quick_trampoline_entrypoints.cc revision 6a3c1fcb4ba42ad4d5d142c17a3712a6ddd3866f
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "callee_save_frame.h" 18#include "common_throws.h" 19#include "dex_file-inl.h" 20#include "dex_instruction-inl.h" 21#include "entrypoints/entrypoint_utils-inl.h" 22#include "entrypoints/runtime_asm_entrypoints.h" 23#include "gc/accounting/card_table-inl.h" 24#include "instruction_set.h" 25#include "interpreter/interpreter.h" 26#include "mirror/art_method-inl.h" 27#include "mirror/class-inl.h" 28#include "mirror/dex_cache-inl.h" 29#include "mirror/object-inl.h" 30#include "mirror/object_array-inl.h" 31#include "runtime.h" 32#include "scoped_thread_state_change.h" 33 34namespace art { 35 36// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 37class QuickArgumentVisitor { 38 // Number of bytes for each out register in the caller method's frame. 39 static constexpr size_t kBytesStackArgLocation = 4; 40 // Frame size in bytes of a callee-save frame for RefsAndArgs. 41 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 42 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 43#if defined(__arm__) 44 // The callee save frame is pointed to by SP. 45 // | argN | | 46 // | ... | | 47 // | arg4 | | 48 // | arg3 spill | | Caller's frame 49 // | arg2 spill | | 50 // | arg1 spill | | 51 // | Method* | --- 52 // | LR | 53 // | ... | 4x6 bytes callee saves 54 // | R3 | 55 // | R2 | 56 // | R1 | 57 // | S15 | 58 // | : | 59 // | S0 | 60 // | | 4x2 bytes padding 61 // | Method* | <- sp 62 static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; 63 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; 64 static constexpr size_t kNumQuickGprArgs = 3; 65 static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; 66 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 67 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 68 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 69 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 70 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 71 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 72 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 73 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 74 } 75#elif defined(__aarch64__) 76 // The callee save frame is pointed to by SP. 77 // | argN | | 78 // | ... | | 79 // | arg4 | | 80 // | arg3 spill | | Caller's frame 81 // | arg2 spill | | 82 // | arg1 spill | | 83 // | Method* | --- 84 // | LR | 85 // | X29 | 86 // | : | 87 // | X20 | 88 // | X7 | 89 // | : | 90 // | X1 | 91 // | D7 | 92 // | : | 93 // | D0 | 94 // | | padding 95 // | Method* | <- sp 96 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 97 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 98 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 99 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 100 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 101 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 102 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 103 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 104 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 105 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 106 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 107 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 108 } 109#elif defined(__mips__) 110 // The callee save frame is pointed to by SP. 111 // | argN | | 112 // | ... | | 113 // | arg4 | | 114 // | arg3 spill | | Caller's frame 115 // | arg2 spill | | 116 // | arg1 spill | | 117 // | Method* | --- 118 // | RA | 119 // | ... | callee saves 120 // | A3 | arg3 121 // | A2 | arg2 122 // | A1 | arg1 123 // | A0/Method* | <- sp 124 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 125 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 126 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 127 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 128 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 129 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 130 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 131 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 132 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 133 } 134#elif defined(__i386__) 135 // The callee save frame is pointed to by SP. 136 // | argN | | 137 // | ... | | 138 // | arg4 | | 139 // | arg3 spill | | Caller's frame 140 // | arg2 spill | | 141 // | arg1 spill | | 142 // | Method* | --- 143 // | Return | 144 // | EBP,ESI,EDI | callee saves 145 // | EBX | arg3 146 // | EDX | arg2 147 // | ECX | arg1 148 // | EAX/Method* | <- sp 149 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 150 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 151 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 152 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 153 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 154 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 155 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. 156 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 157 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 158 } 159#elif defined(__x86_64__) 160 // The callee save frame is pointed to by SP. 161 // | argN | | 162 // | ... | | 163 // | reg. arg spills | | Caller's frame 164 // | Method* | --- 165 // | Return | 166 // | R15 | callee save 167 // | R14 | callee save 168 // | R13 | callee save 169 // | R12 | callee save 170 // | R9 | arg5 171 // | R8 | arg4 172 // | RSI/R6 | arg1 173 // | RBP/R5 | callee save 174 // | RBX/R3 | callee save 175 // | RDX/R2 | arg2 176 // | RCX/R1 | arg3 177 // | XMM7 | float arg 8 178 // | XMM6 | float arg 7 179 // | XMM5 | float arg 6 180 // | XMM4 | float arg 5 181 // | XMM3 | float arg 4 182 // | XMM2 | float arg 3 183 // | XMM1 | float arg 2 184 // | XMM0 | float arg 1 185 // | Padding | 186 // | RDI/Method* | <- sp 187 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 188 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 189 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 190 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 191 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 192 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 193 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 194 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 195 switch (gpr_index) { 196 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 197 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 198 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 199 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 200 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 201 default: 202 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 203 return 0; 204 } 205 } 206#else 207#error "Unsupported architecture" 208#endif 209 210 public: 211 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 212 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 213 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 214 uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 215 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 216 } 217 218 // For the given quick ref and args quick frame, return the caller's PC. 219 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 220 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 221 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 222 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 223 return *reinterpret_cast<uintptr_t*>(lr); 224 } 225 226 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty, 227 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 228 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 229 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 230 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 231 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 232 + sizeof(StackReference<mirror::ArtMethod>)), // Skip StackReference<ArtMethod>. 233 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), 234 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { 235 COMPILE_ASSERT(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), knum_of_quick_fpr_arg_unexpected); 236 COMPILE_ASSERT(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), 237 kdouble_align_unexpected); 238 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the 239 // next register is even. 240 COMPILE_ASSERT(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, 241 knum_quick_fpr_args_not_even); 242 } 243 244 virtual ~QuickArgumentVisitor() {} 245 246 virtual void Visit() = 0; 247 248 Primitive::Type GetParamPrimitiveType() const { 249 return cur_type_; 250 } 251 252 uint8_t* GetParamAddress() const { 253 if (!kQuickSoftFloatAbi) { 254 Primitive::Type type = GetParamPrimitiveType(); 255 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 256 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { 257 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 258 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 259 } 260 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 261 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 262 } 263 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 264 } 265 } 266 if (gpr_index_ < kNumQuickGprArgs) { 267 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 268 } 269 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 270 } 271 272 bool IsSplitLongOrDouble() const { 273 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 274 return is_split_long_or_double_; 275 } else { 276 return false; // An optimization for when GPR and FPRs are 64bit. 277 } 278 } 279 280 bool IsParamAReference() const { 281 return GetParamPrimitiveType() == Primitive::kPrimNot; 282 } 283 284 bool IsParamALongOrDouble() const { 285 Primitive::Type type = GetParamPrimitiveType(); 286 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 287 } 288 289 uint64_t ReadSplitLongParam() const { 290 DCHECK(IsSplitLongOrDouble()); 291 // Read low half from register. 292 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress()); 293 // Read high half from the stack. As current stack_index_ indexes the argument, the high part 294 // index should be (stack_index_ + 1). 295 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_ 296 + (stack_index_ + 1) * kBytesStackArgLocation); 297 return (low_half & 0xffffffffULL) | (high_half << 32); 298 } 299 300 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 301 // (a) 'stack_args_' should point to the first method's argument 302 // (b) whatever the argument type it is, the 'stack_index_' should 303 // be moved forward along with every visiting. 304 gpr_index_ = 0; 305 fpr_index_ = 0; 306 if (kQuickDoubleRegAlignedFloatBackFilled) { 307 fpr_double_index_ = 0; 308 } 309 stack_index_ = 0; 310 if (!is_static_) { // Handle this. 311 cur_type_ = Primitive::kPrimNot; 312 is_split_long_or_double_ = false; 313 Visit(); 314 stack_index_++; 315 if (kNumQuickGprArgs > 0) { 316 gpr_index_++; 317 } 318 } 319 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 320 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 321 switch (cur_type_) { 322 case Primitive::kPrimNot: 323 case Primitive::kPrimBoolean: 324 case Primitive::kPrimByte: 325 case Primitive::kPrimChar: 326 case Primitive::kPrimShort: 327 case Primitive::kPrimInt: 328 is_split_long_or_double_ = false; 329 Visit(); 330 stack_index_++; 331 if (gpr_index_ < kNumQuickGprArgs) { 332 gpr_index_++; 333 } 334 break; 335 case Primitive::kPrimFloat: 336 is_split_long_or_double_ = false; 337 Visit(); 338 stack_index_++; 339 if (kQuickSoftFloatAbi) { 340 if (gpr_index_ < kNumQuickGprArgs) { 341 gpr_index_++; 342 } 343 } else { 344 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 345 fpr_index_++; 346 if (kQuickDoubleRegAlignedFloatBackFilled) { 347 // Double should not overlap with float. 348 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. 349 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); 350 // Float should not overlap with double. 351 if (fpr_index_ % 2 == 0) { 352 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 353 } 354 } 355 } 356 } 357 break; 358 case Primitive::kPrimDouble: 359 case Primitive::kPrimLong: 360 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 361 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 362 ((gpr_index_ + 1) == kNumQuickGprArgs); 363 Visit(); 364 if (kBytesStackArgLocation == 4) { 365 stack_index_+= 2; 366 } else { 367 CHECK_EQ(kBytesStackArgLocation, 8U); 368 stack_index_++; 369 } 370 if (gpr_index_ < kNumQuickGprArgs) { 371 gpr_index_++; 372 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 373 if (gpr_index_ < kNumQuickGprArgs) { 374 gpr_index_++; 375 } 376 } 377 } 378 } else { 379 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 380 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; 381 Visit(); 382 if (kBytesStackArgLocation == 4) { 383 stack_index_+= 2; 384 } else { 385 CHECK_EQ(kBytesStackArgLocation, 8U); 386 stack_index_++; 387 } 388 if (kQuickDoubleRegAlignedFloatBackFilled) { 389 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 390 fpr_double_index_ += 2; 391 // Float should not overlap with double. 392 if (fpr_index_ % 2 == 0) { 393 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 394 } 395 } 396 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 397 fpr_index_++; 398 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 399 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 400 fpr_index_++; 401 } 402 } 403 } 404 } 405 break; 406 default: 407 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 408 } 409 } 410 } 411 412 protected: 413 const bool is_static_; 414 const char* const shorty_; 415 const uint32_t shorty_len_; 416 417 private: 418 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 419 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 420 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 421 uint32_t gpr_index_; // Index into spilled GPRs. 422 // Index into spilled FPRs. 423 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ 424 // holds a higher register number. 425 uint32_t fpr_index_; 426 // Index into spilled FPRs for aligned double. 427 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in 428 // terms of singles, may be behind fpr_index. 429 uint32_t fpr_double_index_; 430 uint32_t stack_index_; // Index into arguments on the stack. 431 // The current type of argument during VisitArguments. 432 Primitive::Type cur_type_; 433 // Does a 64bit parameter straddle the register and stack arguments? 434 bool is_split_long_or_double_; 435}; 436 437// Visits arguments on the stack placing them into the shadow frame. 438class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 439 public: 440 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 441 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 442 size_t first_arg_reg) : 443 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 444 445 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 446 447 private: 448 ShadowFrame* const sf_; 449 uint32_t cur_reg_; 450 451 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 452}; 453 454void BuildQuickShadowFrameVisitor::Visit() { 455 Primitive::Type type = GetParamPrimitiveType(); 456 switch (type) { 457 case Primitive::kPrimLong: // Fall-through. 458 case Primitive::kPrimDouble: 459 if (IsSplitLongOrDouble()) { 460 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 461 } else { 462 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 463 } 464 ++cur_reg_; 465 break; 466 case Primitive::kPrimNot: { 467 StackReference<mirror::Object>* stack_ref = 468 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 469 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 470 } 471 break; 472 case Primitive::kPrimBoolean: // Fall-through. 473 case Primitive::kPrimByte: // Fall-through. 474 case Primitive::kPrimChar: // Fall-through. 475 case Primitive::kPrimShort: // Fall-through. 476 case Primitive::kPrimInt: // Fall-through. 477 case Primitive::kPrimFloat: 478 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 479 break; 480 case Primitive::kPrimVoid: 481 LOG(FATAL) << "UNREACHABLE"; 482 UNREACHABLE(); 483 } 484 ++cur_reg_; 485} 486 487extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 488 StackReference<mirror::ArtMethod>* sp) 489 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 490 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 491 // frame. 492 ScopedQuickEntrypointChecks sqec(self); 493 494 if (method->IsAbstract()) { 495 ThrowAbstractMethodError(method); 496 return 0; 497 } else { 498 DCHECK(!method->IsNative()) << PrettyMethod(method); 499 const char* old_cause = self->StartAssertNoThreadSuspension( 500 "Building interpreter shadow frame"); 501 const DexFile::CodeItem* code_item = method->GetCodeItem(); 502 DCHECK(code_item != nullptr) << PrettyMethod(method); 503 uint16_t num_regs = code_item->registers_size_; 504 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 505 // No last shadow coming from quick. 506 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory)); 507 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 508 uint32_t shorty_len = 0; 509 const char* shorty = method->GetShorty(&shorty_len); 510 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 511 shadow_frame, first_arg_reg); 512 shadow_frame_builder.VisitArguments(); 513 // Push a transition back into managed code onto the linked list in thread. 514 ManagedStack fragment; 515 self->PushManagedStackFragment(&fragment); 516 self->PushShadowFrame(shadow_frame); 517 self->EndAssertNoThreadSuspension(old_cause); 518 519 StackHandleScope<1> hs(self); 520 MethodHelper mh(hs.NewHandle(method)); 521 if (mh.Get()->IsStatic() && !mh.Get()->GetDeclaringClass()->IsInitialized()) { 522 // Ensure static method's class is initialized. 523 StackHandleScope<1> hs(self); 524 Handle<mirror::Class> h_class(hs.NewHandle(mh.Get()->GetDeclaringClass())); 525 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 526 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(mh.Get()); 527 self->PopManagedStackFragment(fragment); 528 return 0; 529 } 530 } 531 JValue result = interpreter::EnterInterpreterFromEntryPoint(self, &mh, code_item, shadow_frame); 532 // Pop transition. 533 self->PopManagedStackFragment(fragment); 534 // No need to restore the args since the method has already been run by the interpreter. 535 return result.GetJ(); 536 } 537} 538 539// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 540// to jobjects. 541class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 542 public: 543 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 544 const char* shorty, uint32_t shorty_len, 545 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 546 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 547 548 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 549 550 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 551 552 private: 553 ScopedObjectAccessUnchecked* const soa_; 554 std::vector<jvalue>* const args_; 555 // References which we must update when exiting in case the GC moved the objects. 556 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 557 558 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 559}; 560 561void BuildQuickArgumentVisitor::Visit() { 562 jvalue val; 563 Primitive::Type type = GetParamPrimitiveType(); 564 switch (type) { 565 case Primitive::kPrimNot: { 566 StackReference<mirror::Object>* stack_ref = 567 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 568 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 569 references_.push_back(std::make_pair(val.l, stack_ref)); 570 break; 571 } 572 case Primitive::kPrimLong: // Fall-through. 573 case Primitive::kPrimDouble: 574 if (IsSplitLongOrDouble()) { 575 val.j = ReadSplitLongParam(); 576 } else { 577 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 578 } 579 break; 580 case Primitive::kPrimBoolean: // Fall-through. 581 case Primitive::kPrimByte: // Fall-through. 582 case Primitive::kPrimChar: // Fall-through. 583 case Primitive::kPrimShort: // Fall-through. 584 case Primitive::kPrimInt: // Fall-through. 585 case Primitive::kPrimFloat: 586 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 587 break; 588 case Primitive::kPrimVoid: 589 LOG(FATAL) << "UNREACHABLE"; 590 UNREACHABLE(); 591 } 592 args_->push_back(val); 593} 594 595void BuildQuickArgumentVisitor::FixupReferences() { 596 // Fixup any references which may have changed. 597 for (const auto& pair : references_) { 598 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 599 soa_->Env()->DeleteLocalRef(pair.first); 600 } 601} 602 603// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 604// which is responsible for recording callee save registers. We explicitly place into jobjects the 605// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 606// field within the proxy object, which will box the primitive arguments and deal with error cases. 607extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 608 mirror::Object* receiver, 609 Thread* self, StackReference<mirror::ArtMethod>* sp) 610 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 611 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 612 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 613 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 614 const char* old_cause = 615 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 616 // Register the top of the managed stack, making stack crawlable. 617 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 618 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 619 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 620 << PrettyMethod(proxy_method); 621 self->VerifyStack(); 622 // Start new JNI local reference state. 623 JNIEnvExt* env = self->GetJniEnv(); 624 ScopedObjectAccessUnchecked soa(env); 625 ScopedJniEnvLocalRefState env_state(env); 626 // Create local ref. copies of proxy method and the receiver. 627 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 628 629 // Placing arguments into args vector and remove the receiver. 630 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(); 631 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 632 << PrettyMethod(non_proxy_method); 633 std::vector<jvalue> args; 634 uint32_t shorty_len = 0; 635 const char* shorty = proxy_method->GetShorty(&shorty_len); 636 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 637 638 local_ref_visitor.VisitArguments(); 639 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 640 args.erase(args.begin()); 641 642 // Convert proxy method into expected interface method. 643 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 644 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); 645 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 646 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 647 648 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 649 // that performs allocations. 650 self->EndAssertNoThreadSuspension(old_cause); 651 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 652 // Restore references which might have moved. 653 local_ref_visitor.FixupReferences(); 654 return result.GetJ(); 655} 656 657// Read object references held in arguments from quick frames and place in a JNI local references, 658// so they don't get garbage collected. 659class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 660 public: 661 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 662 const char* shorty, uint32_t shorty_len, 663 ScopedObjectAccessUnchecked* soa) : 664 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 665 666 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 667 668 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 669 670 private: 671 ScopedObjectAccessUnchecked* const soa_; 672 // References which we must update when exiting in case the GC moved the objects. 673 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 674 675 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 676}; 677 678void RememberForGcArgumentVisitor::Visit() { 679 if (IsParamAReference()) { 680 StackReference<mirror::Object>* stack_ref = 681 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 682 jobject reference = 683 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 684 references_.push_back(std::make_pair(reference, stack_ref)); 685 } 686} 687 688void RememberForGcArgumentVisitor::FixupReferences() { 689 // Fixup any references which may have changed. 690 for (const auto& pair : references_) { 691 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 692 soa_->Env()->DeleteLocalRef(pair.first); 693 } 694} 695 696// Lazily resolve a method for quick. Called by stub code. 697extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 698 mirror::Object* receiver, 699 Thread* self, 700 StackReference<mirror::ArtMethod>* sp) 701 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 702 ScopedQuickEntrypointChecks sqec(self); 703 // Start new JNI local reference state 704 JNIEnvExt* env = self->GetJniEnv(); 705 ScopedObjectAccessUnchecked soa(env); 706 ScopedJniEnvLocalRefState env_state(env); 707 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 708 709 // Compute details about the called method (avoid GCs) 710 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 711 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 712 InvokeType invoke_type; 713 const DexFile* dex_file; 714 uint32_t dex_method_idx; 715 if (called->IsRuntimeMethod()) { 716 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 717 const DexFile::CodeItem* code; 718 dex_file = caller->GetDexFile(); 719 code = caller->GetCodeItem(); 720 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 721 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 722 Instruction::Code instr_code = instr->Opcode(); 723 bool is_range; 724 switch (instr_code) { 725 case Instruction::INVOKE_DIRECT: 726 invoke_type = kDirect; 727 is_range = false; 728 break; 729 case Instruction::INVOKE_DIRECT_RANGE: 730 invoke_type = kDirect; 731 is_range = true; 732 break; 733 case Instruction::INVOKE_STATIC: 734 invoke_type = kStatic; 735 is_range = false; 736 break; 737 case Instruction::INVOKE_STATIC_RANGE: 738 invoke_type = kStatic; 739 is_range = true; 740 break; 741 case Instruction::INVOKE_SUPER: 742 invoke_type = kSuper; 743 is_range = false; 744 break; 745 case Instruction::INVOKE_SUPER_RANGE: 746 invoke_type = kSuper; 747 is_range = true; 748 break; 749 case Instruction::INVOKE_VIRTUAL: 750 invoke_type = kVirtual; 751 is_range = false; 752 break; 753 case Instruction::INVOKE_VIRTUAL_RANGE: 754 invoke_type = kVirtual; 755 is_range = true; 756 break; 757 case Instruction::INVOKE_INTERFACE: 758 invoke_type = kInterface; 759 is_range = false; 760 break; 761 case Instruction::INVOKE_INTERFACE_RANGE: 762 invoke_type = kInterface; 763 is_range = true; 764 break; 765 default: 766 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); 767 // Avoid used uninitialized warnings. 768 invoke_type = kDirect; 769 is_range = false; 770 } 771 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 772 } else { 773 invoke_type = kStatic; 774 dex_file = called->GetDexFile(); 775 dex_method_idx = called->GetDexMethodIndex(); 776 } 777 uint32_t shorty_len; 778 const char* shorty = 779 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 780 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 781 visitor.VisitArguments(); 782 self->EndAssertNoThreadSuspension(old_cause); 783 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 784 // Resolve method filling in dex cache. 785 if (UNLIKELY(called->IsRuntimeMethod())) { 786 StackHandleScope<1> hs(self); 787 mirror::Object* dummy = nullptr; 788 HandleWrapper<mirror::Object> h_receiver( 789 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 790 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type); 791 } 792 const void* code = NULL; 793 if (LIKELY(!self->IsExceptionPending())) { 794 // Incompatible class change should have been handled in resolve method. 795 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 796 << PrettyMethod(called) << " " << invoke_type; 797 if (virtual_or_interface) { 798 // Refine called method based on receiver. 799 CHECK(receiver != nullptr) << invoke_type; 800 801 mirror::ArtMethod* orig_called = called; 802 if (invoke_type == kVirtual) { 803 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 804 } else { 805 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 806 } 807 808 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 809 << PrettyTypeOf(receiver) << " " 810 << invoke_type << " " << orig_called->GetVtableIndex(); 811 812 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 813 // of the sharpened method. 814 if (called->HasSameDexCacheResolvedMethods(caller)) { 815 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called); 816 } else { 817 // Calling from one dex file to another, need to compute the method index appropriate to 818 // the caller's dex file. Since we get here only if the original called was a runtime 819 // method, we've got the correct dex_file and a dex_method_idx from above. 820 DCHECK_EQ(caller->GetDexFile(), dex_file); 821 StackHandleScope<1> hs(self); 822 MethodHelper mh(hs.NewHandle(called)); 823 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); 824 if (method_index != DexFile::kDexNoIndex) { 825 caller->SetDexCacheResolvedMethod(method_index, called); 826 } 827 } 828 } 829 // Ensure that the called method's class is initialized. 830 StackHandleScope<1> hs(soa.Self()); 831 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 832 linker->EnsureInitialized(soa.Self(), called_class, true, true); 833 if (LIKELY(called_class->IsInitialized())) { 834 code = called->GetEntryPointFromQuickCompiledCode(); 835 } else if (called_class->IsInitializing()) { 836 if (invoke_type == kStatic) { 837 // Class is still initializing, go to oat and grab code (trampoline must be left in place 838 // until class is initialized to stop races between threads). 839 code = linker->GetQuickOatCodeFor(called); 840 } else { 841 // No trampoline for non-static methods. 842 code = called->GetEntryPointFromQuickCompiledCode(); 843 } 844 } else { 845 DCHECK(called_class->IsErroneous()); 846 } 847 } 848 CHECK_EQ(code == NULL, self->IsExceptionPending()); 849 // Fixup any locally saved objects may have moved during a GC. 850 visitor.FixupReferences(); 851 // Place called method in callee-save frame to be placed as first argument to quick method. 852 sp->Assign(called); 853 return code; 854} 855 856/* 857 * This class uses a couple of observations to unite the different calling conventions through 858 * a few constants. 859 * 860 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 861 * possible alignment. 862 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 863 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 864 * when we have to split things 865 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 866 * and we can use Int handling directly. 867 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 868 * necessary when widening. Also, widening of Ints will take place implicitly, and the 869 * extension should be compatible with Aarch64, which mandates copying the available bits 870 * into LSB and leaving the rest unspecified. 871 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 872 * the stack. 873 * 6) There is only little endian. 874 * 875 * 876 * Actual work is supposed to be done in a delegate of the template type. The interface is as 877 * follows: 878 * 879 * void PushGpr(uintptr_t): Add a value for the next GPR 880 * 881 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 882 * padding, that is, think the architecture is 32b and aligns 64b. 883 * 884 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 885 * split this if necessary. The current state will have aligned, if 886 * necessary. 887 * 888 * void PushStack(uintptr_t): Push a value to the stack. 889 * 890 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 891 * as this might be important for null initialization. 892 * Must return the jobject, that is, the reference to the 893 * entry in the HandleScope (nullptr if necessary). 894 * 895 */ 896template<class T> class BuildNativeCallFrameStateMachine { 897 public: 898#if defined(__arm__) 899 // TODO: These are all dummy values! 900 static constexpr bool kNativeSoftFloatAbi = true; 901 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 902 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 903 904 static constexpr size_t kRegistersNeededForLong = 2; 905 static constexpr size_t kRegistersNeededForDouble = 2; 906 static constexpr bool kMultiRegistersAligned = true; 907 static constexpr bool kMultiRegistersWidened = false; 908 static constexpr bool kAlignLongOnStack = true; 909 static constexpr bool kAlignDoubleOnStack = true; 910#elif defined(__aarch64__) 911 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 912 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 913 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 914 915 static constexpr size_t kRegistersNeededForLong = 1; 916 static constexpr size_t kRegistersNeededForDouble = 1; 917 static constexpr bool kMultiRegistersAligned = false; 918 static constexpr bool kMultiRegistersWidened = false; 919 static constexpr bool kAlignLongOnStack = false; 920 static constexpr bool kAlignDoubleOnStack = false; 921#elif defined(__mips__) 922 // TODO: These are all dummy values! 923 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 924 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 925 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 926 927 static constexpr size_t kRegistersNeededForLong = 2; 928 static constexpr size_t kRegistersNeededForDouble = 2; 929 static constexpr bool kMultiRegistersAligned = true; 930 static constexpr bool kMultiRegistersWidened = true; 931 static constexpr bool kAlignLongOnStack = false; 932 static constexpr bool kAlignDoubleOnStack = false; 933#elif defined(__i386__) 934 // TODO: Check these! 935 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 936 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 937 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 938 939 static constexpr size_t kRegistersNeededForLong = 2; 940 static constexpr size_t kRegistersNeededForDouble = 2; 941 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 942 static constexpr bool kMultiRegistersWidened = false; 943 static constexpr bool kAlignLongOnStack = false; 944 static constexpr bool kAlignDoubleOnStack = false; 945#elif defined(__x86_64__) 946 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 947 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 948 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 949 950 static constexpr size_t kRegistersNeededForLong = 1; 951 static constexpr size_t kRegistersNeededForDouble = 1; 952 static constexpr bool kMultiRegistersAligned = false; 953 static constexpr bool kMultiRegistersWidened = false; 954 static constexpr bool kAlignLongOnStack = false; 955 static constexpr bool kAlignDoubleOnStack = false; 956#else 957#error "Unsupported architecture" 958#endif 959 960 public: 961 explicit BuildNativeCallFrameStateMachine(T* delegate) 962 : gpr_index_(kNumNativeGprArgs), 963 fpr_index_(kNumNativeFprArgs), 964 stack_entries_(0), 965 delegate_(delegate) { 966 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 967 // the next register is even; counting down is just to make the compiler happy... 968 COMPILE_ASSERT(kNumNativeGprArgs % 2 == 0U, knum_native_gpr_args_not_even); 969 COMPILE_ASSERT(kNumNativeFprArgs % 2 == 0U, knum_native_fpr_args_not_even); 970 } 971 972 virtual ~BuildNativeCallFrameStateMachine() {} 973 974 bool HavePointerGpr() const { 975 return gpr_index_ > 0; 976 } 977 978 void AdvancePointer(const void* val) { 979 if (HavePointerGpr()) { 980 gpr_index_--; 981 PushGpr(reinterpret_cast<uintptr_t>(val)); 982 } else { 983 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 984 PushStack(reinterpret_cast<uintptr_t>(val)); 985 gpr_index_ = 0; 986 } 987 } 988 989 bool HaveHandleScopeGpr() const { 990 return gpr_index_ > 0; 991 } 992 993 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 994 uintptr_t handle = PushHandle(ptr); 995 if (HaveHandleScopeGpr()) { 996 gpr_index_--; 997 PushGpr(handle); 998 } else { 999 stack_entries_++; 1000 PushStack(handle); 1001 gpr_index_ = 0; 1002 } 1003 } 1004 1005 bool HaveIntGpr() const { 1006 return gpr_index_ > 0; 1007 } 1008 1009 void AdvanceInt(uint32_t val) { 1010 if (HaveIntGpr()) { 1011 gpr_index_--; 1012 PushGpr(val); 1013 } else { 1014 stack_entries_++; 1015 PushStack(val); 1016 gpr_index_ = 0; 1017 } 1018 } 1019 1020 bool HaveLongGpr() const { 1021 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1022 } 1023 1024 bool LongGprNeedsPadding() const { 1025 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1026 kAlignLongOnStack && // and when it needs alignment 1027 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1028 } 1029 1030 bool LongStackNeedsPadding() const { 1031 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1032 kAlignLongOnStack && // and when it needs 8B alignment 1033 (stack_entries_ & 1) == 1; // counter is odd 1034 } 1035 1036 void AdvanceLong(uint64_t val) { 1037 if (HaveLongGpr()) { 1038 if (LongGprNeedsPadding()) { 1039 PushGpr(0); 1040 gpr_index_--; 1041 } 1042 if (kRegistersNeededForLong == 1) { 1043 PushGpr(static_cast<uintptr_t>(val)); 1044 } else { 1045 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1046 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1047 } 1048 gpr_index_ -= kRegistersNeededForLong; 1049 } else { 1050 if (LongStackNeedsPadding()) { 1051 PushStack(0); 1052 stack_entries_++; 1053 } 1054 if (kRegistersNeededForLong == 1) { 1055 PushStack(static_cast<uintptr_t>(val)); 1056 stack_entries_++; 1057 } else { 1058 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1059 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1060 stack_entries_ += 2; 1061 } 1062 gpr_index_ = 0; 1063 } 1064 } 1065 1066 bool HaveFloatFpr() const { 1067 return fpr_index_ > 0; 1068 } 1069 1070 void AdvanceFloat(float val) { 1071 if (kNativeSoftFloatAbi) { 1072 AdvanceInt(bit_cast<float, uint32_t>(val)); 1073 } else { 1074 if (HaveFloatFpr()) { 1075 fpr_index_--; 1076 if (kRegistersNeededForDouble == 1) { 1077 if (kMultiRegistersWidened) { 1078 PushFpr8(bit_cast<double, uint64_t>(val)); 1079 } else { 1080 // No widening, just use the bits. 1081 PushFpr8(bit_cast<float, uint64_t>(val)); 1082 } 1083 } else { 1084 PushFpr4(val); 1085 } 1086 } else { 1087 stack_entries_++; 1088 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { 1089 // Need to widen before storing: Note the "double" in the template instantiation. 1090 // Note: We need to jump through those hoops to make the compiler happy. 1091 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1092 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val))); 1093 } else { 1094 PushStack(bit_cast<float, uintptr_t>(val)); 1095 } 1096 fpr_index_ = 0; 1097 } 1098 } 1099 } 1100 1101 bool HaveDoubleFpr() const { 1102 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1103 } 1104 1105 bool DoubleFprNeedsPadding() const { 1106 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1107 kAlignDoubleOnStack && // and when it needs alignment 1108 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1109 } 1110 1111 bool DoubleStackNeedsPadding() const { 1112 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1113 kAlignDoubleOnStack && // and when it needs 8B alignment 1114 (stack_entries_ & 1) == 1; // counter is odd 1115 } 1116 1117 void AdvanceDouble(uint64_t val) { 1118 if (kNativeSoftFloatAbi) { 1119 AdvanceLong(val); 1120 } else { 1121 if (HaveDoubleFpr()) { 1122 if (DoubleFprNeedsPadding()) { 1123 PushFpr4(0); 1124 fpr_index_--; 1125 } 1126 PushFpr8(val); 1127 fpr_index_ -= kRegistersNeededForDouble; 1128 } else { 1129 if (DoubleStackNeedsPadding()) { 1130 PushStack(0); 1131 stack_entries_++; 1132 } 1133 if (kRegistersNeededForDouble == 1) { 1134 PushStack(static_cast<uintptr_t>(val)); 1135 stack_entries_++; 1136 } else { 1137 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1138 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1139 stack_entries_ += 2; 1140 } 1141 fpr_index_ = 0; 1142 } 1143 } 1144 } 1145 1146 uint32_t GetStackEntries() const { 1147 return stack_entries_; 1148 } 1149 1150 uint32_t GetNumberOfUsedGprs() const { 1151 return kNumNativeGprArgs - gpr_index_; 1152 } 1153 1154 uint32_t GetNumberOfUsedFprs() const { 1155 return kNumNativeFprArgs - fpr_index_; 1156 } 1157 1158 private: 1159 void PushGpr(uintptr_t val) { 1160 delegate_->PushGpr(val); 1161 } 1162 void PushFpr4(float val) { 1163 delegate_->PushFpr4(val); 1164 } 1165 void PushFpr8(uint64_t val) { 1166 delegate_->PushFpr8(val); 1167 } 1168 void PushStack(uintptr_t val) { 1169 delegate_->PushStack(val); 1170 } 1171 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1172 return delegate_->PushHandle(ref); 1173 } 1174 1175 uint32_t gpr_index_; // Number of free GPRs 1176 uint32_t fpr_index_; // Number of free FPRs 1177 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1178 // extended 1179 T* const delegate_; // What Push implementation gets called 1180}; 1181 1182// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1183// in subclasses. 1184// 1185// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1186// them with handles. 1187class ComputeNativeCallFrameSize { 1188 public: 1189 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1190 1191 virtual ~ComputeNativeCallFrameSize() {} 1192 1193 uint32_t GetStackSize() const { 1194 return num_stack_entries_ * sizeof(uintptr_t); 1195 } 1196 1197 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1198 sp8 -= GetStackSize(); 1199 // Align by kStackAlignment. 1200 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1201 return sp8; 1202 } 1203 1204 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1205 const { 1206 // Assumption is OK right now, as we have soft-float arm 1207 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1208 sp8 -= fregs * sizeof(uintptr_t); 1209 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1210 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1211 sp8 -= iregs * sizeof(uintptr_t); 1212 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1213 return sp8; 1214 } 1215 1216 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1217 uint32_t** start_fpr) const { 1218 // Native call stack. 1219 sp8 = LayoutCallStack(sp8); 1220 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1221 1222 // Put fprs and gprs below. 1223 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1224 1225 // Return the new bottom. 1226 return sp8; 1227 } 1228 1229 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1230 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1231 UNUSED(sm); 1232 } 1233 1234 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1235 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1236 1237 WalkHeader(&sm); 1238 1239 for (uint32_t i = 1; i < shorty_len; ++i) { 1240 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1241 switch (cur_type_) { 1242 case Primitive::kPrimNot: 1243 // TODO: fix abuse of mirror types. 1244 sm.AdvanceHandleScope( 1245 reinterpret_cast<mirror::Object*>(0x12345678)); 1246 break; 1247 1248 case Primitive::kPrimBoolean: 1249 case Primitive::kPrimByte: 1250 case Primitive::kPrimChar: 1251 case Primitive::kPrimShort: 1252 case Primitive::kPrimInt: 1253 sm.AdvanceInt(0); 1254 break; 1255 case Primitive::kPrimFloat: 1256 sm.AdvanceFloat(0); 1257 break; 1258 case Primitive::kPrimDouble: 1259 sm.AdvanceDouble(0); 1260 break; 1261 case Primitive::kPrimLong: 1262 sm.AdvanceLong(0); 1263 break; 1264 default: 1265 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1266 } 1267 } 1268 1269 num_stack_entries_ = sm.GetStackEntries(); 1270 } 1271 1272 void PushGpr(uintptr_t /* val */) { 1273 // not optimizing registers, yet 1274 } 1275 1276 void PushFpr4(float /* val */) { 1277 // not optimizing registers, yet 1278 } 1279 1280 void PushFpr8(uint64_t /* val */) { 1281 // not optimizing registers, yet 1282 } 1283 1284 void PushStack(uintptr_t /* val */) { 1285 // counting is already done in the superclass 1286 } 1287 1288 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1289 return reinterpret_cast<uintptr_t>(nullptr); 1290 } 1291 1292 protected: 1293 uint32_t num_stack_entries_; 1294}; 1295 1296class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1297 public: 1298 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1299 1300 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1301 // is at *m = sp. Will update to point to the bottom of the save frame. 1302 // 1303 // Note: assumes ComputeAll() has been run before. 1304 void LayoutCalleeSaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1305 HandleScope** handle_scope) 1306 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1307 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1308 1309 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1310 1311 // First, fix up the layout of the callee-save frame. 1312 // We have to squeeze in the HandleScope, and relocate the method pointer. 1313 1314 // "Free" the slot for the method. 1315 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1316 1317 // Under the callee saves put handle scope and new method stack reference. 1318 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1319 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1320 1321 sp8 -= scope_and_method; 1322 // Align by kStackAlignment. 1323 sp8 = reinterpret_cast<uint8_t*>(RoundDown( 1324 reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1325 1326 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1327 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1328 num_handle_scope_references_); 1329 1330 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1331 uint8_t* method_pointer = sp8; 1332 StackReference<mirror::ArtMethod>* new_method_ref = 1333 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1334 new_method_ref->Assign(method); 1335 *m = new_method_ref; 1336 } 1337 1338 // Adds space for the cookie. Note: may leave stack unaligned. 1339 void LayoutCookie(uint8_t** sp) const { 1340 // Reference cookie and padding 1341 *sp -= 8; 1342 } 1343 1344 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1345 // Returns the new bottom. Note: this may be unaligned. 1346 uint8_t* LayoutJNISaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1347 HandleScope** handle_scope) 1348 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1349 // First, fix up the layout of the callee-save frame. 1350 // We have to squeeze in the HandleScope, and relocate the method pointer. 1351 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1352 1353 // The bottom of the callee-save frame is now where the method is, *m. 1354 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1355 1356 // Add space for cookie. 1357 LayoutCookie(&sp8); 1358 1359 return sp8; 1360 } 1361 1362 // WARNING: After this, *sp won't be pointing to the method anymore! 1363 uint8_t* ComputeLayout(Thread* self, StackReference<mirror::ArtMethod>** m, 1364 const char* shorty, uint32_t shorty_len, HandleScope** handle_scope, 1365 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) 1366 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1367 Walk(shorty, shorty_len); 1368 1369 // JNI part. 1370 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1371 1372 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1373 1374 // Return the new bottom. 1375 return sp8; 1376 } 1377 1378 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1379 1380 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1381 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1382 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1383 1384 private: 1385 uint32_t num_handle_scope_references_; 1386}; 1387 1388uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1389 num_handle_scope_references_++; 1390 return reinterpret_cast<uintptr_t>(nullptr); 1391} 1392 1393void ComputeGenericJniFrameSize::WalkHeader( 1394 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1395 // JNIEnv 1396 sm->AdvancePointer(nullptr); 1397 1398 // Class object or this as first argument 1399 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1400} 1401 1402// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1403// the template requirements of BuildGenericJniFrameStateMachine. 1404class FillNativeCall { 1405 public: 1406 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1407 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1408 1409 virtual ~FillNativeCall() {} 1410 1411 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1412 cur_gpr_reg_ = gpr_regs; 1413 cur_fpr_reg_ = fpr_regs; 1414 cur_stack_arg_ = stack_args; 1415 } 1416 1417 void PushGpr(uintptr_t val) { 1418 *cur_gpr_reg_ = val; 1419 cur_gpr_reg_++; 1420 } 1421 1422 void PushFpr4(float val) { 1423 *cur_fpr_reg_ = val; 1424 cur_fpr_reg_++; 1425 } 1426 1427 void PushFpr8(uint64_t val) { 1428 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1429 *tmp = val; 1430 cur_fpr_reg_ += 2; 1431 } 1432 1433 void PushStack(uintptr_t val) { 1434 *cur_stack_arg_ = val; 1435 cur_stack_arg_++; 1436 } 1437 1438 virtual uintptr_t PushHandle(mirror::Object*) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1439 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1440 UNREACHABLE(); 1441 } 1442 1443 private: 1444 uintptr_t* cur_gpr_reg_; 1445 uint32_t* cur_fpr_reg_; 1446 uintptr_t* cur_stack_arg_; 1447}; 1448 1449// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1450// of transitioning into native code. 1451class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1452 public: 1453 BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len, 1454 StackReference<mirror::ArtMethod>** sp) 1455 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1456 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1457 ComputeGenericJniFrameSize fsc; 1458 uintptr_t* start_gpr_reg; 1459 uint32_t* start_fpr_reg; 1460 uintptr_t* start_stack_arg; 1461 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, 1462 &handle_scope_, 1463 &start_stack_arg, 1464 &start_gpr_reg, &start_fpr_reg); 1465 1466 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1467 1468 // jni environment is always first argument 1469 sm_.AdvancePointer(self->GetJniEnv()); 1470 1471 if (is_static) { 1472 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1473 } 1474 } 1475 1476 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1477 1478 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1479 1480 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1481 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1482 return handle_scope_->GetHandle(0).GetReference(); 1483 } 1484 1485 jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1486 return handle_scope_->GetHandle(0).ToJObject(); 1487 } 1488 1489 void* GetBottomOfUsedArea() const { 1490 return bottom_of_used_area_; 1491 } 1492 1493 private: 1494 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1495 class FillJniCall FINAL : public FillNativeCall { 1496 public: 1497 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1498 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1499 handle_scope_(handle_scope), cur_entry_(0) {} 1500 1501 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1502 1503 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1504 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1505 handle_scope_ = scope; 1506 cur_entry_ = 0U; 1507 } 1508 1509 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1510 // Initialize padding entries. 1511 size_t expected_slots = handle_scope_->NumberOfReferences(); 1512 while (cur_entry_ < expected_slots) { 1513 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1514 } 1515 DCHECK_NE(cur_entry_, 0U); 1516 } 1517 1518 private: 1519 HandleScope* handle_scope_; 1520 size_t cur_entry_; 1521 }; 1522 1523 HandleScope* handle_scope_; 1524 FillJniCall jni_call_; 1525 void* bottom_of_used_area_; 1526 1527 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1528 1529 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1530}; 1531 1532uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1533 uintptr_t tmp; 1534 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1535 h.Assign(ref); 1536 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1537 cur_entry_++; 1538 return tmp; 1539} 1540 1541void BuildGenericJniFrameVisitor::Visit() { 1542 Primitive::Type type = GetParamPrimitiveType(); 1543 switch (type) { 1544 case Primitive::kPrimLong: { 1545 jlong long_arg; 1546 if (IsSplitLongOrDouble()) { 1547 long_arg = ReadSplitLongParam(); 1548 } else { 1549 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1550 } 1551 sm_.AdvanceLong(long_arg); 1552 break; 1553 } 1554 case Primitive::kPrimDouble: { 1555 uint64_t double_arg; 1556 if (IsSplitLongOrDouble()) { 1557 // Read into union so that we don't case to a double. 1558 double_arg = ReadSplitLongParam(); 1559 } else { 1560 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1561 } 1562 sm_.AdvanceDouble(double_arg); 1563 break; 1564 } 1565 case Primitive::kPrimNot: { 1566 StackReference<mirror::Object>* stack_ref = 1567 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1568 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1569 break; 1570 } 1571 case Primitive::kPrimFloat: 1572 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1573 break; 1574 case Primitive::kPrimBoolean: // Fall-through. 1575 case Primitive::kPrimByte: // Fall-through. 1576 case Primitive::kPrimChar: // Fall-through. 1577 case Primitive::kPrimShort: // Fall-through. 1578 case Primitive::kPrimInt: // Fall-through. 1579 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1580 break; 1581 case Primitive::kPrimVoid: 1582 LOG(FATAL) << "UNREACHABLE"; 1583 UNREACHABLE(); 1584 } 1585} 1586 1587void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1588 // Clear out rest of the scope. 1589 jni_call_.ResetRemainingScopeSlots(); 1590 // Install HandleScope. 1591 self->PushHandleScope(handle_scope_); 1592} 1593 1594#if defined(__arm__) || defined(__aarch64__) 1595extern "C" void* artFindNativeMethod(); 1596#else 1597extern "C" void* artFindNativeMethod(Thread* self); 1598#endif 1599 1600uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1601 if (lock != nullptr) { 1602 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1603 } else { 1604 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1605 } 1606} 1607 1608void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1609 if (lock != nullptr) { 1610 JniMethodEndSynchronized(cookie, lock, self); 1611 } else { 1612 JniMethodEnd(cookie, self); 1613 } 1614} 1615 1616/* 1617 * Initializes an alloca region assumed to be directly below sp for a native call: 1618 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1619 * The final element on the stack is a pointer to the native code. 1620 * 1621 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1622 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1623 * 1624 * The return of this function denotes: 1625 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1626 * 2) An error, if the value is negative. 1627 */ 1628extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, 1629 StackReference<mirror::ArtMethod>* sp) 1630 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1631 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1632 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1633 uint32_t shorty_len = 0; 1634 const char* shorty = called->GetShorty(&shorty_len); 1635 1636 // Run the visitor and update sp. 1637 BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp); 1638 visitor.VisitArguments(); 1639 visitor.FinalizeHandleScope(self); 1640 1641 // Fix up managed-stack things in Thread. 1642 self->SetTopOfStack(sp); 1643 1644 self->VerifyStack(); 1645 1646 // Start JNI, save the cookie. 1647 uint32_t cookie; 1648 if (called->IsSynchronized()) { 1649 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1650 if (self->IsExceptionPending()) { 1651 self->PopHandleScope(); 1652 // A negative value denotes an error. 1653 return GetTwoWordFailureValue(); 1654 } 1655 } else { 1656 cookie = JniMethodStart(self); 1657 } 1658 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1659 *(sp32 - 1) = cookie; 1660 1661 // Retrieve the stored native code. 1662 const void* nativeCode = called->GetNativeMethod(); 1663 1664 // There are two cases for the content of nativeCode: 1665 // 1) Pointer to the native function. 1666 // 2) Pointer to the trampoline for native code binding. 1667 // In the second case, we need to execute the binding and continue with the actual native function 1668 // pointer. 1669 DCHECK(nativeCode != nullptr); 1670 if (nativeCode == GetJniDlsymLookupStub()) { 1671#if defined(__arm__) || defined(__aarch64__) 1672 nativeCode = artFindNativeMethod(); 1673#else 1674 nativeCode = artFindNativeMethod(self); 1675#endif 1676 1677 if (nativeCode == nullptr) { 1678 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1679 1680 // End JNI, as the assembly will move to deliver the exception. 1681 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1682 if (shorty[0] == 'L') { 1683 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1684 } else { 1685 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1686 } 1687 1688 return GetTwoWordFailureValue(); 1689 } 1690 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1691 } 1692 1693 // Return native code addr(lo) and bottom of alloca address(hi). 1694 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1695 reinterpret_cast<uintptr_t>(nativeCode)); 1696} 1697 1698/* 1699 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1700 * unlocking. 1701 */ 1702extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1703 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1704 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame(); 1705 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1706 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1707 uint32_t cookie = *(sp32 - 1); 1708 1709 jobject lock = nullptr; 1710 if (called->IsSynchronized()) { 1711 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1712 + sizeof(StackReference<mirror::ArtMethod>)); 1713 lock = table->GetHandle(0).ToJObject(); 1714 } 1715 1716 char return_shorty_char = called->GetShorty()[0]; 1717 1718 if (return_shorty_char == 'L') { 1719 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1720 } else { 1721 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1722 1723 switch (return_shorty_char) { 1724 case 'F': { 1725 if (kRuntimeISA == kX86) { 1726 // Convert back the result to float. 1727 double d = bit_cast<uint64_t, double>(result_f); 1728 return bit_cast<float, uint32_t>(static_cast<float>(d)); 1729 } else { 1730 return result_f; 1731 } 1732 } 1733 case 'D': 1734 return result_f; 1735 case 'Z': 1736 return result.z; 1737 case 'B': 1738 return result.b; 1739 case 'C': 1740 return result.c; 1741 case 'S': 1742 return result.s; 1743 case 'I': 1744 return result.i; 1745 case 'J': 1746 return result.j; 1747 case 'V': 1748 return 0; 1749 default: 1750 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1751 return 0; 1752 } 1753 } 1754} 1755 1756// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1757// for the method pointer. 1758// 1759// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1760// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations). 1761 1762template<InvokeType type, bool access_check> 1763static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1764 mirror::ArtMethod* caller_method, 1765 Thread* self, StackReference<mirror::ArtMethod>* sp); 1766 1767template<InvokeType type, bool access_check> 1768static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1769 mirror::ArtMethod* caller_method, 1770 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1771 ScopedQuickEntrypointChecks sqec(self); 1772 DCHECK_EQ(sp->AsMirrorPtr(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); 1773 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1774 type); 1775 if (UNLIKELY(method == nullptr)) { 1776 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1777 uint32_t shorty_len; 1778 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1779 { 1780 // Remember the args in case a GC happens in FindMethodFromCode. 1781 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1782 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1783 visitor.VisitArguments(); 1784 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1785 self); 1786 visitor.FixupReferences(); 1787 } 1788 1789 if (UNLIKELY(method == NULL)) { 1790 CHECK(self->IsExceptionPending()); 1791 return GetTwoWordFailureValue(); // Failure. 1792 } 1793 } 1794 DCHECK(!self->IsExceptionPending()); 1795 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1796 1797 // When we return, the caller will branch to this address, so it had better not be 0! 1798 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1799 << " location: " 1800 << method->GetDexFile()->GetLocation(); 1801 1802 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1803 reinterpret_cast<uintptr_t>(method)); 1804} 1805 1806// Explicit artInvokeCommon template function declarations to please analysis tool. 1807#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1808 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1809 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1810 mirror::Object* this_object, \ 1811 mirror::ArtMethod* caller_method, \ 1812 Thread* self, \ 1813 StackReference<mirror::ArtMethod>* sp) \ 1814 1815EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1816EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1817EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1818EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1819EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1820EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1821EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1822EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1823EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1824EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1825#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1826 1827// See comments in runtime_support_asm.S 1828extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 1829 uint32_t method_idx, mirror::Object* this_object, 1830 mirror::ArtMethod* caller_method, Thread* self, 1831 StackReference<mirror::ArtMethod>* sp) 1832 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1833 return artInvokeCommon<kInterface, true>(method_idx, this_object, 1834 caller_method, self, sp); 1835} 1836 1837extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 1838 uint32_t method_idx, mirror::Object* this_object, 1839 mirror::ArtMethod* caller_method, Thread* self, 1840 StackReference<mirror::ArtMethod>* sp) 1841 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1842 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, 1843 self, sp); 1844} 1845 1846extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 1847 uint32_t method_idx, mirror::Object* this_object, 1848 mirror::ArtMethod* caller_method, Thread* self, 1849 StackReference<mirror::ArtMethod>* sp) 1850 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1851 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, 1852 self, sp); 1853} 1854 1855extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 1856 uint32_t method_idx, mirror::Object* this_object, 1857 mirror::ArtMethod* caller_method, Thread* self, 1858 StackReference<mirror::ArtMethod>* sp) 1859 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1860 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, 1861 self, sp); 1862} 1863 1864extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 1865 uint32_t method_idx, mirror::Object* this_object, 1866 mirror::ArtMethod* caller_method, Thread* self, 1867 StackReference<mirror::ArtMethod>* sp) 1868 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1869 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, 1870 self, sp); 1871} 1872 1873// Determine target of interface dispatch. This object is known non-null. 1874extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 1875 mirror::Object* this_object, 1876 mirror::ArtMethod* caller_method, 1877 Thread* self, 1878 StackReference<mirror::ArtMethod>* sp) 1879 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1880 ScopedQuickEntrypointChecks sqec(self); 1881 mirror::ArtMethod* method; 1882 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 1883 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 1884 if (UNLIKELY(method == NULL)) { 1885 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 1886 caller_method); 1887 return GetTwoWordFailureValue(); // Failure. 1888 } 1889 } else { 1890 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 1891 1892 // Find the caller PC. 1893 constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs); 1894 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset); 1895 1896 // Map the caller PC to a dex PC. 1897 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 1898 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 1899 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1900 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1901 Instruction::Code instr_code = instr->Opcode(); 1902 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 1903 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 1904 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); 1905 uint32_t dex_method_idx; 1906 if (instr_code == Instruction::INVOKE_INTERFACE) { 1907 dex_method_idx = instr->VRegB_35c(); 1908 } else { 1909 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 1910 dex_method_idx = instr->VRegB_3rc(); 1911 } 1912 1913 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 1914 ->GetDexFile(); 1915 uint32_t shorty_len; 1916 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 1917 &shorty_len); 1918 { 1919 // Remember the args in case a GC happens in FindMethodFromCode. 1920 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1921 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 1922 visitor.VisitArguments(); 1923 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 1924 self); 1925 visitor.FixupReferences(); 1926 } 1927 1928 if (UNLIKELY(method == nullptr)) { 1929 CHECK(self->IsExceptionPending()); 1930 return GetTwoWordFailureValue(); // Failure. 1931 } 1932 } 1933 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1934 1935 // When we return, the caller will branch to this address, so it had better not be 0! 1936 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1937 << " location: " << method->GetDexFile()->GetLocation(); 1938 1939 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1940 reinterpret_cast<uintptr_t>(method)); 1941} 1942 1943} // namespace art 1944