quick_trampoline_entrypoints.cc revision 1428dce77b8b0e8ec3e3665d816678df1253fc10
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "callee_save_frame.h" 18#include "common_throws.h" 19#include "dex_file-inl.h" 20#include "dex_instruction-inl.h" 21#include "entrypoints/entrypoint_utils-inl.h" 22#include "entrypoints/runtime_asm_entrypoints.h" 23#include "gc/accounting/card_table-inl.h" 24#include "instruction_set.h" 25#include "interpreter/interpreter.h" 26#include "mirror/art_method-inl.h" 27#include "mirror/class-inl.h" 28#include "mirror/dex_cache-inl.h" 29#include "mirror/object-inl.h" 30#include "mirror/object_array-inl.h" 31#include "runtime.h" 32#include "scoped_thread_state_change.h" 33 34namespace art { 35 36// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 37class QuickArgumentVisitor { 38 // Number of bytes for each out register in the caller method's frame. 39 static constexpr size_t kBytesStackArgLocation = 4; 40 // Frame size in bytes of a callee-save frame for RefsAndArgs. 41 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 42 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 43#if defined(__arm__) 44 // The callee save frame is pointed to by SP. 45 // | argN | | 46 // | ... | | 47 // | arg4 | | 48 // | arg3 spill | | Caller's frame 49 // | arg2 spill | | 50 // | arg1 spill | | 51 // | Method* | --- 52 // | LR | 53 // | ... | callee saves 54 // | R3 | arg3 55 // | R2 | arg2 56 // | R1 | arg1 57 // | R0 | padding 58 // | Method* | <- sp 59 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 60 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 61 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 62 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 63 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 64 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 65 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 66 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 67 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 68 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 69 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 70 } 71#elif defined(__aarch64__) 72 // The callee save frame is pointed to by SP. 73 // | argN | | 74 // | ... | | 75 // | arg4 | | 76 // | arg3 spill | | Caller's frame 77 // | arg2 spill | | 78 // | arg1 spill | | 79 // | Method* | --- 80 // | LR | 81 // | X29 | 82 // | : | 83 // | X20 | 84 // | X7 | 85 // | : | 86 // | X1 | 87 // | D7 | 88 // | : | 89 // | D0 | 90 // | | padding 91 // | Method* | <- sp 92 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 93 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 94 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 95 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 96 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 97 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 98 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 99 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 100 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 101 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 102 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 103 } 104#elif defined(__mips__) 105 // The callee save frame is pointed to by SP. 106 // | argN | | 107 // | ... | | 108 // | arg4 | | 109 // | arg3 spill | | Caller's frame 110 // | arg2 spill | | 111 // | arg1 spill | | 112 // | Method* | --- 113 // | RA | 114 // | ... | callee saves 115 // | A3 | arg3 116 // | A2 | arg2 117 // | A1 | arg1 118 // | A0/Method* | <- sp 119 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 120 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 121 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 123 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 124 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 125 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 126 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 127 } 128#elif defined(__i386__) 129 // The callee save frame is pointed to by SP. 130 // | argN | | 131 // | ... | | 132 // | arg4 | | 133 // | arg3 spill | | Caller's frame 134 // | arg2 spill | | 135 // | arg1 spill | | 136 // | Method* | --- 137 // | Return | 138 // | EBP,ESI,EDI | callee saves 139 // | EBX | arg3 140 // | EDX | arg2 141 // | ECX | arg1 142 // | EAX/Method* | <- sp 143 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 144 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 145 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 146 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 147 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 148 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. 149 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 150 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 151 } 152#elif defined(__x86_64__) 153 // The callee save frame is pointed to by SP. 154 // | argN | | 155 // | ... | | 156 // | reg. arg spills | | Caller's frame 157 // | Method* | --- 158 // | Return | 159 // | R15 | callee save 160 // | R14 | callee save 161 // | R13 | callee save 162 // | R12 | callee save 163 // | R9 | arg5 164 // | R8 | arg4 165 // | RSI/R6 | arg1 166 // | RBP/R5 | callee save 167 // | RBX/R3 | callee save 168 // | RDX/R2 | arg2 169 // | RCX/R1 | arg3 170 // | XMM7 | float arg 8 171 // | XMM6 | float arg 7 172 // | XMM5 | float arg 6 173 // | XMM4 | float arg 5 174 // | XMM3 | float arg 4 175 // | XMM2 | float arg 3 176 // | XMM1 | float arg 2 177 // | XMM0 | float arg 1 178 // | Padding | 179 // | RDI/Method* | <- sp 180 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 181 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 182 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 185 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 186 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 187 switch (gpr_index) { 188 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 189 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 190 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 191 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 192 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 193 default: 194 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 195 return 0; 196 } 197 } 198#else 199#error "Unsupported architecture" 200#endif 201 202 public: 203 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 204 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 205 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 206 uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 207 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 208 } 209 210 // For the given quick ref and args quick frame, return the caller's PC. 211 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 212 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 213 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 214 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 215 return *reinterpret_cast<uintptr_t*>(lr); 216 } 217 218 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty, 219 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 220 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 221 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 222 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 223 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 224 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), 225 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), 226 is_split_long_or_double_(false) {} 227 228 virtual ~QuickArgumentVisitor() {} 229 230 virtual void Visit() = 0; 231 232 Primitive::Type GetParamPrimitiveType() const { 233 return cur_type_; 234 } 235 236 uint8_t* GetParamAddress() const { 237 if (!kQuickSoftFloatAbi) { 238 Primitive::Type type = GetParamPrimitiveType(); 239 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 240 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 241 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 242 } 243 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 244 } 245 } 246 if (gpr_index_ < kNumQuickGprArgs) { 247 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 248 } 249 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 250 } 251 252 bool IsSplitLongOrDouble() const { 253 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 254 return is_split_long_or_double_; 255 } else { 256 return false; // An optimization for when GPR and FPRs are 64bit. 257 } 258 } 259 260 bool IsParamAReference() const { 261 return GetParamPrimitiveType() == Primitive::kPrimNot; 262 } 263 264 bool IsParamALongOrDouble() const { 265 Primitive::Type type = GetParamPrimitiveType(); 266 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 267 } 268 269 uint64_t ReadSplitLongParam() const { 270 DCHECK(IsSplitLongOrDouble()); 271 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress()); 272 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_); 273 return (low_half & 0xffffffffULL) | (high_half << 32); 274 } 275 276 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 277 // This implementation doesn't support reg-spill area for hard float 278 // ABI targets such as x86_64 and aarch64. So, for those targets whose 279 // 'kQuickSoftFloatAbi' is 'false': 280 // (a) 'stack_args_' should point to the first method's argument 281 // (b) whatever the argument type it is, the 'stack_index_' should 282 // be moved forward along with every visiting. 283 gpr_index_ = 0; 284 fpr_index_ = 0; 285 stack_index_ = 0; 286 if (!is_static_) { // Handle this. 287 cur_type_ = Primitive::kPrimNot; 288 is_split_long_or_double_ = false; 289 Visit(); 290 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) { 291 stack_index_++; 292 } 293 if (kNumQuickGprArgs > 0) { 294 gpr_index_++; 295 } 296 } 297 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 298 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 299 switch (cur_type_) { 300 case Primitive::kPrimNot: 301 case Primitive::kPrimBoolean: 302 case Primitive::kPrimByte: 303 case Primitive::kPrimChar: 304 case Primitive::kPrimShort: 305 case Primitive::kPrimInt: 306 is_split_long_or_double_ = false; 307 Visit(); 308 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 309 stack_index_++; 310 } 311 if (gpr_index_ < kNumQuickGprArgs) { 312 gpr_index_++; 313 } 314 break; 315 case Primitive::kPrimFloat: 316 is_split_long_or_double_ = false; 317 Visit(); 318 if (kQuickSoftFloatAbi) { 319 if (gpr_index_ < kNumQuickGprArgs) { 320 gpr_index_++; 321 } else { 322 stack_index_++; 323 } 324 } else { 325 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 326 fpr_index_++; 327 } 328 stack_index_++; 329 } 330 break; 331 case Primitive::kPrimDouble: 332 case Primitive::kPrimLong: 333 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 334 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 335 ((gpr_index_ + 1) == kNumQuickGprArgs); 336 Visit(); 337 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 338 if (kBytesStackArgLocation == 4) { 339 stack_index_+= 2; 340 } else { 341 CHECK_EQ(kBytesStackArgLocation, 8U); 342 stack_index_++; 343 } 344 } 345 if (gpr_index_ < kNumQuickGprArgs) { 346 gpr_index_++; 347 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 348 if (gpr_index_ < kNumQuickGprArgs) { 349 gpr_index_++; 350 } else if (kQuickSoftFloatAbi) { 351 stack_index_++; 352 } 353 } 354 } 355 } else { 356 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 357 ((fpr_index_ + 1) == kNumQuickFprArgs); 358 Visit(); 359 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 360 fpr_index_++; 361 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 362 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 363 fpr_index_++; 364 } 365 } 366 } 367 if (kBytesStackArgLocation == 4) { 368 stack_index_+= 2; 369 } else { 370 CHECK_EQ(kBytesStackArgLocation, 8U); 371 stack_index_++; 372 } 373 } 374 break; 375 default: 376 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 377 } 378 } 379 } 380 381 private: 382 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, 383 uint32_t shorty_len) { 384 if (kQuickSoftFloatAbi) { 385 CHECK_EQ(kNumQuickFprArgs, 0U); 386 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA)) 387 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */; 388 } else { 389 // For now, there is no reg-spill area for the targets with 390 // hard float ABI. So, the offset pointing to the first method's 391 // parameter ('this' for non-static methods) should be returned. 392 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>. 393 } 394 } 395 396 protected: 397 const bool is_static_; 398 const char* const shorty_; 399 const uint32_t shorty_len_; 400 401 private: 402 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 403 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 404 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 405 uint32_t gpr_index_; // Index into spilled GPRs. 406 uint32_t fpr_index_; // Index into spilled FPRs. 407 uint32_t stack_index_; // Index into arguments on the stack. 408 // The current type of argument during VisitArguments. 409 Primitive::Type cur_type_; 410 // Does a 64bit parameter straddle the register and stack arguments? 411 bool is_split_long_or_double_; 412}; 413 414// Visits arguments on the stack placing them into the shadow frame. 415class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 416 public: 417 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 418 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 419 size_t first_arg_reg) : 420 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 421 422 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 423 424 private: 425 ShadowFrame* const sf_; 426 uint32_t cur_reg_; 427 428 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 429}; 430 431void BuildQuickShadowFrameVisitor::Visit() { 432 Primitive::Type type = GetParamPrimitiveType(); 433 switch (type) { 434 case Primitive::kPrimLong: // Fall-through. 435 case Primitive::kPrimDouble: 436 if (IsSplitLongOrDouble()) { 437 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 438 } else { 439 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 440 } 441 ++cur_reg_; 442 break; 443 case Primitive::kPrimNot: { 444 StackReference<mirror::Object>* stack_ref = 445 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 446 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 447 } 448 break; 449 case Primitive::kPrimBoolean: // Fall-through. 450 case Primitive::kPrimByte: // Fall-through. 451 case Primitive::kPrimChar: // Fall-through. 452 case Primitive::kPrimShort: // Fall-through. 453 case Primitive::kPrimInt: // Fall-through. 454 case Primitive::kPrimFloat: 455 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 456 break; 457 case Primitive::kPrimVoid: 458 LOG(FATAL) << "UNREACHABLE"; 459 break; 460 } 461 ++cur_reg_; 462} 463 464extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 465 StackReference<mirror::ArtMethod>* sp) 466 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 467 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 468 // frame. 469 ScopedQuickEntrypointChecks sqec(self); 470 471 if (method->IsAbstract()) { 472 ThrowAbstractMethodError(method); 473 return 0; 474 } else { 475 DCHECK(!method->IsNative()) << PrettyMethod(method); 476 const char* old_cause = self->StartAssertNoThreadSuspension( 477 "Building interpreter shadow frame"); 478 const DexFile::CodeItem* code_item = method->GetCodeItem(); 479 DCHECK(code_item != nullptr) << PrettyMethod(method); 480 uint16_t num_regs = code_item->registers_size_; 481 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 482 // No last shadow coming from quick. 483 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory)); 484 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 485 uint32_t shorty_len = 0; 486 const char* shorty = method->GetShorty(&shorty_len); 487 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 488 shadow_frame, first_arg_reg); 489 shadow_frame_builder.VisitArguments(); 490 // Push a transition back into managed code onto the linked list in thread. 491 ManagedStack fragment; 492 self->PushManagedStackFragment(&fragment); 493 self->PushShadowFrame(shadow_frame); 494 self->EndAssertNoThreadSuspension(old_cause); 495 496 StackHandleScope<1> hs(self); 497 MethodHelper mh(hs.NewHandle(method)); 498 if (mh.Get()->IsStatic() && !mh.Get()->GetDeclaringClass()->IsInitialized()) { 499 // Ensure static method's class is initialized. 500 StackHandleScope<1> hs(self); 501 Handle<mirror::Class> h_class(hs.NewHandle(mh.Get()->GetDeclaringClass())); 502 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 503 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(mh.Get()); 504 self->PopManagedStackFragment(fragment); 505 return 0; 506 } 507 } 508 JValue result = interpreter::EnterInterpreterFromEntryPoint(self, &mh, code_item, shadow_frame); 509 // Pop transition. 510 self->PopManagedStackFragment(fragment); 511 // No need to restore the args since the method has already been run by the interpreter. 512 return result.GetJ(); 513 } 514} 515 516// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 517// to jobjects. 518class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 519 public: 520 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 521 const char* shorty, uint32_t shorty_len, 522 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 523 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 524 525 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 526 527 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 528 529 private: 530 ScopedObjectAccessUnchecked* const soa_; 531 std::vector<jvalue>* const args_; 532 // References which we must update when exiting in case the GC moved the objects. 533 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 534 535 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 536}; 537 538void BuildQuickArgumentVisitor::Visit() { 539 jvalue val; 540 Primitive::Type type = GetParamPrimitiveType(); 541 switch (type) { 542 case Primitive::kPrimNot: { 543 StackReference<mirror::Object>* stack_ref = 544 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 545 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 546 references_.push_back(std::make_pair(val.l, stack_ref)); 547 break; 548 } 549 case Primitive::kPrimLong: // Fall-through. 550 case Primitive::kPrimDouble: 551 if (IsSplitLongOrDouble()) { 552 val.j = ReadSplitLongParam(); 553 } else { 554 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 555 } 556 break; 557 case Primitive::kPrimBoolean: // Fall-through. 558 case Primitive::kPrimByte: // Fall-through. 559 case Primitive::kPrimChar: // Fall-through. 560 case Primitive::kPrimShort: // Fall-through. 561 case Primitive::kPrimInt: // Fall-through. 562 case Primitive::kPrimFloat: 563 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 564 break; 565 case Primitive::kPrimVoid: 566 LOG(FATAL) << "UNREACHABLE"; 567 val.j = 0; 568 break; 569 } 570 args_->push_back(val); 571} 572 573void BuildQuickArgumentVisitor::FixupReferences() { 574 // Fixup any references which may have changed. 575 for (const auto& pair : references_) { 576 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 577 soa_->Env()->DeleteLocalRef(pair.first); 578 } 579} 580 581// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 582// which is responsible for recording callee save registers. We explicitly place into jobjects the 583// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 584// field within the proxy object, which will box the primitive arguments and deal with error cases. 585extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 586 mirror::Object* receiver, 587 Thread* self, StackReference<mirror::ArtMethod>* sp) 588 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 589 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 590 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 591 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 592 const char* old_cause = 593 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 594 // Register the top of the managed stack, making stack crawlable. 595 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 596 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 597 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 598 << PrettyMethod(proxy_method); 599 self->VerifyStack(); 600 // Start new JNI local reference state. 601 JNIEnvExt* env = self->GetJniEnv(); 602 ScopedObjectAccessUnchecked soa(env); 603 ScopedJniEnvLocalRefState env_state(env); 604 // Create local ref. copies of proxy method and the receiver. 605 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 606 607 // Placing arguments into args vector and remove the receiver. 608 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(); 609 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 610 << PrettyMethod(non_proxy_method); 611 std::vector<jvalue> args; 612 uint32_t shorty_len = 0; 613 const char* shorty = proxy_method->GetShorty(&shorty_len); 614 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 615 616 local_ref_visitor.VisitArguments(); 617 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 618 args.erase(args.begin()); 619 620 // Convert proxy method into expected interface method. 621 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 622 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); 623 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 624 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 625 626 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 627 // that performs allocations. 628 self->EndAssertNoThreadSuspension(old_cause); 629 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 630 // Restore references which might have moved. 631 local_ref_visitor.FixupReferences(); 632 return result.GetJ(); 633} 634 635// Read object references held in arguments from quick frames and place in a JNI local references, 636// so they don't get garbage collected. 637class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 638 public: 639 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 640 const char* shorty, uint32_t shorty_len, 641 ScopedObjectAccessUnchecked* soa) : 642 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 643 644 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 645 646 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 647 648 private: 649 ScopedObjectAccessUnchecked* const soa_; 650 // References which we must update when exiting in case the GC moved the objects. 651 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 652 653 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 654}; 655 656void RememberForGcArgumentVisitor::Visit() { 657 if (IsParamAReference()) { 658 StackReference<mirror::Object>* stack_ref = 659 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 660 jobject reference = 661 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 662 references_.push_back(std::make_pair(reference, stack_ref)); 663 } 664} 665 666void RememberForGcArgumentVisitor::FixupReferences() { 667 // Fixup any references which may have changed. 668 for (const auto& pair : references_) { 669 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 670 soa_->Env()->DeleteLocalRef(pair.first); 671 } 672} 673 674// Lazily resolve a method for quick. Called by stub code. 675extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 676 mirror::Object* receiver, 677 Thread* self, 678 StackReference<mirror::ArtMethod>* sp) 679 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 680 ScopedQuickEntrypointChecks sqec(self); 681 // Start new JNI local reference state 682 JNIEnvExt* env = self->GetJniEnv(); 683 ScopedObjectAccessUnchecked soa(env); 684 ScopedJniEnvLocalRefState env_state(env); 685 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 686 687 // Compute details about the called method (avoid GCs) 688 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 689 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 690 InvokeType invoke_type; 691 const DexFile* dex_file; 692 uint32_t dex_method_idx; 693 if (called->IsRuntimeMethod()) { 694 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 695 const DexFile::CodeItem* code; 696 dex_file = caller->GetDexFile(); 697 code = caller->GetCodeItem(); 698 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 699 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 700 Instruction::Code instr_code = instr->Opcode(); 701 bool is_range; 702 switch (instr_code) { 703 case Instruction::INVOKE_DIRECT: 704 invoke_type = kDirect; 705 is_range = false; 706 break; 707 case Instruction::INVOKE_DIRECT_RANGE: 708 invoke_type = kDirect; 709 is_range = true; 710 break; 711 case Instruction::INVOKE_STATIC: 712 invoke_type = kStatic; 713 is_range = false; 714 break; 715 case Instruction::INVOKE_STATIC_RANGE: 716 invoke_type = kStatic; 717 is_range = true; 718 break; 719 case Instruction::INVOKE_SUPER: 720 invoke_type = kSuper; 721 is_range = false; 722 break; 723 case Instruction::INVOKE_SUPER_RANGE: 724 invoke_type = kSuper; 725 is_range = true; 726 break; 727 case Instruction::INVOKE_VIRTUAL: 728 invoke_type = kVirtual; 729 is_range = false; 730 break; 731 case Instruction::INVOKE_VIRTUAL_RANGE: 732 invoke_type = kVirtual; 733 is_range = true; 734 break; 735 case Instruction::INVOKE_INTERFACE: 736 invoke_type = kInterface; 737 is_range = false; 738 break; 739 case Instruction::INVOKE_INTERFACE_RANGE: 740 invoke_type = kInterface; 741 is_range = true; 742 break; 743 default: 744 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); 745 // Avoid used uninitialized warnings. 746 invoke_type = kDirect; 747 is_range = false; 748 } 749 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 750 } else { 751 invoke_type = kStatic; 752 dex_file = called->GetDexFile(); 753 dex_method_idx = called->GetDexMethodIndex(); 754 } 755 uint32_t shorty_len; 756 const char* shorty = 757 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 758 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 759 visitor.VisitArguments(); 760 self->EndAssertNoThreadSuspension(old_cause); 761 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 762 // Resolve method filling in dex cache. 763 if (UNLIKELY(called->IsRuntimeMethod())) { 764 StackHandleScope<1> hs(self); 765 mirror::Object* dummy = nullptr; 766 HandleWrapper<mirror::Object> h_receiver( 767 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 768 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type); 769 } 770 const void* code = NULL; 771 if (LIKELY(!self->IsExceptionPending())) { 772 // Incompatible class change should have been handled in resolve method. 773 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 774 << PrettyMethod(called) << " " << invoke_type; 775 if (virtual_or_interface) { 776 // Refine called method based on receiver. 777 CHECK(receiver != nullptr) << invoke_type; 778 779 mirror::ArtMethod* orig_called = called; 780 if (invoke_type == kVirtual) { 781 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 782 } else { 783 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 784 } 785 786 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 787 << PrettyTypeOf(receiver) << " " 788 << invoke_type << " " << orig_called->GetVtableIndex(); 789 790 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 791 // of the sharpened method. 792 if (called->HasSameDexCacheResolvedMethods(caller)) { 793 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called); 794 } else { 795 // Calling from one dex file to another, need to compute the method index appropriate to 796 // the caller's dex file. Since we get here only if the original called was a runtime 797 // method, we've got the correct dex_file and a dex_method_idx from above. 798 DCHECK_EQ(caller->GetDexFile(), dex_file); 799 StackHandleScope<1> hs(self); 800 MethodHelper mh(hs.NewHandle(called)); 801 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); 802 if (method_index != DexFile::kDexNoIndex) { 803 caller->SetDexCacheResolvedMethod(method_index, called); 804 } 805 } 806 } 807 // Ensure that the called method's class is initialized. 808 StackHandleScope<1> hs(soa.Self()); 809 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 810 linker->EnsureInitialized(soa.Self(), called_class, true, true); 811 if (LIKELY(called_class->IsInitialized())) { 812 code = called->GetEntryPointFromQuickCompiledCode(); 813 } else if (called_class->IsInitializing()) { 814 if (invoke_type == kStatic) { 815 // Class is still initializing, go to oat and grab code (trampoline must be left in place 816 // until class is initialized to stop races between threads). 817 code = linker->GetQuickOatCodeFor(called); 818 } else { 819 // No trampoline for non-static methods. 820 code = called->GetEntryPointFromQuickCompiledCode(); 821 } 822 } else { 823 DCHECK(called_class->IsErroneous()); 824 } 825 } 826 CHECK_EQ(code == NULL, self->IsExceptionPending()); 827 // Fixup any locally saved objects may have moved during a GC. 828 visitor.FixupReferences(); 829 // Place called method in callee-save frame to be placed as first argument to quick method. 830 sp->Assign(called); 831 return code; 832} 833 834/* 835 * This class uses a couple of observations to unite the different calling conventions through 836 * a few constants. 837 * 838 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 839 * possible alignment. 840 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 841 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 842 * when we have to split things 843 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 844 * and we can use Int handling directly. 845 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 846 * necessary when widening. Also, widening of Ints will take place implicitly, and the 847 * extension should be compatible with Aarch64, which mandates copying the available bits 848 * into LSB and leaving the rest unspecified. 849 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 850 * the stack. 851 * 6) There is only little endian. 852 * 853 * 854 * Actual work is supposed to be done in a delegate of the template type. The interface is as 855 * follows: 856 * 857 * void PushGpr(uintptr_t): Add a value for the next GPR 858 * 859 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 860 * padding, that is, think the architecture is 32b and aligns 64b. 861 * 862 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 863 * split this if necessary. The current state will have aligned, if 864 * necessary. 865 * 866 * void PushStack(uintptr_t): Push a value to the stack. 867 * 868 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 869 * as this might be important for null initialization. 870 * Must return the jobject, that is, the reference to the 871 * entry in the HandleScope (nullptr if necessary). 872 * 873 */ 874template<class T> class BuildNativeCallFrameStateMachine { 875 public: 876#if defined(__arm__) 877 // TODO: These are all dummy values! 878 static constexpr bool kNativeSoftFloatAbi = true; 879 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 880 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 881 882 static constexpr size_t kRegistersNeededForLong = 2; 883 static constexpr size_t kRegistersNeededForDouble = 2; 884 static constexpr bool kMultiRegistersAligned = true; 885 static constexpr bool kMultiRegistersWidened = false; 886 static constexpr bool kAlignLongOnStack = true; 887 static constexpr bool kAlignDoubleOnStack = true; 888#elif defined(__aarch64__) 889 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 890 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 891 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 892 893 static constexpr size_t kRegistersNeededForLong = 1; 894 static constexpr size_t kRegistersNeededForDouble = 1; 895 static constexpr bool kMultiRegistersAligned = false; 896 static constexpr bool kMultiRegistersWidened = false; 897 static constexpr bool kAlignLongOnStack = false; 898 static constexpr bool kAlignDoubleOnStack = false; 899#elif defined(__mips__) 900 // TODO: These are all dummy values! 901 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 902 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 903 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 904 905 static constexpr size_t kRegistersNeededForLong = 2; 906 static constexpr size_t kRegistersNeededForDouble = 2; 907 static constexpr bool kMultiRegistersAligned = true; 908 static constexpr bool kMultiRegistersWidened = true; 909 static constexpr bool kAlignLongOnStack = false; 910 static constexpr bool kAlignDoubleOnStack = false; 911#elif defined(__i386__) 912 // TODO: Check these! 913 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 914 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 915 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 916 917 static constexpr size_t kRegistersNeededForLong = 2; 918 static constexpr size_t kRegistersNeededForDouble = 2; 919 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 920 static constexpr bool kMultiRegistersWidened = false; 921 static constexpr bool kAlignLongOnStack = false; 922 static constexpr bool kAlignDoubleOnStack = false; 923#elif defined(__x86_64__) 924 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 925 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 926 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 927 928 static constexpr size_t kRegistersNeededForLong = 1; 929 static constexpr size_t kRegistersNeededForDouble = 1; 930 static constexpr bool kMultiRegistersAligned = false; 931 static constexpr bool kMultiRegistersWidened = false; 932 static constexpr bool kAlignLongOnStack = false; 933 static constexpr bool kAlignDoubleOnStack = false; 934#else 935#error "Unsupported architecture" 936#endif 937 938 public: 939 explicit BuildNativeCallFrameStateMachine(T* delegate) 940 : gpr_index_(kNumNativeGprArgs), 941 fpr_index_(kNumNativeFprArgs), 942 stack_entries_(0), 943 delegate_(delegate) { 944 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 945 // the next register is even; counting down is just to make the compiler happy... 946 CHECK_EQ(kNumNativeGprArgs % 2, 0U); 947 CHECK_EQ(kNumNativeFprArgs % 2, 0U); 948 } 949 950 virtual ~BuildNativeCallFrameStateMachine() {} 951 952 bool HavePointerGpr() const { 953 return gpr_index_ > 0; 954 } 955 956 void AdvancePointer(const void* val) { 957 if (HavePointerGpr()) { 958 gpr_index_--; 959 PushGpr(reinterpret_cast<uintptr_t>(val)); 960 } else { 961 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 962 PushStack(reinterpret_cast<uintptr_t>(val)); 963 gpr_index_ = 0; 964 } 965 } 966 967 bool HaveHandleScopeGpr() const { 968 return gpr_index_ > 0; 969 } 970 971 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 972 uintptr_t handle = PushHandle(ptr); 973 if (HaveHandleScopeGpr()) { 974 gpr_index_--; 975 PushGpr(handle); 976 } else { 977 stack_entries_++; 978 PushStack(handle); 979 gpr_index_ = 0; 980 } 981 } 982 983 bool HaveIntGpr() const { 984 return gpr_index_ > 0; 985 } 986 987 void AdvanceInt(uint32_t val) { 988 if (HaveIntGpr()) { 989 gpr_index_--; 990 PushGpr(val); 991 } else { 992 stack_entries_++; 993 PushStack(val); 994 gpr_index_ = 0; 995 } 996 } 997 998 bool HaveLongGpr() const { 999 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1000 } 1001 1002 bool LongGprNeedsPadding() const { 1003 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1004 kAlignLongOnStack && // and when it needs alignment 1005 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1006 } 1007 1008 bool LongStackNeedsPadding() const { 1009 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1010 kAlignLongOnStack && // and when it needs 8B alignment 1011 (stack_entries_ & 1) == 1; // counter is odd 1012 } 1013 1014 void AdvanceLong(uint64_t val) { 1015 if (HaveLongGpr()) { 1016 if (LongGprNeedsPadding()) { 1017 PushGpr(0); 1018 gpr_index_--; 1019 } 1020 if (kRegistersNeededForLong == 1) { 1021 PushGpr(static_cast<uintptr_t>(val)); 1022 } else { 1023 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1024 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1025 } 1026 gpr_index_ -= kRegistersNeededForLong; 1027 } else { 1028 if (LongStackNeedsPadding()) { 1029 PushStack(0); 1030 stack_entries_++; 1031 } 1032 if (kRegistersNeededForLong == 1) { 1033 PushStack(static_cast<uintptr_t>(val)); 1034 stack_entries_++; 1035 } else { 1036 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1037 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1038 stack_entries_ += 2; 1039 } 1040 gpr_index_ = 0; 1041 } 1042 } 1043 1044 bool HaveFloatFpr() const { 1045 return fpr_index_ > 0; 1046 } 1047 1048 void AdvanceFloat(float val) { 1049 if (kNativeSoftFloatAbi) { 1050 AdvanceInt(bit_cast<float, uint32_t>(val)); 1051 } else { 1052 if (HaveFloatFpr()) { 1053 fpr_index_--; 1054 if (kRegistersNeededForDouble == 1) { 1055 if (kMultiRegistersWidened) { 1056 PushFpr8(bit_cast<double, uint64_t>(val)); 1057 } else { 1058 // No widening, just use the bits. 1059 PushFpr8(bit_cast<float, uint64_t>(val)); 1060 } 1061 } else { 1062 PushFpr4(val); 1063 } 1064 } else { 1065 stack_entries_++; 1066 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { 1067 // Need to widen before storing: Note the "double" in the template instantiation. 1068 // Note: We need to jump through those hoops to make the compiler happy. 1069 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1070 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val))); 1071 } else { 1072 PushStack(bit_cast<float, uintptr_t>(val)); 1073 } 1074 fpr_index_ = 0; 1075 } 1076 } 1077 } 1078 1079 bool HaveDoubleFpr() const { 1080 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1081 } 1082 1083 bool DoubleFprNeedsPadding() const { 1084 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1085 kAlignDoubleOnStack && // and when it needs alignment 1086 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1087 } 1088 1089 bool DoubleStackNeedsPadding() const { 1090 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1091 kAlignDoubleOnStack && // and when it needs 8B alignment 1092 (stack_entries_ & 1) == 1; // counter is odd 1093 } 1094 1095 void AdvanceDouble(uint64_t val) { 1096 if (kNativeSoftFloatAbi) { 1097 AdvanceLong(val); 1098 } else { 1099 if (HaveDoubleFpr()) { 1100 if (DoubleFprNeedsPadding()) { 1101 PushFpr4(0); 1102 fpr_index_--; 1103 } 1104 PushFpr8(val); 1105 fpr_index_ -= kRegistersNeededForDouble; 1106 } else { 1107 if (DoubleStackNeedsPadding()) { 1108 PushStack(0); 1109 stack_entries_++; 1110 } 1111 if (kRegistersNeededForDouble == 1) { 1112 PushStack(static_cast<uintptr_t>(val)); 1113 stack_entries_++; 1114 } else { 1115 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1116 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1117 stack_entries_ += 2; 1118 } 1119 fpr_index_ = 0; 1120 } 1121 } 1122 } 1123 1124 uint32_t GetStackEntries() const { 1125 return stack_entries_; 1126 } 1127 1128 uint32_t GetNumberOfUsedGprs() const { 1129 return kNumNativeGprArgs - gpr_index_; 1130 } 1131 1132 uint32_t GetNumberOfUsedFprs() const { 1133 return kNumNativeFprArgs - fpr_index_; 1134 } 1135 1136 private: 1137 void PushGpr(uintptr_t val) { 1138 delegate_->PushGpr(val); 1139 } 1140 void PushFpr4(float val) { 1141 delegate_->PushFpr4(val); 1142 } 1143 void PushFpr8(uint64_t val) { 1144 delegate_->PushFpr8(val); 1145 } 1146 void PushStack(uintptr_t val) { 1147 delegate_->PushStack(val); 1148 } 1149 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1150 return delegate_->PushHandle(ref); 1151 } 1152 1153 uint32_t gpr_index_; // Number of free GPRs 1154 uint32_t fpr_index_; // Number of free FPRs 1155 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1156 // extended 1157 T* const delegate_; // What Push implementation gets called 1158}; 1159 1160// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1161// in subclasses. 1162// 1163// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1164// them with handles. 1165class ComputeNativeCallFrameSize { 1166 public: 1167 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1168 1169 virtual ~ComputeNativeCallFrameSize() {} 1170 1171 uint32_t GetStackSize() const { 1172 return num_stack_entries_ * sizeof(uintptr_t); 1173 } 1174 1175 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1176 sp8 -= GetStackSize(); 1177 // Align by kStackAlignment. 1178 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1179 return sp8; 1180 } 1181 1182 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1183 const { 1184 // Assumption is OK right now, as we have soft-float arm 1185 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1186 sp8 -= fregs * sizeof(uintptr_t); 1187 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1188 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1189 sp8 -= iregs * sizeof(uintptr_t); 1190 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1191 return sp8; 1192 } 1193 1194 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1195 uint32_t** start_fpr) const { 1196 // Native call stack. 1197 sp8 = LayoutCallStack(sp8); 1198 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1199 1200 // Put fprs and gprs below. 1201 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1202 1203 // Return the new bottom. 1204 return sp8; 1205 } 1206 1207 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1208 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {} 1209 1210 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1211 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1212 1213 WalkHeader(&sm); 1214 1215 for (uint32_t i = 1; i < shorty_len; ++i) { 1216 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1217 switch (cur_type_) { 1218 case Primitive::kPrimNot: 1219 // TODO: fix abuse of mirror types. 1220 sm.AdvanceHandleScope( 1221 reinterpret_cast<mirror::Object*>(0x12345678)); 1222 break; 1223 1224 case Primitive::kPrimBoolean: 1225 case Primitive::kPrimByte: 1226 case Primitive::kPrimChar: 1227 case Primitive::kPrimShort: 1228 case Primitive::kPrimInt: 1229 sm.AdvanceInt(0); 1230 break; 1231 case Primitive::kPrimFloat: 1232 sm.AdvanceFloat(0); 1233 break; 1234 case Primitive::kPrimDouble: 1235 sm.AdvanceDouble(0); 1236 break; 1237 case Primitive::kPrimLong: 1238 sm.AdvanceLong(0); 1239 break; 1240 default: 1241 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1242 } 1243 } 1244 1245 num_stack_entries_ = sm.GetStackEntries(); 1246 } 1247 1248 void PushGpr(uintptr_t /* val */) { 1249 // not optimizing registers, yet 1250 } 1251 1252 void PushFpr4(float /* val */) { 1253 // not optimizing registers, yet 1254 } 1255 1256 void PushFpr8(uint64_t /* val */) { 1257 // not optimizing registers, yet 1258 } 1259 1260 void PushStack(uintptr_t /* val */) { 1261 // counting is already done in the superclass 1262 } 1263 1264 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1265 return reinterpret_cast<uintptr_t>(nullptr); 1266 } 1267 1268 protected: 1269 uint32_t num_stack_entries_; 1270}; 1271 1272class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1273 public: 1274 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1275 1276 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1277 // is at *m = sp. Will update to point to the bottom of the save frame. 1278 // 1279 // Note: assumes ComputeAll() has been run before. 1280 void LayoutCalleeSaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1281 HandleScope** handle_scope) 1282 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1283 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1284 1285 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1286 1287 // First, fix up the layout of the callee-save frame. 1288 // We have to squeeze in the HandleScope, and relocate the method pointer. 1289 1290 // "Free" the slot for the method. 1291 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1292 1293 // Under the callee saves put handle scope and new method stack reference. 1294 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1295 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1296 1297 sp8 -= scope_and_method; 1298 // Align by kStackAlignment. 1299 sp8 = reinterpret_cast<uint8_t*>(RoundDown( 1300 reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1301 1302 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1303 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1304 num_handle_scope_references_); 1305 1306 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1307 uint8_t* method_pointer = sp8; 1308 StackReference<mirror::ArtMethod>* new_method_ref = 1309 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1310 new_method_ref->Assign(method); 1311 *m = new_method_ref; 1312 } 1313 1314 // Adds space for the cookie. Note: may leave stack unaligned. 1315 void LayoutCookie(uint8_t** sp) const { 1316 // Reference cookie and padding 1317 *sp -= 8; 1318 } 1319 1320 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1321 // Returns the new bottom. Note: this may be unaligned. 1322 uint8_t* LayoutJNISaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1323 HandleScope** handle_scope) 1324 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1325 // First, fix up the layout of the callee-save frame. 1326 // We have to squeeze in the HandleScope, and relocate the method pointer. 1327 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1328 1329 // The bottom of the callee-save frame is now where the method is, *m. 1330 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1331 1332 // Add space for cookie. 1333 LayoutCookie(&sp8); 1334 1335 return sp8; 1336 } 1337 1338 // WARNING: After this, *sp won't be pointing to the method anymore! 1339 uint8_t* ComputeLayout(Thread* self, StackReference<mirror::ArtMethod>** m, 1340 bool is_static, const char* shorty, uint32_t shorty_len, 1341 HandleScope** handle_scope, 1342 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) 1343 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1344 Walk(shorty, shorty_len); 1345 1346 // JNI part. 1347 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1348 1349 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1350 1351 // Return the new bottom. 1352 return sp8; 1353 } 1354 1355 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1356 1357 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1358 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1359 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1360 1361 private: 1362 uint32_t num_handle_scope_references_; 1363}; 1364 1365uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1366 num_handle_scope_references_++; 1367 return reinterpret_cast<uintptr_t>(nullptr); 1368} 1369 1370void ComputeGenericJniFrameSize::WalkHeader( 1371 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1372 // JNIEnv 1373 sm->AdvancePointer(nullptr); 1374 1375 // Class object or this as first argument 1376 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1377} 1378 1379// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1380// the template requirements of BuildGenericJniFrameStateMachine. 1381class FillNativeCall { 1382 public: 1383 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1384 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1385 1386 virtual ~FillNativeCall() {} 1387 1388 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1389 cur_gpr_reg_ = gpr_regs; 1390 cur_fpr_reg_ = fpr_regs; 1391 cur_stack_arg_ = stack_args; 1392 } 1393 1394 void PushGpr(uintptr_t val) { 1395 *cur_gpr_reg_ = val; 1396 cur_gpr_reg_++; 1397 } 1398 1399 void PushFpr4(float val) { 1400 *cur_fpr_reg_ = val; 1401 cur_fpr_reg_++; 1402 } 1403 1404 void PushFpr8(uint64_t val) { 1405 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1406 *tmp = val; 1407 cur_fpr_reg_ += 2; 1408 } 1409 1410 void PushStack(uintptr_t val) { 1411 *cur_stack_arg_ = val; 1412 cur_stack_arg_++; 1413 } 1414 1415 virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1416 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1417 return 0U; 1418 } 1419 1420 private: 1421 uintptr_t* cur_gpr_reg_; 1422 uint32_t* cur_fpr_reg_; 1423 uintptr_t* cur_stack_arg_; 1424}; 1425 1426// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1427// of transitioning into native code. 1428class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1429 public: 1430 BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len, 1431 StackReference<mirror::ArtMethod>** sp) 1432 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1433 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1434 ComputeGenericJniFrameSize fsc; 1435 uintptr_t* start_gpr_reg; 1436 uint32_t* start_fpr_reg; 1437 uintptr_t* start_stack_arg; 1438 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, is_static, shorty, shorty_len, 1439 &handle_scope_, 1440 &start_stack_arg, 1441 &start_gpr_reg, &start_fpr_reg); 1442 1443 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1444 1445 // jni environment is always first argument 1446 sm_.AdvancePointer(self->GetJniEnv()); 1447 1448 if (is_static) { 1449 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1450 } 1451 } 1452 1453 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1454 1455 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1456 1457 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1458 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1459 return handle_scope_->GetHandle(0).GetReference(); 1460 } 1461 1462 jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1463 return handle_scope_->GetHandle(0).ToJObject(); 1464 } 1465 1466 void* GetBottomOfUsedArea() const { 1467 return bottom_of_used_area_; 1468 } 1469 1470 private: 1471 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1472 class FillJniCall FINAL : public FillNativeCall { 1473 public: 1474 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1475 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1476 handle_scope_(handle_scope), cur_entry_(0) {} 1477 1478 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1479 1480 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1481 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1482 handle_scope_ = scope; 1483 cur_entry_ = 0U; 1484 } 1485 1486 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1487 // Initialize padding entries. 1488 size_t expected_slots = handle_scope_->NumberOfReferences(); 1489 while (cur_entry_ < expected_slots) { 1490 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1491 } 1492 DCHECK_NE(cur_entry_, 0U); 1493 } 1494 1495 private: 1496 HandleScope* handle_scope_; 1497 size_t cur_entry_; 1498 }; 1499 1500 HandleScope* handle_scope_; 1501 FillJniCall jni_call_; 1502 void* bottom_of_used_area_; 1503 1504 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1505 1506 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1507}; 1508 1509uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1510 uintptr_t tmp; 1511 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1512 h.Assign(ref); 1513 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1514 cur_entry_++; 1515 return tmp; 1516} 1517 1518void BuildGenericJniFrameVisitor::Visit() { 1519 Primitive::Type type = GetParamPrimitiveType(); 1520 switch (type) { 1521 case Primitive::kPrimLong: { 1522 jlong long_arg; 1523 if (IsSplitLongOrDouble()) { 1524 long_arg = ReadSplitLongParam(); 1525 } else { 1526 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1527 } 1528 sm_.AdvanceLong(long_arg); 1529 break; 1530 } 1531 case Primitive::kPrimDouble: { 1532 uint64_t double_arg; 1533 if (IsSplitLongOrDouble()) { 1534 // Read into union so that we don't case to a double. 1535 double_arg = ReadSplitLongParam(); 1536 } else { 1537 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1538 } 1539 sm_.AdvanceDouble(double_arg); 1540 break; 1541 } 1542 case Primitive::kPrimNot: { 1543 StackReference<mirror::Object>* stack_ref = 1544 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1545 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1546 break; 1547 } 1548 case Primitive::kPrimFloat: 1549 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1550 break; 1551 case Primitive::kPrimBoolean: // Fall-through. 1552 case Primitive::kPrimByte: // Fall-through. 1553 case Primitive::kPrimChar: // Fall-through. 1554 case Primitive::kPrimShort: // Fall-through. 1555 case Primitive::kPrimInt: // Fall-through. 1556 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1557 break; 1558 case Primitive::kPrimVoid: 1559 LOG(FATAL) << "UNREACHABLE"; 1560 break; 1561 } 1562} 1563 1564void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1565 // Clear out rest of the scope. 1566 jni_call_.ResetRemainingScopeSlots(); 1567 // Install HandleScope. 1568 self->PushHandleScope(handle_scope_); 1569} 1570 1571#if defined(__arm__) || defined(__aarch64__) 1572extern "C" void* artFindNativeMethod(); 1573#else 1574extern "C" void* artFindNativeMethod(Thread* self); 1575#endif 1576 1577uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1578 if (lock != nullptr) { 1579 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1580 } else { 1581 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1582 } 1583} 1584 1585void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1586 if (lock != nullptr) { 1587 JniMethodEndSynchronized(cookie, lock, self); 1588 } else { 1589 JniMethodEnd(cookie, self); 1590 } 1591} 1592 1593/* 1594 * Initializes an alloca region assumed to be directly below sp for a native call: 1595 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1596 * The final element on the stack is a pointer to the native code. 1597 * 1598 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1599 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1600 * 1601 * The return of this function denotes: 1602 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1603 * 2) An error, if the value is negative. 1604 */ 1605extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, 1606 StackReference<mirror::ArtMethod>* sp) 1607 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1608 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1609 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1610 uint32_t shorty_len = 0; 1611 const char* shorty = called->GetShorty(&shorty_len); 1612 1613 // Run the visitor and update sp. 1614 BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp); 1615 visitor.VisitArguments(); 1616 visitor.FinalizeHandleScope(self); 1617 1618 // Fix up managed-stack things in Thread. 1619 self->SetTopOfStack(sp); 1620 1621 self->VerifyStack(); 1622 1623 // Start JNI, save the cookie. 1624 uint32_t cookie; 1625 if (called->IsSynchronized()) { 1626 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1627 if (self->IsExceptionPending()) { 1628 self->PopHandleScope(); 1629 // A negative value denotes an error. 1630 return GetTwoWordFailureValue(); 1631 } 1632 } else { 1633 cookie = JniMethodStart(self); 1634 } 1635 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1636 *(sp32 - 1) = cookie; 1637 1638 // Retrieve the stored native code. 1639 const void* nativeCode = called->GetNativeMethod(); 1640 1641 // There are two cases for the content of nativeCode: 1642 // 1) Pointer to the native function. 1643 // 2) Pointer to the trampoline for native code binding. 1644 // In the second case, we need to execute the binding and continue with the actual native function 1645 // pointer. 1646 DCHECK(nativeCode != nullptr); 1647 if (nativeCode == GetJniDlsymLookupStub()) { 1648#if defined(__arm__) || defined(__aarch64__) 1649 nativeCode = artFindNativeMethod(); 1650#else 1651 nativeCode = artFindNativeMethod(self); 1652#endif 1653 1654 if (nativeCode == nullptr) { 1655 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1656 1657 // End JNI, as the assembly will move to deliver the exception. 1658 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1659 if (shorty[0] == 'L') { 1660 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1661 } else { 1662 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1663 } 1664 1665 return GetTwoWordFailureValue(); 1666 } 1667 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1668 } 1669 1670 // Return native code addr(lo) and bottom of alloca address(hi). 1671 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1672 reinterpret_cast<uintptr_t>(nativeCode)); 1673} 1674 1675/* 1676 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1677 * unlocking. 1678 */ 1679extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1680 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1681 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame(); 1682 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1683 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1684 uint32_t cookie = *(sp32 - 1); 1685 1686 jobject lock = nullptr; 1687 if (called->IsSynchronized()) { 1688 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1689 + sizeof(StackReference<mirror::ArtMethod>)); 1690 lock = table->GetHandle(0).ToJObject(); 1691 } 1692 1693 char return_shorty_char = called->GetShorty()[0]; 1694 1695 if (return_shorty_char == 'L') { 1696 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1697 } else { 1698 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1699 1700 switch (return_shorty_char) { 1701 case 'F': { 1702 if (kRuntimeISA == kX86) { 1703 // Convert back the result to float. 1704 double d = bit_cast<uint64_t, double>(result_f); 1705 return bit_cast<float, uint32_t>(static_cast<float>(d)); 1706 } else { 1707 return result_f; 1708 } 1709 } 1710 case 'D': 1711 return result_f; 1712 case 'Z': 1713 return result.z; 1714 case 'B': 1715 return result.b; 1716 case 'C': 1717 return result.c; 1718 case 'S': 1719 return result.s; 1720 case 'I': 1721 return result.i; 1722 case 'J': 1723 return result.j; 1724 case 'V': 1725 return 0; 1726 default: 1727 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1728 return 0; 1729 } 1730 } 1731} 1732 1733// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1734// for the method pointer. 1735// 1736// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1737// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations). 1738 1739template<InvokeType type, bool access_check> 1740static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1741 mirror::ArtMethod* caller_method, 1742 Thread* self, StackReference<mirror::ArtMethod>* sp); 1743 1744template<InvokeType type, bool access_check> 1745static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1746 mirror::ArtMethod* caller_method, 1747 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1748 ScopedQuickEntrypointChecks sqec(self); 1749 DCHECK_EQ(sp->AsMirrorPtr(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); 1750 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1751 type); 1752 if (UNLIKELY(method == nullptr)) { 1753 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1754 uint32_t shorty_len; 1755 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1756 { 1757 // Remember the args in case a GC happens in FindMethodFromCode. 1758 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1759 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1760 visitor.VisitArguments(); 1761 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1762 self); 1763 visitor.FixupReferences(); 1764 } 1765 1766 if (UNLIKELY(method == NULL)) { 1767 CHECK(self->IsExceptionPending()); 1768 return GetTwoWordFailureValue(); // Failure. 1769 } 1770 } 1771 DCHECK(!self->IsExceptionPending()); 1772 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1773 1774 // When we return, the caller will branch to this address, so it had better not be 0! 1775 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1776 << " location: " 1777 << method->GetDexFile()->GetLocation(); 1778 1779 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1780 reinterpret_cast<uintptr_t>(method)); 1781} 1782 1783// Explicit artInvokeCommon template function declarations to please analysis tool. 1784#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1785 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1786 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1787 mirror::Object* this_object, \ 1788 mirror::ArtMethod* caller_method, \ 1789 Thread* self, \ 1790 StackReference<mirror::ArtMethod>* sp) \ 1791 1792EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1793EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1794EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1795EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1796EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1797EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1798EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1799EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1800EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1801EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1802#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1803 1804// See comments in runtime_support_asm.S 1805extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 1806 uint32_t method_idx, mirror::Object* this_object, 1807 mirror::ArtMethod* caller_method, Thread* self, 1808 StackReference<mirror::ArtMethod>* sp) 1809 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1810 return artInvokeCommon<kInterface, true>(method_idx, this_object, 1811 caller_method, self, sp); 1812} 1813 1814extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 1815 uint32_t method_idx, mirror::Object* this_object, 1816 mirror::ArtMethod* caller_method, Thread* self, 1817 StackReference<mirror::ArtMethod>* sp) 1818 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1819 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, 1820 self, sp); 1821} 1822 1823extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 1824 uint32_t method_idx, mirror::Object* this_object, 1825 mirror::ArtMethod* caller_method, Thread* self, 1826 StackReference<mirror::ArtMethod>* sp) 1827 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1828 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, 1829 self, sp); 1830} 1831 1832extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 1833 uint32_t method_idx, mirror::Object* this_object, 1834 mirror::ArtMethod* caller_method, Thread* self, 1835 StackReference<mirror::ArtMethod>* sp) 1836 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1837 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, 1838 self, sp); 1839} 1840 1841extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 1842 uint32_t method_idx, mirror::Object* this_object, 1843 mirror::ArtMethod* caller_method, Thread* self, 1844 StackReference<mirror::ArtMethod>* sp) 1845 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1846 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, 1847 self, sp); 1848} 1849 1850// Determine target of interface dispatch. This object is known non-null. 1851extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 1852 mirror::Object* this_object, 1853 mirror::ArtMethod* caller_method, 1854 Thread* self, 1855 StackReference<mirror::ArtMethod>* sp) 1856 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1857 ScopedQuickEntrypointChecks sqec(self); 1858 mirror::ArtMethod* method; 1859 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 1860 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 1861 if (UNLIKELY(method == NULL)) { 1862 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 1863 caller_method); 1864 return GetTwoWordFailureValue(); // Failure. 1865 } 1866 } else { 1867 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 1868 1869 // Find the caller PC. 1870 constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs); 1871 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset); 1872 1873 // Map the caller PC to a dex PC. 1874 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 1875 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 1876 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1877 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1878 Instruction::Code instr_code = instr->Opcode(); 1879 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 1880 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 1881 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); 1882 uint32_t dex_method_idx; 1883 if (instr_code == Instruction::INVOKE_INTERFACE) { 1884 dex_method_idx = instr->VRegB_35c(); 1885 } else { 1886 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 1887 dex_method_idx = instr->VRegB_3rc(); 1888 } 1889 1890 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 1891 ->GetDexFile(); 1892 uint32_t shorty_len; 1893 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 1894 &shorty_len); 1895 { 1896 // Remember the args in case a GC happens in FindMethodFromCode. 1897 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1898 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 1899 visitor.VisitArguments(); 1900 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 1901 self); 1902 visitor.FixupReferences(); 1903 } 1904 1905 if (UNLIKELY(method == nullptr)) { 1906 CHECK(self->IsExceptionPending()); 1907 return GetTwoWordFailureValue(); // Failure. 1908 } 1909 } 1910 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1911 1912 // When we return, the caller will branch to this address, so it had better not be 0! 1913 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1914 << " location: " << method->GetDexFile()->GetLocation(); 1915 1916 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1917 reinterpret_cast<uintptr_t>(method)); 1918} 1919 1920} // namespace art 1921