quick_trampoline_entrypoints.cc revision ebee8de725d5fa83483642786b19ea453d865762
1/* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "callee_save_frame.h" 18#include "common_throws.h" 19#include "dex_file-inl.h" 20#include "dex_instruction-inl.h" 21#include "entrypoints/entrypoint_utils-inl.h" 22#include "gc/accounting/card_table-inl.h" 23#include "instruction_set.h" 24#include "interpreter/interpreter.h" 25#include "mirror/art_method-inl.h" 26#include "mirror/class-inl.h" 27#include "mirror/dex_cache-inl.h" 28#include "mirror/object-inl.h" 29#include "mirror/object_array-inl.h" 30#include "runtime.h" 31#include "scoped_thread_state_change.h" 32 33namespace art { 34 35// Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame. 36class QuickArgumentVisitor { 37 // Number of bytes for each out register in the caller method's frame. 38 static constexpr size_t kBytesStackArgLocation = 4; 39 // Frame size in bytes of a callee-save frame for RefsAndArgs. 40 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = 41 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs); 42#if defined(__arm__) 43 // The callee save frame is pointed to by SP. 44 // | argN | | 45 // | ... | | 46 // | arg4 | | 47 // | arg3 spill | | Caller's frame 48 // | arg2 spill | | 49 // | arg1 spill | | 50 // | Method* | --- 51 // | LR | 52 // | ... | callee saves 53 // | R3 | arg3 54 // | R2 | arg2 55 // | R1 | arg1 56 // | R0 | padding 57 // | Method* | <- sp 58 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 59 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 60 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 62 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 63 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 64 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 65 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 66 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 67 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 68 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 69 } 70#elif defined(__aarch64__) 71 // The callee save frame is pointed to by SP. 72 // | argN | | 73 // | ... | | 74 // | arg4 | | 75 // | arg3 spill | | Caller's frame 76 // | arg2 spill | | 77 // | arg1 spill | | 78 // | Method* | --- 79 // | LR | 80 // | X29 | 81 // | : | 82 // | X20 | 83 // | X7 | 84 // | : | 85 // | X1 | 86 // | D7 | 87 // | : | 88 // | D0 | 89 // | | padding 90 // | Method* | <- sp 91 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 92 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. 93 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 94 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 95 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg. 96 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 97 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg. 98 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 99 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address. 100 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 101 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 102 } 103#elif defined(__mips__) 104 // The callee save frame is pointed to by SP. 105 // | argN | | 106 // | ... | | 107 // | arg4 | | 108 // | arg3 spill | | Caller's frame 109 // | arg2 spill | | 110 // | arg1 spill | | 111 // | Method* | --- 112 // | RA | 113 // | ... | callee saves 114 // | A3 | arg3 115 // | A2 | arg2 116 // | A1 | arg1 117 // | A0/Method* | <- sp 118 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 119 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 120 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 121 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 123 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address. 124 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 125 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 126 } 127#elif defined(__i386__) 128 // The callee save frame is pointed to by SP. 129 // | argN | | 130 // | ... | | 131 // | arg4 | | 132 // | arg3 spill | | Caller's frame 133 // | arg2 spill | | 134 // | arg1 spill | | 135 // | Method* | --- 136 // | Return | 137 // | EBP,ESI,EDI | callee saves 138 // | EBX | arg3 139 // | EDX | arg2 140 // | ECX | arg1 141 // | EAX/Method* | <- sp 142 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI. 143 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. 144 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs. 145 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg. 146 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg. 147 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address. 148 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 149 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); 150 } 151#elif defined(__x86_64__) 152 // The callee save frame is pointed to by SP. 153 // | argN | | 154 // | ... | | 155 // | reg. arg spills | | Caller's frame 156 // | Method* | --- 157 // | Return | 158 // | R15 | callee save 159 // | R14 | callee save 160 // | R13 | callee save 161 // | R12 | callee save 162 // | R9 | arg5 163 // | R8 | arg4 164 // | RSI/R6 | arg1 165 // | RBP/R5 | callee save 166 // | RBX/R3 | callee save 167 // | RDX/R2 | arg2 168 // | RCX/R1 | arg3 169 // | XMM7 | float arg 8 170 // | XMM6 | float arg 7 171 // | XMM5 | float arg 6 172 // | XMM4 | float arg 5 173 // | XMM3 | float arg 4 174 // | XMM2 | float arg 3 175 // | XMM1 | float arg 2 176 // | XMM0 | float arg 1 177 // | Padding | 178 // | RDI/Method* | <- sp 179 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. 180 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. 181 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. 182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. 183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. 184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. 185 static size_t GprIndexToGprOffset(uint32_t gpr_index) { 186 switch (gpr_index) { 187 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); 188 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); 189 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); 190 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); 191 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); 192 default: 193 LOG(FATAL) << "Unexpected GPR index: " << gpr_index; 194 return 0; 195 } 196 } 197#else 198#error "Unsupported architecture" 199#endif 200 201 public: 202 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp) 203 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 204 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 205 byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; 206 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr(); 207 } 208 209 // For the given quick ref and args quick frame, return the caller's PC. 210 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp) 211 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 212 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod()); 213 byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; 214 return *reinterpret_cast<uintptr_t*>(lr); 215 } 216 217 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty, 218 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : 219 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), 220 gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), 221 fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), 222 stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize 223 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)), 224 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid), 225 is_split_long_or_double_(false) {} 226 227 virtual ~QuickArgumentVisitor() {} 228 229 virtual void Visit() = 0; 230 231 Primitive::Type GetParamPrimitiveType() const { 232 return cur_type_; 233 } 234 235 byte* GetParamAddress() const { 236 if (!kQuickSoftFloatAbi) { 237 Primitive::Type type = GetParamPrimitiveType(); 238 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { 239 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 240 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); 241 } 242 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 243 } 244 } 245 if (gpr_index_ < kNumQuickGprArgs) { 246 return gpr_args_ + GprIndexToGprOffset(gpr_index_); 247 } 248 return stack_args_ + (stack_index_ * kBytesStackArgLocation); 249 } 250 251 bool IsSplitLongOrDouble() const { 252 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { 253 return is_split_long_or_double_; 254 } else { 255 return false; // An optimization for when GPR and FPRs are 64bit. 256 } 257 } 258 259 bool IsParamAReference() const { 260 return GetParamPrimitiveType() == Primitive::kPrimNot; 261 } 262 263 bool IsParamALongOrDouble() const { 264 Primitive::Type type = GetParamPrimitiveType(); 265 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; 266 } 267 268 uint64_t ReadSplitLongParam() const { 269 DCHECK(IsSplitLongOrDouble()); 270 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress()); 271 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_); 272 return (low_half & 0xffffffffULL) | (high_half << 32); 273 } 274 275 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 276 // This implementation doesn't support reg-spill area for hard float 277 // ABI targets such as x86_64 and aarch64. So, for those targets whose 278 // 'kQuickSoftFloatAbi' is 'false': 279 // (a) 'stack_args_' should point to the first method's argument 280 // (b) whatever the argument type it is, the 'stack_index_' should 281 // be moved forward along with every visiting. 282 gpr_index_ = 0; 283 fpr_index_ = 0; 284 stack_index_ = 0; 285 if (!is_static_) { // Handle this. 286 cur_type_ = Primitive::kPrimNot; 287 is_split_long_or_double_ = false; 288 Visit(); 289 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) { 290 stack_index_++; 291 } 292 if (kNumQuickGprArgs > 0) { 293 gpr_index_++; 294 } 295 } 296 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { 297 cur_type_ = Primitive::GetType(shorty_[shorty_index]); 298 switch (cur_type_) { 299 case Primitive::kPrimNot: 300 case Primitive::kPrimBoolean: 301 case Primitive::kPrimByte: 302 case Primitive::kPrimChar: 303 case Primitive::kPrimShort: 304 case Primitive::kPrimInt: 305 is_split_long_or_double_ = false; 306 Visit(); 307 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 308 stack_index_++; 309 } 310 if (gpr_index_ < kNumQuickGprArgs) { 311 gpr_index_++; 312 } 313 break; 314 case Primitive::kPrimFloat: 315 is_split_long_or_double_ = false; 316 Visit(); 317 if (kQuickSoftFloatAbi) { 318 if (gpr_index_ < kNumQuickGprArgs) { 319 gpr_index_++; 320 } else { 321 stack_index_++; 322 } 323 } else { 324 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 325 fpr_index_++; 326 } 327 stack_index_++; 328 } 329 break; 330 case Primitive::kPrimDouble: 331 case Primitive::kPrimLong: 332 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { 333 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && 334 ((gpr_index_ + 1) == kNumQuickGprArgs); 335 Visit(); 336 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) { 337 if (kBytesStackArgLocation == 4) { 338 stack_index_+= 2; 339 } else { 340 CHECK_EQ(kBytesStackArgLocation, 8U); 341 stack_index_++; 342 } 343 } 344 if (gpr_index_ < kNumQuickGprArgs) { 345 gpr_index_++; 346 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { 347 if (gpr_index_ < kNumQuickGprArgs) { 348 gpr_index_++; 349 } else if (kQuickSoftFloatAbi) { 350 stack_index_++; 351 } 352 } 353 } 354 } else { 355 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && 356 ((fpr_index_ + 1) == kNumQuickFprArgs); 357 Visit(); 358 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 359 fpr_index_++; 360 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { 361 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) { 362 fpr_index_++; 363 } 364 } 365 } 366 if (kBytesStackArgLocation == 4) { 367 stack_index_+= 2; 368 } else { 369 CHECK_EQ(kBytesStackArgLocation, 8U); 370 stack_index_++; 371 } 372 } 373 break; 374 default: 375 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; 376 } 377 } 378 } 379 380 private: 381 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty, 382 uint32_t shorty_len) { 383 if (kQuickSoftFloatAbi) { 384 CHECK_EQ(kNumQuickFprArgs, 0U); 385 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA)) 386 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */; 387 } else { 388 // For now, there is no reg-spill area for the targets with 389 // hard float ABI. So, the offset pointing to the first method's 390 // parameter ('this' for non-static methods) should be returned. 391 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>. 392 } 393 } 394 395 protected: 396 const bool is_static_; 397 const char* const shorty_; 398 const uint32_t shorty_len_; 399 400 private: 401 byte* const gpr_args_; // Address of GPR arguments in callee save frame. 402 byte* const fpr_args_; // Address of FPR arguments in callee save frame. 403 byte* const stack_args_; // Address of stack arguments in caller's frame. 404 uint32_t gpr_index_; // Index into spilled GPRs. 405 uint32_t fpr_index_; // Index into spilled FPRs. 406 uint32_t stack_index_; // Index into arguments on the stack. 407 // The current type of argument during VisitArguments. 408 Primitive::Type cur_type_; 409 // Does a 64bit parameter straddle the register and stack arguments? 410 bool is_split_long_or_double_; 411}; 412 413// Visits arguments on the stack placing them into the shadow frame. 414class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { 415 public: 416 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 417 const char* shorty, uint32_t shorty_len, ShadowFrame* sf, 418 size_t first_arg_reg) : 419 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} 420 421 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 422 423 private: 424 ShadowFrame* const sf_; 425 uint32_t cur_reg_; 426 427 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); 428}; 429 430void BuildQuickShadowFrameVisitor::Visit() { 431 Primitive::Type type = GetParamPrimitiveType(); 432 switch (type) { 433 case Primitive::kPrimLong: // Fall-through. 434 case Primitive::kPrimDouble: 435 if (IsSplitLongOrDouble()) { 436 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); 437 } else { 438 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); 439 } 440 ++cur_reg_; 441 break; 442 case Primitive::kPrimNot: { 443 StackReference<mirror::Object>* stack_ref = 444 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 445 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); 446 } 447 break; 448 case Primitive::kPrimBoolean: // Fall-through. 449 case Primitive::kPrimByte: // Fall-through. 450 case Primitive::kPrimChar: // Fall-through. 451 case Primitive::kPrimShort: // Fall-through. 452 case Primitive::kPrimInt: // Fall-through. 453 case Primitive::kPrimFloat: 454 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); 455 break; 456 case Primitive::kPrimVoid: 457 LOG(FATAL) << "UNREACHABLE"; 458 break; 459 } 460 ++cur_reg_; 461} 462 463extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self, 464 StackReference<mirror::ArtMethod>* sp) 465 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 466 // Ensure we don't get thread suspension until the object arguments are safely in the shadow 467 // frame. 468 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 469 470 if (method->IsAbstract()) { 471 ThrowAbstractMethodError(method); 472 return 0; 473 } else { 474 DCHECK(!method->IsNative()) << PrettyMethod(method); 475 const char* old_cause = self->StartAssertNoThreadSuspension( 476 "Building interpreter shadow frame"); 477 const DexFile::CodeItem* code_item = method->GetCodeItem(); 478 DCHECK(code_item != nullptr) << PrettyMethod(method); 479 uint16_t num_regs = code_item->registers_size_; 480 void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); 481 // No last shadow coming from quick. 482 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory)); 483 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; 484 uint32_t shorty_len = 0; 485 const char* shorty = method->GetShorty(&shorty_len); 486 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, 487 shadow_frame, first_arg_reg); 488 shadow_frame_builder.VisitArguments(); 489 // Push a transition back into managed code onto the linked list in thread. 490 ManagedStack fragment; 491 self->PushManagedStackFragment(&fragment); 492 self->PushShadowFrame(shadow_frame); 493 self->EndAssertNoThreadSuspension(old_cause); 494 495 if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) { 496 // Ensure static method's class is initialized. 497 StackHandleScope<1> hs(self); 498 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass())); 499 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) { 500 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method); 501 self->PopManagedStackFragment(fragment); 502 return 0; 503 } 504 } 505 506 StackHandleScope<1> hs(self); 507 MethodHelper mh(hs.NewHandle(method)); 508 JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame); 509 // Pop transition. 510 self->PopManagedStackFragment(fragment); 511 // No need to restore the args since the method has already been run by the interpreter. 512 return result.GetJ(); 513 } 514} 515 516// Visits arguments on the stack placing them into the args vector, Object* arguments are converted 517// to jobjects. 518class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { 519 public: 520 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 521 const char* shorty, uint32_t shorty_len, 522 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : 523 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} 524 525 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 526 527 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 528 529 private: 530 ScopedObjectAccessUnchecked* const soa_; 531 std::vector<jvalue>* const args_; 532 // References which we must update when exiting in case the GC moved the objects. 533 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; 534 535 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); 536}; 537 538void BuildQuickArgumentVisitor::Visit() { 539 jvalue val; 540 Primitive::Type type = GetParamPrimitiveType(); 541 switch (type) { 542 case Primitive::kPrimNot: { 543 StackReference<mirror::Object>* stack_ref = 544 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 545 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 546 references_.push_back(std::make_pair(val.l, stack_ref)); 547 break; 548 } 549 case Primitive::kPrimLong: // Fall-through. 550 case Primitive::kPrimDouble: 551 if (IsSplitLongOrDouble()) { 552 val.j = ReadSplitLongParam(); 553 } else { 554 val.j = *reinterpret_cast<jlong*>(GetParamAddress()); 555 } 556 break; 557 case Primitive::kPrimBoolean: // Fall-through. 558 case Primitive::kPrimByte: // Fall-through. 559 case Primitive::kPrimChar: // Fall-through. 560 case Primitive::kPrimShort: // Fall-through. 561 case Primitive::kPrimInt: // Fall-through. 562 case Primitive::kPrimFloat: 563 val.i = *reinterpret_cast<jint*>(GetParamAddress()); 564 break; 565 case Primitive::kPrimVoid: 566 LOG(FATAL) << "UNREACHABLE"; 567 val.j = 0; 568 break; 569 } 570 args_->push_back(val); 571} 572 573void BuildQuickArgumentVisitor::FixupReferences() { 574 // Fixup any references which may have changed. 575 for (const auto& pair : references_) { 576 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 577 soa_->Env()->DeleteLocalRef(pair.first); 578 } 579} 580 581// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method 582// which is responsible for recording callee save registers. We explicitly place into jobjects the 583// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a 584// field within the proxy object, which will box the primitive arguments and deal with error cases. 585extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method, 586 mirror::Object* receiver, 587 Thread* self, StackReference<mirror::ArtMethod>* sp) 588 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 589 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method); 590 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method); 591 // Ensure we don't get thread suspension until the object arguments are safely in jobjects. 592 const char* old_cause = 593 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); 594 // Register the top of the managed stack, making stack crawlable. 595 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method); 596 self->SetTopOfStack(sp, 0); 597 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(), 598 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes()) 599 << PrettyMethod(proxy_method); 600 self->VerifyStack(); 601 // Start new JNI local reference state. 602 JNIEnvExt* env = self->GetJniEnv(); 603 ScopedObjectAccessUnchecked soa(env); 604 ScopedJniEnvLocalRefState env_state(env); 605 // Create local ref. copies of proxy method and the receiver. 606 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); 607 608 // Placing arguments into args vector and remove the receiver. 609 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(); 610 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " " 611 << PrettyMethod(non_proxy_method); 612 std::vector<jvalue> args; 613 uint32_t shorty_len = 0; 614 const char* shorty = proxy_method->GetShorty(&shorty_len); 615 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); 616 617 local_ref_visitor.VisitArguments(); 618 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method); 619 args.erase(args.begin()); 620 621 // Convert proxy method into expected interface method. 622 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod(); 623 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method); 624 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method); 625 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method); 626 627 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code 628 // that performs allocations. 629 self->EndAssertNoThreadSuspension(old_cause); 630 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); 631 // Restore references which might have moved. 632 local_ref_visitor.FixupReferences(); 633 return result.GetJ(); 634} 635 636// Read object references held in arguments from quick frames and place in a JNI local references, 637// so they don't get garbage collected. 638class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { 639 public: 640 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, 641 const char* shorty, uint32_t shorty_len, 642 ScopedObjectAccessUnchecked* soa) : 643 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} 644 645 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 646 647 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 648 649 private: 650 ScopedObjectAccessUnchecked* const soa_; 651 // References which we must update when exiting in case the GC moved the objects. 652 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; 653 654 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); 655}; 656 657void RememberForGcArgumentVisitor::Visit() { 658 if (IsParamAReference()) { 659 StackReference<mirror::Object>* stack_ref = 660 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 661 jobject reference = 662 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); 663 references_.push_back(std::make_pair(reference, stack_ref)); 664 } 665} 666 667void RememberForGcArgumentVisitor::FixupReferences() { 668 // Fixup any references which may have changed. 669 for (const auto& pair : references_) { 670 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first)); 671 soa_->Env()->DeleteLocalRef(pair.first); 672 } 673} 674 675// Lazily resolve a method for quick. Called by stub code. 676extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called, 677 mirror::Object* receiver, 678 Thread* self, 679 StackReference<mirror::ArtMethod>* sp) 680 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 681 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 682 // Start new JNI local reference state 683 JNIEnvExt* env = self->GetJniEnv(); 684 ScopedObjectAccessUnchecked soa(env); 685 ScopedJniEnvLocalRefState env_state(env); 686 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); 687 688 // Compute details about the called method (avoid GCs) 689 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 690 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); 691 InvokeType invoke_type; 692 const DexFile* dex_file; 693 uint32_t dex_method_idx; 694 if (called->IsRuntimeMethod()) { 695 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp)); 696 const DexFile::CodeItem* code; 697 dex_file = caller->GetDexFile(); 698 code = caller->GetCodeItem(); 699 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 700 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 701 Instruction::Code instr_code = instr->Opcode(); 702 bool is_range; 703 switch (instr_code) { 704 case Instruction::INVOKE_DIRECT: 705 invoke_type = kDirect; 706 is_range = false; 707 break; 708 case Instruction::INVOKE_DIRECT_RANGE: 709 invoke_type = kDirect; 710 is_range = true; 711 break; 712 case Instruction::INVOKE_STATIC: 713 invoke_type = kStatic; 714 is_range = false; 715 break; 716 case Instruction::INVOKE_STATIC_RANGE: 717 invoke_type = kStatic; 718 is_range = true; 719 break; 720 case Instruction::INVOKE_SUPER: 721 invoke_type = kSuper; 722 is_range = false; 723 break; 724 case Instruction::INVOKE_SUPER_RANGE: 725 invoke_type = kSuper; 726 is_range = true; 727 break; 728 case Instruction::INVOKE_VIRTUAL: 729 invoke_type = kVirtual; 730 is_range = false; 731 break; 732 case Instruction::INVOKE_VIRTUAL_RANGE: 733 invoke_type = kVirtual; 734 is_range = true; 735 break; 736 case Instruction::INVOKE_INTERFACE: 737 invoke_type = kInterface; 738 is_range = false; 739 break; 740 case Instruction::INVOKE_INTERFACE_RANGE: 741 invoke_type = kInterface; 742 is_range = true; 743 break; 744 default: 745 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL); 746 // Avoid used uninitialized warnings. 747 invoke_type = kDirect; 748 is_range = false; 749 } 750 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c(); 751 } else { 752 invoke_type = kStatic; 753 dex_file = called->GetDexFile(); 754 dex_method_idx = called->GetDexMethodIndex(); 755 } 756 uint32_t shorty_len; 757 const char* shorty = 758 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len); 759 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); 760 visitor.VisitArguments(); 761 self->EndAssertNoThreadSuspension(old_cause); 762 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; 763 // Resolve method filling in dex cache. 764 if (UNLIKELY(called->IsRuntimeMethod())) { 765 StackHandleScope<1> hs(self); 766 mirror::Object* dummy = nullptr; 767 HandleWrapper<mirror::Object> h_receiver( 768 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); 769 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type); 770 } 771 const void* code = NULL; 772 if (LIKELY(!self->IsExceptionPending())) { 773 // Incompatible class change should have been handled in resolve method. 774 CHECK(!called->CheckIncompatibleClassChange(invoke_type)) 775 << PrettyMethod(called) << " " << invoke_type; 776 if (virtual_or_interface) { 777 // Refine called method based on receiver. 778 CHECK(receiver != nullptr) << invoke_type; 779 780 mirror::ArtMethod* orig_called = called; 781 if (invoke_type == kVirtual) { 782 called = receiver->GetClass()->FindVirtualMethodForVirtual(called); 783 } else { 784 called = receiver->GetClass()->FindVirtualMethodForInterface(called); 785 } 786 787 CHECK(called != nullptr) << PrettyMethod(orig_called) << " " 788 << PrettyTypeOf(receiver) << " " 789 << invoke_type << " " << orig_called->GetVtableIndex(); 790 791 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index 792 // of the sharpened method. 793 if (called->HasSameDexCacheResolvedMethods(caller)) { 794 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called); 795 } else { 796 // Calling from one dex file to another, need to compute the method index appropriate to 797 // the caller's dex file. Since we get here only if the original called was a runtime 798 // method, we've got the correct dex_file and a dex_method_idx from above. 799 DCHECK_EQ(caller->GetDexFile(), dex_file); 800 StackHandleScope<1> hs(self); 801 MethodHelper mh(hs.NewHandle(called)); 802 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx); 803 if (method_index != DexFile::kDexNoIndex) { 804 caller->SetDexCacheResolvedMethod(method_index, called); 805 } 806 } 807 } 808 // Ensure that the called method's class is initialized. 809 StackHandleScope<1> hs(soa.Self()); 810 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); 811 linker->EnsureInitialized(called_class, true, true); 812 if (LIKELY(called_class->IsInitialized())) { 813 code = called->GetEntryPointFromQuickCompiledCode(); 814 } else if (called_class->IsInitializing()) { 815 if (invoke_type == kStatic) { 816 // Class is still initializing, go to oat and grab code (trampoline must be left in place 817 // until class is initialized to stop races between threads). 818 code = linker->GetQuickOatCodeFor(called); 819 } else { 820 // No trampoline for non-static methods. 821 code = called->GetEntryPointFromQuickCompiledCode(); 822 } 823 } else { 824 DCHECK(called_class->IsErroneous()); 825 } 826 } 827 CHECK_EQ(code == NULL, self->IsExceptionPending()); 828 // Fixup any locally saved objects may have moved during a GC. 829 visitor.FixupReferences(); 830 // Place called method in callee-save frame to be placed as first argument to quick method. 831 sp->Assign(called); 832 return code; 833} 834 835/* 836 * This class uses a couple of observations to unite the different calling conventions through 837 * a few constants. 838 * 839 * 1) Number of registers used for passing is normally even, so counting down has no penalty for 840 * possible alignment. 841 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point 842 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote 843 * when we have to split things 844 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats 845 * and we can use Int handling directly. 846 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code 847 * necessary when widening. Also, widening of Ints will take place implicitly, and the 848 * extension should be compatible with Aarch64, which mandates copying the available bits 849 * into LSB and leaving the rest unspecified. 850 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on 851 * the stack. 852 * 6) There is only little endian. 853 * 854 * 855 * Actual work is supposed to be done in a delegate of the template type. The interface is as 856 * follows: 857 * 858 * void PushGpr(uintptr_t): Add a value for the next GPR 859 * 860 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need 861 * padding, that is, think the architecture is 32b and aligns 64b. 862 * 863 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to 864 * split this if necessary. The current state will have aligned, if 865 * necessary. 866 * 867 * void PushStack(uintptr_t): Push a value to the stack. 868 * 869 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, 870 * as this might be important for null initialization. 871 * Must return the jobject, that is, the reference to the 872 * entry in the HandleScope (nullptr if necessary). 873 * 874 */ 875template<class T> class BuildNativeCallFrameStateMachine { 876 public: 877#if defined(__arm__) 878 // TODO: These are all dummy values! 879 static constexpr bool kNativeSoftFloatAbi = true; 880 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 881 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. 882 883 static constexpr size_t kRegistersNeededForLong = 2; 884 static constexpr size_t kRegistersNeededForDouble = 2; 885 static constexpr bool kMultiRegistersAligned = true; 886 static constexpr bool kMultiRegistersWidened = false; 887 static constexpr bool kAlignLongOnStack = true; 888 static constexpr bool kAlignDoubleOnStack = true; 889#elif defined(__aarch64__) 890 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 891 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. 892 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 893 894 static constexpr size_t kRegistersNeededForLong = 1; 895 static constexpr size_t kRegistersNeededForDouble = 1; 896 static constexpr bool kMultiRegistersAligned = false; 897 static constexpr bool kMultiRegistersWidened = false; 898 static constexpr bool kAlignLongOnStack = false; 899 static constexpr bool kAlignDoubleOnStack = false; 900#elif defined(__mips__) 901 // TODO: These are all dummy values! 902 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. 903 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 904 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 905 906 static constexpr size_t kRegistersNeededForLong = 2; 907 static constexpr size_t kRegistersNeededForDouble = 2; 908 static constexpr bool kMultiRegistersAligned = true; 909 static constexpr bool kMultiRegistersWidened = true; 910 static constexpr bool kAlignLongOnStack = false; 911 static constexpr bool kAlignDoubleOnStack = false; 912#elif defined(__i386__) 913 // TODO: Check these! 914 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp 915 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. 916 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. 917 918 static constexpr size_t kRegistersNeededForLong = 2; 919 static constexpr size_t kRegistersNeededForDouble = 2; 920 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways 921 static constexpr bool kMultiRegistersWidened = false; 922 static constexpr bool kAlignLongOnStack = false; 923 static constexpr bool kAlignDoubleOnStack = false; 924#elif defined(__x86_64__) 925 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. 926 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. 927 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. 928 929 static constexpr size_t kRegistersNeededForLong = 1; 930 static constexpr size_t kRegistersNeededForDouble = 1; 931 static constexpr bool kMultiRegistersAligned = false; 932 static constexpr bool kMultiRegistersWidened = false; 933 static constexpr bool kAlignLongOnStack = false; 934 static constexpr bool kAlignDoubleOnStack = false; 935#else 936#error "Unsupported architecture" 937#endif 938 939 public: 940 explicit BuildNativeCallFrameStateMachine(T* delegate) 941 : gpr_index_(kNumNativeGprArgs), 942 fpr_index_(kNumNativeFprArgs), 943 stack_entries_(0), 944 delegate_(delegate) { 945 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff 946 // the next register is even; counting down is just to make the compiler happy... 947 CHECK_EQ(kNumNativeGprArgs % 2, 0U); 948 CHECK_EQ(kNumNativeFprArgs % 2, 0U); 949 } 950 951 virtual ~BuildNativeCallFrameStateMachine() {} 952 953 bool HavePointerGpr() { 954 return gpr_index_ > 0; 955 } 956 957 void AdvancePointer(const void* val) { 958 if (HavePointerGpr()) { 959 gpr_index_--; 960 PushGpr(reinterpret_cast<uintptr_t>(val)); 961 } else { 962 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b 963 PushStack(reinterpret_cast<uintptr_t>(val)); 964 gpr_index_ = 0; 965 } 966 } 967 968 bool HaveHandleScopeGpr() { 969 return gpr_index_ > 0; 970 } 971 972 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 973 uintptr_t handle = PushHandle(ptr); 974 if (HaveHandleScopeGpr()) { 975 gpr_index_--; 976 PushGpr(handle); 977 } else { 978 stack_entries_++; 979 PushStack(handle); 980 gpr_index_ = 0; 981 } 982 } 983 984 bool HaveIntGpr() { 985 return gpr_index_ > 0; 986 } 987 988 void AdvanceInt(uint32_t val) { 989 if (HaveIntGpr()) { 990 gpr_index_--; 991 PushGpr(val); 992 } else { 993 stack_entries_++; 994 PushStack(val); 995 gpr_index_ = 0; 996 } 997 } 998 999 bool HaveLongGpr() { 1000 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); 1001 } 1002 1003 bool LongGprNeedsPadding() { 1004 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1005 kAlignLongOnStack && // and when it needs alignment 1006 (gpr_index_ & 1) == 1; // counter is odd, see constructor 1007 } 1008 1009 bool LongStackNeedsPadding() { 1010 return kRegistersNeededForLong > 1 && // only pad when using multiple registers 1011 kAlignLongOnStack && // and when it needs 8B alignment 1012 (stack_entries_ & 1) == 1; // counter is odd 1013 } 1014 1015 void AdvanceLong(uint64_t val) { 1016 if (HaveLongGpr()) { 1017 if (LongGprNeedsPadding()) { 1018 PushGpr(0); 1019 gpr_index_--; 1020 } 1021 if (kRegistersNeededForLong == 1) { 1022 PushGpr(static_cast<uintptr_t>(val)); 1023 } else { 1024 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1025 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1026 } 1027 gpr_index_ -= kRegistersNeededForLong; 1028 } else { 1029 if (LongStackNeedsPadding()) { 1030 PushStack(0); 1031 stack_entries_++; 1032 } 1033 if (kRegistersNeededForLong == 1) { 1034 PushStack(static_cast<uintptr_t>(val)); 1035 stack_entries_++; 1036 } else { 1037 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1038 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1039 stack_entries_ += 2; 1040 } 1041 gpr_index_ = 0; 1042 } 1043 } 1044 1045 bool HaveFloatFpr() { 1046 return fpr_index_ > 0; 1047 } 1048 1049 void AdvanceFloat(float val) { 1050 if (kNativeSoftFloatAbi) { 1051 AdvanceInt(bit_cast<float, uint32_t>(val)); 1052 } else { 1053 if (HaveFloatFpr()) { 1054 fpr_index_--; 1055 if (kRegistersNeededForDouble == 1) { 1056 if (kMultiRegistersWidened) { 1057 PushFpr8(bit_cast<double, uint64_t>(val)); 1058 } else { 1059 // No widening, just use the bits. 1060 PushFpr8(bit_cast<float, uint64_t>(val)); 1061 } 1062 } else { 1063 PushFpr4(val); 1064 } 1065 } else { 1066 stack_entries_++; 1067 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) { 1068 // Need to widen before storing: Note the "double" in the template instantiation. 1069 // Note: We need to jump through those hoops to make the compiler happy. 1070 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); 1071 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val))); 1072 } else { 1073 PushStack(bit_cast<float, uintptr_t>(val)); 1074 } 1075 fpr_index_ = 0; 1076 } 1077 } 1078 } 1079 1080 bool HaveDoubleFpr() { 1081 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); 1082 } 1083 1084 bool DoubleFprNeedsPadding() { 1085 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1086 kAlignDoubleOnStack && // and when it needs alignment 1087 (fpr_index_ & 1) == 1; // counter is odd, see constructor 1088 } 1089 1090 bool DoubleStackNeedsPadding() { 1091 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers 1092 kAlignDoubleOnStack && // and when it needs 8B alignment 1093 (stack_entries_ & 1) == 1; // counter is odd 1094 } 1095 1096 void AdvanceDouble(uint64_t val) { 1097 if (kNativeSoftFloatAbi) { 1098 AdvanceLong(val); 1099 } else { 1100 if (HaveDoubleFpr()) { 1101 if (DoubleFprNeedsPadding()) { 1102 PushFpr4(0); 1103 fpr_index_--; 1104 } 1105 PushFpr8(val); 1106 fpr_index_ -= kRegistersNeededForDouble; 1107 } else { 1108 if (DoubleStackNeedsPadding()) { 1109 PushStack(0); 1110 stack_entries_++; 1111 } 1112 if (kRegistersNeededForDouble == 1) { 1113 PushStack(static_cast<uintptr_t>(val)); 1114 stack_entries_++; 1115 } else { 1116 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); 1117 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); 1118 stack_entries_ += 2; 1119 } 1120 fpr_index_ = 0; 1121 } 1122 } 1123 } 1124 1125 uint32_t getStackEntries() { 1126 return stack_entries_; 1127 } 1128 1129 uint32_t getNumberOfUsedGprs() { 1130 return kNumNativeGprArgs - gpr_index_; 1131 } 1132 1133 uint32_t getNumberOfUsedFprs() { 1134 return kNumNativeFprArgs - fpr_index_; 1135 } 1136 1137 private: 1138 void PushGpr(uintptr_t val) { 1139 delegate_->PushGpr(val); 1140 } 1141 void PushFpr4(float val) { 1142 delegate_->PushFpr4(val); 1143 } 1144 void PushFpr8(uint64_t val) { 1145 delegate_->PushFpr8(val); 1146 } 1147 void PushStack(uintptr_t val) { 1148 delegate_->PushStack(val); 1149 } 1150 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1151 return delegate_->PushHandle(ref); 1152 } 1153 1154 uint32_t gpr_index_; // Number of free GPRs 1155 uint32_t fpr_index_; // Number of free FPRs 1156 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not 1157 // extended 1158 T* delegate_; // What Push implementation gets called 1159}; 1160 1161// Computes the sizes of register stacks and call stack area. Handling of references can be extended 1162// in subclasses. 1163// 1164// To handle native pointers, use "L" in the shorty for an object reference, which simulates 1165// them with handles. 1166class ComputeNativeCallFrameSize { 1167 public: 1168 ComputeNativeCallFrameSize() : num_stack_entries_(0) {} 1169 1170 virtual ~ComputeNativeCallFrameSize() {} 1171 1172 uint32_t GetStackSize() { 1173 return num_stack_entries_ * sizeof(uintptr_t); 1174 } 1175 1176 uint8_t* LayoutCallStack(uint8_t* sp8) { 1177 sp8 -= GetStackSize(); 1178 // Align by kStackAlignment. 1179 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1180 return sp8; 1181 } 1182 1183 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) { 1184 // Assumption is OK right now, as we have soft-float arm 1185 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; 1186 sp8 -= fregs * sizeof(uintptr_t); 1187 *start_fpr = reinterpret_cast<uint32_t*>(sp8); 1188 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; 1189 sp8 -= iregs * sizeof(uintptr_t); 1190 *start_gpr = reinterpret_cast<uintptr_t*>(sp8); 1191 return sp8; 1192 } 1193 1194 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, 1195 uint32_t** start_fpr) { 1196 // Native call stack. 1197 sp8 = LayoutCallStack(sp8); 1198 *start_stack = reinterpret_cast<uintptr_t*>(sp8); 1199 1200 // Put fprs and gprs below. 1201 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); 1202 1203 // Return the new bottom. 1204 return sp8; 1205 } 1206 1207 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) 1208 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {} 1209 1210 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1211 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); 1212 1213 WalkHeader(&sm); 1214 1215 for (uint32_t i = 1; i < shorty_len; ++i) { 1216 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); 1217 switch (cur_type_) { 1218 case Primitive::kPrimNot: 1219 sm.AdvanceHandleScope( 1220 reinterpret_cast<mirror::Object*>(0x12345678)); 1221 break; 1222 1223 case Primitive::kPrimBoolean: 1224 case Primitive::kPrimByte: 1225 case Primitive::kPrimChar: 1226 case Primitive::kPrimShort: 1227 case Primitive::kPrimInt: 1228 sm.AdvanceInt(0); 1229 break; 1230 case Primitive::kPrimFloat: 1231 sm.AdvanceFloat(0); 1232 break; 1233 case Primitive::kPrimDouble: 1234 sm.AdvanceDouble(0); 1235 break; 1236 case Primitive::kPrimLong: 1237 sm.AdvanceLong(0); 1238 break; 1239 default: 1240 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; 1241 } 1242 } 1243 1244 num_stack_entries_ = sm.getStackEntries(); 1245 } 1246 1247 void PushGpr(uintptr_t /* val */) { 1248 // not optimizing registers, yet 1249 } 1250 1251 void PushFpr4(float /* val */) { 1252 // not optimizing registers, yet 1253 } 1254 1255 void PushFpr8(uint64_t /* val */) { 1256 // not optimizing registers, yet 1257 } 1258 1259 void PushStack(uintptr_t /* val */) { 1260 // counting is already done in the superclass 1261 } 1262 1263 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { 1264 return reinterpret_cast<uintptr_t>(nullptr); 1265 } 1266 1267 protected: 1268 uint32_t num_stack_entries_; 1269}; 1270 1271class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { 1272 public: 1273 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {} 1274 1275 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs 1276 // is at *m = sp. Will update to point to the bottom of the save frame. 1277 // 1278 // Note: assumes ComputeAll() has been run before. 1279 void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table, 1280 uint32_t* handle_scope_entries) 1281 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1282 mirror::ArtMethod* method = (*m)->AsMirrorPtr(); 1283 1284 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); 1285 1286 // First, fix up the layout of the callee-save frame. 1287 // We have to squeeze in the HandleScope, and relocate the method pointer. 1288 1289 // "Free" the slot for the method. 1290 sp8 += kPointerSize; // In the callee-save frame we use a full pointer. 1291 1292 // Under the callee saves put handle scope and new method stack reference. 1293 *handle_scope_entries = num_handle_scope_references_; 1294 1295 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); 1296 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>); 1297 1298 sp8 -= scope_and_method; 1299 // Align by kStackAlignment. 1300 sp8 = reinterpret_cast<uint8_t*>(RoundDown( 1301 reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); 1302 1303 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>); 1304 *table = reinterpret_cast<HandleScope*>(sp8_table); 1305 (*table)->SetNumberOfReferences(num_handle_scope_references_); 1306 1307 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. 1308 uint8_t* method_pointer = sp8; 1309 StackReference<mirror::ArtMethod>* new_method_ref = 1310 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer); 1311 new_method_ref->Assign(method); 1312 *m = new_method_ref; 1313 } 1314 1315 // Adds space for the cookie. Note: may leave stack unaligned. 1316 void LayoutCookie(uint8_t** sp) { 1317 // Reference cookie and padding 1318 *sp -= 8; 1319 } 1320 1321 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. 1322 // Returns the new bottom. Note: this may be unaligned. 1323 uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table, 1324 uint32_t* handle_scope_entries) 1325 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1326 // First, fix up the layout of the callee-save frame. 1327 // We have to squeeze in the HandleScope, and relocate the method pointer. 1328 LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries); 1329 1330 // The bottom of the callee-save frame is now where the method is, *m. 1331 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); 1332 1333 // Add space for cookie. 1334 LayoutCookie(&sp8); 1335 1336 return sp8; 1337 } 1338 1339 // WARNING: After this, *sp won't be pointing to the method anymore! 1340 uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty, 1341 uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries, 1342 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr) 1343 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1344 Walk(shorty, shorty_len); 1345 1346 // JNI part. 1347 uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries); 1348 1349 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); 1350 1351 // Return the new bottom. 1352 return sp8; 1353 } 1354 1355 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; 1356 1357 // Add JNIEnv* and jobj/jclass before the shorty-derived elements. 1358 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE 1359 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1360 1361 private: 1362 uint32_t num_handle_scope_references_; 1363}; 1364 1365uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { 1366 num_handle_scope_references_++; 1367 return reinterpret_cast<uintptr_t>(nullptr); 1368} 1369 1370void ComputeGenericJniFrameSize::WalkHeader( 1371 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { 1372 // JNIEnv 1373 sm->AdvancePointer(nullptr); 1374 1375 // Class object or this as first argument 1376 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); 1377} 1378 1379// Class to push values to three separate regions. Used to fill the native call part. Adheres to 1380// the template requirements of BuildGenericJniFrameStateMachine. 1381class FillNativeCall { 1382 public: 1383 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : 1384 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} 1385 1386 virtual ~FillNativeCall() {} 1387 1388 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { 1389 cur_gpr_reg_ = gpr_regs; 1390 cur_fpr_reg_ = fpr_regs; 1391 cur_stack_arg_ = stack_args; 1392 } 1393 1394 void PushGpr(uintptr_t val) { 1395 *cur_gpr_reg_ = val; 1396 cur_gpr_reg_++; 1397 } 1398 1399 void PushFpr4(float val) { 1400 *cur_fpr_reg_ = val; 1401 cur_fpr_reg_++; 1402 } 1403 1404 void PushFpr8(uint64_t val) { 1405 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); 1406 *tmp = val; 1407 cur_fpr_reg_ += 2; 1408 } 1409 1410 void PushStack(uintptr_t val) { 1411 *cur_stack_arg_ = val; 1412 cur_stack_arg_++; 1413 } 1414 1415 virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1416 LOG(FATAL) << "(Non-JNI) Native call does not use handles."; 1417 return 0U; 1418 } 1419 1420 private: 1421 uintptr_t* cur_gpr_reg_; 1422 uint32_t* cur_fpr_reg_; 1423 uintptr_t* cur_stack_arg_; 1424}; 1425 1426// Visits arguments on the stack placing them into a region lower down the stack for the benefit 1427// of transitioning into native code. 1428class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { 1429 public: 1430 BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static, 1431 const char* shorty, uint32_t shorty_len, Thread* self) 1432 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), 1433 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) { 1434 ComputeGenericJniFrameSize fsc; 1435 uintptr_t* start_gpr_reg; 1436 uint32_t* start_fpr_reg; 1437 uintptr_t* start_stack_arg; 1438 uint32_t handle_scope_entries; 1439 bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_, 1440 &handle_scope_entries, &start_stack_arg, 1441 &start_gpr_reg, &start_fpr_reg); 1442 1443 handle_scope_->SetNumberOfReferences(handle_scope_entries); 1444 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); 1445 1446 // jni environment is always first argument 1447 sm_.AdvancePointer(self->GetJniEnv()); 1448 1449 if (is_static) { 1450 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass()); 1451 } 1452 } 1453 1454 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE; 1455 1456 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1457 1458 StackReference<mirror::Object>* GetFirstHandleScopeEntry() 1459 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1460 return handle_scope_->GetHandle(0).GetReference(); 1461 } 1462 1463 jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1464 return handle_scope_->GetHandle(0).ToJObject(); 1465 } 1466 1467 void* GetBottomOfUsedArea() { 1468 return bottom_of_used_area_; 1469 } 1470 1471 private: 1472 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. 1473 class FillJniCall FINAL : public FillNativeCall { 1474 public: 1475 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, 1476 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args), 1477 handle_scope_(handle_scope), cur_entry_(0) {} 1478 1479 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 1480 1481 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { 1482 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); 1483 handle_scope_ = scope; 1484 cur_entry_ = 0U; 1485 } 1486 1487 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1488 // Initialize padding entries. 1489 size_t expected_slots = handle_scope_->NumberOfReferences(); 1490 while (cur_entry_ < expected_slots) { 1491 handle_scope_->GetHandle(cur_entry_++).Assign(nullptr); 1492 } 1493 DCHECK_NE(cur_entry_, 0U); 1494 } 1495 1496 private: 1497 HandleScope* handle_scope_; 1498 size_t cur_entry_; 1499 }; 1500 1501 HandleScope* handle_scope_; 1502 FillJniCall jni_call_; 1503 void* bottom_of_used_area_; 1504 1505 BuildNativeCallFrameStateMachine<FillJniCall> sm_; 1506 1507 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); 1508}; 1509 1510uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { 1511 uintptr_t tmp; 1512 Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_); 1513 h.Assign(ref); 1514 tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); 1515 cur_entry_++; 1516 return tmp; 1517} 1518 1519void BuildGenericJniFrameVisitor::Visit() { 1520 Primitive::Type type = GetParamPrimitiveType(); 1521 switch (type) { 1522 case Primitive::kPrimLong: { 1523 jlong long_arg; 1524 if (IsSplitLongOrDouble()) { 1525 long_arg = ReadSplitLongParam(); 1526 } else { 1527 long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); 1528 } 1529 sm_.AdvanceLong(long_arg); 1530 break; 1531 } 1532 case Primitive::kPrimDouble: { 1533 uint64_t double_arg; 1534 if (IsSplitLongOrDouble()) { 1535 // Read into union so that we don't case to a double. 1536 double_arg = ReadSplitLongParam(); 1537 } else { 1538 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); 1539 } 1540 sm_.AdvanceDouble(double_arg); 1541 break; 1542 } 1543 case Primitive::kPrimNot: { 1544 StackReference<mirror::Object>* stack_ref = 1545 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); 1546 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); 1547 break; 1548 } 1549 case Primitive::kPrimFloat: 1550 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); 1551 break; 1552 case Primitive::kPrimBoolean: // Fall-through. 1553 case Primitive::kPrimByte: // Fall-through. 1554 case Primitive::kPrimChar: // Fall-through. 1555 case Primitive::kPrimShort: // Fall-through. 1556 case Primitive::kPrimInt: // Fall-through. 1557 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); 1558 break; 1559 case Primitive::kPrimVoid: 1560 LOG(FATAL) << "UNREACHABLE"; 1561 break; 1562 } 1563} 1564 1565void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { 1566 // Clear out rest of the scope. 1567 jni_call_.ResetRemainingScopeSlots(); 1568 // Install HandleScope. 1569 self->PushHandleScope(handle_scope_); 1570} 1571 1572#if defined(__arm__) || defined(__aarch64__) 1573extern "C" void* artFindNativeMethod(); 1574#else 1575extern "C" void* artFindNativeMethod(Thread* self); 1576#endif 1577 1578uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) { 1579 if (lock != nullptr) { 1580 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); 1581 } else { 1582 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); 1583 } 1584} 1585 1586void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) { 1587 if (lock != nullptr) { 1588 JniMethodEndSynchronized(cookie, lock, self); 1589 } else { 1590 JniMethodEnd(cookie, self); 1591 } 1592} 1593 1594/* 1595 * Initializes an alloca region assumed to be directly below sp for a native call: 1596 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. 1597 * The final element on the stack is a pointer to the native code. 1598 * 1599 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. 1600 * We need to fix this, as the handle scope needs to go into the callee-save frame. 1601 * 1602 * The return of this function denotes: 1603 * 1) How many bytes of the alloca can be released, if the value is non-negative. 1604 * 2) An error, if the value is negative. 1605 */ 1606extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, 1607 StackReference<mirror::ArtMethod>* sp) 1608 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1609 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1610 DCHECK(called->IsNative()) << PrettyMethod(called, true); 1611 uint32_t shorty_len = 0; 1612 const char* shorty = called->GetShorty(&shorty_len); 1613 1614 // Run the visitor. 1615 BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self); 1616 visitor.VisitArguments(); 1617 visitor.FinalizeHandleScope(self); 1618 1619 // Fix up managed-stack things in Thread. 1620 self->SetTopOfStack(sp, 0); 1621 1622 self->VerifyStack(); 1623 1624 // Start JNI, save the cookie. 1625 uint32_t cookie; 1626 if (called->IsSynchronized()) { 1627 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); 1628 if (self->IsExceptionPending()) { 1629 self->PopHandleScope(); 1630 // A negative value denotes an error. 1631 return GetTwoWordFailureValue(); 1632 } 1633 } else { 1634 cookie = JniMethodStart(self); 1635 } 1636 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1637 *(sp32 - 1) = cookie; 1638 1639 // Retrieve the stored native code. 1640 const void* nativeCode = called->GetNativeMethod(); 1641 1642 // There are two cases for the content of nativeCode: 1643 // 1) Pointer to the native function. 1644 // 2) Pointer to the trampoline for native code binding. 1645 // In the second case, we need to execute the binding and continue with the actual native function 1646 // pointer. 1647 DCHECK(nativeCode != nullptr); 1648 if (nativeCode == GetJniDlsymLookupStub()) { 1649#if defined(__arm__) || defined(__aarch64__) 1650 nativeCode = artFindNativeMethod(); 1651#else 1652 nativeCode = artFindNativeMethod(self); 1653#endif 1654 1655 if (nativeCode == nullptr) { 1656 DCHECK(self->IsExceptionPending()); // There should be an exception pending now. 1657 1658 // End JNI, as the assembly will move to deliver the exception. 1659 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; 1660 if (shorty[0] == 'L') { 1661 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock); 1662 } else { 1663 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1664 } 1665 1666 return GetTwoWordFailureValue(); 1667 } 1668 // Note that the native code pointer will be automatically set by artFindNativeMethod(). 1669 } 1670 1671 // Return native code addr(lo) and bottom of alloca address(hi). 1672 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), 1673 reinterpret_cast<uintptr_t>(nativeCode)); 1674} 1675 1676/* 1677 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and 1678 * unlocking. 1679 */ 1680extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f) 1681 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1682 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame(); 1683 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); 1684 mirror::ArtMethod* called = sp->AsMirrorPtr(); 1685 uint32_t cookie = *(sp32 - 1); 1686 1687 jobject lock = nullptr; 1688 if (called->IsSynchronized()) { 1689 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) 1690 + sizeof(StackReference<mirror::ArtMethod>)); 1691 lock = table->GetHandle(0).ToJObject(); 1692 } 1693 1694 char return_shorty_char = called->GetShorty()[0]; 1695 1696 if (return_shorty_char == 'L') { 1697 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock); 1698 } else { 1699 artQuickGenericJniEndJNINonRef(self, cookie, lock); 1700 1701 switch (return_shorty_char) { 1702 case 'F': { 1703 if (kRuntimeISA == kX86) { 1704 // Convert back the result to float. 1705 double d = bit_cast<uint64_t, double>(result_f); 1706 return bit_cast<float, uint32_t>(static_cast<float>(d)); 1707 } else { 1708 return result_f; 1709 } 1710 } 1711 case 'D': 1712 return result_f; 1713 case 'Z': 1714 return result.z; 1715 case 'B': 1716 return result.b; 1717 case 'C': 1718 return result.c; 1719 case 'S': 1720 return result.s; 1721 case 'I': 1722 return result.i; 1723 case 'J': 1724 return result.j; 1725 case 'V': 1726 return 0; 1727 default: 1728 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char; 1729 return 0; 1730 } 1731 } 1732} 1733 1734// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value 1735// for the method pointer. 1736// 1737// It is valid to use this, as at the usage points here (returns from C functions) we are assuming 1738// to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations). 1739 1740template<InvokeType type, bool access_check> 1741static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1742 mirror::ArtMethod* caller_method, 1743 Thread* self, StackReference<mirror::ArtMethod>* sp); 1744 1745template<InvokeType type, bool access_check> 1746static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, 1747 mirror::ArtMethod* caller_method, 1748 Thread* self, StackReference<mirror::ArtMethod>* sp) { 1749 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, 1750 type); 1751 if (UNLIKELY(method == nullptr)) { 1752 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1753 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); 1754 uint32_t shorty_len; 1755 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); 1756 { 1757 // Remember the args in case a GC happens in FindMethodFromCode. 1758 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1759 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); 1760 visitor.VisitArguments(); 1761 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method, 1762 self); 1763 visitor.FixupReferences(); 1764 } 1765 1766 if (UNLIKELY(method == NULL)) { 1767 CHECK(self->IsExceptionPending()); 1768 return GetTwoWordFailureValue(); // Failure. 1769 } 1770 } 1771 DCHECK(!self->IsExceptionPending()); 1772 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1773 1774 // When we return, the caller will branch to this address, so it had better not be 0! 1775 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1776 << " location: " 1777 << method->GetDexFile()->GetLocation(); 1778 1779 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1780 reinterpret_cast<uintptr_t>(method)); 1781} 1782 1783// Explicit artInvokeCommon template function declarations to please analysis tool. 1784#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ 1785 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \ 1786 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \ 1787 mirror::Object* this_object, \ 1788 mirror::ArtMethod* caller_method, \ 1789 Thread* self, \ 1790 StackReference<mirror::ArtMethod>* sp) \ 1791 1792EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); 1793EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); 1794EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); 1795EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); 1796EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); 1797EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); 1798EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); 1799EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); 1800EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); 1801EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); 1802#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL 1803 1804// See comments in runtime_support_asm.S 1805extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( 1806 uint32_t method_idx, mirror::Object* this_object, 1807 mirror::ArtMethod* caller_method, Thread* self, 1808 StackReference<mirror::ArtMethod>* sp) 1809 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1810 return artInvokeCommon<kInterface, true>(method_idx, this_object, 1811 caller_method, self, sp); 1812} 1813 1814extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( 1815 uint32_t method_idx, mirror::Object* this_object, 1816 mirror::ArtMethod* caller_method, Thread* self, 1817 StackReference<mirror::ArtMethod>* sp) 1818 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1819 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method, 1820 self, sp); 1821} 1822 1823extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( 1824 uint32_t method_idx, mirror::Object* this_object, 1825 mirror::ArtMethod* caller_method, Thread* self, 1826 StackReference<mirror::ArtMethod>* sp) 1827 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1828 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method, 1829 self, sp); 1830} 1831 1832extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( 1833 uint32_t method_idx, mirror::Object* this_object, 1834 mirror::ArtMethod* caller_method, Thread* self, 1835 StackReference<mirror::ArtMethod>* sp) 1836 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1837 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method, 1838 self, sp); 1839} 1840 1841extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( 1842 uint32_t method_idx, mirror::Object* this_object, 1843 mirror::ArtMethod* caller_method, Thread* self, 1844 StackReference<mirror::ArtMethod>* sp) 1845 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1846 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method, 1847 self, sp); 1848} 1849 1850// Determine target of interface dispatch. This object is known non-null. 1851extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method, 1852 mirror::Object* this_object, 1853 mirror::ArtMethod* caller_method, 1854 Thread* self, 1855 StackReference<mirror::ArtMethod>* sp) 1856 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1857 mirror::ArtMethod* method; 1858 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) { 1859 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method); 1860 if (UNLIKELY(method == NULL)) { 1861 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1862 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object, 1863 caller_method); 1864 return GetTwoWordFailureValue(); // Failure. 1865 } 1866 } else { 1867 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs); 1868 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod()); 1869 1870 // Find the caller PC. 1871 constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs); 1872 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset); 1873 1874 // Map the caller PC to a dex PC. 1875 uint32_t dex_pc = caller_method->ToDexPc(caller_pc); 1876 const DexFile::CodeItem* code = caller_method->GetCodeItem(); 1877 CHECK_LT(dex_pc, code->insns_size_in_code_units_); 1878 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]); 1879 Instruction::Code instr_code = instr->Opcode(); 1880 CHECK(instr_code == Instruction::INVOKE_INTERFACE || 1881 instr_code == Instruction::INVOKE_INTERFACE_RANGE) 1882 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL); 1883 uint32_t dex_method_idx; 1884 if (instr_code == Instruction::INVOKE_INTERFACE) { 1885 dex_method_idx = instr->VRegB_35c(); 1886 } else { 1887 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); 1888 dex_method_idx = instr->VRegB_3rc(); 1889 } 1890 1891 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache() 1892 ->GetDexFile(); 1893 uint32_t shorty_len; 1894 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), 1895 &shorty_len); 1896 { 1897 // Remember the args in case a GC happens in FindMethodFromCode. 1898 ScopedObjectAccessUnchecked soa(self->GetJniEnv()); 1899 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); 1900 visitor.VisitArguments(); 1901 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method, 1902 self); 1903 visitor.FixupReferences(); 1904 } 1905 1906 if (UNLIKELY(method == nullptr)) { 1907 CHECK(self->IsExceptionPending()); 1908 return GetTwoWordFailureValue(); // Failure. 1909 } 1910 } 1911 const void* code = method->GetEntryPointFromQuickCompiledCode(); 1912 1913 // When we return, the caller will branch to this address, so it had better not be 0! 1914 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method) 1915 << " location: " << method->GetDexFile()->GetLocation(); 1916 1917 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), 1918 reinterpret_cast<uintptr_t>(method)); 1919} 1920 1921} // namespace art 1922