mark_sweep.cc revision 375a29a824207fb2187bc3d31bfaae2d8283b3a2
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <atomic> 20#include <functional> 21#include <numeric> 22#include <climits> 23#include <vector> 24 25#define ATRACE_TAG ATRACE_TAG_DALVIK 26#include "cutils/trace.h" 27 28#include "base/bounded_fifo.h" 29#include "base/logging.h" 30#include "base/macros.h" 31#include "base/mutex-inl.h" 32#include "base/timing_logger.h" 33#include "gc/accounting/card_table-inl.h" 34#include "gc/accounting/heap_bitmap-inl.h" 35#include "gc/accounting/mod_union_table.h" 36#include "gc/accounting/space_bitmap-inl.h" 37#include "gc/heap.h" 38#include "gc/reference_processor.h" 39#include "gc/space/image_space.h" 40#include "gc/space/large_object_space.h" 41#include "gc/space/space-inl.h" 42#include "mark_sweep-inl.h" 43#include "mirror/object-inl.h" 44#include "runtime.h" 45#include "scoped_thread_state_change.h" 46#include "thread-inl.h" 47#include "thread_list.h" 48 49using ::art::mirror::Object; 50 51namespace art { 52namespace gc { 53namespace collector { 54 55// Performance options. 56static constexpr bool kUseRecursiveMark = false; 57static constexpr bool kUseMarkStackPrefetch = true; 58static constexpr size_t kSweepArrayChunkFreeSize = 1024; 59static constexpr bool kPreCleanCards = true; 60 61// Parallelism options. 62static constexpr bool kParallelCardScan = true; 63static constexpr bool kParallelRecursiveMark = true; 64// Don't attempt to parallelize mark stack processing unless the mark stack is at least n 65// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 66// having this can add overhead in ProcessReferences since we may end up doing many calls of 67// ProcessMarkStack with very small mark stacks. 68static constexpr size_t kMinimumParallelMarkStackSize = 128; 69static constexpr bool kParallelProcessMarkStack = true; 70 71// Profiling and information flags. 72static constexpr bool kProfileLargeObjects = false; 73static constexpr bool kMeasureOverhead = false; 74static constexpr bool kCountTasks = false; 75static constexpr bool kCountJavaLangRefs = false; 76static constexpr bool kCountMarkedObjects = false; 77 78// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 79static constexpr bool kCheckLocks = kDebugLocking; 80static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 81 82// If true, revoke the rosalloc thread-local buffers at the 83// checkpoint, as opposed to during the pause. 84static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 85 86void MarkSweep::BindBitmaps() { 87 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 88 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 89 // Mark all of the spaces we never collect as immune. 90 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 91 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 92 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 93 } 94 } 95} 96 97MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 98 : GarbageCollector(heap, 99 name_prefix + 100 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 101 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), 102 gc_barrier_(new Barrier(0)), 103 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 104 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { 105 std::string error_msg; 106 MemMap* mem_map = MemMap::MapAnonymous( 107 "mark sweep sweep array free buffer", nullptr, 108 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 109 PROT_READ | PROT_WRITE, false, false, &error_msg); 110 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 111 sweep_array_free_buffer_mem_map_.reset(mem_map); 112} 113 114void MarkSweep::InitializePhase() { 115 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 116 mark_stack_ = heap_->GetMarkStack(); 117 DCHECK(mark_stack_ != nullptr); 118 immune_region_.Reset(); 119 class_count_.StoreRelaxed(0); 120 array_count_.StoreRelaxed(0); 121 other_count_.StoreRelaxed(0); 122 large_object_test_.StoreRelaxed(0); 123 large_object_mark_.StoreRelaxed(0); 124 overhead_time_ .StoreRelaxed(0); 125 work_chunks_created_.StoreRelaxed(0); 126 work_chunks_deleted_.StoreRelaxed(0); 127 reference_count_.StoreRelaxed(0); 128 mark_null_count_.StoreRelaxed(0); 129 mark_immune_count_.StoreRelaxed(0); 130 mark_fastpath_count_.StoreRelaxed(0); 131 mark_slowpath_count_.StoreRelaxed(0); 132 { 133 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 134 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 135 mark_bitmap_ = heap_->GetMarkBitmap(); 136 } 137 if (!GetCurrentIteration()->GetClearSoftReferences()) { 138 // Always clear soft references if a non-sticky collection. 139 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 140 } 141} 142 143void MarkSweep::RunPhases() { 144 Thread* self = Thread::Current(); 145 InitializePhase(); 146 Locks::mutator_lock_->AssertNotHeld(self); 147 if (IsConcurrent()) { 148 GetHeap()->PreGcVerification(this); 149 { 150 ReaderMutexLock mu(self, *Locks::mutator_lock_); 151 MarkingPhase(); 152 } 153 ScopedPause pause(this); 154 GetHeap()->PrePauseRosAllocVerification(this); 155 PausePhase(); 156 RevokeAllThreadLocalBuffers(); 157 } else { 158 ScopedPause pause(this); 159 GetHeap()->PreGcVerificationPaused(this); 160 MarkingPhase(); 161 GetHeap()->PrePauseRosAllocVerification(this); 162 PausePhase(); 163 RevokeAllThreadLocalBuffers(); 164 } 165 { 166 // Sweeping always done concurrently, even for non concurrent mark sweep. 167 ReaderMutexLock mu(self, *Locks::mutator_lock_); 168 ReclaimPhase(); 169 } 170 GetHeap()->PostGcVerification(this); 171 FinishPhase(); 172} 173 174void MarkSweep::ProcessReferences(Thread* self) { 175 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 176 GetHeap()->GetReferenceProcessor()->ProcessReferences( 177 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), 178 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this); 179} 180 181void MarkSweep::PausePhase() { 182 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 183 Thread* self = Thread::Current(); 184 Locks::mutator_lock_->AssertExclusiveHeld(self); 185 if (IsConcurrent()) { 186 // Handle the dirty objects if we are a concurrent GC. 187 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 188 // Re-mark root set. 189 ReMarkRoots(); 190 // Scan dirty objects, this is only required if we are not doing concurrent GC. 191 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 192 } 193 { 194 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 195 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 196 heap_->SwapStacks(self); 197 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 198 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 199 // stacks and don't want anybody to allocate into the live stack. 200 RevokeAllThreadLocalAllocationStacks(self); 201 } 202 heap_->PreSweepingGcVerification(this); 203 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 204 // weak before we sweep them. Since this new system weak may not be marked, the GC may 205 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 206 // reference to a string that is about to be swept. 207 Runtime::Current()->DisallowNewSystemWeaks(); 208 // Enable the reference processing slow path, needs to be done with mutators paused since there 209 // is no lock in the GetReferent fast path. 210 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 211} 212 213void MarkSweep::PreCleanCards() { 214 // Don't do this for non concurrent GCs since they don't have any dirty cards. 215 if (kPreCleanCards && IsConcurrent()) { 216 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 217 Thread* self = Thread::Current(); 218 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 219 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 220 heap_->ProcessCards(GetTimings(), false, true, false); 221 // The checkpoint root marking is required to avoid a race condition which occurs if the 222 // following happens during a reference write: 223 // 1. mutator dirties the card (write barrier) 224 // 2. GC ages the card (the above ProcessCards call) 225 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 226 // 4. mutator writes the value (corresponding to the write barrier in 1.) 227 // This causes the GC to age the card but not necessarily mark the reference which the mutator 228 // wrote into the object stored in the card. 229 // Having the checkpoint fixes this issue since it ensures that the card mark and the 230 // reference write are visible to the GC before the card is scanned (this is due to locks being 231 // acquired / released in the checkpoint code). 232 // The other roots are also marked to help reduce the pause. 233 MarkRootsCheckpoint(self, false); 234 MarkNonThreadRoots(); 235 MarkConcurrentRoots( 236 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 237 // Process the newly aged cards. 238 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 239 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 240 // in the next GC. 241 } 242} 243 244void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 245 if (kUseThreadLocalAllocationStack) { 246 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 247 Locks::mutator_lock_->AssertExclusiveHeld(self); 248 heap_->RevokeAllThreadLocalAllocationStacks(self); 249 } 250} 251 252void MarkSweep::MarkingPhase() { 253 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 254 Thread* self = Thread::Current(); 255 BindBitmaps(); 256 FindDefaultSpaceBitmap(); 257 // Process dirty cards and add dirty cards to mod union tables. 258 // If the GC type is non sticky, then we just clear the cards instead of ageing them. 259 heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky); 260 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 261 MarkRoots(self); 262 MarkReachableObjects(); 263 // Pre-clean dirtied cards to reduce pauses. 264 PreCleanCards(); 265} 266 267void MarkSweep::UpdateAndMarkModUnion() { 268 for (const auto& space : heap_->GetContinuousSpaces()) { 269 if (immune_region_.ContainsSpace(space)) { 270 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : 271 "UpdateAndMarkImageModUnionTable"; 272 TimingLogger::ScopedTiming t(name, GetTimings()); 273 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 274 CHECK(mod_union_table != nullptr); 275 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); 276 } 277 } 278} 279 280void MarkSweep::MarkReachableObjects() { 281 UpdateAndMarkModUnion(); 282 // Recursively mark all the non-image bits set in the mark bitmap. 283 RecursiveMark(); 284} 285 286void MarkSweep::ReclaimPhase() { 287 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 288 Thread* self = Thread::Current(); 289 // Process the references concurrently. 290 ProcessReferences(self); 291 SweepSystemWeaks(self); 292 Runtime::Current()->AllowNewSystemWeaks(); 293 { 294 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 295 GetHeap()->RecordFreeRevoke(); 296 // Reclaim unmarked objects. 297 Sweep(false); 298 // Swap the live and mark bitmaps for each space which we modified space. This is an 299 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 300 // bitmaps. 301 SwapBitmaps(); 302 // Unbind the live and mark bitmaps. 303 GetHeap()->UnBindBitmaps(); 304 } 305} 306 307void MarkSweep::FindDefaultSpaceBitmap() { 308 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 309 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 310 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 311 // We want to have the main space instead of non moving if possible. 312 if (bitmap != nullptr && 313 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 314 current_space_bitmap_ = bitmap; 315 // If we are not the non moving space exit the loop early since this will be good enough. 316 if (space != heap_->GetNonMovingSpace()) { 317 break; 318 } 319 } 320 } 321 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n" 322 << heap_->DumpSpaces(); 323} 324 325void MarkSweep::ExpandMarkStack() { 326 ResizeMarkStack(mark_stack_->Capacity() * 2); 327} 328 329void MarkSweep::ResizeMarkStack(size_t new_size) { 330 // Rare case, no need to have Thread::Current be a parameter. 331 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 332 // Someone else acquired the lock and expanded the mark stack before us. 333 return; 334 } 335 std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End()); 336 CHECK_LE(mark_stack_->Size(), new_size); 337 mark_stack_->Resize(new_size); 338 for (auto& obj : temp) { 339 mark_stack_->PushBack(obj.AsMirrorPtr()); 340 } 341} 342 343inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { 344 DCHECK(obj != nullptr); 345 if (MarkObjectParallel(obj)) { 346 MutexLock mu(Thread::Current(), mark_stack_lock_); 347 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 348 ExpandMarkStack(); 349 } 350 // The object must be pushed on to the mark stack. 351 mark_stack_->PushBack(obj); 352 } 353} 354 355mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { 356 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 357 mark_sweep->MarkObject(obj); 358 return obj; 359} 360 361void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 362 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr()); 363} 364 365bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 366 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr()); 367} 368 369class MarkSweepMarkObjectSlowPath { 370 public: 371 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep, Object* holder = nullptr, 372 MemberOffset offset = MemberOffset(0)) 373 : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) { 374 } 375 376 void operator()(const Object* obj) const ALWAYS_INLINE 377 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 378 if (kProfileLargeObjects) { 379 // TODO: Differentiate between marking and testing somehow. 380 ++mark_sweep_->large_object_test_; 381 ++mark_sweep_->large_object_mark_; 382 } 383 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 384 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 385 (kIsDebugBuild && large_object_space != nullptr && 386 !large_object_space->Contains(obj)))) { 387 LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces"; 388 LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root"; 389 mark_sweep_->VerifyRoots(); 390 if (holder_ != nullptr) { 391 ArtField* field = holder_->FindFieldByOffset(offset_); 392 LOG(INTERNAL_FATAL) << "Field info: holder=" << holder_ 393 << " holder_type=" << PrettyTypeOf(holder_) 394 << " offset=" << offset_.Uint32Value() 395 << " field=" << (field != nullptr ? field->GetName() : "nullptr"); 396 } 397 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL); 398 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true); 399 LOG(FATAL) << "Can't mark invalid object"; 400 } 401 } 402 403 private: 404 MarkSweep* const mark_sweep_; 405 mirror::Object* const holder_; 406 MemberOffset offset_; 407}; 408 409inline void MarkSweep::MarkObjectNonNull(Object* obj, Object* holder, MemberOffset offset) { 410 DCHECK(obj != nullptr); 411 if (kUseBakerOrBrooksReadBarrier) { 412 // Verify all the objects have the correct pointer installed. 413 obj->AssertReadBarrierPointer(); 414 } 415 if (immune_region_.ContainsObject(obj)) { 416 if (kCountMarkedObjects) { 417 ++mark_immune_count_; 418 } 419 DCHECK(mark_bitmap_->Test(obj)); 420 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 421 if (kCountMarkedObjects) { 422 ++mark_fastpath_count_; 423 } 424 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 425 PushOnMarkStack(obj); // This object was not previously marked. 426 } 427 } else { 428 if (kCountMarkedObjects) { 429 ++mark_slowpath_count_; 430 } 431 MarkSweepMarkObjectSlowPath visitor(this, holder, offset); 432 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 433 // will check again. 434 if (!mark_bitmap_->Set(obj, visitor)) { 435 PushOnMarkStack(obj); // Was not already marked, push. 436 } 437 } 438} 439 440inline void MarkSweep::PushOnMarkStack(Object* obj) { 441 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 442 // Lock is not needed but is here anyways to please annotalysis. 443 MutexLock mu(Thread::Current(), mark_stack_lock_); 444 ExpandMarkStack(); 445 } 446 // The object must be pushed on to the mark stack. 447 mark_stack_->PushBack(obj); 448} 449 450inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 451 DCHECK(obj != nullptr); 452 if (kUseBakerOrBrooksReadBarrier) { 453 // Verify all the objects have the correct pointer installed. 454 obj->AssertReadBarrierPointer(); 455 } 456 if (immune_region_.ContainsObject(obj)) { 457 DCHECK(IsMarked(obj)); 458 return false; 459 } 460 // Try to take advantage of locality of references within a space, failing this find the space 461 // the hard way. 462 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 463 if (LIKELY(object_bitmap->HasAddress(obj))) { 464 return !object_bitmap->AtomicTestAndSet(obj); 465 } 466 MarkSweepMarkObjectSlowPath visitor(this); 467 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 468} 469 470// Used to mark objects when processing the mark stack. If an object is null, it is not marked. 471inline void MarkSweep::MarkObject(Object* obj, Object* holder, MemberOffset offset) { 472 if (obj != nullptr) { 473 MarkObjectNonNull(obj, holder, offset); 474 } else if (kCountMarkedObjects) { 475 ++mark_null_count_; 476 } 477} 478 479class VerifyRootMarkedVisitor : public SingleRootVisitor { 480 public: 481 explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { } 482 483 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 484 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 485 CHECK(collector_->IsMarked(root)) << info.ToString(); 486 } 487 488 private: 489 MarkSweep* const collector_; 490}; 491 492void MarkSweep::VisitRoots(mirror::Object*** roots, size_t count, 493 const RootInfo& info ATTRIBUTE_UNUSED) { 494 for (size_t i = 0; i < count; ++i) { 495 MarkObjectNonNull(*roots[i]); 496 } 497} 498 499void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, 500 const RootInfo& info ATTRIBUTE_UNUSED) { 501 for (size_t i = 0; i < count; ++i) { 502 MarkObjectNonNull(roots[i]->AsMirrorPtr()); 503 } 504} 505 506class VerifyRootVisitor : public SingleRootVisitor { 507 public: 508 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 509 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 510 // See if the root is on any space bitmap. 511 auto* heap = Runtime::Current()->GetHeap(); 512 if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 513 space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace(); 514 if (large_object_space != nullptr && !large_object_space->Contains(root)) { 515 LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info; 516 } 517 } 518 } 519}; 520 521void MarkSweep::VerifyRoots() { 522 VerifyRootVisitor visitor; 523 Runtime::Current()->GetThreadList()->VisitRoots(&visitor); 524} 525 526void MarkSweep::MarkRoots(Thread* self) { 527 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 528 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 529 // If we exclusively hold the mutator lock, all threads must be suspended. 530 Runtime::Current()->VisitRoots(this); 531 RevokeAllThreadLocalAllocationStacks(self); 532 } else { 533 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 534 // At this point the live stack should no longer have any mutators which push into it. 535 MarkNonThreadRoots(); 536 MarkConcurrentRoots( 537 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 538 } 539} 540 541void MarkSweep::MarkNonThreadRoots() { 542 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 543 Runtime::Current()->VisitNonThreadRoots(this); 544} 545 546void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 547 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 548 // Visit all runtime roots and clear dirty flags. 549 Runtime::Current()->VisitConcurrentRoots(this, flags); 550} 551 552class ScanObjectVisitor { 553 public: 554 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 555 : mark_sweep_(mark_sweep) {} 556 557 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 558 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 559 if (kCheckLocks) { 560 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 561 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 562 } 563 mark_sweep_->ScanObject(obj); 564 } 565 566 private: 567 MarkSweep* const mark_sweep_; 568}; 569 570class DelayReferenceReferentVisitor { 571 public: 572 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { 573 } 574 575 void operator()(mirror::Class* klass, mirror::Reference* ref) const 576 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 577 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 578 collector_->DelayReferenceReferent(klass, ref); 579 } 580 581 private: 582 MarkSweep* const collector_; 583}; 584 585template <bool kUseFinger = false> 586class MarkStackTask : public Task { 587 public: 588 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 589 StackReference<Object>* mark_stack) 590 : mark_sweep_(mark_sweep), 591 thread_pool_(thread_pool), 592 mark_stack_pos_(mark_stack_size) { 593 // We may have to copy part of an existing mark stack when another mark stack overflows. 594 if (mark_stack_size != 0) { 595 DCHECK(mark_stack != nullptr); 596 // TODO: Check performance? 597 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 598 } 599 if (kCountTasks) { 600 ++mark_sweep_->work_chunks_created_; 601 } 602 } 603 604 static const size_t kMaxSize = 1 * KB; 605 606 protected: 607 class MarkObjectParallelVisitor { 608 public: 609 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 610 MarkSweep* mark_sweep) ALWAYS_INLINE 611 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 612 613 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE 614 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 615 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 616 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 617 if (kUseFinger) { 618 std::atomic_thread_fence(std::memory_order_seq_cst); 619 if (reinterpret_cast<uintptr_t>(ref) >= 620 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 621 return; 622 } 623 } 624 chunk_task_->MarkStackPush(ref); 625 } 626 } 627 628 private: 629 MarkStackTask<kUseFinger>* const chunk_task_; 630 MarkSweep* const mark_sweep_; 631 }; 632 633 class ScanObjectParallelVisitor { 634 public: 635 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 636 : chunk_task_(chunk_task) {} 637 638 // No thread safety analysis since multiple threads will use this visitor. 639 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 640 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 641 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 642 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 643 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 644 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 645 } 646 647 private: 648 MarkStackTask<kUseFinger>* const chunk_task_; 649 }; 650 651 virtual ~MarkStackTask() { 652 // Make sure that we have cleared our mark stack. 653 DCHECK_EQ(mark_stack_pos_, 0U); 654 if (kCountTasks) { 655 ++mark_sweep_->work_chunks_deleted_; 656 } 657 } 658 659 MarkSweep* const mark_sweep_; 660 ThreadPool* const thread_pool_; 661 // Thread local mark stack for this task. 662 StackReference<Object> mark_stack_[kMaxSize]; 663 // Mark stack position. 664 size_t mark_stack_pos_; 665 666 ALWAYS_INLINE void MarkStackPush(Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 667 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 668 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 669 mark_stack_pos_ /= 2; 670 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 671 mark_stack_ + mark_stack_pos_); 672 thread_pool_->AddTask(Thread::Current(), task); 673 } 674 DCHECK(obj != nullptr); 675 DCHECK_LT(mark_stack_pos_, kMaxSize); 676 mark_stack_[mark_stack_pos_++].Assign(obj); 677 } 678 679 virtual void Finalize() { 680 delete this; 681 } 682 683 // Scans all of the objects 684 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 685 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 686 UNUSED(self); 687 ScanObjectParallelVisitor visitor(this); 688 // TODO: Tune this. 689 static const size_t kFifoSize = 4; 690 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 691 for (;;) { 692 Object* obj = nullptr; 693 if (kUseMarkStackPrefetch) { 694 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 695 Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 696 DCHECK(mark_stack_obj != nullptr); 697 __builtin_prefetch(mark_stack_obj); 698 prefetch_fifo.push_back(mark_stack_obj); 699 } 700 if (UNLIKELY(prefetch_fifo.empty())) { 701 break; 702 } 703 obj = prefetch_fifo.front(); 704 prefetch_fifo.pop_front(); 705 } else { 706 if (UNLIKELY(mark_stack_pos_ == 0)) { 707 break; 708 } 709 obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 710 } 711 DCHECK(obj != nullptr); 712 visitor(obj); 713 } 714 } 715}; 716 717class CardScanTask : public MarkStackTask<false> { 718 public: 719 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 720 accounting::ContinuousSpaceBitmap* bitmap, 721 uint8_t* begin, uint8_t* end, uint8_t minimum_age, size_t mark_stack_size, 722 StackReference<Object>* mark_stack_obj, bool clear_card) 723 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 724 bitmap_(bitmap), 725 begin_(begin), 726 end_(end), 727 minimum_age_(minimum_age), clear_card_(clear_card) { 728 } 729 730 protected: 731 accounting::ContinuousSpaceBitmap* const bitmap_; 732 uint8_t* const begin_; 733 uint8_t* const end_; 734 const uint8_t minimum_age_; 735 const bool clear_card_; 736 737 virtual void Finalize() { 738 delete this; 739 } 740 741 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 742 ScanObjectParallelVisitor visitor(this); 743 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 744 size_t cards_scanned = clear_card_ ? 745 card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) : 746 card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_); 747 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 748 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 749 // Finish by emptying our local mark stack. 750 MarkStackTask::Run(self); 751 } 752}; 753 754size_t MarkSweep::GetThreadCount(bool paused) const { 755 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 756 return 1; 757 } 758 return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1; 759} 760 761void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) { 762 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 763 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 764 size_t thread_count = GetThreadCount(paused); 765 // The parallel version with only one thread is faster for card scanning, TODO: fix. 766 if (kParallelCardScan && thread_count > 1) { 767 Thread* self = Thread::Current(); 768 // Can't have a different split for each space since multiple spaces can have their cards being 769 // scanned at the same time. 770 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 771 GetTimings()); 772 // Try to take some of the mark stack since we can pass this off to the worker tasks. 773 StackReference<Object>* mark_stack_begin = mark_stack_->Begin(); 774 StackReference<Object>* mark_stack_end = mark_stack_->End(); 775 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 776 // Estimated number of work tasks we will create. 777 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 778 DCHECK_NE(mark_stack_tasks, 0U); 779 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 780 mark_stack_size / mark_stack_tasks + 1); 781 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 782 if (space->GetMarkBitmap() == nullptr) { 783 continue; 784 } 785 uint8_t* card_begin = space->Begin(); 786 uint8_t* card_end = space->End(); 787 // Align up the end address. For example, the image space's end 788 // may not be card-size-aligned. 789 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 790 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); 791 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); 792 // Calculate how many bytes of heap we will scan, 793 const size_t address_range = card_end - card_begin; 794 // Calculate how much address range each task gets. 795 const size_t card_delta = RoundUp(address_range / thread_count + 1, 796 accounting::CardTable::kCardSize); 797 // If paused and the space is neither zygote nor image space, we could clear the dirty 798 // cards to avoid accumulating them to increase card scanning load in the following GC 799 // cycles. We need to keep dirty cards of image space and zygote space in order to track 800 // references to the other spaces. 801 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 802 // Create the worker tasks for this space. 803 while (card_begin != card_end) { 804 // Add a range of cards. 805 size_t addr_remaining = card_end - card_begin; 806 size_t card_increment = std::min(card_delta, addr_remaining); 807 // Take from the back of the mark stack. 808 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 809 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 810 mark_stack_end -= mark_stack_increment; 811 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 812 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 813 // Add the new task to the thread pool. 814 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 815 card_begin + card_increment, minimum_age, 816 mark_stack_increment, mark_stack_end, clear_card); 817 thread_pool->AddTask(self, task); 818 card_begin += card_increment; 819 } 820 } 821 822 // Note: the card scan below may dirty new cards (and scan them) 823 // as a side effect when a Reference object is encountered and 824 // queued during the marking. See b/11465268. 825 thread_pool->SetMaxActiveWorkers(thread_count - 1); 826 thread_pool->StartWorkers(self); 827 thread_pool->Wait(self, true, true); 828 thread_pool->StopWorkers(self); 829 } else { 830 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 831 if (space->GetMarkBitmap() != nullptr) { 832 // Image spaces are handled properly since live == marked for them. 833 const char* name = nullptr; 834 switch (space->GetGcRetentionPolicy()) { 835 case space::kGcRetentionPolicyNeverCollect: 836 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 837 break; 838 case space::kGcRetentionPolicyFullCollect: 839 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 840 break; 841 case space::kGcRetentionPolicyAlwaysCollect: 842 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 843 break; 844 default: 845 LOG(FATAL) << "Unreachable"; 846 UNREACHABLE(); 847 } 848 TimingLogger::ScopedTiming t(name, GetTimings()); 849 ScanObjectVisitor visitor(this); 850 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 851 if (clear_card) { 852 card_table->Scan<true>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, 853 minimum_age); 854 } else { 855 card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, 856 minimum_age); 857 } 858 } 859 } 860 } 861} 862 863class RecursiveMarkTask : public MarkStackTask<false> { 864 public: 865 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 866 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 867 : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), bitmap_(bitmap), begin_(begin), 868 end_(end) { 869 } 870 871 protected: 872 accounting::ContinuousSpaceBitmap* const bitmap_; 873 const uintptr_t begin_; 874 const uintptr_t end_; 875 876 virtual void Finalize() { 877 delete this; 878 } 879 880 // Scans all of the objects 881 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 882 ScanObjectParallelVisitor visitor(this); 883 bitmap_->VisitMarkedRange(begin_, end_, visitor); 884 // Finish by emptying our local mark stack. 885 MarkStackTask::Run(self); 886 } 887}; 888 889// Populates the mark stack based on the set of marked objects and 890// recursively marks until the mark stack is emptied. 891void MarkSweep::RecursiveMark() { 892 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 893 // RecursiveMark will build the lists of known instances of the Reference classes. See 894 // DelayReferenceReferent for details. 895 if (kUseRecursiveMark) { 896 const bool partial = GetGcType() == kGcTypePartial; 897 ScanObjectVisitor scan_visitor(this); 898 auto* self = Thread::Current(); 899 ThreadPool* thread_pool = heap_->GetThreadPool(); 900 size_t thread_count = GetThreadCount(false); 901 const bool parallel = kParallelRecursiveMark && thread_count > 1; 902 mark_stack_->Reset(); 903 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 904 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 905 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 906 current_space_bitmap_ = space->GetMarkBitmap(); 907 if (current_space_bitmap_ == nullptr) { 908 continue; 909 } 910 if (parallel) { 911 // We will use the mark stack the future. 912 // CHECK(mark_stack_->IsEmpty()); 913 // This function does not handle heap end increasing, so we must use the space end. 914 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 915 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 916 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 917 918 // Create a few worker tasks. 919 const size_t n = thread_count * 2; 920 while (begin != end) { 921 uintptr_t start = begin; 922 uintptr_t delta = (end - begin) / n; 923 delta = RoundUp(delta, KB); 924 if (delta < 16 * KB) delta = end - begin; 925 begin += delta; 926 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, 927 begin); 928 thread_pool->AddTask(self, task); 929 } 930 thread_pool->SetMaxActiveWorkers(thread_count - 1); 931 thread_pool->StartWorkers(self); 932 thread_pool->Wait(self, true, true); 933 thread_pool->StopWorkers(self); 934 } else { 935 // This function does not handle heap end increasing, so we must use the space end. 936 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 937 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 938 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 939 } 940 } 941 } 942 } 943 ProcessMarkStack(false); 944} 945 946mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { 947 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { 948 return object; 949 } 950 return nullptr; 951} 952 953void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) { 954 ScanGrayObjects(paused, minimum_age); 955 ProcessMarkStack(paused); 956} 957 958void MarkSweep::ReMarkRoots() { 959 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 960 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 961 Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>( 962 kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog)); 963 if (kVerifyRootsMarked) { 964 TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings()); 965 VerifyRootMarkedVisitor visitor(this); 966 Runtime::Current()->VisitRoots(&visitor); 967 } 968} 969 970void MarkSweep::SweepSystemWeaks(Thread* self) { 971 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 972 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 973 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); 974} 975 976mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { 977 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 978 // We don't actually want to sweep the object, so lets return "marked" 979 return obj; 980} 981 982void MarkSweep::VerifyIsLive(const Object* obj) { 983 if (!heap_->GetLiveBitmap()->Test(obj)) { 984 // TODO: Consider live stack? Has this code bitrotted? 985 CHECK(!heap_->allocation_stack_->Contains(obj)) 986 << "Found dead object " << obj << "\n" << heap_->DumpSpaces(); 987 } 988} 989 990void MarkSweep::VerifySystemWeaks() { 991 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 992 // Verify system weaks, uses a special object visitor which returns the input object. 993 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); 994} 995 996class CheckpointMarkThreadRoots : public Closure, public RootVisitor { 997 public: 998 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 999 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 1000 : mark_sweep_(mark_sweep), 1001 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 1002 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1003 } 1004 1005 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) 1006 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1007 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1008 for (size_t i = 0; i < count; ++i) { 1009 mark_sweep_->MarkObjectNonNullParallel(*roots[i]); 1010 } 1011 } 1012 1013 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count, 1014 const RootInfo& info ATTRIBUTE_UNUSED) 1015 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1016 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1017 for (size_t i = 0; i < count; ++i) { 1018 mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr()); 1019 } 1020 } 1021 1022 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1023 ATRACE_BEGIN("Marking thread roots"); 1024 // Note: self is not necessarily equal to thread since thread may be suspended. 1025 Thread* const self = Thread::Current(); 1026 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 1027 << thread->GetState() << " thread " << thread << " self " << self; 1028 thread->VisitRoots(this); 1029 ATRACE_END(); 1030 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 1031 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 1032 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 1033 ATRACE_END(); 1034 } 1035 // If thread is a running mutator, then act on behalf of the garbage collector. 1036 // See the code in ThreadList::RunCheckpoint. 1037 if (thread->GetState() == kRunnable) { 1038 mark_sweep_->GetBarrier().Pass(self); 1039 } 1040 } 1041 1042 private: 1043 MarkSweep* const mark_sweep_; 1044 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 1045}; 1046 1047void MarkSweep::MarkRootsCheckpoint(Thread* self, 1048 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1049 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1050 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 1051 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1052 // Request the check point is run on all threads returning a count of the threads that must 1053 // run through the barrier including self. 1054 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 1055 // Release locks then wait for all mutator threads to pass the barrier. 1056 // If there are no threads to wait which implys that all the checkpoint functions are finished, 1057 // then no need to release locks. 1058 if (barrier_count == 0) { 1059 return; 1060 } 1061 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1062 Locks::mutator_lock_->SharedUnlock(self); 1063 { 1064 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1065 gc_barrier_->Increment(self, barrier_count); 1066 } 1067 Locks::mutator_lock_->SharedLock(self); 1068 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1069} 1070 1071void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1072 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1073 Thread* self = Thread::Current(); 1074 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1075 sweep_array_free_buffer_mem_map_->BaseBegin()); 1076 size_t chunk_free_pos = 0; 1077 ObjectBytePair freed; 1078 ObjectBytePair freed_los; 1079 // How many objects are left in the array, modified after each space is swept. 1080 StackReference<Object>* objects = allocations->Begin(); 1081 size_t count = allocations->Size(); 1082 // Change the order to ensure that the non-moving space last swept as an optimization. 1083 std::vector<space::ContinuousSpace*> sweep_spaces; 1084 space::ContinuousSpace* non_moving_space = nullptr; 1085 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1086 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1087 space->GetLiveBitmap() != nullptr) { 1088 if (space == heap_->GetNonMovingSpace()) { 1089 non_moving_space = space; 1090 } else { 1091 sweep_spaces.push_back(space); 1092 } 1093 } 1094 } 1095 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1096 // the other alloc spaces as an optimization. 1097 if (non_moving_space != nullptr) { 1098 sweep_spaces.push_back(non_moving_space); 1099 } 1100 // Start by sweeping the continuous spaces. 1101 for (space::ContinuousSpace* space : sweep_spaces) { 1102 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1103 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1104 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1105 if (swap_bitmaps) { 1106 std::swap(live_bitmap, mark_bitmap); 1107 } 1108 StackReference<Object>* out = objects; 1109 for (size_t i = 0; i < count; ++i) { 1110 Object* const obj = objects[i].AsMirrorPtr(); 1111 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1112 continue; 1113 } 1114 if (space->HasAddress(obj)) { 1115 // This object is in the space, remove it from the array and add it to the sweep buffer 1116 // if needed. 1117 if (!mark_bitmap->Test(obj)) { 1118 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1119 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1120 freed.objects += chunk_free_pos; 1121 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1122 chunk_free_pos = 0; 1123 } 1124 chunk_free_buffer[chunk_free_pos++] = obj; 1125 } 1126 } else { 1127 (out++)->Assign(obj); 1128 } 1129 } 1130 if (chunk_free_pos > 0) { 1131 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1132 freed.objects += chunk_free_pos; 1133 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1134 chunk_free_pos = 0; 1135 } 1136 // All of the references which space contained are no longer in the allocation stack, update 1137 // the count. 1138 count = out - objects; 1139 } 1140 // Handle the large object space. 1141 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1142 if (large_object_space != nullptr) { 1143 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1144 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1145 if (swap_bitmaps) { 1146 std::swap(large_live_objects, large_mark_objects); 1147 } 1148 for (size_t i = 0; i < count; ++i) { 1149 Object* const obj = objects[i].AsMirrorPtr(); 1150 // Handle large objects. 1151 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1152 continue; 1153 } 1154 if (!large_mark_objects->Test(obj)) { 1155 ++freed_los.objects; 1156 freed_los.bytes += large_object_space->Free(self, obj); 1157 } 1158 } 1159 } 1160 { 1161 TimingLogger::ScopedTiming t2("RecordFree", GetTimings()); 1162 RecordFree(freed); 1163 RecordFreeLOS(freed_los); 1164 t2.NewTiming("ResetStack"); 1165 allocations->Reset(); 1166 } 1167 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1168} 1169 1170void MarkSweep::Sweep(bool swap_bitmaps) { 1171 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1172 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1173 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1174 { 1175 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1176 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1177 // knowing that new allocations won't be marked as live. 1178 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1179 heap_->MarkAllocStackAsLive(live_stack); 1180 live_stack->Reset(); 1181 DCHECK(mark_stack_->IsEmpty()); 1182 } 1183 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1184 if (space->IsContinuousMemMapAllocSpace()) { 1185 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1186 TimingLogger::ScopedTiming split( 1187 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); 1188 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1189 } 1190 } 1191 SweepLargeObjects(swap_bitmaps); 1192} 1193 1194void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1195 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace(); 1196 if (los != nullptr) { 1197 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1198 RecordFreeLOS(los->Sweep(swap_bitmaps)); 1199 } 1200} 1201 1202// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1203// marked, put it on the appropriate list in the heap for later processing. 1204void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1205 if (kCountJavaLangRefs) { 1206 ++reference_count_; 1207 } 1208 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback, 1209 this); 1210} 1211 1212class MarkObjectVisitor { 1213 public: 1214 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { 1215 } 1216 1217 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const 1218 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1219 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1220 if (kCheckLocks) { 1221 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1222 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1223 } 1224 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset); 1225 } 1226 1227 private: 1228 MarkSweep* const mark_sweep_; 1229}; 1230 1231// Scans an object reference. Determines the type of the reference 1232// and dispatches to a specialized scanning routine. 1233void MarkSweep::ScanObject(Object* obj) { 1234 MarkObjectVisitor mark_visitor(this); 1235 DelayReferenceReferentVisitor ref_visitor(this); 1236 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1237} 1238 1239void MarkSweep::ProcessMarkStackCallback(void* arg) { 1240 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false); 1241} 1242 1243void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1244 Thread* self = Thread::Current(); 1245 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1246 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1247 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1248 CHECK_GT(chunk_size, 0U); 1249 // Split the current mark stack up into work tasks. 1250 for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) { 1251 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1252 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1253 it += delta; 1254 } 1255 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1256 thread_pool->StartWorkers(self); 1257 thread_pool->Wait(self, true, true); 1258 thread_pool->StopWorkers(self); 1259 mark_stack_->Reset(); 1260 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1261 work_chunks_deleted_.LoadSequentiallyConsistent()) 1262 << " some of the work chunks were leaked"; 1263} 1264 1265// Scan anything that's on the mark stack. 1266void MarkSweep::ProcessMarkStack(bool paused) { 1267 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1268 size_t thread_count = GetThreadCount(paused); 1269 if (kParallelProcessMarkStack && thread_count > 1 && 1270 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1271 ProcessMarkStackParallel(thread_count); 1272 } else { 1273 // TODO: Tune this. 1274 static const size_t kFifoSize = 4; 1275 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 1276 for (;;) { 1277 Object* obj = nullptr; 1278 if (kUseMarkStackPrefetch) { 1279 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1280 Object* mark_stack_obj = mark_stack_->PopBack(); 1281 DCHECK(mark_stack_obj != nullptr); 1282 __builtin_prefetch(mark_stack_obj); 1283 prefetch_fifo.push_back(mark_stack_obj); 1284 } 1285 if (prefetch_fifo.empty()) { 1286 break; 1287 } 1288 obj = prefetch_fifo.front(); 1289 prefetch_fifo.pop_front(); 1290 } else { 1291 if (mark_stack_->IsEmpty()) { 1292 break; 1293 } 1294 obj = mark_stack_->PopBack(); 1295 } 1296 DCHECK(obj != nullptr); 1297 ScanObject(obj); 1298 } 1299 } 1300} 1301 1302inline bool MarkSweep::IsMarked(const Object* object) const { 1303 if (immune_region_.ContainsObject(object)) { 1304 return true; 1305 } 1306 if (current_space_bitmap_->HasAddress(object)) { 1307 return current_space_bitmap_->Test(object); 1308 } 1309 return mark_bitmap_->Test(object); 1310} 1311 1312void MarkSweep::FinishPhase() { 1313 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1314 if (kCountScannedTypes) { 1315 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() 1316 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); 1317 } 1318 if (kCountTasks) { 1319 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1320 } 1321 if (kMeasureOverhead) { 1322 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1323 } 1324 if (kProfileLargeObjects) { 1325 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1326 << " marked " << large_object_mark_.LoadRelaxed(); 1327 } 1328 if (kCountJavaLangRefs) { 1329 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); 1330 } 1331 if (kCountMarkedObjects) { 1332 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1333 << " immune=" << mark_immune_count_.LoadRelaxed() 1334 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1335 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1336 } 1337 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1338 mark_stack_->Reset(); 1339 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1340 heap_->ClearMarkedObjects(); 1341} 1342 1343void MarkSweep::RevokeAllThreadLocalBuffers() { 1344 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1345 // If concurrent, rosalloc thread-local buffers are revoked at the 1346 // thread checkpoint. Bump pointer space thread-local buffers must 1347 // not be in use. 1348 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1349 } else { 1350 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1351 GetHeap()->RevokeAllThreadLocalBuffers(); 1352 } 1353} 1354 1355} // namespace collector 1356} // namespace gc 1357} // namespace art 1358