quick_trampoline_entrypoints.cc revision b30259251b22430fad12f1adeab671e4bf8f88f5
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "art_method-inl.h" 18#include "callee_save_frame.h" 19#include "common_throws.h" 20#include "dex_file-inl.h" 21#include "dex_instruction-inl.h" 22#include "entrypoints/entrypoint_utils-inl.h" 23#include "entrypoints/runtime_asm_entrypoints.h" 24#include "gc/accounting/card_table-inl.h" 25#include "interpreter/interpreter.h" 26#include "method_reference.h" 27#include "mirror/class-inl.h" 28#include "mirror/dex_cache-inl.h" 29#include "mirror/method.h" 30#include "mirror/object-inl.h" 31#include "mirror/object_array-inl.h" 32#include "runtime.h" 33#include "scoped_thread_state_change.h" 34#include "stack.h" 35#include "debugger.h" 36 37namespace art { 38 39// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 40class QuickArgumentVisitor { 41 // Number of bytes for each out register in the caller method's frame. 42 static constexpr size_t kBytesStackArgLocation = 4; 43 // Frame size in bytes of a callee-save frame for RefsAndArgs. 44 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 45 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 46#if defined(__arm__) 47 // The callee save frame is pointed to by SP. 48 // | argN | | 49 // | ... | | 50 // | arg4 | | 51 // | arg3 spill | | Caller's frame 52 // | arg2 spill | | 53 // | arg1 spill | | 54 // | Method* | --- 55 // | LR | 56 // | ... | 4x6 bytes callee saves 57 // | R3 | 58 // | R2 | 59 // | R1 | 60 // | S15 | 61 // | : | 62 // | S0 | 63 // | | 4x2 bytes padding 64 // | Method* | <- sp 65 static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat; 66 static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat; 67 static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; 68 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; 69 static constexpr bool kQuickSkipOddFpRegisters = false; 70 static constexpr size_t kNumQuickGprArgs = 3; 71 static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; 72 static constexpr bool kGprFprLockstep = false; 73 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 74 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 75 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 76 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 77 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 78 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 79 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 80 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 81 } 82#elif defined(__aarch64__) 83 // The callee save frame is pointed to by SP. 84 // | argN | | 85 // | ... | | 86 // | arg4 | | 87 // | arg3 spill | | Caller's frame 88 // | arg2 spill | | 89 // | arg1 spill | | 90 // | Method* | --- 91 // | LR | 92 // | X29 | 93 // | : | 94 // | X20 | 95 // | X7 | 96 // | : | 97 // | X1 | 98 // | D7 | 99 // | : | 100 // | D0 | 101 // | | padding 102 // | Method* | <- sp 103 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 104 static constexpr bool kAlignPairRegister = false; 105 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 106 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 107 static constexpr bool kQuickSkipOddFpRegisters = false; 108 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 109 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 110 static constexpr bool kGprFprLockstep = false; 111 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 112 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 113 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 114 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 115 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 116 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 117 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 118 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 119 } 120#elif defined(__mips__) && !defined(__LP64__) 121 // The callee save frame is pointed to by SP. 122 // | argN | | 123 // | ... | | 124 // | arg4 | | 125 // | arg3 spill | | Caller's frame 126 // | arg2 spill | | 127 // | arg1 spill | | 128 // | Method* | --- 129 // | RA | 130 // | ... | callee saves 131 // | A3 | arg3 132 // | A2 | arg2 133 // | A1 | arg1 134 // | F15 | 135 // | F14 | f_arg1 136 // | F13 | 137 // | F12 | f_arg0 138 // | | padding 139 // | A0/Method* | <- sp 140 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 141 static constexpr bool kAlignPairRegister = true; 142 static constexpr bool kQuickSoftFloatAbi = false; 143 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 144 static constexpr bool kQuickSkipOddFpRegisters = true; 145 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 146 static constexpr size_t kNumQuickFprArgs = 4; // 2 arguments passed in FPRs. Floats can be passed 147 // only in even numbered registers and each double 148 // occupies two registers. 149 static constexpr bool kGprFprLockstep = false; 150 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 151 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32; // Offset of first GPR arg. 152 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76; // Offset of return address. 153 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 154 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 155 } 156#elif defined(__mips__) && defined(__LP64__) 157 // The callee save frame is pointed to by SP. 158 // | argN | | 159 // | ... | | 160 // | arg4 | | 161 // | arg3 spill | | Caller's frame 162 // | arg2 spill | | 163 // | arg1 spill | | 164 // | Method* | --- 165 // | RA | 166 // | ... | callee saves 167 // | A7 | arg7 168 // | A6 | arg6 169 // | A5 | arg5 170 // | A4 | arg4 171 // | A3 | arg3 172 // | A2 | arg2 173 // | A1 | arg1 174 // | F19 | f_arg7 175 // | F18 | f_arg6 176 // | F17 | f_arg5 177 // | F16 | f_arg4 178 // | F15 | f_arg3 179 // | F14 | f_arg2 180 // | F13 | f_arg1 181 // | F12 | f_arg0 182 // | | padding 183 // | A0/Method* | <- sp 184 // NOTE: for Mip64, when A0 is skipped, F0 is also skipped. 185 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 186 static constexpr bool kAlignPairRegister = false; 187 static constexpr bool kQuickSoftFloatAbi = false; 188 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 189 static constexpr bool kQuickSkipOddFpRegisters = false; 190 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 191 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. 192 static constexpr bool kGprFprLockstep = true; 193 194 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F1). 195 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). 196 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. 197 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 198 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 199 } 200#elif defined(__i386__) 201 // The callee save frame is pointed to by SP. 202 // | argN | | 203 // | ... | | 204 // | arg4 | | 205 // | arg3 spill | | Caller's frame 206 // | arg2 spill | | 207 // | arg1 spill | | 208 // | Method* | --- 209 // | Return | 210 // | EBP,ESI,EDI | callee saves 211 // | EBX | arg3 212 // | EDX | arg2 213 // | ECX | arg1 214 // | XMM3 | float arg 4 215 // | XMM2 | float arg 3 216 // | XMM1 | float arg 2 217 // | XMM0 | float arg 1 218 // | EAX/Method* | <- sp 219 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 220 static constexpr bool kAlignPairRegister = false; 221 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 222 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 223 static constexpr bool kQuickSkipOddFpRegisters = false; 224 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 225 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. 226 static constexpr bool kGprFprLockstep = false; 227 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. 228 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. 229 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. 230 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 231 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 232 } 233#elif defined(__x86_64__) 234 // The callee save frame is pointed to by SP. 235 // | argN | | 236 // | ... | | 237 // | reg. arg spills | | Caller's frame 238 // | Method* | --- 239 // | Return | 240 // | R15 | callee save 241 // | R14 | callee save 242 // | R13 | callee save 243 // | R12 | callee save 244 // | R9 | arg5 245 // | R8 | arg4 246 // | RSI/R6 | arg1 247 // | RBP/R5 | callee save 248 // | RBX/R3 | callee save 249 // | RDX/R2 | arg2 250 // | RCX/R1 | arg3 251 // | XMM7 | float arg 8 252 // | XMM6 | float arg 7 253 // | XMM5 | float arg 6 254 // | XMM4 | float arg 5 255 // | XMM3 | float arg 4 256 // | XMM2 | float arg 3 257 // | XMM1 | float arg 2 258 // | XMM0 | float arg 1 259 // | Padding | 260 // | RDI/Method* | <- sp 261 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 262 static constexpr bool kAlignPairRegister = false; 263 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 264 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 265 static constexpr bool kQuickSkipOddFpRegisters = false; 266 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 267 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 268 static constexpr bool kGprFprLockstep = false; 269 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 270 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 271 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 272 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 273 switch (gpr_index) { 274 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 275 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 276 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 277 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 278 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 279 default: 280 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 281 return 0; 282 } 283 } 284#else 285#error "Unsupported architecture" 286#endif 287 288 public: 289 // Special handling for proxy methods. Proxy methods are instance methods so the 290 // 'this' object is the 1st argument. They also have the same frame layout as the 291 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the 292 // 1st GPR. 293 static mirror::Object* GetProxyThisObject(ArtMethod** sp) 294 SHARED_REQUIRES(Locks::mutator_lock_) { 295 CHECK((*sp)->IsProxyMethod()); 296 CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, (*sp)->GetFrameSizeInBytes()); 297 CHECK_GT(kNumQuickGprArgs, 0u); 298 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. 299 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + 300 GprIndexToGprOffset(kThisGprIndex); 301 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; 302 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); 303 } 304 305 static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 306 DCHECK((*sp)->IsCalleeSaveMethod()); 307 return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs); 308 } 309 310 static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 311 DCHECK((*sp)->IsCalleeSaveMethod()); 312 uint8_t* previous_sp = 313 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 314 return *reinterpret_cast<ArtMethod**>(previous_sp); 315 } 316 317 static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 318 DCHECK((*sp)->IsCalleeSaveMethod()); 319 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 320 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( 321 reinterpret_cast<uintptr_t>(sp) + callee_frame_size); 322 ArtMethod* outer_method = *caller_sp; 323 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); 324 uintptr_t outer_pc_offset = outer_method->NativeQuickPcOffset(outer_pc); 325 326 if (outer_method->IsOptimized(sizeof(void*))) { 327 CodeInfo code_info = outer_method->GetOptimizedCodeInfo(); 328 StackMapEncoding encoding = code_info.ExtractEncoding(); 329 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding); 330 DCHECK(stack_map.IsValid()); 331 if (stack_map.HasInlineInfo(encoding)) { 332 InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); 333 return inline_info.GetDexPcAtDepth(inline_info.GetDepth() - 1); 334 } else { 335 return stack_map.GetDexPc(encoding); 336 } 337 } else { 338 return outer_method->ToDexPc(outer_pc); 339 } 340 } 341 342 // For the given quick ref and args quick frame, return the caller's PC. 343 static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) { 344 DCHECK((*sp)->IsCalleeSaveMethod()); 345 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 346 return *reinterpret_cast<uintptr_t*>(lr); 347 } 348 349 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 350 uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) : 351 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 352 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 353 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 354 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 355 + sizeof(ArtMethod*)), // Skip ArtMethod*. 356 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), 357 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { 358 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), 359 "Number of Quick FPR arguments unexpected"); 360 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), 361 "Double alignment unexpected"); 362 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the 363 // next register is even. 364 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, 365 "Number of Quick FPR arguments not even"); 366 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*)); 367 } 368 369 virtual ~QuickArgumentVisitor() {} 370 371 virtual void Visit() = 0; 372 373 Primitive::Type GetParamPrimitiveType() const { 374 return cur_type_; 375 } 376 377 uint8_t* GetParamAddress() const { 378 if (!kQuickSoftFloatAbi) { 379 Primitive::Type type = GetParamPrimitiveType(); 380 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 381 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { 382 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 383 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 384 } 385 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 386 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 387 } 388 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 389 } 390 } 391 if (gpr_index_ < kNumQuickGprArgs) { 392 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 393 } 394 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 395 } 396 397 bool IsSplitLongOrDouble() const { 398 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || 399 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 400 return is_split_long_or_double_; 401 } else { 402 return false; // An optimization for when GPR and FPRs are 64bit. 403 } 404 } 405 406 bool IsParamAReference() const { 407 return GetParamPrimitiveType() == Primitive::kPrimNot; 408 } 409 410 bool IsParamALongOrDouble() const { 411 Primitive::Type type = GetParamPrimitiveType(); 412 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 413 } 414 415 uint64_t ReadSplitLongParam() const { 416 // The splitted long is always available through the stack. 417 return *reinterpret_cast<uint64_t*>(stack_args_ 418 + stack_index_ * kBytesStackArgLocation); 419 } 420 421 void IncGprIndex() { 422 gpr_index_++; 423 if (kGprFprLockstep) { 424 fpr_index_++; 425 } 426 } 427 428 void IncFprIndex() { 429 fpr_index_++; 430 if (kGprFprLockstep) { 431 gpr_index_++; 432 } 433 } 434 435 void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) { 436 // (a) 'stack_args_' should point to the first method's argument 437 // (b) whatever the argument type it is, the 'stack_index_' should 438 // be moved forward along with every visiting. 439 gpr_index_ = 0; 440 fpr_index_ = 0; 441 if (kQuickDoubleRegAlignedFloatBackFilled) { 442 fpr_double_index_ = 0; 443 } 444 stack_index_ = 0; 445 if (!is_static_) { // Handle this. 446 cur_type_ = Primitive::kPrimNot; 447 is_split_long_or_double_ = false; 448 Visit(); 449 stack_index_++; 450 if (kNumQuickGprArgs > 0) { 451 IncGprIndex(); 452 } 453 } 454 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 455 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 456 switch (cur_type_) { 457 case Primitive::kPrimNot: 458 case Primitive::kPrimBoolean: 459 case Primitive::kPrimByte: 460 case Primitive::kPrimChar: 461 case Primitive::kPrimShort: 462 case Primitive::kPrimInt: 463 is_split_long_or_double_ = false; 464 Visit(); 465 stack_index_++; 466 if (gpr_index_ < kNumQuickGprArgs) { 467 IncGprIndex(); 468 } 469 break; 470 case Primitive::kPrimFloat: 471 is_split_long_or_double_ = false; 472 Visit(); 473 stack_index_++; 474 if (kQuickSoftFloatAbi) { 475 if (gpr_index_ < kNumQuickGprArgs) { 476 IncGprIndex(); 477 } 478 } else { 479 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 480 IncFprIndex(); 481 if (kQuickDoubleRegAlignedFloatBackFilled) { 482 // Double should not overlap with float. 483 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. 484 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); 485 // Float should not overlap with double. 486 if (fpr_index_ % 2 == 0) { 487 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 488 } 489 } else if (kQuickSkipOddFpRegisters) { 490 IncFprIndex(); 491 } 492 } 493 } 494 break; 495 case Primitive::kPrimDouble: 496 case Primitive::kPrimLong: 497 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 498 if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) { 499 // Currently, this is only for ARM and MIPS, where the first available parameter 500 // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or 501 // A2 (on MIPS) instead. 502 IncGprIndex(); 503 } 504 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 505 ((gpr_index_ + 1) == kNumQuickGprArgs); 506 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) { 507 // We don't want to split this. Pass over this register. 508 gpr_index_++; 509 is_split_long_or_double_ = false; 510 } 511 Visit(); 512 if (kBytesStackArgLocation == 4) { 513 stack_index_+= 2; 514 } else { 515 CHECK_EQ(kBytesStackArgLocation, 8U); 516 stack_index_++; 517 } 518 if (gpr_index_ < kNumQuickGprArgs) { 519 IncGprIndex(); 520 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 521 if (gpr_index_ < kNumQuickGprArgs) { 522 IncGprIndex(); 523 } 524 } 525 } 526 } else { 527 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 528 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; 529 Visit(); 530 if (kBytesStackArgLocation == 4) { 531 stack_index_+= 2; 532 } else { 533 CHECK_EQ(kBytesStackArgLocation, 8U); 534 stack_index_++; 535 } 536 if (kQuickDoubleRegAlignedFloatBackFilled) { 537 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 538 fpr_double_index_ += 2; 539 // Float should not overlap with double. 540 if (fpr_index_ % 2 == 0) { 541 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 542 } 543 } 544 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 545 IncFprIndex(); 546 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 547 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 548 IncFprIndex(); 549 } 550 } 551 } 552 } 553 break; 554 default: 555 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 556 } 557 } 558 } 559 560 protected: 561 const bool is_static_; 562 const char* const shorty_; 563 const uint32_t shorty_len_; 564 565 private: 566 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 567 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 568 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 569 uint32_t gpr_index_; // Index into spilled GPRs. 570 // Index into spilled FPRs. 571 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ 572 // holds a higher register number. 573 uint32_t fpr_index_; 574 // Index into spilled FPRs for aligned double. 575 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in 576 // terms of singles, may be behind fpr_index. 577 uint32_t fpr_double_index_; 578 uint32_t stack_index_; // Index into arguments on the stack. 579 // The current type of argument during VisitArguments. 580 Primitive::Type cur_type_; 581 // Does a 64bit parameter straddle the register and stack arguments? 582 bool is_split_long_or_double_; 583}; 584 585// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It 586// allows to use the QuickArgumentVisitor constants without moving all the code in its own module. 587extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp) 588 SHARED_REQUIRES(Locks::mutator_lock_) { 589 return QuickArgumentVisitor::GetProxyThisObject(sp); 590} 591 592// Visits arguments on the stack placing them into the shadow frame. 593class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 594 public: 595 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty, 596 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : 597 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 598 599 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 600 601 private: 602 ShadowFrame* const sf_; 603 uint32_t cur_reg_; 604 605 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 606}; 607 608void BuildQuickShadowFrameVisitor::Visit() { 609 Primitive::Type type = GetParamPrimitiveType(); 610 switch (type) { 611 case Primitive::kPrimLong: // Fall-through. 612 case Primitive::kPrimDouble: 613 if (IsSplitLongOrDouble()) { 614 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 615 } else { 616 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 617 } 618 ++cur_reg_; 619 break; 620 case Primitive::kPrimNot: { 621 StackReference<mirror::Object>* stack_ref = 622 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 623 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 624 } 625 break; 626 case Primitive::kPrimBoolean: // Fall-through. 627 case Primitive::kPrimByte: // Fall-through. 628 case Primitive::kPrimChar: // Fall-through. 629 case Primitive::kPrimShort: // Fall-through. 630 case Primitive::kPrimInt: // Fall-through. 631 case Primitive::kPrimFloat: 632 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 633 break; 634 case Primitive::kPrimVoid: 635 LOG(FATAL) << "UNREACHABLE"; 636 UNREACHABLE(); 637 } 638 ++cur_reg_; 639} 640 641extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp) 642 SHARED_REQUIRES(Locks::mutator_lock_) { 643 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 644 // frame. 645 ScopedQuickEntrypointChecks sqec(self); 646 647 if (method->IsAbstract()) { 648 ThrowAbstractMethodError(method); 649 return 0; 650 } else { 651 DCHECK(!method->IsNative()) << PrettyMethod(method); 652 const char* old_cause = self->StartAssertNoThreadSuspension( 653 "Building interpreter shadow frame"); 654 const DexFile::CodeItem* code_item = method->GetCodeItem(); 655 DCHECK(code_item != nullptr) << PrettyMethod(method); 656 uint16_t num_regs = code_item->registers_size_; 657 // No last shadow coming from quick. 658 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = 659 CREATE_SHADOW_FRAME(num_regs, nullptr, method, 0); 660 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); 661 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 662 uint32_t shorty_len = 0; 663 auto* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*)); 664 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 665 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 666 shadow_frame, first_arg_reg); 667 shadow_frame_builder.VisitArguments(); 668 const bool needs_initialization = 669 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); 670 // Push a transition back into managed code onto the linked list in thread. 671 ManagedStack fragment; 672 self->PushManagedStackFragment(&fragment); 673 self->PushShadowFrame(shadow_frame); 674 self->EndAssertNoThreadSuspension(old_cause); 675 676 if (needs_initialization) { 677 // Ensure static method's class is initialized. 678 StackHandleScope<1> hs(self); 679 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); 680 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 681 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod()); 682 self->PopManagedStackFragment(fragment); 683 return 0; 684 } 685 } 686 JValue result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); 687 // Pop transition. 688 self->PopManagedStackFragment(fragment); 689 690 // Request a stack deoptimization if needed 691 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 692 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) { 693 // Push the context of the deoptimization stack so we can restore the return value and the 694 // exception before executing the deoptimized frames. 695 self->PushDeoptimizationContext(result, shorty[0] == 'L', self->GetException()); 696 697 // Set special exception to cause deoptimization. 698 self->SetException(Thread::GetDeoptimizationException()); 699 } 700 701 // No need to restore the args since the method has already been run by the interpreter. 702 return result.GetJ(); 703 } 704} 705 706// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 707// to jobjects. 708class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 709 public: 710 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, 711 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 712 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 713 714 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 715 716 void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_); 717 718 private: 719 ScopedObjectAccessUnchecked* const soa_; 720 std::vector<jvalue>* const args_; 721 // References which we must update when exiting in case the GC moved the objects. 722 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 723 724 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 725}; 726 727void BuildQuickArgumentVisitor::Visit() { 728 jvalue val; 729 Primitive::Type type = GetParamPrimitiveType(); 730 switch (type) { 731 case Primitive::kPrimNot: { 732 StackReference<mirror::Object>* stack_ref = 733 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 734 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 735 references_.push_back(std::make_pair(val.l, stack_ref)); 736 break; 737 } 738 case Primitive::kPrimLong: // Fall-through. 739 case Primitive::kPrimDouble: 740 if (IsSplitLongOrDouble()) { 741 val.j = ReadSplitLongParam(); 742 } else { 743 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 744 } 745 break; 746 case Primitive::kPrimBoolean: // Fall-through. 747 case Primitive::kPrimByte: // Fall-through. 748 case Primitive::kPrimChar: // Fall-through. 749 case Primitive::kPrimShort: // Fall-through. 750 case Primitive::kPrimInt: // Fall-through. 751 case Primitive::kPrimFloat: 752 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 753 break; 754 case Primitive::kPrimVoid: 755 LOG(FATAL) << "UNREACHABLE"; 756 UNREACHABLE(); 757 } 758 args_->push_back(val); 759} 760 761void BuildQuickArgumentVisitor::FixupReferences() { 762 // Fixup any references which may have changed. 763 for (const auto& pair : references_) { 764 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 765 soa_->Env()->DeleteLocalRef(pair.first); 766 } 767} 768 769// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 770// which is responsible for recording callee save registers. We explicitly place into jobjects the 771// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 772// field within the proxy object, which will box the primitive arguments and deal with error cases. 773extern "C" uint64_t artQuickProxyInvokeHandler( 774 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp) 775 SHARED_REQUIRES(Locks::mutator_lock_) { 776 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 777 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 778 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 779 const char* old_cause = 780 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 781 // Register the top of the managed stack, making stack crawlable. 782 DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method); 783 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 784 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 785 << PrettyMethod(proxy_method); 786 self->VerifyStack(); 787 // Start new JNI local reference state. 788 JNIEnvExt* env = self->GetJniEnv(); 789 ScopedObjectAccessUnchecked soa(env); 790 ScopedJniEnvLocalRefState env_state(env); 791 // Create local ref. copies of proxy method and the receiver. 792 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 793 794 // Placing arguments into args vector and remove the receiver. 795 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*)); 796 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 797 << PrettyMethod(non_proxy_method); 798 std::vector<jvalue> args; 799 uint32_t shorty_len = 0; 800 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 801 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 802 803 local_ref_visitor.VisitArguments(); 804 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 805 args.erase(args.begin()); 806 807 // Convert proxy method into expected interface method. 808 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*)); 809 DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method); 810 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 811 self->EndAssertNoThreadSuspension(old_cause); 812 jobject interface_method_jobj = soa.AddLocalReference<jobject>( 813 mirror::Method::CreateFromArtMethod(soa.Self(), interface_method)); 814 815 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 816 // that performs allocations. 817 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 818 // Restore references which might have moved. 819 local_ref_visitor.FixupReferences(); 820 return result.GetJ(); 821} 822 823// Read object references held in arguments from quick frames and place in a JNI local references, 824// so they don't get garbage collected. 825class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 826 public: 827 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 828 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : 829 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 830 831 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 832 833 void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_); 834 835 private: 836 ScopedObjectAccessUnchecked* const soa_; 837 // References which we must update when exiting in case the GC moved the objects. 838 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 839 840 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 841}; 842 843void RememberForGcArgumentVisitor::Visit() { 844 if (IsParamAReference()) { 845 StackReference<mirror::Object>* stack_ref = 846 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 847 jobject reference = 848 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 849 references_.push_back(std::make_pair(reference, stack_ref)); 850 } 851} 852 853void RememberForGcArgumentVisitor::FixupReferences() { 854 // Fixup any references which may have changed. 855 for (const auto& pair : references_) { 856 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 857 soa_->Env()->DeleteLocalRef(pair.first); 858 } 859} 860 861// Lazily resolve a method for quick. Called by stub code. 862extern "C" const void* artQuickResolutionTrampoline( 863 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp) 864 SHARED_REQUIRES(Locks::mutator_lock_) { 865 // The resolution trampoline stashes the resolved method into the callee-save frame to transport 866 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely 867 // does not have the same stack layout as the callee-save method). 868 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); 869 // Start new JNI local reference state 870 JNIEnvExt* env = self->GetJniEnv(); 871 ScopedObjectAccessUnchecked soa(env); 872 ScopedJniEnvLocalRefState env_state(env); 873 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 874 875 // Compute details about the called method (avoid GCs) 876 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 877 InvokeType invoke_type; 878 MethodReference called_method(nullptr, 0); 879 const bool called_method_known_on_entry = !called->IsRuntimeMethod(); 880 ArtMethod* caller = nullptr; 881 if (!called_method_known_on_entry) { 882 caller = QuickArgumentVisitor::GetCallingMethod(sp); 883 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 884 const DexFile::CodeItem* code; 885 called_method.dex_file = caller->GetDexFile(); 886 code = caller->GetCodeItem(); 887 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 888 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 889 Instruction::Code instr_code = instr->Opcode(); 890 bool is_range; 891 switch (instr_code) { 892 case Instruction::INVOKE_DIRECT: 893 invoke_type = kDirect; 894 is_range = false; 895 break; 896 case Instruction::INVOKE_DIRECT_RANGE: 897 invoke_type = kDirect; 898 is_range = true; 899 break; 900 case Instruction::INVOKE_STATIC: 901 invoke_type = kStatic; 902 is_range = false; 903 break; 904 case Instruction::INVOKE_STATIC_RANGE: 905 invoke_type = kStatic; 906 is_range = true; 907 break; 908 case Instruction::INVOKE_SUPER: 909 invoke_type = kSuper; 910 is_range = false; 911 break; 912 case Instruction::INVOKE_SUPER_RANGE: 913 invoke_type = kSuper; 914 is_range = true; 915 break; 916 case Instruction::INVOKE_VIRTUAL: 917 invoke_type = kVirtual; 918 is_range = false; 919 break; 920 case Instruction::INVOKE_VIRTUAL_RANGE: 921 invoke_type = kVirtual; 922 is_range = true; 923 break; 924 case Instruction::INVOKE_INTERFACE: 925 invoke_type = kInterface; 926 is_range = false; 927 break; 928 case Instruction::INVOKE_INTERFACE_RANGE: 929 invoke_type = kInterface; 930 is_range = true; 931 break; 932 default: 933 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr); 934 UNREACHABLE(); 935 } 936 called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 937 } else { 938 invoke_type = kStatic; 939 called_method.dex_file = called->GetDexFile(); 940 called_method.dex_method_index = called->GetDexMethodIndex(); 941 } 942 uint32_t shorty_len; 943 const char* shorty = 944 called_method.dex_file->GetMethodShorty( 945 called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len); 946 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 947 visitor.VisitArguments(); 948 self->EndAssertNoThreadSuspension(old_cause); 949 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 950 // Resolve method filling in dex cache. 951 if (!called_method_known_on_entry) { 952 StackHandleScope<1> hs(self); 953 mirror::Object* dummy = nullptr; 954 HandleWrapper<mirror::Object> h_receiver( 955 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 956 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 957 called = linker->ResolveMethod(self, called_method.dex_method_index, caller, invoke_type); 958 } 959 const void* code = nullptr; 960 if (LIKELY(!self->IsExceptionPending())) { 961 // Incompatible class change should have been handled in resolve method. 962 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 963 << PrettyMethod(called) << " " << invoke_type; 964 if (virtual_or_interface) { 965 // Refine called method based on receiver. 966 CHECK(receiver != nullptr) << invoke_type; 967 968 ArtMethod* orig_called = called; 969 if (invoke_type == kVirtual) { 970 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*)); 971 } else { 972 called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*)); 973 } 974 975 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 976 << PrettyTypeOf(receiver) << " " 977 << invoke_type << " " << orig_called->GetVtableIndex(); 978 979 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 980 // of the sharpened method avoiding dirtying the dex cache if possible. 981 // Note, called_method.dex_method_index references the dex method before the 982 // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares 983 // about the name and signature. 984 uint32_t update_dex_cache_method_index = called->GetDexMethodIndex(); 985 if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) { 986 // Calling from one dex file to another, need to compute the method index appropriate to 987 // the caller's dex file. Since we get here only if the original called was a runtime 988 // method, we've got the correct dex_file and a dex_method_idx from above. 989 DCHECK(!called_method_known_on_entry); 990 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 991 const DexFile* caller_dex_file = called_method.dex_file; 992 uint32_t caller_method_name_and_sig_index = called_method.dex_method_index; 993 update_dex_cache_method_index = 994 called->FindDexMethodIndexInOtherDexFile(*caller_dex_file, 995 caller_method_name_and_sig_index); 996 } 997 if ((update_dex_cache_method_index != DexFile::kDexNoIndex) && 998 (caller->GetDexCacheResolvedMethod( 999 update_dex_cache_method_index, sizeof(void*)) != called)) { 1000 caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*)); 1001 } 1002 } else if (invoke_type == kStatic) { 1003 const auto called_dex_method_idx = called->GetDexMethodIndex(); 1004 // For static invokes, we may dispatch to the static method in the superclass but resolve 1005 // using the subclass. To prevent getting slow paths on each invoke, we force set the 1006 // resolved method for the super class dex method index if we are in the same dex file. 1007 // b/19175856 1008 if (called->GetDexFile() == called_method.dex_file && 1009 called_method.dex_method_index != called_dex_method_idx) { 1010 called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*)); 1011 } 1012 } 1013 1014 // Ensure that the called method's class is initialized. 1015 StackHandleScope<1> hs(soa.Self()); 1016 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 1017 linker->EnsureInitialized(soa.Self(), called_class, true, true); 1018 if (LIKELY(called_class->IsInitialized())) { 1019 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1020 // If we are single-stepping or the called method is deoptimized (by a 1021 // breakpoint, for example), then we have to execute the called method 1022 // with the interpreter. 1023 code = GetQuickToInterpreterBridge(); 1024 } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) { 1025 // If the caller is deoptimized (by a breakpoint, for example), we have to 1026 // continue its execution with interpreter when returning from the called 1027 // method. Because we do not want to execute the called method with the 1028 // interpreter, we wrap its execution into the instrumentation stubs. 1029 // When the called method returns, it will execute the instrumentation 1030 // exit hook that will determine the need of the interpreter with a call 1031 // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if 1032 // it is needed. 1033 code = GetQuickInstrumentationEntryPoint(); 1034 } else { 1035 code = called->GetEntryPointFromQuickCompiledCode(); 1036 } 1037 } else if (called_class->IsInitializing()) { 1038 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1039 // If we are single-stepping or the called method is deoptimized (by a 1040 // breakpoint, for example), then we have to execute the called method 1041 // with the interpreter. 1042 code = GetQuickToInterpreterBridge(); 1043 } else if (invoke_type == kStatic) { 1044 // Class is still initializing, go to oat and grab code (trampoline must be left in place 1045 // until class is initialized to stop races between threads). 1046 code = linker->GetQuickOatCodeFor(called); 1047 } else { 1048 // No trampoline for non-static methods. 1049 code = called->GetEntryPointFromQuickCompiledCode(); 1050 } 1051 } else { 1052 DCHECK(called_class->IsErroneous()); 1053 } 1054 } 1055 CHECK_EQ(code == nullptr, self->IsExceptionPending()); 1056 // Fixup any locally saved objects may have moved during a GC. 1057 visitor.FixupReferences(); 1058 // Place called method in callee-save frame to be placed as first argument to quick method. 1059 *sp = called; 1060 1061 return code; 1062} 1063 1064/* 1065 * This class uses a couple of observations to unite the different calling conventions through 1066 * a few constants. 1067 * 1068 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 1069 * possible alignment. 1070 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 1071 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 1072 * when we have to split things 1073 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 1074 * and we can use Int handling directly. 1075 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 1076 * necessary when widening. Also, widening of Ints will take place implicitly, and the 1077 * extension should be compatible with Aarch64, which mandates copying the available bits 1078 * into LSB and leaving the rest unspecified. 1079 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 1080 * the stack. 1081 * 6) There is only little endian. 1082 * 1083 * 1084 * Actual work is supposed to be done in a delegate of the template type. The interface is as 1085 * follows: 1086 * 1087 * void PushGpr(uintptr_t): Add a value for the next GPR 1088 * 1089 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 1090 * padding, that is, think the architecture is 32b and aligns 64b. 1091 * 1092 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 1093 * split this if necessary. The current state will have aligned, if 1094 * necessary. 1095 * 1096 * void PushStack(uintptr_t): Push a value to the stack. 1097 * 1098 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 1099 * as this might be important for null initialization. 1100 * Must return the jobject, that is, the reference to the 1101 * entry in the HandleScope (nullptr if necessary). 1102 * 1103 */ 1104template<class T> class BuildNativeCallFrameStateMachine { 1105 public: 1106#if defined(__arm__) 1107 // TODO: These are all dummy values! 1108 static constexpr bool kNativeSoftFloatAbi = true; 1109 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 1110 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1111 1112 static constexpr size_t kRegistersNeededForLong = 2; 1113 static constexpr size_t kRegistersNeededForDouble = 2; 1114 static constexpr bool kMultiRegistersAligned = true; 1115 static constexpr bool kMultiFPRegistersWidened = false; 1116 static constexpr bool kMultiGPRegistersWidened = false; 1117 static constexpr bool kAlignLongOnStack = true; 1118 static constexpr bool kAlignDoubleOnStack = true; 1119#elif defined(__aarch64__) 1120 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1121 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 1122 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1123 1124 static constexpr size_t kRegistersNeededForLong = 1; 1125 static constexpr size_t kRegistersNeededForDouble = 1; 1126 static constexpr bool kMultiRegistersAligned = false; 1127 static constexpr bool kMultiFPRegistersWidened = false; 1128 static constexpr bool kMultiGPRegistersWidened = false; 1129 static constexpr bool kAlignLongOnStack = false; 1130 static constexpr bool kAlignDoubleOnStack = false; 1131#elif defined(__mips__) && !defined(__LP64__) 1132 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 1133 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. 1134 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1135 1136 static constexpr size_t kRegistersNeededForLong = 2; 1137 static constexpr size_t kRegistersNeededForDouble = 2; 1138 static constexpr bool kMultiRegistersAligned = true; 1139 static constexpr bool kMultiFPRegistersWidened = true; 1140 static constexpr bool kMultiGPRegistersWidened = false; 1141 static constexpr bool kAlignLongOnStack = true; 1142 static constexpr bool kAlignDoubleOnStack = true; 1143#elif defined(__mips__) && defined(__LP64__) 1144 // Let the code prepare GPRs only and we will load the FPRs with same data. 1145 static constexpr bool kNativeSoftFloatAbi = true; 1146 static constexpr size_t kNumNativeGprArgs = 8; 1147 static constexpr size_t kNumNativeFprArgs = 0; 1148 1149 static constexpr size_t kRegistersNeededForLong = 1; 1150 static constexpr size_t kRegistersNeededForDouble = 1; 1151 static constexpr bool kMultiRegistersAligned = false; 1152 static constexpr bool kMultiFPRegistersWidened = false; 1153 static constexpr bool kMultiGPRegistersWidened = true; 1154 static constexpr bool kAlignLongOnStack = false; 1155 static constexpr bool kAlignDoubleOnStack = false; 1156#elif defined(__i386__) 1157 // TODO: Check these! 1158 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 1159 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 1160 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 1161 1162 static constexpr size_t kRegistersNeededForLong = 2; 1163 static constexpr size_t kRegistersNeededForDouble = 2; 1164 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 1165 static constexpr bool kMultiFPRegistersWidened = false; 1166 static constexpr bool kMultiGPRegistersWidened = false; 1167 static constexpr bool kAlignLongOnStack = false; 1168 static constexpr bool kAlignDoubleOnStack = false; 1169#elif defined(__x86_64__) 1170 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1171 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 1172 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1173 1174 static constexpr size_t kRegistersNeededForLong = 1; 1175 static constexpr size_t kRegistersNeededForDouble = 1; 1176 static constexpr bool kMultiRegistersAligned = false; 1177 static constexpr bool kMultiFPRegistersWidened = false; 1178 static constexpr bool kMultiGPRegistersWidened = false; 1179 static constexpr bool kAlignLongOnStack = false; 1180 static constexpr bool kAlignDoubleOnStack = false; 1181#else 1182#error "Unsupported architecture" 1183#endif 1184 1185 public: 1186 explicit BuildNativeCallFrameStateMachine(T* delegate) 1187 : gpr_index_(kNumNativeGprArgs), 1188 fpr_index_(kNumNativeFprArgs), 1189 stack_entries_(0), 1190 delegate_(delegate) { 1191 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 1192 // the next register is even; counting down is just to make the compiler happy... 1193 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); 1194 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); 1195 } 1196 1197 virtual ~BuildNativeCallFrameStateMachine() {} 1198 1199 bool HavePointerGpr() const { 1200 return gpr_index_ > 0; 1201 } 1202 1203 void AdvancePointer(const void* val) { 1204 if (HavePointerGpr()) { 1205 gpr_index_--; 1206 PushGpr(reinterpret_cast<uintptr_t>(val)); 1207 } else { 1208 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 1209 PushStack(reinterpret_cast<uintptr_t>(val)); 1210 gpr_index_ = 0; 1211 } 1212 } 1213 1214 bool HaveHandleScopeGpr() const { 1215 return gpr_index_ > 0; 1216 } 1217 1218 void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) { 1219 uintptr_t handle = PushHandle(ptr); 1220 if (HaveHandleScopeGpr()) { 1221 gpr_index_--; 1222 PushGpr(handle); 1223 } else { 1224 stack_entries_++; 1225 PushStack(handle); 1226 gpr_index_ = 0; 1227 } 1228 } 1229 1230 bool HaveIntGpr() const { 1231 return gpr_index_ > 0; 1232 } 1233 1234 void AdvanceInt(uint32_t val) { 1235 if (HaveIntGpr()) { 1236 gpr_index_--; 1237 if (kMultiGPRegistersWidened) { 1238 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1239 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1240 } else { 1241 PushGpr(val); 1242 } 1243 } else { 1244 stack_entries_++; 1245 if (kMultiGPRegistersWidened) { 1246 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1247 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1248 } else { 1249 PushStack(val); 1250 } 1251 gpr_index_ = 0; 1252 } 1253 } 1254 1255 bool HaveLongGpr() const { 1256 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1257 } 1258 1259 bool LongGprNeedsPadding() const { 1260 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1261 kAlignLongOnStack && // and when it needs alignment 1262 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1263 } 1264 1265 bool LongStackNeedsPadding() const { 1266 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1267 kAlignLongOnStack && // and when it needs 8B alignment 1268 (stack_entries_ & 1) == 1; // counter is odd 1269 } 1270 1271 void AdvanceLong(uint64_t val) { 1272 if (HaveLongGpr()) { 1273 if (LongGprNeedsPadding()) { 1274 PushGpr(0); 1275 gpr_index_--; 1276 } 1277 if (kRegistersNeededForLong == 1) { 1278 PushGpr(static_cast<uintptr_t>(val)); 1279 } else { 1280 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1281 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1282 } 1283 gpr_index_ -= kRegistersNeededForLong; 1284 } else { 1285 if (LongStackNeedsPadding()) { 1286 PushStack(0); 1287 stack_entries_++; 1288 } 1289 if (kRegistersNeededForLong == 1) { 1290 PushStack(static_cast<uintptr_t>(val)); 1291 stack_entries_++; 1292 } else { 1293 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1294 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1295 stack_entries_ += 2; 1296 } 1297 gpr_index_ = 0; 1298 } 1299 } 1300 1301 bool HaveFloatFpr() const { 1302 return fpr_index_ > 0; 1303 } 1304 1305 void AdvanceFloat(float val) { 1306 if (kNativeSoftFloatAbi) { 1307 AdvanceInt(bit_cast<uint32_t, float>(val)); 1308 } else { 1309 if (HaveFloatFpr()) { 1310 fpr_index_--; 1311 if (kRegistersNeededForDouble == 1) { 1312 if (kMultiFPRegistersWidened) { 1313 PushFpr8(bit_cast<uint64_t, double>(val)); 1314 } else { 1315 // No widening, just use the bits. 1316 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val))); 1317 } 1318 } else { 1319 PushFpr4(val); 1320 } 1321 } else { 1322 stack_entries_++; 1323 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { 1324 // Need to widen before storing: Note the "double" in the template instantiation. 1325 // Note: We need to jump through those hoops to make the compiler happy. 1326 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1327 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val))); 1328 } else { 1329 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val))); 1330 } 1331 fpr_index_ = 0; 1332 } 1333 } 1334 } 1335 1336 bool HaveDoubleFpr() const { 1337 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1338 } 1339 1340 bool DoubleFprNeedsPadding() const { 1341 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1342 kAlignDoubleOnStack && // and when it needs alignment 1343 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1344 } 1345 1346 bool DoubleStackNeedsPadding() const { 1347 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1348 kAlignDoubleOnStack && // and when it needs 8B alignment 1349 (stack_entries_ & 1) == 1; // counter is odd 1350 } 1351 1352 void AdvanceDouble(uint64_t val) { 1353 if (kNativeSoftFloatAbi) { 1354 AdvanceLong(val); 1355 } else { 1356 if (HaveDoubleFpr()) { 1357 if (DoubleFprNeedsPadding()) { 1358 PushFpr4(0); 1359 fpr_index_--; 1360 } 1361 PushFpr8(val); 1362 fpr_index_ -= kRegistersNeededForDouble; 1363 } else { 1364 if (DoubleStackNeedsPadding()) { 1365 PushStack(0); 1366 stack_entries_++; 1367 } 1368 if (kRegistersNeededForDouble == 1) { 1369 PushStack(static_cast<uintptr_t>(val)); 1370 stack_entries_++; 1371 } else { 1372 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1373 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1374 stack_entries_ += 2; 1375 } 1376 fpr_index_ = 0; 1377 } 1378 } 1379 } 1380 1381 uint32_t GetStackEntries() const { 1382 return stack_entries_; 1383 } 1384 1385 uint32_t GetNumberOfUsedGprs() const { 1386 return kNumNativeGprArgs - gpr_index_; 1387 } 1388 1389 uint32_t GetNumberOfUsedFprs() const { 1390 return kNumNativeFprArgs - fpr_index_; 1391 } 1392 1393 private: 1394 void PushGpr(uintptr_t val) { 1395 delegate_->PushGpr(val); 1396 } 1397 void PushFpr4(float val) { 1398 delegate_->PushFpr4(val); 1399 } 1400 void PushFpr8(uint64_t val) { 1401 delegate_->PushFpr8(val); 1402 } 1403 void PushStack(uintptr_t val) { 1404 delegate_->PushStack(val); 1405 } 1406 uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) { 1407 return delegate_->PushHandle(ref); 1408 } 1409 1410 uint32_t gpr_index_; // Number of free GPRs 1411 uint32_t fpr_index_; // Number of free FPRs 1412 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1413 // extended 1414 T* const delegate_; // What Push implementation gets called 1415}; 1416 1417// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1418// in subclasses. 1419// 1420// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1421// them with handles. 1422class ComputeNativeCallFrameSize { 1423 public: 1424 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1425 1426 virtual ~ComputeNativeCallFrameSize() {} 1427 1428 uint32_t GetStackSize() const { 1429 return num_stack_entries_ * sizeof(uintptr_t); 1430 } 1431 1432 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1433 sp8 -= GetStackSize(); 1434 // Align by kStackAlignment. 1435 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1436 return sp8; 1437 } 1438 1439 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1440 const { 1441 // Assumption is OK right now, as we have soft-float arm 1442 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1443 sp8 -= fregs * sizeof(uintptr_t); 1444 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1445 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1446 sp8 -= iregs * sizeof(uintptr_t); 1447 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1448 return sp8; 1449 } 1450 1451 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1452 uint32_t** start_fpr) const { 1453 // Native call stack. 1454 sp8 = LayoutCallStack(sp8); 1455 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1456 1457 // Put fprs and gprs below. 1458 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1459 1460 // Return the new bottom. 1461 return sp8; 1462 } 1463 1464 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1465 SHARED_REQUIRES(Locks::mutator_lock_) { 1466 UNUSED(sm); 1467 } 1468 1469 void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) { 1470 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1471 1472 WalkHeader(&sm); 1473 1474 for (uint32_t i = 1; i < shorty_len; ++i) { 1475 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1476 switch (cur_type_) { 1477 case Primitive::kPrimNot: 1478 // TODO: fix abuse of mirror types. 1479 sm.AdvanceHandleScope( 1480 reinterpret_cast<mirror::Object*>(0x12345678)); 1481 break; 1482 1483 case Primitive::kPrimBoolean: 1484 case Primitive::kPrimByte: 1485 case Primitive::kPrimChar: 1486 case Primitive::kPrimShort: 1487 case Primitive::kPrimInt: 1488 sm.AdvanceInt(0); 1489 break; 1490 case Primitive::kPrimFloat: 1491 sm.AdvanceFloat(0); 1492 break; 1493 case Primitive::kPrimDouble: 1494 sm.AdvanceDouble(0); 1495 break; 1496 case Primitive::kPrimLong: 1497 sm.AdvanceLong(0); 1498 break; 1499 default: 1500 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1501 UNREACHABLE(); 1502 } 1503 } 1504 1505 num_stack_entries_ = sm.GetStackEntries(); 1506 } 1507 1508 void PushGpr(uintptr_t /* val */) { 1509 // not optimizing registers, yet 1510 } 1511 1512 void PushFpr4(float /* val */) { 1513 // not optimizing registers, yet 1514 } 1515 1516 void PushFpr8(uint64_t /* val */) { 1517 // not optimizing registers, yet 1518 } 1519 1520 void PushStack(uintptr_t /* val */) { 1521 // counting is already done in the superclass 1522 } 1523 1524 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1525 return reinterpret_cast<uintptr_t>(nullptr); 1526 } 1527 1528 protected: 1529 uint32_t num_stack_entries_; 1530}; 1531 1532class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1533 public: 1534 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1535 1536 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1537 // is at *m = sp. Will update to point to the bottom of the save frame. 1538 // 1539 // Note: assumes ComputeAll() has been run before. 1540 void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1541 SHARED_REQUIRES(Locks::mutator_lock_) { 1542 ArtMethod* method = **m; 1543 1544 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*)); 1545 1546 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1547 1548 // First, fix up the layout of the callee-save frame. 1549 // We have to squeeze in the HandleScope, and relocate the method pointer. 1550 1551 // "Free" the slot for the method. 1552 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1553 1554 // Under the callee saves put handle scope and new method stack reference. 1555 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1556 size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*); 1557 1558 sp8 -= scope_and_method; 1559 // Align by kStackAlignment. 1560 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1561 1562 uint8_t* sp8_table = sp8 + sizeof(ArtMethod*); 1563 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1564 num_handle_scope_references_); 1565 1566 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1567 uint8_t* method_pointer = sp8; 1568 auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer); 1569 *new_method_ref = method; 1570 *m = new_method_ref; 1571 } 1572 1573 // Adds space for the cookie. Note: may leave stack unaligned. 1574 void LayoutCookie(uint8_t** sp) const { 1575 // Reference cookie and padding 1576 *sp -= 8; 1577 } 1578 1579 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1580 // Returns the new bottom. Note: this may be unaligned. 1581 uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1582 SHARED_REQUIRES(Locks::mutator_lock_) { 1583 // First, fix up the layout of the callee-save frame. 1584 // We have to squeeze in the HandleScope, and relocate the method pointer. 1585 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1586 1587 // The bottom of the callee-save frame is now where the method is, *m. 1588 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1589 1590 // Add space for cookie. 1591 LayoutCookie(&sp8); 1592 1593 return sp8; 1594 } 1595 1596 // WARNING: After this, *sp won't be pointing to the method anymore! 1597 uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len, 1598 HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr, 1599 uint32_t** start_fpr) 1600 SHARED_REQUIRES(Locks::mutator_lock_) { 1601 Walk(shorty, shorty_len); 1602 1603 // JNI part. 1604 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1605 1606 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1607 1608 // Return the new bottom. 1609 return sp8; 1610 } 1611 1612 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1613 1614 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1615 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1616 SHARED_REQUIRES(Locks::mutator_lock_); 1617 1618 private: 1619 uint32_t num_handle_scope_references_; 1620}; 1621 1622uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1623 num_handle_scope_references_++; 1624 return reinterpret_cast<uintptr_t>(nullptr); 1625} 1626 1627void ComputeGenericJniFrameSize::WalkHeader( 1628 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1629 // JNIEnv 1630 sm->AdvancePointer(nullptr); 1631 1632 // Class object or this as first argument 1633 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1634} 1635 1636// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1637// the template requirements of BuildGenericJniFrameStateMachine. 1638class FillNativeCall { 1639 public: 1640 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1641 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1642 1643 virtual ~FillNativeCall() {} 1644 1645 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1646 cur_gpr_reg_ = gpr_regs; 1647 cur_fpr_reg_ = fpr_regs; 1648 cur_stack_arg_ = stack_args; 1649 } 1650 1651 void PushGpr(uintptr_t val) { 1652 *cur_gpr_reg_ = val; 1653 cur_gpr_reg_++; 1654 } 1655 1656 void PushFpr4(float val) { 1657 *cur_fpr_reg_ = val; 1658 cur_fpr_reg_++; 1659 } 1660 1661 void PushFpr8(uint64_t val) { 1662 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1663 *tmp = val; 1664 cur_fpr_reg_ += 2; 1665 } 1666 1667 void PushStack(uintptr_t val) { 1668 *cur_stack_arg_ = val; 1669 cur_stack_arg_++; 1670 } 1671 1672 virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) { 1673 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1674 UNREACHABLE(); 1675 } 1676 1677 private: 1678 uintptr_t* cur_gpr_reg_; 1679 uint32_t* cur_fpr_reg_; 1680 uintptr_t* cur_stack_arg_; 1681}; 1682 1683// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1684// of transitioning into native code. 1685class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1686 public: 1687 BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len, 1688 ArtMethod*** sp) 1689 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1690 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1691 ComputeGenericJniFrameSize fsc; 1692 uintptr_t* start_gpr_reg; 1693 uint32_t* start_fpr_reg; 1694 uintptr_t* start_stack_arg; 1695 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, 1696 &handle_scope_, 1697 &start_stack_arg, 1698 &start_gpr_reg, &start_fpr_reg); 1699 1700 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1701 1702 // jni environment is always first argument 1703 sm_.AdvancePointer(self->GetJniEnv()); 1704 1705 if (is_static) { 1706 sm_.AdvanceHandleScope((**sp)->GetDeclaringClass()); 1707 } 1708 } 1709 1710 void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE; 1711 1712 void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_); 1713 1714 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1715 SHARED_REQUIRES(Locks::mutator_lock_) { 1716 return handle_scope_->GetHandle(0).GetReference(); 1717 } 1718 1719 jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) { 1720 return handle_scope_->GetHandle(0).ToJObject(); 1721 } 1722 1723 void* GetBottomOfUsedArea() const { 1724 return bottom_of_used_area_; 1725 } 1726 1727 private: 1728 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1729 class FillJniCall FINAL : public FillNativeCall { 1730 public: 1731 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1732 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1733 handle_scope_(handle_scope), cur_entry_(0) {} 1734 1735 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_); 1736 1737 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1738 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1739 handle_scope_ = scope; 1740 cur_entry_ = 0U; 1741 } 1742 1743 void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) { 1744 // Initialize padding entries. 1745 size_t expected_slots = handle_scope_->NumberOfReferences(); 1746 while (cur_entry_ < expected_slots) { 1747 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1748 } 1749 DCHECK_NE(cur_entry_, 0U); 1750 } 1751 1752 private: 1753 HandleScope* handle_scope_; 1754 size_t cur_entry_; 1755 }; 1756 1757 HandleScope* handle_scope_; 1758 FillJniCall jni_call_; 1759 void* bottom_of_used_area_; 1760 1761 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1762 1763 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1764}; 1765 1766uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1767 uintptr_t tmp; 1768 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1769 h.Assign(ref); 1770 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1771 cur_entry_++; 1772 return tmp; 1773} 1774 1775void BuildGenericJniFrameVisitor::Visit() { 1776 Primitive::Type type = GetParamPrimitiveType(); 1777 switch (type) { 1778 case Primitive::kPrimLong: { 1779 jlong long_arg; 1780 if (IsSplitLongOrDouble()) { 1781 long_arg = ReadSplitLongParam(); 1782 } else { 1783 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1784 } 1785 sm_.AdvanceLong(long_arg); 1786 break; 1787 } 1788 case Primitive::kPrimDouble: { 1789 uint64_t double_arg; 1790 if (IsSplitLongOrDouble()) { 1791 // Read into union so that we don't case to a double. 1792 double_arg = ReadSplitLongParam(); 1793 } else { 1794 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1795 } 1796 sm_.AdvanceDouble(double_arg); 1797 break; 1798 } 1799 case Primitive::kPrimNot: { 1800 StackReference<mirror::Object>* stack_ref = 1801 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1802 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1803 break; 1804 } 1805 case Primitive::kPrimFloat: 1806 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1807 break; 1808 case Primitive::kPrimBoolean: // Fall-through. 1809 case Primitive::kPrimByte: // Fall-through. 1810 case Primitive::kPrimChar: // Fall-through. 1811 case Primitive::kPrimShort: // Fall-through. 1812 case Primitive::kPrimInt: // Fall-through. 1813 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1814 break; 1815 case Primitive::kPrimVoid: 1816 LOG(FATAL) << "UNREACHABLE"; 1817 UNREACHABLE(); 1818 } 1819} 1820 1821void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1822 // Clear out rest of the scope. 1823 jni_call_.ResetRemainingScopeSlots(); 1824 // Install HandleScope. 1825 self->PushHandleScope(handle_scope_); 1826} 1827 1828#if defined(__arm__) || defined(__aarch64__) 1829extern "C" void* artFindNativeMethod(); 1830#else 1831extern "C" void* artFindNativeMethod(Thread* self); 1832#endif 1833 1834uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1835 if (lock != nullptr) { 1836 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1837 } else { 1838 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1839 } 1840} 1841 1842void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1843 if (lock != nullptr) { 1844 JniMethodEndSynchronized(cookie, lock, self); 1845 } else { 1846 JniMethodEnd(cookie, self); 1847 } 1848} 1849 1850/* 1851 * Initializes an alloca region assumed to be directly below sp for a native call: 1852 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1853 * The final element on the stack is a pointer to the native code. 1854 * 1855 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1856 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1857 * 1858 * The return of this function denotes: 1859 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1860 * 2) An error, if the value is negative. 1861 */ 1862extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp) 1863 SHARED_REQUIRES(Locks::mutator_lock_) { 1864 ArtMethod* called = *sp; 1865 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1866 uint32_t shorty_len = 0; 1867 const char* shorty = called->GetShorty(&shorty_len); 1868 1869 // Run the visitor and update sp. 1870 BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp); 1871 visitor.VisitArguments(); 1872 visitor.FinalizeHandleScope(self); 1873 1874 // Fix up managed-stack things in Thread. 1875 self->SetTopOfStack(sp); 1876 1877 self->VerifyStack(); 1878 1879 // Start JNI, save the cookie. 1880 uint32_t cookie; 1881 if (called->IsSynchronized()) { 1882 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1883 if (self->IsExceptionPending()) { 1884 self->PopHandleScope(); 1885 // A negative value denotes an error. 1886 return GetTwoWordFailureValue(); 1887 } 1888 } else { 1889 cookie = JniMethodStart(self); 1890 } 1891 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1892 *(sp32 - 1) = cookie; 1893 1894 // Retrieve the stored native code. 1895 void* nativeCode = called->GetEntryPointFromJni(); 1896 1897 // There are two cases for the content of nativeCode: 1898 // 1) Pointer to the native function. 1899 // 2) Pointer to the trampoline for native code binding. 1900 // In the second case, we need to execute the binding and continue with the actual native function 1901 // pointer. 1902 DCHECK(nativeCode != nullptr); 1903 if (nativeCode == GetJniDlsymLookupStub()) { 1904#if defined(__arm__) || defined(__aarch64__) 1905 nativeCode = artFindNativeMethod(); 1906#else 1907 nativeCode = artFindNativeMethod(self); 1908#endif 1909 1910 if (nativeCode == nullptr) { 1911 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1912 1913 // End JNI, as the assembly will move to deliver the exception. 1914 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1915 if (shorty[0] == 'L') { 1916 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1917 } else { 1918 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1919 } 1920 1921 return GetTwoWordFailureValue(); 1922 } 1923 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1924 } 1925 1926 // Return native code addr(lo) and bottom of alloca address(hi). 1927 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1928 reinterpret_cast<uintptr_t>(nativeCode)); 1929} 1930 1931/* 1932 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1933 * unlocking. 1934 */ 1935extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1936 SHARED_REQUIRES(Locks::mutator_lock_) { 1937 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); 1938 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1939 ArtMethod* called = *sp; 1940 uint32_t cookie = *(sp32 - 1); 1941 1942 jobject lock = nullptr; 1943 if (called->IsSynchronized()) { 1944 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1945 + sizeof(*sp)); 1946 lock = table->GetHandle(0).ToJObject(); 1947 } 1948 1949 char return_shorty_char = called->GetShorty()[0]; 1950 1951 if (return_shorty_char == 'L') { 1952 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1953 } else { 1954 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1955 1956 switch (return_shorty_char) { 1957 case 'F': { 1958 if (kRuntimeISA == kX86) { 1959 // Convert back the result to float. 1960 double d = bit_cast<double, uint64_t>(result_f); 1961 return bit_cast<uint32_t, float>(static_cast<float>(d)); 1962 } else { 1963 return result_f; 1964 } 1965 } 1966 case 'D': 1967 return result_f; 1968 case 'Z': 1969 return result.z; 1970 case 'B': 1971 return result.b; 1972 case 'C': 1973 return result.c; 1974 case 'S': 1975 return result.s; 1976 case 'I': 1977 return result.i; 1978 case 'J': 1979 return result.j; 1980 case 'V': 1981 return 0; 1982 default: 1983 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1984 return 0; 1985 } 1986 } 1987} 1988 1989// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1990// for the method pointer. 1991// 1992// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1993// to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations). 1994 1995template<InvokeType type, bool access_check> 1996static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self, 1997 ArtMethod** sp) { 1998 ScopedQuickEntrypointChecks sqec(self); 1999 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); 2000 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); 2001 ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type); 2002 if (UNLIKELY(method == nullptr)) { 2003 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 2004 uint32_t shorty_len; 2005 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 2006 { 2007 // Remember the args in case a GC happens in FindMethodFromCode. 2008 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2009 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 2010 visitor.VisitArguments(); 2011 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method, 2012 self); 2013 visitor.FixupReferences(); 2014 } 2015 2016 if (UNLIKELY(method == nullptr)) { 2017 CHECK(self->IsExceptionPending()); 2018 return GetTwoWordFailureValue(); // Failure. 2019 } 2020 } 2021 DCHECK(!self->IsExceptionPending()); 2022 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2023 2024 // When we return, the caller will branch to this address, so it had better not be 0! 2025 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 2026 << " location: " 2027 << method->GetDexFile()->GetLocation(); 2028 2029 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2030 reinterpret_cast<uintptr_t>(method)); 2031} 2032 2033// Explicit artInvokeCommon template function declarations to please analysis tool. 2034#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 2035 template SHARED_REQUIRES(Locks::mutator_lock_) \ 2036 TwoWordReturn artInvokeCommon<type, access_check>( \ 2037 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2038 2039EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 2040EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 2041EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 2042EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 2043EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 2044EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 2045EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 2046EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 2047EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 2048EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 2049#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 2050 2051// See comments in runtime_support_asm.S 2052extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 2053 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2054 SHARED_REQUIRES(Locks::mutator_lock_) { 2055 return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp); 2056} 2057 2058extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 2059 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2060 SHARED_REQUIRES(Locks::mutator_lock_) { 2061 return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp); 2062} 2063 2064extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 2065 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2066 SHARED_REQUIRES(Locks::mutator_lock_) { 2067 return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp); 2068} 2069 2070extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 2071 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2072 SHARED_REQUIRES(Locks::mutator_lock_) { 2073 return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp); 2074} 2075 2076extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 2077 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2078 SHARED_REQUIRES(Locks::mutator_lock_) { 2079 return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp); 2080} 2081 2082// Determine target of interface dispatch. This object is known non-null. 2083extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t dex_method_idx, 2084 mirror::Object* this_object, 2085 Thread* self, ArtMethod** sp) 2086 SHARED_REQUIRES(Locks::mutator_lock_) { 2087 ScopedQuickEntrypointChecks sqec(self); 2088 // The optimizing compiler currently does not inline methods that have an interface 2089 // invocation. We use the outer method directly to avoid fetching a stack map, which is 2090 // more expensive. 2091 ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp); 2092 DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp)); 2093 ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod( 2094 dex_method_idx, sizeof(void*)); 2095 DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method); 2096 ArtMethod* method; 2097 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 2098 method = this_object->GetClass()->FindVirtualMethodForInterface( 2099 interface_method, sizeof(void*)); 2100 if (UNLIKELY(method == nullptr)) { 2101 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( 2102 interface_method, this_object, caller_method); 2103 return GetTwoWordFailureValue(); // Failure. 2104 } 2105 } else { 2106 DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod()); 2107 if (kIsDebugBuild) { 2108 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 2109 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 2110 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 2111 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 2112 Instruction::Code instr_code = instr->Opcode(); 2113 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 2114 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 2115 << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr); 2116 if (instr_code == Instruction::INVOKE_INTERFACE) { 2117 CHECK_EQ(dex_method_idx, instr->VRegB_35c()); 2118 } else { 2119 CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 2120 CHECK_EQ(dex_method_idx, instr->VRegB_3rc()); 2121 } 2122 } 2123 2124 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 2125 ->GetDexFile(); 2126 uint32_t shorty_len; 2127 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 2128 &shorty_len); 2129 { 2130 // Remember the args in case a GC happens in FindMethodFromCode. 2131 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2132 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 2133 visitor.VisitArguments(); 2134 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method, 2135 self); 2136 visitor.FixupReferences(); 2137 } 2138 2139 if (UNLIKELY(method == nullptr)) { 2140 CHECK(self->IsExceptionPending()); 2141 return GetTwoWordFailureValue(); // Failure. 2142 } 2143 } 2144 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2145 2146 // When we return, the caller will branch to this address, so it had better not be 0! 2147 DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method) 2148 << " location: " << method->GetDexFile()->GetLocation(); 2149 2150 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2151 reinterpret_cast<uintptr_t>(method)); 2152} 2153 2154} // namespace art 2155