mark_sweep.cc revision 10d2508b105427ef1bcaf0c222873bae7acc66d3
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <atomic> 20#include <functional> 21#include <numeric> 22#include <climits> 23#include <vector> 24 25#define ATRACE_TAG ATRACE_TAG_DALVIK 26#include "cutils/trace.h" 27 28#include "base/bounded_fifo.h" 29#include "base/logging.h" 30#include "base/macros.h" 31#include "base/mutex-inl.h" 32#include "base/time_utils.h" 33#include "base/timing_logger.h" 34#include "gc/accounting/card_table-inl.h" 35#include "gc/accounting/heap_bitmap-inl.h" 36#include "gc/accounting/mod_union_table.h" 37#include "gc/accounting/space_bitmap-inl.h" 38#include "gc/heap.h" 39#include "gc/reference_processor.h" 40#include "gc/space/large_object_space.h" 41#include "gc/space/space-inl.h" 42#include "mark_sweep-inl.h" 43#include "mirror/object-inl.h" 44#include "runtime.h" 45#include "scoped_thread_state_change.h" 46#include "thread-inl.h" 47#include "thread_list.h" 48 49namespace art { 50namespace gc { 51namespace collector { 52 53// Performance options. 54static constexpr bool kUseRecursiveMark = false; 55static constexpr bool kUseMarkStackPrefetch = true; 56static constexpr size_t kSweepArrayChunkFreeSize = 1024; 57static constexpr bool kPreCleanCards = true; 58 59// Parallelism options. 60static constexpr bool kParallelCardScan = true; 61static constexpr bool kParallelRecursiveMark = true; 62// Don't attempt to parallelize mark stack processing unless the mark stack is at least n 63// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 64// having this can add overhead in ProcessReferences since we may end up doing many calls of 65// ProcessMarkStack with very small mark stacks. 66static constexpr size_t kMinimumParallelMarkStackSize = 128; 67static constexpr bool kParallelProcessMarkStack = true; 68 69// Profiling and information flags. 70static constexpr bool kProfileLargeObjects = false; 71static constexpr bool kMeasureOverhead = false; 72static constexpr bool kCountTasks = false; 73static constexpr bool kCountMarkedObjects = false; 74 75// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 76static constexpr bool kCheckLocks = kDebugLocking; 77static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 78 79// If true, revoke the rosalloc thread-local buffers at the 80// checkpoint, as opposed to during the pause. 81static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 82 83void MarkSweep::BindBitmaps() { 84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 86 // Mark all of the spaces we never collect as immune. 87 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 90 } 91 } 92} 93 94MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 95 : GarbageCollector(heap, 96 name_prefix + 97 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 98 current_space_bitmap_(nullptr), 99 mark_bitmap_(nullptr), 100 mark_stack_(nullptr), 101 gc_barrier_(new Barrier(0)), 102 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 103 is_concurrent_(is_concurrent), 104 live_stack_freeze_size_(0) { 105 std::string error_msg; 106 MemMap* mem_map = MemMap::MapAnonymous( 107 "mark sweep sweep array free buffer", nullptr, 108 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 109 PROT_READ | PROT_WRITE, false, false, &error_msg); 110 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 111 sweep_array_free_buffer_mem_map_.reset(mem_map); 112} 113 114void MarkSweep::InitializePhase() { 115 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 116 mark_stack_ = heap_->GetMarkStack(); 117 DCHECK(mark_stack_ != nullptr); 118 immune_region_.Reset(); 119 no_reference_class_count_.StoreRelaxed(0); 120 normal_count_.StoreRelaxed(0); 121 class_count_.StoreRelaxed(0); 122 object_array_count_.StoreRelaxed(0); 123 other_count_.StoreRelaxed(0); 124 reference_count_.StoreRelaxed(0); 125 large_object_test_.StoreRelaxed(0); 126 large_object_mark_.StoreRelaxed(0); 127 overhead_time_ .StoreRelaxed(0); 128 work_chunks_created_.StoreRelaxed(0); 129 work_chunks_deleted_.StoreRelaxed(0); 130 mark_null_count_.StoreRelaxed(0); 131 mark_immune_count_.StoreRelaxed(0); 132 mark_fastpath_count_.StoreRelaxed(0); 133 mark_slowpath_count_.StoreRelaxed(0); 134 { 135 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 136 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 137 mark_bitmap_ = heap_->GetMarkBitmap(); 138 } 139 if (!GetCurrentIteration()->GetClearSoftReferences()) { 140 // Always clear soft references if a non-sticky collection. 141 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 142 } 143} 144 145void MarkSweep::RunPhases() { 146 Thread* self = Thread::Current(); 147 InitializePhase(); 148 Locks::mutator_lock_->AssertNotHeld(self); 149 if (IsConcurrent()) { 150 GetHeap()->PreGcVerification(this); 151 { 152 ReaderMutexLock mu(self, *Locks::mutator_lock_); 153 MarkingPhase(); 154 } 155 ScopedPause pause(this); 156 GetHeap()->PrePauseRosAllocVerification(this); 157 PausePhase(); 158 RevokeAllThreadLocalBuffers(); 159 } else { 160 ScopedPause pause(this); 161 GetHeap()->PreGcVerificationPaused(this); 162 MarkingPhase(); 163 GetHeap()->PrePauseRosAllocVerification(this); 164 PausePhase(); 165 RevokeAllThreadLocalBuffers(); 166 } 167 { 168 // Sweeping always done concurrently, even for non concurrent mark sweep. 169 ReaderMutexLock mu(self, *Locks::mutator_lock_); 170 ReclaimPhase(); 171 } 172 GetHeap()->PostGcVerification(this); 173 FinishPhase(); 174} 175 176void MarkSweep::ProcessReferences(Thread* self) { 177 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 178 GetHeap()->GetReferenceProcessor()->ProcessReferences( 179 true, 180 GetTimings(), 181 GetCurrentIteration()->GetClearSoftReferences(), 182 this); 183} 184 185void MarkSweep::PausePhase() { 186 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 187 Thread* self = Thread::Current(); 188 Locks::mutator_lock_->AssertExclusiveHeld(self); 189 if (IsConcurrent()) { 190 // Handle the dirty objects if we are a concurrent GC. 191 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 192 // Re-mark root set. 193 ReMarkRoots(); 194 // Scan dirty objects, this is only required if we are not doing concurrent GC. 195 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 196 } 197 { 198 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 199 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 200 heap_->SwapStacks(); 201 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 202 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 203 // stacks and don't want anybody to allocate into the live stack. 204 RevokeAllThreadLocalAllocationStacks(self); 205 } 206 heap_->PreSweepingGcVerification(this); 207 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 208 // weak before we sweep them. Since this new system weak may not be marked, the GC may 209 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 210 // reference to a string that is about to be swept. 211 Runtime::Current()->DisallowNewSystemWeaks(); 212 // Enable the reference processing slow path, needs to be done with mutators paused since there 213 // is no lock in the GetReferent fast path. 214 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 215} 216 217void MarkSweep::PreCleanCards() { 218 // Don't do this for non concurrent GCs since they don't have any dirty cards. 219 if (kPreCleanCards && IsConcurrent()) { 220 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 221 Thread* self = Thread::Current(); 222 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 223 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 224 heap_->ProcessCards(GetTimings(), false, true, false); 225 // The checkpoint root marking is required to avoid a race condition which occurs if the 226 // following happens during a reference write: 227 // 1. mutator dirties the card (write barrier) 228 // 2. GC ages the card (the above ProcessCards call) 229 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 230 // 4. mutator writes the value (corresponding to the write barrier in 1.) 231 // This causes the GC to age the card but not necessarily mark the reference which the mutator 232 // wrote into the object stored in the card. 233 // Having the checkpoint fixes this issue since it ensures that the card mark and the 234 // reference write are visible to the GC before the card is scanned (this is due to locks being 235 // acquired / released in the checkpoint code). 236 // The other roots are also marked to help reduce the pause. 237 MarkRootsCheckpoint(self, false); 238 MarkNonThreadRoots(); 239 MarkConcurrentRoots( 240 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 241 // Process the newly aged cards. 242 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 243 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 244 // in the next GC. 245 } 246} 247 248void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 249 if (kUseThreadLocalAllocationStack) { 250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 251 Locks::mutator_lock_->AssertExclusiveHeld(self); 252 heap_->RevokeAllThreadLocalAllocationStacks(self); 253 } 254} 255 256void MarkSweep::MarkingPhase() { 257 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 258 Thread* self = Thread::Current(); 259 BindBitmaps(); 260 FindDefaultSpaceBitmap(); 261 // Process dirty cards and add dirty cards to mod union tables. 262 // If the GC type is non sticky, then we just clear the cards instead of ageing them. 263 heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky); 264 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 265 MarkRoots(self); 266 MarkReachableObjects(); 267 // Pre-clean dirtied cards to reduce pauses. 268 PreCleanCards(); 269} 270 271void MarkSweep::UpdateAndMarkModUnion() { 272 for (const auto& space : heap_->GetContinuousSpaces()) { 273 if (immune_region_.ContainsSpace(space)) { 274 const char* name = space->IsZygoteSpace() 275 ? "UpdateAndMarkZygoteModUnionTable" 276 : "UpdateAndMarkImageModUnionTable"; 277 TimingLogger::ScopedTiming t(name, GetTimings()); 278 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 279 CHECK(mod_union_table != nullptr); 280 mod_union_table->UpdateAndMarkReferences(this); 281 } 282 } 283} 284 285void MarkSweep::MarkReachableObjects() { 286 UpdateAndMarkModUnion(); 287 // Recursively mark all the non-image bits set in the mark bitmap. 288 RecursiveMark(); 289} 290 291void MarkSweep::ReclaimPhase() { 292 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 293 Thread* const self = Thread::Current(); 294 // Process the references concurrently. 295 ProcessReferences(self); 296 SweepSystemWeaks(self); 297 Runtime* const runtime = Runtime::Current(); 298 runtime->AllowNewSystemWeaks(); 299 // Clean up class loaders after system weaks are swept since that is how we know if class 300 // unloading occurred. 301 runtime->GetClassLinker()->CleanupClassLoaders(); 302 { 303 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 304 GetHeap()->RecordFreeRevoke(); 305 // Reclaim unmarked objects. 306 Sweep(false); 307 // Swap the live and mark bitmaps for each space which we modified space. This is an 308 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 309 // bitmaps. 310 SwapBitmaps(); 311 // Unbind the live and mark bitmaps. 312 GetHeap()->UnBindBitmaps(); 313 } 314} 315 316void MarkSweep::FindDefaultSpaceBitmap() { 317 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 318 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 319 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 320 // We want to have the main space instead of non moving if possible. 321 if (bitmap != nullptr && 322 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 323 current_space_bitmap_ = bitmap; 324 // If we are not the non moving space exit the loop early since this will be good enough. 325 if (space != heap_->GetNonMovingSpace()) { 326 break; 327 } 328 } 329 } 330 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n" 331 << heap_->DumpSpaces(); 332} 333 334void MarkSweep::ExpandMarkStack() { 335 ResizeMarkStack(mark_stack_->Capacity() * 2); 336} 337 338void MarkSweep::ResizeMarkStack(size_t new_size) { 339 // Rare case, no need to have Thread::Current be a parameter. 340 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 341 // Someone else acquired the lock and expanded the mark stack before us. 342 return; 343 } 344 std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End()); 345 CHECK_LE(mark_stack_->Size(), new_size); 346 mark_stack_->Resize(new_size); 347 for (auto& obj : temp) { 348 mark_stack_->PushBack(obj.AsMirrorPtr()); 349 } 350} 351 352mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) { 353 MarkObject(obj, nullptr, MemberOffset(0)); 354 return obj; 355} 356 357inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) { 358 DCHECK(obj != nullptr); 359 if (MarkObjectParallel(obj)) { 360 MutexLock mu(Thread::Current(), mark_stack_lock_); 361 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 362 ExpandMarkStack(); 363 } 364 // The object must be pushed on to the mark stack. 365 mark_stack_->PushBack(obj); 366 } 367} 368 369bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) { 370 return IsMarked(ref->AsMirrorPtr()); 371} 372 373class MarkSweepMarkObjectSlowPath { 374 public: 375 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep, 376 mirror::Object* holder = nullptr, 377 MemberOffset offset = MemberOffset(0)) 378 : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {} 379 380 void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { 381 if (kProfileLargeObjects) { 382 // TODO: Differentiate between marking and testing somehow. 383 ++mark_sweep_->large_object_test_; 384 ++mark_sweep_->large_object_mark_; 385 } 386 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 387 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 388 (kIsDebugBuild && large_object_space != nullptr && 389 !large_object_space->Contains(obj)))) { 390 LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces"; 391 if (holder_ != nullptr) { 392 size_t holder_size = holder_->SizeOf(); 393 ArtField* field = holder_->FindFieldByOffset(offset_); 394 LOG(INTERNAL_FATAL) << "Field info: " 395 << " holder=" << holder_ 396 << " holder is " 397 << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_) 398 ? "alive" : "dead") 399 << " holder_size=" << holder_size 400 << " holder_type=" << PrettyTypeOf(holder_) 401 << " offset=" << offset_.Uint32Value() 402 << " field=" << (field != nullptr ? field->GetName() : "nullptr") 403 << " field_type=" 404 << (field != nullptr ? field->GetTypeDescriptor() : "") 405 << " first_ref_field_offset=" 406 << (holder_->IsClass() 407 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset( 408 sizeof(void*)) 409 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset()) 410 << " num_of_ref_fields=" 411 << (holder_->IsClass() 412 ? holder_->AsClass()->NumReferenceStaticFields() 413 : holder_->GetClass()->NumReferenceInstanceFields()) 414 << "\n"; 415 // Print the memory content of the holder. 416 for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) { 417 uint32_t* p = reinterpret_cast<uint32_t*>(holder_); 418 LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = " 419 << std::hex << p[i]; 420 } 421 } 422 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL); 423 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true); 424 { 425 LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root"; 426 Thread* self = Thread::Current(); 427 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 428 mark_sweep_->VerifyRoots(); 429 } else { 430 const bool heap_bitmap_exclusive_locked = 431 Locks::heap_bitmap_lock_->IsExclusiveHeld(self); 432 if (heap_bitmap_exclusive_locked) { 433 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 434 } 435 { 436 ScopedThreadSuspension(self, kSuspended); 437 ScopedSuspendAll ssa(__FUNCTION__); 438 mark_sweep_->VerifyRoots(); 439 } 440 if (heap_bitmap_exclusive_locked) { 441 Locks::heap_bitmap_lock_->ExclusiveLock(self); 442 } 443 } 444 } 445 LOG(FATAL) << "Can't mark invalid object"; 446 } 447 } 448 449 private: 450 MarkSweep* const mark_sweep_; 451 mirror::Object* const holder_; 452 MemberOffset offset_; 453}; 454 455inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj, 456 mirror::Object* holder, 457 MemberOffset offset) { 458 DCHECK(obj != nullptr); 459 if (kUseBakerOrBrooksReadBarrier) { 460 // Verify all the objects have the correct pointer installed. 461 obj->AssertReadBarrierPointer(); 462 } 463 if (immune_region_.ContainsObject(obj)) { 464 if (kCountMarkedObjects) { 465 ++mark_immune_count_; 466 } 467 DCHECK(mark_bitmap_->Test(obj)); 468 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 469 if (kCountMarkedObjects) { 470 ++mark_fastpath_count_; 471 } 472 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 473 PushOnMarkStack(obj); // This object was not previously marked. 474 } 475 } else { 476 if (kCountMarkedObjects) { 477 ++mark_slowpath_count_; 478 } 479 MarkSweepMarkObjectSlowPath visitor(this, holder, offset); 480 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 481 // will check again. 482 if (!mark_bitmap_->Set(obj, visitor)) { 483 PushOnMarkStack(obj); // Was not already marked, push. 484 } 485 } 486} 487 488inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) { 489 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 490 // Lock is not needed but is here anyways to please annotalysis. 491 MutexLock mu(Thread::Current(), mark_stack_lock_); 492 ExpandMarkStack(); 493 } 494 // The object must be pushed on to the mark stack. 495 mark_stack_->PushBack(obj); 496} 497 498inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) { 499 DCHECK(obj != nullptr); 500 if (kUseBakerOrBrooksReadBarrier) { 501 // Verify all the objects have the correct pointer installed. 502 obj->AssertReadBarrierPointer(); 503 } 504 if (immune_region_.ContainsObject(obj)) { 505 DCHECK(IsMarked(obj) != nullptr); 506 return false; 507 } 508 // Try to take advantage of locality of references within a space, failing this find the space 509 // the hard way. 510 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 511 if (LIKELY(object_bitmap->HasAddress(obj))) { 512 return !object_bitmap->AtomicTestAndSet(obj); 513 } 514 MarkSweepMarkObjectSlowPath visitor(this); 515 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 516} 517 518void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) { 519 MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0)); 520} 521 522// Used to mark objects when processing the mark stack. If an object is null, it is not marked. 523inline void MarkSweep::MarkObject(mirror::Object* obj, 524 mirror::Object* holder, 525 MemberOffset offset) { 526 if (obj != nullptr) { 527 MarkObjectNonNull(obj, holder, offset); 528 } else if (kCountMarkedObjects) { 529 ++mark_null_count_; 530 } 531} 532 533class VerifyRootMarkedVisitor : public SingleRootVisitor { 534 public: 535 explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { } 536 537 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 538 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 539 CHECK(collector_->IsMarked(root) != nullptr) << info.ToString(); 540 } 541 542 private: 543 MarkSweep* const collector_; 544}; 545 546void MarkSweep::VisitRoots(mirror::Object*** roots, 547 size_t count, 548 const RootInfo& info ATTRIBUTE_UNUSED) { 549 for (size_t i = 0; i < count; ++i) { 550 MarkObjectNonNull(*roots[i]); 551 } 552} 553 554void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, 555 size_t count, 556 const RootInfo& info ATTRIBUTE_UNUSED) { 557 for (size_t i = 0; i < count; ++i) { 558 MarkObjectNonNull(roots[i]->AsMirrorPtr()); 559 } 560} 561 562class VerifyRootVisitor : public SingleRootVisitor { 563 public: 564 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 565 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 566 // See if the root is on any space bitmap. 567 auto* heap = Runtime::Current()->GetHeap(); 568 if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 569 space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace(); 570 if (large_object_space != nullptr && !large_object_space->Contains(root)) { 571 LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info; 572 } 573 } 574 } 575}; 576 577void MarkSweep::VerifyRoots() { 578 VerifyRootVisitor visitor; 579 Runtime::Current()->GetThreadList()->VisitRoots(&visitor); 580} 581 582void MarkSweep::MarkRoots(Thread* self) { 583 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 584 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 585 // If we exclusively hold the mutator lock, all threads must be suspended. 586 Runtime::Current()->VisitRoots(this); 587 RevokeAllThreadLocalAllocationStacks(self); 588 } else { 589 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 590 // At this point the live stack should no longer have any mutators which push into it. 591 MarkNonThreadRoots(); 592 MarkConcurrentRoots( 593 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 594 } 595} 596 597void MarkSweep::MarkNonThreadRoots() { 598 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 599 Runtime::Current()->VisitNonThreadRoots(this); 600} 601 602void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 603 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 604 // Visit all runtime roots and clear dirty flags. 605 Runtime::Current()->VisitConcurrentRoots( 606 this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving)); 607} 608 609class ScanObjectVisitor { 610 public: 611 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 612 : mark_sweep_(mark_sweep) {} 613 614 void operator()(mirror::Object* obj) const 615 ALWAYS_INLINE 616 REQUIRES(Locks::heap_bitmap_lock_) 617 SHARED_REQUIRES(Locks::mutator_lock_) { 618 if (kCheckLocks) { 619 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 620 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 621 } 622 mark_sweep_->ScanObject(obj); 623 } 624 625 private: 626 MarkSweep* const mark_sweep_; 627}; 628 629class DelayReferenceReferentVisitor { 630 public: 631 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {} 632 633 void operator()(mirror::Class* klass, mirror::Reference* ref) const 634 REQUIRES(Locks::heap_bitmap_lock_) 635 SHARED_REQUIRES(Locks::mutator_lock_) { 636 collector_->DelayReferenceReferent(klass, ref); 637 } 638 639 private: 640 MarkSweep* const collector_; 641}; 642 643template <bool kUseFinger = false> 644class MarkStackTask : public Task { 645 public: 646 MarkStackTask(ThreadPool* thread_pool, 647 MarkSweep* mark_sweep, 648 size_t mark_stack_size, 649 StackReference<mirror::Object>* mark_stack) 650 : mark_sweep_(mark_sweep), 651 thread_pool_(thread_pool), 652 mark_stack_pos_(mark_stack_size) { 653 // We may have to copy part of an existing mark stack when another mark stack overflows. 654 if (mark_stack_size != 0) { 655 DCHECK(mark_stack != nullptr); 656 // TODO: Check performance? 657 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 658 } 659 if (kCountTasks) { 660 ++mark_sweep_->work_chunks_created_; 661 } 662 } 663 664 static const size_t kMaxSize = 1 * KB; 665 666 protected: 667 class MarkObjectParallelVisitor { 668 public: 669 ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 670 MarkSweep* mark_sweep) 671 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 672 673 ALWAYS_INLINE void operator()(mirror::Object* obj, 674 MemberOffset offset, 675 bool is_static ATTRIBUTE_UNUSED) const 676 SHARED_REQUIRES(Locks::mutator_lock_) { 677 Mark(obj->GetFieldObject<mirror::Object>(offset)); 678 } 679 680 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 681 SHARED_REQUIRES(Locks::mutator_lock_) { 682 if (!root->IsNull()) { 683 VisitRoot(root); 684 } 685 } 686 687 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 688 SHARED_REQUIRES(Locks::mutator_lock_) { 689 if (kCheckLocks) { 690 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 691 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 692 } 693 Mark(root->AsMirrorPtr()); 694 } 695 696 private: 697 ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) { 698 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 699 if (kUseFinger) { 700 std::atomic_thread_fence(std::memory_order_seq_cst); 701 if (reinterpret_cast<uintptr_t>(ref) >= 702 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 703 return; 704 } 705 } 706 chunk_task_->MarkStackPush(ref); 707 } 708 } 709 710 MarkStackTask<kUseFinger>* const chunk_task_; 711 MarkSweep* const mark_sweep_; 712 }; 713 714 class ScanObjectParallelVisitor { 715 public: 716 ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) 717 : chunk_task_(chunk_task) {} 718 719 // No thread safety analysis since multiple threads will use this visitor. 720 void operator()(mirror::Object* obj) const 721 REQUIRES(Locks::heap_bitmap_lock_) 722 SHARED_REQUIRES(Locks::mutator_lock_) { 723 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 724 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 725 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 726 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 727 } 728 729 private: 730 MarkStackTask<kUseFinger>* const chunk_task_; 731 }; 732 733 virtual ~MarkStackTask() { 734 // Make sure that we have cleared our mark stack. 735 DCHECK_EQ(mark_stack_pos_, 0U); 736 if (kCountTasks) { 737 ++mark_sweep_->work_chunks_deleted_; 738 } 739 } 740 741 MarkSweep* const mark_sweep_; 742 ThreadPool* const thread_pool_; 743 // Thread local mark stack for this task. 744 StackReference<mirror::Object> mark_stack_[kMaxSize]; 745 // Mark stack position. 746 size_t mark_stack_pos_; 747 748 ALWAYS_INLINE void MarkStackPush(mirror::Object* obj) 749 SHARED_REQUIRES(Locks::mutator_lock_) { 750 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 751 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 752 mark_stack_pos_ /= 2; 753 auto* task = new MarkStackTask(thread_pool_, 754 mark_sweep_, 755 kMaxSize - mark_stack_pos_, 756 mark_stack_ + mark_stack_pos_); 757 thread_pool_->AddTask(Thread::Current(), task); 758 } 759 DCHECK(obj != nullptr); 760 DCHECK_LT(mark_stack_pos_, kMaxSize); 761 mark_stack_[mark_stack_pos_++].Assign(obj); 762 } 763 764 virtual void Finalize() { 765 delete this; 766 } 767 768 // Scans all of the objects 769 virtual void Run(Thread* self ATTRIBUTE_UNUSED) 770 REQUIRES(Locks::heap_bitmap_lock_) 771 SHARED_REQUIRES(Locks::mutator_lock_) { 772 ScanObjectParallelVisitor visitor(this); 773 // TODO: Tune this. 774 static const size_t kFifoSize = 4; 775 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo; 776 for (;;) { 777 mirror::Object* obj = nullptr; 778 if (kUseMarkStackPrefetch) { 779 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 780 mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 781 DCHECK(mark_stack_obj != nullptr); 782 __builtin_prefetch(mark_stack_obj); 783 prefetch_fifo.push_back(mark_stack_obj); 784 } 785 if (UNLIKELY(prefetch_fifo.empty())) { 786 break; 787 } 788 obj = prefetch_fifo.front(); 789 prefetch_fifo.pop_front(); 790 } else { 791 if (UNLIKELY(mark_stack_pos_ == 0)) { 792 break; 793 } 794 obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 795 } 796 DCHECK(obj != nullptr); 797 visitor(obj); 798 } 799 } 800}; 801 802class CardScanTask : public MarkStackTask<false> { 803 public: 804 CardScanTask(ThreadPool* thread_pool, 805 MarkSweep* mark_sweep, 806 accounting::ContinuousSpaceBitmap* bitmap, 807 uint8_t* begin, 808 uint8_t* end, 809 uint8_t minimum_age, 810 size_t mark_stack_size, 811 StackReference<mirror::Object>* mark_stack_obj, 812 bool clear_card) 813 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 814 bitmap_(bitmap), 815 begin_(begin), 816 end_(end), 817 minimum_age_(minimum_age), 818 clear_card_(clear_card) {} 819 820 protected: 821 accounting::ContinuousSpaceBitmap* const bitmap_; 822 uint8_t* const begin_; 823 uint8_t* const end_; 824 const uint8_t minimum_age_; 825 const bool clear_card_; 826 827 virtual void Finalize() { 828 delete this; 829 } 830 831 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 832 ScanObjectParallelVisitor visitor(this); 833 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 834 size_t cards_scanned = clear_card_ 835 ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) 836 : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_); 837 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 838 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 839 // Finish by emptying our local mark stack. 840 MarkStackTask::Run(self); 841 } 842}; 843 844size_t MarkSweep::GetThreadCount(bool paused) const { 845 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 846 return 1; 847 } 848 return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1; 849} 850 851void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) { 852 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 853 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 854 size_t thread_count = GetThreadCount(paused); 855 // The parallel version with only one thread is faster for card scanning, TODO: fix. 856 if (kParallelCardScan && thread_count > 1) { 857 Thread* self = Thread::Current(); 858 // Can't have a different split for each space since multiple spaces can have their cards being 859 // scanned at the same time. 860 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 861 GetTimings()); 862 // Try to take some of the mark stack since we can pass this off to the worker tasks. 863 StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin(); 864 StackReference<mirror::Object>* mark_stack_end = mark_stack_->End(); 865 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 866 // Estimated number of work tasks we will create. 867 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 868 DCHECK_NE(mark_stack_tasks, 0U); 869 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 870 mark_stack_size / mark_stack_tasks + 1); 871 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 872 if (space->GetMarkBitmap() == nullptr) { 873 continue; 874 } 875 uint8_t* card_begin = space->Begin(); 876 uint8_t* card_end = space->End(); 877 // Align up the end address. For example, the image space's end 878 // may not be card-size-aligned. 879 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 880 DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize); 881 DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize); 882 // Calculate how many bytes of heap we will scan, 883 const size_t address_range = card_end - card_begin; 884 // Calculate how much address range each task gets. 885 const size_t card_delta = RoundUp(address_range / thread_count + 1, 886 accounting::CardTable::kCardSize); 887 // If paused and the space is neither zygote nor image space, we could clear the dirty 888 // cards to avoid accumulating them to increase card scanning load in the following GC 889 // cycles. We need to keep dirty cards of image space and zygote space in order to track 890 // references to the other spaces. 891 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 892 // Create the worker tasks for this space. 893 while (card_begin != card_end) { 894 // Add a range of cards. 895 size_t addr_remaining = card_end - card_begin; 896 size_t card_increment = std::min(card_delta, addr_remaining); 897 // Take from the back of the mark stack. 898 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 899 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 900 mark_stack_end -= mark_stack_increment; 901 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 902 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 903 // Add the new task to the thread pool. 904 auto* task = new CardScanTask(thread_pool, 905 this, 906 space->GetMarkBitmap(), 907 card_begin, 908 card_begin + card_increment, 909 minimum_age, 910 mark_stack_increment, 911 mark_stack_end, 912 clear_card); 913 thread_pool->AddTask(self, task); 914 card_begin += card_increment; 915 } 916 } 917 918 // Note: the card scan below may dirty new cards (and scan them) 919 // as a side effect when a Reference object is encountered and 920 // queued during the marking. See b/11465268. 921 thread_pool->SetMaxActiveWorkers(thread_count - 1); 922 thread_pool->StartWorkers(self); 923 thread_pool->Wait(self, true, true); 924 thread_pool->StopWorkers(self); 925 } else { 926 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 927 if (space->GetMarkBitmap() != nullptr) { 928 // Image spaces are handled properly since live == marked for them. 929 const char* name = nullptr; 930 switch (space->GetGcRetentionPolicy()) { 931 case space::kGcRetentionPolicyNeverCollect: 932 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 933 break; 934 case space::kGcRetentionPolicyFullCollect: 935 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 936 break; 937 case space::kGcRetentionPolicyAlwaysCollect: 938 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 939 break; 940 default: 941 LOG(FATAL) << "Unreachable"; 942 UNREACHABLE(); 943 } 944 TimingLogger::ScopedTiming t(name, GetTimings()); 945 ScanObjectVisitor visitor(this); 946 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 947 if (clear_card) { 948 card_table->Scan<true>(space->GetMarkBitmap(), 949 space->Begin(), 950 space->End(), 951 visitor, 952 minimum_age); 953 } else { 954 card_table->Scan<false>(space->GetMarkBitmap(), 955 space->Begin(), 956 space->End(), 957 visitor, 958 minimum_age); 959 } 960 } 961 } 962 } 963} 964 965class RecursiveMarkTask : public MarkStackTask<false> { 966 public: 967 RecursiveMarkTask(ThreadPool* thread_pool, 968 MarkSweep* mark_sweep, 969 accounting::ContinuousSpaceBitmap* bitmap, 970 uintptr_t begin, 971 uintptr_t end) 972 : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), 973 bitmap_(bitmap), 974 begin_(begin), 975 end_(end) {} 976 977 protected: 978 accounting::ContinuousSpaceBitmap* const bitmap_; 979 const uintptr_t begin_; 980 const uintptr_t end_; 981 982 virtual void Finalize() { 983 delete this; 984 } 985 986 // Scans all of the objects 987 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 988 ScanObjectParallelVisitor visitor(this); 989 bitmap_->VisitMarkedRange(begin_, end_, visitor); 990 // Finish by emptying our local mark stack. 991 MarkStackTask::Run(self); 992 } 993}; 994 995// Populates the mark stack based on the set of marked objects and 996// recursively marks until the mark stack is emptied. 997void MarkSweep::RecursiveMark() { 998 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 999 // RecursiveMark will build the lists of known instances of the Reference classes. See 1000 // DelayReferenceReferent for details. 1001 if (kUseRecursiveMark) { 1002 const bool partial = GetGcType() == kGcTypePartial; 1003 ScanObjectVisitor scan_visitor(this); 1004 auto* self = Thread::Current(); 1005 ThreadPool* thread_pool = heap_->GetThreadPool(); 1006 size_t thread_count = GetThreadCount(false); 1007 const bool parallel = kParallelRecursiveMark && thread_count > 1; 1008 mark_stack_->Reset(); 1009 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1010 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 1011 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 1012 current_space_bitmap_ = space->GetMarkBitmap(); 1013 if (current_space_bitmap_ == nullptr) { 1014 continue; 1015 } 1016 if (parallel) { 1017 // We will use the mark stack the future. 1018 // CHECK(mark_stack_->IsEmpty()); 1019 // This function does not handle heap end increasing, so we must use the space end. 1020 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 1021 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 1022 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 1023 1024 // Create a few worker tasks. 1025 const size_t n = thread_count * 2; 1026 while (begin != end) { 1027 uintptr_t start = begin; 1028 uintptr_t delta = (end - begin) / n; 1029 delta = RoundUp(delta, KB); 1030 if (delta < 16 * KB) delta = end - begin; 1031 begin += delta; 1032 auto* task = new RecursiveMarkTask(thread_pool, 1033 this, 1034 current_space_bitmap_, 1035 start, 1036 begin); 1037 thread_pool->AddTask(self, task); 1038 } 1039 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1040 thread_pool->StartWorkers(self); 1041 thread_pool->Wait(self, true, true); 1042 thread_pool->StopWorkers(self); 1043 } else { 1044 // This function does not handle heap end increasing, so we must use the space end. 1045 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 1046 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 1047 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 1048 } 1049 } 1050 } 1051 } 1052 ProcessMarkStack(false); 1053} 1054 1055void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) { 1056 ScanGrayObjects(paused, minimum_age); 1057 ProcessMarkStack(paused); 1058} 1059 1060void MarkSweep::ReMarkRoots() { 1061 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1062 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 1063 Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>( 1064 kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog)); 1065 if (kVerifyRootsMarked) { 1066 TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings()); 1067 VerifyRootMarkedVisitor visitor(this); 1068 Runtime::Current()->VisitRoots(&visitor); 1069 } 1070} 1071 1072void MarkSweep::SweepSystemWeaks(Thread* self) { 1073 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1074 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 1075 Runtime::Current()->SweepSystemWeaks(this); 1076} 1077 1078class VerifySystemWeakVisitor : public IsMarkedVisitor { 1079 public: 1080 explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} 1081 1082 virtual mirror::Object* IsMarked(mirror::Object* obj) 1083 OVERRIDE 1084 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1085 mark_sweep_->VerifyIsLive(obj); 1086 return obj; 1087 } 1088 1089 MarkSweep* const mark_sweep_; 1090}; 1091 1092void MarkSweep::VerifyIsLive(const mirror::Object* obj) { 1093 if (!heap_->GetLiveBitmap()->Test(obj)) { 1094 // TODO: Consider live stack? Has this code bitrotted? 1095 CHECK(!heap_->allocation_stack_->Contains(obj)) 1096 << "Found dead object " << obj << "\n" << heap_->DumpSpaces(); 1097 } 1098} 1099 1100void MarkSweep::VerifySystemWeaks() { 1101 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1102 // Verify system weaks, uses a special object visitor which returns the input object. 1103 VerifySystemWeakVisitor visitor(this); 1104 Runtime::Current()->SweepSystemWeaks(&visitor); 1105} 1106 1107class CheckpointMarkThreadRoots : public Closure, public RootVisitor { 1108 public: 1109 CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 1110 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 1111 : mark_sweep_(mark_sweep), 1112 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 1113 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1114 } 1115 1116 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) 1117 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) 1118 REQUIRES(Locks::heap_bitmap_lock_) { 1119 for (size_t i = 0; i < count; ++i) { 1120 mark_sweep_->MarkObjectNonNullParallel(*roots[i]); 1121 } 1122 } 1123 1124 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, 1125 size_t count, 1126 const RootInfo& info ATTRIBUTE_UNUSED) 1127 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) 1128 REQUIRES(Locks::heap_bitmap_lock_) { 1129 for (size_t i = 0; i < count; ++i) { 1130 mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr()); 1131 } 1132 } 1133 1134 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1135 ATRACE_BEGIN("Marking thread roots"); 1136 // Note: self is not necessarily equal to thread since thread may be suspended. 1137 Thread* const self = Thread::Current(); 1138 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 1139 << thread->GetState() << " thread " << thread << " self " << self; 1140 thread->VisitRoots(this); 1141 ATRACE_END(); 1142 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 1143 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 1144 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 1145 ATRACE_END(); 1146 } 1147 // If thread is a running mutator, then act on behalf of the garbage collector. 1148 // See the code in ThreadList::RunCheckpoint. 1149 mark_sweep_->GetBarrier().Pass(self); 1150 } 1151 1152 private: 1153 MarkSweep* const mark_sweep_; 1154 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 1155}; 1156 1157void MarkSweep::MarkRootsCheckpoint(Thread* self, 1158 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1159 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1160 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 1161 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1162 // Request the check point is run on all threads returning a count of the threads that must 1163 // run through the barrier including self. 1164 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 1165 // Release locks then wait for all mutator threads to pass the barrier. 1166 // If there are no threads to wait which implys that all the checkpoint functions are finished, 1167 // then no need to release locks. 1168 if (barrier_count == 0) { 1169 return; 1170 } 1171 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1172 Locks::mutator_lock_->SharedUnlock(self); 1173 { 1174 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1175 gc_barrier_->Increment(self, barrier_count); 1176 } 1177 Locks::mutator_lock_->SharedLock(self); 1178 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1179} 1180 1181void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1182 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1183 Thread* self = Thread::Current(); 1184 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1185 sweep_array_free_buffer_mem_map_->BaseBegin()); 1186 size_t chunk_free_pos = 0; 1187 ObjectBytePair freed; 1188 ObjectBytePair freed_los; 1189 // How many objects are left in the array, modified after each space is swept. 1190 StackReference<mirror::Object>* objects = allocations->Begin(); 1191 size_t count = allocations->Size(); 1192 // Change the order to ensure that the non-moving space last swept as an optimization. 1193 std::vector<space::ContinuousSpace*> sweep_spaces; 1194 space::ContinuousSpace* non_moving_space = nullptr; 1195 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1196 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1197 space->GetLiveBitmap() != nullptr) { 1198 if (space == heap_->GetNonMovingSpace()) { 1199 non_moving_space = space; 1200 } else { 1201 sweep_spaces.push_back(space); 1202 } 1203 } 1204 } 1205 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1206 // the other alloc spaces as an optimization. 1207 if (non_moving_space != nullptr) { 1208 sweep_spaces.push_back(non_moving_space); 1209 } 1210 // Start by sweeping the continuous spaces. 1211 for (space::ContinuousSpace* space : sweep_spaces) { 1212 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1213 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1214 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1215 if (swap_bitmaps) { 1216 std::swap(live_bitmap, mark_bitmap); 1217 } 1218 StackReference<mirror::Object>* out = objects; 1219 for (size_t i = 0; i < count; ++i) { 1220 mirror::Object* const obj = objects[i].AsMirrorPtr(); 1221 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1222 continue; 1223 } 1224 if (space->HasAddress(obj)) { 1225 // This object is in the space, remove it from the array and add it to the sweep buffer 1226 // if needed. 1227 if (!mark_bitmap->Test(obj)) { 1228 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1229 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1230 freed.objects += chunk_free_pos; 1231 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1232 chunk_free_pos = 0; 1233 } 1234 chunk_free_buffer[chunk_free_pos++] = obj; 1235 } 1236 } else { 1237 (out++)->Assign(obj); 1238 } 1239 } 1240 if (chunk_free_pos > 0) { 1241 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1242 freed.objects += chunk_free_pos; 1243 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1244 chunk_free_pos = 0; 1245 } 1246 // All of the references which space contained are no longer in the allocation stack, update 1247 // the count. 1248 count = out - objects; 1249 } 1250 // Handle the large object space. 1251 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1252 if (large_object_space != nullptr) { 1253 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1254 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1255 if (swap_bitmaps) { 1256 std::swap(large_live_objects, large_mark_objects); 1257 } 1258 for (size_t i = 0; i < count; ++i) { 1259 mirror::Object* const obj = objects[i].AsMirrorPtr(); 1260 // Handle large objects. 1261 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1262 continue; 1263 } 1264 if (!large_mark_objects->Test(obj)) { 1265 ++freed_los.objects; 1266 freed_los.bytes += large_object_space->Free(self, obj); 1267 } 1268 } 1269 } 1270 { 1271 TimingLogger::ScopedTiming t2("RecordFree", GetTimings()); 1272 RecordFree(freed); 1273 RecordFreeLOS(freed_los); 1274 t2.NewTiming("ResetStack"); 1275 allocations->Reset(); 1276 } 1277 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1278} 1279 1280void MarkSweep::Sweep(bool swap_bitmaps) { 1281 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1282 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1283 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1284 { 1285 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1286 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1287 // knowing that new allocations won't be marked as live. 1288 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1289 heap_->MarkAllocStackAsLive(live_stack); 1290 live_stack->Reset(); 1291 DCHECK(mark_stack_->IsEmpty()); 1292 } 1293 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1294 if (space->IsContinuousMemMapAllocSpace()) { 1295 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1296 TimingLogger::ScopedTiming split( 1297 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", 1298 GetTimings()); 1299 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1300 } 1301 } 1302 SweepLargeObjects(swap_bitmaps); 1303} 1304 1305void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1306 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace(); 1307 if (los != nullptr) { 1308 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1309 RecordFreeLOS(los->Sweep(swap_bitmaps)); 1310 } 1311} 1312 1313// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1314// marked, put it on the appropriate list in the heap for later processing. 1315void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1316 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this); 1317} 1318 1319class MarkVisitor { 1320 public: 1321 ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {} 1322 1323 ALWAYS_INLINE void operator()(mirror::Object* obj, 1324 MemberOffset offset, 1325 bool is_static ATTRIBUTE_UNUSED) const 1326 REQUIRES(Locks::heap_bitmap_lock_) 1327 SHARED_REQUIRES(Locks::mutator_lock_) { 1328 if (kCheckLocks) { 1329 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1330 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1331 } 1332 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset); 1333 } 1334 1335 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 1336 REQUIRES(Locks::heap_bitmap_lock_) 1337 SHARED_REQUIRES(Locks::mutator_lock_) { 1338 if (!root->IsNull()) { 1339 VisitRoot(root); 1340 } 1341 } 1342 1343 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 1344 REQUIRES(Locks::heap_bitmap_lock_) 1345 SHARED_REQUIRES(Locks::mutator_lock_) { 1346 if (kCheckLocks) { 1347 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1348 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1349 } 1350 mark_sweep_->MarkObject(root->AsMirrorPtr()); 1351 } 1352 1353 private: 1354 MarkSweep* const mark_sweep_; 1355}; 1356 1357// Scans an object reference. Determines the type of the reference 1358// and dispatches to a specialized scanning routine. 1359void MarkSweep::ScanObject(mirror::Object* obj) { 1360 MarkVisitor mark_visitor(this); 1361 DelayReferenceReferentVisitor ref_visitor(this); 1362 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1363} 1364 1365void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1366 Thread* self = Thread::Current(); 1367 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1368 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1369 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1370 CHECK_GT(chunk_size, 0U); 1371 // Split the current mark stack up into work tasks. 1372 for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) { 1373 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1374 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1375 it += delta; 1376 } 1377 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1378 thread_pool->StartWorkers(self); 1379 thread_pool->Wait(self, true, true); 1380 thread_pool->StopWorkers(self); 1381 mark_stack_->Reset(); 1382 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1383 work_chunks_deleted_.LoadSequentiallyConsistent()) 1384 << " some of the work chunks were leaked"; 1385} 1386 1387// Scan anything that's on the mark stack. 1388void MarkSweep::ProcessMarkStack(bool paused) { 1389 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1390 size_t thread_count = GetThreadCount(paused); 1391 if (kParallelProcessMarkStack && thread_count > 1 && 1392 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1393 ProcessMarkStackParallel(thread_count); 1394 } else { 1395 // TODO: Tune this. 1396 static const size_t kFifoSize = 4; 1397 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo; 1398 for (;;) { 1399 mirror::Object* obj = nullptr; 1400 if (kUseMarkStackPrefetch) { 1401 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1402 mirror::Object* mark_stack_obj = mark_stack_->PopBack(); 1403 DCHECK(mark_stack_obj != nullptr); 1404 __builtin_prefetch(mark_stack_obj); 1405 prefetch_fifo.push_back(mark_stack_obj); 1406 } 1407 if (prefetch_fifo.empty()) { 1408 break; 1409 } 1410 obj = prefetch_fifo.front(); 1411 prefetch_fifo.pop_front(); 1412 } else { 1413 if (mark_stack_->IsEmpty()) { 1414 break; 1415 } 1416 obj = mark_stack_->PopBack(); 1417 } 1418 DCHECK(obj != nullptr); 1419 ScanObject(obj); 1420 } 1421 } 1422} 1423 1424inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) { 1425 if (immune_region_.ContainsObject(object)) { 1426 return object; 1427 } 1428 if (current_space_bitmap_->HasAddress(object)) { 1429 return current_space_bitmap_->Test(object) ? object : nullptr; 1430 } 1431 return mark_bitmap_->Test(object) ? object : nullptr; 1432} 1433 1434void MarkSweep::FinishPhase() { 1435 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1436 if (kCountScannedTypes) { 1437 VLOG(gc) 1438 << "MarkSweep scanned" 1439 << " no reference objects=" << no_reference_class_count_.LoadRelaxed() 1440 << " normal objects=" << normal_count_.LoadRelaxed() 1441 << " classes=" << class_count_.LoadRelaxed() 1442 << " object arrays=" << object_array_count_.LoadRelaxed() 1443 << " references=" << reference_count_.LoadRelaxed() 1444 << " other=" << other_count_.LoadRelaxed(); 1445 } 1446 if (kCountTasks) { 1447 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1448 } 1449 if (kMeasureOverhead) { 1450 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1451 } 1452 if (kProfileLargeObjects) { 1453 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1454 << " marked " << large_object_mark_.LoadRelaxed(); 1455 } 1456 if (kCountMarkedObjects) { 1457 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1458 << " immune=" << mark_immune_count_.LoadRelaxed() 1459 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1460 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1461 } 1462 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1463 mark_stack_->Reset(); 1464 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1465 heap_->ClearMarkedObjects(); 1466} 1467 1468void MarkSweep::RevokeAllThreadLocalBuffers() { 1469 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1470 // If concurrent, rosalloc thread-local buffers are revoked at the 1471 // thread checkpoint. Bump pointer space thread-local buffers must 1472 // not be in use. 1473 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1474 } else { 1475 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1476 GetHeap()->RevokeAllThreadLocalBuffers(); 1477 } 1478} 1479 1480} // namespace collector 1481} // namespace gc 1482} // namespace art 1483