mark_sweep.cc revision 542451cc546779f5c67840e105c51205a1b0a8fd
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <atomic> 20#include <functional> 21#include <numeric> 22#include <climits> 23#include <vector> 24 25#include "base/bounded_fifo.h" 26#include "base/enums.h" 27#include "base/logging.h" 28#include "base/macros.h" 29#include "base/mutex-inl.h" 30#include "base/systrace.h" 31#include "base/time_utils.h" 32#include "base/timing_logger.h" 33#include "gc/accounting/card_table-inl.h" 34#include "gc/accounting/heap_bitmap-inl.h" 35#include "gc/accounting/mod_union_table.h" 36#include "gc/accounting/space_bitmap-inl.h" 37#include "gc/heap.h" 38#include "gc/reference_processor.h" 39#include "gc/space/large_object_space.h" 40#include "gc/space/space-inl.h" 41#include "mark_sweep-inl.h" 42#include "mirror/object-inl.h" 43#include "runtime.h" 44#include "scoped_thread_state_change.h" 45#include "thread-inl.h" 46#include "thread_list.h" 47 48namespace art { 49namespace gc { 50namespace collector { 51 52// Performance options. 53static constexpr bool kUseRecursiveMark = false; 54static constexpr bool kUseMarkStackPrefetch = true; 55static constexpr size_t kSweepArrayChunkFreeSize = 1024; 56static constexpr bool kPreCleanCards = true; 57 58// Parallelism options. 59static constexpr bool kParallelCardScan = true; 60static constexpr bool kParallelRecursiveMark = true; 61// Don't attempt to parallelize mark stack processing unless the mark stack is at least n 62// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 63// having this can add overhead in ProcessReferences since we may end up doing many calls of 64// ProcessMarkStack with very small mark stacks. 65static constexpr size_t kMinimumParallelMarkStackSize = 128; 66static constexpr bool kParallelProcessMarkStack = true; 67 68// Profiling and information flags. 69static constexpr bool kProfileLargeObjects = false; 70static constexpr bool kMeasureOverhead = false; 71static constexpr bool kCountTasks = false; 72static constexpr bool kCountMarkedObjects = false; 73 74// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 75static constexpr bool kCheckLocks = kDebugLocking; 76static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 77 78// If true, revoke the rosalloc thread-local buffers at the 79// checkpoint, as opposed to during the pause. 80static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 81 82void MarkSweep::BindBitmaps() { 83 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 84 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 85 // Mark all of the spaces we never collect as immune. 86 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 87 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 88 immune_spaces_.AddSpace(space); 89 } 90 } 91} 92 93MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 94 : GarbageCollector(heap, 95 name_prefix + 96 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 97 current_space_bitmap_(nullptr), 98 mark_bitmap_(nullptr), 99 mark_stack_(nullptr), 100 gc_barrier_(new Barrier(0)), 101 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 102 is_concurrent_(is_concurrent), 103 live_stack_freeze_size_(0) { 104 std::string error_msg; 105 MemMap* mem_map = MemMap::MapAnonymous( 106 "mark sweep sweep array free buffer", nullptr, 107 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 108 PROT_READ | PROT_WRITE, false, false, &error_msg); 109 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 110 sweep_array_free_buffer_mem_map_.reset(mem_map); 111} 112 113void MarkSweep::InitializePhase() { 114 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 115 mark_stack_ = heap_->GetMarkStack(); 116 DCHECK(mark_stack_ != nullptr); 117 immune_spaces_.Reset(); 118 no_reference_class_count_.StoreRelaxed(0); 119 normal_count_.StoreRelaxed(0); 120 class_count_.StoreRelaxed(0); 121 object_array_count_.StoreRelaxed(0); 122 other_count_.StoreRelaxed(0); 123 reference_count_.StoreRelaxed(0); 124 large_object_test_.StoreRelaxed(0); 125 large_object_mark_.StoreRelaxed(0); 126 overhead_time_ .StoreRelaxed(0); 127 work_chunks_created_.StoreRelaxed(0); 128 work_chunks_deleted_.StoreRelaxed(0); 129 mark_null_count_.StoreRelaxed(0); 130 mark_immune_count_.StoreRelaxed(0); 131 mark_fastpath_count_.StoreRelaxed(0); 132 mark_slowpath_count_.StoreRelaxed(0); 133 { 134 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 135 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 136 mark_bitmap_ = heap_->GetMarkBitmap(); 137 } 138 if (!GetCurrentIteration()->GetClearSoftReferences()) { 139 // Always clear soft references if a non-sticky collection. 140 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 141 } 142} 143 144void MarkSweep::RunPhases() { 145 Thread* self = Thread::Current(); 146 InitializePhase(); 147 Locks::mutator_lock_->AssertNotHeld(self); 148 if (IsConcurrent()) { 149 GetHeap()->PreGcVerification(this); 150 { 151 ReaderMutexLock mu(self, *Locks::mutator_lock_); 152 MarkingPhase(); 153 } 154 ScopedPause pause(this); 155 GetHeap()->PrePauseRosAllocVerification(this); 156 PausePhase(); 157 RevokeAllThreadLocalBuffers(); 158 } else { 159 ScopedPause pause(this); 160 GetHeap()->PreGcVerificationPaused(this); 161 MarkingPhase(); 162 GetHeap()->PrePauseRosAllocVerification(this); 163 PausePhase(); 164 RevokeAllThreadLocalBuffers(); 165 } 166 { 167 // Sweeping always done concurrently, even for non concurrent mark sweep. 168 ReaderMutexLock mu(self, *Locks::mutator_lock_); 169 ReclaimPhase(); 170 } 171 GetHeap()->PostGcVerification(this); 172 FinishPhase(); 173} 174 175void MarkSweep::ProcessReferences(Thread* self) { 176 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 177 GetHeap()->GetReferenceProcessor()->ProcessReferences( 178 true, 179 GetTimings(), 180 GetCurrentIteration()->GetClearSoftReferences(), 181 this); 182} 183 184void MarkSweep::PausePhase() { 185 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 186 Thread* self = Thread::Current(); 187 Locks::mutator_lock_->AssertExclusiveHeld(self); 188 if (IsConcurrent()) { 189 // Handle the dirty objects if we are a concurrent GC. 190 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 191 // Re-mark root set. 192 ReMarkRoots(); 193 // Scan dirty objects, this is only required if we are not doing concurrent GC. 194 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 195 } 196 { 197 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 198 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 199 heap_->SwapStacks(); 200 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 201 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 202 // stacks and don't want anybody to allocate into the live stack. 203 RevokeAllThreadLocalAllocationStacks(self); 204 } 205 heap_->PreSweepingGcVerification(this); 206 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 207 // weak before we sweep them. Since this new system weak may not be marked, the GC may 208 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 209 // reference to a string that is about to be swept. 210 Runtime::Current()->DisallowNewSystemWeaks(); 211 // Enable the reference processing slow path, needs to be done with mutators paused since there 212 // is no lock in the GetReferent fast path. 213 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 214} 215 216void MarkSweep::PreCleanCards() { 217 // Don't do this for non concurrent GCs since they don't have any dirty cards. 218 if (kPreCleanCards && IsConcurrent()) { 219 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 220 Thread* self = Thread::Current(); 221 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 222 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 223 heap_->ProcessCards(GetTimings(), false, true, false); 224 // The checkpoint root marking is required to avoid a race condition which occurs if the 225 // following happens during a reference write: 226 // 1. mutator dirties the card (write barrier) 227 // 2. GC ages the card (the above ProcessCards call) 228 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 229 // 4. mutator writes the value (corresponding to the write barrier in 1.) 230 // This causes the GC to age the card but not necessarily mark the reference which the mutator 231 // wrote into the object stored in the card. 232 // Having the checkpoint fixes this issue since it ensures that the card mark and the 233 // reference write are visible to the GC before the card is scanned (this is due to locks being 234 // acquired / released in the checkpoint code). 235 // The other roots are also marked to help reduce the pause. 236 MarkRootsCheckpoint(self, false); 237 MarkNonThreadRoots(); 238 MarkConcurrentRoots( 239 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 240 // Process the newly aged cards. 241 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 242 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 243 // in the next GC. 244 } 245} 246 247void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 248 if (kUseThreadLocalAllocationStack) { 249 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 250 Locks::mutator_lock_->AssertExclusiveHeld(self); 251 heap_->RevokeAllThreadLocalAllocationStacks(self); 252 } 253} 254 255void MarkSweep::MarkingPhase() { 256 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 257 Thread* self = Thread::Current(); 258 BindBitmaps(); 259 FindDefaultSpaceBitmap(); 260 // Process dirty cards and add dirty cards to mod union tables. 261 // If the GC type is non sticky, then we just clear the cards instead of ageing them. 262 heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky); 263 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 264 MarkRoots(self); 265 MarkReachableObjects(); 266 // Pre-clean dirtied cards to reduce pauses. 267 PreCleanCards(); 268} 269 270class MarkSweep::ScanObjectVisitor { 271 public: 272 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 273 : mark_sweep_(mark_sweep) {} 274 275 void operator()(mirror::Object* obj) const 276 ALWAYS_INLINE 277 REQUIRES(Locks::heap_bitmap_lock_) 278 SHARED_REQUIRES(Locks::mutator_lock_) { 279 if (kCheckLocks) { 280 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 281 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 282 } 283 mark_sweep_->ScanObject(obj); 284 } 285 286 private: 287 MarkSweep* const mark_sweep_; 288}; 289 290void MarkSweep::UpdateAndMarkModUnion() { 291 for (const auto& space : immune_spaces_.GetSpaces()) { 292 const char* name = space->IsZygoteSpace() 293 ? "UpdateAndMarkZygoteModUnionTable" 294 : "UpdateAndMarkImageModUnionTable"; 295 DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space; 296 TimingLogger::ScopedTiming t(name, GetTimings()); 297 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 298 if (mod_union_table != nullptr) { 299 mod_union_table->UpdateAndMarkReferences(this); 300 } else { 301 // No mod-union table, scan all the live bits. This can only occur for app images. 302 space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()), 303 reinterpret_cast<uintptr_t>(space->End()), 304 ScanObjectVisitor(this)); 305 } 306 } 307} 308 309void MarkSweep::MarkReachableObjects() { 310 UpdateAndMarkModUnion(); 311 // Recursively mark all the non-image bits set in the mark bitmap. 312 RecursiveMark(); 313} 314 315void MarkSweep::ReclaimPhase() { 316 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 317 Thread* const self = Thread::Current(); 318 // Process the references concurrently. 319 ProcessReferences(self); 320 SweepSystemWeaks(self); 321 Runtime* const runtime = Runtime::Current(); 322 runtime->AllowNewSystemWeaks(); 323 // Clean up class loaders after system weaks are swept since that is how we know if class 324 // unloading occurred. 325 runtime->GetClassLinker()->CleanupClassLoaders(); 326 { 327 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 328 GetHeap()->RecordFreeRevoke(); 329 // Reclaim unmarked objects. 330 Sweep(false); 331 // Swap the live and mark bitmaps for each space which we modified space. This is an 332 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 333 // bitmaps. 334 SwapBitmaps(); 335 // Unbind the live and mark bitmaps. 336 GetHeap()->UnBindBitmaps(); 337 } 338} 339 340void MarkSweep::FindDefaultSpaceBitmap() { 341 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 342 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 343 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 344 // We want to have the main space instead of non moving if possible. 345 if (bitmap != nullptr && 346 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 347 current_space_bitmap_ = bitmap; 348 // If we are not the non moving space exit the loop early since this will be good enough. 349 if (space != heap_->GetNonMovingSpace()) { 350 break; 351 } 352 } 353 } 354 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n" 355 << heap_->DumpSpaces(); 356} 357 358void MarkSweep::ExpandMarkStack() { 359 ResizeMarkStack(mark_stack_->Capacity() * 2); 360} 361 362void MarkSweep::ResizeMarkStack(size_t new_size) { 363 // Rare case, no need to have Thread::Current be a parameter. 364 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 365 // Someone else acquired the lock and expanded the mark stack before us. 366 return; 367 } 368 std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End()); 369 CHECK_LE(mark_stack_->Size(), new_size); 370 mark_stack_->Resize(new_size); 371 for (auto& obj : temp) { 372 mark_stack_->PushBack(obj.AsMirrorPtr()); 373 } 374} 375 376mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) { 377 MarkObject(obj, nullptr, MemberOffset(0)); 378 return obj; 379} 380 381inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) { 382 DCHECK(obj != nullptr); 383 if (MarkObjectParallel(obj)) { 384 MutexLock mu(Thread::Current(), mark_stack_lock_); 385 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 386 ExpandMarkStack(); 387 } 388 // The object must be pushed on to the mark stack. 389 mark_stack_->PushBack(obj); 390 } 391} 392 393bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) { 394 return IsMarked(ref->AsMirrorPtr()); 395} 396 397class MarkSweep::MarkObjectSlowPath { 398 public: 399 explicit MarkObjectSlowPath(MarkSweep* mark_sweep, 400 mirror::Object* holder = nullptr, 401 MemberOffset offset = MemberOffset(0)) 402 : mark_sweep_(mark_sweep), 403 holder_(holder), 404 offset_(offset) {} 405 406 void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS { 407 if (kProfileLargeObjects) { 408 // TODO: Differentiate between marking and testing somehow. 409 ++mark_sweep_->large_object_test_; 410 ++mark_sweep_->large_object_mark_; 411 } 412 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 413 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 414 (kIsDebugBuild && large_object_space != nullptr && 415 !large_object_space->Contains(obj)))) { 416 LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces"; 417 if (holder_ != nullptr) { 418 size_t holder_size = holder_->SizeOf(); 419 ArtField* field = holder_->FindFieldByOffset(offset_); 420 LOG(INTERNAL_FATAL) << "Field info: " 421 << " holder=" << holder_ 422 << " holder is " 423 << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_) 424 ? "alive" : "dead") 425 << " holder_size=" << holder_size 426 << " holder_type=" << PrettyTypeOf(holder_) 427 << " offset=" << offset_.Uint32Value() 428 << " field=" << (field != nullptr ? field->GetName() : "nullptr") 429 << " field_type=" 430 << (field != nullptr ? field->GetTypeDescriptor() : "") 431 << " first_ref_field_offset=" 432 << (holder_->IsClass() 433 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset( 434 kRuntimePointerSize) 435 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset()) 436 << " num_of_ref_fields=" 437 << (holder_->IsClass() 438 ? holder_->AsClass()->NumReferenceStaticFields() 439 : holder_->GetClass()->NumReferenceInstanceFields()) 440 << "\n"; 441 // Print the memory content of the holder. 442 for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) { 443 uint32_t* p = reinterpret_cast<uint32_t*>(holder_); 444 LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = " 445 << std::hex << p[i]; 446 } 447 } 448 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL); 449 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true); 450 LOG(INTERNAL_FATAL) << "Attempting see if it's a bad thread root\n"; 451 mark_sweep_->VerifySuspendedThreadRoots(); 452 LOG(FATAL) << "Can't mark invalid object"; 453 } 454 } 455 456 private: 457 MarkSweep* const mark_sweep_; 458 mirror::Object* const holder_; 459 MemberOffset offset_; 460}; 461 462inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj, 463 mirror::Object* holder, 464 MemberOffset offset) { 465 DCHECK(obj != nullptr); 466 if (kUseBakerOrBrooksReadBarrier) { 467 // Verify all the objects have the correct pointer installed. 468 obj->AssertReadBarrierPointer(); 469 } 470 if (immune_spaces_.IsInImmuneRegion(obj)) { 471 if (kCountMarkedObjects) { 472 ++mark_immune_count_; 473 } 474 DCHECK(mark_bitmap_->Test(obj)); 475 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 476 if (kCountMarkedObjects) { 477 ++mark_fastpath_count_; 478 } 479 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 480 PushOnMarkStack(obj); // This object was not previously marked. 481 } 482 } else { 483 if (kCountMarkedObjects) { 484 ++mark_slowpath_count_; 485 } 486 MarkObjectSlowPath visitor(this, holder, offset); 487 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 488 // will check again. 489 if (!mark_bitmap_->Set(obj, visitor)) { 490 PushOnMarkStack(obj); // Was not already marked, push. 491 } 492 } 493} 494 495inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) { 496 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 497 // Lock is not needed but is here anyways to please annotalysis. 498 MutexLock mu(Thread::Current(), mark_stack_lock_); 499 ExpandMarkStack(); 500 } 501 // The object must be pushed on to the mark stack. 502 mark_stack_->PushBack(obj); 503} 504 505inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) { 506 DCHECK(obj != nullptr); 507 if (kUseBakerOrBrooksReadBarrier) { 508 // Verify all the objects have the correct pointer installed. 509 obj->AssertReadBarrierPointer(); 510 } 511 if (immune_spaces_.IsInImmuneRegion(obj)) { 512 DCHECK(IsMarked(obj) != nullptr); 513 return false; 514 } 515 // Try to take advantage of locality of references within a space, failing this find the space 516 // the hard way. 517 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 518 if (LIKELY(object_bitmap->HasAddress(obj))) { 519 return !object_bitmap->AtomicTestAndSet(obj); 520 } 521 MarkObjectSlowPath visitor(this); 522 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 523} 524 525void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) { 526 MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0)); 527} 528 529// Used to mark objects when processing the mark stack. If an object is null, it is not marked. 530inline void MarkSweep::MarkObject(mirror::Object* obj, 531 mirror::Object* holder, 532 MemberOffset offset) { 533 if (obj != nullptr) { 534 MarkObjectNonNull(obj, holder, offset); 535 } else if (kCountMarkedObjects) { 536 ++mark_null_count_; 537 } 538} 539 540class MarkSweep::VerifyRootMarkedVisitor : public SingleRootVisitor { 541 public: 542 explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { } 543 544 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 545 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 546 CHECK(collector_->IsMarked(root) != nullptr) << info.ToString(); 547 } 548 549 private: 550 MarkSweep* const collector_; 551}; 552 553void MarkSweep::VisitRoots(mirror::Object*** roots, 554 size_t count, 555 const RootInfo& info ATTRIBUTE_UNUSED) { 556 for (size_t i = 0; i < count; ++i) { 557 MarkObjectNonNull(*roots[i]); 558 } 559} 560 561void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, 562 size_t count, 563 const RootInfo& info ATTRIBUTE_UNUSED) { 564 for (size_t i = 0; i < count; ++i) { 565 MarkObjectNonNull(roots[i]->AsMirrorPtr()); 566 } 567} 568 569class MarkSweep::VerifyRootVisitor : public SingleRootVisitor { 570 public: 571 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE 572 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 573 // See if the root is on any space bitmap. 574 auto* heap = Runtime::Current()->GetHeap(); 575 if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 576 space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace(); 577 if (large_object_space != nullptr && !large_object_space->Contains(root)) { 578 LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info << "\n"; 579 } 580 } 581 } 582}; 583 584void MarkSweep::VerifySuspendedThreadRoots() { 585 VerifyRootVisitor visitor; 586 Runtime::Current()->GetThreadList()->VisitRootsForSuspendedThreads(&visitor); 587} 588 589void MarkSweep::MarkRoots(Thread* self) { 590 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 591 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 592 // If we exclusively hold the mutator lock, all threads must be suspended. 593 Runtime::Current()->VisitRoots(this); 594 RevokeAllThreadLocalAllocationStacks(self); 595 } else { 596 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 597 // At this point the live stack should no longer have any mutators which push into it. 598 MarkNonThreadRoots(); 599 MarkConcurrentRoots( 600 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 601 } 602} 603 604void MarkSweep::MarkNonThreadRoots() { 605 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 606 Runtime::Current()->VisitNonThreadRoots(this); 607} 608 609void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 610 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 611 // Visit all runtime roots and clear dirty flags. 612 Runtime::Current()->VisitConcurrentRoots( 613 this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving)); 614} 615 616class MarkSweep::DelayReferenceReferentVisitor { 617 public: 618 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {} 619 620 void operator()(mirror::Class* klass, mirror::Reference* ref) const 621 REQUIRES(Locks::heap_bitmap_lock_) 622 SHARED_REQUIRES(Locks::mutator_lock_) { 623 collector_->DelayReferenceReferent(klass, ref); 624 } 625 626 private: 627 MarkSweep* const collector_; 628}; 629 630template <bool kUseFinger = false> 631class MarkSweep::MarkStackTask : public Task { 632 public: 633 MarkStackTask(ThreadPool* thread_pool, 634 MarkSweep* mark_sweep, 635 size_t mark_stack_size, 636 StackReference<mirror::Object>* mark_stack) 637 : mark_sweep_(mark_sweep), 638 thread_pool_(thread_pool), 639 mark_stack_pos_(mark_stack_size) { 640 // We may have to copy part of an existing mark stack when another mark stack overflows. 641 if (mark_stack_size != 0) { 642 DCHECK(mark_stack != nullptr); 643 // TODO: Check performance? 644 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 645 } 646 if (kCountTasks) { 647 ++mark_sweep_->work_chunks_created_; 648 } 649 } 650 651 static const size_t kMaxSize = 1 * KB; 652 653 protected: 654 class MarkObjectParallelVisitor { 655 public: 656 ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 657 MarkSweep* mark_sweep) 658 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 659 660 ALWAYS_INLINE void operator()(mirror::Object* obj, 661 MemberOffset offset, 662 bool is_static ATTRIBUTE_UNUSED) const 663 SHARED_REQUIRES(Locks::mutator_lock_) { 664 Mark(obj->GetFieldObject<mirror::Object>(offset)); 665 } 666 667 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 668 SHARED_REQUIRES(Locks::mutator_lock_) { 669 if (!root->IsNull()) { 670 VisitRoot(root); 671 } 672 } 673 674 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 675 SHARED_REQUIRES(Locks::mutator_lock_) { 676 if (kCheckLocks) { 677 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 678 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 679 } 680 Mark(root->AsMirrorPtr()); 681 } 682 683 private: 684 ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) { 685 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 686 if (kUseFinger) { 687 std::atomic_thread_fence(std::memory_order_seq_cst); 688 if (reinterpret_cast<uintptr_t>(ref) >= 689 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 690 return; 691 } 692 } 693 chunk_task_->MarkStackPush(ref); 694 } 695 } 696 697 MarkStackTask<kUseFinger>* const chunk_task_; 698 MarkSweep* const mark_sweep_; 699 }; 700 701 class ScanObjectParallelVisitor { 702 public: 703 ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) 704 : chunk_task_(chunk_task) {} 705 706 // No thread safety analysis since multiple threads will use this visitor. 707 void operator()(mirror::Object* obj) const 708 REQUIRES(Locks::heap_bitmap_lock_) 709 SHARED_REQUIRES(Locks::mutator_lock_) { 710 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 711 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 712 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 713 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 714 } 715 716 private: 717 MarkStackTask<kUseFinger>* const chunk_task_; 718 }; 719 720 virtual ~MarkStackTask() { 721 // Make sure that we have cleared our mark stack. 722 DCHECK_EQ(mark_stack_pos_, 0U); 723 if (kCountTasks) { 724 ++mark_sweep_->work_chunks_deleted_; 725 } 726 } 727 728 MarkSweep* const mark_sweep_; 729 ThreadPool* const thread_pool_; 730 // Thread local mark stack for this task. 731 StackReference<mirror::Object> mark_stack_[kMaxSize]; 732 // Mark stack position. 733 size_t mark_stack_pos_; 734 735 ALWAYS_INLINE void MarkStackPush(mirror::Object* obj) 736 SHARED_REQUIRES(Locks::mutator_lock_) { 737 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 738 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 739 mark_stack_pos_ /= 2; 740 auto* task = new MarkStackTask(thread_pool_, 741 mark_sweep_, 742 kMaxSize - mark_stack_pos_, 743 mark_stack_ + mark_stack_pos_); 744 thread_pool_->AddTask(Thread::Current(), task); 745 } 746 DCHECK(obj != nullptr); 747 DCHECK_LT(mark_stack_pos_, kMaxSize); 748 mark_stack_[mark_stack_pos_++].Assign(obj); 749 } 750 751 virtual void Finalize() { 752 delete this; 753 } 754 755 // Scans all of the objects 756 virtual void Run(Thread* self ATTRIBUTE_UNUSED) 757 REQUIRES(Locks::heap_bitmap_lock_) 758 SHARED_REQUIRES(Locks::mutator_lock_) { 759 ScanObjectParallelVisitor visitor(this); 760 // TODO: Tune this. 761 static const size_t kFifoSize = 4; 762 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo; 763 for (;;) { 764 mirror::Object* obj = nullptr; 765 if (kUseMarkStackPrefetch) { 766 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 767 mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 768 DCHECK(mark_stack_obj != nullptr); 769 __builtin_prefetch(mark_stack_obj); 770 prefetch_fifo.push_back(mark_stack_obj); 771 } 772 if (UNLIKELY(prefetch_fifo.empty())) { 773 break; 774 } 775 obj = prefetch_fifo.front(); 776 prefetch_fifo.pop_front(); 777 } else { 778 if (UNLIKELY(mark_stack_pos_ == 0)) { 779 break; 780 } 781 obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr(); 782 } 783 DCHECK(obj != nullptr); 784 visitor(obj); 785 } 786 } 787}; 788 789class MarkSweep::CardScanTask : public MarkStackTask<false> { 790 public: 791 CardScanTask(ThreadPool* thread_pool, 792 MarkSweep* mark_sweep, 793 accounting::ContinuousSpaceBitmap* bitmap, 794 uint8_t* begin, 795 uint8_t* end, 796 uint8_t minimum_age, 797 size_t mark_stack_size, 798 StackReference<mirror::Object>* mark_stack_obj, 799 bool clear_card) 800 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 801 bitmap_(bitmap), 802 begin_(begin), 803 end_(end), 804 minimum_age_(minimum_age), 805 clear_card_(clear_card) {} 806 807 protected: 808 accounting::ContinuousSpaceBitmap* const bitmap_; 809 uint8_t* const begin_; 810 uint8_t* const end_; 811 const uint8_t minimum_age_; 812 const bool clear_card_; 813 814 virtual void Finalize() { 815 delete this; 816 } 817 818 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 819 ScanObjectParallelVisitor visitor(this); 820 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 821 size_t cards_scanned = clear_card_ 822 ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) 823 : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_); 824 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 825 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 826 // Finish by emptying our local mark stack. 827 MarkStackTask::Run(self); 828 } 829}; 830 831size_t MarkSweep::GetThreadCount(bool paused) const { 832 // Use less threads if we are in a background state (non jank perceptible) since we want to leave 833 // more CPU time for the foreground apps. 834 if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) { 835 return 1; 836 } 837 return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1; 838} 839 840void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) { 841 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 842 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 843 size_t thread_count = GetThreadCount(paused); 844 // The parallel version with only one thread is faster for card scanning, TODO: fix. 845 if (kParallelCardScan && thread_count > 1) { 846 Thread* self = Thread::Current(); 847 // Can't have a different split for each space since multiple spaces can have their cards being 848 // scanned at the same time. 849 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 850 GetTimings()); 851 // Try to take some of the mark stack since we can pass this off to the worker tasks. 852 StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin(); 853 StackReference<mirror::Object>* mark_stack_end = mark_stack_->End(); 854 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 855 // Estimated number of work tasks we will create. 856 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 857 DCHECK_NE(mark_stack_tasks, 0U); 858 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 859 mark_stack_size / mark_stack_tasks + 1); 860 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 861 if (space->GetMarkBitmap() == nullptr) { 862 continue; 863 } 864 uint8_t* card_begin = space->Begin(); 865 uint8_t* card_end = space->End(); 866 // Align up the end address. For example, the image space's end 867 // may not be card-size-aligned. 868 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 869 DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize); 870 DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize); 871 // Calculate how many bytes of heap we will scan, 872 const size_t address_range = card_end - card_begin; 873 // Calculate how much address range each task gets. 874 const size_t card_delta = RoundUp(address_range / thread_count + 1, 875 accounting::CardTable::kCardSize); 876 // If paused and the space is neither zygote nor image space, we could clear the dirty 877 // cards to avoid accumulating them to increase card scanning load in the following GC 878 // cycles. We need to keep dirty cards of image space and zygote space in order to track 879 // references to the other spaces. 880 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 881 // Create the worker tasks for this space. 882 while (card_begin != card_end) { 883 // Add a range of cards. 884 size_t addr_remaining = card_end - card_begin; 885 size_t card_increment = std::min(card_delta, addr_remaining); 886 // Take from the back of the mark stack. 887 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 888 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 889 mark_stack_end -= mark_stack_increment; 890 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 891 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 892 // Add the new task to the thread pool. 893 auto* task = new CardScanTask(thread_pool, 894 this, 895 space->GetMarkBitmap(), 896 card_begin, 897 card_begin + card_increment, 898 minimum_age, 899 mark_stack_increment, 900 mark_stack_end, 901 clear_card); 902 thread_pool->AddTask(self, task); 903 card_begin += card_increment; 904 } 905 } 906 907 // Note: the card scan below may dirty new cards (and scan them) 908 // as a side effect when a Reference object is encountered and 909 // queued during the marking. See b/11465268. 910 thread_pool->SetMaxActiveWorkers(thread_count - 1); 911 thread_pool->StartWorkers(self); 912 thread_pool->Wait(self, true, true); 913 thread_pool->StopWorkers(self); 914 } else { 915 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 916 if (space->GetMarkBitmap() != nullptr) { 917 // Image spaces are handled properly since live == marked for them. 918 const char* name = nullptr; 919 switch (space->GetGcRetentionPolicy()) { 920 case space::kGcRetentionPolicyNeverCollect: 921 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 922 break; 923 case space::kGcRetentionPolicyFullCollect: 924 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 925 break; 926 case space::kGcRetentionPolicyAlwaysCollect: 927 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 928 break; 929 default: 930 LOG(FATAL) << "Unreachable"; 931 UNREACHABLE(); 932 } 933 TimingLogger::ScopedTiming t(name, GetTimings()); 934 ScanObjectVisitor visitor(this); 935 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace(); 936 if (clear_card) { 937 card_table->Scan<true>(space->GetMarkBitmap(), 938 space->Begin(), 939 space->End(), 940 visitor, 941 minimum_age); 942 } else { 943 card_table->Scan<false>(space->GetMarkBitmap(), 944 space->Begin(), 945 space->End(), 946 visitor, 947 minimum_age); 948 } 949 } 950 } 951 } 952} 953 954class MarkSweep::RecursiveMarkTask : public MarkStackTask<false> { 955 public: 956 RecursiveMarkTask(ThreadPool* thread_pool, 957 MarkSweep* mark_sweep, 958 accounting::ContinuousSpaceBitmap* bitmap, 959 uintptr_t begin, 960 uintptr_t end) 961 : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), 962 bitmap_(bitmap), 963 begin_(begin), 964 end_(end) {} 965 966 protected: 967 accounting::ContinuousSpaceBitmap* const bitmap_; 968 const uintptr_t begin_; 969 const uintptr_t end_; 970 971 virtual void Finalize() { 972 delete this; 973 } 974 975 // Scans all of the objects 976 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 977 ScanObjectParallelVisitor visitor(this); 978 bitmap_->VisitMarkedRange(begin_, end_, visitor); 979 // Finish by emptying our local mark stack. 980 MarkStackTask::Run(self); 981 } 982}; 983 984// Populates the mark stack based on the set of marked objects and 985// recursively marks until the mark stack is emptied. 986void MarkSweep::RecursiveMark() { 987 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 988 // RecursiveMark will build the lists of known instances of the Reference classes. See 989 // DelayReferenceReferent for details. 990 if (kUseRecursiveMark) { 991 const bool partial = GetGcType() == kGcTypePartial; 992 ScanObjectVisitor scan_visitor(this); 993 auto* self = Thread::Current(); 994 ThreadPool* thread_pool = heap_->GetThreadPool(); 995 size_t thread_count = GetThreadCount(false); 996 const bool parallel = kParallelRecursiveMark && thread_count > 1; 997 mark_stack_->Reset(); 998 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 999 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 1000 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 1001 current_space_bitmap_ = space->GetMarkBitmap(); 1002 if (current_space_bitmap_ == nullptr) { 1003 continue; 1004 } 1005 if (parallel) { 1006 // We will use the mark stack the future. 1007 // CHECK(mark_stack_->IsEmpty()); 1008 // This function does not handle heap end increasing, so we must use the space end. 1009 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 1010 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 1011 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 1012 1013 // Create a few worker tasks. 1014 const size_t n = thread_count * 2; 1015 while (begin != end) { 1016 uintptr_t start = begin; 1017 uintptr_t delta = (end - begin) / n; 1018 delta = RoundUp(delta, KB); 1019 if (delta < 16 * KB) delta = end - begin; 1020 begin += delta; 1021 auto* task = new RecursiveMarkTask(thread_pool, 1022 this, 1023 current_space_bitmap_, 1024 start, 1025 begin); 1026 thread_pool->AddTask(self, task); 1027 } 1028 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1029 thread_pool->StartWorkers(self); 1030 thread_pool->Wait(self, true, true); 1031 thread_pool->StopWorkers(self); 1032 } else { 1033 // This function does not handle heap end increasing, so we must use the space end. 1034 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 1035 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 1036 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 1037 } 1038 } 1039 } 1040 } 1041 ProcessMarkStack(false); 1042} 1043 1044void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) { 1045 ScanGrayObjects(paused, minimum_age); 1046 ProcessMarkStack(paused); 1047} 1048 1049void MarkSweep::ReMarkRoots() { 1050 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1051 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 1052 Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>( 1053 kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog)); 1054 if (kVerifyRootsMarked) { 1055 TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings()); 1056 VerifyRootMarkedVisitor visitor(this); 1057 Runtime::Current()->VisitRoots(&visitor); 1058 } 1059} 1060 1061void MarkSweep::SweepSystemWeaks(Thread* self) { 1062 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1063 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 1064 Runtime::Current()->SweepSystemWeaks(this); 1065} 1066 1067class MarkSweep::VerifySystemWeakVisitor : public IsMarkedVisitor { 1068 public: 1069 explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} 1070 1071 virtual mirror::Object* IsMarked(mirror::Object* obj) 1072 OVERRIDE 1073 SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1074 mark_sweep_->VerifyIsLive(obj); 1075 return obj; 1076 } 1077 1078 MarkSweep* const mark_sweep_; 1079}; 1080 1081void MarkSweep::VerifyIsLive(const mirror::Object* obj) { 1082 if (!heap_->GetLiveBitmap()->Test(obj)) { 1083 // TODO: Consider live stack? Has this code bitrotted? 1084 CHECK(!heap_->allocation_stack_->Contains(obj)) 1085 << "Found dead object " << obj << "\n" << heap_->DumpSpaces(); 1086 } 1087} 1088 1089void MarkSweep::VerifySystemWeaks() { 1090 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1091 // Verify system weaks, uses a special object visitor which returns the input object. 1092 VerifySystemWeakVisitor visitor(this); 1093 Runtime::Current()->SweepSystemWeaks(&visitor); 1094} 1095 1096class MarkSweep::CheckpointMarkThreadRoots : public Closure, public RootVisitor { 1097 public: 1098 CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 1099 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 1100 : mark_sweep_(mark_sweep), 1101 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 1102 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1103 } 1104 1105 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) 1106 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) 1107 REQUIRES(Locks::heap_bitmap_lock_) { 1108 for (size_t i = 0; i < count; ++i) { 1109 mark_sweep_->MarkObjectNonNullParallel(*roots[i]); 1110 } 1111 } 1112 1113 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, 1114 size_t count, 1115 const RootInfo& info ATTRIBUTE_UNUSED) 1116 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) 1117 REQUIRES(Locks::heap_bitmap_lock_) { 1118 for (size_t i = 0; i < count; ++i) { 1119 mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr()); 1120 } 1121 } 1122 1123 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1124 ScopedTrace trace("Marking thread roots"); 1125 // Note: self is not necessarily equal to thread since thread may be suspended. 1126 Thread* const self = Thread::Current(); 1127 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 1128 << thread->GetState() << " thread " << thread << " self " << self; 1129 thread->VisitRoots(this); 1130 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 1131 ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers"); 1132 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 1133 } 1134 // If thread is a running mutator, then act on behalf of the garbage collector. 1135 // See the code in ThreadList::RunCheckpoint. 1136 mark_sweep_->GetBarrier().Pass(self); 1137 } 1138 1139 private: 1140 MarkSweep* const mark_sweep_; 1141 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 1142}; 1143 1144void MarkSweep::MarkRootsCheckpoint(Thread* self, 1145 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 1146 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1147 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 1148 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 1149 // Request the check point is run on all threads returning a count of the threads that must 1150 // run through the barrier including self. 1151 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 1152 // Release locks then wait for all mutator threads to pass the barrier. 1153 // If there are no threads to wait which implys that all the checkpoint functions are finished, 1154 // then no need to release locks. 1155 if (barrier_count == 0) { 1156 return; 1157 } 1158 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1159 Locks::mutator_lock_->SharedUnlock(self); 1160 { 1161 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1162 gc_barrier_->Increment(self, barrier_count); 1163 } 1164 Locks::mutator_lock_->SharedLock(self); 1165 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1166} 1167 1168void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1169 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1170 Thread* self = Thread::Current(); 1171 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1172 sweep_array_free_buffer_mem_map_->BaseBegin()); 1173 size_t chunk_free_pos = 0; 1174 ObjectBytePair freed; 1175 ObjectBytePair freed_los; 1176 // How many objects are left in the array, modified after each space is swept. 1177 StackReference<mirror::Object>* objects = allocations->Begin(); 1178 size_t count = allocations->Size(); 1179 // Change the order to ensure that the non-moving space last swept as an optimization. 1180 std::vector<space::ContinuousSpace*> sweep_spaces; 1181 space::ContinuousSpace* non_moving_space = nullptr; 1182 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1183 if (space->IsAllocSpace() && 1184 !immune_spaces_.ContainsSpace(space) && 1185 space->GetLiveBitmap() != nullptr) { 1186 if (space == heap_->GetNonMovingSpace()) { 1187 non_moving_space = space; 1188 } else { 1189 sweep_spaces.push_back(space); 1190 } 1191 } 1192 } 1193 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1194 // the other alloc spaces as an optimization. 1195 if (non_moving_space != nullptr) { 1196 sweep_spaces.push_back(non_moving_space); 1197 } 1198 // Start by sweeping the continuous spaces. 1199 for (space::ContinuousSpace* space : sweep_spaces) { 1200 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1201 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1202 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1203 if (swap_bitmaps) { 1204 std::swap(live_bitmap, mark_bitmap); 1205 } 1206 StackReference<mirror::Object>* out = objects; 1207 for (size_t i = 0; i < count; ++i) { 1208 mirror::Object* const obj = objects[i].AsMirrorPtr(); 1209 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1210 continue; 1211 } 1212 if (space->HasAddress(obj)) { 1213 // This object is in the space, remove it from the array and add it to the sweep buffer 1214 // if needed. 1215 if (!mark_bitmap->Test(obj)) { 1216 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1217 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1218 freed.objects += chunk_free_pos; 1219 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1220 chunk_free_pos = 0; 1221 } 1222 chunk_free_buffer[chunk_free_pos++] = obj; 1223 } 1224 } else { 1225 (out++)->Assign(obj); 1226 } 1227 } 1228 if (chunk_free_pos > 0) { 1229 TimingLogger::ScopedTiming t2("FreeList", GetTimings()); 1230 freed.objects += chunk_free_pos; 1231 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1232 chunk_free_pos = 0; 1233 } 1234 // All of the references which space contained are no longer in the allocation stack, update 1235 // the count. 1236 count = out - objects; 1237 } 1238 // Handle the large object space. 1239 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1240 if (large_object_space != nullptr) { 1241 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1242 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1243 if (swap_bitmaps) { 1244 std::swap(large_live_objects, large_mark_objects); 1245 } 1246 for (size_t i = 0; i < count; ++i) { 1247 mirror::Object* const obj = objects[i].AsMirrorPtr(); 1248 // Handle large objects. 1249 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1250 continue; 1251 } 1252 if (!large_mark_objects->Test(obj)) { 1253 ++freed_los.objects; 1254 freed_los.bytes += large_object_space->Free(self, obj); 1255 } 1256 } 1257 } 1258 { 1259 TimingLogger::ScopedTiming t2("RecordFree", GetTimings()); 1260 RecordFree(freed); 1261 RecordFreeLOS(freed_los); 1262 t2.NewTiming("ResetStack"); 1263 allocations->Reset(); 1264 } 1265 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1266} 1267 1268void MarkSweep::Sweep(bool swap_bitmaps) { 1269 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1270 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1271 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1272 { 1273 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1274 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1275 // knowing that new allocations won't be marked as live. 1276 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1277 heap_->MarkAllocStackAsLive(live_stack); 1278 live_stack->Reset(); 1279 DCHECK(mark_stack_->IsEmpty()); 1280 } 1281 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1282 if (space->IsContinuousMemMapAllocSpace()) { 1283 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1284 TimingLogger::ScopedTiming split( 1285 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", 1286 GetTimings()); 1287 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1288 } 1289 } 1290 SweepLargeObjects(swap_bitmaps); 1291} 1292 1293void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1294 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace(); 1295 if (los != nullptr) { 1296 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1297 RecordFreeLOS(los->Sweep(swap_bitmaps)); 1298 } 1299} 1300 1301// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1302// marked, put it on the appropriate list in the heap for later processing. 1303void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1304 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this); 1305} 1306 1307class MarkVisitor { 1308 public: 1309 ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {} 1310 1311 ALWAYS_INLINE void operator()(mirror::Object* obj, 1312 MemberOffset offset, 1313 bool is_static ATTRIBUTE_UNUSED) const 1314 REQUIRES(Locks::heap_bitmap_lock_) 1315 SHARED_REQUIRES(Locks::mutator_lock_) { 1316 if (kCheckLocks) { 1317 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1318 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1319 } 1320 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset); 1321 } 1322 1323 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 1324 REQUIRES(Locks::heap_bitmap_lock_) 1325 SHARED_REQUIRES(Locks::mutator_lock_) { 1326 if (!root->IsNull()) { 1327 VisitRoot(root); 1328 } 1329 } 1330 1331 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 1332 REQUIRES(Locks::heap_bitmap_lock_) 1333 SHARED_REQUIRES(Locks::mutator_lock_) { 1334 if (kCheckLocks) { 1335 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1336 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1337 } 1338 mark_sweep_->MarkObject(root->AsMirrorPtr()); 1339 } 1340 1341 private: 1342 MarkSweep* const mark_sweep_; 1343}; 1344 1345// Scans an object reference. Determines the type of the reference 1346// and dispatches to a specialized scanning routine. 1347void MarkSweep::ScanObject(mirror::Object* obj) { 1348 MarkVisitor mark_visitor(this); 1349 DelayReferenceReferentVisitor ref_visitor(this); 1350 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1351} 1352 1353void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1354 Thread* self = Thread::Current(); 1355 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1356 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1357 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1358 CHECK_GT(chunk_size, 0U); 1359 // Split the current mark stack up into work tasks. 1360 for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) { 1361 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1362 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1363 it += delta; 1364 } 1365 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1366 thread_pool->StartWorkers(self); 1367 thread_pool->Wait(self, true, true); 1368 thread_pool->StopWorkers(self); 1369 mark_stack_->Reset(); 1370 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1371 work_chunks_deleted_.LoadSequentiallyConsistent()) 1372 << " some of the work chunks were leaked"; 1373} 1374 1375// Scan anything that's on the mark stack. 1376void MarkSweep::ProcessMarkStack(bool paused) { 1377 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1378 size_t thread_count = GetThreadCount(paused); 1379 if (kParallelProcessMarkStack && thread_count > 1 && 1380 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1381 ProcessMarkStackParallel(thread_count); 1382 } else { 1383 // TODO: Tune this. 1384 static const size_t kFifoSize = 4; 1385 BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo; 1386 for (;;) { 1387 mirror::Object* obj = nullptr; 1388 if (kUseMarkStackPrefetch) { 1389 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1390 mirror::Object* mark_stack_obj = mark_stack_->PopBack(); 1391 DCHECK(mark_stack_obj != nullptr); 1392 __builtin_prefetch(mark_stack_obj); 1393 prefetch_fifo.push_back(mark_stack_obj); 1394 } 1395 if (prefetch_fifo.empty()) { 1396 break; 1397 } 1398 obj = prefetch_fifo.front(); 1399 prefetch_fifo.pop_front(); 1400 } else { 1401 if (mark_stack_->IsEmpty()) { 1402 break; 1403 } 1404 obj = mark_stack_->PopBack(); 1405 } 1406 DCHECK(obj != nullptr); 1407 ScanObject(obj); 1408 } 1409 } 1410} 1411 1412inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) { 1413 if (immune_spaces_.IsInImmuneRegion(object)) { 1414 return object; 1415 } 1416 if (current_space_bitmap_->HasAddress(object)) { 1417 return current_space_bitmap_->Test(object) ? object : nullptr; 1418 } 1419 return mark_bitmap_->Test(object) ? object : nullptr; 1420} 1421 1422void MarkSweep::FinishPhase() { 1423 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1424 if (kCountScannedTypes) { 1425 VLOG(gc) 1426 << "MarkSweep scanned" 1427 << " no reference objects=" << no_reference_class_count_.LoadRelaxed() 1428 << " normal objects=" << normal_count_.LoadRelaxed() 1429 << " classes=" << class_count_.LoadRelaxed() 1430 << " object arrays=" << object_array_count_.LoadRelaxed() 1431 << " references=" << reference_count_.LoadRelaxed() 1432 << " other=" << other_count_.LoadRelaxed(); 1433 } 1434 if (kCountTasks) { 1435 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1436 } 1437 if (kMeasureOverhead) { 1438 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1439 } 1440 if (kProfileLargeObjects) { 1441 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1442 << " marked " << large_object_mark_.LoadRelaxed(); 1443 } 1444 if (kCountMarkedObjects) { 1445 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1446 << " immune=" << mark_immune_count_.LoadRelaxed() 1447 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1448 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1449 } 1450 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1451 mark_stack_->Reset(); 1452 Thread* const self = Thread::Current(); 1453 ReaderMutexLock mu(self, *Locks::mutator_lock_); 1454 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_); 1455 heap_->ClearMarkedObjects(); 1456} 1457 1458void MarkSweep::RevokeAllThreadLocalBuffers() { 1459 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1460 // If concurrent, rosalloc thread-local buffers are revoked at the 1461 // thread checkpoint. Bump pointer space thread-local buffers must 1462 // not be in use. 1463 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1464 } else { 1465 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1466 GetHeap()->RevokeAllThreadLocalBuffers(); 1467 } 1468} 1469 1470} // namespace collector 1471} // namespace gc 1472} // namespace art 1473