quick_trampoline_entrypoints.cc revision 1428dce77b8b0e8ec3e3665d816678df1253fc10
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "callee_save_frame.h"
18#include "common_throws.h"
19#include "dex_file-inl.h"
20#include "dex_instruction-inl.h"
21#include "entrypoints/entrypoint_utils-inl.h"
22#include "entrypoints/runtime_asm_entrypoints.h"
23#include "gc/accounting/card_table-inl.h"
24#include "instruction_set.h"
25#include "interpreter/interpreter.h"
26#include "mirror/art_method-inl.h"
27#include "mirror/class-inl.h"
28#include "mirror/dex_cache-inl.h"
29#include "mirror/object-inl.h"
30#include "mirror/object_array-inl.h"
31#include "runtime.h"
32#include "scoped_thread_state_change.h"
33
34namespace art {
35
36// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
37class QuickArgumentVisitor {
38  // Number of bytes for each out register in the caller method's frame.
39  static constexpr size_t kBytesStackArgLocation = 4;
40  // Frame size in bytes of a callee-save frame for RefsAndArgs.
41  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
42      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
43#if defined(__arm__)
44  // The callee save frame is pointed to by SP.
45  // | argN       |  |
46  // | ...        |  |
47  // | arg4       |  |
48  // | arg3 spill |  |  Caller's frame
49  // | arg2 spill |  |
50  // | arg1 spill |  |
51  // | Method*    | ---
52  // | LR         |
53  // | ...        |    callee saves
54  // | R3         |    arg3
55  // | R2         |    arg2
56  // | R1         |    arg1
57  // | R0         |    padding
58  // | Method*    |  <- sp
59  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
60  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
61  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
62  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
63      arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
64  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
65      arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
66  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
67      arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
68  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
69    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
70  }
71#elif defined(__aarch64__)
72  // The callee save frame is pointed to by SP.
73  // | argN       |  |
74  // | ...        |  |
75  // | arg4       |  |
76  // | arg3 spill |  |  Caller's frame
77  // | arg2 spill |  |
78  // | arg1 spill |  |
79  // | Method*    | ---
80  // | LR         |
81  // | X29        |
82  // |  :         |
83  // | X20        |
84  // | X7         |
85  // | :          |
86  // | X1         |
87  // | D7         |
88  // |  :         |
89  // | D0         |
90  // |            |    padding
91  // | Method*    |  <- sp
92  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
93  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
94  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
95  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
96      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
97  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
98      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
99  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
100      arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
101  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
102    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
103  }
104#elif defined(__mips__)
105  // The callee save frame is pointed to by SP.
106  // | argN       |  |
107  // | ...        |  |
108  // | arg4       |  |
109  // | arg3 spill |  |  Caller's frame
110  // | arg2 spill |  |
111  // | arg1 spill |  |
112  // | Method*    | ---
113  // | RA         |
114  // | ...        |    callee saves
115  // | A3         |    arg3
116  // | A2         |    arg2
117  // | A1         |    arg1
118  // | A0/Method* |  <- sp
119  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
120  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
121  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
122  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
123  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
124  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60;  // Offset of return address.
125  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
126    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
127  }
128#elif defined(__i386__)
129  // The callee save frame is pointed to by SP.
130  // | argN        |  |
131  // | ...         |  |
132  // | arg4        |  |
133  // | arg3 spill  |  |  Caller's frame
134  // | arg2 spill  |  |
135  // | arg1 spill  |  |
136  // | Method*     | ---
137  // | Return      |
138  // | EBP,ESI,EDI |    callee saves
139  // | EBX         |    arg3
140  // | EDX         |    arg2
141  // | ECX         |    arg1
142  // | EAX/Method* |  <- sp
143  static constexpr bool kQuickSoftFloatAbi = true;  // This is a soft float ABI.
144  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
145  static constexpr size_t kNumQuickFprArgs = 0;  // 0 arguments passed in FPRs.
146  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0;  // Offset of first FPR arg.
147  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4;  // Offset of first GPR arg.
148  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28;  // Offset of return address.
149  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
150    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
151  }
152#elif defined(__x86_64__)
153  // The callee save frame is pointed to by SP.
154  // | argN            |  |
155  // | ...             |  |
156  // | reg. arg spills |  |  Caller's frame
157  // | Method*         | ---
158  // | Return          |
159  // | R15             |    callee save
160  // | R14             |    callee save
161  // | R13             |    callee save
162  // | R12             |    callee save
163  // | R9              |    arg5
164  // | R8              |    arg4
165  // | RSI/R6          |    arg1
166  // | RBP/R5          |    callee save
167  // | RBX/R3          |    callee save
168  // | RDX/R2          |    arg2
169  // | RCX/R1          |    arg3
170  // | XMM7            |    float arg 8
171  // | XMM6            |    float arg 7
172  // | XMM5            |    float arg 6
173  // | XMM4            |    float arg 5
174  // | XMM3            |    float arg 4
175  // | XMM2            |    float arg 3
176  // | XMM1            |    float arg 2
177  // | XMM0            |    float arg 1
178  // | Padding         |
179  // | RDI/Method*     |  <- sp
180  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
181  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
182  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
183  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
184  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
185  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
186  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
187    switch (gpr_index) {
188      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
189      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
190      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
191      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
192      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
193      default:
194      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
195      return 0;
196    }
197  }
198#else
199#error "Unsupported architecture"
200#endif
201
202 public:
203  static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
204      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
205    DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
206    uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
207    return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
208  }
209
210  // For the given quick ref and args quick frame, return the caller's PC.
211  static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
212      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
213    DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
214    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
215    return *reinterpret_cast<uintptr_t*>(lr);
216  }
217
218  QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty,
219                       uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
220          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
221          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
222          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
223          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
224                      + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
225          gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
226          is_split_long_or_double_(false) {}
227
228  virtual ~QuickArgumentVisitor() {}
229
230  virtual void Visit() = 0;
231
232  Primitive::Type GetParamPrimitiveType() const {
233    return cur_type_;
234  }
235
236  uint8_t* GetParamAddress() const {
237    if (!kQuickSoftFloatAbi) {
238      Primitive::Type type = GetParamPrimitiveType();
239      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
240        if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
241          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
242        }
243        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
244      }
245    }
246    if (gpr_index_ < kNumQuickGprArgs) {
247      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
248    }
249    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
250  }
251
252  bool IsSplitLongOrDouble() const {
253    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
254      return is_split_long_or_double_;
255    } else {
256      return false;  // An optimization for when GPR and FPRs are 64bit.
257    }
258  }
259
260  bool IsParamAReference() const {
261    return GetParamPrimitiveType() == Primitive::kPrimNot;
262  }
263
264  bool IsParamALongOrDouble() const {
265    Primitive::Type type = GetParamPrimitiveType();
266    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
267  }
268
269  uint64_t ReadSplitLongParam() const {
270    DCHECK(IsSplitLongOrDouble());
271    uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
272    uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
273    return (low_half & 0xffffffffULL) | (high_half << 32);
274  }
275
276  void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
277    // This implementation doesn't support reg-spill area for hard float
278    // ABI targets such as x86_64 and aarch64. So, for those targets whose
279    // 'kQuickSoftFloatAbi' is 'false':
280    //     (a) 'stack_args_' should point to the first method's argument
281    //     (b) whatever the argument type it is, the 'stack_index_' should
282    //         be moved forward along with every visiting.
283    gpr_index_ = 0;
284    fpr_index_ = 0;
285    stack_index_ = 0;
286    if (!is_static_) {  // Handle this.
287      cur_type_ = Primitive::kPrimNot;
288      is_split_long_or_double_ = false;
289      Visit();
290      if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
291        stack_index_++;
292      }
293      if (kNumQuickGprArgs > 0) {
294        gpr_index_++;
295      }
296    }
297    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
298      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
299      switch (cur_type_) {
300        case Primitive::kPrimNot:
301        case Primitive::kPrimBoolean:
302        case Primitive::kPrimByte:
303        case Primitive::kPrimChar:
304        case Primitive::kPrimShort:
305        case Primitive::kPrimInt:
306          is_split_long_or_double_ = false;
307          Visit();
308          if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
309            stack_index_++;
310          }
311          if (gpr_index_ < kNumQuickGprArgs) {
312            gpr_index_++;
313          }
314          break;
315        case Primitive::kPrimFloat:
316          is_split_long_or_double_ = false;
317          Visit();
318          if (kQuickSoftFloatAbi) {
319            if (gpr_index_ < kNumQuickGprArgs) {
320              gpr_index_++;
321            } else {
322              stack_index_++;
323            }
324          } else {
325            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
326              fpr_index_++;
327            }
328            stack_index_++;
329          }
330          break;
331        case Primitive::kPrimDouble:
332        case Primitive::kPrimLong:
333          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
334            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
335                ((gpr_index_ + 1) == kNumQuickGprArgs);
336            Visit();
337            if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
338              if (kBytesStackArgLocation == 4) {
339                stack_index_+= 2;
340              } else {
341                CHECK_EQ(kBytesStackArgLocation, 8U);
342                stack_index_++;
343              }
344            }
345            if (gpr_index_ < kNumQuickGprArgs) {
346              gpr_index_++;
347              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
348                if (gpr_index_ < kNumQuickGprArgs) {
349                  gpr_index_++;
350                } else if (kQuickSoftFloatAbi) {
351                  stack_index_++;
352                }
353              }
354            }
355          } else {
356            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
357                ((fpr_index_ + 1) == kNumQuickFprArgs);
358            Visit();
359            if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
360              fpr_index_++;
361              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
362                if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
363                  fpr_index_++;
364                }
365              }
366            }
367            if (kBytesStackArgLocation == 4) {
368              stack_index_+= 2;
369            } else {
370              CHECK_EQ(kBytesStackArgLocation, 8U);
371              stack_index_++;
372            }
373          }
374          break;
375        default:
376          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
377      }
378    }
379  }
380
381 private:
382  static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
383                                             uint32_t shorty_len) {
384    if (kQuickSoftFloatAbi) {
385      CHECK_EQ(kNumQuickFprArgs, 0U);
386      return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
387          + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
388    } else {
389      // For now, there is no reg-spill area for the targets with
390      // hard float ABI. So, the offset pointing to the first method's
391      // parameter ('this' for non-static methods) should be returned.
392      return sizeof(StackReference<mirror::ArtMethod>);  // Skip StackReference<ArtMethod>.
393    }
394  }
395
396 protected:
397  const bool is_static_;
398  const char* const shorty_;
399  const uint32_t shorty_len_;
400
401 private:
402  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
403  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
404  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
405  uint32_t gpr_index_;  // Index into spilled GPRs.
406  uint32_t fpr_index_;  // Index into spilled FPRs.
407  uint32_t stack_index_;  // Index into arguments on the stack.
408  // The current type of argument during VisitArguments.
409  Primitive::Type cur_type_;
410  // Does a 64bit parameter straddle the register and stack arguments?
411  bool is_split_long_or_double_;
412};
413
414// Visits arguments on the stack placing them into the shadow frame.
415class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
416 public:
417  BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
418                               const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
419                               size_t first_arg_reg) :
420      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
421
422  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
423
424 private:
425  ShadowFrame* const sf_;
426  uint32_t cur_reg_;
427
428  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
429};
430
431void BuildQuickShadowFrameVisitor::Visit() {
432  Primitive::Type type = GetParamPrimitiveType();
433  switch (type) {
434    case Primitive::kPrimLong:  // Fall-through.
435    case Primitive::kPrimDouble:
436      if (IsSplitLongOrDouble()) {
437        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
438      } else {
439        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
440      }
441      ++cur_reg_;
442      break;
443    case Primitive::kPrimNot: {
444        StackReference<mirror::Object>* stack_ref =
445            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
446        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
447      }
448      break;
449    case Primitive::kPrimBoolean:  // Fall-through.
450    case Primitive::kPrimByte:     // Fall-through.
451    case Primitive::kPrimChar:     // Fall-through.
452    case Primitive::kPrimShort:    // Fall-through.
453    case Primitive::kPrimInt:      // Fall-through.
454    case Primitive::kPrimFloat:
455      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
456      break;
457    case Primitive::kPrimVoid:
458      LOG(FATAL) << "UNREACHABLE";
459      break;
460  }
461  ++cur_reg_;
462}
463
464extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
465                                                StackReference<mirror::ArtMethod>* sp)
466    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
467  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
468  // frame.
469  ScopedQuickEntrypointChecks sqec(self);
470
471  if (method->IsAbstract()) {
472    ThrowAbstractMethodError(method);
473    return 0;
474  } else {
475    DCHECK(!method->IsNative()) << PrettyMethod(method);
476    const char* old_cause = self->StartAssertNoThreadSuspension(
477        "Building interpreter shadow frame");
478    const DexFile::CodeItem* code_item = method->GetCodeItem();
479    DCHECK(code_item != nullptr) << PrettyMethod(method);
480    uint16_t num_regs = code_item->registers_size_;
481    void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
482    // No last shadow coming from quick.
483    ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
484    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
485    uint32_t shorty_len = 0;
486    const char* shorty = method->GetShorty(&shorty_len);
487    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
488                                                      shadow_frame, first_arg_reg);
489    shadow_frame_builder.VisitArguments();
490    // Push a transition back into managed code onto the linked list in thread.
491    ManagedStack fragment;
492    self->PushManagedStackFragment(&fragment);
493    self->PushShadowFrame(shadow_frame);
494    self->EndAssertNoThreadSuspension(old_cause);
495
496    StackHandleScope<1> hs(self);
497    MethodHelper mh(hs.NewHandle(method));
498    if (mh.Get()->IsStatic() && !mh.Get()->GetDeclaringClass()->IsInitialized()) {
499      // Ensure static method's class is initialized.
500      StackHandleScope<1> hs(self);
501      Handle<mirror::Class> h_class(hs.NewHandle(mh.Get()->GetDeclaringClass()));
502      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
503        DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(mh.Get());
504        self->PopManagedStackFragment(fragment);
505        return 0;
506      }
507    }
508    JValue result = interpreter::EnterInterpreterFromEntryPoint(self, &mh, code_item, shadow_frame);
509    // Pop transition.
510    self->PopManagedStackFragment(fragment);
511    // No need to restore the args since the method has already been run by the interpreter.
512    return result.GetJ();
513  }
514}
515
516// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
517// to jobjects.
518class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
519 public:
520  BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
521                            const char* shorty, uint32_t shorty_len,
522                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
523      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
524
525  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
526
527  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
528
529 private:
530  ScopedObjectAccessUnchecked* const soa_;
531  std::vector<jvalue>* const args_;
532  // References which we must update when exiting in case the GC moved the objects.
533  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
534
535  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
536};
537
538void BuildQuickArgumentVisitor::Visit() {
539  jvalue val;
540  Primitive::Type type = GetParamPrimitiveType();
541  switch (type) {
542    case Primitive::kPrimNot: {
543      StackReference<mirror::Object>* stack_ref =
544          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
545      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
546      references_.push_back(std::make_pair(val.l, stack_ref));
547      break;
548    }
549    case Primitive::kPrimLong:  // Fall-through.
550    case Primitive::kPrimDouble:
551      if (IsSplitLongOrDouble()) {
552        val.j = ReadSplitLongParam();
553      } else {
554        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
555      }
556      break;
557    case Primitive::kPrimBoolean:  // Fall-through.
558    case Primitive::kPrimByte:     // Fall-through.
559    case Primitive::kPrimChar:     // Fall-through.
560    case Primitive::kPrimShort:    // Fall-through.
561    case Primitive::kPrimInt:      // Fall-through.
562    case Primitive::kPrimFloat:
563      val.i = *reinterpret_cast<jint*>(GetParamAddress());
564      break;
565    case Primitive::kPrimVoid:
566      LOG(FATAL) << "UNREACHABLE";
567      val.j = 0;
568      break;
569  }
570  args_->push_back(val);
571}
572
573void BuildQuickArgumentVisitor::FixupReferences() {
574  // Fixup any references which may have changed.
575  for (const auto& pair : references_) {
576    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
577    soa_->Env()->DeleteLocalRef(pair.first);
578  }
579}
580
581// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
582// which is responsible for recording callee save registers. We explicitly place into jobjects the
583// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
584// field within the proxy object, which will box the primitive arguments and deal with error cases.
585extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
586                                               mirror::Object* receiver,
587                                               Thread* self, StackReference<mirror::ArtMethod>* sp)
588    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
589  DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
590  DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
591  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
592  const char* old_cause =
593      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
594  // Register the top of the managed stack, making stack crawlable.
595  DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
596  DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
597            Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
598      << PrettyMethod(proxy_method);
599  self->VerifyStack();
600  // Start new JNI local reference state.
601  JNIEnvExt* env = self->GetJniEnv();
602  ScopedObjectAccessUnchecked soa(env);
603  ScopedJniEnvLocalRefState env_state(env);
604  // Create local ref. copies of proxy method and the receiver.
605  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
606
607  // Placing arguments into args vector and remove the receiver.
608  mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy();
609  CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
610                                       << PrettyMethod(non_proxy_method);
611  std::vector<jvalue> args;
612  uint32_t shorty_len = 0;
613  const char* shorty = proxy_method->GetShorty(&shorty_len);
614  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
615
616  local_ref_visitor.VisitArguments();
617  DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
618  args.erase(args.begin());
619
620  // Convert proxy method into expected interface method.
621  mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
622  DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
623  DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
624  jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
625
626  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
627  // that performs allocations.
628  self->EndAssertNoThreadSuspension(old_cause);
629  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
630  // Restore references which might have moved.
631  local_ref_visitor.FixupReferences();
632  return result.GetJ();
633}
634
635// Read object references held in arguments from quick frames and place in a JNI local references,
636// so they don't get garbage collected.
637class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
638 public:
639  RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
640                               const char* shorty, uint32_t shorty_len,
641                               ScopedObjectAccessUnchecked* soa) :
642      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
643
644  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
645
646  void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
647
648 private:
649  ScopedObjectAccessUnchecked* const soa_;
650  // References which we must update when exiting in case the GC moved the objects.
651  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
652
653  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
654};
655
656void RememberForGcArgumentVisitor::Visit() {
657  if (IsParamAReference()) {
658    StackReference<mirror::Object>* stack_ref =
659        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
660    jobject reference =
661        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
662    references_.push_back(std::make_pair(reference, stack_ref));
663  }
664}
665
666void RememberForGcArgumentVisitor::FixupReferences() {
667  // Fixup any references which may have changed.
668  for (const auto& pair : references_) {
669    pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
670    soa_->Env()->DeleteLocalRef(pair.first);
671  }
672}
673
674// Lazily resolve a method for quick. Called by stub code.
675extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
676                                                    mirror::Object* receiver,
677                                                    Thread* self,
678                                                    StackReference<mirror::ArtMethod>* sp)
679    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
680  ScopedQuickEntrypointChecks sqec(self);
681  // Start new JNI local reference state
682  JNIEnvExt* env = self->GetJniEnv();
683  ScopedObjectAccessUnchecked soa(env);
684  ScopedJniEnvLocalRefState env_state(env);
685  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
686
687  // Compute details about the called method (avoid GCs)
688  ClassLinker* linker = Runtime::Current()->GetClassLinker();
689  mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
690  InvokeType invoke_type;
691  const DexFile* dex_file;
692  uint32_t dex_method_idx;
693  if (called->IsRuntimeMethod()) {
694    uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
695    const DexFile::CodeItem* code;
696    dex_file = caller->GetDexFile();
697    code = caller->GetCodeItem();
698    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
699    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
700    Instruction::Code instr_code = instr->Opcode();
701    bool is_range;
702    switch (instr_code) {
703      case Instruction::INVOKE_DIRECT:
704        invoke_type = kDirect;
705        is_range = false;
706        break;
707      case Instruction::INVOKE_DIRECT_RANGE:
708        invoke_type = kDirect;
709        is_range = true;
710        break;
711      case Instruction::INVOKE_STATIC:
712        invoke_type = kStatic;
713        is_range = false;
714        break;
715      case Instruction::INVOKE_STATIC_RANGE:
716        invoke_type = kStatic;
717        is_range = true;
718        break;
719      case Instruction::INVOKE_SUPER:
720        invoke_type = kSuper;
721        is_range = false;
722        break;
723      case Instruction::INVOKE_SUPER_RANGE:
724        invoke_type = kSuper;
725        is_range = true;
726        break;
727      case Instruction::INVOKE_VIRTUAL:
728        invoke_type = kVirtual;
729        is_range = false;
730        break;
731      case Instruction::INVOKE_VIRTUAL_RANGE:
732        invoke_type = kVirtual;
733        is_range = true;
734        break;
735      case Instruction::INVOKE_INTERFACE:
736        invoke_type = kInterface;
737        is_range = false;
738        break;
739      case Instruction::INVOKE_INTERFACE_RANGE:
740        invoke_type = kInterface;
741        is_range = true;
742        break;
743      default:
744        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
745        // Avoid used uninitialized warnings.
746        invoke_type = kDirect;
747        is_range = false;
748    }
749    dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
750  } else {
751    invoke_type = kStatic;
752    dex_file = called->GetDexFile();
753    dex_method_idx = called->GetDexMethodIndex();
754  }
755  uint32_t shorty_len;
756  const char* shorty =
757      dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
758  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
759  visitor.VisitArguments();
760  self->EndAssertNoThreadSuspension(old_cause);
761  bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
762  // Resolve method filling in dex cache.
763  if (UNLIKELY(called->IsRuntimeMethod())) {
764    StackHandleScope<1> hs(self);
765    mirror::Object* dummy = nullptr;
766    HandleWrapper<mirror::Object> h_receiver(
767        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
768    called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
769  }
770  const void* code = NULL;
771  if (LIKELY(!self->IsExceptionPending())) {
772    // Incompatible class change should have been handled in resolve method.
773    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
774        << PrettyMethod(called) << " " << invoke_type;
775    if (virtual_or_interface) {
776      // Refine called method based on receiver.
777      CHECK(receiver != nullptr) << invoke_type;
778
779      mirror::ArtMethod* orig_called = called;
780      if (invoke_type == kVirtual) {
781        called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
782      } else {
783        called = receiver->GetClass()->FindVirtualMethodForInterface(called);
784      }
785
786      CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
787                               << PrettyTypeOf(receiver) << " "
788                               << invoke_type << " " << orig_called->GetVtableIndex();
789
790      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
791      // of the sharpened method.
792      if (called->HasSameDexCacheResolvedMethods(caller)) {
793        caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called);
794      } else {
795        // Calling from one dex file to another, need to compute the method index appropriate to
796        // the caller's dex file. Since we get here only if the original called was a runtime
797        // method, we've got the correct dex_file and a dex_method_idx from above.
798        DCHECK_EQ(caller->GetDexFile(), dex_file);
799        StackHandleScope<1> hs(self);
800        MethodHelper mh(hs.NewHandle(called));
801        uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
802        if (method_index != DexFile::kDexNoIndex) {
803          caller->SetDexCacheResolvedMethod(method_index, called);
804        }
805      }
806    }
807    // Ensure that the called method's class is initialized.
808    StackHandleScope<1> hs(soa.Self());
809    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
810    linker->EnsureInitialized(soa.Self(), called_class, true, true);
811    if (LIKELY(called_class->IsInitialized())) {
812      code = called->GetEntryPointFromQuickCompiledCode();
813    } else if (called_class->IsInitializing()) {
814      if (invoke_type == kStatic) {
815        // Class is still initializing, go to oat and grab code (trampoline must be left in place
816        // until class is initialized to stop races between threads).
817        code = linker->GetQuickOatCodeFor(called);
818      } else {
819        // No trampoline for non-static methods.
820        code = called->GetEntryPointFromQuickCompiledCode();
821      }
822    } else {
823      DCHECK(called_class->IsErroneous());
824    }
825  }
826  CHECK_EQ(code == NULL, self->IsExceptionPending());
827  // Fixup any locally saved objects may have moved during a GC.
828  visitor.FixupReferences();
829  // Place called method in callee-save frame to be placed as first argument to quick method.
830  sp->Assign(called);
831  return code;
832}
833
834/*
835 * This class uses a couple of observations to unite the different calling conventions through
836 * a few constants.
837 *
838 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
839 *    possible alignment.
840 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
841 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
842 *    when we have to split things
843 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
844 *    and we can use Int handling directly.
845 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
846 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
847 *    extension should be compatible with Aarch64, which mandates copying the available bits
848 *    into LSB and leaving the rest unspecified.
849 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
850 *    the stack.
851 * 6) There is only little endian.
852 *
853 *
854 * Actual work is supposed to be done in a delegate of the template type. The interface is as
855 * follows:
856 *
857 * void PushGpr(uintptr_t):   Add a value for the next GPR
858 *
859 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
860 *                            padding, that is, think the architecture is 32b and aligns 64b.
861 *
862 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
863 *                            split this if necessary. The current state will have aligned, if
864 *                            necessary.
865 *
866 * void PushStack(uintptr_t): Push a value to the stack.
867 *
868 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
869 *                                          as this might be important for null initialization.
870 *                                          Must return the jobject, that is, the reference to the
871 *                                          entry in the HandleScope (nullptr if necessary).
872 *
873 */
874template<class T> class BuildNativeCallFrameStateMachine {
875 public:
876#if defined(__arm__)
877  // TODO: These are all dummy values!
878  static constexpr bool kNativeSoftFloatAbi = true;
879  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
880  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
881
882  static constexpr size_t kRegistersNeededForLong = 2;
883  static constexpr size_t kRegistersNeededForDouble = 2;
884  static constexpr bool kMultiRegistersAligned = true;
885  static constexpr bool kMultiRegistersWidened = false;
886  static constexpr bool kAlignLongOnStack = true;
887  static constexpr bool kAlignDoubleOnStack = true;
888#elif defined(__aarch64__)
889  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
890  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
891  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
892
893  static constexpr size_t kRegistersNeededForLong = 1;
894  static constexpr size_t kRegistersNeededForDouble = 1;
895  static constexpr bool kMultiRegistersAligned = false;
896  static constexpr bool kMultiRegistersWidened = false;
897  static constexpr bool kAlignLongOnStack = false;
898  static constexpr bool kAlignDoubleOnStack = false;
899#elif defined(__mips__)
900  // TODO: These are all dummy values!
901  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
902  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
903  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
904
905  static constexpr size_t kRegistersNeededForLong = 2;
906  static constexpr size_t kRegistersNeededForDouble = 2;
907  static constexpr bool kMultiRegistersAligned = true;
908  static constexpr bool kMultiRegistersWidened = true;
909  static constexpr bool kAlignLongOnStack = false;
910  static constexpr bool kAlignDoubleOnStack = false;
911#elif defined(__i386__)
912  // TODO: Check these!
913  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
914  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
915  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
916
917  static constexpr size_t kRegistersNeededForLong = 2;
918  static constexpr size_t kRegistersNeededForDouble = 2;
919  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
920  static constexpr bool kMultiRegistersWidened = false;
921  static constexpr bool kAlignLongOnStack = false;
922  static constexpr bool kAlignDoubleOnStack = false;
923#elif defined(__x86_64__)
924  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
925  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
926  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
927
928  static constexpr size_t kRegistersNeededForLong = 1;
929  static constexpr size_t kRegistersNeededForDouble = 1;
930  static constexpr bool kMultiRegistersAligned = false;
931  static constexpr bool kMultiRegistersWidened = false;
932  static constexpr bool kAlignLongOnStack = false;
933  static constexpr bool kAlignDoubleOnStack = false;
934#else
935#error "Unsupported architecture"
936#endif
937
938 public:
939  explicit BuildNativeCallFrameStateMachine(T* delegate)
940      : gpr_index_(kNumNativeGprArgs),
941        fpr_index_(kNumNativeFprArgs),
942        stack_entries_(0),
943        delegate_(delegate) {
944    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
945    // the next register is even; counting down is just to make the compiler happy...
946    CHECK_EQ(kNumNativeGprArgs % 2, 0U);
947    CHECK_EQ(kNumNativeFprArgs % 2, 0U);
948  }
949
950  virtual ~BuildNativeCallFrameStateMachine() {}
951
952  bool HavePointerGpr() const {
953    return gpr_index_ > 0;
954  }
955
956  void AdvancePointer(const void* val) {
957    if (HavePointerGpr()) {
958      gpr_index_--;
959      PushGpr(reinterpret_cast<uintptr_t>(val));
960    } else {
961      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
962      PushStack(reinterpret_cast<uintptr_t>(val));
963      gpr_index_ = 0;
964    }
965  }
966
967  bool HaveHandleScopeGpr() const {
968    return gpr_index_ > 0;
969  }
970
971  void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
972    uintptr_t handle = PushHandle(ptr);
973    if (HaveHandleScopeGpr()) {
974      gpr_index_--;
975      PushGpr(handle);
976    } else {
977      stack_entries_++;
978      PushStack(handle);
979      gpr_index_ = 0;
980    }
981  }
982
983  bool HaveIntGpr() const {
984    return gpr_index_ > 0;
985  }
986
987  void AdvanceInt(uint32_t val) {
988    if (HaveIntGpr()) {
989      gpr_index_--;
990      PushGpr(val);
991    } else {
992      stack_entries_++;
993      PushStack(val);
994      gpr_index_ = 0;
995    }
996  }
997
998  bool HaveLongGpr() const {
999    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1000  }
1001
1002  bool LongGprNeedsPadding() const {
1003    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1004        kAlignLongOnStack &&                  // and when it needs alignment
1005        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1006  }
1007
1008  bool LongStackNeedsPadding() const {
1009    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1010        kAlignLongOnStack &&                  // and when it needs 8B alignment
1011        (stack_entries_ & 1) == 1;            // counter is odd
1012  }
1013
1014  void AdvanceLong(uint64_t val) {
1015    if (HaveLongGpr()) {
1016      if (LongGprNeedsPadding()) {
1017        PushGpr(0);
1018        gpr_index_--;
1019      }
1020      if (kRegistersNeededForLong == 1) {
1021        PushGpr(static_cast<uintptr_t>(val));
1022      } else {
1023        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1024        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1025      }
1026      gpr_index_ -= kRegistersNeededForLong;
1027    } else {
1028      if (LongStackNeedsPadding()) {
1029        PushStack(0);
1030        stack_entries_++;
1031      }
1032      if (kRegistersNeededForLong == 1) {
1033        PushStack(static_cast<uintptr_t>(val));
1034        stack_entries_++;
1035      } else {
1036        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1037        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1038        stack_entries_ += 2;
1039      }
1040      gpr_index_ = 0;
1041    }
1042  }
1043
1044  bool HaveFloatFpr() const {
1045    return fpr_index_ > 0;
1046  }
1047
1048  void AdvanceFloat(float val) {
1049    if (kNativeSoftFloatAbi) {
1050      AdvanceInt(bit_cast<float, uint32_t>(val));
1051    } else {
1052      if (HaveFloatFpr()) {
1053        fpr_index_--;
1054        if (kRegistersNeededForDouble == 1) {
1055          if (kMultiRegistersWidened) {
1056            PushFpr8(bit_cast<double, uint64_t>(val));
1057          } else {
1058            // No widening, just use the bits.
1059            PushFpr8(bit_cast<float, uint64_t>(val));
1060          }
1061        } else {
1062          PushFpr4(val);
1063        }
1064      } else {
1065        stack_entries_++;
1066        if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1067          // Need to widen before storing: Note the "double" in the template instantiation.
1068          // Note: We need to jump through those hoops to make the compiler happy.
1069          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1070          PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val)));
1071        } else {
1072          PushStack(bit_cast<float, uintptr_t>(val));
1073        }
1074        fpr_index_ = 0;
1075      }
1076    }
1077  }
1078
1079  bool HaveDoubleFpr() const {
1080    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1081  }
1082
1083  bool DoubleFprNeedsPadding() const {
1084    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1085        kAlignDoubleOnStack &&                  // and when it needs alignment
1086        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1087  }
1088
1089  bool DoubleStackNeedsPadding() const {
1090    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1091        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1092        (stack_entries_ & 1) == 1;              // counter is odd
1093  }
1094
1095  void AdvanceDouble(uint64_t val) {
1096    if (kNativeSoftFloatAbi) {
1097      AdvanceLong(val);
1098    } else {
1099      if (HaveDoubleFpr()) {
1100        if (DoubleFprNeedsPadding()) {
1101          PushFpr4(0);
1102          fpr_index_--;
1103        }
1104        PushFpr8(val);
1105        fpr_index_ -= kRegistersNeededForDouble;
1106      } else {
1107        if (DoubleStackNeedsPadding()) {
1108          PushStack(0);
1109          stack_entries_++;
1110        }
1111        if (kRegistersNeededForDouble == 1) {
1112          PushStack(static_cast<uintptr_t>(val));
1113          stack_entries_++;
1114        } else {
1115          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1116          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1117          stack_entries_ += 2;
1118        }
1119        fpr_index_ = 0;
1120      }
1121    }
1122  }
1123
1124  uint32_t GetStackEntries() const {
1125    return stack_entries_;
1126  }
1127
1128  uint32_t GetNumberOfUsedGprs() const {
1129    return kNumNativeGprArgs - gpr_index_;
1130  }
1131
1132  uint32_t GetNumberOfUsedFprs() const {
1133    return kNumNativeFprArgs - fpr_index_;
1134  }
1135
1136 private:
1137  void PushGpr(uintptr_t val) {
1138    delegate_->PushGpr(val);
1139  }
1140  void PushFpr4(float val) {
1141    delegate_->PushFpr4(val);
1142  }
1143  void PushFpr8(uint64_t val) {
1144    delegate_->PushFpr8(val);
1145  }
1146  void PushStack(uintptr_t val) {
1147    delegate_->PushStack(val);
1148  }
1149  uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1150    return delegate_->PushHandle(ref);
1151  }
1152
1153  uint32_t gpr_index_;      // Number of free GPRs
1154  uint32_t fpr_index_;      // Number of free FPRs
1155  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1156                            // extended
1157  T* const delegate_;             // What Push implementation gets called
1158};
1159
1160// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1161// in subclasses.
1162//
1163// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1164// them with handles.
1165class ComputeNativeCallFrameSize {
1166 public:
1167  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1168
1169  virtual ~ComputeNativeCallFrameSize() {}
1170
1171  uint32_t GetStackSize() const {
1172    return num_stack_entries_ * sizeof(uintptr_t);
1173  }
1174
1175  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1176    sp8 -= GetStackSize();
1177    // Align by kStackAlignment.
1178    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1179    return sp8;
1180  }
1181
1182  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1183      const {
1184    // Assumption is OK right now, as we have soft-float arm
1185    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1186    sp8 -= fregs * sizeof(uintptr_t);
1187    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1188    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1189    sp8 -= iregs * sizeof(uintptr_t);
1190    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1191    return sp8;
1192  }
1193
1194  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1195                            uint32_t** start_fpr) const {
1196    // Native call stack.
1197    sp8 = LayoutCallStack(sp8);
1198    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1199
1200    // Put fprs and gprs below.
1201    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1202
1203    // Return the new bottom.
1204    return sp8;
1205  }
1206
1207  virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1208      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {}
1209
1210  void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1211    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1212
1213    WalkHeader(&sm);
1214
1215    for (uint32_t i = 1; i < shorty_len; ++i) {
1216      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1217      switch (cur_type_) {
1218        case Primitive::kPrimNot:
1219          // TODO: fix abuse of mirror types.
1220          sm.AdvanceHandleScope(
1221              reinterpret_cast<mirror::Object*>(0x12345678));
1222          break;
1223
1224        case Primitive::kPrimBoolean:
1225        case Primitive::kPrimByte:
1226        case Primitive::kPrimChar:
1227        case Primitive::kPrimShort:
1228        case Primitive::kPrimInt:
1229          sm.AdvanceInt(0);
1230          break;
1231        case Primitive::kPrimFloat:
1232          sm.AdvanceFloat(0);
1233          break;
1234        case Primitive::kPrimDouble:
1235          sm.AdvanceDouble(0);
1236          break;
1237        case Primitive::kPrimLong:
1238          sm.AdvanceLong(0);
1239          break;
1240        default:
1241          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1242      }
1243    }
1244
1245    num_stack_entries_ = sm.GetStackEntries();
1246  }
1247
1248  void PushGpr(uintptr_t /* val */) {
1249    // not optimizing registers, yet
1250  }
1251
1252  void PushFpr4(float /* val */) {
1253    // not optimizing registers, yet
1254  }
1255
1256  void PushFpr8(uint64_t /* val */) {
1257    // not optimizing registers, yet
1258  }
1259
1260  void PushStack(uintptr_t /* val */) {
1261    // counting is already done in the superclass
1262  }
1263
1264  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1265    return reinterpret_cast<uintptr_t>(nullptr);
1266  }
1267
1268 protected:
1269  uint32_t num_stack_entries_;
1270};
1271
1272class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1273 public:
1274  ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1275
1276  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1277  // is at *m = sp. Will update to point to the bottom of the save frame.
1278  //
1279  // Note: assumes ComputeAll() has been run before.
1280  void LayoutCalleeSaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp,
1281                             HandleScope** handle_scope)
1282      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1283    mirror::ArtMethod* method = (*m)->AsMirrorPtr();
1284
1285    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1286
1287    // First, fix up the layout of the callee-save frame.
1288    // We have to squeeze in the HandleScope, and relocate the method pointer.
1289
1290    // "Free" the slot for the method.
1291    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1292
1293    // Under the callee saves put handle scope and new method stack reference.
1294    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1295    size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
1296
1297    sp8 -= scope_and_method;
1298    // Align by kStackAlignment.
1299    sp8 = reinterpret_cast<uint8_t*>(RoundDown(
1300        reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1301
1302    uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
1303    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1304                                        num_handle_scope_references_);
1305
1306    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1307    uint8_t* method_pointer = sp8;
1308    StackReference<mirror::ArtMethod>* new_method_ref =
1309        reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
1310    new_method_ref->Assign(method);
1311    *m = new_method_ref;
1312  }
1313
1314  // Adds space for the cookie. Note: may leave stack unaligned.
1315  void LayoutCookie(uint8_t** sp) const {
1316    // Reference cookie and padding
1317    *sp -= 8;
1318  }
1319
1320  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1321  // Returns the new bottom. Note: this may be unaligned.
1322  uint8_t* LayoutJNISaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp,
1323                              HandleScope** handle_scope)
1324      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1325    // First, fix up the layout of the callee-save frame.
1326    // We have to squeeze in the HandleScope, and relocate the method pointer.
1327    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1328
1329    // The bottom of the callee-save frame is now where the method is, *m.
1330    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1331
1332    // Add space for cookie.
1333    LayoutCookie(&sp8);
1334
1335    return sp8;
1336  }
1337
1338  // WARNING: After this, *sp won't be pointing to the method anymore!
1339  uint8_t* ComputeLayout(Thread* self, StackReference<mirror::ArtMethod>** m,
1340                         bool is_static, const char* shorty, uint32_t shorty_len,
1341                         HandleScope** handle_scope,
1342                         uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr)
1343      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1344    Walk(shorty, shorty_len);
1345
1346    // JNI part.
1347    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1348
1349    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1350
1351    // Return the new bottom.
1352    return sp8;
1353  }
1354
1355  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1356
1357  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1358  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1359      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1360
1361 private:
1362  uint32_t num_handle_scope_references_;
1363};
1364
1365uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1366  num_handle_scope_references_++;
1367  return reinterpret_cast<uintptr_t>(nullptr);
1368}
1369
1370void ComputeGenericJniFrameSize::WalkHeader(
1371    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1372  // JNIEnv
1373  sm->AdvancePointer(nullptr);
1374
1375  // Class object or this as first argument
1376  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1377}
1378
1379// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1380// the template requirements of BuildGenericJniFrameStateMachine.
1381class FillNativeCall {
1382 public:
1383  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1384      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1385
1386  virtual ~FillNativeCall() {}
1387
1388  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1389    cur_gpr_reg_ = gpr_regs;
1390    cur_fpr_reg_ = fpr_regs;
1391    cur_stack_arg_ = stack_args;
1392  }
1393
1394  void PushGpr(uintptr_t val) {
1395    *cur_gpr_reg_ = val;
1396    cur_gpr_reg_++;
1397  }
1398
1399  void PushFpr4(float val) {
1400    *cur_fpr_reg_ = val;
1401    cur_fpr_reg_++;
1402  }
1403
1404  void PushFpr8(uint64_t val) {
1405    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1406    *tmp = val;
1407    cur_fpr_reg_ += 2;
1408  }
1409
1410  void PushStack(uintptr_t val) {
1411    *cur_stack_arg_ = val;
1412    cur_stack_arg_++;
1413  }
1414
1415  virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1416    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1417    return 0U;
1418  }
1419
1420 private:
1421  uintptr_t* cur_gpr_reg_;
1422  uint32_t* cur_fpr_reg_;
1423  uintptr_t* cur_stack_arg_;
1424};
1425
1426// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1427// of transitioning into native code.
1428class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1429 public:
1430  BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1431                              StackReference<mirror::ArtMethod>** sp)
1432     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1433       jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1434    ComputeGenericJniFrameSize fsc;
1435    uintptr_t* start_gpr_reg;
1436    uint32_t* start_fpr_reg;
1437    uintptr_t* start_stack_arg;
1438    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, is_static, shorty, shorty_len,
1439                                             &handle_scope_,
1440                                             &start_stack_arg,
1441                                             &start_gpr_reg, &start_fpr_reg);
1442
1443    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1444
1445    // jni environment is always first argument
1446    sm_.AdvancePointer(self->GetJniEnv());
1447
1448    if (is_static) {
1449      sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
1450    }
1451  }
1452
1453  void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1454
1455  void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1456
1457  StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1458      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1459    return handle_scope_->GetHandle(0).GetReference();
1460  }
1461
1462  jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1463    return handle_scope_->GetHandle(0).ToJObject();
1464  }
1465
1466  void* GetBottomOfUsedArea() const {
1467    return bottom_of_used_area_;
1468  }
1469
1470 private:
1471  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1472  class FillJniCall FINAL : public FillNativeCall {
1473   public:
1474    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1475                HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1476                                             handle_scope_(handle_scope), cur_entry_(0) {}
1477
1478    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1479
1480    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1481      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1482      handle_scope_ = scope;
1483      cur_entry_ = 0U;
1484    }
1485
1486    void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1487      // Initialize padding entries.
1488      size_t expected_slots = handle_scope_->NumberOfReferences();
1489      while (cur_entry_ < expected_slots) {
1490        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1491      }
1492      DCHECK_NE(cur_entry_, 0U);
1493    }
1494
1495   private:
1496    HandleScope* handle_scope_;
1497    size_t cur_entry_;
1498  };
1499
1500  HandleScope* handle_scope_;
1501  FillJniCall jni_call_;
1502  void* bottom_of_used_area_;
1503
1504  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1505
1506  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1507};
1508
1509uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1510  uintptr_t tmp;
1511  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1512  h.Assign(ref);
1513  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1514  cur_entry_++;
1515  return tmp;
1516}
1517
1518void BuildGenericJniFrameVisitor::Visit() {
1519  Primitive::Type type = GetParamPrimitiveType();
1520  switch (type) {
1521    case Primitive::kPrimLong: {
1522      jlong long_arg;
1523      if (IsSplitLongOrDouble()) {
1524        long_arg = ReadSplitLongParam();
1525      } else {
1526        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1527      }
1528      sm_.AdvanceLong(long_arg);
1529      break;
1530    }
1531    case Primitive::kPrimDouble: {
1532      uint64_t double_arg;
1533      if (IsSplitLongOrDouble()) {
1534        // Read into union so that we don't case to a double.
1535        double_arg = ReadSplitLongParam();
1536      } else {
1537        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1538      }
1539      sm_.AdvanceDouble(double_arg);
1540      break;
1541    }
1542    case Primitive::kPrimNot: {
1543      StackReference<mirror::Object>* stack_ref =
1544          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1545      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1546      break;
1547    }
1548    case Primitive::kPrimFloat:
1549      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1550      break;
1551    case Primitive::kPrimBoolean:  // Fall-through.
1552    case Primitive::kPrimByte:     // Fall-through.
1553    case Primitive::kPrimChar:     // Fall-through.
1554    case Primitive::kPrimShort:    // Fall-through.
1555    case Primitive::kPrimInt:      // Fall-through.
1556      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1557      break;
1558    case Primitive::kPrimVoid:
1559      LOG(FATAL) << "UNREACHABLE";
1560      break;
1561  }
1562}
1563
1564void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1565  // Clear out rest of the scope.
1566  jni_call_.ResetRemainingScopeSlots();
1567  // Install HandleScope.
1568  self->PushHandleScope(handle_scope_);
1569}
1570
1571#if defined(__arm__) || defined(__aarch64__)
1572extern "C" void* artFindNativeMethod();
1573#else
1574extern "C" void* artFindNativeMethod(Thread* self);
1575#endif
1576
1577uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1578  if (lock != nullptr) {
1579    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1580  } else {
1581    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1582  }
1583}
1584
1585void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1586  if (lock != nullptr) {
1587    JniMethodEndSynchronized(cookie, lock, self);
1588  } else {
1589    JniMethodEnd(cookie, self);
1590  }
1591}
1592
1593/*
1594 * Initializes an alloca region assumed to be directly below sp for a native call:
1595 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1596 * The final element on the stack is a pointer to the native code.
1597 *
1598 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1599 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1600 *
1601 * The return of this function denotes:
1602 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1603 * 2) An error, if the value is negative.
1604 */
1605extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self,
1606                                                      StackReference<mirror::ArtMethod>* sp)
1607    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1608  mirror::ArtMethod* called = sp->AsMirrorPtr();
1609  DCHECK(called->IsNative()) << PrettyMethod(called, true);
1610  uint32_t shorty_len = 0;
1611  const char* shorty = called->GetShorty(&shorty_len);
1612
1613  // Run the visitor and update sp.
1614  BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1615  visitor.VisitArguments();
1616  visitor.FinalizeHandleScope(self);
1617
1618  // Fix up managed-stack things in Thread.
1619  self->SetTopOfStack(sp);
1620
1621  self->VerifyStack();
1622
1623  // Start JNI, save the cookie.
1624  uint32_t cookie;
1625  if (called->IsSynchronized()) {
1626    cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1627    if (self->IsExceptionPending()) {
1628      self->PopHandleScope();
1629      // A negative value denotes an error.
1630      return GetTwoWordFailureValue();
1631    }
1632  } else {
1633    cookie = JniMethodStart(self);
1634  }
1635  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1636  *(sp32 - 1) = cookie;
1637
1638  // Retrieve the stored native code.
1639  const void* nativeCode = called->GetNativeMethod();
1640
1641  // There are two cases for the content of nativeCode:
1642  // 1) Pointer to the native function.
1643  // 2) Pointer to the trampoline for native code binding.
1644  // In the second case, we need to execute the binding and continue with the actual native function
1645  // pointer.
1646  DCHECK(nativeCode != nullptr);
1647  if (nativeCode == GetJniDlsymLookupStub()) {
1648#if defined(__arm__) || defined(__aarch64__)
1649    nativeCode = artFindNativeMethod();
1650#else
1651    nativeCode = artFindNativeMethod(self);
1652#endif
1653
1654    if (nativeCode == nullptr) {
1655      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1656
1657      // End JNI, as the assembly will move to deliver the exception.
1658      jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1659      if (shorty[0] == 'L') {
1660        artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1661      } else {
1662        artQuickGenericJniEndJNINonRef(self, cookie, lock);
1663      }
1664
1665      return GetTwoWordFailureValue();
1666    }
1667    // Note that the native code pointer will be automatically set by artFindNativeMethod().
1668  }
1669
1670  // Return native code addr(lo) and bottom of alloca address(hi).
1671  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1672                                reinterpret_cast<uintptr_t>(nativeCode));
1673}
1674
1675/*
1676 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1677 * unlocking.
1678 */
1679extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1680    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1681  StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame();
1682  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1683  mirror::ArtMethod* called = sp->AsMirrorPtr();
1684  uint32_t cookie = *(sp32 - 1);
1685
1686  jobject lock = nullptr;
1687  if (called->IsSynchronized()) {
1688    HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1689        + sizeof(StackReference<mirror::ArtMethod>));
1690    lock = table->GetHandle(0).ToJObject();
1691  }
1692
1693  char return_shorty_char = called->GetShorty()[0];
1694
1695  if (return_shorty_char == 'L') {
1696    return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1697  } else {
1698    artQuickGenericJniEndJNINonRef(self, cookie, lock);
1699
1700    switch (return_shorty_char) {
1701      case 'F': {
1702        if (kRuntimeISA == kX86) {
1703          // Convert back the result to float.
1704          double d = bit_cast<uint64_t, double>(result_f);
1705          return bit_cast<float, uint32_t>(static_cast<float>(d));
1706        } else {
1707          return result_f;
1708        }
1709      }
1710      case 'D':
1711        return result_f;
1712      case 'Z':
1713        return result.z;
1714      case 'B':
1715        return result.b;
1716      case 'C':
1717        return result.c;
1718      case 'S':
1719        return result.s;
1720      case 'I':
1721        return result.i;
1722      case 'J':
1723        return result.j;
1724      case 'V':
1725        return 0;
1726      default:
1727        LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1728        return 0;
1729    }
1730  }
1731}
1732
1733// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1734// for the method pointer.
1735//
1736// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1737// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1738
1739template<InvokeType type, bool access_check>
1740static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1741                                     mirror::ArtMethod* caller_method,
1742                                     Thread* self, StackReference<mirror::ArtMethod>* sp);
1743
1744template<InvokeType type, bool access_check>
1745static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1746                                     mirror::ArtMethod* caller_method,
1747                                     Thread* self, StackReference<mirror::ArtMethod>* sp) {
1748  ScopedQuickEntrypointChecks sqec(self);
1749  DCHECK_EQ(sp->AsMirrorPtr(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
1750  mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1751                                             type);
1752  if (UNLIKELY(method == nullptr)) {
1753    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1754    uint32_t shorty_len;
1755    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1756    {
1757      // Remember the args in case a GC happens in FindMethodFromCode.
1758      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1759      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1760      visitor.VisitArguments();
1761      method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1762                                                      self);
1763      visitor.FixupReferences();
1764    }
1765
1766    if (UNLIKELY(method == NULL)) {
1767      CHECK(self->IsExceptionPending());
1768      return GetTwoWordFailureValue();  // Failure.
1769    }
1770  }
1771  DCHECK(!self->IsExceptionPending());
1772  const void* code = method->GetEntryPointFromQuickCompiledCode();
1773
1774  // When we return, the caller will branch to this address, so it had better not be 0!
1775  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1776                          << " location: "
1777                          << method->GetDexFile()->GetLocation();
1778
1779  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1780                                reinterpret_cast<uintptr_t>(method));
1781}
1782
1783// Explicit artInvokeCommon template function declarations to please analysis tool.
1784#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
1785  template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)                                          \
1786  TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx,                        \
1787                                                    mirror::Object* this_object,                \
1788                                                    mirror::ArtMethod* caller_method,           \
1789                                                    Thread* self,                               \
1790                                                    StackReference<mirror::ArtMethod>* sp)      \
1791
1792EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1793EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1794EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1795EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1796EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1797EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1798EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1799EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1800EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1801EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1802#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1803
1804// See comments in runtime_support_asm.S
1805extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
1806    uint32_t method_idx, mirror::Object* this_object,
1807    mirror::ArtMethod* caller_method, Thread* self,
1808    StackReference<mirror::ArtMethod>* sp)
1809        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1810  return artInvokeCommon<kInterface, true>(method_idx, this_object,
1811                                           caller_method, self, sp);
1812}
1813
1814extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
1815    uint32_t method_idx, mirror::Object* this_object,
1816    mirror::ArtMethod* caller_method, Thread* self,
1817    StackReference<mirror::ArtMethod>* sp)
1818        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1819  return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
1820                                        self, sp);
1821}
1822
1823extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
1824    uint32_t method_idx, mirror::Object* this_object,
1825    mirror::ArtMethod* caller_method, Thread* self,
1826    StackReference<mirror::ArtMethod>* sp)
1827        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1828  return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
1829                                        self, sp);
1830}
1831
1832extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
1833    uint32_t method_idx, mirror::Object* this_object,
1834    mirror::ArtMethod* caller_method, Thread* self,
1835    StackReference<mirror::ArtMethod>* sp)
1836        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1837  return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
1838                                       self, sp);
1839}
1840
1841extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
1842    uint32_t method_idx, mirror::Object* this_object,
1843    mirror::ArtMethod* caller_method, Thread* self,
1844    StackReference<mirror::ArtMethod>* sp)
1845        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1846  return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
1847                                         self, sp);
1848}
1849
1850// Determine target of interface dispatch. This object is known non-null.
1851extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1852                                                      mirror::Object* this_object,
1853                                                      mirror::ArtMethod* caller_method,
1854                                                      Thread* self,
1855                                                      StackReference<mirror::ArtMethod>* sp)
1856    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1857  ScopedQuickEntrypointChecks sqec(self);
1858  mirror::ArtMethod* method;
1859  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1860    method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1861    if (UNLIKELY(method == NULL)) {
1862      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1863                                                                 caller_method);
1864      return GetTwoWordFailureValue();  // Failure.
1865    }
1866  } else {
1867    DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1868
1869    // Find the caller PC.
1870    constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs);
1871    uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset);
1872
1873    // Map the caller PC to a dex PC.
1874    uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1875    const DexFile::CodeItem* code = caller_method->GetCodeItem();
1876    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1877    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1878    Instruction::Code instr_code = instr->Opcode();
1879    CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1880          instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1881        << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1882    uint32_t dex_method_idx;
1883    if (instr_code == Instruction::INVOKE_INTERFACE) {
1884      dex_method_idx = instr->VRegB_35c();
1885    } else {
1886      DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1887      dex_method_idx = instr->VRegB_3rc();
1888    }
1889
1890    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
1891        ->GetDexFile();
1892    uint32_t shorty_len;
1893    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
1894                                                   &shorty_len);
1895    {
1896      // Remember the args in case a GC happens in FindMethodFromCode.
1897      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1898      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1899      visitor.VisitArguments();
1900      method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1901                                                     self);
1902      visitor.FixupReferences();
1903    }
1904
1905    if (UNLIKELY(method == nullptr)) {
1906      CHECK(self->IsExceptionPending());
1907      return GetTwoWordFailureValue();  // Failure.
1908    }
1909  }
1910  const void* code = method->GetEntryPointFromQuickCompiledCode();
1911
1912  // When we return, the caller will branch to this address, so it had better not be 0!
1913  DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1914                          << " location: " << method->GetDexFile()->GetLocation();
1915
1916  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1917                                reinterpret_cast<uintptr_t>(method));
1918}
1919
1920}  // namespace art
1921