quick_trampoline_entrypoints.cc revision 966c3ae95d3c699ee9fbdbccc1acdaaf02325faf
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "callee_save_frame.h" 18#include "common_throws.h" 19#include "dex_file-inl.h" 20#include "dex_instruction-inl.h" 21#include "entrypoints/entrypoint_utils-inl.h" 22#include "entrypoints/runtime_asm_entrypoints.h" 23#include "gc/accounting/card_table-inl.h" 24#include "interpreter/interpreter.h" 25#include "method_reference.h" 26#include "mirror/art_method-inl.h" 27#include "mirror/class-inl.h" 28#include "mirror/dex_cache-inl.h" 29#include "mirror/object-inl.h" 30#include "mirror/object_array-inl.h" 31#include "runtime.h" 32#include "scoped_thread_state_change.h" 33 34namespace art { 35 36// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 37class QuickArgumentVisitor { 38 // Number of bytes for each out register in the caller method's frame. 39 static constexpr size_t kBytesStackArgLocation = 4; 40 // Frame size in bytes of a callee-save frame for RefsAndArgs. 41 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 42 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 43#if defined(__arm__) 44 // The callee save frame is pointed to by SP. 45 // | argN | | 46 // | ... | | 47 // | arg4 | | 48 // | arg3 spill | | Caller's frame 49 // | arg2 spill | | 50 // | arg1 spill | | 51 // | Method* | --- 52 // | LR | 53 // | ... | 4x6 bytes callee saves 54 // | R3 | 55 // | R2 | 56 // | R1 | 57 // | S15 | 58 // | : | 59 // | S0 | 60 // | | 4x2 bytes padding 61 // | Method* | <- sp 62 static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat; 63 static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; 64 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; 65 static constexpr size_t kNumQuickGprArgs = 3; 66 static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; 67 static constexpr bool kGprFprLockstep = false; 68 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 69 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 70 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 71 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 72 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 73 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 74 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 75 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 76 } 77#elif defined(__aarch64__) 78 // The callee save frame is pointed to by SP. 79 // | argN | | 80 // | ... | | 81 // | arg4 | | 82 // | arg3 spill | | Caller's frame 83 // | arg2 spill | | 84 // | arg1 spill | | 85 // | Method* | --- 86 // | LR | 87 // | X29 | 88 // | : | 89 // | X20 | 90 // | X7 | 91 // | : | 92 // | X1 | 93 // | D7 | 94 // | : | 95 // | D0 | 96 // | | padding 97 // | Method* | <- sp 98 static constexpr bool kAlignPairRegister = false; 99 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 100 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 101 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 102 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 103 static constexpr bool kGprFprLockstep = false; 104 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 105 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 106 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 107 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 108 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 109 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 110 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 111 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 112 } 113#elif defined(__mips__) && !defined(__LP64__) 114 // The callee save frame is pointed to by SP. 115 // | argN | | 116 // | ... | | 117 // | arg4 | | 118 // | arg3 spill | | Caller's frame 119 // | arg2 spill | | 120 // | arg1 spill | | 121 // | Method* | --- 122 // | RA | 123 // | ... | callee saves 124 // | A3 | arg3 125 // | A2 | arg2 126 // | A1 | arg1 127 // | A0/Method* | <- sp 128 static constexpr bool kAlignPairRegister = false; 129 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 130 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 131 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 132 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 133 static constexpr bool kGprFprLockstep = false; 134 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 135 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 16; // Offset of first GPR arg. 136 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 137 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 138 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 139 } 140#elif defined(__mips__) && defined(__LP64__) 141 // The callee save frame is pointed to by SP. 142 // | argN | | 143 // | ... | | 144 // | arg4 | | 145 // | arg3 spill | | Caller's frame 146 // | arg2 spill | | 147 // | arg1 spill | | 148 // | Method* | --- 149 // | RA | 150 // | ... | callee saves 151 // | F7 | f_arg7 152 // | F6 | f_arg6 153 // | F5 | f_arg5 154 // | F6 | f_arg6 155 // | F5 | f_arg5 156 // | F4 | f_arg4 157 // | F3 | f_arg3 158 // | F2 | f_arg2 159 // | F1 | f_arg1 160 // | F0 | f_arg0 161 // | A7 | arg7 162 // | A6 | arg6 163 // | A5 | arg5 164 // | A4 | arg4 165 // | A3 | arg3 166 // | A2 | arg2 167 // | A1 | arg1 168 // | | padding 169 // | A0/Method* | <- sp 170 // NOTE: for Mip64, when A0 is skipped, F0 is also skipped. 171 static constexpr bool kAlignPairRegister = false; 172 static constexpr bool kQuickSoftFloatAbi = false; 173 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 174 // These values are set to zeros because GPR and FPR register 175 // assignments for Mips64 are interleaved, which the current VisitArguments() 176 // function does not support. 177 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 178 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. 179 static constexpr bool kGprFprLockstep = true; 180 181 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F1). 182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). 183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. 184 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 185 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 186 } 187#elif defined(__i386__) 188 // The callee save frame is pointed to by SP. 189 // | argN | | 190 // | ... | | 191 // | arg4 | | 192 // | arg3 spill | | Caller's frame 193 // | arg2 spill | | 194 // | arg1 spill | | 195 // | Method* | --- 196 // | Return | 197 // | EBP,ESI,EDI | callee saves 198 // | EBX | arg3 199 // | EDX | arg2 200 // | ECX | arg1 201 // | XMM3 | float arg 4 202 // | XMM2 | float arg 3 203 // | XMM1 | float arg 2 204 // | XMM0 | float arg 1 205 // | EAX/Method* | <- sp 206 static constexpr bool kAlignPairRegister = false; 207 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 208 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 209 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 210 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. 211 static constexpr bool kGprFprLockstep = false; 212 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. 213 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. 214 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. 215 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 216 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 217 } 218#elif defined(__x86_64__) 219 // The callee save frame is pointed to by SP. 220 // | argN | | 221 // | ... | | 222 // | reg. arg spills | | Caller's frame 223 // | Method* | --- 224 // | Return | 225 // | R15 | callee save 226 // | R14 | callee save 227 // | R13 | callee save 228 // | R12 | callee save 229 // | R9 | arg5 230 // | R8 | arg4 231 // | RSI/R6 | arg1 232 // | RBP/R5 | callee save 233 // | RBX/R3 | callee save 234 // | RDX/R2 | arg2 235 // | RCX/R1 | arg3 236 // | XMM7 | float arg 8 237 // | XMM6 | float arg 7 238 // | XMM5 | float arg 6 239 // | XMM4 | float arg 5 240 // | XMM3 | float arg 4 241 // | XMM2 | float arg 3 242 // | XMM1 | float arg 2 243 // | XMM0 | float arg 1 244 // | Padding | 245 // | RDI/Method* | <- sp 246 static constexpr bool kAlignPairRegister = false; 247 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 248 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 249 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 250 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 251 static constexpr bool kGprFprLockstep = false; 252 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 253 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 254 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 255 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 256 switch (gpr_index) { 257 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 258 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 259 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 260 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 261 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 262 default: 263 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 264 return 0; 265 } 266 } 267#else 268#error "Unsupported architecture" 269#endif 270 271 public: 272 // Special handling for proxy methods. Proxy methods are instance methods so the 273 // 'this' object is the 1st argument. They also have the same frame layout as the 274 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the 275 // 1st GPR. 276 static mirror::Object* GetProxyThisObject(StackReference<mirror::ArtMethod>* sp) 277 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 278 CHECK(sp->AsMirrorPtr()->IsProxyMethod()); 279 CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, sp->AsMirrorPtr()->GetFrameSizeInBytes()); 280 CHECK_GT(kNumQuickGprArgs, 0u); 281 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. 282 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + 283 GprIndexToGprOffset(kThisGprIndex); 284 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; 285 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); 286 } 287 288 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 289 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 290 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 291 uint8_t* previous_sp = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 292 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 293 } 294 295 // For the given quick ref and args quick frame, return the caller's PC. 296 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 297 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 298 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 299 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 300 return *reinterpret_cast<uintptr_t*>(lr); 301 } 302 303 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty, 304 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 305 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 306 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 307 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 308 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 309 + sizeof(StackReference<mirror::ArtMethod>)), // Skip StackReference<ArtMethod>. 310 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), 311 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { 312 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), 313 "Number of Quick FPR arguments unexpected"); 314 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), 315 "Double alignment unexpected"); 316 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the 317 // next register is even. 318 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, 319 "Number of Quick FPR arguments not even"); 320 } 321 322 virtual ~QuickArgumentVisitor() {} 323 324 virtual void Visit() = 0; 325 326 Primitive::Type GetParamPrimitiveType() const { 327 return cur_type_; 328 } 329 330 uint8_t* GetParamAddress() const { 331 if (!kQuickSoftFloatAbi) { 332 Primitive::Type type = GetParamPrimitiveType(); 333 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 334 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { 335 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 336 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 337 } 338 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 339 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 340 } 341 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 342 } 343 } 344 if (gpr_index_ < kNumQuickGprArgs) { 345 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 346 } 347 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 348 } 349 350 bool IsSplitLongOrDouble() const { 351 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 352 return is_split_long_or_double_; 353 } else { 354 return false; // An optimization for when GPR and FPRs are 64bit. 355 } 356 } 357 358 bool IsParamAReference() const { 359 return GetParamPrimitiveType() == Primitive::kPrimNot; 360 } 361 362 bool IsParamALongOrDouble() const { 363 Primitive::Type type = GetParamPrimitiveType(); 364 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 365 } 366 367 uint64_t ReadSplitLongParam() const { 368 // The splitted long is always available through the stack. 369 return *reinterpret_cast<uint64_t*>(stack_args_ 370 + stack_index_ * kBytesStackArgLocation); 371 } 372 373 void IncGprIndex() { 374 gpr_index_++; 375 if (kGprFprLockstep) { 376 fpr_index_++; 377 } 378 } 379 380 void IncFprIndex() { 381 fpr_index_++; 382 if (kGprFprLockstep) { 383 gpr_index_++; 384 } 385 } 386 387 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 388 // (a) 'stack_args_' should point to the first method's argument 389 // (b) whatever the argument type it is, the 'stack_index_' should 390 // be moved forward along with every visiting. 391 gpr_index_ = 0; 392 fpr_index_ = 0; 393 if (kQuickDoubleRegAlignedFloatBackFilled) { 394 fpr_double_index_ = 0; 395 } 396 stack_index_ = 0; 397 if (!is_static_) { // Handle this. 398 cur_type_ = Primitive::kPrimNot; 399 is_split_long_or_double_ = false; 400 Visit(); 401 stack_index_++; 402 if (kNumQuickGprArgs > 0) { 403 IncGprIndex(); 404 } 405 } 406 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 407 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 408 switch (cur_type_) { 409 case Primitive::kPrimNot: 410 case Primitive::kPrimBoolean: 411 case Primitive::kPrimByte: 412 case Primitive::kPrimChar: 413 case Primitive::kPrimShort: 414 case Primitive::kPrimInt: 415 is_split_long_or_double_ = false; 416 Visit(); 417 stack_index_++; 418 if (gpr_index_ < kNumQuickGprArgs) { 419 IncGprIndex(); 420 } 421 break; 422 case Primitive::kPrimFloat: 423 is_split_long_or_double_ = false; 424 Visit(); 425 stack_index_++; 426 if (kQuickSoftFloatAbi) { 427 if (gpr_index_ < kNumQuickGprArgs) { 428 IncGprIndex(); 429 } 430 } else { 431 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 432 IncFprIndex(); 433 if (kQuickDoubleRegAlignedFloatBackFilled) { 434 // Double should not overlap with float. 435 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. 436 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); 437 // Float should not overlap with double. 438 if (fpr_index_ % 2 == 0) { 439 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 440 } 441 } 442 } 443 } 444 break; 445 case Primitive::kPrimDouble: 446 case Primitive::kPrimLong: 447 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 448 if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) { 449 // Currently, this is only for ARM, where the first available parameter register 450 // is R1. So we skip it, and use R2 instead. 451 IncGprIndex(); 452 } 453 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 454 ((gpr_index_ + 1) == kNumQuickGprArgs); 455 Visit(); 456 if (kBytesStackArgLocation == 4) { 457 stack_index_+= 2; 458 } else { 459 CHECK_EQ(kBytesStackArgLocation, 8U); 460 stack_index_++; 461 } 462 if (gpr_index_ < kNumQuickGprArgs) { 463 IncGprIndex(); 464 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 465 if (gpr_index_ < kNumQuickGprArgs) { 466 IncGprIndex(); 467 } 468 } 469 } 470 } else { 471 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 472 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; 473 Visit(); 474 if (kBytesStackArgLocation == 4) { 475 stack_index_+= 2; 476 } else { 477 CHECK_EQ(kBytesStackArgLocation, 8U); 478 stack_index_++; 479 } 480 if (kQuickDoubleRegAlignedFloatBackFilled) { 481 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 482 fpr_double_index_ += 2; 483 // Float should not overlap with double. 484 if (fpr_index_ % 2 == 0) { 485 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 486 } 487 } 488 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 489 IncFprIndex(); 490 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 491 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 492 IncFprIndex(); 493 } 494 } 495 } 496 } 497 break; 498 default: 499 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 500 } 501 } 502 } 503 504 protected: 505 const bool is_static_; 506 const char* const shorty_; 507 const uint32_t shorty_len_; 508 509 private: 510 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 511 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 512 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 513 uint32_t gpr_index_; // Index into spilled GPRs. 514 // Index into spilled FPRs. 515 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ 516 // holds a higher register number. 517 uint32_t fpr_index_; 518 // Index into spilled FPRs for aligned double. 519 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in 520 // terms of singles, may be behind fpr_index. 521 uint32_t fpr_double_index_; 522 uint32_t stack_index_; // Index into arguments on the stack. 523 // The current type of argument during VisitArguments. 524 Primitive::Type cur_type_; 525 // Does a 64bit parameter straddle the register and stack arguments? 526 bool is_split_long_or_double_; 527}; 528 529// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It 530// allows to use the QuickArgumentVisitor constants without moving all the code in its own module. 531extern "C" mirror::Object* artQuickGetProxyThisObject(StackReference<mirror::ArtMethod>* sp) 532 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 533 return QuickArgumentVisitor::GetProxyThisObject(sp); 534} 535 536// Visits arguments on the stack placing them into the shadow frame. 537class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 538 public: 539 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 540 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 541 size_t first_arg_reg) : 542 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 543 544 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 545 546 private: 547 ShadowFrame* const sf_; 548 uint32_t cur_reg_; 549 550 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 551}; 552 553void BuildQuickShadowFrameVisitor::Visit() { 554 Primitive::Type type = GetParamPrimitiveType(); 555 switch (type) { 556 case Primitive::kPrimLong: // Fall-through. 557 case Primitive::kPrimDouble: 558 if (IsSplitLongOrDouble()) { 559 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 560 } else { 561 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 562 } 563 ++cur_reg_; 564 break; 565 case Primitive::kPrimNot: { 566 StackReference<mirror::Object>* stack_ref = 567 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 568 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 569 } 570 break; 571 case Primitive::kPrimBoolean: // Fall-through. 572 case Primitive::kPrimByte: // Fall-through. 573 case Primitive::kPrimChar: // Fall-through. 574 case Primitive::kPrimShort: // Fall-through. 575 case Primitive::kPrimInt: // Fall-through. 576 case Primitive::kPrimFloat: 577 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 578 break; 579 case Primitive::kPrimVoid: 580 LOG(FATAL) << "UNREACHABLE"; 581 UNREACHABLE(); 582 } 583 ++cur_reg_; 584} 585 586extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 587 StackReference<mirror::ArtMethod>* sp) 588 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 589 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 590 // frame. 591 ScopedQuickEntrypointChecks sqec(self); 592 593 if (method->IsAbstract()) { 594 ThrowAbstractMethodError(method); 595 return 0; 596 } else { 597 DCHECK(!method->IsNative()) << PrettyMethod(method); 598 const char* old_cause = self->StartAssertNoThreadSuspension( 599 "Building interpreter shadow frame"); 600 const DexFile::CodeItem* code_item = method->GetCodeItem(); 601 DCHECK(code_item != nullptr) << PrettyMethod(method); 602 uint16_t num_regs = code_item->registers_size_; 603 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 604 // No last shadow coming from quick. 605 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory)); 606 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 607 uint32_t shorty_len = 0; 608 const char* shorty = method->GetShorty(&shorty_len); 609 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 610 shadow_frame, first_arg_reg); 611 shadow_frame_builder.VisitArguments(); 612 const bool needs_initialization = 613 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); 614 // Push a transition back into managed code onto the linked list in thread. 615 ManagedStack fragment; 616 self->PushManagedStackFragment(&fragment); 617 self->PushShadowFrame(shadow_frame); 618 self->EndAssertNoThreadSuspension(old_cause); 619 620 if (needs_initialization) { 621 // Ensure static method's class is initialized. 622 StackHandleScope<1> hs(self); 623 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); 624 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 625 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod()); 626 self->PopManagedStackFragment(fragment); 627 return 0; 628 } 629 } 630 JValue result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); 631 // Pop transition. 632 self->PopManagedStackFragment(fragment); 633 // No need to restore the args since the method has already been run by the interpreter. 634 return result.GetJ(); 635 } 636} 637 638// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 639// to jobjects. 640class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 641 public: 642 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 643 const char* shorty, uint32_t shorty_len, 644 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 645 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 646 647 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 648 649 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 650 651 private: 652 ScopedObjectAccessUnchecked* const soa_; 653 std::vector<jvalue>* const args_; 654 // References which we must update when exiting in case the GC moved the objects. 655 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 656 657 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 658}; 659 660void BuildQuickArgumentVisitor::Visit() { 661 jvalue val; 662 Primitive::Type type = GetParamPrimitiveType(); 663 switch (type) { 664 case Primitive::kPrimNot: { 665 StackReference<mirror::Object>* stack_ref = 666 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 667 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 668 references_.push_back(std::make_pair(val.l, stack_ref)); 669 break; 670 } 671 case Primitive::kPrimLong: // Fall-through. 672 case Primitive::kPrimDouble: 673 if (IsSplitLongOrDouble()) { 674 val.j = ReadSplitLongParam(); 675 } else { 676 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 677 } 678 break; 679 case Primitive::kPrimBoolean: // Fall-through. 680 case Primitive::kPrimByte: // Fall-through. 681 case Primitive::kPrimChar: // Fall-through. 682 case Primitive::kPrimShort: // Fall-through. 683 case Primitive::kPrimInt: // Fall-through. 684 case Primitive::kPrimFloat: 685 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 686 break; 687 case Primitive::kPrimVoid: 688 LOG(FATAL) << "UNREACHABLE"; 689 UNREACHABLE(); 690 } 691 args_->push_back(val); 692} 693 694void BuildQuickArgumentVisitor::FixupReferences() { 695 // Fixup any references which may have changed. 696 for (const auto& pair : references_) { 697 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 698 soa_->Env()->DeleteLocalRef(pair.first); 699 } 700} 701 702// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 703// which is responsible for recording callee save registers. We explicitly place into jobjects the 704// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 705// field within the proxy object, which will box the primitive arguments and deal with error cases. 706extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 707 mirror::Object* receiver, 708 Thread* self, StackReference<mirror::ArtMethod>* sp) 709 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 710 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 711 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 712 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 713 const char* old_cause = 714 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 715 // Register the top of the managed stack, making stack crawlable. 716 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 717 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 718 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 719 << PrettyMethod(proxy_method); 720 self->VerifyStack(); 721 // Start new JNI local reference state. 722 JNIEnvExt* env = self->GetJniEnv(); 723 ScopedObjectAccessUnchecked soa(env); 724 ScopedJniEnvLocalRefState env_state(env); 725 // Create local ref. copies of proxy method and the receiver. 726 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 727 728 // Placing arguments into args vector and remove the receiver. 729 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(); 730 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 731 << PrettyMethod(non_proxy_method); 732 std::vector<jvalue> args; 733 uint32_t shorty_len = 0; 734 const char* shorty = proxy_method->GetShorty(&shorty_len); 735 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 736 737 local_ref_visitor.VisitArguments(); 738 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 739 args.erase(args.begin()); 740 741 // Convert proxy method into expected interface method. 742 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 743 DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method); 744 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 745 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 746 747 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 748 // that performs allocations. 749 self->EndAssertNoThreadSuspension(old_cause); 750 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 751 // Restore references which might have moved. 752 local_ref_visitor.FixupReferences(); 753 return result.GetJ(); 754} 755 756// Read object references held in arguments from quick frames and place in a JNI local references, 757// so they don't get garbage collected. 758class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 759 public: 760 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 761 const char* shorty, uint32_t shorty_len, 762 ScopedObjectAccessUnchecked* soa) : 763 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 764 765 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 766 767 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 768 769 private: 770 ScopedObjectAccessUnchecked* const soa_; 771 // References which we must update when exiting in case the GC moved the objects. 772 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 773 774 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 775}; 776 777void RememberForGcArgumentVisitor::Visit() { 778 if (IsParamAReference()) { 779 StackReference<mirror::Object>* stack_ref = 780 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 781 jobject reference = 782 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 783 references_.push_back(std::make_pair(reference, stack_ref)); 784 } 785} 786 787void RememberForGcArgumentVisitor::FixupReferences() { 788 // Fixup any references which may have changed. 789 for (const auto& pair : references_) { 790 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 791 soa_->Env()->DeleteLocalRef(pair.first); 792 } 793} 794 795// Lazily resolve a method for quick. Called by stub code. 796extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 797 mirror::Object* receiver, 798 Thread* self, 799 StackReference<mirror::ArtMethod>* sp) 800 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 801 ScopedQuickEntrypointChecks sqec(self); 802 // Start new JNI local reference state 803 JNIEnvExt* env = self->GetJniEnv(); 804 ScopedObjectAccessUnchecked soa(env); 805 ScopedJniEnvLocalRefState env_state(env); 806 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 807 808 // Compute details about the called method (avoid GCs) 809 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 810 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 811 InvokeType invoke_type; 812 MethodReference called_method(nullptr, 0); 813 const bool called_method_known_on_entry = !called->IsRuntimeMethod(); 814 if (!called_method_known_on_entry) { 815 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 816 const DexFile::CodeItem* code; 817 called_method.dex_file = caller->GetDexFile(); 818 code = caller->GetCodeItem(); 819 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 820 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 821 Instruction::Code instr_code = instr->Opcode(); 822 bool is_range; 823 switch (instr_code) { 824 case Instruction::INVOKE_DIRECT: 825 invoke_type = kDirect; 826 is_range = false; 827 break; 828 case Instruction::INVOKE_DIRECT_RANGE: 829 invoke_type = kDirect; 830 is_range = true; 831 break; 832 case Instruction::INVOKE_STATIC: 833 invoke_type = kStatic; 834 is_range = false; 835 break; 836 case Instruction::INVOKE_STATIC_RANGE: 837 invoke_type = kStatic; 838 is_range = true; 839 break; 840 case Instruction::INVOKE_SUPER: 841 invoke_type = kSuper; 842 is_range = false; 843 break; 844 case Instruction::INVOKE_SUPER_RANGE: 845 invoke_type = kSuper; 846 is_range = true; 847 break; 848 case Instruction::INVOKE_VIRTUAL: 849 invoke_type = kVirtual; 850 is_range = false; 851 break; 852 case Instruction::INVOKE_VIRTUAL_RANGE: 853 invoke_type = kVirtual; 854 is_range = true; 855 break; 856 case Instruction::INVOKE_INTERFACE: 857 invoke_type = kInterface; 858 is_range = false; 859 break; 860 case Instruction::INVOKE_INTERFACE_RANGE: 861 invoke_type = kInterface; 862 is_range = true; 863 break; 864 default: 865 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr); 866 UNREACHABLE(); 867 } 868 called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 869 } else { 870 invoke_type = kStatic; 871 called_method.dex_file = called->GetDexFile(); 872 called_method.dex_method_index = called->GetDexMethodIndex(); 873 } 874 uint32_t shorty_len; 875 const char* shorty = 876 called_method.dex_file->GetMethodShorty( 877 called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len); 878 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 879 visitor.VisitArguments(); 880 self->EndAssertNoThreadSuspension(old_cause); 881 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 882 // Resolve method filling in dex cache. 883 if (!called_method_known_on_entry) { 884 StackHandleScope<1> hs(self); 885 mirror::Object* dummy = nullptr; 886 HandleWrapper<mirror::Object> h_receiver( 887 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 888 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 889 called = linker->ResolveMethod(self, called_method.dex_method_index, &caller, invoke_type); 890 } 891 const void* code = nullptr; 892 if (LIKELY(!self->IsExceptionPending())) { 893 // Incompatible class change should have been handled in resolve method. 894 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 895 << PrettyMethod(called) << " " << invoke_type; 896 if (virtual_or_interface) { 897 // Refine called method based on receiver. 898 CHECK(receiver != nullptr) << invoke_type; 899 900 mirror::ArtMethod* orig_called = called; 901 if (invoke_type == kVirtual) { 902 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 903 } else { 904 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 905 } 906 907 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 908 << PrettyTypeOf(receiver) << " " 909 << invoke_type << " " << orig_called->GetVtableIndex(); 910 911 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 912 // of the sharpened method avoiding dirtying the dex cache if possible. 913 // Note, called_method.dex_method_index references the dex method before the 914 // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares 915 // about the name and signature. 916 uint32_t update_dex_cache_method_index = called->GetDexMethodIndex(); 917 if (!called->HasSameDexCacheResolvedMethods(caller)) { 918 // Calling from one dex file to another, need to compute the method index appropriate to 919 // the caller's dex file. Since we get here only if the original called was a runtime 920 // method, we've got the correct dex_file and a dex_method_idx from above. 921 DCHECK(!called_method_known_on_entry); 922 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 923 const DexFile* caller_dex_file = called_method.dex_file; 924 uint32_t caller_method_name_and_sig_index = called_method.dex_method_index; 925 update_dex_cache_method_index = 926 called->FindDexMethodIndexInOtherDexFile(*caller_dex_file, 927 caller_method_name_and_sig_index); 928 } 929 if ((update_dex_cache_method_index != DexFile::kDexNoIndex) && 930 (caller->GetDexCacheResolvedMethod(update_dex_cache_method_index) != called)) { 931 caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called); 932 } 933 } 934 // Ensure that the called method's class is initialized. 935 StackHandleScope<1> hs(soa.Self()); 936 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 937 linker->EnsureInitialized(soa.Self(), called_class, true, true); 938 if (LIKELY(called_class->IsInitialized())) { 939 code = called->GetEntryPointFromQuickCompiledCode(); 940 } else if (called_class->IsInitializing()) { 941 if (invoke_type == kStatic) { 942 // Class is still initializing, go to oat and grab code (trampoline must be left in place 943 // until class is initialized to stop races between threads). 944 code = linker->GetQuickOatCodeFor(called); 945 } else { 946 // No trampoline for non-static methods. 947 code = called->GetEntryPointFromQuickCompiledCode(); 948 } 949 } else { 950 DCHECK(called_class->IsErroneous()); 951 } 952 } 953 CHECK_EQ(code == nullptr, self->IsExceptionPending()); 954 // Fixup any locally saved objects may have moved during a GC. 955 visitor.FixupReferences(); 956 // Place called method in callee-save frame to be placed as first argument to quick method. 957 sp->Assign(called); 958 return code; 959} 960 961/* 962 * This class uses a couple of observations to unite the different calling conventions through 963 * a few constants. 964 * 965 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 966 * possible alignment. 967 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 968 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 969 * when we have to split things 970 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 971 * and we can use Int handling directly. 972 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 973 * necessary when widening. Also, widening of Ints will take place implicitly, and the 974 * extension should be compatible with Aarch64, which mandates copying the available bits 975 * into LSB and leaving the rest unspecified. 976 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 977 * the stack. 978 * 6) There is only little endian. 979 * 980 * 981 * Actual work is supposed to be done in a delegate of the template type. The interface is as 982 * follows: 983 * 984 * void PushGpr(uintptr_t): Add a value for the next GPR 985 * 986 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 987 * padding, that is, think the architecture is 32b and aligns 64b. 988 * 989 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 990 * split this if necessary. The current state will have aligned, if 991 * necessary. 992 * 993 * void PushStack(uintptr_t): Push a value to the stack. 994 * 995 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 996 * as this might be important for null initialization. 997 * Must return the jobject, that is, the reference to the 998 * entry in the HandleScope (nullptr if necessary). 999 * 1000 */ 1001template<class T> class BuildNativeCallFrameStateMachine { 1002 public: 1003#if defined(__arm__) 1004 // TODO: These are all dummy values! 1005 static constexpr bool kNativeSoftFloatAbi = true; 1006 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 1007 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1008 1009 static constexpr size_t kRegistersNeededForLong = 2; 1010 static constexpr size_t kRegistersNeededForDouble = 2; 1011 static constexpr bool kMultiRegistersAligned = true; 1012 static constexpr bool kMultiFPRegistersWidened = false; 1013 static constexpr bool kMultiGPRegistersWidened = false; 1014 static constexpr bool kAlignLongOnStack = true; 1015 static constexpr bool kAlignDoubleOnStack = true; 1016#elif defined(__aarch64__) 1017 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1018 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 1019 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1020 1021 static constexpr size_t kRegistersNeededForLong = 1; 1022 static constexpr size_t kRegistersNeededForDouble = 1; 1023 static constexpr bool kMultiRegistersAligned = false; 1024 static constexpr bool kMultiFPRegistersWidened = false; 1025 static constexpr bool kMultiGPRegistersWidened = false; 1026 static constexpr bool kAlignLongOnStack = false; 1027 static constexpr bool kAlignDoubleOnStack = false; 1028#elif defined(__mips__) && !defined(__LP64__) 1029 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 1030 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. 1031 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1032 1033 static constexpr size_t kRegistersNeededForLong = 2; 1034 static constexpr size_t kRegistersNeededForDouble = 2; 1035 static constexpr bool kMultiRegistersAligned = true; 1036 static constexpr bool kMultiFPRegistersWidened = true; 1037 static constexpr bool kMultiGPRegistersWidened = false; 1038 static constexpr bool kAlignLongOnStack = true; 1039 static constexpr bool kAlignDoubleOnStack = true; 1040#elif defined(__mips__) && defined(__LP64__) 1041 // Let the code prepare GPRs only and we will load the FPRs with same data. 1042 static constexpr bool kNativeSoftFloatAbi = true; 1043 static constexpr size_t kNumNativeGprArgs = 8; 1044 static constexpr size_t kNumNativeFprArgs = 0; 1045 1046 static constexpr size_t kRegistersNeededForLong = 1; 1047 static constexpr size_t kRegistersNeededForDouble = 1; 1048 static constexpr bool kMultiRegistersAligned = false; 1049 static constexpr bool kMultiFPRegistersWidened = false; 1050 static constexpr bool kMultiGPRegistersWidened = true; 1051 static constexpr bool kAlignLongOnStack = false; 1052 static constexpr bool kAlignDoubleOnStack = false; 1053#elif defined(__i386__) 1054 // TODO: Check these! 1055 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 1056 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 1057 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 1058 1059 static constexpr size_t kRegistersNeededForLong = 2; 1060 static constexpr size_t kRegistersNeededForDouble = 2; 1061 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 1062 static constexpr bool kMultiFPRegistersWidened = false; 1063 static constexpr bool kMultiGPRegistersWidened = false; 1064 static constexpr bool kAlignLongOnStack = false; 1065 static constexpr bool kAlignDoubleOnStack = false; 1066#elif defined(__x86_64__) 1067 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1068 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 1069 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1070 1071 static constexpr size_t kRegistersNeededForLong = 1; 1072 static constexpr size_t kRegistersNeededForDouble = 1; 1073 static constexpr bool kMultiRegistersAligned = false; 1074 static constexpr bool kMultiFPRegistersWidened = false; 1075 static constexpr bool kMultiGPRegistersWidened = false; 1076 static constexpr bool kAlignLongOnStack = false; 1077 static constexpr bool kAlignDoubleOnStack = false; 1078#else 1079#error "Unsupported architecture" 1080#endif 1081 1082 public: 1083 explicit BuildNativeCallFrameStateMachine(T* delegate) 1084 : gpr_index_(kNumNativeGprArgs), 1085 fpr_index_(kNumNativeFprArgs), 1086 stack_entries_(0), 1087 delegate_(delegate) { 1088 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 1089 // the next register is even; counting down is just to make the compiler happy... 1090 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); 1091 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); 1092 } 1093 1094 virtual ~BuildNativeCallFrameStateMachine() {} 1095 1096 bool HavePointerGpr() const { 1097 return gpr_index_ > 0; 1098 } 1099 1100 void AdvancePointer(const void* val) { 1101 if (HavePointerGpr()) { 1102 gpr_index_--; 1103 PushGpr(reinterpret_cast<uintptr_t>(val)); 1104 } else { 1105 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 1106 PushStack(reinterpret_cast<uintptr_t>(val)); 1107 gpr_index_ = 0; 1108 } 1109 } 1110 1111 bool HaveHandleScopeGpr() const { 1112 return gpr_index_ > 0; 1113 } 1114 1115 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1116 uintptr_t handle = PushHandle(ptr); 1117 if (HaveHandleScopeGpr()) { 1118 gpr_index_--; 1119 PushGpr(handle); 1120 } else { 1121 stack_entries_++; 1122 PushStack(handle); 1123 gpr_index_ = 0; 1124 } 1125 } 1126 1127 bool HaveIntGpr() const { 1128 return gpr_index_ > 0; 1129 } 1130 1131 void AdvanceInt(uint32_t val) { 1132 if (HaveIntGpr()) { 1133 gpr_index_--; 1134 if (kMultiGPRegistersWidened) { 1135 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1136 PushGpr(static_cast<int64_t>(bit_cast<uint32_t, int32_t>(val))); 1137 } else { 1138 PushGpr(val); 1139 } 1140 } else { 1141 stack_entries_++; 1142 if (kMultiGPRegistersWidened) { 1143 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1144 PushStack(static_cast<int64_t>(bit_cast<uint32_t, int32_t>(val))); 1145 } else { 1146 PushStack(val); 1147 } 1148 gpr_index_ = 0; 1149 } 1150 } 1151 1152 bool HaveLongGpr() const { 1153 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1154 } 1155 1156 bool LongGprNeedsPadding() const { 1157 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1158 kAlignLongOnStack && // and when it needs alignment 1159 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1160 } 1161 1162 bool LongStackNeedsPadding() const { 1163 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1164 kAlignLongOnStack && // and when it needs 8B alignment 1165 (stack_entries_ & 1) == 1; // counter is odd 1166 } 1167 1168 void AdvanceLong(uint64_t val) { 1169 if (HaveLongGpr()) { 1170 if (LongGprNeedsPadding()) { 1171 PushGpr(0); 1172 gpr_index_--; 1173 } 1174 if (kRegistersNeededForLong == 1) { 1175 PushGpr(static_cast<uintptr_t>(val)); 1176 } else { 1177 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1178 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1179 } 1180 gpr_index_ -= kRegistersNeededForLong; 1181 } else { 1182 if (LongStackNeedsPadding()) { 1183 PushStack(0); 1184 stack_entries_++; 1185 } 1186 if (kRegistersNeededForLong == 1) { 1187 PushStack(static_cast<uintptr_t>(val)); 1188 stack_entries_++; 1189 } else { 1190 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1191 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1192 stack_entries_ += 2; 1193 } 1194 gpr_index_ = 0; 1195 } 1196 } 1197 1198 bool HaveFloatFpr() const { 1199 return fpr_index_ > 0; 1200 } 1201 1202 void AdvanceFloat(float val) { 1203 if (kNativeSoftFloatAbi) { 1204 AdvanceInt(bit_cast<float, uint32_t>(val)); 1205 } else { 1206 if (HaveFloatFpr()) { 1207 fpr_index_--; 1208 if (kRegistersNeededForDouble == 1) { 1209 if (kMultiFPRegistersWidened) { 1210 PushFpr8(bit_cast<double, uint64_t>(val)); 1211 } else { 1212 // No widening, just use the bits. 1213 PushFpr8(bit_cast<float, uint64_t>(val)); 1214 } 1215 } else { 1216 PushFpr4(val); 1217 } 1218 } else { 1219 stack_entries_++; 1220 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { 1221 // Need to widen before storing: Note the "double" in the template instantiation. 1222 // Note: We need to jump through those hoops to make the compiler happy. 1223 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1224 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val))); 1225 } else { 1226 PushStack(bit_cast<float, uintptr_t>(val)); 1227 } 1228 fpr_index_ = 0; 1229 } 1230 } 1231 } 1232 1233 bool HaveDoubleFpr() const { 1234 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1235 } 1236 1237 bool DoubleFprNeedsPadding() const { 1238 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1239 kAlignDoubleOnStack && // and when it needs alignment 1240 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1241 } 1242 1243 bool DoubleStackNeedsPadding() const { 1244 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1245 kAlignDoubleOnStack && // and when it needs 8B alignment 1246 (stack_entries_ & 1) == 1; // counter is odd 1247 } 1248 1249 void AdvanceDouble(uint64_t val) { 1250 if (kNativeSoftFloatAbi) { 1251 AdvanceLong(val); 1252 } else { 1253 if (HaveDoubleFpr()) { 1254 if (DoubleFprNeedsPadding()) { 1255 PushFpr4(0); 1256 fpr_index_--; 1257 } 1258 PushFpr8(val); 1259 fpr_index_ -= kRegistersNeededForDouble; 1260 } else { 1261 if (DoubleStackNeedsPadding()) { 1262 PushStack(0); 1263 stack_entries_++; 1264 } 1265 if (kRegistersNeededForDouble == 1) { 1266 PushStack(static_cast<uintptr_t>(val)); 1267 stack_entries_++; 1268 } else { 1269 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1270 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1271 stack_entries_ += 2; 1272 } 1273 fpr_index_ = 0; 1274 } 1275 } 1276 } 1277 1278 uint32_t GetStackEntries() const { 1279 return stack_entries_; 1280 } 1281 1282 uint32_t GetNumberOfUsedGprs() const { 1283 return kNumNativeGprArgs - gpr_index_; 1284 } 1285 1286 uint32_t GetNumberOfUsedFprs() const { 1287 return kNumNativeFprArgs - fpr_index_; 1288 } 1289 1290 private: 1291 void PushGpr(uintptr_t val) { 1292 delegate_->PushGpr(val); 1293 } 1294 void PushFpr4(float val) { 1295 delegate_->PushFpr4(val); 1296 } 1297 void PushFpr8(uint64_t val) { 1298 delegate_->PushFpr8(val); 1299 } 1300 void PushStack(uintptr_t val) { 1301 delegate_->PushStack(val); 1302 } 1303 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1304 return delegate_->PushHandle(ref); 1305 } 1306 1307 uint32_t gpr_index_; // Number of free GPRs 1308 uint32_t fpr_index_; // Number of free FPRs 1309 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1310 // extended 1311 T* const delegate_; // What Push implementation gets called 1312}; 1313 1314// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1315// in subclasses. 1316// 1317// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1318// them with handles. 1319class ComputeNativeCallFrameSize { 1320 public: 1321 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1322 1323 virtual ~ComputeNativeCallFrameSize() {} 1324 1325 uint32_t GetStackSize() const { 1326 return num_stack_entries_ * sizeof(uintptr_t); 1327 } 1328 1329 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1330 sp8 -= GetStackSize(); 1331 // Align by kStackAlignment. 1332 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1333 return sp8; 1334 } 1335 1336 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1337 const { 1338 // Assumption is OK right now, as we have soft-float arm 1339 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1340 sp8 -= fregs * sizeof(uintptr_t); 1341 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1342 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1343 sp8 -= iregs * sizeof(uintptr_t); 1344 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1345 return sp8; 1346 } 1347 1348 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1349 uint32_t** start_fpr) const { 1350 // Native call stack. 1351 sp8 = LayoutCallStack(sp8); 1352 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1353 1354 // Put fprs and gprs below. 1355 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1356 1357 // Return the new bottom. 1358 return sp8; 1359 } 1360 1361 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1362 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1363 UNUSED(sm); 1364 } 1365 1366 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1367 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1368 1369 WalkHeader(&sm); 1370 1371 for (uint32_t i = 1; i < shorty_len; ++i) { 1372 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1373 switch (cur_type_) { 1374 case Primitive::kPrimNot: 1375 // TODO: fix abuse of mirror types. 1376 sm.AdvanceHandleScope( 1377 reinterpret_cast<mirror::Object*>(0x12345678)); 1378 break; 1379 1380 case Primitive::kPrimBoolean: 1381 case Primitive::kPrimByte: 1382 case Primitive::kPrimChar: 1383 case Primitive::kPrimShort: 1384 case Primitive::kPrimInt: 1385 sm.AdvanceInt(0); 1386 break; 1387 case Primitive::kPrimFloat: 1388 sm.AdvanceFloat(0); 1389 break; 1390 case Primitive::kPrimDouble: 1391 sm.AdvanceDouble(0); 1392 break; 1393 case Primitive::kPrimLong: 1394 sm.AdvanceLong(0); 1395 break; 1396 default: 1397 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1398 UNREACHABLE(); 1399 } 1400 } 1401 1402 num_stack_entries_ = sm.GetStackEntries(); 1403 } 1404 1405 void PushGpr(uintptr_t /* val */) { 1406 // not optimizing registers, yet 1407 } 1408 1409 void PushFpr4(float /* val */) { 1410 // not optimizing registers, yet 1411 } 1412 1413 void PushFpr8(uint64_t /* val */) { 1414 // not optimizing registers, yet 1415 } 1416 1417 void PushStack(uintptr_t /* val */) { 1418 // counting is already done in the superclass 1419 } 1420 1421 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1422 return reinterpret_cast<uintptr_t>(nullptr); 1423 } 1424 1425 protected: 1426 uint32_t num_stack_entries_; 1427}; 1428 1429class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1430 public: 1431 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1432 1433 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1434 // is at *m = sp. Will update to point to the bottom of the save frame. 1435 // 1436 // Note: assumes ComputeAll() has been run before. 1437 void LayoutCalleeSaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1438 HandleScope** handle_scope) 1439 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1440 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1441 1442 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1443 1444 // First, fix up the layout of the callee-save frame. 1445 // We have to squeeze in the HandleScope, and relocate the method pointer. 1446 1447 // "Free" the slot for the method. 1448 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1449 1450 // Under the callee saves put handle scope and new method stack reference. 1451 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1452 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1453 1454 sp8 -= scope_and_method; 1455 // Align by kStackAlignment. 1456 sp8 = reinterpret_cast<uint8_t*>(RoundDown( 1457 reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1458 1459 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1460 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1461 num_handle_scope_references_); 1462 1463 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1464 uint8_t* method_pointer = sp8; 1465 StackReference<mirror::ArtMethod>* new_method_ref = 1466 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1467 new_method_ref->Assign(method); 1468 *m = new_method_ref; 1469 } 1470 1471 // Adds space for the cookie. Note: may leave stack unaligned. 1472 void LayoutCookie(uint8_t** sp) const { 1473 // Reference cookie and padding 1474 *sp -= 8; 1475 } 1476 1477 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1478 // Returns the new bottom. Note: this may be unaligned. 1479 uint8_t* LayoutJNISaveFrame(Thread* self, StackReference<mirror::ArtMethod>** m, void* sp, 1480 HandleScope** handle_scope) 1481 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1482 // First, fix up the layout of the callee-save frame. 1483 // We have to squeeze in the HandleScope, and relocate the method pointer. 1484 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1485 1486 // The bottom of the callee-save frame is now where the method is, *m. 1487 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1488 1489 // Add space for cookie. 1490 LayoutCookie(&sp8); 1491 1492 return sp8; 1493 } 1494 1495 // WARNING: After this, *sp won't be pointing to the method anymore! 1496 uint8_t* ComputeLayout(Thread* self, StackReference<mirror::ArtMethod>** m, 1497 const char* shorty, uint32_t shorty_len, HandleScope** handle_scope, 1498 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) 1499 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1500 Walk(shorty, shorty_len); 1501 1502 // JNI part. 1503 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1504 1505 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1506 1507 // Return the new bottom. 1508 return sp8; 1509 } 1510 1511 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1512 1513 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1514 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1515 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1516 1517 private: 1518 uint32_t num_handle_scope_references_; 1519}; 1520 1521uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1522 num_handle_scope_references_++; 1523 return reinterpret_cast<uintptr_t>(nullptr); 1524} 1525 1526void ComputeGenericJniFrameSize::WalkHeader( 1527 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1528 // JNIEnv 1529 sm->AdvancePointer(nullptr); 1530 1531 // Class object or this as first argument 1532 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1533} 1534 1535// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1536// the template requirements of BuildGenericJniFrameStateMachine. 1537class FillNativeCall { 1538 public: 1539 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1540 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1541 1542 virtual ~FillNativeCall() {} 1543 1544 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1545 cur_gpr_reg_ = gpr_regs; 1546 cur_fpr_reg_ = fpr_regs; 1547 cur_stack_arg_ = stack_args; 1548 } 1549 1550 void PushGpr(uintptr_t val) { 1551 *cur_gpr_reg_ = val; 1552 cur_gpr_reg_++; 1553 } 1554 1555 void PushFpr4(float val) { 1556 *cur_fpr_reg_ = val; 1557 cur_fpr_reg_++; 1558 } 1559 1560 void PushFpr8(uint64_t val) { 1561 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1562 *tmp = val; 1563 cur_fpr_reg_ += 2; 1564 } 1565 1566 void PushStack(uintptr_t val) { 1567 *cur_stack_arg_ = val; 1568 cur_stack_arg_++; 1569 } 1570 1571 virtual uintptr_t PushHandle(mirror::Object*) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1572 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1573 UNREACHABLE(); 1574 } 1575 1576 private: 1577 uintptr_t* cur_gpr_reg_; 1578 uint32_t* cur_fpr_reg_; 1579 uintptr_t* cur_stack_arg_; 1580}; 1581 1582// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1583// of transitioning into native code. 1584class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1585 public: 1586 BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len, 1587 StackReference<mirror::ArtMethod>** sp) 1588 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1589 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1590 ComputeGenericJniFrameSize fsc; 1591 uintptr_t* start_gpr_reg; 1592 uint32_t* start_fpr_reg; 1593 uintptr_t* start_stack_arg; 1594 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, 1595 &handle_scope_, 1596 &start_stack_arg, 1597 &start_gpr_reg, &start_fpr_reg); 1598 1599 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1600 1601 // jni environment is always first argument 1602 sm_.AdvancePointer(self->GetJniEnv()); 1603 1604 if (is_static) { 1605 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1606 } 1607 } 1608 1609 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1610 1611 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1612 1613 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1614 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1615 return handle_scope_->GetHandle(0).GetReference(); 1616 } 1617 1618 jobject GetFirstHandleScopeJObject() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1619 return handle_scope_->GetHandle(0).ToJObject(); 1620 } 1621 1622 void* GetBottomOfUsedArea() const { 1623 return bottom_of_used_area_; 1624 } 1625 1626 private: 1627 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1628 class FillJniCall FINAL : public FillNativeCall { 1629 public: 1630 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1631 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1632 handle_scope_(handle_scope), cur_entry_(0) {} 1633 1634 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1635 1636 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1637 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1638 handle_scope_ = scope; 1639 cur_entry_ = 0U; 1640 } 1641 1642 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1643 // Initialize padding entries. 1644 size_t expected_slots = handle_scope_->NumberOfReferences(); 1645 while (cur_entry_ < expected_slots) { 1646 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1647 } 1648 DCHECK_NE(cur_entry_, 0U); 1649 } 1650 1651 private: 1652 HandleScope* handle_scope_; 1653 size_t cur_entry_; 1654 }; 1655 1656 HandleScope* handle_scope_; 1657 FillJniCall jni_call_; 1658 void* bottom_of_used_area_; 1659 1660 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1661 1662 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1663}; 1664 1665uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1666 uintptr_t tmp; 1667 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1668 h.Assign(ref); 1669 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1670 cur_entry_++; 1671 return tmp; 1672} 1673 1674void BuildGenericJniFrameVisitor::Visit() { 1675 Primitive::Type type = GetParamPrimitiveType(); 1676 switch (type) { 1677 case Primitive::kPrimLong: { 1678 jlong long_arg; 1679 if (IsSplitLongOrDouble()) { 1680 long_arg = ReadSplitLongParam(); 1681 } else { 1682 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1683 } 1684 sm_.AdvanceLong(long_arg); 1685 break; 1686 } 1687 case Primitive::kPrimDouble: { 1688 uint64_t double_arg; 1689 if (IsSplitLongOrDouble()) { 1690 // Read into union so that we don't case to a double. 1691 double_arg = ReadSplitLongParam(); 1692 } else { 1693 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1694 } 1695 sm_.AdvanceDouble(double_arg); 1696 break; 1697 } 1698 case Primitive::kPrimNot: { 1699 StackReference<mirror::Object>* stack_ref = 1700 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1701 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1702 break; 1703 } 1704 case Primitive::kPrimFloat: 1705 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1706 break; 1707 case Primitive::kPrimBoolean: // Fall-through. 1708 case Primitive::kPrimByte: // Fall-through. 1709 case Primitive::kPrimChar: // Fall-through. 1710 case Primitive::kPrimShort: // Fall-through. 1711 case Primitive::kPrimInt: // Fall-through. 1712 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1713 break; 1714 case Primitive::kPrimVoid: 1715 LOG(FATAL) << "UNREACHABLE"; 1716 UNREACHABLE(); 1717 } 1718} 1719 1720void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1721 // Clear out rest of the scope. 1722 jni_call_.ResetRemainingScopeSlots(); 1723 // Install HandleScope. 1724 self->PushHandleScope(handle_scope_); 1725} 1726 1727#if defined(__arm__) || defined(__aarch64__) 1728extern "C" void* artFindNativeMethod(); 1729#else 1730extern "C" void* artFindNativeMethod(Thread* self); 1731#endif 1732 1733uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1734 if (lock != nullptr) { 1735 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1736 } else { 1737 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1738 } 1739} 1740 1741void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1742 if (lock != nullptr) { 1743 JniMethodEndSynchronized(cookie, lock, self); 1744 } else { 1745 JniMethodEnd(cookie, self); 1746 } 1747} 1748 1749/* 1750 * Initializes an alloca region assumed to be directly below sp for a native call: 1751 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1752 * The final element on the stack is a pointer to the native code. 1753 * 1754 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1755 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1756 * 1757 * The return of this function denotes: 1758 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1759 * 2) An error, if the value is negative. 1760 */ 1761extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, 1762 StackReference<mirror::ArtMethod>* sp) 1763 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1764 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1765 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1766 uint32_t shorty_len = 0; 1767 const char* shorty = called->GetShorty(&shorty_len); 1768 1769 // Run the visitor and update sp. 1770 BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp); 1771 visitor.VisitArguments(); 1772 visitor.FinalizeHandleScope(self); 1773 1774 // Fix up managed-stack things in Thread. 1775 self->SetTopOfStack(sp); 1776 1777 self->VerifyStack(); 1778 1779 // Start JNI, save the cookie. 1780 uint32_t cookie; 1781 if (called->IsSynchronized()) { 1782 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1783 if (self->IsExceptionPending()) { 1784 self->PopHandleScope(); 1785 // A negative value denotes an error. 1786 return GetTwoWordFailureValue(); 1787 } 1788 } else { 1789 cookie = JniMethodStart(self); 1790 } 1791 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1792 *(sp32 - 1) = cookie; 1793 1794 // Retrieve the stored native code. 1795 void* nativeCode = called->GetEntryPointFromJni(); 1796 1797 // There are two cases for the content of nativeCode: 1798 // 1) Pointer to the native function. 1799 // 2) Pointer to the trampoline for native code binding. 1800 // In the second case, we need to execute the binding and continue with the actual native function 1801 // pointer. 1802 DCHECK(nativeCode != nullptr); 1803 if (nativeCode == GetJniDlsymLookupStub()) { 1804#if defined(__arm__) || defined(__aarch64__) 1805 nativeCode = artFindNativeMethod(); 1806#else 1807 nativeCode = artFindNativeMethod(self); 1808#endif 1809 1810 if (nativeCode == nullptr) { 1811 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1812 1813 // End JNI, as the assembly will move to deliver the exception. 1814 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1815 if (shorty[0] == 'L') { 1816 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1817 } else { 1818 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1819 } 1820 1821 return GetTwoWordFailureValue(); 1822 } 1823 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1824 } 1825 1826 // Return native code addr(lo) and bottom of alloca address(hi). 1827 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1828 reinterpret_cast<uintptr_t>(nativeCode)); 1829} 1830 1831/* 1832 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1833 * unlocking. 1834 */ 1835extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1836 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1837 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame(); 1838 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1839 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1840 uint32_t cookie = *(sp32 - 1); 1841 1842 jobject lock = nullptr; 1843 if (called->IsSynchronized()) { 1844 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1845 + sizeof(StackReference<mirror::ArtMethod>)); 1846 lock = table->GetHandle(0).ToJObject(); 1847 } 1848 1849 char return_shorty_char = called->GetShorty()[0]; 1850 1851 if (return_shorty_char == 'L') { 1852 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1853 } else { 1854 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1855 1856 switch (return_shorty_char) { 1857 case 'F': { 1858 if (kRuntimeISA == kX86) { 1859 // Convert back the result to float. 1860 double d = bit_cast<uint64_t, double>(result_f); 1861 return bit_cast<float, uint32_t>(static_cast<float>(d)); 1862 } else { 1863 return result_f; 1864 } 1865 } 1866 case 'D': 1867 return result_f; 1868 case 'Z': 1869 return result.z; 1870 case 'B': 1871 return result.b; 1872 case 'C': 1873 return result.c; 1874 case 'S': 1875 return result.s; 1876 case 'I': 1877 return result.i; 1878 case 'J': 1879 return result.j; 1880 case 'V': 1881 return 0; 1882 default: 1883 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1884 return 0; 1885 } 1886 } 1887} 1888 1889// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1890// for the method pointer. 1891// 1892// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1893// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations). 1894 1895template<InvokeType type, bool access_check> 1896static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1897 mirror::ArtMethod* caller_method, 1898 Thread* self, StackReference<mirror::ArtMethod>* sp); 1899 1900template<InvokeType type, bool access_check> 1901static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1902 mirror::ArtMethod* caller_method, 1903 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1904 ScopedQuickEntrypointChecks sqec(self); 1905 DCHECK_EQ(sp->AsMirrorPtr(), Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); 1906 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1907 type); 1908 if (UNLIKELY(method == nullptr)) { 1909 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1910 uint32_t shorty_len; 1911 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1912 { 1913 // Remember the args in case a GC happens in FindMethodFromCode. 1914 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1915 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1916 visitor.VisitArguments(); 1917 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1918 self); 1919 visitor.FixupReferences(); 1920 } 1921 1922 if (UNLIKELY(method == nullptr)) { 1923 CHECK(self->IsExceptionPending()); 1924 return GetTwoWordFailureValue(); // Failure. 1925 } 1926 } 1927 DCHECK(!self->IsExceptionPending()); 1928 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1929 1930 // When we return, the caller will branch to this address, so it had better not be 0! 1931 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 1932 << " location: " 1933 << method->GetDexFile()->GetLocation(); 1934 1935 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1936 reinterpret_cast<uintptr_t>(method)); 1937} 1938 1939// Explicit artInvokeCommon template function declarations to please analysis tool. 1940#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1941 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1942 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1943 mirror::Object* this_object, \ 1944 mirror::ArtMethod* caller_method, \ 1945 Thread* self, \ 1946 StackReference<mirror::ArtMethod>* sp) \ 1947 1948EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1949EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1950EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1951EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1952EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1953EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1954EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1955EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1956EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1957EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1958#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1959 1960// See comments in runtime_support_asm.S 1961extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 1962 uint32_t method_idx, mirror::Object* this_object, 1963 mirror::ArtMethod* caller_method, Thread* self, 1964 StackReference<mirror::ArtMethod>* sp) 1965 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1966 return artInvokeCommon<kInterface, true>(method_idx, this_object, 1967 caller_method, self, sp); 1968} 1969 1970extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 1971 uint32_t method_idx, mirror::Object* this_object, 1972 mirror::ArtMethod* caller_method, Thread* self, 1973 StackReference<mirror::ArtMethod>* sp) 1974 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1975 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, 1976 self, sp); 1977} 1978 1979extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 1980 uint32_t method_idx, mirror::Object* this_object, 1981 mirror::ArtMethod* caller_method, Thread* self, 1982 StackReference<mirror::ArtMethod>* sp) 1983 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1984 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, 1985 self, sp); 1986} 1987 1988extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 1989 uint32_t method_idx, mirror::Object* this_object, 1990 mirror::ArtMethod* caller_method, Thread* self, 1991 StackReference<mirror::ArtMethod>* sp) 1992 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1993 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, 1994 self, sp); 1995} 1996 1997extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 1998 uint32_t method_idx, mirror::Object* this_object, 1999 mirror::ArtMethod* caller_method, Thread* self, 2000 StackReference<mirror::ArtMethod>* sp) 2001 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2002 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, 2003 self, sp); 2004} 2005 2006// Determine target of interface dispatch. This object is known non-null. 2007extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 2008 mirror::Object* this_object, 2009 mirror::ArtMethod* caller_method, 2010 Thread* self, 2011 StackReference<mirror::ArtMethod>* sp) 2012 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 2013 ScopedQuickEntrypointChecks sqec(self); 2014 mirror::ArtMethod* method; 2015 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 2016 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 2017 if (UNLIKELY(method == nullptr)) { 2018 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 2019 caller_method); 2020 return GetTwoWordFailureValue(); // Failure. 2021 } 2022 } else { 2023 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 2024 2025 // Find the caller PC. 2026 constexpr size_t pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, Runtime::kRefsAndArgs); 2027 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + pc_offset); 2028 2029 // Map the caller PC to a dex PC. 2030 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 2031 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 2032 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 2033 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 2034 Instruction::Code instr_code = instr->Opcode(); 2035 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 2036 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 2037 << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr); 2038 uint32_t dex_method_idx; 2039 if (instr_code == Instruction::INVOKE_INTERFACE) { 2040 dex_method_idx = instr->VRegB_35c(); 2041 } else { 2042 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 2043 dex_method_idx = instr->VRegB_3rc(); 2044 } 2045 2046 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 2047 ->GetDexFile(); 2048 uint32_t shorty_len; 2049 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 2050 &shorty_len); 2051 { 2052 // Remember the args in case a GC happens in FindMethodFromCode. 2053 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2054 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 2055 visitor.VisitArguments(); 2056 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 2057 self); 2058 visitor.FixupReferences(); 2059 } 2060 2061 if (UNLIKELY(method == nullptr)) { 2062 CHECK(self->IsExceptionPending()); 2063 return GetTwoWordFailureValue(); // Failure. 2064 } 2065 } 2066 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2067 2068 // When we return, the caller will branch to this address, so it had better not be 0! 2069 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 2070 << " location: " << method->GetDexFile()->GetLocation(); 2071 2072 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2073 reinterpret_cast<uintptr_t>(method)); 2074} 2075 2076} // namespace art 2077