mark_sweep.cc revision 3e5cf305db800b2989ad57b7cde8fb3cc9fa1b9e
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <functional> 20#include <numeric> 21#include <climits> 22#include <vector> 23 24#include "base/bounded_fifo.h" 25#include "base/logging.h" 26#include "base/macros.h" 27#include "base/mutex-inl.h" 28#include "base/timing_logger.h" 29#include "gc/accounting/card_table-inl.h" 30#include "gc/accounting/heap_bitmap-inl.h" 31#include "gc/accounting/mod_union_table.h" 32#include "gc/accounting/space_bitmap-inl.h" 33#include "gc/heap.h" 34#include "gc/reference_processor.h" 35#include "gc/space/image_space.h" 36#include "gc/space/large_object_space.h" 37#include "gc/space/space-inl.h" 38#include "mark_sweep-inl.h" 39#include "mirror/art_field-inl.h" 40#include "mirror/object-inl.h" 41#include "runtime.h" 42#include "scoped_thread_state_change.h" 43#include "thread-inl.h" 44#include "thread_list.h" 45 46using ::art::mirror::ArtField; 47using ::art::mirror::Class; 48using ::art::mirror::Object; 49using ::art::mirror::ObjectArray; 50 51namespace art { 52namespace gc { 53namespace collector { 54 55// Performance options. 56static constexpr bool kUseRecursiveMark = false; 57static constexpr bool kUseMarkStackPrefetch = true; 58static constexpr size_t kSweepArrayChunkFreeSize = 1024; 59static constexpr bool kPreCleanCards = true; 60 61// Parallelism options. 62static constexpr bool kParallelCardScan = true; 63static constexpr bool kParallelRecursiveMark = true; 64// Don't attempt to parallelize mark stack processing unless the mark stack is at least n 65// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 66// having this can add overhead in ProcessReferences since we may end up doing many calls of 67// ProcessMarkStack with very small mark stacks. 68static constexpr size_t kMinimumParallelMarkStackSize = 128; 69static constexpr bool kParallelProcessMarkStack = true; 70 71// Profiling and information flags. 72static constexpr bool kProfileLargeObjects = false; 73static constexpr bool kMeasureOverhead = false; 74static constexpr bool kCountTasks = false; 75static constexpr bool kCountJavaLangRefs = false; 76static constexpr bool kCountMarkedObjects = false; 77 78// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 79static constexpr bool kCheckLocks = kDebugLocking; 80static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 81 82// If true, revoke the rosalloc thread-local buffers at the 83// checkpoint, as opposed to during the pause. 84static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 85 86void MarkSweep::BindBitmaps() { 87 timings_.StartSplit("BindBitmaps"); 88 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 89 // Mark all of the spaces we never collect as immune. 90 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 91 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 92 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 93 } 94 } 95 timings_.EndSplit(); 96} 97 98MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 99 : GarbageCollector(heap, 100 name_prefix + 101 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 102 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), 103 gc_barrier_(new Barrier(0)), 104 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 105 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { 106} 107 108void MarkSweep::InitializePhase() { 109 TimingLogger::ScopedSplit split("InitializePhase", &timings_); 110 mark_stack_ = heap_->GetMarkStack(); 111 DCHECK(mark_stack_ != nullptr); 112 immune_region_.Reset(); 113 class_count_.StoreRelaxed(0); 114 array_count_.StoreRelaxed(0); 115 other_count_.StoreRelaxed(0); 116 large_object_test_.StoreRelaxed(0); 117 large_object_mark_.StoreRelaxed(0); 118 overhead_time_ .StoreRelaxed(0); 119 work_chunks_created_.StoreRelaxed(0); 120 work_chunks_deleted_.StoreRelaxed(0); 121 reference_count_.StoreRelaxed(0); 122 mark_null_count_.StoreRelaxed(0); 123 mark_immune_count_.StoreRelaxed(0); 124 mark_fastpath_count_.StoreRelaxed(0); 125 mark_slowpath_count_.StoreRelaxed(0); 126 { 127 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 128 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 129 mark_bitmap_ = heap_->GetMarkBitmap(); 130 } 131 if (!clear_soft_references_) { 132 // Always clear soft references if a non-sticky collection. 133 clear_soft_references_ = GetGcType() != collector::kGcTypeSticky; 134 } 135} 136 137void MarkSweep::RunPhases() { 138 Thread* self = Thread::Current(); 139 InitializePhase(); 140 Locks::mutator_lock_->AssertNotHeld(self); 141 if (IsConcurrent()) { 142 GetHeap()->PreGcVerification(this); 143 { 144 ReaderMutexLock mu(self, *Locks::mutator_lock_); 145 MarkingPhase(); 146 } 147 ScopedPause pause(this); 148 GetHeap()->PrePauseRosAllocVerification(this); 149 PausePhase(); 150 RevokeAllThreadLocalBuffers(); 151 } else { 152 ScopedPause pause(this); 153 GetHeap()->PreGcVerificationPaused(this); 154 MarkingPhase(); 155 GetHeap()->PrePauseRosAllocVerification(this); 156 PausePhase(); 157 RevokeAllThreadLocalBuffers(); 158 } 159 { 160 // Sweeping always done concurrently, even for non concurrent mark sweep. 161 ReaderMutexLock mu(self, *Locks::mutator_lock_); 162 ReclaimPhase(); 163 } 164 GetHeap()->PostGcVerification(this); 165 FinishPhase(); 166} 167 168void MarkSweep::ProcessReferences(Thread* self) { 169 TimingLogger::ScopedSplit split("ProcessReferences", &timings_); 170 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 171 GetHeap()->GetReferenceProcessor()->ProcessReferences( 172 true, &timings_, clear_soft_references_, &IsMarkedCallback, &MarkObjectCallback, 173 &ProcessMarkStackCallback, this); 174} 175 176void MarkSweep::PausePhase() { 177 TimingLogger::ScopedSplit split("(Paused)PausePhase", &timings_); 178 Thread* self = Thread::Current(); 179 Locks::mutator_lock_->AssertExclusiveHeld(self); 180 if (IsConcurrent()) { 181 // Handle the dirty objects if we are a concurrent GC. 182 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 183 // Re-mark root set. 184 ReMarkRoots(); 185 // Scan dirty objects, this is only required if we are not doing concurrent GC. 186 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 187 } 188 { 189 TimingLogger::ScopedSplit split("SwapStacks", &timings_); 190 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 191 heap_->SwapStacks(self); 192 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 193 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 194 // stacks and don't want anybody to allocate into the live stack. 195 RevokeAllThreadLocalAllocationStacks(self); 196 } 197 timings_.StartSplit("PreSweepingGcVerification"); 198 heap_->PreSweepingGcVerification(this); 199 timings_.EndSplit(); 200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 201 // weak before we sweep them. Since this new system weak may not be marked, the GC may 202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 203 // reference to a string that is about to be swept. 204 Runtime::Current()->DisallowNewSystemWeaks(); 205 // Enable the reference processing slow path, needs to be done with mutators paused since there 206 // is no lock in the GetReferent fast path. 207 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 208} 209 210void MarkSweep::PreCleanCards() { 211 // Don't do this for non concurrent GCs since they don't have any dirty cards. 212 if (kPreCleanCards && IsConcurrent()) { 213 Thread* self = Thread::Current(); 214 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 215 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 216 heap_->ProcessCards(timings_, false); 217 // The checkpoint root marking is required to avoid a race condition which occurs if the 218 // following happens during a reference write: 219 // 1. mutator dirties the card (write barrier) 220 // 2. GC ages the card (the above ProcessCards call) 221 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 222 // 4. mutator writes the value (corresponding to the write barrier in 1.) 223 // This causes the GC to age the card but not necessarily mark the reference which the mutator 224 // wrote into the object stored in the card. 225 // Having the checkpoint fixes this issue since it ensures that the card mark and the 226 // reference write are visible to the GC before the card is scanned (this is due to locks being 227 // acquired / released in the checkpoint code). 228 // The other roots are also marked to help reduce the pause. 229 MarkRootsCheckpoint(self, false); 230 MarkNonThreadRoots(); 231 MarkConcurrentRoots( 232 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 233 // Process the newly aged cards. 234 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 235 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 236 // in the next GC. 237 } 238} 239 240void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 241 if (kUseThreadLocalAllocationStack) { 242 timings_.NewSplit("RevokeAllThreadLocalAllocationStacks"); 243 Locks::mutator_lock_->AssertExclusiveHeld(self); 244 heap_->RevokeAllThreadLocalAllocationStacks(self); 245 } 246} 247 248void MarkSweep::MarkingPhase() { 249 TimingLogger::ScopedSplit split("MarkingPhase", &timings_); 250 Thread* self = Thread::Current(); 251 252 BindBitmaps(); 253 FindDefaultSpaceBitmap(); 254 255 // Process dirty cards and add dirty cards to mod union tables. 256 heap_->ProcessCards(timings_, false); 257 258 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 259 MarkRoots(self); 260 MarkReachableObjects(); 261 // Pre-clean dirtied cards to reduce pauses. 262 PreCleanCards(); 263} 264 265void MarkSweep::UpdateAndMarkModUnion() { 266 for (const auto& space : heap_->GetContinuousSpaces()) { 267 if (immune_region_.ContainsSpace(space)) { 268 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : 269 "UpdateAndMarkImageModUnionTable"; 270 TimingLogger::ScopedSplit split(name, &timings_); 271 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 272 CHECK(mod_union_table != nullptr); 273 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); 274 } 275 } 276} 277 278void MarkSweep::MarkReachableObjects() { 279 UpdateAndMarkModUnion(); 280 // Recursively mark all the non-image bits set in the mark bitmap. 281 RecursiveMark(); 282} 283 284void MarkSweep::ReclaimPhase() { 285 TimingLogger::ScopedSplit split("ReclaimPhase", &timings_); 286 Thread* self = Thread::Current(); 287 // Process the references concurrently. 288 ProcessReferences(self); 289 SweepSystemWeaks(self); 290 Runtime::Current()->AllowNewSystemWeaks(); 291 { 292 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 293 294 // Reclaim unmarked objects. 295 Sweep(false); 296 297 // Swap the live and mark bitmaps for each space which we modified space. This is an 298 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 299 // bitmaps. 300 timings_.StartSplit("SwapBitmaps"); 301 SwapBitmaps(); 302 timings_.EndSplit(); 303 304 // Unbind the live and mark bitmaps. 305 TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_); 306 GetHeap()->UnBindBitmaps(); 307 } 308} 309 310void MarkSweep::FindDefaultSpaceBitmap() { 311 TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_); 312 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 313 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 314 // We want to have the main space instead of non moving if possible. 315 if (bitmap != nullptr && 316 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 317 current_space_bitmap_ = bitmap; 318 // If we are not the non moving space exit the loop early since this will be good enough. 319 if (space != heap_->GetNonMovingSpace()) { 320 break; 321 } 322 } 323 } 324 if (current_space_bitmap_ == nullptr) { 325 heap_->DumpSpaces(); 326 LOG(FATAL) << "Could not find a default mark bitmap"; 327 } 328} 329 330void MarkSweep::ExpandMarkStack() { 331 ResizeMarkStack(mark_stack_->Capacity() * 2); 332} 333 334void MarkSweep::ResizeMarkStack(size_t new_size) { 335 // Rare case, no need to have Thread::Current be a parameter. 336 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 337 // Someone else acquired the lock and expanded the mark stack before us. 338 return; 339 } 340 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); 341 CHECK_LE(mark_stack_->Size(), new_size); 342 mark_stack_->Resize(new_size); 343 for (const auto& obj : temp) { 344 mark_stack_->PushBack(obj); 345 } 346} 347 348inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { 349 DCHECK(obj != nullptr); 350 if (MarkObjectParallel(obj)) { 351 MutexLock mu(Thread::Current(), mark_stack_lock_); 352 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 353 ExpandMarkStack(); 354 } 355 // The object must be pushed on to the mark stack. 356 mark_stack_->PushBack(obj); 357 } 358} 359 360mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { 361 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 362 mark_sweep->MarkObject(obj); 363 return obj; 364} 365 366void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 367 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr()); 368} 369 370class MarkSweepMarkObjectSlowPath { 371 public: 372 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { 373 } 374 375 void operator()(const Object* obj) const ALWAYS_INLINE { 376 if (kProfileLargeObjects) { 377 // TODO: Differentiate between marking and testing somehow. 378 ++mark_sweep_->large_object_test_; 379 ++mark_sweep_->large_object_mark_; 380 } 381 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 382 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 383 (kIsDebugBuild && !large_object_space->Contains(obj)))) { 384 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 385 LOG(ERROR) << "Attempting see if it's a bad root"; 386 mark_sweep_->VerifyRoots(); 387 LOG(FATAL) << "Can't mark invalid object"; 388 } 389 } 390 391 private: 392 MarkSweep* const mark_sweep_; 393}; 394 395inline void MarkSweep::MarkObjectNonNull(Object* obj) { 396 DCHECK(obj != nullptr); 397 if (kUseBakerOrBrooksReadBarrier) { 398 // Verify all the objects have the correct pointer installed. 399 obj->AssertReadBarrierPointer(); 400 } 401 if (immune_region_.ContainsObject(obj)) { 402 if (kCountMarkedObjects) { 403 ++mark_immune_count_; 404 } 405 DCHECK(mark_bitmap_->Test(obj)); 406 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 407 if (kCountMarkedObjects) { 408 ++mark_fastpath_count_; 409 } 410 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 411 PushOnMarkStack(obj); // This object was not previously marked. 412 } 413 } else { 414 if (kCountMarkedObjects) { 415 ++mark_slowpath_count_; 416 } 417 MarkSweepMarkObjectSlowPath visitor(this); 418 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 419 // will check again. 420 if (!mark_bitmap_->Set(obj, visitor)) { 421 PushOnMarkStack(obj); // Was not already marked, push. 422 } 423 } 424} 425 426inline void MarkSweep::PushOnMarkStack(Object* obj) { 427 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 428 // Lock is not needed but is here anyways to please annotalysis. 429 MutexLock mu(Thread::Current(), mark_stack_lock_); 430 ExpandMarkStack(); 431 } 432 // The object must be pushed on to the mark stack. 433 mark_stack_->PushBack(obj); 434} 435 436inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 437 DCHECK(obj != nullptr); 438 if (kUseBakerOrBrooksReadBarrier) { 439 // Verify all the objects have the correct pointer installed. 440 obj->AssertReadBarrierPointer(); 441 } 442 if (immune_region_.ContainsObject(obj)) { 443 DCHECK(IsMarked(obj)); 444 return false; 445 } 446 // Try to take advantage of locality of references within a space, failing this find the space 447 // the hard way. 448 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 449 if (LIKELY(object_bitmap->HasAddress(obj))) { 450 return !object_bitmap->AtomicTestAndSet(obj); 451 } 452 MarkSweepMarkObjectSlowPath visitor(this); 453 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 454} 455 456// Used to mark objects when processing the mark stack. If an object is null, it is not marked. 457inline void MarkSweep::MarkObject(Object* obj) { 458 if (obj != nullptr) { 459 MarkObjectNonNull(obj); 460 } else if (kCountMarkedObjects) { 461 ++mark_null_count_; 462 } 463} 464 465void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/, 466 RootType /*root_type*/) { 467 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root); 468} 469 470void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/, 471 RootType /*root_type*/) { 472 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root)); 473} 474 475void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/, 476 RootType /*root_type*/) { 477 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root); 478} 479 480void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, 481 const StackVisitor* visitor, RootType root_type) { 482 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type); 483} 484 485void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor, 486 RootType root_type) { 487 // See if the root is on any space bitmap. 488 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 489 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 490 if (!large_object_space->Contains(root)) { 491 LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type; 492 if (visitor != NULL) { 493 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; 494 } 495 } 496 } 497} 498 499void MarkSweep::VerifyRoots() { 500 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); 501} 502 503void MarkSweep::MarkRoots(Thread* self) { 504 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 505 // If we exclusively hold the mutator lock, all threads must be suspended. 506 timings_.StartSplit("MarkRoots"); 507 Runtime::Current()->VisitRoots(MarkRootCallback, this); 508 timings_.EndSplit(); 509 RevokeAllThreadLocalAllocationStacks(self); 510 } else { 511 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 512 // At this point the live stack should no longer have any mutators which push into it. 513 MarkNonThreadRoots(); 514 MarkConcurrentRoots( 515 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 516 } 517} 518 519void MarkSweep::MarkNonThreadRoots() { 520 timings_.StartSplit("MarkNonThreadRoots"); 521 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); 522 timings_.EndSplit(); 523} 524 525void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 526 timings_.StartSplit("MarkConcurrentRoots"); 527 // Visit all runtime roots and clear dirty flags. 528 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags); 529 timings_.EndSplit(); 530} 531 532class ScanObjectVisitor { 533 public: 534 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 535 : mark_sweep_(mark_sweep) {} 536 537 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 538 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 539 if (kCheckLocks) { 540 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 541 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 542 } 543 mark_sweep_->ScanObject(obj); 544 } 545 546 private: 547 MarkSweep* const mark_sweep_; 548}; 549 550class DelayReferenceReferentVisitor { 551 public: 552 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { 553 } 554 555 void operator()(mirror::Class* klass, mirror::Reference* ref) const 556 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 557 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 558 collector_->DelayReferenceReferent(klass, ref); 559 } 560 561 private: 562 MarkSweep* const collector_; 563}; 564 565template <bool kUseFinger = false> 566class MarkStackTask : public Task { 567 public: 568 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 569 Object** mark_stack) 570 : mark_sweep_(mark_sweep), 571 thread_pool_(thread_pool), 572 mark_stack_pos_(mark_stack_size) { 573 // We may have to copy part of an existing mark stack when another mark stack overflows. 574 if (mark_stack_size != 0) { 575 DCHECK(mark_stack != NULL); 576 // TODO: Check performance? 577 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 578 } 579 if (kCountTasks) { 580 ++mark_sweep_->work_chunks_created_; 581 } 582 } 583 584 static const size_t kMaxSize = 1 * KB; 585 586 protected: 587 class MarkObjectParallelVisitor { 588 public: 589 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 590 MarkSweep* mark_sweep) ALWAYS_INLINE 591 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 592 593 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE 594 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 595 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 596 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 597 if (kUseFinger) { 598 android_memory_barrier(); 599 if (reinterpret_cast<uintptr_t>(ref) >= 600 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 601 return; 602 } 603 } 604 chunk_task_->MarkStackPush(ref); 605 } 606 } 607 608 private: 609 MarkStackTask<kUseFinger>* const chunk_task_; 610 MarkSweep* const mark_sweep_; 611 }; 612 613 class ScanObjectParallelVisitor { 614 public: 615 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 616 : chunk_task_(chunk_task) {} 617 618 // No thread safety analysis since multiple threads will use this visitor. 619 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 620 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 621 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 622 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 623 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 624 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 625 } 626 627 private: 628 MarkStackTask<kUseFinger>* const chunk_task_; 629 }; 630 631 virtual ~MarkStackTask() { 632 // Make sure that we have cleared our mark stack. 633 DCHECK_EQ(mark_stack_pos_, 0U); 634 if (kCountTasks) { 635 ++mark_sweep_->work_chunks_deleted_; 636 } 637 } 638 639 MarkSweep* const mark_sweep_; 640 ThreadPool* const thread_pool_; 641 // Thread local mark stack for this task. 642 Object* mark_stack_[kMaxSize]; 643 // Mark stack position. 644 size_t mark_stack_pos_; 645 646 void MarkStackPush(Object* obj) ALWAYS_INLINE { 647 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 648 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 649 mark_stack_pos_ /= 2; 650 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 651 mark_stack_ + mark_stack_pos_); 652 thread_pool_->AddTask(Thread::Current(), task); 653 } 654 DCHECK(obj != nullptr); 655 DCHECK_LT(mark_stack_pos_, kMaxSize); 656 mark_stack_[mark_stack_pos_++] = obj; 657 } 658 659 virtual void Finalize() { 660 delete this; 661 } 662 663 // Scans all of the objects 664 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 665 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 666 ScanObjectParallelVisitor visitor(this); 667 // TODO: Tune this. 668 static const size_t kFifoSize = 4; 669 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 670 for (;;) { 671 Object* obj = nullptr; 672 if (kUseMarkStackPrefetch) { 673 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 674 Object* obj = mark_stack_[--mark_stack_pos_]; 675 DCHECK(obj != nullptr); 676 __builtin_prefetch(obj); 677 prefetch_fifo.push_back(obj); 678 } 679 if (UNLIKELY(prefetch_fifo.empty())) { 680 break; 681 } 682 obj = prefetch_fifo.front(); 683 prefetch_fifo.pop_front(); 684 } else { 685 if (UNLIKELY(mark_stack_pos_ == 0)) { 686 break; 687 } 688 obj = mark_stack_[--mark_stack_pos_]; 689 } 690 DCHECK(obj != nullptr); 691 visitor(obj); 692 } 693 } 694}; 695 696class CardScanTask : public MarkStackTask<false> { 697 public: 698 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 699 accounting::ContinuousSpaceBitmap* bitmap, 700 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, 701 Object** mark_stack_obj) 702 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 703 bitmap_(bitmap), 704 begin_(begin), 705 end_(end), 706 minimum_age_(minimum_age) { 707 } 708 709 protected: 710 accounting::ContinuousSpaceBitmap* const bitmap_; 711 byte* const begin_; 712 byte* const end_; 713 const byte minimum_age_; 714 715 virtual void Finalize() { 716 delete this; 717 } 718 719 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 720 ScanObjectParallelVisitor visitor(this); 721 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 722 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); 723 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 724 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 725 // Finish by emptying our local mark stack. 726 MarkStackTask::Run(self); 727 } 728}; 729 730size_t MarkSweep::GetThreadCount(bool paused) const { 731 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 732 return 1; 733 } 734 if (paused) { 735 return heap_->GetParallelGCThreadCount() + 1; 736 } else { 737 return heap_->GetConcGCThreadCount() + 1; 738 } 739} 740 741void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { 742 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 743 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 744 size_t thread_count = GetThreadCount(paused); 745 // The parallel version with only one thread is faster for card scanning, TODO: fix. 746 if (kParallelCardScan && thread_count > 1) { 747 Thread* self = Thread::Current(); 748 // Can't have a different split for each space since multiple spaces can have their cards being 749 // scanned at the same time. 750 timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects"); 751 // Try to take some of the mark stack since we can pass this off to the worker tasks. 752 Object** mark_stack_begin = mark_stack_->Begin(); 753 Object** mark_stack_end = mark_stack_->End(); 754 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 755 // Estimated number of work tasks we will create. 756 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 757 DCHECK_NE(mark_stack_tasks, 0U); 758 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 759 mark_stack_size / mark_stack_tasks + 1); 760 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 761 if (space->GetMarkBitmap() == nullptr) { 762 continue; 763 } 764 byte* card_begin = space->Begin(); 765 byte* card_end = space->End(); 766 // Align up the end address. For example, the image space's end 767 // may not be card-size-aligned. 768 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 769 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); 770 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); 771 // Calculate how many bytes of heap we will scan, 772 const size_t address_range = card_end - card_begin; 773 // Calculate how much address range each task gets. 774 const size_t card_delta = RoundUp(address_range / thread_count + 1, 775 accounting::CardTable::kCardSize); 776 // Create the worker tasks for this space. 777 while (card_begin != card_end) { 778 // Add a range of cards. 779 size_t addr_remaining = card_end - card_begin; 780 size_t card_increment = std::min(card_delta, addr_remaining); 781 // Take from the back of the mark stack. 782 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 783 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 784 mark_stack_end -= mark_stack_increment; 785 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 786 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 787 // Add the new task to the thread pool. 788 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 789 card_begin + card_increment, minimum_age, 790 mark_stack_increment, mark_stack_end); 791 thread_pool->AddTask(self, task); 792 card_begin += card_increment; 793 } 794 } 795 796 // Note: the card scan below may dirty new cards (and scan them) 797 // as a side effect when a Reference object is encountered and 798 // queued during the marking. See b/11465268. 799 thread_pool->SetMaxActiveWorkers(thread_count - 1); 800 thread_pool->StartWorkers(self); 801 thread_pool->Wait(self, true, true); 802 thread_pool->StopWorkers(self); 803 timings_.EndSplit(); 804 } else { 805 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 806 if (space->GetMarkBitmap() != nullptr) { 807 // Image spaces are handled properly since live == marked for them. 808 switch (space->GetGcRetentionPolicy()) { 809 case space::kGcRetentionPolicyNeverCollect: 810 timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" : 811 "ScanGrayImageSpaceObjects"); 812 break; 813 case space::kGcRetentionPolicyFullCollect: 814 timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" : 815 "ScanGrayZygoteSpaceObjects"); 816 break; 817 case space::kGcRetentionPolicyAlwaysCollect: 818 timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" : 819 "ScanGrayAllocSpaceObjects"); 820 break; 821 } 822 ScanObjectVisitor visitor(this); 823 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age); 824 timings_.EndSplit(); 825 } 826 } 827 } 828} 829 830class RecursiveMarkTask : public MarkStackTask<false> { 831 public: 832 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 833 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 834 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), 835 bitmap_(bitmap), 836 begin_(begin), 837 end_(end) { 838 } 839 840 protected: 841 accounting::ContinuousSpaceBitmap* const bitmap_; 842 const uintptr_t begin_; 843 const uintptr_t end_; 844 845 virtual void Finalize() { 846 delete this; 847 } 848 849 // Scans all of the objects 850 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 851 ScanObjectParallelVisitor visitor(this); 852 bitmap_->VisitMarkedRange(begin_, end_, visitor); 853 // Finish by emptying our local mark stack. 854 MarkStackTask::Run(self); 855 } 856}; 857 858// Populates the mark stack based on the set of marked objects and 859// recursively marks until the mark stack is emptied. 860void MarkSweep::RecursiveMark() { 861 TimingLogger::ScopedSplit split("RecursiveMark", &timings_); 862 // RecursiveMark will build the lists of known instances of the Reference classes. See 863 // DelayReferenceReferent for details. 864 if (kUseRecursiveMark) { 865 const bool partial = GetGcType() == kGcTypePartial; 866 ScanObjectVisitor scan_visitor(this); 867 auto* self = Thread::Current(); 868 ThreadPool* thread_pool = heap_->GetThreadPool(); 869 size_t thread_count = GetThreadCount(false); 870 const bool parallel = kParallelRecursiveMark && thread_count > 1; 871 mark_stack_->Reset(); 872 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 873 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 874 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 875 current_space_bitmap_ = space->GetMarkBitmap(); 876 if (current_space_bitmap_ == nullptr) { 877 continue; 878 } 879 if (parallel) { 880 // We will use the mark stack the future. 881 // CHECK(mark_stack_->IsEmpty()); 882 // This function does not handle heap end increasing, so we must use the space end. 883 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 884 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 885 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 886 887 // Create a few worker tasks. 888 const size_t n = thread_count * 2; 889 while (begin != end) { 890 uintptr_t start = begin; 891 uintptr_t delta = (end - begin) / n; 892 delta = RoundUp(delta, KB); 893 if (delta < 16 * KB) delta = end - begin; 894 begin += delta; 895 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, 896 begin); 897 thread_pool->AddTask(self, task); 898 } 899 thread_pool->SetMaxActiveWorkers(thread_count - 1); 900 thread_pool->StartWorkers(self); 901 thread_pool->Wait(self, true, true); 902 thread_pool->StopWorkers(self); 903 } else { 904 // This function does not handle heap end increasing, so we must use the space end. 905 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 906 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 907 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 908 } 909 } 910 } 911 } 912 ProcessMarkStack(false); 913} 914 915mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { 916 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { 917 return object; 918 } 919 return nullptr; 920} 921 922void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { 923 ScanGrayObjects(paused, minimum_age); 924 ProcessMarkStack(paused); 925} 926 927void MarkSweep::ReMarkRoots() { 928 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 929 timings_.StartSplit("(Paused)ReMarkRoots"); 930 Runtime::Current()->VisitRoots( 931 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots | 932 kVisitRootFlagStopLoggingNewRoots | 933 kVisitRootFlagClearRootLog)); 934 timings_.EndSplit(); 935 if (kVerifyRootsMarked) { 936 timings_.StartSplit("(Paused)VerifyRoots"); 937 Runtime::Current()->VisitRoots(VerifyRootMarked, this); 938 timings_.EndSplit(); 939 } 940} 941 942void MarkSweep::SweepSystemWeaks(Thread* self) { 943 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 944 timings_.StartSplit("SweepSystemWeaks"); 945 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); 946 timings_.EndSplit(); 947} 948 949mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { 950 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 951 // We don't actually want to sweep the object, so lets return "marked" 952 return obj; 953} 954 955void MarkSweep::VerifyIsLive(const Object* obj) { 956 if (!heap_->GetLiveBitmap()->Test(obj)) { 957 if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) == 958 heap_->allocation_stack_->End()) { 959 // Object not found! 960 heap_->DumpSpaces(); 961 LOG(FATAL) << "Found dead object " << obj; 962 } 963 } 964} 965 966void MarkSweep::VerifySystemWeaks() { 967 // Verify system weaks, uses a special object visitor which returns the input object. 968 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); 969} 970 971class CheckpointMarkThreadRoots : public Closure { 972 public: 973 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 974 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 975 : mark_sweep_(mark_sweep), 976 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 977 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 978 } 979 980 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 981 ATRACE_BEGIN("Marking thread roots"); 982 // Note: self is not necessarily equal to thread since thread may be suspended. 983 Thread* self = Thread::Current(); 984 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 985 << thread->GetState() << " thread " << thread << " self " << self; 986 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 987 ATRACE_END(); 988 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 989 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 990 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 991 ATRACE_END(); 992 } 993 mark_sweep_->GetBarrier().Pass(self); 994 } 995 996 private: 997 MarkSweep* const mark_sweep_; 998 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 999}; 1000 1001void MarkSweep::MarkRootsCheckpoint(Thread* self, 1002 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1003 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 1004 timings_.StartSplit("MarkRootsCheckpoint"); 1005 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1006 // Request the check point is run on all threads returning a count of the threads that must 1007 // run through the barrier including self. 1008 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 1009 // Release locks then wait for all mutator threads to pass the barrier. 1010 // TODO: optimize to not release locks when there are no threads to wait for. 1011 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1012 Locks::mutator_lock_->SharedUnlock(self); 1013 { 1014 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1015 gc_barrier_->Increment(self, barrier_count); 1016 } 1017 Locks::mutator_lock_->SharedLock(self); 1018 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1019 timings_.EndSplit(); 1020} 1021 1022void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1023 timings_.StartSplit("SweepArray"); 1024 Thread* self = Thread::Current(); 1025 mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize]; 1026 size_t chunk_free_pos = 0; 1027 size_t freed_bytes = 0; 1028 size_t freed_large_object_bytes = 0; 1029 size_t freed_objects = 0; 1030 size_t freed_large_objects = 0; 1031 // How many objects are left in the array, modified after each space is swept. 1032 Object** objects = allocations->Begin(); 1033 size_t count = allocations->Size(); 1034 // Change the order to ensure that the non-moving space last swept as an optimization. 1035 std::vector<space::ContinuousSpace*> sweep_spaces; 1036 space::ContinuousSpace* non_moving_space = nullptr; 1037 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1038 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1039 space->GetLiveBitmap() != nullptr) { 1040 if (space == heap_->GetNonMovingSpace()) { 1041 non_moving_space = space; 1042 } else { 1043 sweep_spaces.push_back(space); 1044 } 1045 } 1046 } 1047 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1048 // the other alloc spaces as an optimization. 1049 if (non_moving_space != nullptr) { 1050 sweep_spaces.push_back(non_moving_space); 1051 } 1052 // Start by sweeping the continuous spaces. 1053 for (space::ContinuousSpace* space : sweep_spaces) { 1054 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1055 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1056 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1057 if (swap_bitmaps) { 1058 std::swap(live_bitmap, mark_bitmap); 1059 } 1060 Object** out = objects; 1061 for (size_t i = 0; i < count; ++i) { 1062 Object* obj = objects[i]; 1063 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1064 continue; 1065 } 1066 if (space->HasAddress(obj)) { 1067 // This object is in the space, remove it from the array and add it to the sweep buffer 1068 // if needed. 1069 if (!mark_bitmap->Test(obj)) { 1070 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1071 timings_.StartSplit("FreeList"); 1072 freed_objects += chunk_free_pos; 1073 freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1074 timings_.EndSplit(); 1075 chunk_free_pos = 0; 1076 } 1077 chunk_free_buffer[chunk_free_pos++] = obj; 1078 } 1079 } else { 1080 *(out++) = obj; 1081 } 1082 } 1083 if (chunk_free_pos > 0) { 1084 timings_.StartSplit("FreeList"); 1085 freed_objects += chunk_free_pos; 1086 freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1087 timings_.EndSplit(); 1088 chunk_free_pos = 0; 1089 } 1090 // All of the references which space contained are no longer in the allocation stack, update 1091 // the count. 1092 count = out - objects; 1093 } 1094 // Handle the large object space. 1095 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1096 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1097 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1098 if (swap_bitmaps) { 1099 std::swap(large_live_objects, large_mark_objects); 1100 } 1101 for (size_t i = 0; i < count; ++i) { 1102 Object* obj = objects[i]; 1103 // Handle large objects. 1104 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1105 continue; 1106 } 1107 if (!large_mark_objects->Test(obj)) { 1108 ++freed_large_objects; 1109 freed_large_object_bytes += large_object_space->Free(self, obj); 1110 } 1111 } 1112 timings_.EndSplit(); 1113 1114 timings_.StartSplit("RecordFree"); 1115 VLOG(heap) << "Freed " << freed_objects << "/" << count << " objects with size " 1116 << PrettySize(freed_bytes); 1117 RecordFree(freed_objects, freed_bytes); 1118 RecordFreeLargeObjects(freed_large_objects, freed_large_object_bytes); 1119 timings_.EndSplit(); 1120 1121 timings_.StartSplit("ResetStack"); 1122 allocations->Reset(); 1123 timings_.EndSplit(); 1124} 1125 1126void MarkSweep::Sweep(bool swap_bitmaps) { 1127 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1128 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1129 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1130 // knowing that new allocations won't be marked as live. 1131 timings_.StartSplit("MarkStackAsLive"); 1132 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1133 heap_->MarkAllocStackAsLive(live_stack); 1134 live_stack->Reset(); 1135 timings_.EndSplit(); 1136 1137 DCHECK(mark_stack_->IsEmpty()); 1138 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1139 if (space->IsContinuousMemMapAllocSpace()) { 1140 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1141 TimingLogger::ScopedSplit split( 1142 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_); 1143 size_t freed_objects = 0; 1144 size_t freed_bytes = 0; 1145 alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes); 1146 RecordFree(freed_objects, freed_bytes); 1147 } 1148 } 1149 SweepLargeObjects(swap_bitmaps); 1150} 1151 1152void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1153 TimingLogger::ScopedSplit split("SweepLargeObjects", &timings_); 1154 size_t freed_objects = 0; 1155 size_t freed_bytes = 0; 1156 heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes); 1157 RecordFreeLargeObjects(freed_objects, freed_bytes); 1158} 1159 1160// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1161// marked, put it on the appropriate list in the heap for later processing. 1162void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1163 DCHECK(klass != nullptr); 1164 if (kCountJavaLangRefs) { 1165 ++reference_count_; 1166 } 1167 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, IsMarkedCallback, this); 1168} 1169 1170class MarkObjectVisitor { 1171 public: 1172 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { 1173 } 1174 1175 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const 1176 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1177 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1178 if (kCheckLocks) { 1179 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1180 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1181 } 1182 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset)); 1183 } 1184 1185 private: 1186 MarkSweep* const mark_sweep_; 1187}; 1188 1189// Scans an object reference. Determines the type of the reference 1190// and dispatches to a specialized scanning routine. 1191void MarkSweep::ScanObject(Object* obj) { 1192 MarkObjectVisitor mark_visitor(this); 1193 DelayReferenceReferentVisitor ref_visitor(this); 1194 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1195} 1196 1197void MarkSweep::ProcessMarkStackCallback(void* arg) { 1198 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false); 1199} 1200 1201void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1202 Thread* self = Thread::Current(); 1203 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1204 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1205 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1206 CHECK_GT(chunk_size, 0U); 1207 // Split the current mark stack up into work tasks. 1208 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { 1209 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1210 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1211 it += delta; 1212 } 1213 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1214 thread_pool->StartWorkers(self); 1215 thread_pool->Wait(self, true, true); 1216 thread_pool->StopWorkers(self); 1217 mark_stack_->Reset(); 1218 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1219 work_chunks_deleted_.LoadSequentiallyConsistent()) 1220 << " some of the work chunks were leaked"; 1221} 1222 1223// Scan anything that's on the mark stack. 1224void MarkSweep::ProcessMarkStack(bool paused) { 1225 timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack"); 1226 size_t thread_count = GetThreadCount(paused); 1227 if (kParallelProcessMarkStack && thread_count > 1 && 1228 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1229 ProcessMarkStackParallel(thread_count); 1230 } else { 1231 // TODO: Tune this. 1232 static const size_t kFifoSize = 4; 1233 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 1234 for (;;) { 1235 Object* obj = NULL; 1236 if (kUseMarkStackPrefetch) { 1237 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1238 Object* obj = mark_stack_->PopBack(); 1239 DCHECK(obj != NULL); 1240 __builtin_prefetch(obj); 1241 prefetch_fifo.push_back(obj); 1242 } 1243 if (prefetch_fifo.empty()) { 1244 break; 1245 } 1246 obj = prefetch_fifo.front(); 1247 prefetch_fifo.pop_front(); 1248 } else { 1249 if (mark_stack_->IsEmpty()) { 1250 break; 1251 } 1252 obj = mark_stack_->PopBack(); 1253 } 1254 DCHECK(obj != nullptr); 1255 ScanObject(obj); 1256 } 1257 } 1258 timings_.EndSplit(); 1259} 1260 1261inline bool MarkSweep::IsMarked(const Object* object) const 1262 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1263 if (immune_region_.ContainsObject(object)) { 1264 return true; 1265 } 1266 if (current_space_bitmap_->HasAddress(object)) { 1267 return current_space_bitmap_->Test(object); 1268 } 1269 return mark_bitmap_->Test(object); 1270} 1271 1272void MarkSweep::FinishPhase() { 1273 TimingLogger::ScopedSplit split("FinishPhase", &timings_); 1274 if (kCountScannedTypes) { 1275 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() 1276 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); 1277 } 1278 if (kCountTasks) { 1279 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1280 } 1281 if (kMeasureOverhead) { 1282 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1283 } 1284 if (kProfileLargeObjects) { 1285 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1286 << " marked " << large_object_mark_.LoadRelaxed(); 1287 } 1288 if (kCountJavaLangRefs) { 1289 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); 1290 } 1291 if (kCountMarkedObjects) { 1292 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1293 << " immune=" << mark_immune_count_.LoadRelaxed() 1294 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1295 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1296 } 1297 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1298 mark_stack_->Reset(); 1299 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1300 heap_->ClearMarkedObjects(); 1301} 1302 1303void MarkSweep::RevokeAllThreadLocalBuffers() { 1304 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1305 // If concurrent, rosalloc thread-local buffers are revoked at the 1306 // thread checkpoint. Bump pointer space thread-local buffers must 1307 // not be in use. 1308 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1309 } else { 1310 timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers"); 1311 GetHeap()->RevokeAllThreadLocalBuffers(); 1312 timings_.EndSplit(); 1313 } 1314} 1315 1316} // namespace collector 1317} // namespace gc 1318} // namespace art 1319