quick_trampoline_entrypoints.cc revision 58994cdb00b323339bd83828eddc53976048006f
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "callee_save_frame.h" 18#include "common_throws.h" 19#include "dex_file-inl.h" 20#include "dex_instruction-inl.h" 21#include "entrypoints/entrypoint_utils.h" 22#include "gc/accounting/card_table-inl.h" 23#include "interpreter/interpreter.h" 24#include "mirror/art_method-inl.h" 25#include "mirror/class-inl.h" 26#include "mirror/dex_cache-inl.h" 27#include "mirror/object-inl.h" 28#include "mirror/object_array-inl.h" 29#include "object_utils.h" 30#include "runtime.h" 31#include "scoped_thread_state_change.h" 32 33namespace art { 34 35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 36class QuickArgumentVisitor { 37 // Number of bytes for each out register in the caller method's frame. 38 static constexpr size_t kBytesStackArgLocation = 4; 39#if defined(__arm__) 40 // The callee save frame is pointed to by SP. 41 // | argN | | 42 // | ... | | 43 // | arg4 | | 44 // | arg3 spill | | Caller's frame 45 // | arg2 spill | | 46 // | arg1 spill | | 47 // | Method* | --- 48 // | LR | 49 // | ... | callee saves 50 // | R3 | arg3 51 // | R2 | arg2 52 // | R1 | arg1 53 // | R0 | padding 54 // | Method* | <- sp 55 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 56 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 57 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 58 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 59 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 8; // Offset of first GPR arg. 60 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 44; // Offset of return address. 61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 48; // Frame size. 62 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 63 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 64 } 65#elif defined(__aarch64__) 66 // The callee save frame is pointed to by SP. 67 // | argN | | 68 // | ... | | 69 // | arg4 | | 70 // | arg3 spill | | Caller's frame 71 // | arg2 spill | | 72 // | arg1 spill | | 73 // | Method* | --- 74 // | LR | 75 // | X28 | 76 // | : | 77 // | X19 | 78 // | X7 | 79 // | : | 80 // | X1 | 81 // | D15 | 82 // | : | 83 // | D0 | 84 // | | padding 85 // | Method* | <- sp 86 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 87 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 88 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 89 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =16; // Offset of first FPR arg. 90 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 144; // Offset of first GPR arg. 91 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 296; // Offset of return address. 92 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 304; // Frame size. 93 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 94 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 95 } 96#elif defined(__mips__) 97 // The callee save frame is pointed to by SP. 98 // | argN | | 99 // | ... | | 100 // | arg4 | | 101 // | arg3 spill | | Caller's frame 102 // | arg2 spill | | 103 // | arg1 spill | | 104 // | Method* | --- 105 // | RA | 106 // | ... | callee saves 107 // | A3 | arg3 108 // | A2 | arg2 109 // | A1 | arg1 110 // | A0/Method* | <- sp 111 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 112 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 113 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 114 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 115 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 116 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 117 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 64; // Frame size. 118 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 119 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 120 } 121#elif defined(__i386__) 122 // The callee save frame is pointed to by SP. 123 // | argN | | 124 // | ... | | 125 // | arg4 | | 126 // | arg3 spill | | Caller's frame 127 // | arg2 spill | | 128 // | arg1 spill | | 129 // | Method* | --- 130 // | Return | 131 // | EBP,ESI,EDI | callee saves 132 // | EBX | arg3 133 // | EDX | arg2 134 // | ECX | arg1 135 // | EAX/Method* | <- sp 136 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 137 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 138 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 139 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 140 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 141 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. 142 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 32; // Frame size. 143 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 144 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 145 } 146#elif defined(__x86_64__) 147 // The callee save frame is pointed to by SP. 148 // | argN | | 149 // | ... | | 150 // | reg. arg spills | | Caller's frame 151 // | Method* | --- 152 // | Return | 153 // | R15 | callee save 154 // | R14 | callee save 155 // | R13 | callee save 156 // | R12 | callee save 157 // | R9 | arg5 158 // | R8 | arg4 159 // | RSI/R6 | arg1 160 // | RBP/R5 | callee save 161 // | RBX/R3 | callee save 162 // | RDX/R2 | arg2 163 // | RCX/R1 | arg3 164 // | XMM7 | float arg 8 165 // | XMM6 | float arg 7 166 // | XMM5 | float arg 6 167 // | XMM4 | float arg 5 168 // | XMM3 | float arg 4 169 // | XMM2 | float arg 3 170 // | XMM1 | float arg 2 171 // | XMM0 | float arg 1 172 // | Padding | 173 // | RDI/Method* | <- sp 174 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 175#ifdef TARGET_REX_SUPPORT 176 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 177#else 178 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs if r8..r15 not enabled. 179#endif 180 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 181 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg. 183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168; // Offset of return address. 184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 176; // Frame size. 185 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 186 switch (gpr_index) { 187 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 188 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 189 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 190 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 191 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 192 default: 193 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 194 return 0; 195 } 196 } 197#else 198#error "Unsupported architecture" 199#endif 200 201 public: 202 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 203 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 204 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 205 byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 206 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 207 } 208 209 // For the given quick ref and args quick frame, return the caller's PC. 210 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 211 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 212 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 213 byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 214 return *reinterpret_cast<uintptr_t*>(lr); 215 } 216 217 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 218 const char* shorty, uint32_t shorty_len) 219 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 220 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 221 gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 222 fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 223 stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 224 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), 225 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), 226 is_split_long_or_double_(false) { 227 DCHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, 228 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); 229 } 230 231 virtual ~QuickArgumentVisitor() {} 232 233 virtual void Visit() = 0; 234 235 Primitive::Type GetParamPrimitiveType() const { 236 return cur_type_; 237 } 238 239 byte* GetParamAddress() const { 240 if (!kQuickSoftFloatAbi) { 241 Primitive::Type type = GetParamPrimitiveType(); 242 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 243 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 244 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 245 } 246 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 247 } 248 } 249 if (gpr_index_ < kNumQuickGprArgs) { 250 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 251 } 252 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 253 } 254 255 bool IsSplitLongOrDouble() const { 256 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 257 return is_split_long_or_double_; 258 } else { 259 return false; // An optimization for when GPR and FPRs are 64bit. 260 } 261 } 262 263 bool IsParamAReference() const { 264 return GetParamPrimitiveType() == Primitive::kPrimNot; 265 } 266 267 bool IsParamALongOrDouble() const { 268 Primitive::Type type = GetParamPrimitiveType(); 269 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 270 } 271 272 uint64_t ReadSplitLongParam() const { 273 DCHECK(IsSplitLongOrDouble()); 274 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress()); 275 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_); 276 return (low_half & 0xffffffffULL) | (high_half << 32); 277 } 278 279 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 280 // This implementation doesn't support reg-spill area for hard float 281 // ABI targets such as x86_64 and aarch64. So, for those targets whose 282 // 'kQuickSoftFloatAbi' is 'false': 283 // (a) 'stack_args_' should point to the first method's argument 284 // (b) whatever the argument type it is, the 'stack_index_' should 285 // be moved forward along with every visiting. 286 gpr_index_ = 0; 287 fpr_index_ = 0; 288 stack_index_ = 0; 289 if (!is_static_) { // Handle this. 290 cur_type_ = Primitive::kPrimNot; 291 is_split_long_or_double_ = false; 292 Visit(); 293 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) { 294 stack_index_++; 295 } 296 if (kNumQuickGprArgs > 0) { 297 gpr_index_++; 298 } 299 } 300 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 301 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 302 switch (cur_type_) { 303 case Primitive::kPrimNot: 304 case Primitive::kPrimBoolean: 305 case Primitive::kPrimByte: 306 case Primitive::kPrimChar: 307 case Primitive::kPrimShort: 308 case Primitive::kPrimInt: 309 is_split_long_or_double_ = false; 310 Visit(); 311 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 312 stack_index_++; 313 } 314 if (gpr_index_ < kNumQuickGprArgs) { 315 gpr_index_++; 316 } 317 break; 318 case Primitive::kPrimFloat: 319 is_split_long_or_double_ = false; 320 Visit(); 321 if (kQuickSoftFloatAbi) { 322 if (gpr_index_ < kNumQuickGprArgs) { 323 gpr_index_++; 324 } else { 325 stack_index_++; 326 } 327 } else { 328 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 329 fpr_index_++; 330 } 331 stack_index_++; 332 } 333 break; 334 case Primitive::kPrimDouble: 335 case Primitive::kPrimLong: 336 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 337 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 338 ((gpr_index_ + 1) == kNumQuickGprArgs); 339 Visit(); 340 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 341 if (kBytesStackArgLocation == 4) { 342 stack_index_+= 2; 343 } else { 344 CHECK_EQ(kBytesStackArgLocation, 8U); 345 stack_index_++; 346 } 347 } 348 if (gpr_index_ < kNumQuickGprArgs) { 349 gpr_index_++; 350 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 351 if (gpr_index_ < kNumQuickGprArgs) { 352 gpr_index_++; 353 } else if (kQuickSoftFloatAbi) { 354 stack_index_++; 355 } 356 } 357 } 358 } else { 359 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 360 ((fpr_index_ + 1) == kNumQuickFprArgs); 361 Visit(); 362 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 363 fpr_index_++; 364 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 365 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 366 fpr_index_++; 367 } 368 } 369 } 370 if (kBytesStackArgLocation == 4) { 371 stack_index_+= 2; 372 } else { 373 CHECK_EQ(kBytesStackArgLocation, 8U); 374 stack_index_++; 375 } 376 } 377 break; 378 default: 379 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 380 } 381 } 382 } 383 384 private: 385 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, 386 uint32_t shorty_len) { 387 if (kQuickSoftFloatAbi) { 388 CHECK_EQ(kNumQuickFprArgs, 0U); 389 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA)) 390 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */; 391 } else { 392 // For now, there is no reg-spill area for the targets with 393 // hard float ABI. So, the offset pointing to the first method's 394 // parameter ('this' for non-static methods) should be returned. 395 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>. 396 } 397 } 398 399 const bool is_static_; 400 const char* const shorty_; 401 const uint32_t shorty_len_; 402 byte* const gpr_args_; // Address of GPR arguments in callee save frame. 403 byte* const fpr_args_; // Address of FPR arguments in callee save frame. 404 byte* const stack_args_; // Address of stack arguments in caller's frame. 405 uint32_t gpr_index_; // Index into spilled GPRs. 406 uint32_t fpr_index_; // Index into spilled FPRs. 407 uint32_t stack_index_; // Index into arguments on the stack. 408 // The current type of argument during VisitArguments. 409 Primitive::Type cur_type_; 410 // Does a 64bit parameter straddle the register and stack arguments? 411 bool is_split_long_or_double_; 412}; 413 414// Visits arguments on the stack placing them into the shadow frame. 415class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 416 public: 417 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 418 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 419 size_t first_arg_reg) : 420 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 421 422 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 423 424 private: 425 ShadowFrame* const sf_; 426 uint32_t cur_reg_; 427 428 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 429}; 430 431void BuildQuickShadowFrameVisitor::Visit() { 432 Primitive::Type type = GetParamPrimitiveType(); 433 switch (type) { 434 case Primitive::kPrimLong: // Fall-through. 435 case Primitive::kPrimDouble: 436 if (IsSplitLongOrDouble()) { 437 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 438 } else { 439 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 440 } 441 ++cur_reg_; 442 break; 443 case Primitive::kPrimNot: { 444 StackReference<mirror::Object>* stack_ref = 445 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 446 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 447 } 448 break; 449 case Primitive::kPrimBoolean: // Fall-through. 450 case Primitive::kPrimByte: // Fall-through. 451 case Primitive::kPrimChar: // Fall-through. 452 case Primitive::kPrimShort: // Fall-through. 453 case Primitive::kPrimInt: // Fall-through. 454 case Primitive::kPrimFloat: 455 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 456 break; 457 case Primitive::kPrimVoid: 458 LOG(FATAL) << "UNREACHABLE"; 459 break; 460 } 461 ++cur_reg_; 462} 463 464extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 465 StackReference<mirror::ArtMethod>* sp) 466 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 467 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 468 // frame. 469 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 470 471 if (method->IsAbstract()) { 472 ThrowAbstractMethodError(method); 473 return 0; 474 } else { 475 DCHECK(!method->IsNative()) << PrettyMethod(method); 476 const char* old_cause = self->StartAssertNoThreadSuspension("Building interpreter shadow frame"); 477 MethodHelper mh(method); 478 const DexFile::CodeItem* code_item = mh.GetCodeItem(); 479 DCHECK(code_item != nullptr) << PrettyMethod(method); 480 uint16_t num_regs = code_item->registers_size_; 481 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 482 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, NULL, // No last shadow coming from quick. 483 method, 0, memory)); 484 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 485 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, mh.IsStatic(), mh.GetShorty(), 486 mh.GetShortyLength(), 487 shadow_frame, first_arg_reg); 488 shadow_frame_builder.VisitArguments(); 489 // Push a transition back into managed code onto the linked list in thread. 490 ManagedStack fragment; 491 self->PushManagedStackFragment(&fragment); 492 self->PushShadowFrame(shadow_frame); 493 self->EndAssertNoThreadSuspension(old_cause); 494 495 if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) { 496 // Ensure static method's class is initialized. 497 StackHandleScope<1> hs(self); 498 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass())); 499 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) { 500 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method); 501 self->PopManagedStackFragment(fragment); 502 return 0; 503 } 504 } 505 506 JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame); 507 // Pop transition. 508 self->PopManagedStackFragment(fragment); 509 // No need to restore the args since the method has already been run by the interpreter. 510 return result.GetJ(); 511 } 512} 513 514// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 515// to jobjects. 516class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 517 public: 518 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 519 const char* shorty, uint32_t shorty_len, 520 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 521 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 522 523 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 524 525 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 526 527 private: 528 ScopedObjectAccessUnchecked* const soa_; 529 std::vector<jvalue>* const args_; 530 // References which we must update when exiting in case the GC moved the objects. 531 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 532 533 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 534}; 535 536void BuildQuickArgumentVisitor::Visit() { 537 jvalue val; 538 Primitive::Type type = GetParamPrimitiveType(); 539 switch (type) { 540 case Primitive::kPrimNot: { 541 StackReference<mirror::Object>* stack_ref = 542 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 543 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 544 references_.push_back(std::make_pair(val.l, stack_ref)); 545 break; 546 } 547 case Primitive::kPrimLong: // Fall-through. 548 case Primitive::kPrimDouble: 549 if (IsSplitLongOrDouble()) { 550 val.j = ReadSplitLongParam(); 551 } else { 552 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 553 } 554 break; 555 case Primitive::kPrimBoolean: // Fall-through. 556 case Primitive::kPrimByte: // Fall-through. 557 case Primitive::kPrimChar: // Fall-through. 558 case Primitive::kPrimShort: // Fall-through. 559 case Primitive::kPrimInt: // Fall-through. 560 case Primitive::kPrimFloat: 561 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 562 break; 563 case Primitive::kPrimVoid: 564 LOG(FATAL) << "UNREACHABLE"; 565 val.j = 0; 566 break; 567 } 568 args_->push_back(val); 569} 570 571void BuildQuickArgumentVisitor::FixupReferences() { 572 // Fixup any references which may have changed. 573 for (const auto& pair : references_) { 574 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 575 soa_->Env()->DeleteLocalRef(pair.first); 576 } 577} 578 579// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 580// which is responsible for recording callee save registers. We explicitly place into jobjects the 581// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 582// field within the proxy object, which will box the primitive arguments and deal with error cases. 583extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 584 mirror::Object* receiver, 585 Thread* self, StackReference<mirror::ArtMethod>* sp) 586 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 587 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 588 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 589 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 590 const char* old_cause = 591 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 592 // Register the top of the managed stack, making stack crawlable. 593 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 594 self->SetTopOfStack(sp, 0); 595 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 596 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 597 << PrettyMethod(proxy_method); 598 self->VerifyStack(); 599 // Start new JNI local reference state. 600 JNIEnvExt* env = self->GetJniEnv(); 601 ScopedObjectAccessUnchecked soa(env); 602 ScopedJniEnvLocalRefState env_state(env); 603 // Create local ref. copies of proxy method and the receiver. 604 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 605 606 // Placing arguments into args vector and remove the receiver. 607 MethodHelper proxy_mh(proxy_method); 608 DCHECK(!proxy_mh.IsStatic()) << PrettyMethod(proxy_method); 609 std::vector<jvalue> args; 610 BuildQuickArgumentVisitor local_ref_visitor(sp, proxy_mh.IsStatic(), proxy_mh.GetShorty(), 611 proxy_mh.GetShortyLength(), &soa, &args); 612 613 local_ref_visitor.VisitArguments(); 614 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 615 args.erase(args.begin()); 616 617 // Convert proxy method into expected interface method. 618 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 619 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); 620 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 621 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 622 623 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 624 // that performs allocations. 625 self->EndAssertNoThreadSuspension(old_cause); 626 JValue result = InvokeProxyInvocationHandler(soa, proxy_mh.GetShorty(), 627 rcvr_jobj, interface_method_jobj, args); 628 // Restore references which might have moved. 629 local_ref_visitor.FixupReferences(); 630 return result.GetJ(); 631} 632 633// Read object references held in arguments from quick frames and place in a JNI local references, 634// so they don't get garbage collected. 635class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 636 public: 637 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 638 const char* shorty, uint32_t shorty_len, 639 ScopedObjectAccessUnchecked* soa) : 640 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 641 642 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 643 644 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 645 646 private: 647 ScopedObjectAccessUnchecked* const soa_; 648 // References which we must update when exiting in case the GC moved the objects. 649 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 650 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 651}; 652 653void RememberForGcArgumentVisitor::Visit() { 654 if (IsParamAReference()) { 655 StackReference<mirror::Object>* stack_ref = 656 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 657 jobject reference = 658 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 659 references_.push_back(std::make_pair(reference, stack_ref)); 660 } 661} 662 663void RememberForGcArgumentVisitor::FixupReferences() { 664 // Fixup any references which may have changed. 665 for (const auto& pair : references_) { 666 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 667 soa_->Env()->DeleteLocalRef(pair.first); 668 } 669} 670 671 672// Lazily resolve a method for quick. Called by stub code. 673extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 674 mirror::Object* receiver, 675 Thread* self, 676 StackReference<mirror::ArtMethod>* sp) 677 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 678 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 679 // Start new JNI local reference state 680 JNIEnvExt* env = self->GetJniEnv(); 681 ScopedObjectAccessUnchecked soa(env); 682 ScopedJniEnvLocalRefState env_state(env); 683 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 684 685 // Compute details about the called method (avoid GCs) 686 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 687 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 688 InvokeType invoke_type; 689 const DexFile* dex_file; 690 uint32_t dex_method_idx; 691 if (called->IsRuntimeMethod()) { 692 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 693 const DexFile::CodeItem* code; 694 { 695 MethodHelper mh(caller); 696 dex_file = &mh.GetDexFile(); 697 code = mh.GetCodeItem(); 698 } 699 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 700 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 701 Instruction::Code instr_code = instr->Opcode(); 702 bool is_range; 703 switch (instr_code) { 704 case Instruction::INVOKE_DIRECT: 705 invoke_type = kDirect; 706 is_range = false; 707 break; 708 case Instruction::INVOKE_DIRECT_RANGE: 709 invoke_type = kDirect; 710 is_range = true; 711 break; 712 case Instruction::INVOKE_STATIC: 713 invoke_type = kStatic; 714 is_range = false; 715 break; 716 case Instruction::INVOKE_STATIC_RANGE: 717 invoke_type = kStatic; 718 is_range = true; 719 break; 720 case Instruction::INVOKE_SUPER: 721 invoke_type = kSuper; 722 is_range = false; 723 break; 724 case Instruction::INVOKE_SUPER_RANGE: 725 invoke_type = kSuper; 726 is_range = true; 727 break; 728 case Instruction::INVOKE_VIRTUAL: 729 invoke_type = kVirtual; 730 is_range = false; 731 break; 732 case Instruction::INVOKE_VIRTUAL_RANGE: 733 invoke_type = kVirtual; 734 is_range = true; 735 break; 736 case Instruction::INVOKE_INTERFACE: 737 invoke_type = kInterface; 738 is_range = false; 739 break; 740 case Instruction::INVOKE_INTERFACE_RANGE: 741 invoke_type = kInterface; 742 is_range = true; 743 break; 744 default: 745 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); 746 // Avoid used uninitialized warnings. 747 invoke_type = kDirect; 748 is_range = false; 749 } 750 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 751 752 } else { 753 invoke_type = kStatic; 754 dex_file = &MethodHelper(called).GetDexFile(); 755 dex_method_idx = called->GetDexMethodIndex(); 756 } 757 uint32_t shorty_len; 758 const char* shorty = 759 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 760 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 761 visitor.VisitArguments(); 762 self->EndAssertNoThreadSuspension(old_cause); 763 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 764 // Resolve method filling in dex cache. 765 if (UNLIKELY(called->IsRuntimeMethod())) { 766 StackHandleScope<1> hs(self); 767 mirror::Object* dummy = nullptr; 768 HandleWrapper<mirror::Object> h_receiver( 769 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 770 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type); 771 } 772 const void* code = NULL; 773 if (LIKELY(!self->IsExceptionPending())) { 774 // Incompatible class change should have been handled in resolve method. 775 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 776 << PrettyMethod(called) << " " << invoke_type; 777 if (virtual_or_interface) { 778 // Refine called method based on receiver. 779 CHECK(receiver != nullptr) << invoke_type; 780 781 mirror::ArtMethod* orig_called = called; 782 if (invoke_type == kVirtual) { 783 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 784 } else { 785 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 786 } 787 788 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 789 << PrettyTypeOf(receiver) << " " 790 << invoke_type << " " << orig_called->GetVtableIndex(); 791 792 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 793 // of the sharpened method. 794 if (called->GetDexCacheResolvedMethods() == caller->GetDexCacheResolvedMethods()) { 795 caller->GetDexCacheResolvedMethods()->Set<false>(called->GetDexMethodIndex(), called); 796 } else { 797 // Calling from one dex file to another, need to compute the method index appropriate to 798 // the caller's dex file. Since we get here only if the original called was a runtime 799 // method, we've got the correct dex_file and a dex_method_idx from above. 800 DCHECK(&MethodHelper(caller).GetDexFile() == dex_file); 801 uint32_t method_index = 802 MethodHelper(called).FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); 803 if (method_index != DexFile::kDexNoIndex) { 804 caller->GetDexCacheResolvedMethods()->Set<false>(method_index, called); 805 } 806 } 807 } 808 // Ensure that the called method's class is initialized. 809 StackHandleScope<1> hs(soa.Self()); 810 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 811 linker->EnsureInitialized(called_class, true, true); 812 if (LIKELY(called_class->IsInitialized())) { 813 code = called->GetEntryPointFromQuickCompiledCode(); 814 } else if (called_class->IsInitializing()) { 815 if (invoke_type == kStatic) { 816 // Class is still initializing, go to oat and grab code (trampoline must be left in place 817 // until class is initialized to stop races between threads). 818 code = linker->GetQuickOatCodeFor(called); 819 } else { 820 // No trampoline for non-static methods. 821 code = called->GetEntryPointFromQuickCompiledCode(); 822 } 823 } else { 824 DCHECK(called_class->IsErroneous()); 825 } 826 } 827 CHECK_EQ(code == NULL, self->IsExceptionPending()); 828 // Fixup any locally saved objects may have moved during a GC. 829 visitor.FixupReferences(); 830 // Place called method in callee-save frame to be placed as first argument to quick method. 831 sp->Assign(called); 832 return code; 833} 834 835 836 837/* 838 * This class uses a couple of observations to unite the different calling conventions through 839 * a few constants. 840 * 841 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 842 * possible alignment. 843 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 844 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 845 * when we have to split things 846 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 847 * and we can use Int handling directly. 848 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 849 * necessary when widening. Also, widening of Ints will take place implicitly, and the 850 * extension should be compatible with Aarch64, which mandates copying the available bits 851 * into LSB and leaving the rest unspecified. 852 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 853 * the stack. 854 * 6) There is only little endian. 855 * 856 * 857 * Actual work is supposed to be done in a delegate of the template type. The interface is as 858 * follows: 859 * 860 * void PushGpr(uintptr_t): Add a value for the next GPR 861 * 862 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 863 * padding, that is, think the architecture is 32b and aligns 64b. 864 * 865 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 866 * split this if necessary. The current state will have aligned, if 867 * necessary. 868 * 869 * void PushStack(uintptr_t): Push a value to the stack. 870 * 871 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 872 * as this might be important for null initialization. 873 * Must return the jobject, that is, the reference to the 874 * entry in the HandleScope (nullptr if necessary). 875 * 876 */ 877template <class T> class BuildGenericJniFrameStateMachine { 878 public: 879#if defined(__arm__) 880 // TODO: These are all dummy values! 881 static constexpr bool kNativeSoftFloatAbi = true; 882 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 883 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 884 885 static constexpr size_t kRegistersNeededForLong = 2; 886 static constexpr size_t kRegistersNeededForDouble = 2; 887 static constexpr bool kMultiRegistersAligned = true; 888 static constexpr bool kMultiRegistersWidened = false; 889 static constexpr bool kAlignLongOnStack = true; 890 static constexpr bool kAlignDoubleOnStack = true; 891#elif defined(__aarch64__) 892 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 893 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 894 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 895 896 static constexpr size_t kRegistersNeededForLong = 1; 897 static constexpr size_t kRegistersNeededForDouble = 1; 898 static constexpr bool kMultiRegistersAligned = false; 899 static constexpr bool kMultiRegistersWidened = false; 900 static constexpr bool kAlignLongOnStack = false; 901 static constexpr bool kAlignDoubleOnStack = false; 902#elif defined(__mips__) 903 // TODO: These are all dummy values! 904 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 905 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 906 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 907 908 static constexpr size_t kRegistersNeededForLong = 2; 909 static constexpr size_t kRegistersNeededForDouble = 2; 910 static constexpr bool kMultiRegistersAligned = true; 911 static constexpr bool kMultiRegistersWidened = true; 912 static constexpr bool kAlignLongOnStack = false; 913 static constexpr bool kAlignDoubleOnStack = false; 914#elif defined(__i386__) 915 // TODO: Check these! 916 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 917 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 918 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 919 920 static constexpr size_t kRegistersNeededForLong = 2; 921 static constexpr size_t kRegistersNeededForDouble = 2; 922 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 923 static constexpr bool kMultiRegistersWidened = false; 924 static constexpr bool kAlignLongOnStack = false; 925 static constexpr bool kAlignDoubleOnStack = false; 926#elif defined(__x86_64__) 927 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 928 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 929 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 930 931 static constexpr size_t kRegistersNeededForLong = 1; 932 static constexpr size_t kRegistersNeededForDouble = 1; 933 static constexpr bool kMultiRegistersAligned = false; 934 static constexpr bool kMultiRegistersWidened = false; 935 static constexpr bool kAlignLongOnStack = false; 936 static constexpr bool kAlignDoubleOnStack = false; 937#else 938#error "Unsupported architecture" 939#endif 940 941 public: 942 explicit BuildGenericJniFrameStateMachine(T* delegate) : gpr_index_(kNumNativeGprArgs), 943 fpr_index_(kNumNativeFprArgs), 944 stack_entries_(0), 945 delegate_(delegate) { 946 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 947 // the next register is even; counting down is just to make the compiler happy... 948 CHECK_EQ(kNumNativeGprArgs % 2, 0U); 949 CHECK_EQ(kNumNativeFprArgs % 2, 0U); 950 } 951 952 virtual ~BuildGenericJniFrameStateMachine() {} 953 954 bool HavePointerGpr() { 955 return gpr_index_ > 0; 956 } 957 958 void AdvancePointer(void* val) { 959 if (HavePointerGpr()) { 960 gpr_index_--; 961 PushGpr(reinterpret_cast<uintptr_t>(val)); 962 } else { 963 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 964 PushStack(reinterpret_cast<uintptr_t>(val)); 965 gpr_index_ = 0; 966 } 967 } 968 969 970 bool HaveHandleScopeGpr() { 971 return gpr_index_ > 0; 972 } 973 974 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 975 uintptr_t handle = PushHandle(ptr); 976 if (HaveHandleScopeGpr()) { 977 gpr_index_--; 978 PushGpr(handle); 979 } else { 980 stack_entries_++; 981 PushStack(handle); 982 gpr_index_ = 0; 983 } 984 } 985 986 987 bool HaveIntGpr() { 988 return gpr_index_ > 0; 989 } 990 991 void AdvanceInt(uint32_t val) { 992 if (HaveIntGpr()) { 993 gpr_index_--; 994 PushGpr(val); 995 } else { 996 stack_entries_++; 997 PushStack(val); 998 gpr_index_ = 0; 999 } 1000 } 1001 1002 1003 bool HaveLongGpr() { 1004 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1005 } 1006 1007 bool LongGprNeedsPadding() { 1008 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1009 kAlignLongOnStack && // and when it needs alignment 1010 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1011 } 1012 1013 bool LongStackNeedsPadding() { 1014 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1015 kAlignLongOnStack && // and when it needs 8B alignment 1016 (stack_entries_ & 1) == 1; // counter is odd 1017 } 1018 1019 void AdvanceLong(uint64_t val) { 1020 if (HaveLongGpr()) { 1021 if (LongGprNeedsPadding()) { 1022 PushGpr(0); 1023 gpr_index_--; 1024 } 1025 if (kRegistersNeededForLong == 1) { 1026 PushGpr(static_cast<uintptr_t>(val)); 1027 } else { 1028 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1029 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1030 } 1031 gpr_index_ -= kRegistersNeededForLong; 1032 } else { 1033 if (LongStackNeedsPadding()) { 1034 PushStack(0); 1035 stack_entries_++; 1036 } 1037 if (kRegistersNeededForLong == 1) { 1038 PushStack(static_cast<uintptr_t>(val)); 1039 stack_entries_++; 1040 } else { 1041 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1042 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1043 stack_entries_ += 2; 1044 } 1045 gpr_index_ = 0; 1046 } 1047 } 1048 1049 1050 bool HaveFloatFpr() { 1051 return fpr_index_ > 0; 1052 } 1053 1054 template <typename U, typename V> V convert(U in) { 1055 CHECK_LE(sizeof(U), sizeof(V)); 1056 union { U u; V v; } tmp; 1057 tmp.u = in; 1058 return tmp.v; 1059 } 1060 1061 void AdvanceFloat(float val) { 1062 if (kNativeSoftFloatAbi) { 1063 AdvanceInt(convert<float, uint32_t>(val)); 1064 } else { 1065 if (HaveFloatFpr()) { 1066 fpr_index_--; 1067 if (kRegistersNeededForDouble == 1) { 1068 if (kMultiRegistersWidened) { 1069 PushFpr8(convert<double, uint64_t>(val)); 1070 } else { 1071 // No widening, just use the bits. 1072 PushFpr8(convert<float, uint64_t>(val)); 1073 } 1074 } else { 1075 PushFpr4(val); 1076 } 1077 } else { 1078 stack_entries_++; 1079 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { 1080 // Need to widen before storing: Note the "double" in the template instantiation. 1081 PushStack(convert<double, uintptr_t>(val)); 1082 } else { 1083 PushStack(convert<float, uintptr_t>(val)); 1084 } 1085 fpr_index_ = 0; 1086 } 1087 } 1088 } 1089 1090 1091 bool HaveDoubleFpr() { 1092 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1093 } 1094 1095 bool DoubleFprNeedsPadding() { 1096 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1097 kAlignDoubleOnStack && // and when it needs alignment 1098 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1099 } 1100 1101 bool DoubleStackNeedsPadding() { 1102 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1103 kAlignDoubleOnStack && // and when it needs 8B alignment 1104 (stack_entries_ & 1) == 1; // counter is odd 1105 } 1106 1107 void AdvanceDouble(uint64_t val) { 1108 if (kNativeSoftFloatAbi) { 1109 AdvanceLong(val); 1110 } else { 1111 if (HaveDoubleFpr()) { 1112 if (DoubleFprNeedsPadding()) { 1113 PushFpr4(0); 1114 fpr_index_--; 1115 } 1116 PushFpr8(val); 1117 fpr_index_ -= kRegistersNeededForDouble; 1118 } else { 1119 if (DoubleStackNeedsPadding()) { 1120 PushStack(0); 1121 stack_entries_++; 1122 } 1123 if (kRegistersNeededForDouble == 1) { 1124 PushStack(static_cast<uintptr_t>(val)); 1125 stack_entries_++; 1126 } else { 1127 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1128 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1129 stack_entries_ += 2; 1130 } 1131 fpr_index_ = 0; 1132 } 1133 } 1134 } 1135 1136 uint32_t getStackEntries() { 1137 return stack_entries_; 1138 } 1139 1140 uint32_t getNumberOfUsedGprs() { 1141 return kNumNativeGprArgs - gpr_index_; 1142 } 1143 1144 uint32_t getNumberOfUsedFprs() { 1145 return kNumNativeFprArgs - fpr_index_; 1146 } 1147 1148 private: 1149 void PushGpr(uintptr_t val) { 1150 delegate_->PushGpr(val); 1151 } 1152 void PushFpr4(float val) { 1153 delegate_->PushFpr4(val); 1154 } 1155 void PushFpr8(uint64_t val) { 1156 delegate_->PushFpr8(val); 1157 } 1158 void PushStack(uintptr_t val) { 1159 delegate_->PushStack(val); 1160 } 1161 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1162 return delegate_->PushHandle(ref); 1163 } 1164 1165 uint32_t gpr_index_; // Number of free GPRs 1166 uint32_t fpr_index_; // Number of free FPRs 1167 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1168 // extended 1169 T* delegate_; // What Push implementation gets called 1170}; 1171 1172class ComputeGenericJniFrameSize FINAL { 1173 public: 1174 ComputeGenericJniFrameSize() : num_handle_scope_references_(0), num_stack_entries_(0) {} 1175 1176 uint32_t GetStackSize() { 1177 return num_stack_entries_ * sizeof(uintptr_t); 1178 } 1179 1180 // WARNING: After this, *sp won't be pointing to the method anymore! 1181 void ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty, 1182 uint32_t shorty_len, void* sp, HandleScope** table, 1183 uint32_t* handle_scope_entries, uintptr_t** start_stack, uintptr_t** start_gpr, 1184 uint32_t** start_fpr, void** code_return, size_t* overall_size) 1185 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1186 ComputeAll(is_static, shorty, shorty_len); 1187 1188 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1189 1190 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1191 1192 // First, fix up the layout of the callee-save frame. 1193 // We have to squeeze in the HandleScope, and relocate the method pointer. 1194 1195 // "Free" the slot for the method. 1196 sp8 += kPointerSize; // In the callee-save frame we use a full pointer. 1197 1198 // Under the callee saves put handle scope and new method stack reference. 1199 *handle_scope_entries = num_handle_scope_references_; 1200 1201 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1202 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1203 1204 sp8 -= scope_and_method; 1205 // Align by kStackAlignment 1206 uintptr_t sp_to_align = reinterpret_cast<uintptr_t>(sp8); 1207 sp_to_align = RoundDown(sp_to_align, kStackAlignment); 1208 sp8 = reinterpret_cast<uint8_t*>(sp_to_align); 1209 1210 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1211 *table = reinterpret_cast<HandleScope*>(sp8_table); 1212 (*table)->SetNumberOfReferences(num_handle_scope_references_); 1213 1214 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1215 uint8_t* method_pointer = sp8; 1216 StackReference<mirror::ArtMethod>* new_method_ref = 1217 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1218 new_method_ref->Assign(method); 1219 *m = new_method_ref; 1220 1221 // Reference cookie and padding 1222 sp8 -= 8; 1223 // Store HandleScope size 1224 *reinterpret_cast<uint32_t*>(sp8) = static_cast<uint32_t>(handle_scope_size & 0xFFFFFFFF); 1225 1226 // Next comes the native call stack. 1227 sp8 -= GetStackSize(); 1228 // Now align the call stack below. This aligns by 16, as AArch64 seems to require. 1229 uintptr_t mask = ~0x0F; 1230 sp8 = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(sp8) & mask); 1231 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1232 1233 // put fprs and gprs below 1234 // Assumption is OK right now, as we have soft-float arm 1235 size_t fregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeFprArgs; 1236 sp8 -= fregs * sizeof(uintptr_t); 1237 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1238 size_t iregs = BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize>::kNumNativeGprArgs; 1239 sp8 -= iregs * sizeof(uintptr_t); 1240 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1241 1242 // reserve space for the code pointer 1243 sp8 -= kPointerSize; 1244 *code_return = reinterpret_cast<void*>(sp8); 1245 1246 *overall_size = reinterpret_cast<uint8_t*>(sp) - sp8; 1247 1248 // The new SP is stored at the end of the alloca, so it can be immediately popped 1249 sp8 = reinterpret_cast<uint8_t*>(sp) - 5 * KB; 1250 *(reinterpret_cast<uint8_t**>(sp8)) = method_pointer; 1251 } 1252 1253 void ComputeHandleScopeOffset() { } // nothing to do, static right now 1254 1255 void ComputeAll(bool is_static, const char* shorty, uint32_t shorty_len) 1256 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1257 BuildGenericJniFrameStateMachine<ComputeGenericJniFrameSize> sm(this); 1258 1259 // JNIEnv 1260 sm.AdvancePointer(nullptr); 1261 1262 // Class object or this as first argument 1263 sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1264 1265 for (uint32_t i = 1; i < shorty_len; ++i) { 1266 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1267 switch (cur_type_) { 1268 case Primitive::kPrimNot: 1269 sm.AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1270 break; 1271 1272 case Primitive::kPrimBoolean: 1273 case Primitive::kPrimByte: 1274 case Primitive::kPrimChar: 1275 case Primitive::kPrimShort: 1276 case Primitive::kPrimInt: 1277 sm.AdvanceInt(0); 1278 break; 1279 case Primitive::kPrimFloat: 1280 sm.AdvanceFloat(0); 1281 break; 1282 case Primitive::kPrimDouble: 1283 sm.AdvanceDouble(0); 1284 break; 1285 case Primitive::kPrimLong: 1286 sm.AdvanceLong(0); 1287 break; 1288 default: 1289 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1290 } 1291 } 1292 1293 num_stack_entries_ = sm.getStackEntries(); 1294 } 1295 1296 void PushGpr(uintptr_t /* val */) { 1297 // not optimizing registers, yet 1298 } 1299 1300 void PushFpr4(float /* val */) { 1301 // not optimizing registers, yet 1302 } 1303 1304 void PushFpr8(uint64_t /* val */) { 1305 // not optimizing registers, yet 1306 } 1307 1308 void PushStack(uintptr_t /* val */) { 1309 // counting is already done in the superclass 1310 } 1311 1312 uintptr_t PushHandle(mirror::Object* /* ptr */) { 1313 num_handle_scope_references_++; 1314 return reinterpret_cast<uintptr_t>(nullptr); 1315 } 1316 1317 private: 1318 uint32_t num_handle_scope_references_; 1319 uint32_t num_stack_entries_; 1320}; 1321 1322// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1323// of transitioning into native code. 1324class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1325 public: 1326 BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static, 1327 const char* shorty, uint32_t shorty_len, Thread* self) : 1328 QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), sm_(this) { 1329 ComputeGenericJniFrameSize fsc; 1330 fsc.ComputeLayout(sp, is_static, shorty, shorty_len, *sp, &handle_scope_, &handle_scope_expected_refs_, 1331 &cur_stack_arg_, &cur_gpr_reg_, &cur_fpr_reg_, &code_return_, 1332 &alloca_used_size_); 1333 handle_scope_number_of_references_ = 0; 1334 cur_hs_entry_ = GetFirstHandleScopeEntry(); 1335 1336 // jni environment is always first argument 1337 sm_.AdvancePointer(self->GetJniEnv()); 1338 1339 if (is_static) { 1340 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1341 } 1342 } 1343 1344 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1345 1346 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1347 1348 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1349 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1350 return handle_scope_->GetHandle(0).GetReference(); 1351 } 1352 1353 jobject GetFirstHandleScopeJObject() 1354 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1355 return handle_scope_->GetHandle(0).ToJObject(); 1356 } 1357 1358 void PushGpr(uintptr_t val) { 1359 *cur_gpr_reg_ = val; 1360 cur_gpr_reg_++; 1361 } 1362 1363 void PushFpr4(float val) { 1364 *cur_fpr_reg_ = val; 1365 cur_fpr_reg_++; 1366 } 1367 1368 void PushFpr8(uint64_t val) { 1369 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1370 *tmp = val; 1371 cur_fpr_reg_ += 2; 1372 } 1373 1374 void PushStack(uintptr_t val) { 1375 *cur_stack_arg_ = val; 1376 cur_stack_arg_++; 1377 } 1378 1379 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1380 uintptr_t tmp; 1381 if (ref == nullptr) { 1382 *cur_hs_entry_ = StackReference<mirror::Object>(); 1383 tmp = reinterpret_cast<uintptr_t>(nullptr); 1384 } else { 1385 *cur_hs_entry_ = StackReference<mirror::Object>::FromMirrorPtr(ref); 1386 tmp = reinterpret_cast<uintptr_t>(cur_hs_entry_); 1387 } 1388 cur_hs_entry_++; 1389 handle_scope_number_of_references_++; 1390 return tmp; 1391 } 1392 1393 // Size of the part of the alloca that we actually need. 1394 size_t GetAllocaUsedSize() { 1395 return alloca_used_size_; 1396 } 1397 1398 void* GetCodeReturn() { 1399 return code_return_; 1400 } 1401 1402 private: 1403 uint32_t handle_scope_number_of_references_; 1404 StackReference<mirror::Object>* cur_hs_entry_; 1405 HandleScope* handle_scope_; 1406 uint32_t handle_scope_expected_refs_; 1407 uintptr_t* cur_gpr_reg_; 1408 uint32_t* cur_fpr_reg_; 1409 uintptr_t* cur_stack_arg_; 1410 // StackReference<mirror::Object>* top_of_handle_scope_; 1411 void* code_return_; 1412 size_t alloca_used_size_; 1413 1414 BuildGenericJniFrameStateMachine<BuildGenericJniFrameVisitor> sm_; 1415 1416 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1417}; 1418 1419void BuildGenericJniFrameVisitor::Visit() { 1420 Primitive::Type type = GetParamPrimitiveType(); 1421 switch (type) { 1422 case Primitive::kPrimLong: { 1423 jlong long_arg; 1424 if (IsSplitLongOrDouble()) { 1425 long_arg = ReadSplitLongParam(); 1426 } else { 1427 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1428 } 1429 sm_.AdvanceLong(long_arg); 1430 break; 1431 } 1432 case Primitive::kPrimDouble: { 1433 uint64_t double_arg; 1434 if (IsSplitLongOrDouble()) { 1435 // Read into union so that we don't case to a double. 1436 double_arg = ReadSplitLongParam(); 1437 } else { 1438 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1439 } 1440 sm_.AdvanceDouble(double_arg); 1441 break; 1442 } 1443 case Primitive::kPrimNot: { 1444 StackReference<mirror::Object>* stack_ref = 1445 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1446 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1447 break; 1448 } 1449 case Primitive::kPrimFloat: 1450 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1451 break; 1452 case Primitive::kPrimBoolean: // Fall-through. 1453 case Primitive::kPrimByte: // Fall-through. 1454 case Primitive::kPrimChar: // Fall-through. 1455 case Primitive::kPrimShort: // Fall-through. 1456 case Primitive::kPrimInt: // Fall-through. 1457 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1458 break; 1459 case Primitive::kPrimVoid: 1460 LOG(FATAL) << "UNREACHABLE"; 1461 break; 1462 } 1463} 1464 1465void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1466 // Initialize padding entries. 1467 while (handle_scope_number_of_references_ < handle_scope_expected_refs_) { 1468 *cur_hs_entry_ = StackReference<mirror::Object>(); 1469 cur_hs_entry_++; 1470 handle_scope_number_of_references_++; 1471 } 1472 handle_scope_->SetNumberOfReferences(handle_scope_expected_refs_); 1473 DCHECK_NE(handle_scope_expected_refs_, 0U); 1474 // Install HandleScope. 1475 self->PushHandleScope(handle_scope_); 1476} 1477 1478extern "C" void* artFindNativeMethod(); 1479 1480uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1481 if (lock != nullptr) { 1482 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1483 } else { 1484 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1485 } 1486} 1487 1488void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1489 if (lock != nullptr) { 1490 JniMethodEndSynchronized(cookie, lock, self); 1491 } else { 1492 JniMethodEnd(cookie, self); 1493 } 1494} 1495 1496/* 1497 * Initializes an alloca region assumed to be directly below sp for a native call: 1498 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1499 * The final element on the stack is a pointer to the native code. 1500 * 1501 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1502 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1503 * 1504 * The return of this function denotes: 1505 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1506 * 2) An error, if the value is negative. 1507 */ 1508extern "C" ssize_t artQuickGenericJniTrampoline(Thread* self, StackReference<mirror::ArtMethod>* sp) 1509 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1510 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1511 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1512 1513 // run the visitor 1514 MethodHelper mh(called); 1515 1516 BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), mh.GetShorty(), mh.GetShortyLength(), 1517 self); 1518 visitor.VisitArguments(); 1519 visitor.FinalizeHandleScope(self); 1520 1521 // fix up managed-stack things in Thread 1522 self->SetTopOfStack(sp, 0); 1523 1524 self->VerifyStack(); 1525 1526 // Start JNI, save the cookie. 1527 uint32_t cookie; 1528 if (called->IsSynchronized()) { 1529 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1530 if (self->IsExceptionPending()) { 1531 self->PopHandleScope(); 1532 // A negative value denotes an error. 1533 return -1; 1534 } 1535 } else { 1536 cookie = JniMethodStart(self); 1537 } 1538 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1539 *(sp32 - 1) = cookie; 1540 1541 // Retrieve the stored native code. 1542 const void* nativeCode = called->GetNativeMethod(); 1543 1544 // There are two cases for the content of nativeCode: 1545 // 1) Pointer to the native function. 1546 // 2) Pointer to the trampoline for native code binding. 1547 // In the second case, we need to execute the binding and continue with the actual native function 1548 // pointer. 1549 DCHECK(nativeCode != nullptr); 1550 if (nativeCode == GetJniDlsymLookupStub()) { 1551 nativeCode = artFindNativeMethod(); 1552 1553 if (nativeCode == nullptr) { 1554 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1555 1556 // End JNI, as the assembly will move to deliver the exception. 1557 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1558 if (mh.GetShorty()[0] == 'L') { 1559 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1560 } else { 1561 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1562 } 1563 1564 return -1; 1565 } 1566 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1567 } 1568 1569 // Store the native code pointer in the stack at the right location. 1570 uintptr_t* code_pointer = reinterpret_cast<uintptr_t*>(visitor.GetCodeReturn()); 1571 *code_pointer = reinterpret_cast<uintptr_t>(nativeCode); 1572 1573 // 5K reserved, window_size + frame pointer used. 1574 size_t window_size = visitor.GetAllocaUsedSize(); 1575 return (5 * KB) - window_size - kPointerSize; 1576} 1577 1578/* 1579 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1580 * unlocking. 1581 */ 1582extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, 1583 StackReference<mirror::ArtMethod>* sp, 1584 jvalue result, uint64_t result_f) 1585 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1586 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1587 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1588 uint32_t cookie = *(sp32 - 1); 1589 1590 jobject lock = nullptr; 1591 if (called->IsSynchronized()) { 1592 HandleScope* table = reinterpret_cast<HandleScope*>( 1593 reinterpret_cast<uint8_t*>(sp) + sizeof(StackReference<mirror::ArtMethod>)); 1594 lock = table->GetHandle(0).ToJObject(); 1595 } 1596 1597 MethodHelper mh(called); 1598 char return_shorty_char = mh.GetShorty()[0]; 1599 1600 if (return_shorty_char == 'L') { 1601 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1602 } else { 1603 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1604 1605 switch (return_shorty_char) { 1606 case 'F': // Fall-through. 1607 case 'D': 1608 return result_f; 1609 case 'Z': 1610 return result.z; 1611 case 'B': 1612 return result.b; 1613 case 'C': 1614 return result.c; 1615 case 'S': 1616 return result.s; 1617 case 'I': 1618 return result.i; 1619 case 'J': 1620 return result.j; 1621 case 'V': 1622 return 0; 1623 default: 1624 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1625 return 0; 1626 } 1627 } 1628} 1629 1630// The following definitions create return types for two word-sized entities that will be passed 1631// in registers so that memory operations for the interface trampolines can be avoided. The entities 1632// are the resolved method and the pointer to the code to be invoked. 1633// 1634// On x86, ARM32 and MIPS, this is given for a *scalar* 64bit value. The definition thus *must* be 1635// uint64_t or long long int. We use the upper 32b for code, and the lower 32b for the method. 1636// 1637// On x86_64 and ARM64, structs are decomposed for allocation, so we can create a structs of two 1638// size_t-sized values. 1639// 1640// We need two operations: 1641// 1642// 1) A flag value that signals failure. The assembly stubs expect the method part to be "0". 1643// GetFailureValue() will return a value that has method == 0. 1644// 1645// 2) A value that combines a code pointer and a method pointer. 1646// GetSuccessValue() constructs this. 1647 1648#if defined(__i386__) || defined(__arm__) || defined(__mips__) 1649typedef uint64_t MethodAndCode; 1650 1651// Encodes method_ptr==nullptr and code_ptr==nullptr 1652static constexpr MethodAndCode GetFailureValue() { 1653 return 0; 1654} 1655 1656// Use the lower 32b for the method pointer and the upper 32b for the code pointer. 1657static MethodAndCode GetSuccessValue(const void* code, mirror::ArtMethod* method) { 1658 uint32_t method_uint = reinterpret_cast<uint32_t>(method); 1659 uint64_t code_uint = reinterpret_cast<uint32_t>(code); 1660 return ((code_uint << 32) | method_uint); 1661} 1662 1663#elif defined(__x86_64__) || defined(__aarch64__) 1664struct MethodAndCode { 1665 uintptr_t method; 1666 uintptr_t code; 1667}; 1668 1669// Encodes method_ptr==nullptr. Leaves random value in code pointer. 1670static MethodAndCode GetFailureValue() { 1671 MethodAndCode ret; 1672 ret.method = 0; 1673 return ret; 1674} 1675 1676// Write values into their respective members. 1677static MethodAndCode GetSuccessValue(const void* code, mirror::ArtMethod* method) { 1678 MethodAndCode ret; 1679 ret.method = reinterpret_cast<uintptr_t>(method); 1680 ret.code = reinterpret_cast<uintptr_t>(code); 1681 return ret; 1682} 1683#else 1684#error "Unsupported architecture" 1685#endif 1686 1687template<InvokeType type, bool access_check> 1688static MethodAndCode artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1689 mirror::ArtMethod* caller_method, 1690 Thread* self, StackReference<mirror::ArtMethod>* sp); 1691 1692template<InvokeType type, bool access_check> 1693static MethodAndCode artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1694 mirror::ArtMethod* caller_method, 1695 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1696 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1697 type); 1698 if (UNLIKELY(method == nullptr)) { 1699 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1700 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1701 uint32_t shorty_len; 1702 const char* shorty = 1703 dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1704 { 1705 // Remember the args in case a GC happens in FindMethodFromCode. 1706 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1707 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1708 visitor.VisitArguments(); 1709 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1710 self); 1711 visitor.FixupReferences(); 1712 } 1713 1714 if (UNLIKELY(method == NULL)) { 1715 CHECK(self->IsExceptionPending()); 1716 return GetFailureValue(); // Failure. 1717 } 1718 } 1719 DCHECK(!self->IsExceptionPending()); 1720 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1721 1722 // When we return, the caller will branch to this address, so it had better not be 0! 1723 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: " 1724 << MethodHelper(method).GetDexFile().GetLocation(); 1725 1726 return GetSuccessValue(code, method); 1727} 1728 1729// Explicit artInvokeCommon template function declarations to please analysis tool. 1730#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1731 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1732 MethodAndCode artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1733 mirror::Object* this_object, \ 1734 mirror::ArtMethod* caller_method, \ 1735 Thread* self, \ 1736 StackReference<mirror::ArtMethod>* sp) \ 1737 1738EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1739EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1740EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1741EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1742EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1743EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1744EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1745EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1746EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1747EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1748#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1749 1750 1751// See comments in runtime_support_asm.S 1752extern "C" MethodAndCode artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx, 1753 mirror::Object* this_object, 1754 mirror::ArtMethod* caller_method, 1755 Thread* self, 1756 StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1757 return artInvokeCommon<kInterface, true>(method_idx, this_object, caller_method, self, sp); 1758} 1759 1760 1761extern "C" MethodAndCode artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx, 1762 mirror::Object* this_object, 1763 mirror::ArtMethod* caller_method, 1764 Thread* self, 1765 StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1766 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, self, sp); 1767} 1768 1769extern "C" MethodAndCode artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx, 1770 mirror::Object* this_object, 1771 mirror::ArtMethod* caller_method, 1772 Thread* self, 1773 StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1774 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, self, sp); 1775} 1776 1777extern "C" MethodAndCode artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx, 1778 mirror::Object* this_object, 1779 mirror::ArtMethod* caller_method, 1780 Thread* self, 1781 StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1782 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, self, sp); 1783} 1784 1785extern "C" MethodAndCode artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx, 1786 mirror::Object* this_object, 1787 mirror::ArtMethod* caller_method, 1788 Thread* self, 1789 StackReference<mirror::ArtMethod>* sp) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1790 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, self, sp); 1791} 1792 1793// Determine target of interface dispatch. This object is known non-null. 1794extern "C" MethodAndCode artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 1795 mirror::Object* this_object, 1796 mirror::ArtMethod* caller_method, 1797 Thread* self, 1798 StackReference<mirror::ArtMethod>* sp) 1799 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1800 mirror::ArtMethod* method; 1801 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 1802 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 1803 if (UNLIKELY(method == NULL)) { 1804 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1805 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 1806 caller_method); 1807 return GetFailureValue(); // Failure. 1808 } 1809 } else { 1810 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1811 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 1812 // Determine method index from calling dex instruction. 1813#if defined(__arm__) 1814 // On entry the stack pointed by sp is: 1815 // | argN | | 1816 // | ... | | 1817 // | arg4 | | 1818 // | arg3 spill | | Caller's frame 1819 // | arg2 spill | | 1820 // | arg1 spill | | 1821 // | Method* | --- 1822 // | LR | 1823 // | ... | callee saves 1824 // | R3 | arg3 1825 // | R2 | arg2 1826 // | R1 | arg1 1827 // | R0 | 1828 // | Method* | <- sp 1829 DCHECK_EQ(48U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); 1830 uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + kPointerSize); 1831 uintptr_t caller_pc = regs[10]; 1832#elif defined(__i386__) 1833 // On entry the stack pointed by sp is: 1834 // | argN | | 1835 // | ... | | 1836 // | arg4 | | 1837 // | arg3 spill | | Caller's frame 1838 // | arg2 spill | | 1839 // | arg1 spill | | 1840 // | Method* | --- 1841 // | Return | 1842 // | EBP,ESI,EDI | callee saves 1843 // | EBX | arg3 1844 // | EDX | arg2 1845 // | ECX | arg1 1846 // | EAX/Method* | <- sp 1847 DCHECK_EQ(32U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); 1848 uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp)); 1849 uintptr_t caller_pc = regs[7]; 1850#elif defined(__mips__) 1851 // On entry the stack pointed by sp is: 1852 // | argN | | 1853 // | ... | | 1854 // | arg4 | | 1855 // | arg3 spill | | Caller's frame 1856 // | arg2 spill | | 1857 // | arg1 spill | | 1858 // | Method* | --- 1859 // | RA | 1860 // | ... | callee saves 1861 // | A3 | arg3 1862 // | A2 | arg2 1863 // | A1 | arg1 1864 // | A0/Method* | <- sp 1865 DCHECK_EQ(64U, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()); 1866 uintptr_t* regs = reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp)); 1867 uintptr_t caller_pc = regs[15]; 1868#else 1869 UNIMPLEMENTED(FATAL); 1870 uintptr_t caller_pc = 0; 1871#endif 1872 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 1873 const DexFile::CodeItem* code = MethodHelper(caller_method).GetCodeItem(); 1874 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1875 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1876 Instruction::Code instr_code = instr->Opcode(); 1877 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 1878 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 1879 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); 1880 uint32_t dex_method_idx; 1881 if (instr_code == Instruction::INVOKE_INTERFACE) { 1882 dex_method_idx = instr->VRegB_35c(); 1883 } else { 1884 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 1885 dex_method_idx = instr->VRegB_3rc(); 1886 } 1887 1888 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1889 uint32_t shorty_len; 1890 const char* shorty = 1891 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 1892 { 1893 // Remember the args in case a GC happens in FindMethodFromCode. 1894 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1895 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 1896 visitor.VisitArguments(); 1897 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 1898 self); 1899 visitor.FixupReferences(); 1900 } 1901 1902 if (UNLIKELY(method == nullptr)) { 1903 CHECK(self->IsExceptionPending()); 1904 return GetFailureValue(); // Failure. 1905 } 1906 } 1907 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1908 1909 // When we return, the caller will branch to this address, so it had better not be 0! 1910 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) << " location: " 1911 << MethodHelper(method).GetDexFile().GetLocation(); 1912 1913 return GetSuccessValue(code, method); 1914} 1915 1916} // namespace art 1917