_non_primitive_component_type`
5800      // to further check that this component type is not a primitive
5801      // type.
5802      __ CompareAndBranchIfNonZero(temp, &check_non_primitive_component_type);
5803      // Otherwise, jump to the slow path to throw the exception.
5804      //
5805      // But before, move back the object's class into `temp` before
5806      // going into the slow path, as it has been overwritten in the
5807      // meantime.
5808      // /* HeapReference<Class> */ temp = obj->klass_
5809      GenerateReferenceLoadTwoRegisters(
5810          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
5811      __ b(type_check_slow_path->GetEntryLabel());
5812
5813      __ Bind(&check_non_primitive_component_type);
5814      __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
5815      static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
5816      __ CompareAndBranchIfZero(temp, &done);
5817      // Same comment as above regarding `temp` and the slow path.
5818      // /* HeapReference<Class> */ temp = obj->klass_
5819      GenerateReferenceLoadTwoRegisters(
5820          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
5821      __ b(type_check_slow_path->GetEntryLabel());
5822      break;
5823    }
5824
5825    case TypeCheckKind::kUnresolvedCheck:
5826    case TypeCheckKind::kInterfaceCheck:
5827      // We always go into the type check slow path for the unresolved
5828      // and interface check cases.
5829      //
5830      // We cannot directly call the CheckCast runtime entry point
5831      // without resorting to a type checking slow path here (i.e. by
5832      // calling InvokeRuntime directly), as it would require to
5833      // assign fixed registers for the inputs of this HInstanceOf
5834      // instruction (following the runtime calling convention), which
5835      // might be cluttered by the potential first read barrier
5836      // emission at the beginning of this method.
5837      //
5838      // TODO: Introduce a new runtime entry point taking the object
5839      // to test (instead of its class) as argument, and let it deal
5840      // with the read barrier issues. This will let us refactor this
5841      // case of the `switch` code as it was previously (with a direct
5842      // call to the runtime not using a type checking slow path).
5843      // This should also be beneficial for the other cases above.
5844      __ b(type_check_slow_path->GetEntryLabel());
5845      break;
5846  }
5847  __ Bind(&done);
5848
5849  __ Bind(type_check_slow_path->GetExitLabel());
5850}
5851
5852void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
5853  LocationSummary* locations =
5854      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
5855  InvokeRuntimeCallingConvention calling_convention;
5856  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5857}
5858
5859void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
5860  codegen_->InvokeRuntime(instruction->IsEnter()
5861        ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
5862      instruction,
5863      instruction->GetDexPc(),
5864      nullptr);
5865  if (instruction->IsEnter()) {
5866    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
5867  } else {
5868    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
5869  }
5870}
5871
5872void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
5873void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
5874void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }
5875
5876void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
5877  LocationSummary* locations =
5878      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5879  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
5880         || instruction->GetResultType() == Primitive::kPrimLong);
5881  // Note: GVN reorders commutative operations to have the constant on the right hand side.
5882  locations->SetInAt(0, Location::RequiresRegister());
5883  locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
5884  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5885}
5886
5887void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
5888  HandleBitwiseOperation(instruction);
5889}
5890
5891void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
5892  HandleBitwiseOperation(instruction);
5893}
5894
5895void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
5896  HandleBitwiseOperation(instruction);
5897}
5898
5899
5900void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
5901  LocationSummary* locations =
5902      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
5903  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
5904         || instruction->GetResultType() == Primitive::kPrimLong);
5905
5906  locations->SetInAt(0, Location::RequiresRegister());
5907  locations->SetInAt(1, Location::RequiresRegister());
5908  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5909}
5910
5911void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
5912  LocationSummary* locations = instruction->GetLocations();
5913  Location first = locations->InAt(0);
5914  Location second = locations->InAt(1);
5915  Location out = locations->Out();
5916
5917  if (instruction->GetResultType() == Primitive::kPrimInt) {
5918    Register first_reg = first.AsRegister<Register>();
5919    ShifterOperand second_reg(second.AsRegister<Register>());
5920    Register out_reg = out.AsRegister<Register>();
5921
5922    switch (instruction->GetOpKind()) {
5923      case HInstruction::kAnd:
5924        __ bic(out_reg, first_reg, second_reg);
5925        break;
5926      case HInstruction::kOr:
5927        __ orn(out_reg, first_reg, second_reg);
5928        break;
5929      // There is no EON on arm.
5930      case HInstruction::kXor:
5931      default:
5932        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
5933        UNREACHABLE();
5934    }
5935    return;
5936
5937  } else {
5938    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
5939    Register first_low = first.AsRegisterPairLow<Register>();
5940    Register first_high = first.AsRegisterPairHigh<Register>();
5941    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
5942    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
5943    Register out_low = out.AsRegisterPairLow<Register>();
5944    Register out_high = out.AsRegisterPairHigh<Register>();
5945
5946    switch (instruction->GetOpKind()) {
5947      case HInstruction::kAnd:
5948        __ bic(out_low, first_low, second_low);
5949        __ bic(out_high, first_high, second_high);
5950        break;
5951      case HInstruction::kOr:
5952        __ orn(out_low, first_low, second_low);
5953        __ orn(out_high, first_high, second_high);
5954        break;
5955      // There is no EON on arm.
5956      case HInstruction::kXor:
5957      default:
5958        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
5959        UNREACHABLE();
5960    }
5961  }
5962}
5963
5964void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
5965  // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
5966  if (value == 0xffffffffu) {
5967    if (out != first) {
5968      __ mov(out, ShifterOperand(first));
5969    }
5970    return;
5971  }
5972  if (value == 0u) {
5973    __ mov(out, ShifterOperand(0));
5974    return;
5975  }
5976  ShifterOperand so;
5977  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
5978    __ and_(out, first, so);
5979  } else {
5980    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so));
5981    __ bic(out, first, ShifterOperand(~value));
5982  }
5983}
5984
5985void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
5986  // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
5987  if (value == 0u) {
5988    if (out != first) {
5989      __ mov(out, ShifterOperand(first));
5990    }
5991    return;
5992  }
5993  if (value == 0xffffffffu) {
5994    __ mvn(out, ShifterOperand(0));
5995    return;
5996  }
5997  ShifterOperand so;
5998  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
5999    __ orr(out, first, so);
6000  } else {
6001    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
6002    __ orn(out, first, ShifterOperand(~value));
6003  }
6004}
6005
6006void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
6007  // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
6008  if (value == 0u) {
6009    if (out != first) {
6010      __ mov(out, ShifterOperand(first));
6011    }
6012    return;
6013  }
6014  __ eor(out, first, ShifterOperand(value));
6015}
6016
6017void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
6018  LocationSummary* locations = instruction->GetLocations();
6019  Location first = locations->InAt(0);
6020  Location second = locations->InAt(1);
6021  Location out = locations->Out();
6022
6023  if (second.IsConstant()) {
6024    uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
6025    uint32_t value_low = Low32Bits(value);
6026    if (instruction->GetResultType() == Primitive::kPrimInt) {
6027      Register first_reg = first.AsRegister<Register>();
6028      Register out_reg = out.AsRegister<Register>();
6029      if (instruction->IsAnd()) {
6030        GenerateAndConst(out_reg, first_reg, value_low);
6031      } else if (instruction->IsOr()) {
6032        GenerateOrrConst(out_reg, first_reg, value_low);
6033      } else {
6034        DCHECK(instruction->IsXor());
6035        GenerateEorConst(out_reg, first_reg, value_low);
6036      }
6037    } else {
6038      DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6039      uint32_t value_high = High32Bits(value);
6040      Register first_low = first.AsRegisterPairLow<Register>();
6041      Register first_high = first.AsRegisterPairHigh<Register>();
6042      Register out_low = out.AsRegisterPairLow<Register>();
6043      Register out_high = out.AsRegisterPairHigh<Register>();
6044      if (instruction->IsAnd()) {
6045        GenerateAndConst(out_low, first_low, value_low);
6046        GenerateAndConst(out_high, first_high, value_high);
6047      } else if (instruction->IsOr()) {
6048        GenerateOrrConst(out_low, first_low, value_low);
6049        GenerateOrrConst(out_high, first_high, value_high);
6050      } else {
6051        DCHECK(instruction->IsXor());
6052        GenerateEorConst(out_low, first_low, value_low);
6053        GenerateEorConst(out_high, first_high, value_high);
6054      }
6055    }
6056    return;
6057  }
6058
6059  if (instruction->GetResultType() == Primitive::kPrimInt) {
6060    Register first_reg = first.AsRegister<Register>();
6061    ShifterOperand second_reg(second.AsRegister<Register>());
6062    Register out_reg = out.AsRegister<Register>();
6063    if (instruction->IsAnd()) {
6064      __ and_(out_reg, first_reg, second_reg);
6065    } else if (instruction->IsOr()) {
6066      __ orr(out_reg, first_reg, second_reg);
6067    } else {
6068      DCHECK(instruction->IsXor());
6069      __ eor(out_reg, first_reg, second_reg);
6070    }
6071  } else {
6072    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6073    Register first_low = first.AsRegisterPairLow<Register>();
6074    Register first_high = first.AsRegisterPairHigh<Register>();
6075    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
6076    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
6077    Register out_low = out.AsRegisterPairLow<Register>();
6078    Register out_high = out.AsRegisterPairHigh<Register>();
6079    if (instruction->IsAnd()) {
6080      __ and_(out_low, first_low, second_low);
6081      __ and_(out_high, first_high, second_high);
6082    } else if (instruction->IsOr()) {
6083      __ orr(out_low, first_low, second_low);
6084      __ orr(out_high, first_high, second_high);
6085    } else {
6086      DCHECK(instruction->IsXor());
6087      __ eor(out_low, first_low, second_low);
6088      __ eor(out_high, first_high, second_high);
6089    }
6090  }
6091}
6092
6093void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(HInstruction* instruction,
6094                                                                   Location out,
6095                                                                   uint32_t offset,
6096                                                                   Location maybe_temp) {
6097  Register out_reg = out.AsRegister<Register>();
6098  if (kEmitCompilerReadBarrier) {
6099    DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6100    if (kUseBakerReadBarrier) {
6101      // Load with fast path based Baker's read barrier.
6102      // /* HeapReference<Object> */ out = *(out + offset)
6103      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6104          instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
6105    } else {
6106      // Load with slow path based read barrier.
6107      // Save the value of `out` into `maybe_temp` before overwriting it
6108      // in the following move operation, as we will need it for the
6109      // read barrier below.
6110      __ Mov(maybe_temp.AsRegister<Register>(), out_reg);
6111      // /* HeapReference<Object> */ out = *(out + offset)
6112      __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6113      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6114    }
6115  } else {
6116    // Plain load with no read barrier.
6117    // /* HeapReference<Object> */ out = *(out + offset)
6118    __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6119    __ MaybeUnpoisonHeapReference(out_reg);
6120  }
6121}
6122
6123void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
6124                                                                    Location out,
6125                                                                    Location obj,
6126                                                                    uint32_t offset,
6127                                                                    Location maybe_temp) {
6128  Register out_reg = out.AsRegister<Register>();
6129  Register obj_reg = obj.AsRegister<Register>();
6130  if (kEmitCompilerReadBarrier) {
6131    if (kUseBakerReadBarrier) {
6132      DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6133      // Load with fast path based Baker's read barrier.
6134      // /* HeapReference<Object> */ out = *(obj + offset)
6135      codegen_->GenerateFieldLoadWithBakerReadBarrier(
6136          instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
6137    } else {
6138      // Load with slow path based read barrier.
6139      // /* HeapReference<Object> */ out = *(obj + offset)
6140      __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6141      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6142    }
6143  } else {
6144    // Plain load with no read barrier.
6145    // /* HeapReference<Object> */ out = *(obj + offset)
6146    __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6147    __ MaybeUnpoisonHeapReference(out_reg);
6148  }
6149}
6150
6151void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
6152                                                          Location root,
6153                                                          Register obj,
6154                                                          uint32_t offset) {
6155  Register root_reg = root.AsRegister<Register>();
6156  if (kEmitCompilerReadBarrier) {
6157    if (kUseBakerReadBarrier) {
6158      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6159      // Baker's read barrier are used:
6160      //
6161      //   root = obj.field;
6162      //   if (Thread::Current()->GetIsGcMarking()) {
6163      //     root = ReadBarrier::Mark(root)
6164      //   }
6165
6166      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6167      __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6168      static_assert(
6169          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
6170          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
6171          "have different sizes.");
6172      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
6173                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
6174                    "have different sizes.");
6175
6176      // Slow path used to mark the GC root `root`.
6177      SlowPathCode* slow_path =
6178          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, root, root);
6179      codegen_->AddSlowPath(slow_path);
6180
6181      // IP = Thread::Current()->GetIsGcMarking()
6182      __ LoadFromOffset(
6183          kLoadWord, IP, TR, Thread::IsGcMarkingOffset<kArmWordSize>().Int32Value());
6184      __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
6185      __ Bind(slow_path->GetExitLabel());
6186    } else {
6187      // GC root loaded through a slow path for read barriers other
6188      // than Baker's.
6189      // /* GcRoot<mirror::Object>* */ root = obj + offset
6190      __ AddConstant(root_reg, obj, offset);
6191      // /* mirror::Object* */ root = root->Read()
6192      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
6193    }
6194  } else {
6195    // Plain GC root load with no read barrier.
6196    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6197    __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
6198    // Note that GC roots are not affected by heap poisoning, thus we
6199    // do not have to unpoison `root_reg` here.
6200  }
6201}
6202
6203void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6204                                                             Location ref,
6205                                                             Register obj,
6206                                                             uint32_t offset,
6207                                                             Location temp,
6208                                                             bool needs_null_check) {
6209  DCHECK(kEmitCompilerReadBarrier);
6210  DCHECK(kUseBakerReadBarrier);
6211
6212  // /* HeapReference<Object> */ ref = *(obj + offset)
6213  Location no_index = Location::NoLocation();
6214  ScaleFactor no_scale_factor = TIMES_1;
6215  GenerateReferenceLoadWithBakerReadBarrier(
6216      instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
6217}
6218
6219void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
6220                                                             Location ref,
6221                                                             Register obj,
6222                                                             uint32_t data_offset,
6223                                                             Location index,
6224                                                             Location temp,
6225                                                             bool needs_null_check) {
6226  DCHECK(kEmitCompilerReadBarrier);
6227  DCHECK(kUseBakerReadBarrier);
6228
6229  static_assert(
6230      sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6231      "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6232  // /* HeapReference<Object> */ ref =
6233  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6234  ScaleFactor scale_factor = TIMES_4;
6235  GenerateReferenceLoadWithBakerReadBarrier(
6236      instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
6237}
6238
6239void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
6240                                                                 Location ref,
6241                                                                 Register obj,
6242                                                                 uint32_t offset,
6243                                                                 Location index,
6244                                                                 ScaleFactor scale_factor,
6245                                                                 Location temp,
6246                                                                 bool needs_null_check) {
6247  DCHECK(kEmitCompilerReadBarrier);
6248  DCHECK(kUseBakerReadBarrier);
6249
6250  // In slow path based read barriers, the read barrier call is
6251  // inserted after the original load. However, in fast path based
6252  // Baker's read barriers, we need to perform the load of
6253  // mirror::Object::monitor_ *before* the original reference load.
6254  // This load-load ordering is required by the read barrier.
6255  // The fast path/slow path (for Baker's algorithm) should look like:
6256  //
6257  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
6258  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
6259  //   HeapReference<Object> ref = *src;  // Original reference load.
6260  //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
6261  //   if (is_gray) {
6262  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
6263  //   }
6264  //
6265  // Note: the original implementation in ReadBarrier::Barrier is
6266  // slightly more complex as it performs additional checks that we do
6267  // not do here for performance reasons.
6268
6269  Register ref_reg = ref.AsRegister<Register>();
6270  Register temp_reg = temp.AsRegister<Register>();
6271  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
6272
6273  // /* int32_t */ monitor = obj->monitor_
6274  __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
6275  if (needs_null_check) {
6276    MaybeRecordImplicitNullCheck(instruction);
6277  }
6278  // /* LockWord */ lock_word = LockWord(monitor)
6279  static_assert(sizeof(LockWord) == sizeof(int32_t),
6280                "art::LockWord and int32_t have different sizes.");
6281  // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
6282  __ Lsr(temp_reg, temp_reg, LockWord::kReadBarrierStateShift);
6283  __ and_(temp_reg, temp_reg, ShifterOperand(LockWord::kReadBarrierStateMask));
6284  static_assert(
6285      LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
6286      "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
6287
6288  // Introduce a dependency on the high bits of rb_state, which shall
6289  // be all zeroes, to prevent load-load reordering, and without using
6290  // a memory barrier (which would be more expensive).
6291  // IP = rb_state & ~LockWord::kReadBarrierStateMask = 0
6292  __ bic(IP, temp_reg, ShifterOperand(LockWord::kReadBarrierStateMask));
6293  // obj is unchanged by this operation, but its value now depends on
6294  // IP, which depends on temp_reg.
6295  __ add(obj, obj, ShifterOperand(IP));
6296
6297  // The actual reference load.
6298  if (index.IsValid()) {
6299    // Load types involving an "index": ArrayGet and
6300    // UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
6301    // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
6302    if (index.IsConstant()) {
6303      size_t computed_offset =
6304          (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
6305      __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
6306    } else {
6307      // Handle the special case of the
6308      // UnsafeGetObject/UnsafeGetObjectVolatile intrinsics, which use
6309      // a register pair as index ("long offset"), of which only the low
6310      // part contains data.
6311      Register index_reg = index.IsRegisterPair()
6312          ? index.AsRegisterPairLow<Register>()
6313          : index.AsRegister<Register>();
6314      __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor));
6315      __ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
6316    }
6317  } else {
6318    // /* HeapReference<Object> */ ref = *(obj + offset)
6319    __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
6320  }
6321
6322  // Object* ref = ref_addr->AsMirrorPtr()
6323  __ MaybeUnpoisonHeapReference(ref_reg);
6324
6325  // Slow path used to mark the object `ref` when it is gray.
6326  SlowPathCode* slow_path =
6327      new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref, ref);
6328  AddSlowPath(slow_path);
6329
6330  // if (rb_state == ReadBarrier::gray_ptr_)
6331  //   ref = ReadBarrier::Mark(ref);
6332  __ cmp(temp_reg, ShifterOperand(ReadBarrier::gray_ptr_));
6333  __ b(slow_path->GetEntryLabel(), EQ);
6334  __ Bind(slow_path->GetExitLabel());
6335}
6336
6337void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
6338                                               Location out,
6339                                               Location ref,
6340                                               Location obj,
6341                                               uint32_t offset,
6342                                               Location index) {
6343  DCHECK(kEmitCompilerReadBarrier);
6344
6345  // Insert a slow path based read barrier *after* the reference load.
6346  //
6347  // If heap poisoning is enabled, the unpoisoning of the loaded
6348  // reference will be carried out by the runtime within the slow
6349  // path.
6350  //
6351  // Note that `ref` currently does not get unpoisoned (when heap
6352  // poisoning is enabled), which is alright as the `ref` argument is
6353  // not used by the artReadBarrierSlow entry point.
6354  //
6355  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6356  SlowPathCode* slow_path = new (GetGraph()->GetArena())
6357      ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
6358  AddSlowPath(slow_path);
6359
6360  __ b(slow_path->GetEntryLabel());
6361  __ Bind(slow_path->GetExitLabel());
6362}
6363
6364void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6365                                                    Location out,
6366                                                    Location ref,
6367                                                    Location obj,
6368                                                    uint32_t offset,
6369                                                    Location index) {
6370  if (kEmitCompilerReadBarrier) {
6371    // Baker's read barriers shall be handled by the fast path
6372    // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
6373    DCHECK(!kUseBakerReadBarrier);
6374    // If heap poisoning is enabled, unpoisoning will be taken care of
6375    // by the runtime within the slow path.
6376    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6377  } else if (kPoisonHeapReferences) {
6378    __ UnpoisonHeapReference(out.AsRegister<Register>());
6379  }
6380}
6381
6382void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6383                                                      Location out,
6384                                                      Location root) {
6385  DCHECK(kEmitCompilerReadBarrier);
6386
6387  // Insert a slow path based read barrier *after* the GC root load.
6388  //
6389  // Note that GC roots are not affected by heap poisoning, so we do
6390  // not need to do anything special for this here.
6391  SlowPathCode* slow_path =
6392      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
6393  AddSlowPath(slow_path);
6394
6395  __ b(slow_path->GetEntryLabel());
6396  __ Bind(slow_path->GetExitLabel());
6397}
6398
6399HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
6400      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
6401      MethodReference target_method) {
6402  HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
6403  // We disable pc-relative load when there is an irreducible loop, as the optimization
6404  // is incompatible with it.
6405  // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
6406  // with irreducible loops.
6407  if (GetGraph()->HasIrreducibleLoops() &&
6408      (dispatch_info.method_load_kind ==
6409          HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
6410    dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
6411  }
6412
6413  if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) {
6414    const DexFile& outer_dex_file = GetGraph()->GetDexFile();
6415    if (&outer_dex_file != target_method.dex_file) {
6416      // Calls across dex files are more likely to exceed the available BL range,
6417      // so use absolute patch with fixup if available and kCallArtMethod otherwise.
6418      HInvokeStaticOrDirect::CodePtrLocation code_ptr_location =
6419          (desired_dispatch_info.method_load_kind ==
6420           HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup)
6421          ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup
6422          : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
6423      return HInvokeStaticOrDirect::DispatchInfo {
6424        dispatch_info.method_load_kind,
6425        code_ptr_location,
6426        dispatch_info.method_load_data,
6427        0u
6428      };
6429    }
6430  }
6431  return dispatch_info;
6432}
6433
6434Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
6435                                                                 Register temp) {
6436  DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
6437  Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6438  if (!invoke->GetLocations()->Intrinsified()) {
6439    return location.AsRegister<Register>();
6440  }
6441  // For intrinsics we allow any location, so it may be on the stack.
6442  if (!location.IsRegister()) {
6443    __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
6444    return temp;
6445  }
6446  // For register locations, check if the register was saved. If so, get it from the stack.
6447  // Note: There is a chance that the register was saved but not overwritten, so we could
6448  // save one load. However, since this is just an intrinsic slow path we prefer this
6449  // simple and more robust approach rather that trying to determine if that's the case.
6450  SlowPathCode* slow_path = GetCurrentSlowPath();
6451  DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
6452  if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
6453    int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
6454    __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
6455    return temp;
6456  }
6457  return location.AsRegister<Register>();
6458}
6459
6460void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
6461  // For better instruction scheduling we load the direct code pointer before the method pointer.
6462  switch (invoke->GetCodePtrLocation()) {
6463    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
6464      // LR = code address from literal pool with link-time patch.
6465      __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
6466      break;
6467    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
6468      // LR = invoke->GetDirectCodePtr();
6469      __ LoadImmediate(LR, invoke->GetDirectCodePtr());
6470      break;
6471    default:
6472      break;
6473  }
6474
6475  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
6476  switch (invoke->GetMethodLoadKind()) {
6477    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
6478      // temp = thread->string_init_entrypoint
6479      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, invoke->GetStringInitOffset());
6480      break;
6481    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
6482      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6483      break;
6484    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
6485      __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
6486      break;
6487    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
6488      __ LoadLiteral(temp.AsRegister<Register>(),
6489                     DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
6490      break;
6491    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
6492      HArmDexCacheArraysBase* base =
6493          invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
6494      Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
6495                                                                temp.AsRegister<Register>());
6496      int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
6497      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
6498      break;
6499    }
6500    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
6501      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
6502      Register method_reg;
6503      Register reg = temp.AsRegister<Register>();
6504      if (current_method.IsRegister()) {
6505        method_reg = current_method.AsRegister<Register>();
6506      } else {
6507        DCHECK(invoke->GetLocations()->Intrinsified());
6508        DCHECK(!current_method.IsValid());
6509        method_reg = reg;
6510        __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
6511      }
6512      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
6513      __ LoadFromOffset(kLoadWord,
6514                        reg,
6515                        method_reg,
6516                        ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
6517      // temp = temp[index_in_cache];
6518      // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
6519      uint32_t index_in_cache = invoke->GetDexMethodIndex();
6520      __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
6521      break;
6522    }
6523  }
6524
6525  switch (invoke->GetCodePtrLocation()) {
6526    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
6527      __ bl(GetFrameEntryLabel());
6528      break;
6529    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
6530      relative_call_patches_.emplace_back(invoke->GetTargetMethod());
6531      __ BindTrackedLabel(&relative_call_patches_.back().label);
6532      // Arbitrarily branch to the BL itself, override at link time.
6533      __ bl(&relative_call_patches_.back().label);
6534      break;
6535    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
6536    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
6537      // LR prepared above for better instruction scheduling.
6538      // LR()
6539      __ blx(LR);
6540      break;
6541    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
6542      // LR = callee_method->entry_point_from_quick_compiled_code_
6543      __ LoadFromOffset(
6544          kLoadWord, LR, callee_method.AsRegister<Register>(),
6545          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize).Int32Value());
6546      // LR()
6547      __ blx(LR);
6548      break;
6549  }
6550
6551  DCHECK(!IsLeafMethod());
6552}
6553
6554void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
6555  Register temp = temp_location.AsRegister<Register>();
6556  uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6557      invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
6558
6559  // Use the calling convention instead of the location of the receiver, as
6560  // intrinsics may have put the receiver in a different register. In the intrinsics
6561  // slow path, the arguments have been moved to the right place, so here we are
6562  // guaranteed that the receiver is the first register of the calling convention.
6563  InvokeDexCallingConvention calling_convention;
6564  Register receiver = calling_convention.GetRegisterAt(0);
6565  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6566  // /* HeapReference<Class> */ temp = receiver->klass_
6567  __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
6568  MaybeRecordImplicitNullCheck(invoke);
6569  // Instead of simply (possibly) unpoisoning `temp` here, we should
6570  // emit a read barrier for the previous class reference load.
6571  // However this is not required in practice, as this is an
6572  // intermediate/temporary reference and because the current
6573  // concurrent copying collector keeps the from-space memory
6574  // intact/accessible until the end of the marking phase (the
6575  // concurrent copying collector may not in the future).
6576  __ MaybeUnpoisonHeapReference(temp);
6577  // temp = temp->GetMethodAt(method_offset);
6578  uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
6579      kArmWordSize).Int32Value();
6580  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
6581  // LR = temp->GetEntryPoint();
6582  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
6583  // LR();
6584  __ blx(LR);
6585}
6586
6587CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
6588    const DexFile& dex_file, uint32_t string_index) {
6589  return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
6590}
6591
6592CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch(
6593    const DexFile& dex_file, uint32_t type_index) {
6594  return NewPcRelativePatch(dex_file, type_index, &pc_relative_type_patches_);
6595}
6596
6597CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch(
6598    const DexFile& dex_file, uint32_t element_offset) {
6599  return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
6600}
6601
6602CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
6603    const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
6604  patches->emplace_back(dex_file, offset_or_index);
6605  return &patches->back();
6606}
6607
6608Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
6609                                                             uint32_t string_index) {
6610  return boot_image_string_patches_.GetOrCreate(
6611      StringReference(&dex_file, string_index),
6612      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
6613}
6614
6615Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
6616                                                           uint32_t type_index) {
6617  return boot_image_type_patches_.GetOrCreate(
6618      TypeReference(&dex_file, type_index),
6619      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
6620}
6621
6622Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
6623  bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
6624  Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
6625  return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
6626}
6627
6628Literal* CodeGeneratorARM::DeduplicateDexCacheAddressLiteral(uint32_t address) {
6629  return DeduplicateUint32Literal(address, &uint32_literals_);
6630}
6631
6632void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
6633  DCHECK(linker_patches->empty());
6634  size_t size =
6635      method_patches_.size() +
6636      call_patches_.size() +
6637      relative_call_patches_.size() +
6638      /* MOVW+MOVT for each base */ 2u * pc_relative_dex_cache_patches_.size() +
6639      boot_image_string_patches_.size() +
6640      /* MOVW+MOVT for each base */ 2u * pc_relative_string_patches_.size() +
6641      boot_image_type_patches_.size() +
6642      /* MOVW+MOVT for each base */ 2u * pc_relative_type_patches_.size() +
6643      boot_image_address_patches_.size();
6644  linker_patches->reserve(size);
6645  for (const auto& entry : method_patches_) {
6646    const MethodReference& target_method = entry.first;
6647    Literal* literal = entry.second;
6648    DCHECK(literal->GetLabel()->IsBound());
6649    uint32_t literal_offset = literal->GetLabel()->Position();
6650    linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
6651                                                       target_method.dex_file,
6652                                                       target_method.dex_method_index));
6653  }
6654  for (const auto& entry : call_patches_) {
6655    const MethodReference& target_method = entry.first;
6656    Literal* literal = entry.second;
6657    DCHECK(literal->GetLabel()->IsBound());
6658    uint32_t literal_offset = literal->GetLabel()->Position();
6659    linker_patches->push_back(LinkerPatch::CodePatch(literal_offset,
6660                                                     target_method.dex_file,
6661                                                     target_method.dex_method_index));
6662  }
6663  for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
6664    uint32_t literal_offset = info.label.Position();
6665    linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
6666                                                             info.target_method.dex_file,
6667                                                             info.target_method.dex_method_index));
6668  }
6669  for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
6670    const DexFile& dex_file = info.target_dex_file;
6671    size_t base_element_offset = info.offset_or_index;
6672    DCHECK(info.add_pc_label.IsBound());
6673    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
6674    // Add MOVW patch.
6675    DCHECK(info.movw_label.IsBound());
6676    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
6677    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(movw_offset,
6678                                                              &dex_file,
6679                                                              add_pc_offset,
6680                                                              base_element_offset));
6681    // Add MOVT patch.
6682    DCHECK(info.movt_label.IsBound());
6683    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
6684    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(movt_offset,
6685                                                              &dex_file,
6686                                                              add_pc_offset,
6687                                                              base_element_offset));
6688  }
6689  for (const auto& entry : boot_image_string_patches_) {
6690    const StringReference& target_string = entry.first;
6691    Literal* literal = entry.second;
6692    DCHECK(literal->GetLabel()->IsBound());
6693    uint32_t literal_offset = literal->GetLabel()->Position();
6694    linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
6695                                                       target_string.dex_file,
6696                                                       target_string.string_index));
6697  }
6698  for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
6699    const DexFile& dex_file = info.target_dex_file;
6700    uint32_t string_index = info.offset_or_index;
6701    DCHECK(info.add_pc_label.IsBound());
6702    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
6703    // Add MOVW patch.
6704    DCHECK(info.movw_label.IsBound());
6705    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
6706    linker_patches->push_back(LinkerPatch::RelativeStringPatch(movw_offset,
6707                                                               &dex_file,
6708                                                               add_pc_offset,
6709                                                               string_index));
6710    // Add MOVT patch.
6711    DCHECK(info.movt_label.IsBound());
6712    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
6713    linker_patches->push_back(LinkerPatch::RelativeStringPatch(movt_offset,
6714                                                               &dex_file,
6715                                                               add_pc_offset,
6716                                                               string_index));
6717  }
6718  for (const auto& entry : boot_image_type_patches_) {
6719    const TypeReference& target_type = entry.first;
6720    Literal* literal = entry.second;
6721    DCHECK(literal->GetLabel()->IsBound());
6722    uint32_t literal_offset = literal->GetLabel()->Position();
6723    linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
6724                                                     target_type.dex_file,
6725                                                     target_type.type_index));
6726  }
6727  for (const PcRelativePatchInfo& info : pc_relative_type_patches_) {
6728    const DexFile& dex_file = info.target_dex_file;
6729    uint32_t type_index = info.offset_or_index;
6730    DCHECK(info.add_pc_label.IsBound());
6731    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
6732    // Add MOVW patch.
6733    DCHECK(info.movw_label.IsBound());
6734    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
6735    linker_patches->push_back(LinkerPatch::RelativeTypePatch(movw_offset,
6736                                                             &dex_file,
6737                                                             add_pc_offset,
6738                                                             type_index));
6739    // Add MOVT patch.
6740    DCHECK(info.movt_label.IsBound());
6741    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
6742    linker_patches->push_back(LinkerPatch::RelativeTypePatch(movt_offset,
6743                                                             &dex_file,
6744                                                             add_pc_offset,
6745                                                             type_index));
6746  }
6747  for (const auto& entry : boot_image_address_patches_) {
6748    DCHECK(GetCompilerOptions().GetIncludePatchInformation());
6749    Literal* literal = entry.second;
6750    DCHECK(literal->GetLabel()->IsBound());
6751    uint32_t literal_offset = literal->GetLabel()->Position();
6752    linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
6753  }
6754}
6755
6756Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
6757  return map->GetOrCreate(
6758      value,
6759      [this, value]() { return __ NewLiteral<uint32_t>(value); });
6760}
6761
6762Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method,
6763                                                    MethodToLiteralMap* map) {
6764  return map->GetOrCreate(
6765      target_method,
6766      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
6767}
6768
6769Literal* CodeGeneratorARM::DeduplicateMethodAddressLiteral(MethodReference target_method) {
6770  return DeduplicateMethodLiteral(target_method, &method_patches_);
6771}
6772
6773Literal* CodeGeneratorARM::DeduplicateMethodCodeLiteral(MethodReference target_method) {
6774  return DeduplicateMethodLiteral(target_method, &call_patches_);
6775}
6776
6777void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
6778  LocationSummary* locations =
6779      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
6780  locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
6781                     Location::RequiresRegister());
6782  locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
6783  locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
6784  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6785}
6786
6787void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
6788  LocationSummary* locations = instr->GetLocations();
6789  Register res = locations->Out().AsRegister<Register>();
6790  Register accumulator =
6791      locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
6792  Register mul_left =
6793      locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
6794  Register mul_right =
6795      locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();
6796
6797  if (instr->GetOpKind() == HInstruction::kAdd) {
6798    __ mla(res, mul_left, mul_right, accumulator);
6799  } else {
6800    __ mls(res, mul_left, mul_right, accumulator);
6801  }
6802}
6803
6804void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6805  // Nothing to do, this should be removed during prepare for register allocator.
6806  LOG(FATAL) << "Unreachable";
6807}
6808
6809void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6810  // Nothing to do, this should be removed during prepare for register allocator.
6811  LOG(FATAL) << "Unreachable";
6812}
6813
6814// Simple implementation of packed switch - generate cascaded compare/jumps.
6815void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6816  LocationSummary* locations =
6817      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6818  locations->SetInAt(0, Location::RequiresRegister());
6819  if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
6820      codegen_->GetAssembler()->IsThumb()) {
6821    locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
6822    if (switch_instr->GetStartValue() != 0) {
6823      locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
6824    }
6825  }
6826}
6827
6828void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6829  int32_t lower_bound = switch_instr->GetStartValue();
6830  uint32_t num_entries = switch_instr->GetNumEntries();
6831  LocationSummary* locations = switch_instr->GetLocations();
6832  Register value_reg = locations->InAt(0).AsRegister<Register>();
6833  HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6834
6835  if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
6836    // Create a series of compare/jumps.
6837    Register temp_reg = IP;
6838    // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
6839    // the immediate, because IP is used as the destination register. For the other
6840    // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
6841    // and they can be encoded in the instruction without making use of IP register.
6842    __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);
6843
6844    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6845    // Jump to successors[0] if value == lower_bound.
6846    __ b(codegen_->GetLabelOf(successors[0]), EQ);
6847    int32_t last_index = 0;
6848    for (; num_entries - last_index > 2; last_index += 2) {
6849      __ AddConstantSetFlags(temp_reg, temp_reg, -2);
6850      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6851      __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
6852      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6853      __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
6854    }
6855    if (num_entries - last_index == 2) {
6856      // The last missing case_value.
6857      __ CmpConstant(temp_reg, 1);
6858      __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
6859    }
6860
6861    // And the default for any other value.
6862    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6863      __ b(codegen_->GetLabelOf(default_block));
6864    }
6865  } else {
6866    // Create a table lookup.
6867    Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
6868
6869    // Materialize a pointer to the switch table
6870    std::vector<Label*> labels(num_entries);
6871    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6872    for (uint32_t i = 0; i < num_entries; i++) {
6873      labels[i] = codegen_->GetLabelOf(successors[i]);
6874    }
6875    JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);
6876
6877    // Remove the bias.
6878    Register key_reg;
6879    if (lower_bound != 0) {
6880      key_reg = locations->GetTemp(1).AsRegister<Register>();
6881      __ AddConstant(key_reg, value_reg, -lower_bound);
6882    } else {
6883      key_reg = value_reg;
6884    }
6885
6886    // Check whether the value is in the table, jump to default block if not.
6887    __ CmpConstant(key_reg, num_entries - 1);
6888    __ b(codegen_->GetLabelOf(default_block), Condition::HI);
6889
6890    // Load the displacement from the table.
6891    __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));
6892
6893    // Dispatch is a direct add to the PC (for Thumb2).
6894    __ EmitJumpTableDispatch(table, temp_reg);
6895  }
6896}
6897
6898void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
6899  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
6900  locations->SetOut(Location::RequiresRegister());
6901}
6902
6903void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
6904  Register base_reg = base->GetLocations()->Out().AsRegister<Register>();
6905  CodeGeneratorARM::PcRelativePatchInfo* labels =
6906      codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
6907  __ BindTrackedLabel(&labels->movw_label);
6908  __ movw(base_reg, /* placeholder */ 0u);
6909  __ BindTrackedLabel(&labels->movt_label);
6910  __ movt(base_reg, /* placeholder */ 0u);
6911  __ BindTrackedLabel(&labels->add_pc_label);
6912  __ add(base_reg, base_reg, ShifterOperand(PC));
6913}
6914
6915void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
6916  if (!trg.IsValid()) {
6917    DCHECK_EQ(type, Primitive::kPrimVoid);
6918    return;
6919  }
6920
6921  DCHECK_NE(type, Primitive::kPrimVoid);
6922
6923  Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
6924  if (return_loc.Equals(trg)) {
6925    return;
6926  }
6927
6928  // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
6929  //       with the last branch.
6930  if (type == Primitive::kPrimLong) {
6931    HParallelMove parallel_move(GetGraph()->GetArena());
6932    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
6933    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
6934    GetMoveResolver()->EmitNativeCode(&parallel_move);
6935  } else if (type == Primitive::kPrimDouble) {
6936    HParallelMove parallel_move(GetGraph()->GetArena());
6937    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
6938    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
6939    GetMoveResolver()->EmitNativeCode(&parallel_move);
6940  } else {
6941    // Let the parallel move resolver take care of all of this.
6942    HParallelMove parallel_move(GetGraph()->GetArena());
6943    parallel_move.AddMove(return_loc, trg, type, nullptr);
6944    GetMoveResolver()->EmitNativeCode(&parallel_move);
6945  }
6946}
6947
6948void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
6949  LocationSummary* locations =
6950      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6951  locations->SetInAt(0, Location::RequiresRegister());
6952  locations->SetOut(Location::RequiresRegister());
6953}
6954
6955void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
6956  LocationSummary* locations = instruction->GetLocations();
6957  uint32_t method_offset = 0;
6958  if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
6959    method_offset = mirror::Class::EmbeddedVTableEntryOffset(
6960        instruction->GetIndex(), kArmPointerSize).SizeValue();
6961  } else {
6962    method_offset = mirror::Class::EmbeddedImTableEntryOffset(
6963        instruction->GetIndex() % mirror::Class::kImtSize, kArmPointerSize).Uint32Value();
6964  }
6965  __ LoadFromOffset(kLoadWord,
6966                    locations->Out().AsRegister<Register>(),
6967                    locations->InAt(0).AsRegister<Register>(),
6968                    method_offset);
6969}
6970
6971#undef __
6972#undef QUICK_ENTRY_POINT
6973
6974}  // namespace arm
6975}  // namespace art
6976