quick_trampoline_entrypoints.cc revision d776ff08e07494327716f0d2ea1a774b2ebfbca9
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "art_method-inl.h"
18#include "base/enums.h"
19#include "callee_save_frame.h"
20#include "common_throws.h"
21#include "dex_file-inl.h"
22#include "dex_instruction-inl.h"
23#include "entrypoints/entrypoint_utils-inl.h"
24#include "entrypoints/runtime_asm_entrypoints.h"
25#include "gc/accounting/card_table-inl.h"
26#include "imt_conflict_table.h"
27#include "imtable-inl.h"
28#include "interpreter/interpreter.h"
29#include "linear_alloc.h"
30#include "method_handles.h"
31#include "method_reference.h"
32#include "mirror/class-inl.h"
33#include "mirror/dex_cache-inl.h"
34#include "mirror/method.h"
35#include "mirror/method_handle_impl.h"
36#include "mirror/object-inl.h"
37#include "mirror/object_array-inl.h"
38#include "oat_quick_method_header.h"
39#include "quick_exception_handler.h"
40#include "runtime.h"
41#include "scoped_thread_state_change-inl.h"
42#include "stack.h"
43#include "debugger.h"
44#include "well_known_classes.h"
45
46namespace art {
47
48// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
49class QuickArgumentVisitor {
50  // Number of bytes for each out register in the caller method's frame.
51  static constexpr size_t kBytesStackArgLocation = 4;
52  // Frame size in bytes of a callee-save frame for RefsAndArgs.
53  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
54      GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
55#if defined(__arm__)
56  // The callee save frame is pointed to by SP.
57  // | argN       |  |
58  // | ...        |  |
59  // | arg4       |  |
60  // | arg3 spill |  |  Caller's frame
61  // | arg2 spill |  |
62  // | arg1 spill |  |
63  // | Method*    | ---
64  // | LR         |
65  // | ...        |    4x6 bytes callee saves
66  // | R3         |
67  // | R2         |
68  // | R1         |
69  // | S15        |
70  // | :          |
71  // | S0         |
72  // |            |    4x2 bytes padding
73  // | Method*    |  <- sp
74  static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
75  static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
76  static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
77  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
78  static constexpr bool kQuickSkipOddFpRegisters = false;
79  static constexpr size_t kNumQuickGprArgs = 3;
80  static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
81  static constexpr bool kGprFprLockstep = false;
82  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
83      arm::ArmCalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
84  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
85      arm::ArmCalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
86  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
87      arm::ArmCalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
88  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
89    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
90  }
91#elif defined(__aarch64__)
92  // The callee save frame is pointed to by SP.
93  // | argN       |  |
94  // | ...        |  |
95  // | arg4       |  |
96  // | arg3 spill |  |  Caller's frame
97  // | arg2 spill |  |
98  // | arg1 spill |  |
99  // | Method*    | ---
100  // | LR         |
101  // | X29        |
102  // |  :         |
103  // | X20        |
104  // | X7         |
105  // | :          |
106  // | X1         |
107  // | D7         |
108  // |  :         |
109  // | D0         |
110  // |            |    padding
111  // | Method*    |  <- sp
112  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
113  static constexpr bool kAlignPairRegister = false;
114  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
115  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
116  static constexpr bool kQuickSkipOddFpRegisters = false;
117  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
118  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
119  static constexpr bool kGprFprLockstep = false;
120  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
121      arm64::Arm64CalleeSaveFpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first FPR arg.
122  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
123      arm64::Arm64CalleeSaveGpr1Offset(Runtime::kSaveRefsAndArgs);  // Offset of first GPR arg.
124  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
125      arm64::Arm64CalleeSaveLrOffset(Runtime::kSaveRefsAndArgs);  // Offset of return address.
126  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
127    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
128  }
129#elif defined(__mips__) && !defined(__LP64__)
130  // The callee save frame is pointed to by SP.
131  // | argN       |  |
132  // | ...        |  |
133  // | arg4       |  |
134  // | arg3 spill |  |  Caller's frame
135  // | arg2 spill |  |
136  // | arg1 spill |  |
137  // | Method*    | ---
138  // | RA         |
139  // | ...        |    callee saves
140  // | T1         |    arg5
141  // | T0         |    arg4
142  // | A3         |    arg3
143  // | A2         |    arg2
144  // | A1         |    arg1
145  // | F19        |
146  // | F18        |    f_arg5
147  // | F17        |
148  // | F16        |    f_arg4
149  // | F15        |
150  // | F14        |    f_arg3
151  // | F13        |
152  // | F12        |    f_arg2
153  // | F11        |
154  // | F10        |    f_arg1
155  // | F9         |
156  // | F8         |    f_arg0
157  // |            |    padding
158  // | A0/Method* |  <- sp
159  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
160  static constexpr bool kAlignPairRegister = true;
161  static constexpr bool kQuickSoftFloatAbi = false;
162  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
163  static constexpr bool kQuickSkipOddFpRegisters = true;
164  static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
165  static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
166                                                  // passed only in even numbered registers and each
167                                                  // double occupies two registers.
168  static constexpr bool kGprFprLockstep = false;
169  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8;  // Offset of first FPR arg.
170  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56;  // Offset of first GPR arg.
171  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108;  // Offset of return address.
172  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
173    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
174  }
175#elif defined(__mips__) && defined(__LP64__)
176  // The callee save frame is pointed to by SP.
177  // | argN       |  |
178  // | ...        |  |
179  // | arg4       |  |
180  // | arg3 spill |  |  Caller's frame
181  // | arg2 spill |  |
182  // | arg1 spill |  |
183  // | Method*    | ---
184  // | RA         |
185  // | ...        |    callee saves
186  // | A7         |    arg7
187  // | A6         |    arg6
188  // | A5         |    arg5
189  // | A4         |    arg4
190  // | A3         |    arg3
191  // | A2         |    arg2
192  // | A1         |    arg1
193  // | F19        |    f_arg7
194  // | F18        |    f_arg6
195  // | F17        |    f_arg5
196  // | F16        |    f_arg4
197  // | F15        |    f_arg3
198  // | F14        |    f_arg2
199  // | F13        |    f_arg1
200  // | F12        |    f_arg0
201  // |            |    padding
202  // | A0/Method* |  <- sp
203  // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
204  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
205  static constexpr bool kAlignPairRegister = false;
206  static constexpr bool kQuickSoftFloatAbi = false;
207  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
208  static constexpr bool kQuickSkipOddFpRegisters = false;
209  static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
210  static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
211  static constexpr bool kGprFprLockstep = true;
212
213  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F13).
214  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
215  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
216  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
217    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
218  }
219#elif defined(__i386__)
220  // The callee save frame is pointed to by SP.
221  // | argN        |  |
222  // | ...         |  |
223  // | arg4        |  |
224  // | arg3 spill  |  |  Caller's frame
225  // | arg2 spill  |  |
226  // | arg1 spill  |  |
227  // | Method*     | ---
228  // | Return      |
229  // | EBP,ESI,EDI |    callee saves
230  // | EBX         |    arg3
231  // | EDX         |    arg2
232  // | ECX         |    arg1
233  // | XMM3        |    float arg 4
234  // | XMM2        |    float arg 3
235  // | XMM1        |    float arg 2
236  // | XMM0        |    float arg 1
237  // | EAX/Method* |  <- sp
238  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
239  static constexpr bool kAlignPairRegister = false;
240  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
241  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
242  static constexpr bool kQuickSkipOddFpRegisters = false;
243  static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
244  static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
245  static constexpr bool kGprFprLockstep = false;
246  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
247  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
248  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
249  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
250    return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
251  }
252#elif defined(__x86_64__)
253  // The callee save frame is pointed to by SP.
254  // | argN            |  |
255  // | ...             |  |
256  // | reg. arg spills |  |  Caller's frame
257  // | Method*         | ---
258  // | Return          |
259  // | R15             |    callee save
260  // | R14             |    callee save
261  // | R13             |    callee save
262  // | R12             |    callee save
263  // | R9              |    arg5
264  // | R8              |    arg4
265  // | RSI/R6          |    arg1
266  // | RBP/R5          |    callee save
267  // | RBX/R3          |    callee save
268  // | RDX/R2          |    arg2
269  // | RCX/R1          |    arg3
270  // | XMM7            |    float arg 8
271  // | XMM6            |    float arg 7
272  // | XMM5            |    float arg 6
273  // | XMM4            |    float arg 5
274  // | XMM3            |    float arg 4
275  // | XMM2            |    float arg 3
276  // | XMM1            |    float arg 2
277  // | XMM0            |    float arg 1
278  // | Padding         |
279  // | RDI/Method*     |  <- sp
280  static constexpr bool kSplitPairAcrossRegisterAndStack = false;
281  static constexpr bool kAlignPairRegister = false;
282  static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
283  static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
284  static constexpr bool kQuickSkipOddFpRegisters = false;
285  static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
286  static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
287  static constexpr bool kGprFprLockstep = false;
288  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
289  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
290  static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
291  static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292    switch (gpr_index) {
293      case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294      case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295      case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296      case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297      case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298      default:
299      LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300      return 0;
301    }
302  }
303#else
304#error "Unsupported architecture"
305#endif
306
307 public:
308  // Special handling for proxy methods. Proxy methods are instance methods so the
309  // 'this' object is the 1st argument. They also have the same frame layout as the
310  // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311  // 1st GPR.
312  static mirror::Object* GetProxyThisObject(ArtMethod** sp)
313      REQUIRES_SHARED(Locks::mutator_lock_) {
314    CHECK((*sp)->IsProxyMethod());
315    CHECK_GT(kNumQuickGprArgs, 0u);
316    constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
317    size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318        GprIndexToGprOffset(kThisGprIndex);
319    uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320    return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
321  }
322
323  static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324    DCHECK((*sp)->IsCalleeSaveMethod());
325    return GetCalleeSaveMethodCaller(sp, Runtime::kSaveRefsAndArgs);
326  }
327
328  static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329    DCHECK((*sp)->IsCalleeSaveMethod());
330    uint8_t* previous_sp =
331        reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332    return *reinterpret_cast<ArtMethod**>(previous_sp);
333  }
334
335  static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336    DCHECK((*sp)->IsCalleeSaveMethod());
337    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
338    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
339        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
340    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
341    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
342    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
343
344    if (current_code->IsOptimized()) {
345      CodeInfo code_info = current_code->GetOptimizedCodeInfo();
346      CodeInfoEncoding encoding = code_info.ExtractEncoding();
347      StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
348      DCHECK(stack_map.IsValid());
349      if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
350        InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
351        return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
352                                           inline_info.GetDepth(encoding.inline_info.encoding)-1);
353      } else {
354        return stack_map.GetDexPc(encoding.stack_map.encoding);
355      }
356    } else {
357      return current_code->ToDexPc(*caller_sp, outer_pc);
358    }
359  }
360
361  static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
362      REQUIRES_SHARED(Locks::mutator_lock_) {
363    DCHECK((*sp)->IsCalleeSaveMethod());
364    const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kSaveRefsAndArgs);
365    ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
366        reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
367    uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
368    const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
369    if (!current_code->IsOptimized()) {
370      return false;
371    }
372    uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
373    CodeInfo code_info = current_code->GetOptimizedCodeInfo();
374    CodeInfoEncoding encoding = code_info.ExtractEncoding();
375    InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
376    if (invoke.IsValid()) {
377      *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
378      *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding);
379      return true;
380    }
381    return false;
382  }
383
384  // For the given quick ref and args quick frame, return the caller's PC.
385  static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
386    DCHECK((*sp)->IsCalleeSaveMethod());
387    uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
388    return *reinterpret_cast<uintptr_t*>(lr);
389  }
390
391  QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
392                       uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
393          is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
394          gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
395          fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
396          stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
397              + sizeof(ArtMethod*)),  // Skip ArtMethod*.
398          gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
399          cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
400    static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
401                  "Number of Quick FPR arguments unexpected");
402    static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
403                  "Double alignment unexpected");
404    // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
405    // next register is even.
406    static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
407                  "Number of Quick FPR arguments not even");
408    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
409  }
410
411  virtual ~QuickArgumentVisitor() {}
412
413  virtual void Visit() = 0;
414
415  Primitive::Type GetParamPrimitiveType() const {
416    return cur_type_;
417  }
418
419  uint8_t* GetParamAddress() const {
420    if (!kQuickSoftFloatAbi) {
421      Primitive::Type type = GetParamPrimitiveType();
422      if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
423        if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
424          if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
425            return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
426          }
427        } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
428          return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
429        }
430        return stack_args_ + (stack_index_ * kBytesStackArgLocation);
431      }
432    }
433    if (gpr_index_ < kNumQuickGprArgs) {
434      return gpr_args_ + GprIndexToGprOffset(gpr_index_);
435    }
436    return stack_args_ + (stack_index_ * kBytesStackArgLocation);
437  }
438
439  bool IsSplitLongOrDouble() const {
440    if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
441        (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
442      return is_split_long_or_double_;
443    } else {
444      return false;  // An optimization for when GPR and FPRs are 64bit.
445    }
446  }
447
448  bool IsParamAReference() const {
449    return GetParamPrimitiveType() == Primitive::kPrimNot;
450  }
451
452  bool IsParamALongOrDouble() const {
453    Primitive::Type type = GetParamPrimitiveType();
454    return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
455  }
456
457  uint64_t ReadSplitLongParam() const {
458    // The splitted long is always available through the stack.
459    return *reinterpret_cast<uint64_t*>(stack_args_
460        + stack_index_ * kBytesStackArgLocation);
461  }
462
463  void IncGprIndex() {
464    gpr_index_++;
465    if (kGprFprLockstep) {
466      fpr_index_++;
467    }
468  }
469
470  void IncFprIndex() {
471    fpr_index_++;
472    if (kGprFprLockstep) {
473      gpr_index_++;
474    }
475  }
476
477  void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
478    // (a) 'stack_args_' should point to the first method's argument
479    // (b) whatever the argument type it is, the 'stack_index_' should
480    //     be moved forward along with every visiting.
481    gpr_index_ = 0;
482    fpr_index_ = 0;
483    if (kQuickDoubleRegAlignedFloatBackFilled) {
484      fpr_double_index_ = 0;
485    }
486    stack_index_ = 0;
487    if (!is_static_) {  // Handle this.
488      cur_type_ = Primitive::kPrimNot;
489      is_split_long_or_double_ = false;
490      Visit();
491      stack_index_++;
492      if (kNumQuickGprArgs > 0) {
493        IncGprIndex();
494      }
495    }
496    for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
497      cur_type_ = Primitive::GetType(shorty_[shorty_index]);
498      switch (cur_type_) {
499        case Primitive::kPrimNot:
500        case Primitive::kPrimBoolean:
501        case Primitive::kPrimByte:
502        case Primitive::kPrimChar:
503        case Primitive::kPrimShort:
504        case Primitive::kPrimInt:
505          is_split_long_or_double_ = false;
506          Visit();
507          stack_index_++;
508          if (gpr_index_ < kNumQuickGprArgs) {
509            IncGprIndex();
510          }
511          break;
512        case Primitive::kPrimFloat:
513          is_split_long_or_double_ = false;
514          Visit();
515          stack_index_++;
516          if (kQuickSoftFloatAbi) {
517            if (gpr_index_ < kNumQuickGprArgs) {
518              IncGprIndex();
519            }
520          } else {
521            if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
522              IncFprIndex();
523              if (kQuickDoubleRegAlignedFloatBackFilled) {
524                // Double should not overlap with float.
525                // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
526                fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
527                // Float should not overlap with double.
528                if (fpr_index_ % 2 == 0) {
529                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
530                }
531              } else if (kQuickSkipOddFpRegisters) {
532                IncFprIndex();
533              }
534            }
535          }
536          break;
537        case Primitive::kPrimDouble:
538        case Primitive::kPrimLong:
539          if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
540            if (cur_type_ == Primitive::kPrimLong &&
541#if defined(__mips__) && !defined(__LP64__)
542                (gpr_index_ == 0 || gpr_index_ == 2) &&
543#else
544                gpr_index_ == 0 &&
545#endif
546                kAlignPairRegister) {
547              // Currently, this is only for ARM and MIPS, where we align long parameters with
548              // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
549              // R2 (on ARM) or A2(T0) (on MIPS) instead.
550              IncGprIndex();
551            }
552            is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
553                ((gpr_index_ + 1) == kNumQuickGprArgs);
554            if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
555              // We don't want to split this. Pass over this register.
556              gpr_index_++;
557              is_split_long_or_double_ = false;
558            }
559            Visit();
560            if (kBytesStackArgLocation == 4) {
561              stack_index_+= 2;
562            } else {
563              CHECK_EQ(kBytesStackArgLocation, 8U);
564              stack_index_++;
565            }
566            if (gpr_index_ < kNumQuickGprArgs) {
567              IncGprIndex();
568              if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
569                if (gpr_index_ < kNumQuickGprArgs) {
570                  IncGprIndex();
571                }
572              }
573            }
574          } else {
575            is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
576                ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
577            Visit();
578            if (kBytesStackArgLocation == 4) {
579              stack_index_+= 2;
580            } else {
581              CHECK_EQ(kBytesStackArgLocation, 8U);
582              stack_index_++;
583            }
584            if (kQuickDoubleRegAlignedFloatBackFilled) {
585              if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
586                fpr_double_index_ += 2;
587                // Float should not overlap with double.
588                if (fpr_index_ % 2 == 0) {
589                  fpr_index_ = std::max(fpr_double_index_, fpr_index_);
590                }
591              }
592            } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
593              IncFprIndex();
594              if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
595                if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
596                  IncFprIndex();
597                }
598              }
599            }
600          }
601          break;
602        default:
603          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
604      }
605    }
606  }
607
608 protected:
609  const bool is_static_;
610  const char* const shorty_;
611  const uint32_t shorty_len_;
612
613 private:
614  uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
615  uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
616  uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
617  uint32_t gpr_index_;  // Index into spilled GPRs.
618  // Index into spilled FPRs.
619  // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
620  // holds a higher register number.
621  uint32_t fpr_index_;
622  // Index into spilled FPRs for aligned double.
623  // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
624  // terms of singles, may be behind fpr_index.
625  uint32_t fpr_double_index_;
626  uint32_t stack_index_;  // Index into arguments on the stack.
627  // The current type of argument during VisitArguments.
628  Primitive::Type cur_type_;
629  // Does a 64bit parameter straddle the register and stack arguments?
630  bool is_split_long_or_double_;
631};
632
633// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
634// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
635extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
636    REQUIRES_SHARED(Locks::mutator_lock_) {
637  return QuickArgumentVisitor::GetProxyThisObject(sp);
638}
639
640// Visits arguments on the stack placing them into the shadow frame.
641class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
642 public:
643  BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
644                               uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
645      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
646
647  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
648
649 private:
650  ShadowFrame* const sf_;
651  uint32_t cur_reg_;
652
653  DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
654};
655
656void BuildQuickShadowFrameVisitor::Visit() {
657  Primitive::Type type = GetParamPrimitiveType();
658  switch (type) {
659    case Primitive::kPrimLong:  // Fall-through.
660    case Primitive::kPrimDouble:
661      if (IsSplitLongOrDouble()) {
662        sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
663      } else {
664        sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
665      }
666      ++cur_reg_;
667      break;
668    case Primitive::kPrimNot: {
669        StackReference<mirror::Object>* stack_ref =
670            reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
671        sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
672      }
673      break;
674    case Primitive::kPrimBoolean:  // Fall-through.
675    case Primitive::kPrimByte:     // Fall-through.
676    case Primitive::kPrimChar:     // Fall-through.
677    case Primitive::kPrimShort:    // Fall-through.
678    case Primitive::kPrimInt:      // Fall-through.
679    case Primitive::kPrimFloat:
680      sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
681      break;
682    case Primitive::kPrimVoid:
683      LOG(FATAL) << "UNREACHABLE";
684      UNREACHABLE();
685  }
686  ++cur_reg_;
687}
688
689extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
690    REQUIRES_SHARED(Locks::mutator_lock_) {
691  // Ensure we don't get thread suspension until the object arguments are safely in the shadow
692  // frame.
693  ScopedQuickEntrypointChecks sqec(self);
694
695  if (UNLIKELY(!method->IsInvokable())) {
696    method->ThrowInvocationTimeError();
697    return 0;
698  }
699
700  JValue tmp_value;
701  ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
702      StackedShadowFrameType::kDeoptimizationShadowFrame, false);
703  ManagedStack fragment;
704
705  DCHECK(!method->IsNative()) << method->PrettyMethod();
706  uint32_t shorty_len = 0;
707  ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
708  const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
709  DCHECK(code_item != nullptr) << method->PrettyMethod();
710  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
711
712  JValue result;
713
714  if (deopt_frame != nullptr) {
715    // Coming from partial-fragment deopt.
716
717    if (kIsDebugBuild) {
718      // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
719      // of the call-stack) corresponds to the called method.
720      ShadowFrame* linked = deopt_frame;
721      while (linked->GetLink() != nullptr) {
722        linked = linked->GetLink();
723      }
724      CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
725          << ArtMethod::PrettyMethod(linked->GetMethod());
726    }
727
728    if (VLOG_IS_ON(deopt)) {
729      // Print out the stack to verify that it was a partial-fragment deopt.
730      LOG(INFO) << "Continue-ing from deopt. Stack is:";
731      QuickExceptionHandler::DumpFramesWithType(self, true);
732    }
733
734    ObjPtr<mirror::Throwable> pending_exception;
735    bool from_code = false;
736    self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
737
738    // Push a transition back into managed code onto the linked list in thread.
739    self->PushManagedStackFragment(&fragment);
740
741    // Ensure that the stack is still in order.
742    if (kIsDebugBuild) {
743      class DummyStackVisitor : public StackVisitor {
744       public:
745        explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
746            : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
747
748        bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
749          // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
750          // logic. Just always say we want to continue.
751          return true;
752        }
753      };
754      DummyStackVisitor dsv(self);
755      dsv.WalkStack();
756    }
757
758    // Restore the exception that was pending before deoptimization then interpret the
759    // deoptimized frames.
760    if (pending_exception != nullptr) {
761      self->SetException(pending_exception);
762    }
763    interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
764  } else {
765    const char* old_cause = self->StartAssertNoThreadSuspension(
766        "Building interpreter shadow frame");
767    uint16_t num_regs = code_item->registers_size_;
768    // No last shadow coming from quick.
769    ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
770        CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
771    ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
772    size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
773    BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
774                                                      shadow_frame, first_arg_reg);
775    shadow_frame_builder.VisitArguments();
776    const bool needs_initialization =
777        method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
778    // Push a transition back into managed code onto the linked list in thread.
779    self->PushManagedStackFragment(&fragment);
780    self->PushShadowFrame(shadow_frame);
781    self->EndAssertNoThreadSuspension(old_cause);
782
783    if (needs_initialization) {
784      // Ensure static method's class is initialized.
785      StackHandleScope<1> hs(self);
786      Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
787      if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
788        DCHECK(Thread::Current()->IsExceptionPending())
789            << shadow_frame->GetMethod()->PrettyMethod();
790        self->PopManagedStackFragment(fragment);
791        return 0;
792      }
793    }
794
795    result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
796  }
797
798  // Pop transition.
799  self->PopManagedStackFragment(fragment);
800
801  // Request a stack deoptimization if needed
802  ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
803  uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
804  // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
805  // should be done and it knows the real return pc.
806  if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
807               Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
808    if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
809      LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
810                   << caller->PrettyMethod();
811    } else {
812      // Push the context of the deoptimization stack so we can restore the return value and the
813      // exception before executing the deoptimized frames.
814      self->PushDeoptimizationContext(
815          result, shorty[0] == 'L', /* from_code */ false, self->GetException());
816
817      // Set special exception to cause deoptimization.
818      self->SetException(Thread::GetDeoptimizationException());
819    }
820  }
821
822  // No need to restore the args since the method has already been run by the interpreter.
823  return result.GetJ();
824}
825
826// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
827// to jobjects.
828class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
829 public:
830  BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
831                            ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
832      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
833
834  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
835
836  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
837
838 private:
839  ScopedObjectAccessUnchecked* const soa_;
840  std::vector<jvalue>* const args_;
841  // References which we must update when exiting in case the GC moved the objects.
842  std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
843
844  DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
845};
846
847void BuildQuickArgumentVisitor::Visit() {
848  jvalue val;
849  Primitive::Type type = GetParamPrimitiveType();
850  switch (type) {
851    case Primitive::kPrimNot: {
852      StackReference<mirror::Object>* stack_ref =
853          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
854      val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
855      references_.push_back(std::make_pair(val.l, stack_ref));
856      break;
857    }
858    case Primitive::kPrimLong:  // Fall-through.
859    case Primitive::kPrimDouble:
860      if (IsSplitLongOrDouble()) {
861        val.j = ReadSplitLongParam();
862      } else {
863        val.j = *reinterpret_cast<jlong*>(GetParamAddress());
864      }
865      break;
866    case Primitive::kPrimBoolean:  // Fall-through.
867    case Primitive::kPrimByte:     // Fall-through.
868    case Primitive::kPrimChar:     // Fall-through.
869    case Primitive::kPrimShort:    // Fall-through.
870    case Primitive::kPrimInt:      // Fall-through.
871    case Primitive::kPrimFloat:
872      val.i = *reinterpret_cast<jint*>(GetParamAddress());
873      break;
874    case Primitive::kPrimVoid:
875      LOG(FATAL) << "UNREACHABLE";
876      UNREACHABLE();
877  }
878  args_->push_back(val);
879}
880
881void BuildQuickArgumentVisitor::FixupReferences() {
882  // Fixup any references which may have changed.
883  for (const auto& pair : references_) {
884    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
885    soa_->Env()->DeleteLocalRef(pair.first);
886  }
887}
888
889// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
890// which is responsible for recording callee save registers. We explicitly place into jobjects the
891// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
892// field within the proxy object, which will box the primitive arguments and deal with error cases.
893extern "C" uint64_t artQuickProxyInvokeHandler(
894    ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
895    REQUIRES_SHARED(Locks::mutator_lock_) {
896  DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
897  DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
898  // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
899  const char* old_cause =
900      self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
901  // Register the top of the managed stack, making stack crawlable.
902  DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
903  self->VerifyStack();
904  // Start new JNI local reference state.
905  JNIEnvExt* env = self->GetJniEnv();
906  ScopedObjectAccessUnchecked soa(env);
907  ScopedJniEnvLocalRefState env_state(env);
908  // Create local ref. copies of proxy method and the receiver.
909  jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
910
911  // Placing arguments into args vector and remove the receiver.
912  ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
913  CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
914                                       << non_proxy_method->PrettyMethod();
915  std::vector<jvalue> args;
916  uint32_t shorty_len = 0;
917  const char* shorty = non_proxy_method->GetShorty(&shorty_len);
918  BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
919
920  local_ref_visitor.VisitArguments();
921  DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
922  args.erase(args.begin());
923
924  // Convert proxy method into expected interface method.
925  ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
926  DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
927  DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
928  self->EndAssertNoThreadSuspension(old_cause);
929  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
930  DCHECK(!Runtime::Current()->IsActiveTransaction());
931  jobject interface_method_jobj = soa.AddLocalReference<jobject>(
932      mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
933                                                                      interface_method));
934
935  // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
936  // that performs allocations.
937  JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
938  // Restore references which might have moved.
939  local_ref_visitor.FixupReferences();
940  return result.GetJ();
941}
942
943// Read object references held in arguments from quick frames and place in a JNI local references,
944// so they don't get garbage collected.
945class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
946 public:
947  RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
948                               uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
949      QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
950
951  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
952
953  void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
954
955 private:
956  ScopedObjectAccessUnchecked* const soa_;
957  // References which we must update when exiting in case the GC moved the objects.
958  std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
959
960  DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
961};
962
963void RememberForGcArgumentVisitor::Visit() {
964  if (IsParamAReference()) {
965    StackReference<mirror::Object>* stack_ref =
966        reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
967    jobject reference =
968        soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
969    references_.push_back(std::make_pair(reference, stack_ref));
970  }
971}
972
973void RememberForGcArgumentVisitor::FixupReferences() {
974  // Fixup any references which may have changed.
975  for (const auto& pair : references_) {
976    pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
977    soa_->Env()->DeleteLocalRef(pair.first);
978  }
979}
980
981// Lazily resolve a method for quick. Called by stub code.
982extern "C" const void* artQuickResolutionTrampoline(
983    ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
984    REQUIRES_SHARED(Locks::mutator_lock_) {
985  // The resolution trampoline stashes the resolved method into the callee-save frame to transport
986  // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
987  // does not have the same stack layout as the callee-save method).
988  ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
989  // Start new JNI local reference state
990  JNIEnvExt* env = self->GetJniEnv();
991  ScopedObjectAccessUnchecked soa(env);
992  ScopedJniEnvLocalRefState env_state(env);
993  const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
994
995  // Compute details about the called method (avoid GCs)
996  ClassLinker* linker = Runtime::Current()->GetClassLinker();
997  InvokeType invoke_type;
998  MethodReference called_method(nullptr, 0);
999  const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1000  ArtMethod* caller = nullptr;
1001  if (!called_method_known_on_entry) {
1002    caller = QuickArgumentVisitor::GetCallingMethod(sp);
1003    called_method.dex_file = caller->GetDexFile();
1004
1005    InvokeType stack_map_invoke_type;
1006    uint32_t stack_map_dex_method_idx;
1007    const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
1008                                                                     &stack_map_invoke_type,
1009                                                                     &stack_map_dex_method_idx);
1010    // For debug builds, we make sure both of the paths are consistent by also looking at the dex
1011    // code.
1012    if (!found_stack_map || kIsDebugBuild) {
1013      uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1014      const DexFile::CodeItem* code;
1015      code = caller->GetCodeItem();
1016      CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1017      const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1018      Instruction::Code instr_code = instr->Opcode();
1019      bool is_range;
1020      switch (instr_code) {
1021        case Instruction::INVOKE_DIRECT:
1022          invoke_type = kDirect;
1023          is_range = false;
1024          break;
1025        case Instruction::INVOKE_DIRECT_RANGE:
1026          invoke_type = kDirect;
1027          is_range = true;
1028          break;
1029        case Instruction::INVOKE_STATIC:
1030          invoke_type = kStatic;
1031          is_range = false;
1032          break;
1033        case Instruction::INVOKE_STATIC_RANGE:
1034          invoke_type = kStatic;
1035          is_range = true;
1036          break;
1037        case Instruction::INVOKE_SUPER:
1038          invoke_type = kSuper;
1039          is_range = false;
1040          break;
1041        case Instruction::INVOKE_SUPER_RANGE:
1042          invoke_type = kSuper;
1043          is_range = true;
1044          break;
1045        case Instruction::INVOKE_VIRTUAL:
1046          invoke_type = kVirtual;
1047          is_range = false;
1048          break;
1049        case Instruction::INVOKE_VIRTUAL_RANGE:
1050          invoke_type = kVirtual;
1051          is_range = true;
1052          break;
1053        case Instruction::INVOKE_INTERFACE:
1054          invoke_type = kInterface;
1055          is_range = false;
1056          break;
1057        case Instruction::INVOKE_INTERFACE_RANGE:
1058          invoke_type = kInterface;
1059          is_range = true;
1060          break;
1061        default:
1062          LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
1063          UNREACHABLE();
1064      }
1065      called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1066      // Check that the invoke matches what we expected, note that this path only happens for debug
1067      // builds.
1068      if (found_stack_map) {
1069        DCHECK_EQ(stack_map_invoke_type, invoke_type);
1070        if (invoke_type != kSuper) {
1071          // Super may be sharpened.
1072          DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
1073              << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
1074              << called_method.dex_file->PrettyMethod(called_method.dex_method_index);
1075        }
1076      } else {
1077        VLOG(oat) << "Accessed dex file for invoke " << invoke_type << " "
1078                  << called_method.dex_method_index;
1079      }
1080    } else {
1081      invoke_type = stack_map_invoke_type;
1082      called_method.dex_method_index = stack_map_dex_method_idx;
1083    }
1084  } else {
1085    invoke_type = kStatic;
1086    called_method.dex_file = called->GetDexFile();
1087    called_method.dex_method_index = called->GetDexMethodIndex();
1088  }
1089  uint32_t shorty_len;
1090  const char* shorty =
1091      called_method.dex_file->GetMethodShorty(
1092          called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1093  RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1094  visitor.VisitArguments();
1095  self->EndAssertNoThreadSuspension(old_cause);
1096  const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1097  // Resolve method filling in dex cache.
1098  if (!called_method_known_on_entry) {
1099    StackHandleScope<1> hs(self);
1100    mirror::Object* dummy = nullptr;
1101    HandleWrapper<mirror::Object> h_receiver(
1102        hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1103    DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1104    called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1105        self, called_method.dex_method_index, caller, invoke_type);
1106  }
1107  const void* code = nullptr;
1108  if (LIKELY(!self->IsExceptionPending())) {
1109    // Incompatible class change should have been handled in resolve method.
1110    CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1111        << called->PrettyMethod() << " " << invoke_type;
1112    if (virtual_or_interface || invoke_type == kSuper) {
1113      // Refine called method based on receiver for kVirtual/kInterface, and
1114      // caller for kSuper.
1115      ArtMethod* orig_called = called;
1116      if (invoke_type == kVirtual) {
1117        CHECK(receiver != nullptr) << invoke_type;
1118        called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1119      } else if (invoke_type == kInterface) {
1120        CHECK(receiver != nullptr) << invoke_type;
1121        called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1122      } else {
1123        DCHECK_EQ(invoke_type, kSuper);
1124        CHECK(caller != nullptr) << invoke_type;
1125        StackHandleScope<2> hs(self);
1126        Handle<mirror::DexCache> dex_cache(
1127            hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1128        Handle<mirror::ClassLoader> class_loader(
1129            hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1130        // TODO Maybe put this into a mirror::Class function.
1131        mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1132            called_method.dex_method_index, dex_cache, class_loader);
1133        if (ref_class->IsInterface()) {
1134          called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1135        } else {
1136          called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1137              called->GetMethodIndex(), kRuntimePointerSize);
1138        }
1139      }
1140
1141      CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1142                               << mirror::Object::PrettyTypeOf(receiver) << " "
1143                               << invoke_type << " " << orig_called->GetVtableIndex();
1144
1145      // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1146      // of the sharpened method avoiding dirtying the dex cache if possible.
1147      // Note, called_method.dex_method_index references the dex method before the
1148      // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1149      // about the name and signature.
1150      uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1151      if (!called->HasSameDexCacheResolvedMethods(caller, kRuntimePointerSize)) {
1152        // Calling from one dex file to another, need to compute the method index appropriate to
1153        // the caller's dex file. Since we get here only if the original called was a runtime
1154        // method, we've got the correct dex_file and a dex_method_idx from above.
1155        DCHECK(!called_method_known_on_entry);
1156        DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1157        const DexFile* caller_dex_file = called_method.dex_file;
1158        uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1159        update_dex_cache_method_index =
1160            called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1161                                                     caller_method_name_and_sig_index);
1162      }
1163      if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1164          (caller->GetDexCacheResolvedMethod(
1165              update_dex_cache_method_index, kRuntimePointerSize) != called)) {
1166        caller->SetDexCacheResolvedMethod(update_dex_cache_method_index,
1167                                          called,
1168                                          kRuntimePointerSize);
1169      }
1170    } else if (invoke_type == kStatic) {
1171      const auto called_dex_method_idx = called->GetDexMethodIndex();
1172      // For static invokes, we may dispatch to the static method in the superclass but resolve
1173      // using the subclass. To prevent getting slow paths on each invoke, we force set the
1174      // resolved method for the super class dex method index if we are in the same dex file.
1175      // b/19175856
1176      if (called->GetDexFile() == called_method.dex_file &&
1177          called_method.dex_method_index != called_dex_method_idx) {
1178        called->GetDexCache()->SetResolvedMethod(called_dex_method_idx,
1179                                                 called,
1180                                                 kRuntimePointerSize);
1181      }
1182    }
1183
1184    // Ensure that the called method's class is initialized.
1185    StackHandleScope<1> hs(soa.Self());
1186    Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1187    linker->EnsureInitialized(soa.Self(), called_class, true, true);
1188    if (LIKELY(called_class->IsInitialized())) {
1189      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1190        // If we are single-stepping or the called method is deoptimized (by a
1191        // breakpoint, for example), then we have to execute the called method
1192        // with the interpreter.
1193        code = GetQuickToInterpreterBridge();
1194      } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1195        // If the caller is deoptimized (by a breakpoint, for example), we have to
1196        // continue its execution with interpreter when returning from the called
1197        // method. Because we do not want to execute the called method with the
1198        // interpreter, we wrap its execution into the instrumentation stubs.
1199        // When the called method returns, it will execute the instrumentation
1200        // exit hook that will determine the need of the interpreter with a call
1201        // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1202        // it is needed.
1203        code = GetQuickInstrumentationEntryPoint();
1204      } else {
1205        code = called->GetEntryPointFromQuickCompiledCode();
1206      }
1207    } else if (called_class->IsInitializing()) {
1208      if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1209        // If we are single-stepping or the called method is deoptimized (by a
1210        // breakpoint, for example), then we have to execute the called method
1211        // with the interpreter.
1212        code = GetQuickToInterpreterBridge();
1213      } else if (invoke_type == kStatic) {
1214        // Class is still initializing, go to oat and grab code (trampoline must be left in place
1215        // until class is initialized to stop races between threads).
1216        code = linker->GetQuickOatCodeFor(called);
1217      } else {
1218        // No trampoline for non-static methods.
1219        code = called->GetEntryPointFromQuickCompiledCode();
1220      }
1221    } else {
1222      DCHECK(called_class->IsErroneous());
1223    }
1224  }
1225  CHECK_EQ(code == nullptr, self->IsExceptionPending());
1226  // Fixup any locally saved objects may have moved during a GC.
1227  visitor.FixupReferences();
1228  // Place called method in callee-save frame to be placed as first argument to quick method.
1229  *sp = called;
1230
1231  return code;
1232}
1233
1234/*
1235 * This class uses a couple of observations to unite the different calling conventions through
1236 * a few constants.
1237 *
1238 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1239 *    possible alignment.
1240 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1241 *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1242 *    when we have to split things
1243 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1244 *    and we can use Int handling directly.
1245 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1246 *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1247 *    extension should be compatible with Aarch64, which mandates copying the available bits
1248 *    into LSB and leaving the rest unspecified.
1249 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1250 *    the stack.
1251 * 6) There is only little endian.
1252 *
1253 *
1254 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1255 * follows:
1256 *
1257 * void PushGpr(uintptr_t):   Add a value for the next GPR
1258 *
1259 * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1260 *                            padding, that is, think the architecture is 32b and aligns 64b.
1261 *
1262 * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1263 *                            split this if necessary. The current state will have aligned, if
1264 *                            necessary.
1265 *
1266 * void PushStack(uintptr_t): Push a value to the stack.
1267 *
1268 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1269 *                                          as this might be important for null initialization.
1270 *                                          Must return the jobject, that is, the reference to the
1271 *                                          entry in the HandleScope (nullptr if necessary).
1272 *
1273 */
1274template<class T> class BuildNativeCallFrameStateMachine {
1275 public:
1276#if defined(__arm__)
1277  // TODO: These are all dummy values!
1278  static constexpr bool kNativeSoftFloatAbi = true;
1279  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1280  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1281
1282  static constexpr size_t kRegistersNeededForLong = 2;
1283  static constexpr size_t kRegistersNeededForDouble = 2;
1284  static constexpr bool kMultiRegistersAligned = true;
1285  static constexpr bool kMultiFPRegistersWidened = false;
1286  static constexpr bool kMultiGPRegistersWidened = false;
1287  static constexpr bool kAlignLongOnStack = true;
1288  static constexpr bool kAlignDoubleOnStack = true;
1289#elif defined(__aarch64__)
1290  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1291  static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1292  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1293
1294  static constexpr size_t kRegistersNeededForLong = 1;
1295  static constexpr size_t kRegistersNeededForDouble = 1;
1296  static constexpr bool kMultiRegistersAligned = false;
1297  static constexpr bool kMultiFPRegistersWidened = false;
1298  static constexpr bool kMultiGPRegistersWidened = false;
1299  static constexpr bool kAlignLongOnStack = false;
1300  static constexpr bool kAlignDoubleOnStack = false;
1301#elif defined(__mips__) && !defined(__LP64__)
1302  static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1303  static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1304  static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1305
1306  static constexpr size_t kRegistersNeededForLong = 2;
1307  static constexpr size_t kRegistersNeededForDouble = 2;
1308  static constexpr bool kMultiRegistersAligned = true;
1309  static constexpr bool kMultiFPRegistersWidened = true;
1310  static constexpr bool kMultiGPRegistersWidened = false;
1311  static constexpr bool kAlignLongOnStack = true;
1312  static constexpr bool kAlignDoubleOnStack = true;
1313#elif defined(__mips__) && defined(__LP64__)
1314  // Let the code prepare GPRs only and we will load the FPRs with same data.
1315  static constexpr bool kNativeSoftFloatAbi = true;
1316  static constexpr size_t kNumNativeGprArgs = 8;
1317  static constexpr size_t kNumNativeFprArgs = 0;
1318
1319  static constexpr size_t kRegistersNeededForLong = 1;
1320  static constexpr size_t kRegistersNeededForDouble = 1;
1321  static constexpr bool kMultiRegistersAligned = false;
1322  static constexpr bool kMultiFPRegistersWidened = false;
1323  static constexpr bool kMultiGPRegistersWidened = true;
1324  static constexpr bool kAlignLongOnStack = false;
1325  static constexpr bool kAlignDoubleOnStack = false;
1326#elif defined(__i386__)
1327  // TODO: Check these!
1328  static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1329  static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1330  static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1331
1332  static constexpr size_t kRegistersNeededForLong = 2;
1333  static constexpr size_t kRegistersNeededForDouble = 2;
1334  static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1335  static constexpr bool kMultiFPRegistersWidened = false;
1336  static constexpr bool kMultiGPRegistersWidened = false;
1337  static constexpr bool kAlignLongOnStack = false;
1338  static constexpr bool kAlignDoubleOnStack = false;
1339#elif defined(__x86_64__)
1340  static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1341  static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1342  static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1343
1344  static constexpr size_t kRegistersNeededForLong = 1;
1345  static constexpr size_t kRegistersNeededForDouble = 1;
1346  static constexpr bool kMultiRegistersAligned = false;
1347  static constexpr bool kMultiFPRegistersWidened = false;
1348  static constexpr bool kMultiGPRegistersWidened = false;
1349  static constexpr bool kAlignLongOnStack = false;
1350  static constexpr bool kAlignDoubleOnStack = false;
1351#else
1352#error "Unsupported architecture"
1353#endif
1354
1355 public:
1356  explicit BuildNativeCallFrameStateMachine(T* delegate)
1357      : gpr_index_(kNumNativeGprArgs),
1358        fpr_index_(kNumNativeFprArgs),
1359        stack_entries_(0),
1360        delegate_(delegate) {
1361    // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1362    // the next register is even; counting down is just to make the compiler happy...
1363    static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1364    static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1365  }
1366
1367  virtual ~BuildNativeCallFrameStateMachine() {}
1368
1369  bool HavePointerGpr() const {
1370    return gpr_index_ > 0;
1371  }
1372
1373  void AdvancePointer(const void* val) {
1374    if (HavePointerGpr()) {
1375      gpr_index_--;
1376      PushGpr(reinterpret_cast<uintptr_t>(val));
1377    } else {
1378      stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1379      PushStack(reinterpret_cast<uintptr_t>(val));
1380      gpr_index_ = 0;
1381    }
1382  }
1383
1384  bool HaveHandleScopeGpr() const {
1385    return gpr_index_ > 0;
1386  }
1387
1388  void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1389    uintptr_t handle = PushHandle(ptr);
1390    if (HaveHandleScopeGpr()) {
1391      gpr_index_--;
1392      PushGpr(handle);
1393    } else {
1394      stack_entries_++;
1395      PushStack(handle);
1396      gpr_index_ = 0;
1397    }
1398  }
1399
1400  bool HaveIntGpr() const {
1401    return gpr_index_ > 0;
1402  }
1403
1404  void AdvanceInt(uint32_t val) {
1405    if (HaveIntGpr()) {
1406      gpr_index_--;
1407      if (kMultiGPRegistersWidened) {
1408        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1409        PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1410      } else {
1411        PushGpr(val);
1412      }
1413    } else {
1414      stack_entries_++;
1415      if (kMultiGPRegistersWidened) {
1416        DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1417        PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1418      } else {
1419        PushStack(val);
1420      }
1421      gpr_index_ = 0;
1422    }
1423  }
1424
1425  bool HaveLongGpr() const {
1426    return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1427  }
1428
1429  bool LongGprNeedsPadding() const {
1430    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1431        kAlignLongOnStack &&                  // and when it needs alignment
1432        (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1433  }
1434
1435  bool LongStackNeedsPadding() const {
1436    return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1437        kAlignLongOnStack &&                  // and when it needs 8B alignment
1438        (stack_entries_ & 1) == 1;            // counter is odd
1439  }
1440
1441  void AdvanceLong(uint64_t val) {
1442    if (HaveLongGpr()) {
1443      if (LongGprNeedsPadding()) {
1444        PushGpr(0);
1445        gpr_index_--;
1446      }
1447      if (kRegistersNeededForLong == 1) {
1448        PushGpr(static_cast<uintptr_t>(val));
1449      } else {
1450        PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1451        PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1452      }
1453      gpr_index_ -= kRegistersNeededForLong;
1454    } else {
1455      if (LongStackNeedsPadding()) {
1456        PushStack(0);
1457        stack_entries_++;
1458      }
1459      if (kRegistersNeededForLong == 1) {
1460        PushStack(static_cast<uintptr_t>(val));
1461        stack_entries_++;
1462      } else {
1463        PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1464        PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1465        stack_entries_ += 2;
1466      }
1467      gpr_index_ = 0;
1468    }
1469  }
1470
1471  bool HaveFloatFpr() const {
1472    return fpr_index_ > 0;
1473  }
1474
1475  void AdvanceFloat(float val) {
1476    if (kNativeSoftFloatAbi) {
1477      AdvanceInt(bit_cast<uint32_t, float>(val));
1478    } else {
1479      if (HaveFloatFpr()) {
1480        fpr_index_--;
1481        if (kRegistersNeededForDouble == 1) {
1482          if (kMultiFPRegistersWidened) {
1483            PushFpr8(bit_cast<uint64_t, double>(val));
1484          } else {
1485            // No widening, just use the bits.
1486            PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1487          }
1488        } else {
1489          PushFpr4(val);
1490        }
1491      } else {
1492        stack_entries_++;
1493        if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1494          // Need to widen before storing: Note the "double" in the template instantiation.
1495          // Note: We need to jump through those hoops to make the compiler happy.
1496          DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1497          PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1498        } else {
1499          PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1500        }
1501        fpr_index_ = 0;
1502      }
1503    }
1504  }
1505
1506  bool HaveDoubleFpr() const {
1507    return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1508  }
1509
1510  bool DoubleFprNeedsPadding() const {
1511    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1512        kAlignDoubleOnStack &&                  // and when it needs alignment
1513        (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1514  }
1515
1516  bool DoubleStackNeedsPadding() const {
1517    return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1518        kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1519        (stack_entries_ & 1) == 1;              // counter is odd
1520  }
1521
1522  void AdvanceDouble(uint64_t val) {
1523    if (kNativeSoftFloatAbi) {
1524      AdvanceLong(val);
1525    } else {
1526      if (HaveDoubleFpr()) {
1527        if (DoubleFprNeedsPadding()) {
1528          PushFpr4(0);
1529          fpr_index_--;
1530        }
1531        PushFpr8(val);
1532        fpr_index_ -= kRegistersNeededForDouble;
1533      } else {
1534        if (DoubleStackNeedsPadding()) {
1535          PushStack(0);
1536          stack_entries_++;
1537        }
1538        if (kRegistersNeededForDouble == 1) {
1539          PushStack(static_cast<uintptr_t>(val));
1540          stack_entries_++;
1541        } else {
1542          PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1543          PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1544          stack_entries_ += 2;
1545        }
1546        fpr_index_ = 0;
1547      }
1548    }
1549  }
1550
1551  uint32_t GetStackEntries() const {
1552    return stack_entries_;
1553  }
1554
1555  uint32_t GetNumberOfUsedGprs() const {
1556    return kNumNativeGprArgs - gpr_index_;
1557  }
1558
1559  uint32_t GetNumberOfUsedFprs() const {
1560    return kNumNativeFprArgs - fpr_index_;
1561  }
1562
1563 private:
1564  void PushGpr(uintptr_t val) {
1565    delegate_->PushGpr(val);
1566  }
1567  void PushFpr4(float val) {
1568    delegate_->PushFpr4(val);
1569  }
1570  void PushFpr8(uint64_t val) {
1571    delegate_->PushFpr8(val);
1572  }
1573  void PushStack(uintptr_t val) {
1574    delegate_->PushStack(val);
1575  }
1576  uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1577    return delegate_->PushHandle(ref);
1578  }
1579
1580  uint32_t gpr_index_;      // Number of free GPRs
1581  uint32_t fpr_index_;      // Number of free FPRs
1582  uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1583                            // extended
1584  T* const delegate_;             // What Push implementation gets called
1585};
1586
1587// Computes the sizes of register stacks and call stack area. Handling of references can be extended
1588// in subclasses.
1589//
1590// To handle native pointers, use "L" in the shorty for an object reference, which simulates
1591// them with handles.
1592class ComputeNativeCallFrameSize {
1593 public:
1594  ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1595
1596  virtual ~ComputeNativeCallFrameSize() {}
1597
1598  uint32_t GetStackSize() const {
1599    return num_stack_entries_ * sizeof(uintptr_t);
1600  }
1601
1602  uint8_t* LayoutCallStack(uint8_t* sp8) const {
1603    sp8 -= GetStackSize();
1604    // Align by kStackAlignment.
1605    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1606    return sp8;
1607  }
1608
1609  uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1610      const {
1611    // Assumption is OK right now, as we have soft-float arm
1612    size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1613    sp8 -= fregs * sizeof(uintptr_t);
1614    *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1615    size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1616    sp8 -= iregs * sizeof(uintptr_t);
1617    *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1618    return sp8;
1619  }
1620
1621  uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1622                            uint32_t** start_fpr) const {
1623    // Native call stack.
1624    sp8 = LayoutCallStack(sp8);
1625    *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1626
1627    // Put fprs and gprs below.
1628    sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1629
1630    // Return the new bottom.
1631    return sp8;
1632  }
1633
1634  virtual void WalkHeader(
1635      BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1636      REQUIRES_SHARED(Locks::mutator_lock_) {
1637  }
1638
1639  void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1640    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1641
1642    WalkHeader(&sm);
1643
1644    for (uint32_t i = 1; i < shorty_len; ++i) {
1645      Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1646      switch (cur_type_) {
1647        case Primitive::kPrimNot:
1648          // TODO: fix abuse of mirror types.
1649          sm.AdvanceHandleScope(
1650              reinterpret_cast<mirror::Object*>(0x12345678));
1651          break;
1652
1653        case Primitive::kPrimBoolean:
1654        case Primitive::kPrimByte:
1655        case Primitive::kPrimChar:
1656        case Primitive::kPrimShort:
1657        case Primitive::kPrimInt:
1658          sm.AdvanceInt(0);
1659          break;
1660        case Primitive::kPrimFloat:
1661          sm.AdvanceFloat(0);
1662          break;
1663        case Primitive::kPrimDouble:
1664          sm.AdvanceDouble(0);
1665          break;
1666        case Primitive::kPrimLong:
1667          sm.AdvanceLong(0);
1668          break;
1669        default:
1670          LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1671          UNREACHABLE();
1672      }
1673    }
1674
1675    num_stack_entries_ = sm.GetStackEntries();
1676  }
1677
1678  void PushGpr(uintptr_t /* val */) {
1679    // not optimizing registers, yet
1680  }
1681
1682  void PushFpr4(float /* val */) {
1683    // not optimizing registers, yet
1684  }
1685
1686  void PushFpr8(uint64_t /* val */) {
1687    // not optimizing registers, yet
1688  }
1689
1690  void PushStack(uintptr_t /* val */) {
1691    // counting is already done in the superclass
1692  }
1693
1694  virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1695    return reinterpret_cast<uintptr_t>(nullptr);
1696  }
1697
1698 protected:
1699  uint32_t num_stack_entries_;
1700};
1701
1702class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1703 public:
1704  explicit ComputeGenericJniFrameSize(bool critical_native)
1705    : num_handle_scope_references_(0), critical_native_(critical_native) {}
1706
1707  // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1708  // is at *m = sp. Will update to point to the bottom of the save frame.
1709  //
1710  // Note: assumes ComputeAll() has been run before.
1711  void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1712      REQUIRES_SHARED(Locks::mutator_lock_) {
1713    ArtMethod* method = **m;
1714
1715    DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1716
1717    uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1718
1719    // First, fix up the layout of the callee-save frame.
1720    // We have to squeeze in the HandleScope, and relocate the method pointer.
1721
1722    // "Free" the slot for the method.
1723    sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1724
1725    // Under the callee saves put handle scope and new method stack reference.
1726    size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1727    size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1728
1729    sp8 -= scope_and_method;
1730    // Align by kStackAlignment.
1731    sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1732
1733    uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1734    *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1735                                        num_handle_scope_references_);
1736
1737    // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1738    uint8_t* method_pointer = sp8;
1739    auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1740    *new_method_ref = method;
1741    *m = new_method_ref;
1742  }
1743
1744  // Adds space for the cookie. Note: may leave stack unaligned.
1745  void LayoutCookie(uint8_t** sp) const {
1746    // Reference cookie and padding
1747    *sp -= 8;
1748  }
1749
1750  // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1751  // Returns the new bottom. Note: this may be unaligned.
1752  uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1753      REQUIRES_SHARED(Locks::mutator_lock_) {
1754    // First, fix up the layout of the callee-save frame.
1755    // We have to squeeze in the HandleScope, and relocate the method pointer.
1756    LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1757
1758    // The bottom of the callee-save frame is now where the method is, *m.
1759    uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1760
1761    // Add space for cookie.
1762    LayoutCookie(&sp8);
1763
1764    return sp8;
1765  }
1766
1767  // WARNING: After this, *sp won't be pointing to the method anymore!
1768  uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1769                         HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1770                         uint32_t** start_fpr)
1771      REQUIRES_SHARED(Locks::mutator_lock_) {
1772    Walk(shorty, shorty_len);
1773
1774    // JNI part.
1775    uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1776
1777    sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1778
1779    // Return the new bottom.
1780    return sp8;
1781  }
1782
1783  uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1784
1785  // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1786  void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1787      REQUIRES_SHARED(Locks::mutator_lock_);
1788
1789 private:
1790  uint32_t num_handle_scope_references_;
1791  const bool critical_native_;
1792};
1793
1794uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1795  num_handle_scope_references_++;
1796  return reinterpret_cast<uintptr_t>(nullptr);
1797}
1798
1799void ComputeGenericJniFrameSize::WalkHeader(
1800    BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1801  // First 2 parameters are always excluded for @CriticalNative.
1802  if (UNLIKELY(critical_native_)) {
1803    return;
1804  }
1805
1806  // JNIEnv
1807  sm->AdvancePointer(nullptr);
1808
1809  // Class object or this as first argument
1810  sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1811}
1812
1813// Class to push values to three separate regions. Used to fill the native call part. Adheres to
1814// the template requirements of BuildGenericJniFrameStateMachine.
1815class FillNativeCall {
1816 public:
1817  FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1818      cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1819
1820  virtual ~FillNativeCall() {}
1821
1822  void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1823    cur_gpr_reg_ = gpr_regs;
1824    cur_fpr_reg_ = fpr_regs;
1825    cur_stack_arg_ = stack_args;
1826  }
1827
1828  void PushGpr(uintptr_t val) {
1829    *cur_gpr_reg_ = val;
1830    cur_gpr_reg_++;
1831  }
1832
1833  void PushFpr4(float val) {
1834    *cur_fpr_reg_ = val;
1835    cur_fpr_reg_++;
1836  }
1837
1838  void PushFpr8(uint64_t val) {
1839    uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1840    *tmp = val;
1841    cur_fpr_reg_ += 2;
1842  }
1843
1844  void PushStack(uintptr_t val) {
1845    *cur_stack_arg_ = val;
1846    cur_stack_arg_++;
1847  }
1848
1849  virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
1850    LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1851    UNREACHABLE();
1852  }
1853
1854 private:
1855  uintptr_t* cur_gpr_reg_;
1856  uint32_t* cur_fpr_reg_;
1857  uintptr_t* cur_stack_arg_;
1858};
1859
1860// Visits arguments on the stack placing them into a region lower down the stack for the benefit
1861// of transitioning into native code.
1862class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1863 public:
1864  BuildGenericJniFrameVisitor(Thread* self,
1865                              bool is_static,
1866                              bool critical_native,
1867                              const char* shorty,
1868                              uint32_t shorty_len,
1869                              ArtMethod*** sp)
1870     : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1871       jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
1872       sm_(&jni_call_) {
1873    ComputeGenericJniFrameSize fsc(critical_native);
1874    uintptr_t* start_gpr_reg;
1875    uint32_t* start_fpr_reg;
1876    uintptr_t* start_stack_arg;
1877    bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1878                                             &handle_scope_,
1879                                             &start_stack_arg,
1880                                             &start_gpr_reg, &start_fpr_reg);
1881
1882    jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1883
1884    // First 2 parameters are always excluded for CriticalNative methods.
1885    if (LIKELY(!critical_native)) {
1886      // jni environment is always first argument
1887      sm_.AdvancePointer(self->GetJniEnv());
1888
1889      if (is_static) {
1890        sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1891      }  // else "this" reference is already handled by QuickArgumentVisitor.
1892    }
1893  }
1894
1895  void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
1896
1897  void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1898
1899  StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1900    return handle_scope_->GetHandle(0).GetReference();
1901  }
1902
1903  jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
1904    return handle_scope_->GetHandle(0).ToJObject();
1905  }
1906
1907  void* GetBottomOfUsedArea() const {
1908    return bottom_of_used_area_;
1909  }
1910
1911 private:
1912  // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1913  class FillJniCall FINAL : public FillNativeCall {
1914   public:
1915    FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1916                HandleScope* handle_scope, bool critical_native)
1917      : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1918                       handle_scope_(handle_scope),
1919        cur_entry_(0),
1920        critical_native_(critical_native) {}
1921
1922    uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
1923
1924    void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1925      FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1926      handle_scope_ = scope;
1927      cur_entry_ = 0U;
1928    }
1929
1930    void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
1931      // Initialize padding entries.
1932      size_t expected_slots = handle_scope_->NumberOfReferences();
1933      while (cur_entry_ < expected_slots) {
1934        handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1935      }
1936
1937      if (!critical_native_) {
1938        // Non-critical natives have at least the self class (jclass) or this (jobject).
1939        DCHECK_NE(cur_entry_, 0U);
1940      }
1941    }
1942
1943    bool CriticalNative() const {
1944      return critical_native_;
1945    }
1946
1947   private:
1948    HandleScope* handle_scope_;
1949    size_t cur_entry_;
1950    const bool critical_native_;
1951  };
1952
1953  HandleScope* handle_scope_;
1954  FillJniCall jni_call_;
1955  void* bottom_of_used_area_;
1956
1957  BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1958
1959  DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1960};
1961
1962uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1963  uintptr_t tmp;
1964  MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1965  h.Assign(ref);
1966  tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1967  cur_entry_++;
1968  return tmp;
1969}
1970
1971void BuildGenericJniFrameVisitor::Visit() {
1972  Primitive::Type type = GetParamPrimitiveType();
1973  switch (type) {
1974    case Primitive::kPrimLong: {
1975      jlong long_arg;
1976      if (IsSplitLongOrDouble()) {
1977        long_arg = ReadSplitLongParam();
1978      } else {
1979        long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1980      }
1981      sm_.AdvanceLong(long_arg);
1982      break;
1983    }
1984    case Primitive::kPrimDouble: {
1985      uint64_t double_arg;
1986      if (IsSplitLongOrDouble()) {
1987        // Read into union so that we don't case to a double.
1988        double_arg = ReadSplitLongParam();
1989      } else {
1990        double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1991      }
1992      sm_.AdvanceDouble(double_arg);
1993      break;
1994    }
1995    case Primitive::kPrimNot: {
1996      StackReference<mirror::Object>* stack_ref =
1997          reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1998      sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1999      break;
2000    }
2001    case Primitive::kPrimFloat:
2002      sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2003      break;
2004    case Primitive::kPrimBoolean:  // Fall-through.
2005    case Primitive::kPrimByte:     // Fall-through.
2006    case Primitive::kPrimChar:     // Fall-through.
2007    case Primitive::kPrimShort:    // Fall-through.
2008    case Primitive::kPrimInt:      // Fall-through.
2009      sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2010      break;
2011    case Primitive::kPrimVoid:
2012      LOG(FATAL) << "UNREACHABLE";
2013      UNREACHABLE();
2014  }
2015}
2016
2017void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2018  // Clear out rest of the scope.
2019  jni_call_.ResetRemainingScopeSlots();
2020  if (!jni_call_.CriticalNative()) {
2021    // Install HandleScope.
2022    self->PushHandleScope(handle_scope_);
2023  }
2024}
2025
2026#if defined(__arm__) || defined(__aarch64__)
2027extern "C" void* artFindNativeMethod();
2028#else
2029extern "C" void* artFindNativeMethod(Thread* self);
2030#endif
2031
2032static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2033                                            uint32_t cookie,
2034                                            bool fast_native ATTRIBUTE_UNUSED,
2035                                            jobject l,
2036                                            jobject lock) {
2037  // TODO: add entrypoints for @FastNative returning objects.
2038  if (lock != nullptr) {
2039    return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2040  } else {
2041    return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2042  }
2043}
2044
2045static void artQuickGenericJniEndJNINonRef(Thread* self,
2046                                           uint32_t cookie,
2047                                           bool fast_native,
2048                                           jobject lock) {
2049  if (lock != nullptr) {
2050    JniMethodEndSynchronized(cookie, lock, self);
2051    // Ignore "fast_native" here because synchronized functions aren't very fast.
2052  } else {
2053    if (UNLIKELY(fast_native)) {
2054      JniMethodFastEnd(cookie, self);
2055    } else {
2056      JniMethodEnd(cookie, self);
2057    }
2058  }
2059}
2060
2061/*
2062 * Initializes an alloca region assumed to be directly below sp for a native call:
2063 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2064 * The final element on the stack is a pointer to the native code.
2065 *
2066 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2067 * We need to fix this, as the handle scope needs to go into the callee-save frame.
2068 *
2069 * The return of this function denotes:
2070 * 1) How many bytes of the alloca can be released, if the value is non-negative.
2071 * 2) An error, if the value is negative.
2072 */
2073extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2074    REQUIRES_SHARED(Locks::mutator_lock_) {
2075  ArtMethod* called = *sp;
2076  DCHECK(called->IsNative()) << called->PrettyMethod(true);
2077  uint32_t shorty_len = 0;
2078  const char* shorty = called->GetShorty(&shorty_len);
2079  bool critical_native = called->IsAnnotatedWithCriticalNative();
2080  bool fast_native = called->IsAnnotatedWithFastNative();
2081  bool normal_native = !critical_native && !fast_native;
2082
2083  // Run the visitor and update sp.
2084  BuildGenericJniFrameVisitor visitor(self,
2085                                      called->IsStatic(),
2086                                      critical_native,
2087                                      shorty,
2088                                      shorty_len,
2089                                      &sp);
2090  {
2091    ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2092    visitor.VisitArguments();
2093    // FinalizeHandleScope pushes the handle scope on the thread.
2094    visitor.FinalizeHandleScope(self);
2095  }
2096
2097  // Fix up managed-stack things in Thread.
2098  self->SetTopOfStack(sp);
2099
2100  self->VerifyStack();
2101
2102  uint32_t cookie;
2103  uint32_t* sp32;
2104  // Skip calling JniMethodStart for @CriticalNative.
2105  if (LIKELY(!critical_native)) {
2106    // Start JNI, save the cookie.
2107    if (called->IsSynchronized()) {
2108      DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2109      cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2110      if (self->IsExceptionPending()) {
2111        self->PopHandleScope();
2112        // A negative value denotes an error.
2113        return GetTwoWordFailureValue();
2114      }
2115    } else {
2116      if (fast_native) {
2117        cookie = JniMethodFastStart(self);
2118      } else {
2119        DCHECK(normal_native);
2120        cookie = JniMethodStart(self);
2121      }
2122    }
2123    sp32 = reinterpret_cast<uint32_t*>(sp);
2124    *(sp32 - 1) = cookie;
2125  }
2126
2127  // Retrieve the stored native code.
2128  void* nativeCode = called->GetEntryPointFromJni();
2129
2130  // There are two cases for the content of nativeCode:
2131  // 1) Pointer to the native function.
2132  // 2) Pointer to the trampoline for native code binding.
2133  // In the second case, we need to execute the binding and continue with the actual native function
2134  // pointer.
2135  DCHECK(nativeCode != nullptr);
2136  if (nativeCode == GetJniDlsymLookupStub()) {
2137#if defined(__arm__) || defined(__aarch64__)
2138    nativeCode = artFindNativeMethod();
2139#else
2140    nativeCode = artFindNativeMethod(self);
2141#endif
2142
2143    if (nativeCode == nullptr) {
2144      DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2145
2146      // @CriticalNative calls do not need to call back into JniMethodEnd.
2147      if (LIKELY(!critical_native)) {
2148        // End JNI, as the assembly will move to deliver the exception.
2149        jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2150        if (shorty[0] == 'L') {
2151          artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2152        } else {
2153          artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2154        }
2155      }
2156
2157      return GetTwoWordFailureValue();
2158    }
2159    // Note that the native code pointer will be automatically set by artFindNativeMethod().
2160  }
2161
2162#if defined(__mips__) && !defined(__LP64__)
2163  // On MIPS32 if the first two arguments are floating-point, we need to know their types
2164  // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2165  // and load into floating-point registers.
2166  // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2167  // view):
2168  // (1)
2169  //  |     DOUBLE    |     DOUBLE    | other args, if any
2170  //  |  F12  |  F13  |  F14  |  F15  |
2171  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2172  // (2)
2173  //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2174  //  |  F12  |  F13  |  F14  |       |
2175  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2176  // (3)
2177  //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2178  //  |  F12  |       |  F14  |  F15  |
2179  //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2180  // (4)
2181  //  | FLOAT | FLOAT | other args, if any
2182  //  |  F12  |  F14  |
2183  //  |  SP+0 |  SP+4 | SP+8
2184  // As you can see, only the last case (4) is special. In all others we can just
2185  // load F12/F13 and F14/F15 in the same manner.
2186  // Set bit 0 of the native code address to 1 in this case (valid code addresses
2187  // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2188  if (nativeCode != nullptr &&
2189      shorty != nullptr &&
2190      shorty_len >= 3 &&
2191      shorty[1] == 'F' &&
2192      shorty[2] == 'F') {
2193    nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2194  }
2195#endif
2196
2197  // Return native code addr(lo) and bottom of alloca address(hi).
2198  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2199                                reinterpret_cast<uintptr_t>(nativeCode));
2200}
2201
2202// Defined in quick_jni_entrypoints.cc.
2203extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2204                                    jvalue result, uint64_t result_f, ArtMethod* called,
2205                                    HandleScope* handle_scope);
2206/*
2207 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2208 * unlocking.
2209 */
2210extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2211                                                    jvalue result,
2212                                                    uint64_t result_f) {
2213  // We're here just back from a native call. We don't have the shared mutator lock at this point
2214  // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2215  // anything that requires a mutator lock before that would cause problems as GC may have the
2216  // exclusive mutator lock and may be moving objects, etc.
2217  ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2218  uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2219  ArtMethod* called = *sp;
2220  uint32_t cookie = *(sp32 - 1);
2221  HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2222  return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2223}
2224
2225// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2226// for the method pointer.
2227//
2228// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2229// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2230
2231template<InvokeType type, bool access_check>
2232static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2233                                     ObjPtr<mirror::Object> this_object,
2234                                     Thread* self,
2235                                     ArtMethod** sp) {
2236  ScopedQuickEntrypointChecks sqec(self);
2237  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2238  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2239  ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2240  if (UNLIKELY(method == nullptr)) {
2241    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2242    uint32_t shorty_len;
2243    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2244    {
2245      // Remember the args in case a GC happens in FindMethodFromCode.
2246      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2247      RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2248      visitor.VisitArguments();
2249      method = FindMethodFromCode<type, access_check>(method_idx,
2250                                                      &this_object,
2251                                                      caller_method,
2252                                                      self);
2253      visitor.FixupReferences();
2254    }
2255
2256    if (UNLIKELY(method == nullptr)) {
2257      CHECK(self->IsExceptionPending());
2258      return GetTwoWordFailureValue();  // Failure.
2259    }
2260  }
2261  DCHECK(!self->IsExceptionPending());
2262  const void* code = method->GetEntryPointFromQuickCompiledCode();
2263
2264  // When we return, the caller will branch to this address, so it had better not be 0!
2265  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2266                          << " location: "
2267                          << method->GetDexFile()->GetLocation();
2268
2269  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2270                                reinterpret_cast<uintptr_t>(method));
2271}
2272
2273// Explicit artInvokeCommon template function declarations to please analysis tool.
2274#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2275  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2276  TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2277      uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2278
2279EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2280EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2281EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2282EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2283EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2284EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2285EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2286EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2287EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2288EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2289#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2290
2291// See comments in runtime_support_asm.S
2292extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2293    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2294    REQUIRES_SHARED(Locks::mutator_lock_) {
2295  return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2296}
2297
2298extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2299    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2300    REQUIRES_SHARED(Locks::mutator_lock_) {
2301  return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2302}
2303
2304extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2305    uint32_t method_idx,
2306    mirror::Object* this_object ATTRIBUTE_UNUSED,
2307    Thread* self,
2308    ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2309  // For static, this_object is not required and may be random garbage. Don't pass it down so that
2310  // it doesn't cause ObjPtr alignment failure check.
2311  return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2312}
2313
2314extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2315    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2316    REQUIRES_SHARED(Locks::mutator_lock_) {
2317  return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2318}
2319
2320extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2321    uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2322    REQUIRES_SHARED(Locks::mutator_lock_) {
2323  return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2324}
2325
2326// Determine target of interface dispatch. This object is known non-null. First argument
2327// is there for consistency but should not be used, as some architectures overwrite it
2328// in the assembly trampoline.
2329extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2330                                                      mirror::Object* raw_this_object,
2331                                                      Thread* self,
2332                                                      ArtMethod** sp)
2333    REQUIRES_SHARED(Locks::mutator_lock_) {
2334  ObjPtr<mirror::Object> this_object(raw_this_object);
2335  ScopedQuickEntrypointChecks sqec(self);
2336  StackHandleScope<1> hs(self);
2337  Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2338
2339  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2340
2341  // Fetch the dex_method_idx of the target interface method from the caller.
2342  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2343
2344  const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2345  CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2346  const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2347  Instruction::Code instr_code = instr->Opcode();
2348  CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2349        instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2350      << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2351  uint32_t dex_method_idx;
2352  if (instr_code == Instruction::INVOKE_INTERFACE) {
2353    dex_method_idx = instr->VRegB_35c();
2354  } else {
2355    CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2356    dex_method_idx = instr->VRegB_3rc();
2357  }
2358
2359  ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2360      dex_method_idx, kRuntimePointerSize);
2361  DCHECK(interface_method != nullptr) << dex_method_idx << " " << caller_method->PrettyMethod();
2362  ArtMethod* method = nullptr;
2363  ImTable* imt = cls->GetImt(kRuntimePointerSize);
2364
2365  if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2366    // If the dex cache already resolved the interface method, look whether we have
2367    // a match in the ImtConflictTable.
2368    ArtMethod* conflict_method = imt->Get(ImTable::GetImtIndex(interface_method),
2369                                          kRuntimePointerSize);
2370    if (LIKELY(conflict_method->IsRuntimeMethod())) {
2371      ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2372      DCHECK(current_table != nullptr);
2373      method = current_table->Lookup(interface_method, kRuntimePointerSize);
2374    } else {
2375      // It seems we aren't really a conflict method!
2376      method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2377    }
2378    if (method != nullptr) {
2379      return GetTwoWordSuccessValue(
2380          reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2381          reinterpret_cast<uintptr_t>(method));
2382    }
2383
2384    // No match, use the IfTable.
2385    method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2386    if (UNLIKELY(method == nullptr)) {
2387      ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2388          interface_method, this_object, caller_method);
2389      return GetTwoWordFailureValue();  // Failure.
2390    }
2391  } else {
2392    // The dex cache did not resolve the method, look it up in the dex file
2393    // of the caller,
2394    DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2395    const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2396        ->GetDexFile();
2397    uint32_t shorty_len;
2398    const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2399                                                   &shorty_len);
2400    {
2401      // Remember the args in case a GC happens in FindMethodFromCode.
2402      ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2403      RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2404      visitor.VisitArguments();
2405      method = FindMethodFromCode<kInterface, false>(dex_method_idx,
2406                                                     &this_object,
2407                                                     caller_method,
2408                                                     self);
2409      visitor.FixupReferences();
2410    }
2411
2412    if (UNLIKELY(method == nullptr)) {
2413      CHECK(self->IsExceptionPending());
2414      return GetTwoWordFailureValue();  // Failure.
2415    }
2416    interface_method =
2417        caller_method->GetDexCacheResolvedMethod(dex_method_idx, kRuntimePointerSize);
2418    DCHECK(!interface_method->IsRuntimeMethod());
2419  }
2420
2421  // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2422  // We create a new table with the new pair { interface_method, method }.
2423  uint32_t imt_index = ImTable::GetImtIndex(interface_method);
2424  ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2425  if (conflict_method->IsRuntimeMethod()) {
2426    ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2427        cls.Get(),
2428        conflict_method,
2429        interface_method,
2430        method,
2431        /*force_new_conflict_method*/false);
2432    if (new_conflict_method != conflict_method) {
2433      // Update the IMT if we create a new conflict method. No fence needed here, as the
2434      // data is consistent.
2435      imt->Set(imt_index,
2436               new_conflict_method,
2437               kRuntimePointerSize);
2438    }
2439  }
2440
2441  const void* code = method->GetEntryPointFromQuickCompiledCode();
2442
2443  // When we return, the caller will branch to this address, so it had better not be 0!
2444  DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2445                          << " location: " << method->GetDexFile()->GetLocation();
2446
2447  return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2448                                reinterpret_cast<uintptr_t>(method));
2449}
2450
2451// Returns shorty type so the caller can determine how to put |result|
2452// into expected registers. The shorty type is static so the compiler
2453// could call different flavors of this code path depending on the
2454// shorty type though this would require different entry points for
2455// each type.
2456extern "C" uintptr_t artInvokePolymorphic(
2457    JValue* result,
2458    mirror::Object* raw_method_handle,
2459    Thread* self,
2460    ArtMethod** sp)
2461    REQUIRES_SHARED(Locks::mutator_lock_) {
2462  ScopedQuickEntrypointChecks sqec(self);
2463  DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs));
2464
2465  // Start new JNI local reference state
2466  JNIEnvExt* env = self->GetJniEnv();
2467  ScopedObjectAccessUnchecked soa(env);
2468  ScopedJniEnvLocalRefState env_state(env);
2469  const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2470
2471  // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2472  ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2473  uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2474  const DexFile::CodeItem* code = caller_method->GetCodeItem();
2475  const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
2476  DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2477         inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2478  const DexFile* dex_file = caller_method->GetDexFile();
2479  const uint32_t proto_idx = inst->VRegH();
2480  const char* shorty = dex_file->GetShorty(proto_idx);
2481  const size_t shorty_length = strlen(shorty);
2482  static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2483  RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2484  gc_visitor.VisitArguments();
2485
2486  // Wrap raw_method_handle in a Handle for safety.
2487  StackHandleScope<5> hs(self);
2488  Handle<mirror::MethodHandle> method_handle(
2489      hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
2490  raw_method_handle = nullptr;
2491  self->EndAssertNoThreadSuspension(old_cause);
2492
2493  // Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
2494  ClassLinker* linker = Runtime::Current()->GetClassLinker();
2495  ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::kForceICCECheck>(self,
2496                                                                                   inst->VRegB(),
2497                                                                                   caller_method,
2498                                                                                   kVirtual);
2499  DCHECK((resolved_method ==
2500          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
2501         (resolved_method ==
2502          jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
2503  if (UNLIKELY(method_handle.IsNull())) {
2504    ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
2505    return static_cast<uintptr_t>('V');
2506  }
2507
2508  Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
2509  Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
2510      *dex_file, proto_idx,
2511      hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
2512      hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
2513  // This implies we couldn't resolve one or more types in this method handle.
2514  if (UNLIKELY(method_type.IsNull())) {
2515    CHECK(self->IsExceptionPending());
2516    return static_cast<uintptr_t>('V');
2517  }
2518
2519  DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
2520  DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2521
2522  // Fix references before constructing the shadow frame.
2523  gc_visitor.FixupReferences();
2524
2525  // Construct shadow frame placing arguments consecutively from |first_arg|.
2526  const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2527  const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
2528  const size_t first_arg = 0;
2529  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2530      CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
2531  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2532  ScopedStackedShadowFramePusher
2533      frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2534  BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2535                                                    kMethodIsStatic,
2536                                                    shorty,
2537                                                    strlen(shorty),
2538                                                    shadow_frame,
2539                                                    first_arg);
2540  shadow_frame_builder.VisitArguments();
2541
2542  // Push a transition back into managed code onto the linked list in thread.
2543  ManagedStack fragment;
2544  self->PushManagedStackFragment(&fragment);
2545
2546  // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2547  // consecutive order.
2548  uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
2549  uint32_t first_callee_arg = first_arg + 1;
2550  if (!DoInvokePolymorphic<true /* is_range */>(self,
2551                                                resolved_method,
2552                                                *shadow_frame,
2553                                                method_handle,
2554                                                method_type,
2555                                                unused_args,
2556                                                first_callee_arg,
2557                                                result)) {
2558    DCHECK(self->IsExceptionPending());
2559  }
2560
2561  // Pop transition record.
2562  self->PopManagedStackFragment(fragment);
2563
2564  return static_cast<uintptr_t>(shorty[0]);
2565}
2566
2567}  // namespace art
2568