quick_trampoline_entrypoints.cc revision d776ff08e07494327716f0d2ea1a774b2ebfbca9
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "art_method-inl.h" 18#include "base/enums.h" 19#include "callee_save_frame.h" 20#include "common_throws.h" 21#include "dex_file-inl.h" 22#include "dex_instruction-inl.h" 23#include "entrypoints/entrypoint_utils-inl.h" 24#include "entrypoints/runtime_asm_entrypoints.h" 25#include "gc/accounting/card_table-inl.h" 26#include "imt_conflict_table.h" 27#include "imtable-inl.h" 28#include "interpreter/interpreter.h" 29#include "linear_alloc.h" 30#include "method_handles.h" 31#include "method_reference.h" 32#include "mirror/class-inl.h" 33#include "mirror/dex_cache-inl.h" 34#include "mirror/method.h" 35#include "mirror/method_handle_impl.h" 36#include "mirror/object-inl.h" 37#include "mirror/object_array-inl.h" 38#include "oat_quick_method_header.h" 39#include "quick_exception_handler.h" 40#include "runtime.h" 41#include "scoped_thread_state_change-inl.h" 42#include "stack.h" 43#include "debugger.h" 44#include "well_known_classes.h" 45 46namespace art { 47 48// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 49class QuickArgumentVisitor { 50 // Number of bytes for each out register in the caller method's frame. 51 static constexpr size_t kBytesStackArgLocation = 4; 52 // Frame size in bytes of a callee-save frame for RefsAndArgs. 53 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 54 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); 55#if defined(__arm__) 56 // The callee save frame is pointed to by SP. 57 // | argN | | 58 // | ... | | 59 // | arg4 | | 60 // | arg3 spill | | Caller's frame 61 // | arg2 spill | | 62 // | arg1 spill | | 63 // | Method* | --- 64 // | LR | 65 // | ... | 4x6 bytes callee saves 66 // | R3 | 67 // | R2 | 68 // | R1 | 69 // | S15 | 70 // | : | 71 // | S0 | 72 // | | 4x2 bytes padding 73 // | Method* | <- sp 74 static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat; 75 static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat; 76 static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat; 77 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat; 78 static constexpr bool kQuickSkipOddFpRegisters = false; 79 static constexpr size_t kNumQuickGprArgs = 3; 80 static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16; 81 static constexpr bool kGprFprLockstep = false; 82 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 83 arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg. 84 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 85 arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg. 86 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 87 arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address. 88 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 89 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 90 } 91#elif defined(__aarch64__) 92 // The callee save frame is pointed to by SP. 93 // | argN | | 94 // | ... | | 95 // | arg4 | | 96 // | arg3 spill | | Caller's frame 97 // | arg2 spill | | 98 // | arg1 spill | | 99 // | Method* | --- 100 // | LR | 101 // | X29 | 102 // | : | 103 // | X20 | 104 // | X7 | 105 // | : | 106 // | X1 | 107 // | D7 | 108 // | : | 109 // | D0 | 110 // | | padding 111 // | Method* | <- sp 112 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 113 static constexpr bool kAlignPairRegister = false; 114 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 115 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 116 static constexpr bool kQuickSkipOddFpRegisters = false; 117 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 118 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 119 static constexpr bool kGprFprLockstep = false; 120 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 121 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first FPR arg. 122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 123 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs); // Offset of first GPR arg. 124 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 125 arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs); // Offset of return address. 126 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 127 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 128 } 129#elif defined(__mips__) && !defined(__LP64__) 130 // The callee save frame is pointed to by SP. 131 // | argN | | 132 // | ... | | 133 // | arg4 | | 134 // | arg3 spill | | Caller's frame 135 // | arg2 spill | | 136 // | arg1 spill | | 137 // | Method* | --- 138 // | RA | 139 // | ... | callee saves 140 // | T1 | arg5 141 // | T0 | arg4 142 // | A3 | arg3 143 // | A2 | arg2 144 // | A1 | arg1 145 // | F19 | 146 // | F18 | f_arg5 147 // | F17 | 148 // | F16 | f_arg4 149 // | F15 | 150 // | F14 | f_arg3 151 // | F13 | 152 // | F12 | f_arg2 153 // | F11 | 154 // | F10 | f_arg1 155 // | F9 | 156 // | F8 | f_arg0 157 // | | padding 158 // | A0/Method* | <- sp 159 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 160 static constexpr bool kAlignPairRegister = true; 161 static constexpr bool kQuickSoftFloatAbi = false; 162 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 163 static constexpr bool kQuickSkipOddFpRegisters = true; 164 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 165 static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be 166 // passed only in even numbered registers and each 167 // double occupies two registers. 168 static constexpr bool kGprFprLockstep = false; 169 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg. 170 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg. 171 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address. 172 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 173 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 174 } 175#elif defined(__mips__) && defined(__LP64__) 176 // The callee save frame is pointed to by SP. 177 // | argN | | 178 // | ... | | 179 // | arg4 | | 180 // | arg3 spill | | Caller's frame 181 // | arg2 spill | | 182 // | arg1 spill | | 183 // | Method* | --- 184 // | RA | 185 // | ... | callee saves 186 // | A7 | arg7 187 // | A6 | arg6 188 // | A5 | arg5 189 // | A4 | arg4 190 // | A3 | arg3 191 // | A2 | arg2 192 // | A1 | arg1 193 // | F19 | f_arg7 194 // | F18 | f_arg6 195 // | F17 | f_arg5 196 // | F16 | f_arg4 197 // | F15 | f_arg3 198 // | F14 | f_arg2 199 // | F13 | f_arg1 200 // | F12 | f_arg0 201 // | | padding 202 // | A0/Method* | <- sp 203 // NOTE: for Mip64, when A0 is skipped, F12 is also skipped. 204 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 205 static constexpr bool kAlignPairRegister = false; 206 static constexpr bool kQuickSoftFloatAbi = false; 207 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 208 static constexpr bool kQuickSkipOddFpRegisters = false; 209 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 210 static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. 211 static constexpr bool kGprFprLockstep = true; 212 213 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13). 214 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). 215 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. 216 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 217 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 218 } 219#elif defined(__i386__) 220 // The callee save frame is pointed to by SP. 221 // | argN | | 222 // | ... | | 223 // | arg4 | | 224 // | arg3 spill | | Caller's frame 225 // | arg2 spill | | 226 // | arg1 spill | | 227 // | Method* | --- 228 // | Return | 229 // | EBP,ESI,EDI | callee saves 230 // | EBX | arg3 231 // | EDX | arg2 232 // | ECX | arg1 233 // | XMM3 | float arg 4 234 // | XMM2 | float arg 3 235 // | XMM1 | float arg 2 236 // | XMM0 | float arg 1 237 // | EAX/Method* | <- sp 238 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 239 static constexpr bool kAlignPairRegister = false; 240 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 241 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 242 static constexpr bool kQuickSkipOddFpRegisters = false; 243 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 244 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. 245 static constexpr bool kGprFprLockstep = false; 246 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. 247 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. 248 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. 249 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 250 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 251 } 252#elif defined(__x86_64__) 253 // The callee save frame is pointed to by SP. 254 // | argN | | 255 // | ... | | 256 // | reg. arg spills | | Caller's frame 257 // | Method* | --- 258 // | Return | 259 // | R15 | callee save 260 // | R14 | callee save 261 // | R13 | callee save 262 // | R12 | callee save 263 // | R9 | arg5 264 // | R8 | arg4 265 // | RSI/R6 | arg1 266 // | RBP/R5 | callee save 267 // | RBX/R3 | callee save 268 // | RDX/R2 | arg2 269 // | RCX/R1 | arg3 270 // | XMM7 | float arg 8 271 // | XMM6 | float arg 7 272 // | XMM5 | float arg 6 273 // | XMM4 | float arg 5 274 // | XMM3 | float arg 4 275 // | XMM2 | float arg 3 276 // | XMM1 | float arg 2 277 // | XMM0 | float arg 1 278 // | Padding | 279 // | RDI/Method* | <- sp 280 static constexpr bool kSplitPairAcrossRegisterAndStack = false; 281 static constexpr bool kAlignPairRegister = false; 282 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 283 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; 284 static constexpr bool kQuickSkipOddFpRegisters = false; 285 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 286 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 287 static constexpr bool kGprFprLockstep = false; 288 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 289 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 290 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 291 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 292 switch (gpr_index) { 293 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 294 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 295 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 296 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 297 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 298 default: 299 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 300 return 0; 301 } 302 } 303#else 304#error "Unsupported architecture" 305#endif 306 307 public: 308 // Special handling for proxy methods. Proxy methods are instance methods so the 309 // 'this' object is the 1st argument. They also have the same frame layout as the 310 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the 311 // 1st GPR. 312 static mirror::Object* GetProxyThisObject(ArtMethod** sp) 313 REQUIRES_SHARED(Locks::mutator_lock_) { 314 CHECK((*sp)->IsProxyMethod()); 315 CHECK_GT(kNumQuickGprArgs, 0u); 316 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. 317 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + 318 GprIndexToGprOffset(kThisGprIndex); 319 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; 320 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); 321 } 322 323 static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { 324 DCHECK((*sp)->IsCalleeSaveMethod()); 325 return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs); 326 } 327 328 static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { 329 DCHECK((*sp)->IsCalleeSaveMethod()); 330 uint8_t* previous_sp = 331 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 332 return *reinterpret_cast<ArtMethod**>(previous_sp); 333 } 334 335 static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { 336 DCHECK((*sp)->IsCalleeSaveMethod()); 337 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); 338 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( 339 reinterpret_cast<uintptr_t>(sp) + callee_frame_size); 340 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); 341 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); 342 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); 343 344 if (current_code->IsOptimized()) { 345 CodeInfo code_info = current_code->GetOptimizedCodeInfo(); 346 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 347 StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding); 348 DCHECK(stack_map.IsValid()); 349 if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) { 350 InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); 351 return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding, 352 inline_info.GetDepth(encoding.inline_info.encoding)-1); 353 } else { 354 return stack_map.GetDexPc(encoding.stack_map.encoding); 355 } 356 } else { 357 return current_code->ToDexPc(*caller_sp, outer_pc); 358 } 359 } 360 361 static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index) 362 REQUIRES_SHARED(Locks::mutator_lock_) { 363 DCHECK((*sp)->IsCalleeSaveMethod()); 364 const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs); 365 ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( 366 reinterpret_cast<uintptr_t>(sp) + callee_frame_size); 367 uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); 368 const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); 369 if (!current_code->IsOptimized()) { 370 return false; 371 } 372 uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); 373 CodeInfo code_info = current_code->GetOptimizedCodeInfo(); 374 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 375 InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding)); 376 if (invoke.IsValid()) { 377 *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding)); 378 *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding); 379 return true; 380 } 381 return false; 382 } 383 384 // For the given quick ref and args quick frame, return the caller's PC. 385 static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { 386 DCHECK((*sp)->IsCalleeSaveMethod()); 387 uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 388 return *reinterpret_cast<uintptr_t*>(lr); 389 } 390 391 QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 392 uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) : 393 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 394 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 395 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 396 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 397 + sizeof(ArtMethod*)), // Skip ArtMethod*. 398 gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), 399 cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { 400 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), 401 "Number of Quick FPR arguments unexpected"); 402 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), 403 "Double alignment unexpected"); 404 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the 405 // next register is even. 406 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, 407 "Number of Quick FPR arguments not even"); 408 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); 409 } 410 411 virtual ~QuickArgumentVisitor() {} 412 413 virtual void Visit() = 0; 414 415 Primitive::Type GetParamPrimitiveType() const { 416 return cur_type_; 417 } 418 419 uint8_t* GetParamAddress() const { 420 if (!kQuickSoftFloatAbi) { 421 Primitive::Type type = GetParamPrimitiveType(); 422 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 423 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { 424 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 425 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 426 } 427 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 428 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 429 } 430 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 431 } 432 } 433 if (gpr_index_ < kNumQuickGprArgs) { 434 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 435 } 436 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 437 } 438 439 bool IsSplitLongOrDouble() const { 440 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || 441 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 442 return is_split_long_or_double_; 443 } else { 444 return false; // An optimization for when GPR and FPRs are 64bit. 445 } 446 } 447 448 bool IsParamAReference() const { 449 return GetParamPrimitiveType() == Primitive::kPrimNot; 450 } 451 452 bool IsParamALongOrDouble() const { 453 Primitive::Type type = GetParamPrimitiveType(); 454 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 455 } 456 457 uint64_t ReadSplitLongParam() const { 458 // The splitted long is always available through the stack. 459 return *reinterpret_cast<uint64_t*>(stack_args_ 460 + stack_index_ * kBytesStackArgLocation); 461 } 462 463 void IncGprIndex() { 464 gpr_index_++; 465 if (kGprFprLockstep) { 466 fpr_index_++; 467 } 468 } 469 470 void IncFprIndex() { 471 fpr_index_++; 472 if (kGprFprLockstep) { 473 gpr_index_++; 474 } 475 } 476 477 void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) { 478 // (a) 'stack_args_' should point to the first method's argument 479 // (b) whatever the argument type it is, the 'stack_index_' should 480 // be moved forward along with every visiting. 481 gpr_index_ = 0; 482 fpr_index_ = 0; 483 if (kQuickDoubleRegAlignedFloatBackFilled) { 484 fpr_double_index_ = 0; 485 } 486 stack_index_ = 0; 487 if (!is_static_) { // Handle this. 488 cur_type_ = Primitive::kPrimNot; 489 is_split_long_or_double_ = false; 490 Visit(); 491 stack_index_++; 492 if (kNumQuickGprArgs > 0) { 493 IncGprIndex(); 494 } 495 } 496 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 497 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 498 switch (cur_type_) { 499 case Primitive::kPrimNot: 500 case Primitive::kPrimBoolean: 501 case Primitive::kPrimByte: 502 case Primitive::kPrimChar: 503 case Primitive::kPrimShort: 504 case Primitive::kPrimInt: 505 is_split_long_or_double_ = false; 506 Visit(); 507 stack_index_++; 508 if (gpr_index_ < kNumQuickGprArgs) { 509 IncGprIndex(); 510 } 511 break; 512 case Primitive::kPrimFloat: 513 is_split_long_or_double_ = false; 514 Visit(); 515 stack_index_++; 516 if (kQuickSoftFloatAbi) { 517 if (gpr_index_ < kNumQuickGprArgs) { 518 IncGprIndex(); 519 } 520 } else { 521 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 522 IncFprIndex(); 523 if (kQuickDoubleRegAlignedFloatBackFilled) { 524 // Double should not overlap with float. 525 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. 526 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); 527 // Float should not overlap with double. 528 if (fpr_index_ % 2 == 0) { 529 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 530 } 531 } else if (kQuickSkipOddFpRegisters) { 532 IncFprIndex(); 533 } 534 } 535 } 536 break; 537 case Primitive::kPrimDouble: 538 case Primitive::kPrimLong: 539 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 540 if (cur_type_ == Primitive::kPrimLong && 541#if defined(__mips__) && !defined(__LP64__) 542 (gpr_index_ == 0 || gpr_index_ == 2) && 543#else 544 gpr_index_ == 0 && 545#endif 546 kAlignPairRegister) { 547 // Currently, this is only for ARM and MIPS, where we align long parameters with 548 // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using 549 // R2 (on ARM) or A2(T0) (on MIPS) instead. 550 IncGprIndex(); 551 } 552 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 553 ((gpr_index_ + 1) == kNumQuickGprArgs); 554 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) { 555 // We don't want to split this. Pass over this register. 556 gpr_index_++; 557 is_split_long_or_double_ = false; 558 } 559 Visit(); 560 if (kBytesStackArgLocation == 4) { 561 stack_index_+= 2; 562 } else { 563 CHECK_EQ(kBytesStackArgLocation, 8U); 564 stack_index_++; 565 } 566 if (gpr_index_ < kNumQuickGprArgs) { 567 IncGprIndex(); 568 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 569 if (gpr_index_ < kNumQuickGprArgs) { 570 IncGprIndex(); 571 } 572 } 573 } 574 } else { 575 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 576 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; 577 Visit(); 578 if (kBytesStackArgLocation == 4) { 579 stack_index_+= 2; 580 } else { 581 CHECK_EQ(kBytesStackArgLocation, 8U); 582 stack_index_++; 583 } 584 if (kQuickDoubleRegAlignedFloatBackFilled) { 585 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { 586 fpr_double_index_ += 2; 587 // Float should not overlap with double. 588 if (fpr_index_ % 2 == 0) { 589 fpr_index_ = std::max(fpr_double_index_, fpr_index_); 590 } 591 } 592 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 593 IncFprIndex(); 594 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 595 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { 596 IncFprIndex(); 597 } 598 } 599 } 600 } 601 break; 602 default: 603 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 604 } 605 } 606 } 607 608 protected: 609 const bool is_static_; 610 const char* const shorty_; 611 const uint32_t shorty_len_; 612 613 private: 614 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. 615 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. 616 uint8_t* const stack_args_; // Address of stack arguments in caller's frame. 617 uint32_t gpr_index_; // Index into spilled GPRs. 618 // Index into spilled FPRs. 619 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ 620 // holds a higher register number. 621 uint32_t fpr_index_; 622 // Index into spilled FPRs for aligned double. 623 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in 624 // terms of singles, may be behind fpr_index. 625 uint32_t fpr_double_index_; 626 uint32_t stack_index_; // Index into arguments on the stack. 627 // The current type of argument during VisitArguments. 628 Primitive::Type cur_type_; 629 // Does a 64bit parameter straddle the register and stack arguments? 630 bool is_split_long_or_double_; 631}; 632 633// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It 634// allows to use the QuickArgumentVisitor constants without moving all the code in its own module. 635extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp) 636 REQUIRES_SHARED(Locks::mutator_lock_) { 637 return QuickArgumentVisitor::GetProxyThisObject(sp); 638} 639 640// Visits arguments on the stack placing them into the shadow frame. 641class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 642 public: 643 BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty, 644 uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : 645 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 646 647 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; 648 649 private: 650 ShadowFrame* const sf_; 651 uint32_t cur_reg_; 652 653 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 654}; 655 656void BuildQuickShadowFrameVisitor::Visit() { 657 Primitive::Type type = GetParamPrimitiveType(); 658 switch (type) { 659 case Primitive::kPrimLong: // Fall-through. 660 case Primitive::kPrimDouble: 661 if (IsSplitLongOrDouble()) { 662 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 663 } else { 664 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 665 } 666 ++cur_reg_; 667 break; 668 case Primitive::kPrimNot: { 669 StackReference<mirror::Object>* stack_ref = 670 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 671 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 672 } 673 break; 674 case Primitive::kPrimBoolean: // Fall-through. 675 case Primitive::kPrimByte: // Fall-through. 676 case Primitive::kPrimChar: // Fall-through. 677 case Primitive::kPrimShort: // Fall-through. 678 case Primitive::kPrimInt: // Fall-through. 679 case Primitive::kPrimFloat: 680 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 681 break; 682 case Primitive::kPrimVoid: 683 LOG(FATAL) << "UNREACHABLE"; 684 UNREACHABLE(); 685 } 686 ++cur_reg_; 687} 688 689extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp) 690 REQUIRES_SHARED(Locks::mutator_lock_) { 691 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 692 // frame. 693 ScopedQuickEntrypointChecks sqec(self); 694 695 if (UNLIKELY(!method->IsInvokable())) { 696 method->ThrowInvocationTimeError(); 697 return 0; 698 } 699 700 JValue tmp_value; 701 ShadowFrame* deopt_frame = self->PopStackedShadowFrame( 702 StackedShadowFrameType::kDeoptimizationShadowFrame, false); 703 ManagedStack fragment; 704 705 DCHECK(!method->IsNative()) << method->PrettyMethod(); 706 uint32_t shorty_len = 0; 707 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); 708 const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem(); 709 DCHECK(code_item != nullptr) << method->PrettyMethod(); 710 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 711 712 JValue result; 713 714 if (deopt_frame != nullptr) { 715 // Coming from partial-fragment deopt. 716 717 if (kIsDebugBuild) { 718 // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom 719 // of the call-stack) corresponds to the called method. 720 ShadowFrame* linked = deopt_frame; 721 while (linked->GetLink() != nullptr) { 722 linked = linked->GetLink(); 723 } 724 CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " " 725 << ArtMethod::PrettyMethod(linked->GetMethod()); 726 } 727 728 if (VLOG_IS_ON(deopt)) { 729 // Print out the stack to verify that it was a partial-fragment deopt. 730 LOG(INFO) << "Continue-ing from deopt. Stack is:"; 731 QuickExceptionHandler::DumpFramesWithType(self, true); 732 } 733 734 ObjPtr<mirror::Throwable> pending_exception; 735 bool from_code = false; 736 self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code); 737 738 // Push a transition back into managed code onto the linked list in thread. 739 self->PushManagedStackFragment(&fragment); 740 741 // Ensure that the stack is still in order. 742 if (kIsDebugBuild) { 743 class DummyStackVisitor : public StackVisitor { 744 public: 745 explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_) 746 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {} 747 748 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 749 // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking 750 // logic. Just always say we want to continue. 751 return true; 752 } 753 }; 754 DummyStackVisitor dsv(self); 755 dsv.WalkStack(); 756 } 757 758 // Restore the exception that was pending before deoptimization then interpret the 759 // deoptimized frames. 760 if (pending_exception != nullptr) { 761 self->SetException(pending_exception); 762 } 763 interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result); 764 } else { 765 const char* old_cause = self->StartAssertNoThreadSuspension( 766 "Building interpreter shadow frame"); 767 uint16_t num_regs = code_item->registers_size_; 768 // No last shadow coming from quick. 769 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = 770 CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0); 771 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); 772 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 773 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 774 shadow_frame, first_arg_reg); 775 shadow_frame_builder.VisitArguments(); 776 const bool needs_initialization = 777 method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); 778 // Push a transition back into managed code onto the linked list in thread. 779 self->PushManagedStackFragment(&fragment); 780 self->PushShadowFrame(shadow_frame); 781 self->EndAssertNoThreadSuspension(old_cause); 782 783 if (needs_initialization) { 784 // Ensure static method's class is initialized. 785 StackHandleScope<1> hs(self); 786 Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); 787 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { 788 DCHECK(Thread::Current()->IsExceptionPending()) 789 << shadow_frame->GetMethod()->PrettyMethod(); 790 self->PopManagedStackFragment(fragment); 791 return 0; 792 } 793 } 794 795 result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); 796 } 797 798 // Pop transition. 799 self->PopManagedStackFragment(fragment); 800 801 // Request a stack deoptimization if needed 802 ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 803 uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp); 804 // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization 805 // should be done and it knows the real return pc. 806 if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) && 807 Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) { 808 if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) { 809 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " 810 << caller->PrettyMethod(); 811 } else { 812 // Push the context of the deoptimization stack so we can restore the return value and the 813 // exception before executing the deoptimized frames. 814 self->PushDeoptimizationContext( 815 result, shorty[0] == 'L', /* from_code */ false, self->GetException()); 816 817 // Set special exception to cause deoptimization. 818 self->SetException(Thread::GetDeoptimizationException()); 819 } 820 } 821 822 // No need to restore the args since the method has already been run by the interpreter. 823 return result.GetJ(); 824} 825 826// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 827// to jobjects. 828class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 829 public: 830 BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, 831 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 832 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 833 834 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; 835 836 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); 837 838 private: 839 ScopedObjectAccessUnchecked* const soa_; 840 std::vector<jvalue>* const args_; 841 // References which we must update when exiting in case the GC moved the objects. 842 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 843 844 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 845}; 846 847void BuildQuickArgumentVisitor::Visit() { 848 jvalue val; 849 Primitive::Type type = GetParamPrimitiveType(); 850 switch (type) { 851 case Primitive::kPrimNot: { 852 StackReference<mirror::Object>* stack_ref = 853 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 854 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 855 references_.push_back(std::make_pair(val.l, stack_ref)); 856 break; 857 } 858 case Primitive::kPrimLong: // Fall-through. 859 case Primitive::kPrimDouble: 860 if (IsSplitLongOrDouble()) { 861 val.j = ReadSplitLongParam(); 862 } else { 863 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 864 } 865 break; 866 case Primitive::kPrimBoolean: // Fall-through. 867 case Primitive::kPrimByte: // Fall-through. 868 case Primitive::kPrimChar: // Fall-through. 869 case Primitive::kPrimShort: // Fall-through. 870 case Primitive::kPrimInt: // Fall-through. 871 case Primitive::kPrimFloat: 872 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 873 break; 874 case Primitive::kPrimVoid: 875 LOG(FATAL) << "UNREACHABLE"; 876 UNREACHABLE(); 877 } 878 args_->push_back(val); 879} 880 881void BuildQuickArgumentVisitor::FixupReferences() { 882 // Fixup any references which may have changed. 883 for (const auto& pair : references_) { 884 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); 885 soa_->Env()->DeleteLocalRef(pair.first); 886 } 887} 888 889// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 890// which is responsible for recording callee save registers. We explicitly place into jobjects the 891// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 892// field within the proxy object, which will box the primitive arguments and deal with error cases. 893extern "C" uint64_t artQuickProxyInvokeHandler( 894 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp) 895 REQUIRES_SHARED(Locks::mutator_lock_) { 896 DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod(); 897 DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod(); 898 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 899 const char* old_cause = 900 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 901 // Register the top of the managed stack, making stack crawlable. 902 DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod(); 903 self->VerifyStack(); 904 // Start new JNI local reference state. 905 JNIEnvExt* env = self->GetJniEnv(); 906 ScopedObjectAccessUnchecked soa(env); 907 ScopedJniEnvLocalRefState env_state(env); 908 // Create local ref. copies of proxy method and the receiver. 909 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 910 911 // Placing arguments into args vector and remove the receiver. 912 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize); 913 CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " " 914 << non_proxy_method->PrettyMethod(); 915 std::vector<jvalue> args; 916 uint32_t shorty_len = 0; 917 const char* shorty = non_proxy_method->GetShorty(&shorty_len); 918 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 919 920 local_ref_visitor.VisitArguments(); 921 DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod(); 922 args.erase(args.begin()); 923 924 // Convert proxy method into expected interface method. 925 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize); 926 DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod(); 927 DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod(); 928 self->EndAssertNoThreadSuspension(old_cause); 929 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); 930 DCHECK(!Runtime::Current()->IsActiveTransaction()); 931 jobject interface_method_jobj = soa.AddLocalReference<jobject>( 932 mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), 933 interface_method)); 934 935 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 936 // that performs allocations. 937 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 938 // Restore references which might have moved. 939 local_ref_visitor.FixupReferences(); 940 return result.GetJ(); 941} 942 943// Read object references held in arguments from quick frames and place in a JNI local references, 944// so they don't get garbage collected. 945class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 946 public: 947 RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, 948 uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : 949 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 950 951 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; 952 953 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); 954 955 private: 956 ScopedObjectAccessUnchecked* const soa_; 957 // References which we must update when exiting in case the GC moved the objects. 958 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 959 960 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 961}; 962 963void RememberForGcArgumentVisitor::Visit() { 964 if (IsParamAReference()) { 965 StackReference<mirror::Object>* stack_ref = 966 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 967 jobject reference = 968 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 969 references_.push_back(std::make_pair(reference, stack_ref)); 970 } 971} 972 973void RememberForGcArgumentVisitor::FixupReferences() { 974 // Fixup any references which may have changed. 975 for (const auto& pair : references_) { 976 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); 977 soa_->Env()->DeleteLocalRef(pair.first); 978 } 979} 980 981// Lazily resolve a method for quick. Called by stub code. 982extern "C" const void* artQuickResolutionTrampoline( 983 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp) 984 REQUIRES_SHARED(Locks::mutator_lock_) { 985 // The resolution trampoline stashes the resolved method into the callee-save frame to transport 986 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely 987 // does not have the same stack layout as the callee-save method). 988 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); 989 // Start new JNI local reference state 990 JNIEnvExt* env = self->GetJniEnv(); 991 ScopedObjectAccessUnchecked soa(env); 992 ScopedJniEnvLocalRefState env_state(env); 993 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 994 995 // Compute details about the called method (avoid GCs) 996 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 997 InvokeType invoke_type; 998 MethodReference called_method(nullptr, 0); 999 const bool called_method_known_on_entry = !called->IsRuntimeMethod(); 1000 ArtMethod* caller = nullptr; 1001 if (!called_method_known_on_entry) { 1002 caller = QuickArgumentVisitor::GetCallingMethod(sp); 1003 called_method.dex_file = caller->GetDexFile(); 1004 1005 InvokeType stack_map_invoke_type; 1006 uint32_t stack_map_dex_method_idx; 1007 const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp, 1008 &stack_map_invoke_type, 1009 &stack_map_dex_method_idx); 1010 // For debug builds, we make sure both of the paths are consistent by also looking at the dex 1011 // code. 1012 if (!found_stack_map || kIsDebugBuild) { 1013 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 1014 const DexFile::CodeItem* code; 1015 code = caller->GetCodeItem(); 1016 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1017 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1018 Instruction::Code instr_code = instr->Opcode(); 1019 bool is_range; 1020 switch (instr_code) { 1021 case Instruction::INVOKE_DIRECT: 1022 invoke_type = kDirect; 1023 is_range = false; 1024 break; 1025 case Instruction::INVOKE_DIRECT_RANGE: 1026 invoke_type = kDirect; 1027 is_range = true; 1028 break; 1029 case Instruction::INVOKE_STATIC: 1030 invoke_type = kStatic; 1031 is_range = false; 1032 break; 1033 case Instruction::INVOKE_STATIC_RANGE: 1034 invoke_type = kStatic; 1035 is_range = true; 1036 break; 1037 case Instruction::INVOKE_SUPER: 1038 invoke_type = kSuper; 1039 is_range = false; 1040 break; 1041 case Instruction::INVOKE_SUPER_RANGE: 1042 invoke_type = kSuper; 1043 is_range = true; 1044 break; 1045 case Instruction::INVOKE_VIRTUAL: 1046 invoke_type = kVirtual; 1047 is_range = false; 1048 break; 1049 case Instruction::INVOKE_VIRTUAL_RANGE: 1050 invoke_type = kVirtual; 1051 is_range = true; 1052 break; 1053 case Instruction::INVOKE_INTERFACE: 1054 invoke_type = kInterface; 1055 is_range = false; 1056 break; 1057 case Instruction::INVOKE_INTERFACE_RANGE: 1058 invoke_type = kInterface; 1059 is_range = true; 1060 break; 1061 default: 1062 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr); 1063 UNREACHABLE(); 1064 } 1065 called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 1066 // Check that the invoke matches what we expected, note that this path only happens for debug 1067 // builds. 1068 if (found_stack_map) { 1069 DCHECK_EQ(stack_map_invoke_type, invoke_type); 1070 if (invoke_type != kSuper) { 1071 // Super may be sharpened. 1072 DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index) 1073 << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " " 1074 << called_method.dex_file->PrettyMethod(called_method.dex_method_index); 1075 } 1076 } else { 1077 VLOG(oat) << "Accessed dex file for invoke " << invoke_type << " " 1078 << called_method.dex_method_index; 1079 } 1080 } else { 1081 invoke_type = stack_map_invoke_type; 1082 called_method.dex_method_index = stack_map_dex_method_idx; 1083 } 1084 } else { 1085 invoke_type = kStatic; 1086 called_method.dex_file = called->GetDexFile(); 1087 called_method.dex_method_index = called->GetDexMethodIndex(); 1088 } 1089 uint32_t shorty_len; 1090 const char* shorty = 1091 called_method.dex_file->GetMethodShorty( 1092 called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len); 1093 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 1094 visitor.VisitArguments(); 1095 self->EndAssertNoThreadSuspension(old_cause); 1096 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 1097 // Resolve method filling in dex cache. 1098 if (!called_method_known_on_entry) { 1099 StackHandleScope<1> hs(self); 1100 mirror::Object* dummy = nullptr; 1101 HandleWrapper<mirror::Object> h_receiver( 1102 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 1103 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 1104 called = linker->ResolveMethod<ClassLinker::kForceICCECheck>( 1105 self, called_method.dex_method_index, caller, invoke_type); 1106 } 1107 const void* code = nullptr; 1108 if (LIKELY(!self->IsExceptionPending())) { 1109 // Incompatible class change should have been handled in resolve method. 1110 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 1111 << called->PrettyMethod() << " " << invoke_type; 1112 if (virtual_or_interface || invoke_type == kSuper) { 1113 // Refine called method based on receiver for kVirtual/kInterface, and 1114 // caller for kSuper. 1115 ArtMethod* orig_called = called; 1116 if (invoke_type == kVirtual) { 1117 CHECK(receiver != nullptr) << invoke_type; 1118 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize); 1119 } else if (invoke_type == kInterface) { 1120 CHECK(receiver != nullptr) << invoke_type; 1121 called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize); 1122 } else { 1123 DCHECK_EQ(invoke_type, kSuper); 1124 CHECK(caller != nullptr) << invoke_type; 1125 StackHandleScope<2> hs(self); 1126 Handle<mirror::DexCache> dex_cache( 1127 hs.NewHandle(caller->GetDeclaringClass()->GetDexCache())); 1128 Handle<mirror::ClassLoader> class_loader( 1129 hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader())); 1130 // TODO Maybe put this into a mirror::Class function. 1131 mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod( 1132 called_method.dex_method_index, dex_cache, class_loader); 1133 if (ref_class->IsInterface()) { 1134 called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize); 1135 } else { 1136 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry( 1137 called->GetMethodIndex(), kRuntimePointerSize); 1138 } 1139 } 1140 1141 CHECK(called != nullptr) << orig_called->PrettyMethod() << " " 1142 << mirror::Object::PrettyTypeOf(receiver) << " " 1143 << invoke_type << " " << orig_called->GetVtableIndex(); 1144 1145 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 1146 // of the sharpened method avoiding dirtying the dex cache if possible. 1147 // Note, called_method.dex_method_index references the dex method before the 1148 // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares 1149 // about the name and signature. 1150 uint32_t update_dex_cache_method_index = called->GetDexMethodIndex(); 1151 if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) { 1152 // Calling from one dex file to another, need to compute the method index appropriate to 1153 // the caller's dex file. Since we get here only if the original called was a runtime 1154 // method, we've got the correct dex_file and a dex_method_idx from above. 1155 DCHECK(!called_method_known_on_entry); 1156 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); 1157 const DexFile* caller_dex_file = called_method.dex_file; 1158 uint32_t caller_method_name_and_sig_index = called_method.dex_method_index; 1159 update_dex_cache_method_index = 1160 called->FindDexMethodIndexInOtherDexFile(*caller_dex_file, 1161 caller_method_name_and_sig_index); 1162 } 1163 if ((update_dex_cache_method_index != DexFile::kDexNoIndex) && 1164 (caller->GetDexCacheResolvedMethod( 1165 update_dex_cache_method_index, kRuntimePointerSize) != called)) { 1166 caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, 1167 called, 1168 kRuntimePointerSize); 1169 } 1170 } else if (invoke_type == kStatic) { 1171 const auto called_dex_method_idx = called->GetDexMethodIndex(); 1172 // For static invokes, we may dispatch to the static method in the superclass but resolve 1173 // using the subclass. To prevent getting slow paths on each invoke, we force set the 1174 // resolved method for the super class dex method index if we are in the same dex file. 1175 // b/19175856 1176 if (called->GetDexFile() == called_method.dex_file && 1177 called_method.dex_method_index != called_dex_method_idx) { 1178 called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, 1179 called, 1180 kRuntimePointerSize); 1181 } 1182 } 1183 1184 // Ensure that the called method's class is initialized. 1185 StackHandleScope<1> hs(soa.Self()); 1186 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 1187 linker->EnsureInitialized(soa.Self(), called_class, true, true); 1188 if (LIKELY(called_class->IsInitialized())) { 1189 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1190 // If we are single-stepping or the called method is deoptimized (by a 1191 // breakpoint, for example), then we have to execute the called method 1192 // with the interpreter. 1193 code = GetQuickToInterpreterBridge(); 1194 } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) { 1195 // If the caller is deoptimized (by a breakpoint, for example), we have to 1196 // continue its execution with interpreter when returning from the called 1197 // method. Because we do not want to execute the called method with the 1198 // interpreter, we wrap its execution into the instrumentation stubs. 1199 // When the called method returns, it will execute the instrumentation 1200 // exit hook that will determine the need of the interpreter with a call 1201 // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if 1202 // it is needed. 1203 code = GetQuickInstrumentationEntryPoint(); 1204 } else { 1205 code = called->GetEntryPointFromQuickCompiledCode(); 1206 } 1207 } else if (called_class->IsInitializing()) { 1208 if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { 1209 // If we are single-stepping or the called method is deoptimized (by a 1210 // breakpoint, for example), then we have to execute the called method 1211 // with the interpreter. 1212 code = GetQuickToInterpreterBridge(); 1213 } else if (invoke_type == kStatic) { 1214 // Class is still initializing, go to oat and grab code (trampoline must be left in place 1215 // until class is initialized to stop races between threads). 1216 code = linker->GetQuickOatCodeFor(called); 1217 } else { 1218 // No trampoline for non-static methods. 1219 code = called->GetEntryPointFromQuickCompiledCode(); 1220 } 1221 } else { 1222 DCHECK(called_class->IsErroneous()); 1223 } 1224 } 1225 CHECK_EQ(code == nullptr, self->IsExceptionPending()); 1226 // Fixup any locally saved objects may have moved during a GC. 1227 visitor.FixupReferences(); 1228 // Place called method in callee-save frame to be placed as first argument to quick method. 1229 *sp = called; 1230 1231 return code; 1232} 1233 1234/* 1235 * This class uses a couple of observations to unite the different calling conventions through 1236 * a few constants. 1237 * 1238 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 1239 * possible alignment. 1240 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 1241 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 1242 * when we have to split things 1243 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 1244 * and we can use Int handling directly. 1245 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 1246 * necessary when widening. Also, widening of Ints will take place implicitly, and the 1247 * extension should be compatible with Aarch64, which mandates copying the available bits 1248 * into LSB and leaving the rest unspecified. 1249 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 1250 * the stack. 1251 * 6) There is only little endian. 1252 * 1253 * 1254 * Actual work is supposed to be done in a delegate of the template type. The interface is as 1255 * follows: 1256 * 1257 * void PushGpr(uintptr_t): Add a value for the next GPR 1258 * 1259 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 1260 * padding, that is, think the architecture is 32b and aligns 64b. 1261 * 1262 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 1263 * split this if necessary. The current state will have aligned, if 1264 * necessary. 1265 * 1266 * void PushStack(uintptr_t): Push a value to the stack. 1267 * 1268 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 1269 * as this might be important for null initialization. 1270 * Must return the jobject, that is, the reference to the 1271 * entry in the HandleScope (nullptr if necessary). 1272 * 1273 */ 1274template<class T> class BuildNativeCallFrameStateMachine { 1275 public: 1276#if defined(__arm__) 1277 // TODO: These are all dummy values! 1278 static constexpr bool kNativeSoftFloatAbi = true; 1279 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 1280 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1281 1282 static constexpr size_t kRegistersNeededForLong = 2; 1283 static constexpr size_t kRegistersNeededForDouble = 2; 1284 static constexpr bool kMultiRegistersAligned = true; 1285 static constexpr bool kMultiFPRegistersWidened = false; 1286 static constexpr bool kMultiGPRegistersWidened = false; 1287 static constexpr bool kAlignLongOnStack = true; 1288 static constexpr bool kAlignDoubleOnStack = true; 1289#elif defined(__aarch64__) 1290 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1291 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 1292 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1293 1294 static constexpr size_t kRegistersNeededForLong = 1; 1295 static constexpr size_t kRegistersNeededForDouble = 1; 1296 static constexpr bool kMultiRegistersAligned = false; 1297 static constexpr bool kMultiFPRegistersWidened = false; 1298 static constexpr bool kMultiGPRegistersWidened = false; 1299 static constexpr bool kAlignLongOnStack = false; 1300 static constexpr bool kAlignDoubleOnStack = false; 1301#elif defined(__mips__) && !defined(__LP64__) 1302 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 1303 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. 1304 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 1305 1306 static constexpr size_t kRegistersNeededForLong = 2; 1307 static constexpr size_t kRegistersNeededForDouble = 2; 1308 static constexpr bool kMultiRegistersAligned = true; 1309 static constexpr bool kMultiFPRegistersWidened = true; 1310 static constexpr bool kMultiGPRegistersWidened = false; 1311 static constexpr bool kAlignLongOnStack = true; 1312 static constexpr bool kAlignDoubleOnStack = true; 1313#elif defined(__mips__) && defined(__LP64__) 1314 // Let the code prepare GPRs only and we will load the FPRs with same data. 1315 static constexpr bool kNativeSoftFloatAbi = true; 1316 static constexpr size_t kNumNativeGprArgs = 8; 1317 static constexpr size_t kNumNativeFprArgs = 0; 1318 1319 static constexpr size_t kRegistersNeededForLong = 1; 1320 static constexpr size_t kRegistersNeededForDouble = 1; 1321 static constexpr bool kMultiRegistersAligned = false; 1322 static constexpr bool kMultiFPRegistersWidened = false; 1323 static constexpr bool kMultiGPRegistersWidened = true; 1324 static constexpr bool kAlignLongOnStack = false; 1325 static constexpr bool kAlignDoubleOnStack = false; 1326#elif defined(__i386__) 1327 // TODO: Check these! 1328 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 1329 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 1330 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 1331 1332 static constexpr size_t kRegistersNeededForLong = 2; 1333 static constexpr size_t kRegistersNeededForDouble = 2; 1334 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 1335 static constexpr bool kMultiFPRegistersWidened = false; 1336 static constexpr bool kMultiGPRegistersWidened = false; 1337 static constexpr bool kAlignLongOnStack = false; 1338 static constexpr bool kAlignDoubleOnStack = false; 1339#elif defined(__x86_64__) 1340 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 1341 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 1342 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 1343 1344 static constexpr size_t kRegistersNeededForLong = 1; 1345 static constexpr size_t kRegistersNeededForDouble = 1; 1346 static constexpr bool kMultiRegistersAligned = false; 1347 static constexpr bool kMultiFPRegistersWidened = false; 1348 static constexpr bool kMultiGPRegistersWidened = false; 1349 static constexpr bool kAlignLongOnStack = false; 1350 static constexpr bool kAlignDoubleOnStack = false; 1351#else 1352#error "Unsupported architecture" 1353#endif 1354 1355 public: 1356 explicit BuildNativeCallFrameStateMachine(T* delegate) 1357 : gpr_index_(kNumNativeGprArgs), 1358 fpr_index_(kNumNativeFprArgs), 1359 stack_entries_(0), 1360 delegate_(delegate) { 1361 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 1362 // the next register is even; counting down is just to make the compiler happy... 1363 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); 1364 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); 1365 } 1366 1367 virtual ~BuildNativeCallFrameStateMachine() {} 1368 1369 bool HavePointerGpr() const { 1370 return gpr_index_ > 0; 1371 } 1372 1373 void AdvancePointer(const void* val) { 1374 if (HavePointerGpr()) { 1375 gpr_index_--; 1376 PushGpr(reinterpret_cast<uintptr_t>(val)); 1377 } else { 1378 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 1379 PushStack(reinterpret_cast<uintptr_t>(val)); 1380 gpr_index_ = 0; 1381 } 1382 } 1383 1384 bool HaveHandleScopeGpr() const { 1385 return gpr_index_ > 0; 1386 } 1387 1388 void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) { 1389 uintptr_t handle = PushHandle(ptr); 1390 if (HaveHandleScopeGpr()) { 1391 gpr_index_--; 1392 PushGpr(handle); 1393 } else { 1394 stack_entries_++; 1395 PushStack(handle); 1396 gpr_index_ = 0; 1397 } 1398 } 1399 1400 bool HaveIntGpr() const { 1401 return gpr_index_ > 0; 1402 } 1403 1404 void AdvanceInt(uint32_t val) { 1405 if (HaveIntGpr()) { 1406 gpr_index_--; 1407 if (kMultiGPRegistersWidened) { 1408 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1409 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1410 } else { 1411 PushGpr(val); 1412 } 1413 } else { 1414 stack_entries_++; 1415 if (kMultiGPRegistersWidened) { 1416 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); 1417 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); 1418 } else { 1419 PushStack(val); 1420 } 1421 gpr_index_ = 0; 1422 } 1423 } 1424 1425 bool HaveLongGpr() const { 1426 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1427 } 1428 1429 bool LongGprNeedsPadding() const { 1430 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1431 kAlignLongOnStack && // and when it needs alignment 1432 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1433 } 1434 1435 bool LongStackNeedsPadding() const { 1436 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1437 kAlignLongOnStack && // and when it needs 8B alignment 1438 (stack_entries_ & 1) == 1; // counter is odd 1439 } 1440 1441 void AdvanceLong(uint64_t val) { 1442 if (HaveLongGpr()) { 1443 if (LongGprNeedsPadding()) { 1444 PushGpr(0); 1445 gpr_index_--; 1446 } 1447 if (kRegistersNeededForLong == 1) { 1448 PushGpr(static_cast<uintptr_t>(val)); 1449 } else { 1450 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1451 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1452 } 1453 gpr_index_ -= kRegistersNeededForLong; 1454 } else { 1455 if (LongStackNeedsPadding()) { 1456 PushStack(0); 1457 stack_entries_++; 1458 } 1459 if (kRegistersNeededForLong == 1) { 1460 PushStack(static_cast<uintptr_t>(val)); 1461 stack_entries_++; 1462 } else { 1463 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1464 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1465 stack_entries_ += 2; 1466 } 1467 gpr_index_ = 0; 1468 } 1469 } 1470 1471 bool HaveFloatFpr() const { 1472 return fpr_index_ > 0; 1473 } 1474 1475 void AdvanceFloat(float val) { 1476 if (kNativeSoftFloatAbi) { 1477 AdvanceInt(bit_cast<uint32_t, float>(val)); 1478 } else { 1479 if (HaveFloatFpr()) { 1480 fpr_index_--; 1481 if (kRegistersNeededForDouble == 1) { 1482 if (kMultiFPRegistersWidened) { 1483 PushFpr8(bit_cast<uint64_t, double>(val)); 1484 } else { 1485 // No widening, just use the bits. 1486 PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val))); 1487 } 1488 } else { 1489 PushFpr4(val); 1490 } 1491 } else { 1492 stack_entries_++; 1493 if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { 1494 // Need to widen before storing: Note the "double" in the template instantiation. 1495 // Note: We need to jump through those hoops to make the compiler happy. 1496 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1497 PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val))); 1498 } else { 1499 PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val))); 1500 } 1501 fpr_index_ = 0; 1502 } 1503 } 1504 } 1505 1506 bool HaveDoubleFpr() const { 1507 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1508 } 1509 1510 bool DoubleFprNeedsPadding() const { 1511 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1512 kAlignDoubleOnStack && // and when it needs alignment 1513 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1514 } 1515 1516 bool DoubleStackNeedsPadding() const { 1517 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1518 kAlignDoubleOnStack && // and when it needs 8B alignment 1519 (stack_entries_ & 1) == 1; // counter is odd 1520 } 1521 1522 void AdvanceDouble(uint64_t val) { 1523 if (kNativeSoftFloatAbi) { 1524 AdvanceLong(val); 1525 } else { 1526 if (HaveDoubleFpr()) { 1527 if (DoubleFprNeedsPadding()) { 1528 PushFpr4(0); 1529 fpr_index_--; 1530 } 1531 PushFpr8(val); 1532 fpr_index_ -= kRegistersNeededForDouble; 1533 } else { 1534 if (DoubleStackNeedsPadding()) { 1535 PushStack(0); 1536 stack_entries_++; 1537 } 1538 if (kRegistersNeededForDouble == 1) { 1539 PushStack(static_cast<uintptr_t>(val)); 1540 stack_entries_++; 1541 } else { 1542 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1543 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1544 stack_entries_ += 2; 1545 } 1546 fpr_index_ = 0; 1547 } 1548 } 1549 } 1550 1551 uint32_t GetStackEntries() const { 1552 return stack_entries_; 1553 } 1554 1555 uint32_t GetNumberOfUsedGprs() const { 1556 return kNumNativeGprArgs - gpr_index_; 1557 } 1558 1559 uint32_t GetNumberOfUsedFprs() const { 1560 return kNumNativeFprArgs - fpr_index_; 1561 } 1562 1563 private: 1564 void PushGpr(uintptr_t val) { 1565 delegate_->PushGpr(val); 1566 } 1567 void PushFpr4(float val) { 1568 delegate_->PushFpr4(val); 1569 } 1570 void PushFpr8(uint64_t val) { 1571 delegate_->PushFpr8(val); 1572 } 1573 void PushStack(uintptr_t val) { 1574 delegate_->PushStack(val); 1575 } 1576 uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { 1577 return delegate_->PushHandle(ref); 1578 } 1579 1580 uint32_t gpr_index_; // Number of free GPRs 1581 uint32_t fpr_index_; // Number of free FPRs 1582 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1583 // extended 1584 T* const delegate_; // What Push implementation gets called 1585}; 1586 1587// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1588// in subclasses. 1589// 1590// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1591// them with handles. 1592class ComputeNativeCallFrameSize { 1593 public: 1594 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1595 1596 virtual ~ComputeNativeCallFrameSize() {} 1597 1598 uint32_t GetStackSize() const { 1599 return num_stack_entries_ * sizeof(uintptr_t); 1600 } 1601 1602 uint8_t* LayoutCallStack(uint8_t* sp8) const { 1603 sp8 -= GetStackSize(); 1604 // Align by kStackAlignment. 1605 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1606 return sp8; 1607 } 1608 1609 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) 1610 const { 1611 // Assumption is OK right now, as we have soft-float arm 1612 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1613 sp8 -= fregs * sizeof(uintptr_t); 1614 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1615 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1616 sp8 -= iregs * sizeof(uintptr_t); 1617 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1618 return sp8; 1619 } 1620 1621 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1622 uint32_t** start_fpr) const { 1623 // Native call stack. 1624 sp8 = LayoutCallStack(sp8); 1625 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1626 1627 // Put fprs and gprs below. 1628 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1629 1630 // Return the new bottom. 1631 return sp8; 1632 } 1633 1634 virtual void WalkHeader( 1635 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED) 1636 REQUIRES_SHARED(Locks::mutator_lock_) { 1637 } 1638 1639 void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) { 1640 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1641 1642 WalkHeader(&sm); 1643 1644 for (uint32_t i = 1; i < shorty_len; ++i) { 1645 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1646 switch (cur_type_) { 1647 case Primitive::kPrimNot: 1648 // TODO: fix abuse of mirror types. 1649 sm.AdvanceHandleScope( 1650 reinterpret_cast<mirror::Object*>(0x12345678)); 1651 break; 1652 1653 case Primitive::kPrimBoolean: 1654 case Primitive::kPrimByte: 1655 case Primitive::kPrimChar: 1656 case Primitive::kPrimShort: 1657 case Primitive::kPrimInt: 1658 sm.AdvanceInt(0); 1659 break; 1660 case Primitive::kPrimFloat: 1661 sm.AdvanceFloat(0); 1662 break; 1663 case Primitive::kPrimDouble: 1664 sm.AdvanceDouble(0); 1665 break; 1666 case Primitive::kPrimLong: 1667 sm.AdvanceLong(0); 1668 break; 1669 default: 1670 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1671 UNREACHABLE(); 1672 } 1673 } 1674 1675 num_stack_entries_ = sm.GetStackEntries(); 1676 } 1677 1678 void PushGpr(uintptr_t /* val */) { 1679 // not optimizing registers, yet 1680 } 1681 1682 void PushFpr4(float /* val */) { 1683 // not optimizing registers, yet 1684 } 1685 1686 void PushFpr8(uint64_t /* val */) { 1687 // not optimizing registers, yet 1688 } 1689 1690 void PushStack(uintptr_t /* val */) { 1691 // counting is already done in the superclass 1692 } 1693 1694 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1695 return reinterpret_cast<uintptr_t>(nullptr); 1696 } 1697 1698 protected: 1699 uint32_t num_stack_entries_; 1700}; 1701 1702class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1703 public: 1704 explicit ComputeGenericJniFrameSize(bool critical_native) 1705 : num_handle_scope_references_(0), critical_native_(critical_native) {} 1706 1707 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1708 // is at *m = sp. Will update to point to the bottom of the save frame. 1709 // 1710 // Note: assumes ComputeAll() has been run before. 1711 void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1712 REQUIRES_SHARED(Locks::mutator_lock_) { 1713 ArtMethod* method = **m; 1714 1715 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); 1716 1717 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1718 1719 // First, fix up the layout of the callee-save frame. 1720 // We have to squeeze in the HandleScope, and relocate the method pointer. 1721 1722 // "Free" the slot for the method. 1723 sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. 1724 1725 // Under the callee saves put handle scope and new method stack reference. 1726 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1727 size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*); 1728 1729 sp8 -= scope_and_method; 1730 // Align by kStackAlignment. 1731 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1732 1733 uint8_t* sp8_table = sp8 + sizeof(ArtMethod*); 1734 *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), 1735 num_handle_scope_references_); 1736 1737 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1738 uint8_t* method_pointer = sp8; 1739 auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer); 1740 *new_method_ref = method; 1741 *m = new_method_ref; 1742 } 1743 1744 // Adds space for the cookie. Note: may leave stack unaligned. 1745 void LayoutCookie(uint8_t** sp) const { 1746 // Reference cookie and padding 1747 *sp -= 8; 1748 } 1749 1750 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1751 // Returns the new bottom. Note: this may be unaligned. 1752 uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) 1753 REQUIRES_SHARED(Locks::mutator_lock_) { 1754 // First, fix up the layout of the callee-save frame. 1755 // We have to squeeze in the HandleScope, and relocate the method pointer. 1756 LayoutCalleeSaveFrame(self, m, sp, handle_scope); 1757 1758 // The bottom of the callee-save frame is now where the method is, *m. 1759 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1760 1761 // Add space for cookie. 1762 LayoutCookie(&sp8); 1763 1764 return sp8; 1765 } 1766 1767 // WARNING: After this, *sp won't be pointing to the method anymore! 1768 uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len, 1769 HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr, 1770 uint32_t** start_fpr) 1771 REQUIRES_SHARED(Locks::mutator_lock_) { 1772 Walk(shorty, shorty_len); 1773 1774 // JNI part. 1775 uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); 1776 1777 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1778 1779 // Return the new bottom. 1780 return sp8; 1781 } 1782 1783 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1784 1785 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1786 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1787 REQUIRES_SHARED(Locks::mutator_lock_); 1788 1789 private: 1790 uint32_t num_handle_scope_references_; 1791 const bool critical_native_; 1792}; 1793 1794uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1795 num_handle_scope_references_++; 1796 return reinterpret_cast<uintptr_t>(nullptr); 1797} 1798 1799void ComputeGenericJniFrameSize::WalkHeader( 1800 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1801 // First 2 parameters are always excluded for @CriticalNative. 1802 if (UNLIKELY(critical_native_)) { 1803 return; 1804 } 1805 1806 // JNIEnv 1807 sm->AdvancePointer(nullptr); 1808 1809 // Class object or this as first argument 1810 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1811} 1812 1813// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1814// the template requirements of BuildGenericJniFrameStateMachine. 1815class FillNativeCall { 1816 public: 1817 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1818 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1819 1820 virtual ~FillNativeCall() {} 1821 1822 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1823 cur_gpr_reg_ = gpr_regs; 1824 cur_fpr_reg_ = fpr_regs; 1825 cur_stack_arg_ = stack_args; 1826 } 1827 1828 void PushGpr(uintptr_t val) { 1829 *cur_gpr_reg_ = val; 1830 cur_gpr_reg_++; 1831 } 1832 1833 void PushFpr4(float val) { 1834 *cur_fpr_reg_ = val; 1835 cur_fpr_reg_++; 1836 } 1837 1838 void PushFpr8(uint64_t val) { 1839 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1840 *tmp = val; 1841 cur_fpr_reg_ += 2; 1842 } 1843 1844 void PushStack(uintptr_t val) { 1845 *cur_stack_arg_ = val; 1846 cur_stack_arg_++; 1847 } 1848 1849 virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) { 1850 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1851 UNREACHABLE(); 1852 } 1853 1854 private: 1855 uintptr_t* cur_gpr_reg_; 1856 uint32_t* cur_fpr_reg_; 1857 uintptr_t* cur_stack_arg_; 1858}; 1859 1860// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1861// of transitioning into native code. 1862class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1863 public: 1864 BuildGenericJniFrameVisitor(Thread* self, 1865 bool is_static, 1866 bool critical_native, 1867 const char* shorty, 1868 uint32_t shorty_len, 1869 ArtMethod*** sp) 1870 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1871 jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native), 1872 sm_(&jni_call_) { 1873 ComputeGenericJniFrameSize fsc(critical_native); 1874 uintptr_t* start_gpr_reg; 1875 uint32_t* start_fpr_reg; 1876 uintptr_t* start_stack_arg; 1877 bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, 1878 &handle_scope_, 1879 &start_stack_arg, 1880 &start_gpr_reg, &start_fpr_reg); 1881 1882 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1883 1884 // First 2 parameters are always excluded for CriticalNative methods. 1885 if (LIKELY(!critical_native)) { 1886 // jni environment is always first argument 1887 sm_.AdvancePointer(self->GetJniEnv()); 1888 1889 if (is_static) { 1890 sm_.AdvanceHandleScope((**sp)->GetDeclaringClass()); 1891 } // else "this" reference is already handled by QuickArgumentVisitor. 1892 } 1893 } 1894 1895 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; 1896 1897 void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); 1898 1899 StackReference<mirror::Object>* GetFirstHandleScopeEntry() { 1900 return handle_scope_->GetHandle(0).GetReference(); 1901 } 1902 1903 jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) { 1904 return handle_scope_->GetHandle(0).ToJObject(); 1905 } 1906 1907 void* GetBottomOfUsedArea() const { 1908 return bottom_of_used_area_; 1909 } 1910 1911 private: 1912 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1913 class FillJniCall FINAL : public FillNativeCall { 1914 public: 1915 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1916 HandleScope* handle_scope, bool critical_native) 1917 : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1918 handle_scope_(handle_scope), 1919 cur_entry_(0), 1920 critical_native_(critical_native) {} 1921 1922 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_); 1923 1924 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1925 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1926 handle_scope_ = scope; 1927 cur_entry_ = 0U; 1928 } 1929 1930 void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) { 1931 // Initialize padding entries. 1932 size_t expected_slots = handle_scope_->NumberOfReferences(); 1933 while (cur_entry_ < expected_slots) { 1934 handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); 1935 } 1936 1937 if (!critical_native_) { 1938 // Non-critical natives have at least the self class (jclass) or this (jobject). 1939 DCHECK_NE(cur_entry_, 0U); 1940 } 1941 } 1942 1943 bool CriticalNative() const { 1944 return critical_native_; 1945 } 1946 1947 private: 1948 HandleScope* handle_scope_; 1949 size_t cur_entry_; 1950 const bool critical_native_; 1951 }; 1952 1953 HandleScope* handle_scope_; 1954 FillJniCall jni_call_; 1955 void* bottom_of_used_area_; 1956 1957 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1958 1959 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1960}; 1961 1962uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1963 uintptr_t tmp; 1964 MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); 1965 h.Assign(ref); 1966 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1967 cur_entry_++; 1968 return tmp; 1969} 1970 1971void BuildGenericJniFrameVisitor::Visit() { 1972 Primitive::Type type = GetParamPrimitiveType(); 1973 switch (type) { 1974 case Primitive::kPrimLong: { 1975 jlong long_arg; 1976 if (IsSplitLongOrDouble()) { 1977 long_arg = ReadSplitLongParam(); 1978 } else { 1979 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1980 } 1981 sm_.AdvanceLong(long_arg); 1982 break; 1983 } 1984 case Primitive::kPrimDouble: { 1985 uint64_t double_arg; 1986 if (IsSplitLongOrDouble()) { 1987 // Read into union so that we don't case to a double. 1988 double_arg = ReadSplitLongParam(); 1989 } else { 1990 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1991 } 1992 sm_.AdvanceDouble(double_arg); 1993 break; 1994 } 1995 case Primitive::kPrimNot: { 1996 StackReference<mirror::Object>* stack_ref = 1997 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1998 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1999 break; 2000 } 2001 case Primitive::kPrimFloat: 2002 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 2003 break; 2004 case Primitive::kPrimBoolean: // Fall-through. 2005 case Primitive::kPrimByte: // Fall-through. 2006 case Primitive::kPrimChar: // Fall-through. 2007 case Primitive::kPrimShort: // Fall-through. 2008 case Primitive::kPrimInt: // Fall-through. 2009 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 2010 break; 2011 case Primitive::kPrimVoid: 2012 LOG(FATAL) << "UNREACHABLE"; 2013 UNREACHABLE(); 2014 } 2015} 2016 2017void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 2018 // Clear out rest of the scope. 2019 jni_call_.ResetRemainingScopeSlots(); 2020 if (!jni_call_.CriticalNative()) { 2021 // Install HandleScope. 2022 self->PushHandleScope(handle_scope_); 2023 } 2024} 2025 2026#if defined(__arm__) || defined(__aarch64__) 2027extern "C" void* artFindNativeMethod(); 2028#else 2029extern "C" void* artFindNativeMethod(Thread* self); 2030#endif 2031 2032static uint64_t artQuickGenericJniEndJNIRef(Thread* self, 2033 uint32_t cookie, 2034 bool fast_native ATTRIBUTE_UNUSED, 2035 jobject l, 2036 jobject lock) { 2037 // TODO: add entrypoints for @FastNative returning objects. 2038 if (lock != nullptr) { 2039 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 2040 } else { 2041 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 2042 } 2043} 2044 2045static void artQuickGenericJniEndJNINonRef(Thread* self, 2046 uint32_t cookie, 2047 bool fast_native, 2048 jobject lock) { 2049 if (lock != nullptr) { 2050 JniMethodEndSynchronized(cookie, lock, self); 2051 // Ignore "fast_native" here because synchronized functions aren't very fast. 2052 } else { 2053 if (UNLIKELY(fast_native)) { 2054 JniMethodFastEnd(cookie, self); 2055 } else { 2056 JniMethodEnd(cookie, self); 2057 } 2058 } 2059} 2060 2061/* 2062 * Initializes an alloca region assumed to be directly below sp for a native call: 2063 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 2064 * The final element on the stack is a pointer to the native code. 2065 * 2066 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 2067 * We need to fix this, as the handle scope needs to go into the callee-save frame. 2068 * 2069 * The return of this function denotes: 2070 * 1) How many bytes of the alloca can be released, if the value is non-negative. 2071 * 2) An error, if the value is negative. 2072 */ 2073extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp) 2074 REQUIRES_SHARED(Locks::mutator_lock_) { 2075 ArtMethod* called = *sp; 2076 DCHECK(called->IsNative()) << called->PrettyMethod(true); 2077 uint32_t shorty_len = 0; 2078 const char* shorty = called->GetShorty(&shorty_len); 2079 bool critical_native = called->IsAnnotatedWithCriticalNative(); 2080 bool fast_native = called->IsAnnotatedWithFastNative(); 2081 bool normal_native = !critical_native && !fast_native; 2082 2083 // Run the visitor and update sp. 2084 BuildGenericJniFrameVisitor visitor(self, 2085 called->IsStatic(), 2086 critical_native, 2087 shorty, 2088 shorty_len, 2089 &sp); 2090 { 2091 ScopedAssertNoThreadSuspension sants(__FUNCTION__); 2092 visitor.VisitArguments(); 2093 // FinalizeHandleScope pushes the handle scope on the thread. 2094 visitor.FinalizeHandleScope(self); 2095 } 2096 2097 // Fix up managed-stack things in Thread. 2098 self->SetTopOfStack(sp); 2099 2100 self->VerifyStack(); 2101 2102 uint32_t cookie; 2103 uint32_t* sp32; 2104 // Skip calling JniMethodStart for @CriticalNative. 2105 if (LIKELY(!critical_native)) { 2106 // Start JNI, save the cookie. 2107 if (called->IsSynchronized()) { 2108 DCHECK(normal_native) << " @FastNative and synchronize is not supported"; 2109 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 2110 if (self->IsExceptionPending()) { 2111 self->PopHandleScope(); 2112 // A negative value denotes an error. 2113 return GetTwoWordFailureValue(); 2114 } 2115 } else { 2116 if (fast_native) { 2117 cookie = JniMethodFastStart(self); 2118 } else { 2119 DCHECK(normal_native); 2120 cookie = JniMethodStart(self); 2121 } 2122 } 2123 sp32 = reinterpret_cast<uint32_t*>(sp); 2124 *(sp32 - 1) = cookie; 2125 } 2126 2127 // Retrieve the stored native code. 2128 void* nativeCode = called->GetEntryPointFromJni(); 2129 2130 // There are two cases for the content of nativeCode: 2131 // 1) Pointer to the native function. 2132 // 2) Pointer to the trampoline for native code binding. 2133 // In the second case, we need to execute the binding and continue with the actual native function 2134 // pointer. 2135 DCHECK(nativeCode != nullptr); 2136 if (nativeCode == GetJniDlsymLookupStub()) { 2137#if defined(__arm__) || defined(__aarch64__) 2138 nativeCode = artFindNativeMethod(); 2139#else 2140 nativeCode = artFindNativeMethod(self); 2141#endif 2142 2143 if (nativeCode == nullptr) { 2144 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 2145 2146 // @CriticalNative calls do not need to call back into JniMethodEnd. 2147 if (LIKELY(!critical_native)) { 2148 // End JNI, as the assembly will move to deliver the exception. 2149 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 2150 if (shorty[0] == 'L') { 2151 artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock); 2152 } else { 2153 artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock); 2154 } 2155 } 2156 2157 return GetTwoWordFailureValue(); 2158 } 2159 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 2160 } 2161 2162#if defined(__mips__) && !defined(__LP64__) 2163 // On MIPS32 if the first two arguments are floating-point, we need to know their types 2164 // so that art_quick_generic_jni_trampoline can correctly extract them from the stack 2165 // and load into floating-point registers. 2166 // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU 2167 // view): 2168 // (1) 2169 // | DOUBLE | DOUBLE | other args, if any 2170 // | F12 | F13 | F14 | F15 | 2171 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 2172 // (2) 2173 // | DOUBLE | FLOAT | (PAD) | other args, if any 2174 // | F12 | F13 | F14 | | 2175 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 2176 // (3) 2177 // | FLOAT | (PAD) | DOUBLE | other args, if any 2178 // | F12 | | F14 | F15 | 2179 // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 2180 // (4) 2181 // | FLOAT | FLOAT | other args, if any 2182 // | F12 | F14 | 2183 // | SP+0 | SP+4 | SP+8 2184 // As you can see, only the last case (4) is special. In all others we can just 2185 // load F12/F13 and F14/F15 in the same manner. 2186 // Set bit 0 of the native code address to 1 in this case (valid code addresses 2187 // are always a multiple of 4 on MIPS32, so we have 2 spare bits available). 2188 if (nativeCode != nullptr && 2189 shorty != nullptr && 2190 shorty_len >= 3 && 2191 shorty[1] == 'F' && 2192 shorty[2] == 'F') { 2193 nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1); 2194 } 2195#endif 2196 2197 // Return native code addr(lo) and bottom of alloca address(hi). 2198 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 2199 reinterpret_cast<uintptr_t>(nativeCode)); 2200} 2201 2202// Defined in quick_jni_entrypoints.cc. 2203extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie, 2204 jvalue result, uint64_t result_f, ArtMethod* called, 2205 HandleScope* handle_scope); 2206/* 2207 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 2208 * unlocking. 2209 */ 2210extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, 2211 jvalue result, 2212 uint64_t result_f) { 2213 // We're here just back from a native call. We don't have the shared mutator lock at this point 2214 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing 2215 // anything that requires a mutator lock before that would cause problems as GC may have the 2216 // exclusive mutator lock and may be moving objects, etc. 2217 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); 2218 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 2219 ArtMethod* called = *sp; 2220 uint32_t cookie = *(sp32 - 1); 2221 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp)); 2222 return GenericJniMethodEnd(self, cookie, result, result_f, called, table); 2223} 2224 2225// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 2226// for the method pointer. 2227// 2228// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 2229// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations). 2230 2231template<InvokeType type, bool access_check> 2232static TwoWordReturn artInvokeCommon(uint32_t method_idx, 2233 ObjPtr<mirror::Object> this_object, 2234 Thread* self, 2235 ArtMethod** sp) { 2236 ScopedQuickEntrypointChecks sqec(self); 2237 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs)); 2238 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); 2239 ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type); 2240 if (UNLIKELY(method == nullptr)) { 2241 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 2242 uint32_t shorty_len; 2243 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 2244 { 2245 // Remember the args in case a GC happens in FindMethodFromCode. 2246 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2247 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 2248 visitor.VisitArguments(); 2249 method = FindMethodFromCode<type, access_check>(method_idx, 2250 &this_object, 2251 caller_method, 2252 self); 2253 visitor.FixupReferences(); 2254 } 2255 2256 if (UNLIKELY(method == nullptr)) { 2257 CHECK(self->IsExceptionPending()); 2258 return GetTwoWordFailureValue(); // Failure. 2259 } 2260 } 2261 DCHECK(!self->IsExceptionPending()); 2262 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2263 2264 // When we return, the caller will branch to this address, so it had better not be 0! 2265 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() 2266 << " location: " 2267 << method->GetDexFile()->GetLocation(); 2268 2269 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2270 reinterpret_cast<uintptr_t>(method)); 2271} 2272 2273// Explicit artInvokeCommon template function declarations to please analysis tool. 2274#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 2275 template REQUIRES_SHARED(Locks::mutator_lock_) \ 2276 TwoWordReturn artInvokeCommon<type, access_check>( \ 2277 uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp) 2278 2279EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 2280EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 2281EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 2282EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 2283EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 2284EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 2285EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 2286EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 2287EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 2288EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 2289#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 2290 2291// See comments in runtime_support_asm.S 2292extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 2293 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2294 REQUIRES_SHARED(Locks::mutator_lock_) { 2295 return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp); 2296} 2297 2298extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 2299 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2300 REQUIRES_SHARED(Locks::mutator_lock_) { 2301 return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp); 2302} 2303 2304extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 2305 uint32_t method_idx, 2306 mirror::Object* this_object ATTRIBUTE_UNUSED, 2307 Thread* self, 2308 ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { 2309 // For static, this_object is not required and may be random garbage. Don't pass it down so that 2310 // it doesn't cause ObjPtr alignment failure check. 2311 return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp); 2312} 2313 2314extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 2315 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2316 REQUIRES_SHARED(Locks::mutator_lock_) { 2317 return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp); 2318} 2319 2320extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 2321 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) 2322 REQUIRES_SHARED(Locks::mutator_lock_) { 2323 return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp); 2324} 2325 2326// Determine target of interface dispatch. This object is known non-null. First argument 2327// is there for consistency but should not be used, as some architectures overwrite it 2328// in the assembly trampoline. 2329extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED, 2330 mirror::Object* raw_this_object, 2331 Thread* self, 2332 ArtMethod** sp) 2333 REQUIRES_SHARED(Locks::mutator_lock_) { 2334 ObjPtr<mirror::Object> this_object(raw_this_object); 2335 ScopedQuickEntrypointChecks sqec(self); 2336 StackHandleScope<1> hs(self); 2337 Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass())); 2338 2339 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); 2340 2341 // Fetch the dex_method_idx of the target interface method from the caller. 2342 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 2343 2344 const DexFile::CodeItem* code_item = caller_method->GetCodeItem(); 2345 CHECK_LT(dex_pc, code_item->insns_size_in_code_units_); 2346 const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]); 2347 Instruction::Code instr_code = instr->Opcode(); 2348 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 2349 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 2350 << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr); 2351 uint32_t dex_method_idx; 2352 if (instr_code == Instruction::INVOKE_INTERFACE) { 2353 dex_method_idx = instr->VRegB_35c(); 2354 } else { 2355 CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 2356 dex_method_idx = instr->VRegB_3rc(); 2357 } 2358 2359 ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod( 2360 dex_method_idx, kRuntimePointerSize); 2361 DCHECK(interface_method != nullptr) << dex_method_idx << " " << caller_method->PrettyMethod(); 2362 ArtMethod* method = nullptr; 2363 ImTable* imt = cls->GetImt(kRuntimePointerSize); 2364 2365 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 2366 // If the dex cache already resolved the interface method, look whether we have 2367 // a match in the ImtConflictTable. 2368 ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method), 2369 kRuntimePointerSize); 2370 if (LIKELY(conflict_method->IsRuntimeMethod())) { 2371 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); 2372 DCHECK(current_table != nullptr); 2373 method = current_table->Lookup(interface_method, kRuntimePointerSize); 2374 } else { 2375 // It seems we aren't really a conflict method! 2376 method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); 2377 } 2378 if (method != nullptr) { 2379 return GetTwoWordSuccessValue( 2380 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()), 2381 reinterpret_cast<uintptr_t>(method)); 2382 } 2383 2384 // No match, use the IfTable. 2385 method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); 2386 if (UNLIKELY(method == nullptr)) { 2387 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( 2388 interface_method, this_object, caller_method); 2389 return GetTwoWordFailureValue(); // Failure. 2390 } 2391 } else { 2392 // The dex cache did not resolve the method, look it up in the dex file 2393 // of the caller, 2394 DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod()); 2395 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 2396 ->GetDexFile(); 2397 uint32_t shorty_len; 2398 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 2399 &shorty_len); 2400 { 2401 // Remember the args in case a GC happens in FindMethodFromCode. 2402 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 2403 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 2404 visitor.VisitArguments(); 2405 method = FindMethodFromCode<kInterface, false>(dex_method_idx, 2406 &this_object, 2407 caller_method, 2408 self); 2409 visitor.FixupReferences(); 2410 } 2411 2412 if (UNLIKELY(method == nullptr)) { 2413 CHECK(self->IsExceptionPending()); 2414 return GetTwoWordFailureValue(); // Failure. 2415 } 2416 interface_method = 2417 caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize); 2418 DCHECK(!interface_method->IsRuntimeMethod()); 2419 } 2420 2421 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable. 2422 // We create a new table with the new pair { interface_method, method }. 2423 uint32_t imt_index = ImTable::GetImtIndex(interface_method); 2424 ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize); 2425 if (conflict_method->IsRuntimeMethod()) { 2426 ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable( 2427 cls.Get(), 2428 conflict_method, 2429 interface_method, 2430 method, 2431 /*force_new_conflict_method*/false); 2432 if (new_conflict_method != conflict_method) { 2433 // Update the IMT if we create a new conflict method. No fence needed here, as the 2434 // data is consistent. 2435 imt->Set(imt_index, 2436 new_conflict_method, 2437 kRuntimePointerSize); 2438 } 2439 } 2440 2441 const void* code = method->GetEntryPointFromQuickCompiledCode(); 2442 2443 // When we return, the caller will branch to this address, so it had better not be 0! 2444 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() 2445 << " location: " << method->GetDexFile()->GetLocation(); 2446 2447 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 2448 reinterpret_cast<uintptr_t>(method)); 2449} 2450 2451// Returns shorty type so the caller can determine how to put |result| 2452// into expected registers. The shorty type is static so the compiler 2453// could call different flavors of this code path depending on the 2454// shorty type though this would require different entry points for 2455// each type. 2456extern "C" uintptr_t artInvokePolymorphic( 2457 JValue* result, 2458 mirror::Object* raw_method_handle, 2459 Thread* self, 2460 ArtMethod** sp) 2461 REQUIRES_SHARED(Locks::mutator_lock_) { 2462 ScopedQuickEntrypointChecks sqec(self); 2463 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs)); 2464 2465 // Start new JNI local reference state 2466 JNIEnvExt* env = self->GetJniEnv(); 2467 ScopedObjectAccessUnchecked soa(env); 2468 ScopedJniEnvLocalRefState env_state(env); 2469 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe."); 2470 2471 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC. 2472 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); 2473 uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); 2474 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 2475 const Instruction* inst = Instruction::At(&code->insns_[dex_pc]); 2476 DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC || 2477 inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); 2478 const DexFile* dex_file = caller_method->GetDexFile(); 2479 const uint32_t proto_idx = inst->VRegH(); 2480 const char* shorty = dex_file->GetShorty(proto_idx); 2481 const size_t shorty_length = strlen(shorty); 2482 static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static. 2483 RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa); 2484 gc_visitor.VisitArguments(); 2485 2486 // Wrap raw_method_handle in a Handle for safety. 2487 StackHandleScope<5> hs(self); 2488 Handle<mirror::MethodHandle> method_handle( 2489 hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle)))); 2490 raw_method_handle = nullptr; 2491 self->EndAssertNoThreadSuspension(old_cause); 2492 2493 // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact(). 2494 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 2495 ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self, 2496 inst->VRegB(), 2497 caller_method, 2498 kVirtual); 2499 DCHECK((resolved_method == 2500 jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) || 2501 (resolved_method == 2502 jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke))); 2503 if (UNLIKELY(method_handle.IsNull())) { 2504 ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual); 2505 return static_cast<uintptr_t>('V'); 2506 } 2507 2508 Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass())); 2509 Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType( 2510 *dex_file, proto_idx, 2511 hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()), 2512 hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader())))); 2513 // This implies we couldn't resolve one or more types in this method handle. 2514 if (UNLIKELY(method_type.IsNull())) { 2515 CHECK(self->IsExceptionPending()); 2516 return static_cast<uintptr_t>('V'); 2517 } 2518 2519 DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA()); 2520 DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic); 2521 2522 // Fix references before constructing the shadow frame. 2523 gc_visitor.FixupReferences(); 2524 2525 // Construct shadow frame placing arguments consecutively from |first_arg|. 2526 const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); 2527 const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc(); 2528 const size_t first_arg = 0; 2529 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = 2530 CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc); 2531 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); 2532 ScopedStackedShadowFramePusher 2533 frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); 2534 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, 2535 kMethodIsStatic, 2536 shorty, 2537 strlen(shorty), 2538 shadow_frame, 2539 first_arg); 2540 shadow_frame_builder.VisitArguments(); 2541 2542 // Push a transition back into managed code onto the linked list in thread. 2543 ManagedStack fragment; 2544 self->PushManagedStackFragment(&fragment); 2545 2546 // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in 2547 // consecutive order. 2548 uint32_t unused_args[Instruction::kMaxVarArgRegs] = {}; 2549 uint32_t first_callee_arg = first_arg + 1; 2550 if (!DoInvokePolymorphic<true /* is_range */>(self, 2551 resolved_method, 2552 *shadow_frame, 2553 method_handle, 2554 method_type, 2555 unused_args, 2556 first_callee_arg, 2557 result)) { 2558 DCHECK(self->IsExceptionPending()); 2559 } 2560 2561 // Pop transition record. 2562 self->PopManagedStackFragment(fragment); 2563 2564 return static_cast<uintptr_t>(shorty[0]); 2565} 2566 2567} // namespace art 2568