quick_trampoline_entrypoints.cc revision 575d3e60c68b5cf481b615dde4a16283507b19ed
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/enums.h"
19#include "callee_save_frame.h"
20#include "common_throws.h"
21#include "dex_file-inl.h"
22#include "dex_instruction-inl.h"
23#include "entrypoints/entrypoint_utils-inl.h"
24#include "entrypoints/runtime_asm_entrypoints.h"
25#include "gc/accounting/card_table-inl.h"
26#include "imt_conflict_table.h"
27#include "imtable-inl.h"
28#include "interpreter/interpreter.h"
29#include "linear_alloc.h"
30#include "method_handles.h"
31#include "method_reference.h"
32#include "mirror/class-inl.h"
33#include "mirror/dex_cache-inl.h"
34#include "mirror/method.h"
35#include "mirror/method_handle_impl.h"
36#include "mirror/object-inl.h"
37#include "mirror/object_array-inl.h"
38#include "oat_quick_method_header.h"
39#include "quick_exception_handler.h"
40#include "runtime.h"
41#include "scoped_thread_state_change-inl.h"
42#include "stack.h"
43#include "debugger.h"
44#include "well_known_classes.h"
45
46namespace art {
47
48// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
49class QuickArgumentVisitor {
50  // Number of bytes for each out register in the caller method's frame.
51  static constexpr size_t kBytesStackArgLocation = 4;
52  // Frame size in bytes of a callee-save frame for RefsAndArgs.
53  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
54      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
55#if defined(__arm__)
56  // The callee save frame is pointed to by SP.
57  // | argN       |  |
58  // | ...        |  |
59  // | arg4       |  |
60  // | arg3 spill |  |  Caller's frame
61  // | arg2 spill |  |
62  // | arg1 spill |  |
63  // | Method*    | ---
64  // | LR         |
65  // | ...        |    4x6 bytes callee saves
66  // | R3         |
67  // | R2         |
68  // | R1         |
69  // | S15        |
70  // | :          |
71  // | S0         |
72  // |            |    4x2 bytes padding
73  // | Method*    |  <- sp
74  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
75  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
76  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
77  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
78  static constexpr bool kQuickSkipOddFpRegisters = false;
79  static constexpr size_t kNumQuickGprArgs = 3;
80  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
81  static constexpr bool kGprFprLockstep = false;
82  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
83      arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
84  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
85      arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
86  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
87      arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
88  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
89    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
90  }
91#elif defined(__aarch64__)
92  // The callee save frame is pointed to by SP.
93  // | argN       |  |
94  // | ...        |  |
95  // | arg4       |  |
96  // | arg3 spill |  |  Caller's frame
97  // | arg2 spill |  |
98  // | arg1 spill |  |
99  // | Method*    | ---
100  // | LR         |
101  // | X29        |
102  // |  :         |
103  // | X20        |
104  // | X7         |
105  // | :          |
106  // | X1         |
107  // | D7         |
108  // |  :         |
109  // | D0         |
110  // |            |    padding
111  // | Method*    |  <- sp
112  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
113  static constexpr bool kAlignPairRegister = false;
114  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
115  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
116  static constexpr bool kQuickSkipOddFpRegisters = false;
117  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
118  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
119  static constexpr bool kGprFprLockstep = false;
120  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
121      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
122  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
123      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
124  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
125      arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
126  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
127    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
128  }
129#elif defined(__mips__) && !defined(__LP64__)
130  // The callee save frame is pointed to by SP.
131  // | argN       |  |
132  // | ...        |  |
133  // | arg4       |  |
134  // | arg3 spill |  |  Caller's frame
135  // | arg2 spill |  |
136  // | arg1 spill |  |
137  // | Method*    | ---
138  // | RA         |
139  // | ...        |    callee saves
140  // | T1         |    arg5
141  // | T0         |    arg4
142  // | A3         |    arg3
143  // | A2         |    arg2
144  // | A1         |    arg1
145  // | F19        |
146  // | F18        |    f_arg5
147  // | F17        |
148  // | F16        |    f_arg4
149  // | F15        |
150  // | F14        |    f_arg3
151  // | F13        |
152  // | F12        |    f_arg2
153  // | F11        |
154  // | F10        |    f_arg1
155  // | F9         |
156  // | F8         |    f_arg0
157  // |            |    padding
158  // | A0/Method* |  <- sp
159  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
160  static constexpr bool kAlignPairRegister = true;
161  static constexpr bool kQuickSoftFloatAbi = false;
162  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
163  static constexpr bool kQuickSkipOddFpRegisters = true;
164  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
165  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
166                                                  // passed only in even numbered registers and each
167                                                  // double occupies two registers.
168  static constexpr bool kGprFprLockstep = false;
169  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
170  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
171  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
172  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
173    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
174  }
175#elif defined(__mips__) && defined(__LP64__)
176  // The callee save frame is pointed to by SP.
177  // | argN       |  |
178  // | ...        |  |
179  // | arg4       |  |
180  // | arg3 spill |  |  Caller's frame
181  // | arg2 spill |  |
182  // | arg1 spill |  |
183  // | Method*    | ---
184  // | RA         |
185  // | ...        |    callee saves
186  // | A7         |    arg7
187  // | A6         |    arg6
188  // | A5         |    arg5
189  // | A4         |    arg4
190  // | A3         |    arg3
191  // | A2         |    arg2
192  // | A1         |    arg1
193  // | F19        |    f_arg7
194  // | F18        |    f_arg6
195  // | F17        |    f_arg5
196  // | F16        |    f_arg4
197  // | F15        |    f_arg3
198  // | F14        |    f_arg2
199  // | F13        |    f_arg1
200  // | F12        |    f_arg0
201  // |            |    padding
202  // | A0/Method* |  <- sp
203  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
204  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
205  static constexpr bool kAlignPairRegister = false;
206  static constexpr bool kQuickSoftFloatAbi = false;
207  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
208  static constexpr bool kQuickSkipOddFpRegisters = false;
209  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
210  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
211  static constexpr bool kGprFprLockstep = true;
212
213  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
214  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
215  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
216  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
217    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
218  }
219#elif defined(__i386__)
220  // The callee save frame is pointed to by SP.
221  // | argN        |  |
222  // | ...         |  |
223  // | arg4        |  |
224  // | arg3 spill  |  |  Caller's frame
225  // | arg2 spill  |  |
226  // | arg1 spill  |  |
227  // | Method*     | ---
228  // | Return      |
229  // | EBP,ESI,EDI |    callee saves
230  // | EBX         |    arg3
231  // | EDX         |    arg2
232  // | ECX         |    arg1
233  // | XMM3        |    float arg 4
234  // | XMM2        |    float arg 3
235  // | XMM1        |    float arg 2
236  // | XMM0        |    float arg 1
237  // | EAX/Method* |  <- sp
238  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
239  static constexpr bool kAlignPairRegister = false;
240  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
241  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
242  static constexpr bool kQuickSkipOddFpRegisters = false;
243  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
244  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
245  static constexpr bool kGprFprLockstep = false;
246  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
247  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
248  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
249  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
250    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
251  }
252#elif defined(__x86_64__)
253  // The callee save frame is pointed to by SP.
254  // | argN            |  |
255  // | ...             |  |
256  // | reg. arg spills |  |  Caller's frame
257  // | Method*         | ---
258  // | Return          |
259  // | R15             |    callee save
260  // | R14             |    callee save
261  // | R13             |    callee save
262  // | R12             |    callee save
263  // | R9              |    arg5
264  // | R8              |    arg4
265  // | RSI/R6          |    arg1
266  // | RBP/R5          |    callee save
267  // | RBX/R3          |    callee save
268  // | RDX/R2          |    arg2
269  // | RCX/R1          |    arg3
270  // | XMM7            |    float arg 8
271  // | XMM6            |    float arg 7
272  // | XMM5            |    float arg 6
273  // | XMM4            |    float arg 5
274  // | XMM3            |    float arg 4
275  // | XMM2            |    float arg 3
276  // | XMM1            |    float arg 2
277  // | XMM0            |    float arg 1
278  // | Padding         |
279  // | RDI/Method*     |  <- sp
280  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
281  static constexpr bool kAlignPairRegister = false;
282  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
283  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
284  static constexpr bool kQuickSkipOddFpRegisters = false;
285  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
286  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
287  static constexpr bool kGprFprLockstep = false;
288  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
289  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
290  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
291  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292    switch (gpr_index) {
293      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298      default:
299      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300      return 0;
301    }
302  }
303#else
304#error "Unsupported architecture"
305#endif
306
307 public:
308  // Special handling for proxy methods. Proxy methods are instance methods so the
309  // 'this' object is the 1st argument. They also have the same frame layout as the
310  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311  // 1st GPR.
312  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
313      REQUIRES_SHARED(Locks::mutator_lock_) {
314    CHECK((*sp)->IsProxyMethod());
315    CHECK_GT(kNumQuickGprArgs, 0u);
316    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
317    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318        GprIndexToGprOffset(kThisGprIndex);
319    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
321  }
322
323  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324    DCHECK((*sp)->IsCalleeSaveMethod());
325    return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
326  }
327
328  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329    DCHECK((*sp)->IsCalleeSaveMethod());
330    uint8_t* previous_sp =
331        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332    return *reinterpret_cast<ArtMethod**>(previous_sp);
333  }
334
335  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336    DCHECK((*sp)->IsCalleeSaveMethod());
337    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
338    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
339        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
340    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
341    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
342    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
343
344    if (current_code->IsOptimized()) {
345      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
346      CodeInfoEncoding encoding = code_info.ExtractEncoding();
347      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
348      DCHECK(stack_map.IsValid());
349      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
350        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
351        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
352                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
353      } else {
354        return stack_map.GetDexPc(encoding.stack_map.encoding);
355      }
356    } else {
357      return current_code->ToDexPc(*caller_sp, outer_pc);
358    }
359  }
360
361  // For the given quick ref and args quick frame, return the caller's PC.
362  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
363    DCHECK((*sp)->IsCalleeSaveMethod());
364    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
365    return *reinterpret_cast<uintptr_t*>(lr);
366  }
367
368  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
369                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
370          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
371          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
372          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
373          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
374              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
375          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
376          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
377    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
378                  "Number of Quick FPR arguments unexpected");
379    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
380                  "Double alignment unexpected");
381    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
382    // next register is even.
383    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
384                  "Number of Quick FPR arguments not even");
385    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
386  }
387
388  virtual ~QuickArgumentVisitor() {}
389
390  virtual void Visit() = 0;
391
392  Primitive::Type GetParamPrimitiveType() const {
393    return cur_type_;
394  }
395
396  uint8_t* GetParamAddress() const {
397    if (!kQuickSoftFloatAbi) {
398      Primitive::Type type = GetParamPrimitiveType();
399      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
400        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
401          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
402            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
403          }
404        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
405          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
406        }
407        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
408      }
409    }
410    if (gpr_index_ < kNumQuickGprArgs) {
411      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
412    }
413    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
414  }
415
416  bool IsSplitLongOrDouble() const {
417    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
418        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
419      return is_split_long_or_double_;
420    } else {
421      return false;  // An optimization for when GPR and FPRs are 64bit.
422    }
423  }
424
425  bool IsParamAReference() const {
426    return GetParamPrimitiveType() == Primitive::kPrimNot;
427  }
428
429  bool IsParamALongOrDouble() const {
430    Primitive::Type type = GetParamPrimitiveType();
431    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
432  }
433
434  uint64_t ReadSplitLongParam() const {
435    // The splitted long is always available through the stack.
436    return *reinterpret_cast<uint64_t*>(stack_args_
437        + stack_index_ * kBytesStackArgLocation);
438  }
439
440  void IncGprIndex() {
441    gpr_index_++;
442    if (kGprFprLockstep) {
443      fpr_index_++;
444    }
445  }
446
447  void IncFprIndex() {
448    fpr_index_++;
449    if (kGprFprLockstep) {
450      gpr_index_++;
451    }
452  }
453
454  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
455    // (a) 'stack_args_' should point to the first method's argument
456    // (b) whatever the argument type it is, the 'stack_index_' should
457    //     be moved forward along with every visiting.
458    gpr_index_ = 0;
459    fpr_index_ = 0;
460    if (kQuickDoubleRegAlignedFloatBackFilled) {
461      fpr_double_index_ = 0;
462    }
463    stack_index_ = 0;
464    if (!is_static_) {  // Handle this.
465      cur_type_ = Primitive::kPrimNot;
466      is_split_long_or_double_ = false;
467      Visit();
468      stack_index_++;
469      if (kNumQuickGprArgs > 0) {
470        IncGprIndex();
471      }
472    }
473    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
474      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
475      switch (cur_type_) {
476        case Primitive::kPrimNot:
477        case Primitive::kPrimBoolean:
478        case Primitive::kPrimByte:
479        case Primitive::kPrimChar:
480        case Primitive::kPrimShort:
481        case Primitive::kPrimInt:
482          is_split_long_or_double_ = false;
483          Visit();
484          stack_index_++;
485          if (gpr_index_ < kNumQuickGprArgs) {
486            IncGprIndex();
487          }
488          break;
489        case Primitive::kPrimFloat:
490          is_split_long_or_double_ = false;
491          Visit();
492          stack_index_++;
493          if (kQuickSoftFloatAbi) {
494            if (gpr_index_ < kNumQuickGprArgs) {
495              IncGprIndex();
496            }
497          } else {
498            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
499              IncFprIndex();
500              if (kQuickDoubleRegAlignedFloatBackFilled) {
501                // Double should not overlap with float.
502                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
503                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
504                // Float should not overlap with double.
505                if (fpr_index_ % 2 == 0) {
506                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
507                }
508              } else if (kQuickSkipOddFpRegisters) {
509                IncFprIndex();
510              }
511            }
512          }
513          break;
514        case Primitive::kPrimDouble:
515        case Primitive::kPrimLong:
516          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
517            if (cur_type_ == Primitive::kPrimLong &&
518#if defined(__mips__) && !defined(__LP64__)
519                (gpr_index_ == 0 || gpr_index_ == 2) &&
520#else
521                gpr_index_ == 0 &&
522#endif
523                kAlignPairRegister) {
524              // Currently, this is only for ARM and MIPS, where we align long parameters with
525              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
526              // R2 (on ARM) or A2(T0) (on MIPS) instead.
527              IncGprIndex();
528            }
529            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
530                ((gpr_index_ + 1) == kNumQuickGprArgs);
531            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
532              // We don't want to split this. Pass over this register.
533              gpr_index_++;
534              is_split_long_or_double_ = false;
535            }
536            Visit();
537            if (kBytesStackArgLocation == 4) {
538              stack_index_+= 2;
539            } else {
540              CHECK_EQ(kBytesStackArgLocation, 8U);
541              stack_index_++;
542            }
543            if (gpr_index_ < kNumQuickGprArgs) {
544              IncGprIndex();
545              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
546                if (gpr_index_ < kNumQuickGprArgs) {
547                  IncGprIndex();
548                }
549              }
550            }
551          } else {
552            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
553                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
554            Visit();
555            if (kBytesStackArgLocation == 4) {
556              stack_index_+= 2;
557            } else {
558              CHECK_EQ(kBytesStackArgLocation, 8U);
559              stack_index_++;
560            }
561            if (kQuickDoubleRegAlignedFloatBackFilled) {
562              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
563                fpr_double_index_ += 2;
564                // Float should not overlap with double.
565                if (fpr_index_ % 2 == 0) {
566                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
567                }
568              }
569            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
570              IncFprIndex();
571              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
572                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
573                  IncFprIndex();
574                }
575              }
576            }
577          }
578          break;
579        default:
580          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
581      }
582    }
583  }
584
585 protected:
586  const bool is_static_;
587  const char* const shorty_;
588  const uint32_t shorty_len_;
589
590 private:
591  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
592  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
593  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
594  uint32_t gpr_index_;  // Index into spilled GPRs.
595  // Index into spilled FPRs.
596  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
597  // holds a higher register number.
598  uint32_t fpr_index_;
599  // Index into spilled FPRs for aligned double.
600  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
601  // terms of singles, may be behind fpr_index.
602  uint32_t fpr_double_index_;
603  uint32_t stack_index_;  // Index into arguments on the stack.
604  // The current type of argument during VisitArguments.
605  Primitive::Type cur_type_;
606  // Does a 64bit parameter straddle the register and stack arguments?
607  bool is_split_long_or_double_;
608};
609
610// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
611// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
612extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
613    REQUIRES_SHARED(Locks::mutator_lock_) {
614  return QuickArgumentVisitor::GetProxyThisObject(sp);
615}
616
617// Visits arguments on the stack placing them into the shadow frame.
618class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
619 public:
620  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
621                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
622      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
623
624  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
625
626 private:
627  ShadowFrame* const sf_;
628  uint32_t cur_reg_;
629
630  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
631};
632
633void BuildQuickShadowFrameVisitor::Visit() {
634  Primitive::Type type = GetParamPrimitiveType();
635  switch (type) {
636    case Primitive::kPrimLong:  // Fall-through.
637    case Primitive::kPrimDouble:
638      if (IsSplitLongOrDouble()) {
639        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
640      } else {
641        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
642      }
643      ++cur_reg_;
644      break;
645    case Primitive::kPrimNot: {
646        StackReference<mirror::Object>* stack_ref =
647            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
648        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
649      }
650      break;
651    case Primitive::kPrimBoolean:  // Fall-through.
652    case Primitive::kPrimByte:     // Fall-through.
653    case Primitive::kPrimChar:     // Fall-through.
654    case Primitive::kPrimShort:    // Fall-through.
655    case Primitive::kPrimInt:      // Fall-through.
656    case Primitive::kPrimFloat:
657      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
658      break;
659    case Primitive::kPrimVoid:
660      LOG(FATAL) << "UNREACHABLE";
661      UNREACHABLE();
662  }
663  ++cur_reg_;
664}
665
666extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
667    REQUIRES_SHARED(Locks::mutator_lock_) {
668  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
669  // frame.
670  ScopedQuickEntrypointChecks sqec(self);
671
672  if (UNLIKELY(!method->IsInvokable())) {
673    method->ThrowInvocationTimeError();
674    return 0;
675  }
676
677  JValue tmp_value;
678  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
679      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
680  ManagedStack fragment;
681
682  DCHECK(!method->IsNative()) << method->PrettyMethod();
683  uint32_t shorty_len = 0;
684  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
685  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
686  DCHECK(code_item != nullptr) << method->PrettyMethod();
687  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
688
689  JValue result;
690
691  if (deopt_frame != nullptr) {
692    // Coming from partial-fragment deopt.
693
694    if (kIsDebugBuild) {
695      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
696      // of the call-stack) corresponds to the called method.
697      ShadowFrame* linked = deopt_frame;
698      while (linked->GetLink() != nullptr) {
699        linked = linked->GetLink();
700      }
701      CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
702          << ArtMethod::PrettyMethod(linked->GetMethod());
703    }
704
705    if (VLOG_IS_ON(deopt)) {
706      // Print out the stack to verify that it was a partial-fragment deopt.
707      LOG(INFO) << "Continue-ing from deopt. Stack is:";
708      QuickExceptionHandler::DumpFramesWithType(self, true);
709    }
710
711    ObjPtr<mirror::Throwable> pending_exception;
712    bool from_code = false;
713    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
714
715    // Push a transition back into managed code onto the linked list in thread.
716    self->PushManagedStackFragment(&fragment);
717
718    // Ensure that the stack is still in order.
719    if (kIsDebugBuild) {
720      class DummyStackVisitor : public StackVisitor {
721       public:
722        explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
723            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
724
725        bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
726          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
727          // logic. Just always say we want to continue.
728          return true;
729        }
730      };
731      DummyStackVisitor dsv(self);
732      dsv.WalkStack();
733    }
734
735    // Restore the exception that was pending before deoptimization then interpret the
736    // deoptimized frames.
737    if (pending_exception != nullptr) {
738      self->SetException(pending_exception);
739    }
740    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
741  } else {
742    const char* old_cause = self->StartAssertNoThreadSuspension(
743        "Building interpreter shadow frame");
744    uint16_t num_regs = code_item->registers_size_;
745    // No last shadow coming from quick.
746    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
747        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
748    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
749    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
750    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
751                                                      shadow_frame, first_arg_reg);
752    shadow_frame_builder.VisitArguments();
753    const bool needs_initialization =
754        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
755    // Push a transition back into managed code onto the linked list in thread.
756    self->PushManagedStackFragment(&fragment);
757    self->PushShadowFrame(shadow_frame);
758    self->EndAssertNoThreadSuspension(old_cause);
759
760    if (needs_initialization) {
761      // Ensure static method's class is initialized.
762      StackHandleScope<1> hs(self);
763      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
764      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
765        DCHECK(Thread::Current()->IsExceptionPending())
766            << shadow_frame->GetMethod()->PrettyMethod();
767        self->PopManagedStackFragment(fragment);
768        return 0;
769      }
770    }
771
772    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
773  }
774
775  // Pop transition.
776  self->PopManagedStackFragment(fragment);
777
778  // Request a stack deoptimization if needed
779  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
780  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
781  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
782  // should be done and it knows the real return pc.
783  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
784               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
785    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
786      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
787                   << caller->PrettyMethod();
788    } else {
789      // Push the context of the deoptimization stack so we can restore the return value and the
790      // exception before executing the deoptimized frames.
791      self->PushDeoptimizationContext(
792          result, shorty[0] == 'L', /* from_code */ false, self->GetException());
793
794      // Set special exception to cause deoptimization.
795      self->SetException(Thread::GetDeoptimizationException());
796    }
797  }
798
799  // No need to restore the args since the method has already been run by the interpreter.
800  return result.GetJ();
801}
802
803// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
804// to jobjects.
805class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
806 public:
807  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
808                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
809      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
810
811  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
812
813  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
814
815 private:
816  ScopedObjectAccessUnchecked* const soa_;
817  std::vector<jvalue>* const args_;
818  // References which we must update when exiting in case the GC moved the objects.
819  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
820
821  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
822};
823
824void BuildQuickArgumentVisitor::Visit() {
825  jvalue val;
826  Primitive::Type type = GetParamPrimitiveType();
827  switch (type) {
828    case Primitive::kPrimNot: {
829      StackReference<mirror::Object>* stack_ref =
830          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
831      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
832      references_.push_back(std::make_pair(val.l, stack_ref));
833      break;
834    }
835    case Primitive::kPrimLong:  // Fall-through.
836    case Primitive::kPrimDouble:
837      if (IsSplitLongOrDouble()) {
838        val.j = ReadSplitLongParam();
839      } else {
840        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
841      }
842      break;
843    case Primitive::kPrimBoolean:  // Fall-through.
844    case Primitive::kPrimByte:     // Fall-through.
845    case Primitive::kPrimChar:     // Fall-through.
846    case Primitive::kPrimShort:    // Fall-through.
847    case Primitive::kPrimInt:      // Fall-through.
848    case Primitive::kPrimFloat:
849      val.i = *reinterpret_cast<jint*>(GetParamAddress());
850      break;
851    case Primitive::kPrimVoid:
852      LOG(FATAL) << "UNREACHABLE";
853      UNREACHABLE();
854  }
855  args_->push_back(val);
856}
857
858void BuildQuickArgumentVisitor::FixupReferences() {
859  // Fixup any references which may have changed.
860  for (const auto& pair : references_) {
861    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
862    soa_->Env()->DeleteLocalRef(pair.first);
863  }
864}
865
866// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
867// which is responsible for recording callee save registers. We explicitly place into jobjects the
868// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
869// field within the proxy object, which will box the primitive arguments and deal with error cases.
870extern "C" uint64_t artQuickProxyInvokeHandler(
871    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
872    REQUIRES_SHARED(Locks::mutator_lock_) {
873  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
874  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
875  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
876  const char* old_cause =
877      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
878  // Register the top of the managed stack, making stack crawlable.
879  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
880  self->VerifyStack();
881  // Start new JNI local reference state.
882  JNIEnvExt* env = self->GetJniEnv();
883  ScopedObjectAccessUnchecked soa(env);
884  ScopedJniEnvLocalRefState env_state(env);
885  // Create local ref. copies of proxy method and the receiver.
886  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
887
888  // Placing arguments into args vector and remove the receiver.
889  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
890  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
891                                       << non_proxy_method->PrettyMethod();
892  std::vector<jvalue> args;
893  uint32_t shorty_len = 0;
894  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
895  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
896
897  local_ref_visitor.VisitArguments();
898  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
899  args.erase(args.begin());
900
901  // Convert proxy method into expected interface method.
902  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
903  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
904  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
905  self->EndAssertNoThreadSuspension(old_cause);
906  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
907  DCHECK(!Runtime::Current()->IsActiveTransaction());
908  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
909      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
910                                                                      interface_method));
911
912  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
913  // that performs allocations.
914  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
915  // Restore references which might have moved.
916  local_ref_visitor.FixupReferences();
917  return result.GetJ();
918}
919
920// Read object references held in arguments from quick frames and place in a JNI local references,
921// so they don't get garbage collected.
922class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
923 public:
924  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
925                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
926      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
927
928  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
929
930  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
931
932 private:
933  ScopedObjectAccessUnchecked* const soa_;
934  // References which we must update when exiting in case the GC moved the objects.
935  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
936
937  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
938};
939
940void RememberForGcArgumentVisitor::Visit() {
941  if (IsParamAReference()) {
942    StackReference<mirror::Object>* stack_ref =
943        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
944    jobject reference =
945        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
946    references_.push_back(std::make_pair(reference, stack_ref));
947  }
948}
949
950void RememberForGcArgumentVisitor::FixupReferences() {
951  // Fixup any references which may have changed.
952  for (const auto& pair : references_) {
953    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
954    soa_->Env()->DeleteLocalRef(pair.first);
955  }
956}
957
958// Lazily resolve a method for quick. Called by stub code.
959extern "C" const void* artQuickResolutionTrampoline(
960    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
961    REQUIRES_SHARED(Locks::mutator_lock_) {
962  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
963  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
964  // does not have the same stack layout as the callee-save method).
965  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
966  // Start new JNI local reference state
967  JNIEnvExt* env = self->GetJniEnv();
968  ScopedObjectAccessUnchecked soa(env);
969  ScopedJniEnvLocalRefState env_state(env);
970  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
971
972  // Compute details about the called method (avoid GCs)
973  ClassLinker* linker = Runtime::Current()->GetClassLinker();
974  InvokeType invoke_type;
975  MethodReference called_method(nullptr, 0);
976  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
977  ArtMethod* caller = nullptr;
978  if (!called_method_known_on_entry) {
979    caller = QuickArgumentVisitor::GetCallingMethod(sp);
980    uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
981    const DexFile::CodeItem* code;
982    called_method.dex_file = caller->GetDexFile();
983    code = caller->GetCodeItem();
984    CHECK_LT(dex_pc, code->insns_size_in_code_units_);
985    const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
986    Instruction::Code instr_code = instr->Opcode();
987    bool is_range;
988    switch (instr_code) {
989      case Instruction::INVOKE_DIRECT:
990        invoke_type = kDirect;
991        is_range = false;
992        break;
993      case Instruction::INVOKE_DIRECT_RANGE:
994        invoke_type = kDirect;
995        is_range = true;
996        break;
997      case Instruction::INVOKE_STATIC:
998        invoke_type = kStatic;
999        is_range = false;
1000        break;
1001      case Instruction::INVOKE_STATIC_RANGE:
1002        invoke_type = kStatic;
1003        is_range = true;
1004        break;
1005      case Instruction::INVOKE_SUPER:
1006        invoke_type = kSuper;
1007        is_range = false;
1008        break;
1009      case Instruction::INVOKE_SUPER_RANGE:
1010        invoke_type = kSuper;
1011        is_range = true;
1012        break;
1013      case Instruction::INVOKE_VIRTUAL:
1014        invoke_type = kVirtual;
1015        is_range = false;
1016        break;
1017      case Instruction::INVOKE_VIRTUAL_RANGE:
1018        invoke_type = kVirtual;
1019        is_range = true;
1020        break;
1021      case Instruction::INVOKE_INTERFACE:
1022        invoke_type = kInterface;
1023        is_range = false;
1024        break;
1025      case Instruction::INVOKE_INTERFACE_RANGE:
1026        invoke_type = kInterface;
1027        is_range = true;
1028        break;
1029      default:
1030        LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1031        UNREACHABLE();
1032    }
1033    called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1034  } else {
1035    invoke_type = kStatic;
1036    called_method.dex_file = called->GetDexFile();
1037    called_method.dex_method_index = called->GetDexMethodIndex();
1038  }
1039  uint32_t shorty_len;
1040  const char* shorty =
1041      called_method.dex_file->GetMethodShorty(
1042          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1043  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1044  visitor.VisitArguments();
1045  self->EndAssertNoThreadSuspension(old_cause);
1046  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1047  // Resolve method filling in dex cache.
1048  if (!called_method_known_on_entry) {
1049    StackHandleScope<1> hs(self);
1050    mirror::Object* dummy = nullptr;
1051    HandleWrapper<mirror::Object> h_receiver(
1052        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1053    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1054    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1055        self, called_method.dex_method_index, caller, invoke_type);
1056  }
1057  const void* code = nullptr;
1058  if (LIKELY(!self->IsExceptionPending())) {
1059    // Incompatible class change should have been handled in resolve method.
1060    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1061        << called->PrettyMethod() << " " << invoke_type;
1062    if (virtual_or_interface || invoke_type == kSuper) {
1063      // Refine called method based on receiver for kVirtual/kInterface, and
1064      // caller for kSuper.
1065      ArtMethod* orig_called = called;
1066      if (invoke_type == kVirtual) {
1067        CHECK(receiver != nullptr) << invoke_type;
1068        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1069      } else if (invoke_type == kInterface) {
1070        CHECK(receiver != nullptr) << invoke_type;
1071        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1072      } else {
1073        DCHECK_EQ(invoke_type, kSuper);
1074        CHECK(caller != nullptr) << invoke_type;
1075        StackHandleScope<2> hs(self);
1076        Handle<mirror::DexCache> dex_cache(
1077            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1078        Handle<mirror::ClassLoader> class_loader(
1079            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1080        // TODO Maybe put this into a mirror::Class function.
1081        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1082            called_method.dex_method_index, dex_cache, class_loader);
1083        if (ref_class->IsInterface()) {
1084          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1085        } else {
1086          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1087              called->GetMethodIndex(), kRuntimePointerSize);
1088        }
1089      }
1090
1091      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1092                               << mirror::Object::PrettyTypeOf(receiver) << " "
1093                               << invoke_type << " " << orig_called->GetVtableIndex();
1094
1095      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1096      // of the sharpened method avoiding dirtying the dex cache if possible.
1097      // Note, called_method.dex_method_index references the dex method before the
1098      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1099      // about the name and signature.
1100      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1101      if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1102        // Calling from one dex file to another, need to compute the method index appropriate to
1103        // the caller's dex file. Since we get here only if the original called was a runtime
1104        // method, we've got the correct dex_file and a dex_method_idx from above.
1105        DCHECK(!called_method_known_on_entry);
1106        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1107        const DexFile* caller_dex_file = called_method.dex_file;
1108        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1109        update_dex_cache_method_index =
1110            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1111                                                     caller_method_name_and_sig_index);
1112      }
1113      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1114          (caller->GetDexCacheResolvedMethod(
1115              update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1116        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1117                                          called,
1118                                          kRuntimePointerSize);
1119      }
1120    } else if (invoke_type == kStatic) {
1121      const auto called_dex_method_idx = called->GetDexMethodIndex();
1122      // For static invokes, we may dispatch to the static method in the superclass but resolve
1123      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1124      // resolved method for the super class dex method index if we are in the same dex file.
1125      // b/19175856
1126      if (called->GetDexFile() == called_method.dex_file &&
1127          called_method.dex_method_index != called_dex_method_idx) {
1128        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1129                                                 called,
1130                                                 kRuntimePointerSize);
1131      }
1132    }
1133
1134    // Ensure that the called method's class is initialized.
1135    StackHandleScope<1> hs(soa.Self());
1136    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1137    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1138    if (LIKELY(called_class->IsInitialized())) {
1139      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1140        // If we are single-stepping or the called method is deoptimized (by a
1141        // breakpoint, for example), then we have to execute the called method
1142        // with the interpreter.
1143        code = GetQuickToInterpreterBridge();
1144      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1145        // If the caller is deoptimized (by a breakpoint, for example), we have to
1146        // continue its execution with interpreter when returning from the called
1147        // method. Because we do not want to execute the called method with the
1148        // interpreter, we wrap its execution into the instrumentation stubs.
1149        // When the called method returns, it will execute the instrumentation
1150        // exit hook that will determine the need of the interpreter with a call
1151        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1152        // it is needed.
1153        code = GetQuickInstrumentationEntryPoint();
1154      } else {
1155        code = called->GetEntryPointFromQuickCompiledCode();
1156      }
1157    } else if (called_class->IsInitializing()) {
1158      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1159        // If we are single-stepping or the called method is deoptimized (by a
1160        // breakpoint, for example), then we have to execute the called method
1161        // with the interpreter.
1162        code = GetQuickToInterpreterBridge();
1163      } else if (invoke_type == kStatic) {
1164        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1165        // until class is initialized to stop races between threads).
1166        code = linker->GetQuickOatCodeFor(called);
1167      } else {
1168        // No trampoline for non-static methods.
1169        code = called->GetEntryPointFromQuickCompiledCode();
1170      }
1171    } else {
1172      DCHECK(called_class->IsErroneous());
1173    }
1174  }
1175  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1176  // Fixup any locally saved objects may have moved during a GC.
1177  visitor.FixupReferences();
1178  // Place called method in callee-save frame to be placed as first argument to quick method.
1179  *sp = called;
1180
1181  return code;
1182}
1183
1184/*
1185 * This class uses a couple of observations to unite the different calling conventions through
1186 * a few constants.
1187 *
1188 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1189 *    possible alignment.
1190 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1191 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1192 *    when we have to split things
1193 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1194 *    and we can use Int handling directly.
1195 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1196 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1197 *    extension should be compatible with Aarch64, which mandates copying the available bits
1198 *    into LSB and leaving the rest unspecified.
1199 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1200 *    the stack.
1201 * 6) There is only little endian.
1202 *
1203 *
1204 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1205 * follows:
1206 *
1207 * void PushGpr(uintptr_t):   Add a value for the next GPR
1208 *
1209 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1210 *                            padding, that is, think the architecture is 32b and aligns 64b.
1211 *
1212 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1213 *                            split this if necessary. The current state will have aligned, if
1214 *                            necessary.
1215 *
1216 * void PushStack(uintptr_t): Push a value to the stack.
1217 *
1218 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1219 *                                          as this might be important for null initialization.
1220 *                                          Must return the jobject, that is, the reference to the
1221 *                                          entry in the HandleScope (nullptr if necessary).
1222 *
1223 */
1224template<class T> class BuildNativeCallFrameStateMachine {
1225 public:
1226#if defined(__arm__)
1227  // TODO: These are all dummy values!
1228  static constexpr bool kNativeSoftFloatAbi = true;
1229  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1230  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1231
1232  static constexpr size_t kRegistersNeededForLong = 2;
1233  static constexpr size_t kRegistersNeededForDouble = 2;
1234  static constexpr bool kMultiRegistersAligned = true;
1235  static constexpr bool kMultiFPRegistersWidened = false;
1236  static constexpr bool kMultiGPRegistersWidened = false;
1237  static constexpr bool kAlignLongOnStack = true;
1238  static constexpr bool kAlignDoubleOnStack = true;
1239#elif defined(__aarch64__)
1240  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1241  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1242  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1243
1244  static constexpr size_t kRegistersNeededForLong = 1;
1245  static constexpr size_t kRegistersNeededForDouble = 1;
1246  static constexpr bool kMultiRegistersAligned = false;
1247  static constexpr bool kMultiFPRegistersWidened = false;
1248  static constexpr bool kMultiGPRegistersWidened = false;
1249  static constexpr bool kAlignLongOnStack = false;
1250  static constexpr bool kAlignDoubleOnStack = false;
1251#elif defined(__mips__) && !defined(__LP64__)
1252  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1253  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1254  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1255
1256  static constexpr size_t kRegistersNeededForLong = 2;
1257  static constexpr size_t kRegistersNeededForDouble = 2;
1258  static constexpr bool kMultiRegistersAligned = true;
1259  static constexpr bool kMultiFPRegistersWidened = true;
1260  static constexpr bool kMultiGPRegistersWidened = false;
1261  static constexpr bool kAlignLongOnStack = true;
1262  static constexpr bool kAlignDoubleOnStack = true;
1263#elif defined(__mips__) && defined(__LP64__)
1264  // Let the code prepare GPRs only and we will load the FPRs with same data.
1265  static constexpr bool kNativeSoftFloatAbi = true;
1266  static constexpr size_t kNumNativeGprArgs = 8;
1267  static constexpr size_t kNumNativeFprArgs = 0;
1268
1269  static constexpr size_t kRegistersNeededForLong = 1;
1270  static constexpr size_t kRegistersNeededForDouble = 1;
1271  static constexpr bool kMultiRegistersAligned = false;
1272  static constexpr bool kMultiFPRegistersWidened = false;
1273  static constexpr bool kMultiGPRegistersWidened = true;
1274  static constexpr bool kAlignLongOnStack = false;
1275  static constexpr bool kAlignDoubleOnStack = false;
1276#elif defined(__i386__)
1277  // TODO: Check these!
1278  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1279  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1280  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1281
1282  static constexpr size_t kRegistersNeededForLong = 2;
1283  static constexpr size_t kRegistersNeededForDouble = 2;
1284  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1285  static constexpr bool kMultiFPRegistersWidened = false;
1286  static constexpr bool kMultiGPRegistersWidened = false;
1287  static constexpr bool kAlignLongOnStack = false;
1288  static constexpr bool kAlignDoubleOnStack = false;
1289#elif defined(__x86_64__)
1290  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1291  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1292  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1293
1294  static constexpr size_t kRegistersNeededForLong = 1;
1295  static constexpr size_t kRegistersNeededForDouble = 1;
1296  static constexpr bool kMultiRegistersAligned = false;
1297  static constexpr bool kMultiFPRegistersWidened = false;
1298  static constexpr bool kMultiGPRegistersWidened = false;
1299  static constexpr bool kAlignLongOnStack = false;
1300  static constexpr bool kAlignDoubleOnStack = false;
1301#else
1302#error "Unsupported architecture"
1303#endif
1304
1305 public:
1306  explicit BuildNativeCallFrameStateMachine(T* delegate)
1307      : gpr_index_(kNumNativeGprArgs),
1308        fpr_index_(kNumNativeFprArgs),
1309        stack_entries_(0),
1310        delegate_(delegate) {
1311    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1312    // the next register is even; counting down is just to make the compiler happy...
1313    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1314    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1315  }
1316
1317  virtual ~BuildNativeCallFrameStateMachine() {}
1318
1319  bool HavePointerGpr() const {
1320    return gpr_index_ > 0;
1321  }
1322
1323  void AdvancePointer(const void* val) {
1324    if (HavePointerGpr()) {
1325      gpr_index_--;
1326      PushGpr(reinterpret_cast<uintptr_t>(val));
1327    } else {
1328      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1329      PushStack(reinterpret_cast<uintptr_t>(val));
1330      gpr_index_ = 0;
1331    }
1332  }
1333
1334  bool HaveHandleScopeGpr() const {
1335    return gpr_index_ > 0;
1336  }
1337
1338  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1339    uintptr_t handle = PushHandle(ptr);
1340    if (HaveHandleScopeGpr()) {
1341      gpr_index_--;
1342      PushGpr(handle);
1343    } else {
1344      stack_entries_++;
1345      PushStack(handle);
1346      gpr_index_ = 0;
1347    }
1348  }
1349
1350  bool HaveIntGpr() const {
1351    return gpr_index_ > 0;
1352  }
1353
1354  void AdvanceInt(uint32_t val) {
1355    if (HaveIntGpr()) {
1356      gpr_index_--;
1357      if (kMultiGPRegistersWidened) {
1358        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1359        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1360      } else {
1361        PushGpr(val);
1362      }
1363    } else {
1364      stack_entries_++;
1365      if (kMultiGPRegistersWidened) {
1366        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1367        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1368      } else {
1369        PushStack(val);
1370      }
1371      gpr_index_ = 0;
1372    }
1373  }
1374
1375  bool HaveLongGpr() const {
1376    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1377  }
1378
1379  bool LongGprNeedsPadding() const {
1380    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1381        kAlignLongOnStack &&                  // and when it needs alignment
1382        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1383  }
1384
1385  bool LongStackNeedsPadding() const {
1386    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1387        kAlignLongOnStack &&                  // and when it needs 8B alignment
1388        (stack_entries_ & 1) == 1;            // counter is odd
1389  }
1390
1391  void AdvanceLong(uint64_t val) {
1392    if (HaveLongGpr()) {
1393      if (LongGprNeedsPadding()) {
1394        PushGpr(0);
1395        gpr_index_--;
1396      }
1397      if (kRegistersNeededForLong == 1) {
1398        PushGpr(static_cast<uintptr_t>(val));
1399      } else {
1400        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1401        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1402      }
1403      gpr_index_ -= kRegistersNeededForLong;
1404    } else {
1405      if (LongStackNeedsPadding()) {
1406        PushStack(0);
1407        stack_entries_++;
1408      }
1409      if (kRegistersNeededForLong == 1) {
1410        PushStack(static_cast<uintptr_t>(val));
1411        stack_entries_++;
1412      } else {
1413        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1414        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1415        stack_entries_ += 2;
1416      }
1417      gpr_index_ = 0;
1418    }
1419  }
1420
1421  bool HaveFloatFpr() const {
1422    return fpr_index_ > 0;
1423  }
1424
1425  void AdvanceFloat(float val) {
1426    if (kNativeSoftFloatAbi) {
1427      AdvanceInt(bit_cast<uint32_t, float>(val));
1428    } else {
1429      if (HaveFloatFpr()) {
1430        fpr_index_--;
1431        if (kRegistersNeededForDouble == 1) {
1432          if (kMultiFPRegistersWidened) {
1433            PushFpr8(bit_cast<uint64_t, double>(val));
1434          } else {
1435            // No widening, just use the bits.
1436            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1437          }
1438        } else {
1439          PushFpr4(val);
1440        }
1441      } else {
1442        stack_entries_++;
1443        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1444          // Need to widen before storing: Note the "double" in the template instantiation.
1445          // Note: We need to jump through those hoops to make the compiler happy.
1446          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1447          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1448        } else {
1449          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1450        }
1451        fpr_index_ = 0;
1452      }
1453    }
1454  }
1455
1456  bool HaveDoubleFpr() const {
1457    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1458  }
1459
1460  bool DoubleFprNeedsPadding() const {
1461    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1462        kAlignDoubleOnStack &&                  // and when it needs alignment
1463        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1464  }
1465
1466  bool DoubleStackNeedsPadding() const {
1467    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1468        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1469        (stack_entries_ & 1) == 1;              // counter is odd
1470  }
1471
1472  void AdvanceDouble(uint64_t val) {
1473    if (kNativeSoftFloatAbi) {
1474      AdvanceLong(val);
1475    } else {
1476      if (HaveDoubleFpr()) {
1477        if (DoubleFprNeedsPadding()) {
1478          PushFpr4(0);
1479          fpr_index_--;
1480        }
1481        PushFpr8(val);
1482        fpr_index_ -= kRegistersNeededForDouble;
1483      } else {
1484        if (DoubleStackNeedsPadding()) {
1485          PushStack(0);
1486          stack_entries_++;
1487        }
1488        if (kRegistersNeededForDouble == 1) {
1489          PushStack(static_cast<uintptr_t>(val));
1490          stack_entries_++;
1491        } else {
1492          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1493          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1494          stack_entries_ += 2;
1495        }
1496        fpr_index_ = 0;
1497      }
1498    }
1499  }
1500
1501  uint32_t GetStackEntries() const {
1502    return stack_entries_;
1503  }
1504
1505  uint32_t GetNumberOfUsedGprs() const {
1506    return kNumNativeGprArgs - gpr_index_;
1507  }
1508
1509  uint32_t GetNumberOfUsedFprs() const {
1510    return kNumNativeFprArgs - fpr_index_;
1511  }
1512
1513 private:
1514  void PushGpr(uintptr_t val) {
1515    delegate_->PushGpr(val);
1516  }
1517  void PushFpr4(float val) {
1518    delegate_->PushFpr4(val);
1519  }
1520  void PushFpr8(uint64_t val) {
1521    delegate_->PushFpr8(val);
1522  }
1523  void PushStack(uintptr_t val) {
1524    delegate_->PushStack(val);
1525  }
1526  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1527    return delegate_->PushHandle(ref);
1528  }
1529
1530  uint32_t gpr_index_;      // Number of free GPRs
1531  uint32_t fpr_index_;      // Number of free FPRs
1532  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1533                            // extended
1534  T* const delegate_;             // What Push implementation gets called
1535};
1536
1537// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1538// in subclasses.
1539//
1540// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1541// them with handles.
1542class ComputeNativeCallFrameSize {
1543 public:
1544  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1545
1546  virtual ~ComputeNativeCallFrameSize() {}
1547
1548  uint32_t GetStackSize() const {
1549    return num_stack_entries_ * sizeof(uintptr_t);
1550  }
1551
1552  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1553    sp8 -= GetStackSize();
1554    // Align by kStackAlignment.
1555    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1556    return sp8;
1557  }
1558
1559  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1560      const {
1561    // Assumption is OK right now, as we have soft-float arm
1562    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1563    sp8 -= fregs * sizeof(uintptr_t);
1564    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1565    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1566    sp8 -= iregs * sizeof(uintptr_t);
1567    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1568    return sp8;
1569  }
1570
1571  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1572                            uint32_t** start_fpr) const {
1573    // Native call stack.
1574    sp8 = LayoutCallStack(sp8);
1575    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1576
1577    // Put fprs and gprs below.
1578    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1579
1580    // Return the new bottom.
1581    return sp8;
1582  }
1583
1584  virtual void WalkHeader(
1585      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1586      REQUIRES_SHARED(Locks::mutator_lock_) {
1587  }
1588
1589  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1590    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1591
1592    WalkHeader(&sm);
1593
1594    for (uint32_t i = 1; i < shorty_len; ++i) {
1595      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1596      switch (cur_type_) {
1597        case Primitive::kPrimNot:
1598          // TODO: fix abuse of mirror types.
1599          sm.AdvanceHandleScope(
1600              reinterpret_cast<mirror::Object*>(0x12345678));
1601          break;
1602
1603        case Primitive::kPrimBoolean:
1604        case Primitive::kPrimByte:
1605        case Primitive::kPrimChar:
1606        case Primitive::kPrimShort:
1607        case Primitive::kPrimInt:
1608          sm.AdvanceInt(0);
1609          break;
1610        case Primitive::kPrimFloat:
1611          sm.AdvanceFloat(0);
1612          break;
1613        case Primitive::kPrimDouble:
1614          sm.AdvanceDouble(0);
1615          break;
1616        case Primitive::kPrimLong:
1617          sm.AdvanceLong(0);
1618          break;
1619        default:
1620          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1621          UNREACHABLE();
1622      }
1623    }
1624
1625    num_stack_entries_ = sm.GetStackEntries();
1626  }
1627
1628  void PushGpr(uintptr_t /* val */) {
1629    // not optimizing registers, yet
1630  }
1631
1632  void PushFpr4(float /* val */) {
1633    // not optimizing registers, yet
1634  }
1635
1636  void PushFpr8(uint64_t /* val */) {
1637    // not optimizing registers, yet
1638  }
1639
1640  void PushStack(uintptr_t /* val */) {
1641    // counting is already done in the superclass
1642  }
1643
1644  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1645    return reinterpret_cast<uintptr_t>(nullptr);
1646  }
1647
1648 protected:
1649  uint32_t num_stack_entries_;
1650};
1651
1652class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1653 public:
1654  explicit ComputeGenericJniFrameSize(bool critical_native)
1655    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1656
1657  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1658  // is at *m = sp. Will update to point to the bottom of the save frame.
1659  //
1660  // Note: assumes ComputeAll() has been run before.
1661  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1662      REQUIRES_SHARED(Locks::mutator_lock_) {
1663    ArtMethod* method = **m;
1664
1665    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1666
1667    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1668
1669    // First, fix up the layout of the callee-save frame.
1670    // We have to squeeze in the HandleScope, and relocate the method pointer.
1671
1672    // "Free" the slot for the method.
1673    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1674
1675    // Under the callee saves put handle scope and new method stack reference.
1676    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1677    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1678
1679    sp8 -= scope_and_method;
1680    // Align by kStackAlignment.
1681    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1682
1683    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1684    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1685                                        num_handle_scope_references_);
1686
1687    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1688    uint8_t* method_pointer = sp8;
1689    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1690    *new_method_ref = method;
1691    *m = new_method_ref;
1692  }
1693
1694  // Adds space for the cookie. Note: may leave stack unaligned.
1695  void LayoutCookie(uint8_t** sp) const {
1696    // Reference cookie and padding
1697    *sp -= 8;
1698  }
1699
1700  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1701  // Returns the new bottom. Note: this may be unaligned.
1702  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1703      REQUIRES_SHARED(Locks::mutator_lock_) {
1704    // First, fix up the layout of the callee-save frame.
1705    // We have to squeeze in the HandleScope, and relocate the method pointer.
1706    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1707
1708    // The bottom of the callee-save frame is now where the method is, *m.
1709    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1710
1711    // Add space for cookie.
1712    LayoutCookie(&sp8);
1713
1714    return sp8;
1715  }
1716
1717  // WARNING: After this, *sp won't be pointing to the method anymore!
1718  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1719                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1720                         uint32_t** start_fpr)
1721      REQUIRES_SHARED(Locks::mutator_lock_) {
1722    Walk(shorty, shorty_len);
1723
1724    // JNI part.
1725    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1726
1727    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1728
1729    // Return the new bottom.
1730    return sp8;
1731  }
1732
1733  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1734
1735  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1736  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1737      REQUIRES_SHARED(Locks::mutator_lock_);
1738
1739 private:
1740  uint32_t num_handle_scope_references_;
1741  const bool critical_native_;
1742};
1743
1744uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1745  num_handle_scope_references_++;
1746  return reinterpret_cast<uintptr_t>(nullptr);
1747}
1748
1749void ComputeGenericJniFrameSize::WalkHeader(
1750    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1751  // First 2 parameters are always excluded for @CriticalNative.
1752  if (UNLIKELY(critical_native_)) {
1753    return;
1754  }
1755
1756  // JNIEnv
1757  sm->AdvancePointer(nullptr);
1758
1759  // Class object or this as first argument
1760  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1761}
1762
1763// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1764// the template requirements of BuildGenericJniFrameStateMachine.
1765class FillNativeCall {
1766 public:
1767  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1768      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1769
1770  virtual ~FillNativeCall() {}
1771
1772  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1773    cur_gpr_reg_ = gpr_regs;
1774    cur_fpr_reg_ = fpr_regs;
1775    cur_stack_arg_ = stack_args;
1776  }
1777
1778  void PushGpr(uintptr_t val) {
1779    *cur_gpr_reg_ = val;
1780    cur_gpr_reg_++;
1781  }
1782
1783  void PushFpr4(float val) {
1784    *cur_fpr_reg_ = val;
1785    cur_fpr_reg_++;
1786  }
1787
1788  void PushFpr8(uint64_t val) {
1789    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1790    *tmp = val;
1791    cur_fpr_reg_ += 2;
1792  }
1793
1794  void PushStack(uintptr_t val) {
1795    *cur_stack_arg_ = val;
1796    cur_stack_arg_++;
1797  }
1798
1799  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1800    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1801    UNREACHABLE();
1802  }
1803
1804 private:
1805  uintptr_t* cur_gpr_reg_;
1806  uint32_t* cur_fpr_reg_;
1807  uintptr_t* cur_stack_arg_;
1808};
1809
1810// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1811// of transitioning into native code.
1812class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1813 public:
1814  BuildGenericJniFrameVisitor(Thread* self,
1815                              bool is_static,
1816                              bool critical_native,
1817                              const char* shorty,
1818                              uint32_t shorty_len,
1819                              ArtMethod*** sp)
1820     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1821       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1822       sm_(&jni_call_) {
1823    ComputeGenericJniFrameSize fsc(critical_native);
1824    uintptr_t* start_gpr_reg;
1825    uint32_t* start_fpr_reg;
1826    uintptr_t* start_stack_arg;
1827    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1828                                             &handle_scope_,
1829                                             &start_stack_arg,
1830                                             &start_gpr_reg, &start_fpr_reg);
1831
1832    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1833
1834    // First 2 parameters are always excluded for CriticalNative methods.
1835    if (LIKELY(!critical_native)) {
1836      // jni environment is always first argument
1837      sm_.AdvancePointer(self->GetJniEnv());
1838
1839      if (is_static) {
1840        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1841      }  // else "this" reference is already handled by QuickArgumentVisitor.
1842    }
1843  }
1844
1845  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1846
1847  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1848
1849  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1850    return handle_scope_->GetHandle(0).GetReference();
1851  }
1852
1853  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1854    return handle_scope_->GetHandle(0).ToJObject();
1855  }
1856
1857  void* GetBottomOfUsedArea() const {
1858    return bottom_of_used_area_;
1859  }
1860
1861 private:
1862  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1863  class FillJniCall FINAL : public FillNativeCall {
1864   public:
1865    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1866                HandleScope* handle_scope, bool critical_native)
1867      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1868                       handle_scope_(handle_scope),
1869        cur_entry_(0),
1870        critical_native_(critical_native) {}
1871
1872    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1873
1874    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1875      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1876      handle_scope_ = scope;
1877      cur_entry_ = 0U;
1878    }
1879
1880    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
1881      // Initialize padding entries.
1882      size_t expected_slots = handle_scope_->NumberOfReferences();
1883      while (cur_entry_ < expected_slots) {
1884        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1885      }
1886
1887      if (!critical_native_) {
1888        // Non-critical natives have at least the self class (jclass) or this (jobject).
1889        DCHECK_NE(cur_entry_, 0U);
1890      }
1891    }
1892
1893    bool CriticalNative() const {
1894      return critical_native_;
1895    }
1896
1897   private:
1898    HandleScope* handle_scope_;
1899    size_t cur_entry_;
1900    const bool critical_native_;
1901  };
1902
1903  HandleScope* handle_scope_;
1904  FillJniCall jni_call_;
1905  void* bottom_of_used_area_;
1906
1907  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1908
1909  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1910};
1911
1912uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1913  uintptr_t tmp;
1914  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1915  h.Assign(ref);
1916  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1917  cur_entry_++;
1918  return tmp;
1919}
1920
1921void BuildGenericJniFrameVisitor::Visit() {
1922  Primitive::Type type = GetParamPrimitiveType();
1923  switch (type) {
1924    case Primitive::kPrimLong: {
1925      jlong long_arg;
1926      if (IsSplitLongOrDouble()) {
1927        long_arg = ReadSplitLongParam();
1928      } else {
1929        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1930      }
1931      sm_.AdvanceLong(long_arg);
1932      break;
1933    }
1934    case Primitive::kPrimDouble: {
1935      uint64_t double_arg;
1936      if (IsSplitLongOrDouble()) {
1937        // Read into union so that we don't case to a double.
1938        double_arg = ReadSplitLongParam();
1939      } else {
1940        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1941      }
1942      sm_.AdvanceDouble(double_arg);
1943      break;
1944    }
1945    case Primitive::kPrimNot: {
1946      StackReference<mirror::Object>* stack_ref =
1947          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1948      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1949      break;
1950    }
1951    case Primitive::kPrimFloat:
1952      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1953      break;
1954    case Primitive::kPrimBoolean:  // Fall-through.
1955    case Primitive::kPrimByte:     // Fall-through.
1956    case Primitive::kPrimChar:     // Fall-through.
1957    case Primitive::kPrimShort:    // Fall-through.
1958    case Primitive::kPrimInt:      // Fall-through.
1959      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1960      break;
1961    case Primitive::kPrimVoid:
1962      LOG(FATAL) << "UNREACHABLE";
1963      UNREACHABLE();
1964  }
1965}
1966
1967void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1968  // Clear out rest of the scope.
1969  jni_call_.ResetRemainingScopeSlots();
1970  if (!jni_call_.CriticalNative()) {
1971    // Install HandleScope.
1972    self->PushHandleScope(handle_scope_);
1973  }
1974}
1975
1976#if defined(__arm__) || defined(__aarch64__)
1977extern "C" void* artFindNativeMethod();
1978#else
1979extern "C" void* artFindNativeMethod(Thread* self);
1980#endif
1981
1982static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
1983                                            uint32_t cookie,
1984                                            bool fast_native ATTRIBUTE_UNUSED,
1985                                            jobject l,
1986                                            jobject lock) {
1987  // TODO: add entrypoints for @FastNative returning objects.
1988  if (lock != nullptr) {
1989    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1990  } else {
1991    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1992  }
1993}
1994
1995static void artQuickGenericJniEndJNINonRef(Thread* self,
1996                                           uint32_t cookie,
1997                                           bool fast_native,
1998                                           jobject lock) {
1999  if (lock != nullptr) {
2000    JniMethodEndSynchronized(cookie, lock, self);
2001    // Ignore "fast_native" here because synchronized functions aren't very fast.
2002  } else {
2003    if (UNLIKELY(fast_native)) {
2004      JniMethodFastEnd(cookie, self);
2005    } else {
2006      JniMethodEnd(cookie, self);
2007    }
2008  }
2009}
2010
2011/*
2012 * Initializes an alloca region assumed to be directly below sp for a native call:
2013 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2014 * The final element on the stack is a pointer to the native code.
2015 *
2016 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2017 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2018 *
2019 * The return of this function denotes:
2020 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2021 * 2) An error, if the value is negative.
2022 */
2023extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2024    REQUIRES_SHARED(Locks::mutator_lock_) {
2025  ArtMethod* called = *sp;
2026  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2027  uint32_t shorty_len = 0;
2028  const char* shorty = called->GetShorty(&shorty_len);
2029  bool critical_native = called->IsAnnotatedWithCriticalNative();
2030  bool fast_native = called->IsAnnotatedWithFastNative();
2031  bool normal_native = !critical_native && !fast_native;
2032
2033  // Run the visitor and update sp.
2034  BuildGenericJniFrameVisitor visitor(self,
2035                                      called->IsStatic(),
2036                                      critical_native,
2037                                      shorty,
2038                                      shorty_len,
2039                                      &sp);
2040  {
2041    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2042    visitor.VisitArguments();
2043    // FinalizeHandleScope pushes the handle scope on the thread.
2044    visitor.FinalizeHandleScope(self);
2045  }
2046
2047  // Fix up managed-stack things in Thread.
2048  self->SetTopOfStack(sp);
2049
2050  self->VerifyStack();
2051
2052  uint32_t cookie;
2053  uint32_t* sp32;
2054  // Skip calling JniMethodStart for @CriticalNative.
2055  if (LIKELY(!critical_native)) {
2056    // Start JNI, save the cookie.
2057    if (called->IsSynchronized()) {
2058      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2059      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2060      if (self->IsExceptionPending()) {
2061        self->PopHandleScope();
2062        // A negative value denotes an error.
2063        return GetTwoWordFailureValue();
2064      }
2065    } else {
2066      if (fast_native) {
2067        cookie = JniMethodFastStart(self);
2068      } else {
2069        DCHECK(normal_native);
2070        cookie = JniMethodStart(self);
2071      }
2072    }
2073    sp32 = reinterpret_cast<uint32_t*>(sp);
2074    *(sp32 - 1) = cookie;
2075  }
2076
2077  // Retrieve the stored native code.
2078  void* nativeCode = called->GetEntryPointFromJni();
2079
2080  // There are two cases for the content of nativeCode:
2081  // 1) Pointer to the native function.
2082  // 2) Pointer to the trampoline for native code binding.
2083  // In the second case, we need to execute the binding and continue with the actual native function
2084  // pointer.
2085  DCHECK(nativeCode != nullptr);
2086  if (nativeCode == GetJniDlsymLookupStub()) {
2087#if defined(__arm__) || defined(__aarch64__)
2088    nativeCode = artFindNativeMethod();
2089#else
2090    nativeCode = artFindNativeMethod(self);
2091#endif
2092
2093    if (nativeCode == nullptr) {
2094      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2095
2096      // @CriticalNative calls do not need to call back into JniMethodEnd.
2097      if (LIKELY(!critical_native)) {
2098        // End JNI, as the assembly will move to deliver the exception.
2099        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2100        if (shorty[0] == 'L') {
2101          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2102        } else {
2103          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2104        }
2105      }
2106
2107      return GetTwoWordFailureValue();
2108    }
2109    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2110  }
2111
2112#if defined(__mips__) && !defined(__LP64__)
2113  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2114  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2115  // and load into floating-point registers.
2116  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2117  // view):
2118  // (1)
2119  //  |     DOUBLE    |     DOUBLE    | other args, if any
2120  //  |  F12  |  F13  |  F14  |  F15  |
2121  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2122  // (2)
2123  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2124  //  |  F12  |  F13  |  F14  |       |
2125  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2126  // (3)
2127  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2128  //  |  F12  |       |  F14  |  F15  |
2129  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2130  // (4)
2131  //  | FLOAT | FLOAT | other args, if any
2132  //  |  F12  |  F14  |
2133  //  |  SP+0 |  SP+4 | SP+8
2134  // As you can see, only the last case (4) is special. In all others we can just
2135  // load F12/F13 and F14/F15 in the same manner.
2136  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2137  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2138  if (nativeCode != nullptr &&
2139      shorty != nullptr &&
2140      shorty_len >= 3 &&
2141      shorty[1] == 'F' &&
2142      shorty[2] == 'F') {
2143    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2144  }
2145#endif
2146
2147  // Return native code addr(lo) and bottom of alloca address(hi).
2148  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2149                                reinterpret_cast<uintptr_t>(nativeCode));
2150}
2151
2152// Defined in quick_jni_entrypoints.cc.
2153extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2154                                    jvalue result, uint64_t result_f, ArtMethod* called,
2155                                    HandleScope* handle_scope);
2156/*
2157 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2158 * unlocking.
2159 */
2160extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2161                                                    jvalue result,
2162                                                    uint64_t result_f) {
2163  // We're here just back from a native call. We don't have the shared mutator lock at this point
2164  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2165  // anything that requires a mutator lock before that would cause problems as GC may have the
2166  // exclusive mutator lock and may be moving objects, etc.
2167  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2168  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2169  ArtMethod* called = *sp;
2170  uint32_t cookie = *(sp32 - 1);
2171  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2172  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2173}
2174
2175// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2176// for the method pointer.
2177//
2178// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2179// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2180
2181template<InvokeType type, bool access_check>
2182static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2183                                     ObjPtr<mirror::Object> this_object,
2184                                     Thread* self,
2185                                     ArtMethod** sp) {
2186  ScopedQuickEntrypointChecks sqec(self);
2187  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2188  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2189  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2190  if (UNLIKELY(method == nullptr)) {
2191    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2192    uint32_t shorty_len;
2193    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2194    {
2195      // Remember the args in case a GC happens in FindMethodFromCode.
2196      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2197      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2198      visitor.VisitArguments();
2199      method = FindMethodFromCode<type, access_check>(method_idx,
2200                                                      &this_object,
2201                                                      caller_method,
2202                                                      self);
2203      visitor.FixupReferences();
2204    }
2205
2206    if (UNLIKELY(method == nullptr)) {
2207      CHECK(self->IsExceptionPending());
2208      return GetTwoWordFailureValue();  // Failure.
2209    }
2210  }
2211  DCHECK(!self->IsExceptionPending());
2212  const void* code = method->GetEntryPointFromQuickCompiledCode();
2213
2214  // When we return, the caller will branch to this address, so it had better not be 0!
2215  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2216                          << " location: "
2217                          << method->GetDexFile()->GetLocation();
2218
2219  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2220                                reinterpret_cast<uintptr_t>(method));
2221}
2222
2223// Explicit artInvokeCommon template function declarations to please analysis tool.
2224#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2225  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2226  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2227      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2228
2229EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2230EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2231EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2232EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2233EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2234EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2235EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2236EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2237EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2238EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2239#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2240
2241// See comments in runtime_support_asm.S
2242extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2243    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2244    REQUIRES_SHARED(Locks::mutator_lock_) {
2245  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2246}
2247
2248extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2249    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2250    REQUIRES_SHARED(Locks::mutator_lock_) {
2251  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2252}
2253
2254extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2255    uint32_t method_idx,
2256    mirror::Object* this_object ATTRIBUTE_UNUSED,
2257    Thread* self,
2258    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2259  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2260  // it doesn't cause ObjPtr alignment failure check.
2261  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2262}
2263
2264extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2265    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2266    REQUIRES_SHARED(Locks::mutator_lock_) {
2267  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2268}
2269
2270extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2271    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2272    REQUIRES_SHARED(Locks::mutator_lock_) {
2273  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2274}
2275
2276// Determine target of interface dispatch. This object is known non-null. First argument
2277// is there for consistency but should not be used, as some architectures overwrite it
2278// in the assembly trampoline.
2279extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2280                                                      mirror::Object* raw_this_object,
2281                                                      Thread* self,
2282                                                      ArtMethod** sp)
2283    REQUIRES_SHARED(Locks::mutator_lock_) {
2284  ObjPtr<mirror::Object> this_object(raw_this_object);
2285  ScopedQuickEntrypointChecks sqec(self);
2286  StackHandleScope<1> hs(self);
2287  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2288
2289  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2290
2291  // Fetch the dex_method_idx of the target interface method from the caller.
2292  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2293
2294  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2295  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2296  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2297  Instruction::Code instr_code = instr->Opcode();
2298  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2299        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2300      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2301  uint32_t dex_method_idx;
2302  if (instr_code == Instruction::INVOKE_INTERFACE) {
2303    dex_method_idx = instr->VRegB_35c();
2304  } else {
2305    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2306    dex_method_idx = instr->VRegB_3rc();
2307  }
2308
2309  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2310      dex_method_idx, kRuntimePointerSize);
2311  DCHECK(interface_method != nullptr) << dex_method_idx << " " << caller_method->PrettyMethod();
2312  ArtMethod* method = nullptr;
2313  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2314
2315  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2316    // If the dex cache already resolved the interface method, look whether we have
2317    // a match in the ImtConflictTable.
2318    ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
2319                                          kRuntimePointerSize);
2320    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2321      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2322      DCHECK(current_table != nullptr);
2323      method = current_table->Lookup(interface_method, kRuntimePointerSize);
2324    } else {
2325      // It seems we aren't really a conflict method!
2326      method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2327    }
2328    if (method != nullptr) {
2329      return GetTwoWordSuccessValue(
2330          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2331          reinterpret_cast<uintptr_t>(method));
2332    }
2333
2334    // No match, use the IfTable.
2335    method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2336    if (UNLIKELY(method == nullptr)) {
2337      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2338          interface_method, this_object, caller_method);
2339      return GetTwoWordFailureValue();  // Failure.
2340    }
2341  } else {
2342    // The dex cache did not resolve the method, look it up in the dex file
2343    // of the caller,
2344    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2345    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2346        ->GetDexFile();
2347    uint32_t shorty_len;
2348    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2349                                                   &shorty_len);
2350    {
2351      // Remember the args in case a GC happens in FindMethodFromCode.
2352      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2353      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2354      visitor.VisitArguments();
2355      method = FindMethodFromCode<kInterface, false>(dex_method_idx,
2356                                                     &this_object,
2357                                                     caller_method,
2358                                                     self);
2359      visitor.FixupReferences();
2360    }
2361
2362    if (UNLIKELY(method == nullptr)) {
2363      CHECK(self->IsExceptionPending());
2364      return GetTwoWordFailureValue();  // Failure.
2365    }
2366    interface_method =
2367        caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2368    DCHECK(!interface_method->IsRuntimeMethod());
2369  }
2370
2371  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2372  // We create a new table with the new pair { interface_method, method }.
2373  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2374  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2375  if (conflict_method->IsRuntimeMethod()) {
2376    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2377        cls.Get(),
2378        conflict_method,
2379        interface_method,
2380        method,
2381        /*force_new_conflict_method*/false);
2382    if (new_conflict_method != conflict_method) {
2383      // Update the IMT if we create a new conflict method. No fence needed here, as the
2384      // data is consistent.
2385      imt->Set(imt_index,
2386               new_conflict_method,
2387               kRuntimePointerSize);
2388    }
2389  }
2390
2391  const void* code = method->GetEntryPointFromQuickCompiledCode();
2392
2393  // When we return, the caller will branch to this address, so it had better not be 0!
2394  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2395                          << " location: " << method->GetDexFile()->GetLocation();
2396
2397  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2398                                reinterpret_cast<uintptr_t>(method));
2399}
2400
2401// Returns shorty type so the caller can determine how to put |result|
2402// into expected registers. The shorty type is static so the compiler
2403// could call different flavors of this code path depending on the
2404// shorty type though this would require different entry points for
2405// each type.
2406extern "C" uintptr_t artInvokePolymorphic(
2407    JValue* result,
2408    mirror::Object* raw_method_handle,
2409    Thread* self,
2410    ArtMethod** sp)
2411    REQUIRES_SHARED(Locks::mutator_lock_) {
2412  ScopedQuickEntrypointChecks sqec(self);
2413  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2414
2415  // Start new JNI local reference state
2416  JNIEnvExt* env = self->GetJniEnv();
2417  ScopedObjectAccessUnchecked soa(env);
2418  ScopedJniEnvLocalRefState env_state(env);
2419  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2420
2421  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2422  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2423  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2424  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2425  const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2426  DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2427         inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2428  const DexFile* dex_file = caller_method->GetDexFile();
2429  const uint32_t proto_idx = inst->VRegH();
2430  const char* shorty = dex_file->GetShorty(proto_idx);
2431  const size_t shorty_length = strlen(shorty);
2432  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2433  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2434  gc_visitor.VisitArguments();
2435
2436  // Wrap raw_method_handle in a Handle for safety.
2437  StackHandleScope<5> hs(self);
2438  Handle<mirror::MethodHandleImpl> method_handle(
2439      hs.NewHandle(ObjPtr<mirror::MethodHandleImpl>::DownCast(MakeObjPtr(raw_method_handle))));
2440  raw_method_handle = nullptr;
2441  self->EndAssertNoThreadSuspension(old_cause);
2442
2443  // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2444  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2445  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
2446                                                                                   inst->VRegB(),
2447                                                                                   caller_method,
2448                                                                                   kVirtual);
2449  DCHECK((resolved_method ==
2450          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2451         (resolved_method ==
2452          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2453  if (UNLIKELY(method_handle.IsNull())) {
2454    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2455    return static_cast<uintptr_t>('V');
2456  }
2457
2458  Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2459  Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2460      *dex_file, proto_idx,
2461      hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2462      hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2463  // This implies we couldn't resolve one or more types in this method handle.
2464  if (UNLIKELY(method_type.IsNull())) {
2465    CHECK(self->IsExceptionPending());
2466    return static_cast<uintptr_t>('V');
2467  }
2468
2469  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2470  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2471
2472  // Fix references before constructing the shadow frame.
2473  gc_visitor.FixupReferences();
2474
2475  // Construct shadow frame placing arguments consecutively from |first_arg|.
2476  const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2477  const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2478  const size_t first_arg = 0;
2479  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2480      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2481  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2482  ScopedStackedShadowFramePusher
2483      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2484  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2485                                                    kMethodIsStatic,
2486                                                    shorty,
2487                                                    strlen(shorty),
2488                                                    shadow_frame,
2489                                                    first_arg);
2490  shadow_frame_builder.VisitArguments();
2491
2492  // Push a transition back into managed code onto the linked list in thread.
2493  ManagedStack fragment;
2494  self->PushManagedStackFragment(&fragment);
2495
2496  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2497  // consecutive order.
2498  uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2499  uint32_t first_callee_arg = first_arg + 1;
2500  const bool do_assignability_check = false;
2501  if (!DoInvokePolymorphic<true /* is_range */, do_assignability_check>(self,
2502                                                                        resolved_method,
2503                                                                        *shadow_frame,
2504                                                                        method_handle,
2505                                                                        method_type,
2506                                                                        unused_args,
2507                                                                        first_callee_arg,
2508                                                                        result)) {
2509    DCHECK(self->IsExceptionPending());
2510  }
2511
2512  // Pop transition record.
2513  self->PopManagedStackFragment(fragment);
2514
2515  return static_cast<uintptr_t>(shorty[0]);
2516}
2517
2518}  // namespace art
2519