mark_sweep.cc revision 90443477f9a0061581c420775ce3b7eeae7468bc
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <atomic>
20#include <functional>
21#include <numeric>
22#include <climits>
23#include <vector>
24
25#define ATRACE_TAG ATRACE_TAG_DALVIK
26#include "cutils/trace.h"
27
28#include "base/bounded_fifo.h"
29#include "base/logging.h"
30#include "base/macros.h"
31#include "base/mutex-inl.h"
32#include "base/time_utils.h"
33#include "base/timing_logger.h"
34#include "gc/accounting/card_table-inl.h"
35#include "gc/accounting/heap_bitmap-inl.h"
36#include "gc/accounting/mod_union_table.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/heap.h"
39#include "gc/reference_processor.h"
40#include "gc/space/large_object_space.h"
41#include "gc/space/space-inl.h"
42#include "mark_sweep-inl.h"
43#include "mirror/object-inl.h"
44#include "runtime.h"
45#include "scoped_thread_state_change.h"
46#include "thread-inl.h"
47#include "thread_list.h"
48
49namespace art {
50namespace gc {
51namespace collector {
52
53// Performance options.
54static constexpr bool kUseRecursiveMark = false;
55static constexpr bool kUseMarkStackPrefetch = true;
56static constexpr size_t kSweepArrayChunkFreeSize = 1024;
57static constexpr bool kPreCleanCards = true;
58
59// Parallelism options.
60static constexpr bool kParallelCardScan = true;
61static constexpr bool kParallelRecursiveMark = true;
62// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
63// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
64// having this can add overhead in ProcessReferences since we may end up doing many calls of
65// ProcessMarkStack with very small mark stacks.
66static constexpr size_t kMinimumParallelMarkStackSize = 128;
67static constexpr bool kParallelProcessMarkStack = true;
68
69// Profiling and information flags.
70static constexpr bool kProfileLargeObjects = false;
71static constexpr bool kMeasureOverhead = false;
72static constexpr bool kCountTasks = false;
73static constexpr bool kCountJavaLangRefs = false;
74static constexpr bool kCountMarkedObjects = false;
75
76// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
77static constexpr bool kCheckLocks = kDebugLocking;
78static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
79
80// If true, revoke the rosalloc thread-local buffers at the
81// checkpoint, as opposed to during the pause.
82static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
83
84void MarkSweep::BindBitmaps() {
85  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
86  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
87  // Mark all of the spaces we never collect as immune.
88  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
89    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
90      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
91    }
92  }
93}
94
95MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
96    : GarbageCollector(heap,
97                       name_prefix +
98                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
99      current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
100      gc_barrier_(new Barrier(0)),
101      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
102      is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
103  std::string error_msg;
104  MemMap* mem_map = MemMap::MapAnonymous(
105      "mark sweep sweep array free buffer", nullptr,
106      RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
107      PROT_READ | PROT_WRITE, false, false, &error_msg);
108  CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
109  sweep_array_free_buffer_mem_map_.reset(mem_map);
110}
111
112void MarkSweep::InitializePhase() {
113  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
114  mark_stack_ = heap_->GetMarkStack();
115  DCHECK(mark_stack_ != nullptr);
116  immune_region_.Reset();
117  class_count_.StoreRelaxed(0);
118  array_count_.StoreRelaxed(0);
119  other_count_.StoreRelaxed(0);
120  large_object_test_.StoreRelaxed(0);
121  large_object_mark_.StoreRelaxed(0);
122  overhead_time_ .StoreRelaxed(0);
123  work_chunks_created_.StoreRelaxed(0);
124  work_chunks_deleted_.StoreRelaxed(0);
125  reference_count_.StoreRelaxed(0);
126  mark_null_count_.StoreRelaxed(0);
127  mark_immune_count_.StoreRelaxed(0);
128  mark_fastpath_count_.StoreRelaxed(0);
129  mark_slowpath_count_.StoreRelaxed(0);
130  {
131    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
132    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
133    mark_bitmap_ = heap_->GetMarkBitmap();
134  }
135  if (!GetCurrentIteration()->GetClearSoftReferences()) {
136    // Always clear soft references if a non-sticky collection.
137    GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
138  }
139}
140
141void MarkSweep::RunPhases() {
142  Thread* self = Thread::Current();
143  InitializePhase();
144  Locks::mutator_lock_->AssertNotHeld(self);
145  if (IsConcurrent()) {
146    GetHeap()->PreGcVerification(this);
147    {
148      ReaderMutexLock mu(self, *Locks::mutator_lock_);
149      MarkingPhase();
150    }
151    ScopedPause pause(this);
152    GetHeap()->PrePauseRosAllocVerification(this);
153    PausePhase();
154    RevokeAllThreadLocalBuffers();
155  } else {
156    ScopedPause pause(this);
157    GetHeap()->PreGcVerificationPaused(this);
158    MarkingPhase();
159    GetHeap()->PrePauseRosAllocVerification(this);
160    PausePhase();
161    RevokeAllThreadLocalBuffers();
162  }
163  {
164    // Sweeping always done concurrently, even for non concurrent mark sweep.
165    ReaderMutexLock mu(self, *Locks::mutator_lock_);
166    ReclaimPhase();
167  }
168  GetHeap()->PostGcVerification(this);
169  FinishPhase();
170}
171
172void MarkSweep::ProcessReferences(Thread* self) {
173  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
174  GetHeap()->GetReferenceProcessor()->ProcessReferences(
175      true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
176}
177
178void MarkSweep::PausePhase() {
179  TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
180  Thread* self = Thread::Current();
181  Locks::mutator_lock_->AssertExclusiveHeld(self);
182  if (IsConcurrent()) {
183    // Handle the dirty objects if we are a concurrent GC.
184    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
185    // Re-mark root set.
186    ReMarkRoots();
187    // Scan dirty objects, this is only required if we are not doing concurrent GC.
188    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
189  }
190  {
191    TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
192    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
193    heap_->SwapStacks(self);
194    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
195    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
196    // stacks and don't want anybody to allocate into the live stack.
197    RevokeAllThreadLocalAllocationStacks(self);
198  }
199  heap_->PreSweepingGcVerification(this);
200  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
201  // weak before we sweep them. Since this new system weak may not be marked, the GC may
202  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
203  // reference to a string that is about to be swept.
204  Runtime::Current()->DisallowNewSystemWeaks();
205  // Enable the reference processing slow path, needs to be done with mutators paused since there
206  // is no lock in the GetReferent fast path.
207  GetHeap()->GetReferenceProcessor()->EnableSlowPath();
208}
209
210void MarkSweep::PreCleanCards() {
211  // Don't do this for non concurrent GCs since they don't have any dirty cards.
212  if (kPreCleanCards && IsConcurrent()) {
213    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
214    Thread* self = Thread::Current();
215    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217    heap_->ProcessCards(GetTimings(), false, true, false);
218    // The checkpoint root marking is required to avoid a race condition which occurs if the
219    // following happens during a reference write:
220    // 1. mutator dirties the card (write barrier)
221    // 2. GC ages the card (the above ProcessCards call)
222    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223    // 4. mutator writes the value (corresponding to the write barrier in 1.)
224    // This causes the GC to age the card but not necessarily mark the reference which the mutator
225    // wrote into the object stored in the card.
226    // Having the checkpoint fixes this issue since it ensures that the card mark and the
227    // reference write are visible to the GC before the card is scanned (this is due to locks being
228    // acquired / released in the checkpoint code).
229    // The other roots are also marked to help reduce the pause.
230    MarkRootsCheckpoint(self, false);
231    MarkNonThreadRoots();
232    MarkConcurrentRoots(
233        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
234    // Process the newly aged cards.
235    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
236    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
237    // in the next GC.
238  }
239}
240
241void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
242  if (kUseThreadLocalAllocationStack) {
243    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
244    Locks::mutator_lock_->AssertExclusiveHeld(self);
245    heap_->RevokeAllThreadLocalAllocationStacks(self);
246  }
247}
248
249void MarkSweep::MarkingPhase() {
250  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
251  Thread* self = Thread::Current();
252  BindBitmaps();
253  FindDefaultSpaceBitmap();
254  // Process dirty cards and add dirty cards to mod union tables.
255  // If the GC type is non sticky, then we just clear the cards instead of ageing them.
256  heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
257  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
258  MarkRoots(self);
259  MarkReachableObjects();
260  // Pre-clean dirtied cards to reduce pauses.
261  PreCleanCards();
262}
263
264void MarkSweep::UpdateAndMarkModUnion() {
265  for (const auto& space : heap_->GetContinuousSpaces()) {
266    if (immune_region_.ContainsSpace(space)) {
267      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
268          "UpdateAndMarkImageModUnionTable";
269      TimingLogger::ScopedTiming t(name, GetTimings());
270      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
271      CHECK(mod_union_table != nullptr);
272      mod_union_table->UpdateAndMarkReferences(this);
273    }
274  }
275}
276
277void MarkSweep::MarkReachableObjects() {
278  UpdateAndMarkModUnion();
279  // Recursively mark all the non-image bits set in the mark bitmap.
280  RecursiveMark();
281}
282
283void MarkSweep::ReclaimPhase() {
284  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
285  Thread* self = Thread::Current();
286  // Process the references concurrently.
287  ProcessReferences(self);
288  SweepSystemWeaks(self);
289  Runtime::Current()->AllowNewSystemWeaks();
290  {
291    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
292    GetHeap()->RecordFreeRevoke();
293    // Reclaim unmarked objects.
294    Sweep(false);
295    // Swap the live and mark bitmaps for each space which we modified space. This is an
296    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
297    // bitmaps.
298    SwapBitmaps();
299    // Unbind the live and mark bitmaps.
300    GetHeap()->UnBindBitmaps();
301  }
302}
303
304void MarkSweep::FindDefaultSpaceBitmap() {
305  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
306  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
307    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
308    // We want to have the main space instead of non moving if possible.
309    if (bitmap != nullptr &&
310        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
311      current_space_bitmap_ = bitmap;
312      // If we are not the non moving space exit the loop early since this will be good enough.
313      if (space != heap_->GetNonMovingSpace()) {
314        break;
315      }
316    }
317  }
318  CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
319      << heap_->DumpSpaces();
320}
321
322void MarkSweep::ExpandMarkStack() {
323  ResizeMarkStack(mark_stack_->Capacity() * 2);
324}
325
326void MarkSweep::ResizeMarkStack(size_t new_size) {
327  // Rare case, no need to have Thread::Current be a parameter.
328  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
329    // Someone else acquired the lock and expanded the mark stack before us.
330    return;
331  }
332  std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
333  CHECK_LE(mark_stack_->Size(), new_size);
334  mark_stack_->Resize(new_size);
335  for (auto& obj : temp) {
336    mark_stack_->PushBack(obj.AsMirrorPtr());
337  }
338}
339
340mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
341  MarkObject(obj, nullptr, MemberOffset(0));
342  return obj;
343}
344
345inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
346  DCHECK(obj != nullptr);
347  if (MarkObjectParallel(obj)) {
348    MutexLock mu(Thread::Current(), mark_stack_lock_);
349    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
350      ExpandMarkStack();
351    }
352    // The object must be pushed on to the mark stack.
353    mark_stack_->PushBack(obj);
354  }
355}
356
357bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
358  return IsMarked(ref->AsMirrorPtr());
359}
360
361class MarkSweepMarkObjectSlowPath {
362 public:
363  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep, mirror::Object* holder = nullptr,
364                                       MemberOffset offset = MemberOffset(0))
365      : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {
366  }
367
368  void operator()(const mirror::Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
369    if (kProfileLargeObjects) {
370      // TODO: Differentiate between marking and testing somehow.
371      ++mark_sweep_->large_object_test_;
372      ++mark_sweep_->large_object_mark_;
373    }
374    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
375    if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
376                 (kIsDebugBuild && large_object_space != nullptr &&
377                     !large_object_space->Contains(obj)))) {
378      LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
379      if (holder_ != nullptr) {
380        size_t holder_size = holder_->SizeOf();
381        ArtField* field = holder_->FindFieldByOffset(offset_);
382        LOG(INTERNAL_FATAL) << "Field info: "
383                            << " holder=" << holder_
384                            << " holder is "
385                            << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
386                                ? "alive" : "dead")
387                            << " holder_size=" << holder_size
388                            << " holder_type=" << PrettyTypeOf(holder_)
389                            << " offset=" << offset_.Uint32Value()
390                            << " field=" << (field != nullptr ? field->GetName() : "nullptr")
391                            << " field_type="
392                            << (field != nullptr ? field->GetTypeDescriptor() : "")
393                            << " first_ref_field_offset="
394                            << (holder_->IsClass()
395                                ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
396                                    sizeof(void*))
397                                : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
398                            << " num_of_ref_fields="
399                            << (holder_->IsClass()
400                                ? holder_->AsClass()->NumReferenceStaticFields()
401                                : holder_->GetClass()->NumReferenceInstanceFields())
402                            << "\n";
403        // Print the memory content of the holder.
404        for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
405          uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
406          LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
407                              << std::hex << p[i];
408        }
409      }
410      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
411      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
412      {
413        LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
414        Thread* self = Thread::Current();
415        if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
416          mark_sweep_->VerifyRoots();
417        } else {
418          const bool heap_bitmap_exclusive_locked =
419              Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
420          if (heap_bitmap_exclusive_locked) {
421            Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
422          }
423          Locks::mutator_lock_->SharedUnlock(self);
424          ThreadList* tl = Runtime::Current()->GetThreadList();
425          tl->SuspendAll(__FUNCTION__);
426          mark_sweep_->VerifyRoots();
427          tl->ResumeAll();
428          Locks::mutator_lock_->SharedLock(self);
429          if (heap_bitmap_exclusive_locked) {
430            Locks::heap_bitmap_lock_->ExclusiveLock(self);
431          }
432        }
433      }
434      LOG(FATAL) << "Can't mark invalid object";
435    }
436  }
437
438 private:
439  MarkSweep* const mark_sweep_;
440  mirror::Object* const holder_;
441  MemberOffset offset_;
442};
443
444inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj, mirror::Object* holder,
445                                         MemberOffset offset) {
446  DCHECK(obj != nullptr);
447  if (kUseBakerOrBrooksReadBarrier) {
448    // Verify all the objects have the correct pointer installed.
449    obj->AssertReadBarrierPointer();
450  }
451  if (immune_region_.ContainsObject(obj)) {
452    if (kCountMarkedObjects) {
453      ++mark_immune_count_;
454    }
455    DCHECK(mark_bitmap_->Test(obj));
456  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
457    if (kCountMarkedObjects) {
458      ++mark_fastpath_count_;
459    }
460    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
461      PushOnMarkStack(obj);  // This object was not previously marked.
462    }
463  } else {
464    if (kCountMarkedObjects) {
465      ++mark_slowpath_count_;
466    }
467    MarkSweepMarkObjectSlowPath visitor(this, holder, offset);
468    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
469    // will check again.
470    if (!mark_bitmap_->Set(obj, visitor)) {
471      PushOnMarkStack(obj);  // Was not already marked, push.
472    }
473  }
474}
475
476inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
477  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
478    // Lock is not needed but is here anyways to please annotalysis.
479    MutexLock mu(Thread::Current(), mark_stack_lock_);
480    ExpandMarkStack();
481  }
482  // The object must be pushed on to the mark stack.
483  mark_stack_->PushBack(obj);
484}
485
486inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
487  DCHECK(obj != nullptr);
488  if (kUseBakerOrBrooksReadBarrier) {
489    // Verify all the objects have the correct pointer installed.
490    obj->AssertReadBarrierPointer();
491  }
492  if (immune_region_.ContainsObject(obj)) {
493    DCHECK(IsMarked(obj) != nullptr);
494    return false;
495  }
496  // Try to take advantage of locality of references within a space, failing this find the space
497  // the hard way.
498  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
499  if (LIKELY(object_bitmap->HasAddress(obj))) {
500    return !object_bitmap->AtomicTestAndSet(obj);
501  }
502  MarkSweepMarkObjectSlowPath visitor(this);
503  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
504}
505
506void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
507  MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
508}
509
510// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
511inline void MarkSweep::MarkObject(mirror::Object* obj, mirror::Object* holder,
512                                  MemberOffset offset) {
513  if (obj != nullptr) {
514    MarkObjectNonNull(obj, holder, offset);
515  } else if (kCountMarkedObjects) {
516    ++mark_null_count_;
517  }
518}
519
520class VerifyRootMarkedVisitor : public SingleRootVisitor {
521 public:
522  explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
523
524  void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
525      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
526    CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
527  }
528
529 private:
530  MarkSweep* const collector_;
531};
532
533void MarkSweep::VisitRoots(mirror::Object*** roots, size_t count,
534                           const RootInfo& info ATTRIBUTE_UNUSED) {
535  for (size_t i = 0; i < count; ++i) {
536    MarkObjectNonNull(*roots[i]);
537  }
538}
539
540void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
541                           const RootInfo& info ATTRIBUTE_UNUSED) {
542  for (size_t i = 0; i < count; ++i) {
543    MarkObjectNonNull(roots[i]->AsMirrorPtr());
544  }
545}
546
547class VerifyRootVisitor : public SingleRootVisitor {
548 public:
549  void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
550      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
551    // See if the root is on any space bitmap.
552    auto* heap = Runtime::Current()->GetHeap();
553    if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
554      space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
555      if (large_object_space != nullptr && !large_object_space->Contains(root)) {
556        LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
557      }
558    }
559  }
560};
561
562void MarkSweep::VerifyRoots() {
563  VerifyRootVisitor visitor;
564  Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
565}
566
567void MarkSweep::MarkRoots(Thread* self) {
568  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
569  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
570    // If we exclusively hold the mutator lock, all threads must be suspended.
571    Runtime::Current()->VisitRoots(this);
572    RevokeAllThreadLocalAllocationStacks(self);
573  } else {
574    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
575    // At this point the live stack should no longer have any mutators which push into it.
576    MarkNonThreadRoots();
577    MarkConcurrentRoots(
578        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
579  }
580}
581
582void MarkSweep::MarkNonThreadRoots() {
583  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
584  Runtime::Current()->VisitNonThreadRoots(this);
585}
586
587void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
588  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
589  // Visit all runtime roots and clear dirty flags.
590  Runtime::Current()->VisitConcurrentRoots(
591      this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
592}
593
594class ScanObjectVisitor {
595 public:
596  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
597      : mark_sweep_(mark_sweep) {}
598
599  void operator()(mirror::Object* obj) const ALWAYS_INLINE
600      SHARED_REQUIRES(Locks::mutator_lock_)
601      REQUIRES(Locks::heap_bitmap_lock_) {
602    if (kCheckLocks) {
603      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
604      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
605    }
606    mark_sweep_->ScanObject(obj);
607  }
608
609 private:
610  MarkSweep* const mark_sweep_;
611};
612
613class DelayReferenceReferentVisitor {
614 public:
615  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
616  }
617
618  void operator()(mirror::Class* klass, mirror::Reference* ref) const
619      SHARED_REQUIRES(Locks::mutator_lock_)
620      REQUIRES(Locks::heap_bitmap_lock_) {
621    collector_->DelayReferenceReferent(klass, ref);
622  }
623
624 private:
625  MarkSweep* const collector_;
626};
627
628template <bool kUseFinger = false>
629class MarkStackTask : public Task {
630 public:
631  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
632                StackReference<mirror::Object>* mark_stack)
633      : mark_sweep_(mark_sweep),
634        thread_pool_(thread_pool),
635        mark_stack_pos_(mark_stack_size) {
636    // We may have to copy part of an existing mark stack when another mark stack overflows.
637    if (mark_stack_size != 0) {
638      DCHECK(mark_stack != nullptr);
639      // TODO: Check performance?
640      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
641    }
642    if (kCountTasks) {
643      ++mark_sweep_->work_chunks_created_;
644    }
645  }
646
647  static const size_t kMaxSize = 1 * KB;
648
649 protected:
650  class MarkObjectParallelVisitor {
651   public:
652    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
653                                       MarkSweep* mark_sweep) ALWAYS_INLINE
654            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
655
656    void operator()(mirror::Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
657        SHARED_REQUIRES(Locks::mutator_lock_) {
658      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
659      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
660        if (kUseFinger) {
661          std::atomic_thread_fence(std::memory_order_seq_cst);
662          if (reinterpret_cast<uintptr_t>(ref) >=
663              static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
664            return;
665          }
666        }
667        chunk_task_->MarkStackPush(ref);
668      }
669    }
670
671   private:
672    MarkStackTask<kUseFinger>* const chunk_task_;
673    MarkSweep* const mark_sweep_;
674  };
675
676  class ScanObjectParallelVisitor {
677   public:
678    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
679        : chunk_task_(chunk_task) {}
680
681    // No thread safety analysis since multiple threads will use this visitor.
682    void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
683        REQUIRES(Locks::heap_bitmap_lock_) {
684      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
685      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
686      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
687      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
688    }
689
690   private:
691    MarkStackTask<kUseFinger>* const chunk_task_;
692  };
693
694  virtual ~MarkStackTask() {
695    // Make sure that we have cleared our mark stack.
696    DCHECK_EQ(mark_stack_pos_, 0U);
697    if (kCountTasks) {
698      ++mark_sweep_->work_chunks_deleted_;
699    }
700  }
701
702  MarkSweep* const mark_sweep_;
703  ThreadPool* const thread_pool_;
704  // Thread local mark stack for this task.
705  StackReference<mirror::Object> mark_stack_[kMaxSize];
706  // Mark stack position.
707  size_t mark_stack_pos_;
708
709  ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
710      SHARED_REQUIRES(Locks::mutator_lock_) {
711    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
712      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
713      mark_stack_pos_ /= 2;
714      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
715                                     mark_stack_ + mark_stack_pos_);
716      thread_pool_->AddTask(Thread::Current(), task);
717    }
718    DCHECK(obj != nullptr);
719    DCHECK_LT(mark_stack_pos_, kMaxSize);
720    mark_stack_[mark_stack_pos_++].Assign(obj);
721  }
722
723  virtual void Finalize() {
724    delete this;
725  }
726
727  // Scans all of the objects
728  virtual void Run(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_)
729      REQUIRES(Locks::heap_bitmap_lock_) {
730    UNUSED(self);
731    ScanObjectParallelVisitor visitor(this);
732    // TODO: Tune this.
733    static const size_t kFifoSize = 4;
734    BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
735    for (;;) {
736      mirror::Object* obj = nullptr;
737      if (kUseMarkStackPrefetch) {
738        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
739          mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
740          DCHECK(mark_stack_obj != nullptr);
741          __builtin_prefetch(mark_stack_obj);
742          prefetch_fifo.push_back(mark_stack_obj);
743        }
744        if (UNLIKELY(prefetch_fifo.empty())) {
745          break;
746        }
747        obj = prefetch_fifo.front();
748        prefetch_fifo.pop_front();
749      } else {
750        if (UNLIKELY(mark_stack_pos_ == 0)) {
751          break;
752        }
753        obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
754      }
755      DCHECK(obj != nullptr);
756      visitor(obj);
757    }
758  }
759};
760
761class CardScanTask : public MarkStackTask<false> {
762 public:
763  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
764               accounting::ContinuousSpaceBitmap* bitmap,
765               uint8_t* begin, uint8_t* end, uint8_t minimum_age, size_t mark_stack_size,
766               StackReference<mirror::Object>* mark_stack_obj, bool clear_card)
767      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
768        bitmap_(bitmap),
769        begin_(begin),
770        end_(end),
771        minimum_age_(minimum_age), clear_card_(clear_card) {
772  }
773
774 protected:
775  accounting::ContinuousSpaceBitmap* const bitmap_;
776  uint8_t* const begin_;
777  uint8_t* const end_;
778  const uint8_t minimum_age_;
779  const bool clear_card_;
780
781  virtual void Finalize() {
782    delete this;
783  }
784
785  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
786    ScanObjectParallelVisitor visitor(this);
787    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
788    size_t cards_scanned = clear_card_ ?
789                           card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) :
790                           card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
791    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
792        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
793    // Finish by emptying our local mark stack.
794    MarkStackTask::Run(self);
795  }
796};
797
798size_t MarkSweep::GetThreadCount(bool paused) const {
799  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
800    return 1;
801  }
802  return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
803}
804
805void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
806  accounting::CardTable* card_table = GetHeap()->GetCardTable();
807  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
808  size_t thread_count = GetThreadCount(paused);
809  // The parallel version with only one thread is faster for card scanning, TODO: fix.
810  if (kParallelCardScan && thread_count > 1) {
811    Thread* self = Thread::Current();
812    // Can't have a different split for each space since multiple spaces can have their cards being
813    // scanned at the same time.
814    TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
815        GetTimings());
816    // Try to take some of the mark stack since we can pass this off to the worker tasks.
817    StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
818    StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
819    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
820    // Estimated number of work tasks we will create.
821    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
822    DCHECK_NE(mark_stack_tasks, 0U);
823    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
824                                             mark_stack_size / mark_stack_tasks + 1);
825    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
826      if (space->GetMarkBitmap() == nullptr) {
827        continue;
828      }
829      uint8_t* card_begin = space->Begin();
830      uint8_t* card_end = space->End();
831      // Align up the end address. For example, the image space's end
832      // may not be card-size-aligned.
833      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
834      DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
835      DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
836      // Calculate how many bytes of heap we will scan,
837      const size_t address_range = card_end - card_begin;
838      // Calculate how much address range each task gets.
839      const size_t card_delta = RoundUp(address_range / thread_count + 1,
840                                        accounting::CardTable::kCardSize);
841      // If paused and the space is neither zygote nor image space, we could clear the dirty
842      // cards to avoid accumulating them to increase card scanning load in the following GC
843      // cycles. We need to keep dirty cards of image space and zygote space in order to track
844      // references to the other spaces.
845      bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
846      // Create the worker tasks for this space.
847      while (card_begin != card_end) {
848        // Add a range of cards.
849        size_t addr_remaining = card_end - card_begin;
850        size_t card_increment = std::min(card_delta, addr_remaining);
851        // Take from the back of the mark stack.
852        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
853        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
854        mark_stack_end -= mark_stack_increment;
855        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
856        DCHECK_EQ(mark_stack_end, mark_stack_->End());
857        // Add the new task to the thread pool.
858        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
859                                      card_begin + card_increment, minimum_age,
860                                      mark_stack_increment, mark_stack_end, clear_card);
861        thread_pool->AddTask(self, task);
862        card_begin += card_increment;
863      }
864    }
865
866    // Note: the card scan below may dirty new cards (and scan them)
867    // as a side effect when a Reference object is encountered and
868    // queued during the marking. See b/11465268.
869    thread_pool->SetMaxActiveWorkers(thread_count - 1);
870    thread_pool->StartWorkers(self);
871    thread_pool->Wait(self, true, true);
872    thread_pool->StopWorkers(self);
873  } else {
874    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
875      if (space->GetMarkBitmap() != nullptr) {
876        // Image spaces are handled properly since live == marked for them.
877        const char* name = nullptr;
878        switch (space->GetGcRetentionPolicy()) {
879        case space::kGcRetentionPolicyNeverCollect:
880          name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
881          break;
882        case space::kGcRetentionPolicyFullCollect:
883          name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
884          break;
885        case space::kGcRetentionPolicyAlwaysCollect:
886          name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
887          break;
888        default:
889          LOG(FATAL) << "Unreachable";
890          UNREACHABLE();
891        }
892        TimingLogger::ScopedTiming t(name, GetTimings());
893        ScanObjectVisitor visitor(this);
894        bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
895        if (clear_card) {
896          card_table->Scan<true>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
897                                 minimum_age);
898        } else {
899          card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
900                                  minimum_age);
901        }
902      }
903    }
904  }
905}
906
907class RecursiveMarkTask : public MarkStackTask<false> {
908 public:
909  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
910                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
911      : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), bitmap_(bitmap), begin_(begin),
912        end_(end) {
913  }
914
915 protected:
916  accounting::ContinuousSpaceBitmap* const bitmap_;
917  const uintptr_t begin_;
918  const uintptr_t end_;
919
920  virtual void Finalize() {
921    delete this;
922  }
923
924  // Scans all of the objects
925  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
926    ScanObjectParallelVisitor visitor(this);
927    bitmap_->VisitMarkedRange(begin_, end_, visitor);
928    // Finish by emptying our local mark stack.
929    MarkStackTask::Run(self);
930  }
931};
932
933// Populates the mark stack based on the set of marked objects and
934// recursively marks until the mark stack is emptied.
935void MarkSweep::RecursiveMark() {
936  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
937  // RecursiveMark will build the lists of known instances of the Reference classes. See
938  // DelayReferenceReferent for details.
939  if (kUseRecursiveMark) {
940    const bool partial = GetGcType() == kGcTypePartial;
941    ScanObjectVisitor scan_visitor(this);
942    auto* self = Thread::Current();
943    ThreadPool* thread_pool = heap_->GetThreadPool();
944    size_t thread_count = GetThreadCount(false);
945    const bool parallel = kParallelRecursiveMark && thread_count > 1;
946    mark_stack_->Reset();
947    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
948      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
949          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
950        current_space_bitmap_ = space->GetMarkBitmap();
951        if (current_space_bitmap_ == nullptr) {
952          continue;
953        }
954        if (parallel) {
955          // We will use the mark stack the future.
956          // CHECK(mark_stack_->IsEmpty());
957          // This function does not handle heap end increasing, so we must use the space end.
958          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
959          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
960          atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
961
962          // Create a few worker tasks.
963          const size_t n = thread_count * 2;
964          while (begin != end) {
965            uintptr_t start = begin;
966            uintptr_t delta = (end - begin) / n;
967            delta = RoundUp(delta, KB);
968            if (delta < 16 * KB) delta = end - begin;
969            begin += delta;
970            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
971                                               begin);
972            thread_pool->AddTask(self, task);
973          }
974          thread_pool->SetMaxActiveWorkers(thread_count - 1);
975          thread_pool->StartWorkers(self);
976          thread_pool->Wait(self, true, true);
977          thread_pool->StopWorkers(self);
978        } else {
979          // This function does not handle heap end increasing, so we must use the space end.
980          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
981          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
982          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
983        }
984      }
985    }
986  }
987  ProcessMarkStack(false);
988}
989
990void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
991  ScanGrayObjects(paused, minimum_age);
992  ProcessMarkStack(paused);
993}
994
995void MarkSweep::ReMarkRoots() {
996  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
997  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
998  Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
999      kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1000  if (kVerifyRootsMarked) {
1001    TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1002    VerifyRootMarkedVisitor visitor(this);
1003    Runtime::Current()->VisitRoots(&visitor);
1004  }
1005}
1006
1007void MarkSweep::SweepSystemWeaks(Thread* self) {
1008  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1009  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1010  Runtime::Current()->SweepSystemWeaks(this);
1011}
1012
1013class VerifySystemWeakVisitor : public IsMarkedVisitor {
1014 public:
1015  explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1016
1017  virtual mirror::Object* IsMarked(mirror::Object* obj) OVERRIDE
1018      SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1019    mark_sweep_->VerifyIsLive(obj);
1020    return obj;
1021  }
1022
1023  MarkSweep* const mark_sweep_;
1024};
1025
1026void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1027  if (!heap_->GetLiveBitmap()->Test(obj)) {
1028    // TODO: Consider live stack? Has this code bitrotted?
1029    CHECK(!heap_->allocation_stack_->Contains(obj))
1030        << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1031  }
1032}
1033
1034void MarkSweep::VerifySystemWeaks() {
1035  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1036  // Verify system weaks, uses a special object visitor which returns the input object.
1037  VerifySystemWeakVisitor visitor(this);
1038  Runtime::Current()->SweepSystemWeaks(&visitor);
1039}
1040
1041class CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1042 public:
1043  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1044                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1045      : mark_sweep_(mark_sweep),
1046        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1047            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1048  }
1049
1050  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1051      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1052      REQUIRES(Locks::heap_bitmap_lock_) {
1053    for (size_t i = 0; i < count; ++i) {
1054      mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1055    }
1056  }
1057
1058  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1059                  const RootInfo& info ATTRIBUTE_UNUSED)
1060      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1061      REQUIRES(Locks::heap_bitmap_lock_) {
1062    for (size_t i = 0; i < count; ++i) {
1063      mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1064    }
1065  }
1066
1067  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1068    ATRACE_BEGIN("Marking thread roots");
1069    // Note: self is not necessarily equal to thread since thread may be suspended.
1070    Thread* const self = Thread::Current();
1071    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1072        << thread->GetState() << " thread " << thread << " self " << self;
1073    thread->VisitRoots(this);
1074    ATRACE_END();
1075    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1076      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
1077      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1078      ATRACE_END();
1079    }
1080    // If thread is a running mutator, then act on behalf of the garbage collector.
1081    // See the code in ThreadList::RunCheckpoint.
1082    if (thread->GetState() == kRunnable) {
1083      mark_sweep_->GetBarrier().Pass(self);
1084    }
1085  }
1086
1087 private:
1088  MarkSweep* const mark_sweep_;
1089  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1090};
1091
1092void MarkSweep::MarkRootsCheckpoint(Thread* self,
1093                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1094  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1095  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1096  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1097  // Request the check point is run on all threads returning a count of the threads that must
1098  // run through the barrier including self.
1099  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1100  // Release locks then wait for all mutator threads to pass the barrier.
1101  // If there are no threads to wait which implys that all the checkpoint functions are finished,
1102  // then no need to release locks.
1103  if (barrier_count == 0) {
1104    return;
1105  }
1106  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1107  Locks::mutator_lock_->SharedUnlock(self);
1108  {
1109    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1110    gc_barrier_->Increment(self, barrier_count);
1111  }
1112  Locks::mutator_lock_->SharedLock(self);
1113  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1114}
1115
1116void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1117  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1118  Thread* self = Thread::Current();
1119  mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1120      sweep_array_free_buffer_mem_map_->BaseBegin());
1121  size_t chunk_free_pos = 0;
1122  ObjectBytePair freed;
1123  ObjectBytePair freed_los;
1124  // How many objects are left in the array, modified after each space is swept.
1125  StackReference<mirror::Object>* objects = allocations->Begin();
1126  size_t count = allocations->Size();
1127  // Change the order to ensure that the non-moving space last swept as an optimization.
1128  std::vector<space::ContinuousSpace*> sweep_spaces;
1129  space::ContinuousSpace* non_moving_space = nullptr;
1130  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1131    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1132        space->GetLiveBitmap() != nullptr) {
1133      if (space == heap_->GetNonMovingSpace()) {
1134        non_moving_space = space;
1135      } else {
1136        sweep_spaces.push_back(space);
1137      }
1138    }
1139  }
1140  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1141  // the other alloc spaces as an optimization.
1142  if (non_moving_space != nullptr) {
1143    sweep_spaces.push_back(non_moving_space);
1144  }
1145  // Start by sweeping the continuous spaces.
1146  for (space::ContinuousSpace* space : sweep_spaces) {
1147    space::AllocSpace* alloc_space = space->AsAllocSpace();
1148    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1149    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1150    if (swap_bitmaps) {
1151      std::swap(live_bitmap, mark_bitmap);
1152    }
1153    StackReference<mirror::Object>* out = objects;
1154    for (size_t i = 0; i < count; ++i) {
1155      mirror::Object* const obj = objects[i].AsMirrorPtr();
1156      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1157        continue;
1158      }
1159      if (space->HasAddress(obj)) {
1160        // This object is in the space, remove it from the array and add it to the sweep buffer
1161        // if needed.
1162        if (!mark_bitmap->Test(obj)) {
1163          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1164            TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1165            freed.objects += chunk_free_pos;
1166            freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1167            chunk_free_pos = 0;
1168          }
1169          chunk_free_buffer[chunk_free_pos++] = obj;
1170        }
1171      } else {
1172        (out++)->Assign(obj);
1173      }
1174    }
1175    if (chunk_free_pos > 0) {
1176      TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1177      freed.objects += chunk_free_pos;
1178      freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1179      chunk_free_pos = 0;
1180    }
1181    // All of the references which space contained are no longer in the allocation stack, update
1182    // the count.
1183    count = out - objects;
1184  }
1185  // Handle the large object space.
1186  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1187  if (large_object_space != nullptr) {
1188    accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1189    accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1190    if (swap_bitmaps) {
1191      std::swap(large_live_objects, large_mark_objects);
1192    }
1193    for (size_t i = 0; i < count; ++i) {
1194      mirror::Object* const obj = objects[i].AsMirrorPtr();
1195      // Handle large objects.
1196      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1197        continue;
1198      }
1199      if (!large_mark_objects->Test(obj)) {
1200        ++freed_los.objects;
1201        freed_los.bytes += large_object_space->Free(self, obj);
1202      }
1203    }
1204  }
1205  {
1206    TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1207    RecordFree(freed);
1208    RecordFreeLOS(freed_los);
1209    t2.NewTiming("ResetStack");
1210    allocations->Reset();
1211  }
1212  sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1213}
1214
1215void MarkSweep::Sweep(bool swap_bitmaps) {
1216  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1217  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1218  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1219  {
1220    TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1221    // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1222    // knowing that new allocations won't be marked as live.
1223    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1224    heap_->MarkAllocStackAsLive(live_stack);
1225    live_stack->Reset();
1226    DCHECK(mark_stack_->IsEmpty());
1227  }
1228  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1229    if (space->IsContinuousMemMapAllocSpace()) {
1230      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1231      TimingLogger::ScopedTiming split(
1232          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1233      RecordFree(alloc_space->Sweep(swap_bitmaps));
1234    }
1235  }
1236  SweepLargeObjects(swap_bitmaps);
1237}
1238
1239void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1240  space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1241  if (los != nullptr) {
1242    TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1243    RecordFreeLOS(los->Sweep(swap_bitmaps));
1244  }
1245}
1246
1247// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1248// marked, put it on the appropriate list in the heap for later processing.
1249void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1250  if (kCountJavaLangRefs) {
1251    ++reference_count_;
1252  }
1253  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1254}
1255
1256class MarkVisitor {
1257 public:
1258  explicit MarkVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1259  }
1260
1261  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1262      ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1263      REQUIRES(Locks::heap_bitmap_lock_) {
1264    if (kCheckLocks) {
1265      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1266      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1267    }
1268    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1269  }
1270
1271 private:
1272  MarkSweep* const mark_sweep_;
1273};
1274
1275// Scans an object reference.  Determines the type of the reference
1276// and dispatches to a specialized scanning routine.
1277void MarkSweep::ScanObject(mirror::Object* obj) {
1278  MarkVisitor mark_visitor(this);
1279  DelayReferenceReferentVisitor ref_visitor(this);
1280  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1281}
1282
1283void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1284  Thread* self = Thread::Current();
1285  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1286  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1287                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1288  CHECK_GT(chunk_size, 0U);
1289  // Split the current mark stack up into work tasks.
1290  for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1291    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1292    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1293    it += delta;
1294  }
1295  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1296  thread_pool->StartWorkers(self);
1297  thread_pool->Wait(self, true, true);
1298  thread_pool->StopWorkers(self);
1299  mark_stack_->Reset();
1300  CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1301           work_chunks_deleted_.LoadSequentiallyConsistent())
1302      << " some of the work chunks were leaked";
1303}
1304
1305// Scan anything that's on the mark stack.
1306void MarkSweep::ProcessMarkStack(bool paused) {
1307  TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1308  size_t thread_count = GetThreadCount(paused);
1309  if (kParallelProcessMarkStack && thread_count > 1 &&
1310      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1311    ProcessMarkStackParallel(thread_count);
1312  } else {
1313    // TODO: Tune this.
1314    static const size_t kFifoSize = 4;
1315    BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1316    for (;;) {
1317      mirror::Object* obj = nullptr;
1318      if (kUseMarkStackPrefetch) {
1319        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1320          mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1321          DCHECK(mark_stack_obj != nullptr);
1322          __builtin_prefetch(mark_stack_obj);
1323          prefetch_fifo.push_back(mark_stack_obj);
1324        }
1325        if (prefetch_fifo.empty()) {
1326          break;
1327        }
1328        obj = prefetch_fifo.front();
1329        prefetch_fifo.pop_front();
1330      } else {
1331        if (mark_stack_->IsEmpty()) {
1332          break;
1333        }
1334        obj = mark_stack_->PopBack();
1335      }
1336      DCHECK(obj != nullptr);
1337      ScanObject(obj);
1338    }
1339  }
1340}
1341
1342inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1343  if (immune_region_.ContainsObject(object)) {
1344    return object;
1345  }
1346  if (current_space_bitmap_->HasAddress(object)) {
1347    return current_space_bitmap_->Test(object) ? object : nullptr;
1348  }
1349  return mark_bitmap_->Test(object) ? object : nullptr;
1350}
1351
1352void MarkSweep::FinishPhase() {
1353  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1354  if (kCountScannedTypes) {
1355    VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1356        << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1357  }
1358  if (kCountTasks) {
1359    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1360  }
1361  if (kMeasureOverhead) {
1362    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1363  }
1364  if (kProfileLargeObjects) {
1365    VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1366        << " marked " << large_object_mark_.LoadRelaxed();
1367  }
1368  if (kCountJavaLangRefs) {
1369    VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1370  }
1371  if (kCountMarkedObjects) {
1372    VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1373        << " immune=" <<  mark_immune_count_.LoadRelaxed()
1374        << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1375        << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1376  }
1377  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1378  mark_stack_->Reset();
1379  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1380  heap_->ClearMarkedObjects();
1381}
1382
1383void MarkSweep::RevokeAllThreadLocalBuffers() {
1384  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1385    // If concurrent, rosalloc thread-local buffers are revoked at the
1386    // thread checkpoint. Bump pointer space thread-local buffers must
1387    // not be in use.
1388    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1389  } else {
1390    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1391    GetHeap()->RevokeAllThreadLocalBuffers();
1392  }
1393}
1394
1395}  // namespace collector
1396}  // namespace gc
1397}  // namespace art
1398