mark_sweep.cc revision 958291c7afe723d846a39539fd00410c102485f3
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/space/image_space.h"
34#include "gc/space/large_object_space.h"
35#include "gc/space/space-inl.h"
36#include "indirect_reference_table.h"
37#include "intern_table.h"
38#include "jni_internal.h"
39#include "monitor.h"
40#include "mark_sweep-inl.h"
41#include "mirror/art_field.h"
42#include "mirror/art_field-inl.h"
43#include "mirror/class-inl.h"
44#include "mirror/class_loader.h"
45#include "mirror/dex_cache.h"
46#include "mirror/object-inl.h"
47#include "mirror/object_array.h"
48#include "mirror/object_array-inl.h"
49#include "runtime.h"
50#include "thread-inl.h"
51#include "thread_list.h"
52#include "verifier/method_verifier.h"
53
54using ::art::mirror::ArtField;
55using ::art::mirror::Class;
56using ::art::mirror::Object;
57using ::art::mirror::ObjectArray;
58
59namespace art {
60namespace gc {
61namespace collector {
62
63// Performance options.
64constexpr bool kUseRecursiveMark = false;
65constexpr bool kUseMarkStackPrefetch = true;
66constexpr size_t kSweepArrayChunkFreeSize = 1024;
67
68// Parallelism options.
69constexpr bool kParallelCardScan = true;
70constexpr bool kParallelRecursiveMark = true;
71// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
72// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
73// having this can add overhead in ProcessReferences since we may end up doing many calls of
74// ProcessMarkStack with very small mark stacks.
75constexpr size_t kMinimumParallelMarkStackSize = 128;
76constexpr bool kParallelProcessMarkStack = true;
77
78// Profiling and information flags.
79constexpr bool kCountClassesMarked = false;
80constexpr bool kProfileLargeObjects = false;
81constexpr bool kMeasureOverhead = false;
82constexpr bool kCountTasks = false;
83constexpr bool kCountJavaLangRefs = false;
84
85// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
86constexpr bool kCheckLocks = kDebugLocking;
87
88void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
89  // Bind live to mark bitmap if necessary.
90  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
91    BindLiveToMarkBitmap(space);
92  }
93
94  // Add the space to the immune region.
95  if (immune_begin_ == NULL) {
96    DCHECK(immune_end_ == NULL);
97    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
98                   reinterpret_cast<Object*>(space->End()));
99  } else {
100    const space::ContinuousSpace* prev_space = nullptr;
101    // Find out if the previous space is immune.
102    for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
103      if (cur_space == space) {
104        break;
105      }
106      prev_space = cur_space;
107    }
108    // If previous space was immune, then extend the immune region. Relies on continuous spaces
109    // being sorted by Heap::AddContinuousSpace.
110    if (prev_space != NULL &&
111        immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
112        immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
113      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
114      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
115    }
116  }
117}
118
119void MarkSweep::BindBitmaps() {
120  timings_.StartSplit("BindBitmaps");
121  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
122  // Mark all of the spaces we never collect as immune.
123  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
124    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
125      ImmuneSpace(space);
126    }
127  }
128  timings_.EndSplit();
129}
130
131MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
132    : GarbageCollector(heap,
133                       name_prefix + (name_prefix.empty() ? "" : " ") +
134                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
135      current_mark_bitmap_(NULL),
136      java_lang_Class_(NULL),
137      mark_stack_(NULL),
138      immune_begin_(NULL),
139      immune_end_(NULL),
140      soft_reference_list_(NULL),
141      weak_reference_list_(NULL),
142      finalizer_reference_list_(NULL),
143      phantom_reference_list_(NULL),
144      cleared_reference_list_(NULL),
145      gc_barrier_(new Barrier(0)),
146      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
147      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
148      is_concurrent_(is_concurrent),
149      clear_soft_references_(false) {
150}
151
152void MarkSweep::InitializePhase() {
153  timings_.Reset();
154  base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
155  mark_stack_ = heap_->mark_stack_.get();
156  DCHECK(mark_stack_ != nullptr);
157  SetImmuneRange(nullptr, nullptr);
158  soft_reference_list_ = nullptr;
159  weak_reference_list_ = nullptr;
160  finalizer_reference_list_ = nullptr;
161  phantom_reference_list_ = nullptr;
162  cleared_reference_list_ = nullptr;
163  freed_bytes_ = 0;
164  freed_large_object_bytes_ = 0;
165  freed_objects_ = 0;
166  freed_large_objects_ = 0;
167  class_count_ = 0;
168  array_count_ = 0;
169  other_count_ = 0;
170  large_object_test_ = 0;
171  large_object_mark_ = 0;
172  classes_marked_ = 0;
173  overhead_time_ = 0;
174  work_chunks_created_ = 0;
175  work_chunks_deleted_ = 0;
176  reference_count_ = 0;
177  java_lang_Class_ = Class::GetJavaLangClass();
178  CHECK(java_lang_Class_ != nullptr);
179
180  FindDefaultMarkBitmap();
181
182  // Do any pre GC verification.
183  timings_.NewSplit("PreGcVerification");
184  heap_->PreGcVerification(this);
185}
186
187void MarkSweep::ProcessReferences(Thread* self) {
188  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
189  ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
190                    &finalizer_reference_list_, &phantom_reference_list_);
191}
192
193bool MarkSweep::HandleDirtyObjectsPhase() {
194  base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
195  Thread* self = Thread::Current();
196  Locks::mutator_lock_->AssertExclusiveHeld(self);
197
198  {
199    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
200
201    // Re-mark root set.
202    ReMarkRoots();
203
204    // Scan dirty objects, this is only required if we are not doing concurrent GC.
205    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
206  }
207
208  ProcessReferences(self);
209
210  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
211  if (GetHeap()->verify_missing_card_marks_) {
212    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
213    // This second sweep makes sure that we don't have any objects in the live stack which point to
214    // freed objects. These cause problems since their references may be previously freed objects.
215    SweepArray(GetHeap()->allocation_stack_.get(), false);
216  }
217  return true;
218}
219
220bool MarkSweep::IsConcurrent() const {
221  return is_concurrent_;
222}
223
224void MarkSweep::MarkingPhase() {
225  base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
226  Heap* heap = GetHeap();
227  Thread* self = Thread::Current();
228
229  BindBitmaps();
230  FindDefaultMarkBitmap();
231
232  // Process dirty cards and add dirty cards to mod union tables.
233  heap->ProcessCards(timings_);
234
235  // Need to do this before the checkpoint since we don't want any threads to add references to
236  // the live stack during the recursive mark.
237  timings_.NewSplit("SwapStacks");
238  heap->SwapStacks();
239
240  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
241  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
242    // If we exclusively hold the mutator lock, all threads must be suspended.
243    MarkRoots();
244  } else {
245    MarkThreadRoots(self);
246    MarkNonThreadRoots();
247  }
248  MarkConcurrentRoots();
249
250  heap->UpdateAndMarkModUnion(this, timings_, GetGcType());
251  MarkReachableObjects();
252}
253
254void MarkSweep::MarkThreadRoots(Thread* self) {
255  MarkRootsCheckpoint(self);
256}
257
258void MarkSweep::MarkReachableObjects() {
259  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
260  // knowing that new allocations won't be marked as live.
261  timings_.StartSplit("MarkStackAsLive");
262  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
263  heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
264                        heap_->large_object_space_->GetLiveObjects(), live_stack);
265  live_stack->Reset();
266  timings_.EndSplit();
267  // Recursively mark all the non-image bits set in the mark bitmap.
268  RecursiveMark();
269}
270
271void MarkSweep::ReclaimPhase() {
272  base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
273  Thread* self = Thread::Current();
274
275  if (!IsConcurrent()) {
276    base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
277    ProcessReferences(self);
278  } else {
279    base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
280    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
281    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
282    // The allocation stack contains things allocated since the start of the GC. These may have been
283    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
284    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
285    // collection.
286    // There is a race here which is safely handled. Another thread such as the hprof could
287    // have flushed the alloc stack after we resumed the threads. This is safe however, since
288    // reseting the allocation stack zeros it out with madvise. This means that we will either
289    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
290    // first place.
291    mirror::Object** end = allocation_stack->End();
292    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
293      const Object* obj = *it;
294      if (obj != NULL) {
295        UnMarkObjectNonNull(obj);
296      }
297    }
298  }
299
300  // Before freeing anything, lets verify the heap.
301  if (kIsDebugBuild) {
302    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
303    VerifyImageRoots();
304  }
305  timings_.StartSplit("PreSweepingGcVerification");
306  heap_->PreSweepingGcVerification(this);
307  timings_.EndSplit();
308
309  {
310    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
311
312    // Reclaim unmarked objects.
313    Sweep(false);
314
315    // Swap the live and mark bitmaps for each space which we modified space. This is an
316    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
317    // bitmaps.
318    timings_.StartSplit("SwapBitmaps");
319    SwapBitmaps();
320    timings_.EndSplit();
321
322    // Unbind the live and mark bitmaps.
323    UnBindBitmaps();
324  }
325}
326
327void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
328  immune_begin_ = begin;
329  immune_end_ = end;
330}
331
332void MarkSweep::FindDefaultMarkBitmap() {
333  base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
334  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
335    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
336      current_mark_bitmap_ = space->GetMarkBitmap();
337      CHECK(current_mark_bitmap_ != NULL);
338      return;
339    }
340  }
341  GetHeap()->DumpSpaces();
342  LOG(FATAL) << "Could not find a default mark bitmap";
343}
344
345void MarkSweep::ExpandMarkStack() {
346  ResizeMarkStack(mark_stack_->Capacity() * 2);
347}
348
349void MarkSweep::ResizeMarkStack(size_t new_size) {
350  // Rare case, no need to have Thread::Current be a parameter.
351  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
352    // Someone else acquired the lock and expanded the mark stack before us.
353    return;
354  }
355  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
356  CHECK_LE(mark_stack_->Size(), new_size);
357  mark_stack_->Resize(new_size);
358  for (const auto& obj : temp) {
359    mark_stack_->PushBack(obj);
360  }
361}
362
363inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
364  DCHECK(obj != NULL);
365  if (MarkObjectParallel(obj)) {
366    MutexLock mu(Thread::Current(), mark_stack_lock_);
367    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
368      ExpandMarkStack();
369    }
370    // The object must be pushed on to the mark stack.
371    mark_stack_->PushBack(const_cast<Object*>(obj));
372  }
373}
374
375inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
376  DCHECK(!IsImmune(obj));
377  // Try to take advantage of locality of references within a space, failing this find the space
378  // the hard way.
379  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
380  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
381    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
382    if (LIKELY(new_bitmap != NULL)) {
383      object_bitmap = new_bitmap;
384    } else {
385      MarkLargeObject(obj, false);
386      return;
387    }
388  }
389
390  DCHECK(object_bitmap->HasAddress(obj));
391  object_bitmap->Clear(obj);
392}
393
394inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
395  DCHECK(obj != NULL);
396
397  if (IsImmune(obj)) {
398    DCHECK(IsMarked(obj));
399    return;
400  }
401
402  // Try to take advantage of locality of references within a space, failing this find the space
403  // the hard way.
404  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
405  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
406    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
407    if (LIKELY(new_bitmap != NULL)) {
408      object_bitmap = new_bitmap;
409    } else {
410      MarkLargeObject(obj, true);
411      return;
412    }
413  }
414
415  // This object was not previously marked.
416  if (!object_bitmap->Test(obj)) {
417    object_bitmap->Set(obj);
418    // Lock is not needed but is here anyways to please annotalysis.
419    MutexLock mu(Thread::Current(), mark_stack_lock_);
420    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
421      ExpandMarkStack();
422    }
423    // The object must be pushed on to the mark stack.
424    mark_stack_->PushBack(const_cast<Object*>(obj));
425  }
426}
427
428// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
429bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
430  // TODO: support >1 discontinuous space.
431  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
432  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
433  if (kProfileLargeObjects) {
434    ++large_object_test_;
435  }
436  if (UNLIKELY(!large_objects->Test(obj))) {
437    if (!large_object_space->Contains(obj)) {
438      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
439      LOG(ERROR) << "Attempting see if it's a bad root";
440      VerifyRoots();
441      LOG(FATAL) << "Can't mark bad root";
442    }
443    if (kProfileLargeObjects) {
444      ++large_object_mark_;
445    }
446    if (set) {
447      large_objects->Set(obj);
448    } else {
449      large_objects->Clear(obj);
450    }
451    return true;
452  }
453  return false;
454}
455
456inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
457  DCHECK(obj != NULL);
458
459  if (IsImmune(obj)) {
460    DCHECK(IsMarked(obj));
461    return false;
462  }
463
464  // Try to take advantage of locality of references within a space, failing this find the space
465  // the hard way.
466  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
467  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
468    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
469    if (new_bitmap != NULL) {
470      object_bitmap = new_bitmap;
471    } else {
472      // TODO: Remove the Thread::Current here?
473      // TODO: Convert this to some kind of atomic marking?
474      MutexLock mu(Thread::Current(), large_object_lock_);
475      return MarkLargeObject(obj, true);
476    }
477  }
478
479  // Return true if the object was not previously marked.
480  return !object_bitmap->AtomicTestAndSet(obj);
481}
482
483// Used to mark objects when recursing.  Recursion is done by moving
484// the finger across the bitmaps in address order and marking child
485// objects.  Any newly-marked objects whose addresses are lower than
486// the finger won't be visited by the bitmap scan, so those objects
487// need to be added to the mark stack.
488inline void MarkSweep::MarkObject(const Object* obj) {
489  if (obj != NULL) {
490    MarkObjectNonNull(obj);
491  }
492}
493
494void MarkSweep::MarkRoot(const Object* obj) {
495  if (obj != NULL) {
496    MarkObjectNonNull(obj);
497  }
498}
499
500void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
501  DCHECK(root != NULL);
502  DCHECK(arg != NULL);
503  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(root);
504}
505
506void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
507  DCHECK(root != NULL);
508  DCHECK(arg != NULL);
509  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
510  mark_sweep->MarkObjectNonNull(root);
511}
512
513void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
514  DCHECK(root != NULL);
515  DCHECK(arg != NULL);
516  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
517  mark_sweep->MarkObjectNonNull(root);
518}
519
520void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
521                                   const StackVisitor* visitor) {
522  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
523}
524
525void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
526  // See if the root is on any space bitmap.
527  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
528    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
529    if (!large_object_space->Contains(root)) {
530      LOG(ERROR) << "Found invalid root: " << root;
531      if (visitor != NULL) {
532        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
533      }
534    }
535  }
536}
537
538void MarkSweep::VerifyRoots() {
539  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
540}
541
542// Marks all objects in the root set.
543void MarkSweep::MarkRoots() {
544  timings_.StartSplit("MarkRoots");
545  Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
546  timings_.EndSplit();
547}
548
549void MarkSweep::MarkNonThreadRoots() {
550  timings_.StartSplit("MarkNonThreadRoots");
551  Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
552  timings_.EndSplit();
553}
554
555void MarkSweep::MarkConcurrentRoots() {
556  timings_.StartSplit("MarkConcurrentRoots");
557  // Visit all runtime roots and clear dirty flags.
558  Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
559  timings_.EndSplit();
560}
561
562void MarkSweep::CheckObject(const Object* obj) {
563  DCHECK(obj != NULL);
564  VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset,
565      bool is_static) NO_THREAD_SAFETY_ANALYSIS {
566    Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
567    CheckReference(obj, ref, offset, is_static);
568  });
569}
570
571void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
572  DCHECK(root != NULL);
573  DCHECK(arg != NULL);
574  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
575  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
576  mark_sweep->CheckObject(root);
577}
578
579void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
580  CHECK(space->IsDlMallocSpace());
581  space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
582  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
583  accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
584  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
585  alloc_space->temp_bitmap_.reset(mark_bitmap);
586  alloc_space->mark_bitmap_.reset(live_bitmap);
587}
588
589class ScanObjectVisitor {
590 public:
591  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
592      : mark_sweep_(mark_sweep) {}
593
594  // TODO: Fixme when anotatalysis works with visitors.
595  void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
596    if (kCheckLocks) {
597      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
598      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
599    }
600    mark_sweep_->ScanObject(obj);
601  }
602
603 private:
604  MarkSweep* const mark_sweep_;
605};
606
607template <bool kUseFinger = false>
608class MarkStackTask : public Task {
609 public:
610  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
611                const Object** mark_stack)
612      : mark_sweep_(mark_sweep),
613        thread_pool_(thread_pool),
614        mark_stack_pos_(mark_stack_size) {
615    // We may have to copy part of an existing mark stack when another mark stack overflows.
616    if (mark_stack_size != 0) {
617      DCHECK(mark_stack != NULL);
618      // TODO: Check performance?
619      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
620    }
621    if (kCountTasks) {
622      ++mark_sweep_->work_chunks_created_;
623    }
624  }
625
626  static const size_t kMaxSize = 1 * KB;
627
628 protected:
629  class ScanObjectParallelVisitor {
630   public:
631    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
632        : chunk_task_(chunk_task) {}
633
634    void operator()(const Object* obj) const {
635      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
636      mark_sweep->ScanObjectVisit(obj,
637          [mark_sweep, this](const Object* /* obj */, const Object* ref,
638              const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE {
639        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
640          if (kUseFinger) {
641            android_memory_barrier();
642            if (reinterpret_cast<uintptr_t>(ref) >=
643                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
644              return;
645            }
646          }
647          chunk_task_->MarkStackPush(ref);
648        }
649      });
650    }
651
652   private:
653    MarkStackTask<kUseFinger>* const chunk_task_;
654  };
655
656  virtual ~MarkStackTask() {
657    // Make sure that we have cleared our mark stack.
658    DCHECK_EQ(mark_stack_pos_, 0U);
659    if (kCountTasks) {
660      ++mark_sweep_->work_chunks_deleted_;
661    }
662  }
663
664  MarkSweep* const mark_sweep_;
665  ThreadPool* const thread_pool_;
666  // Thread local mark stack for this task.
667  const Object* mark_stack_[kMaxSize];
668  // Mark stack position.
669  size_t mark_stack_pos_;
670
671  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
672    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
673      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
674      mark_stack_pos_ /= 2;
675      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
676                                     mark_stack_ + mark_stack_pos_);
677      thread_pool_->AddTask(Thread::Current(), task);
678    }
679    DCHECK(obj != nullptr);
680    DCHECK(mark_stack_pos_ < kMaxSize);
681    mark_stack_[mark_stack_pos_++] = obj;
682  }
683
684  virtual void Finalize() {
685    delete this;
686  }
687
688  // Scans all of the objects
689  virtual void Run(Thread* self) {
690    ScanObjectParallelVisitor visitor(this);
691    // TODO: Tune this.
692    static const size_t kFifoSize = 4;
693    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
694    for (;;) {
695      const Object* obj = NULL;
696      if (kUseMarkStackPrefetch) {
697        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
698          const Object* obj = mark_stack_[--mark_stack_pos_];
699          DCHECK(obj != NULL);
700          __builtin_prefetch(obj);
701          prefetch_fifo.push_back(obj);
702        }
703        if (UNLIKELY(prefetch_fifo.empty())) {
704          break;
705        }
706        obj = prefetch_fifo.front();
707        prefetch_fifo.pop_front();
708      } else {
709        if (UNLIKELY(mark_stack_pos_ == 0)) {
710          break;
711        }
712        obj = mark_stack_[--mark_stack_pos_];
713      }
714      DCHECK(obj != NULL);
715      visitor(obj);
716    }
717  }
718};
719
720class CardScanTask : public MarkStackTask<false> {
721 public:
722  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
723               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
724               const Object** mark_stack_obj)
725      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
726        bitmap_(bitmap),
727        begin_(begin),
728        end_(end),
729        minimum_age_(minimum_age) {
730  }
731
732 protected:
733  accounting::SpaceBitmap* const bitmap_;
734  byte* const begin_;
735  byte* const end_;
736  const byte minimum_age_;
737
738  virtual void Finalize() {
739    delete this;
740  }
741
742  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
743    ScanObjectParallelVisitor visitor(this);
744    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
745    card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
746    // Finish by emptying our local mark stack.
747    MarkStackTask::Run(self);
748  }
749};
750
751size_t MarkSweep::GetThreadCount(bool paused) const {
752  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
753    return 0;
754  }
755  if (paused) {
756    return heap_->GetParallelGCThreadCount() + 1;
757  } else {
758    return heap_->GetConcGCThreadCount() + 1;
759  }
760}
761
762void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
763  accounting::CardTable* card_table = GetHeap()->GetCardTable();
764  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
765  size_t thread_count = GetThreadCount(paused);
766  // The parallel version with only one thread is faster for card scanning, TODO: fix.
767  if (kParallelCardScan && thread_count > 0) {
768    Thread* self = Thread::Current();
769    // Can't have a different split for each space since multiple spaces can have their cards being
770    // scanned at the same time.
771    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
772    // Try to take some of the mark stack since we can pass this off to the worker tasks.
773    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
774    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
775    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
776    // Estimated number of work tasks we will create.
777    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
778    DCHECK_NE(mark_stack_tasks, 0U);
779    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
780                                             mark_stack_size / mark_stack_tasks + 1);
781    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
782      byte* card_begin = space->Begin();
783      byte* card_end = space->End();
784      // Calculate how many bytes of heap we will scan,
785      const size_t address_range = card_end - card_begin;
786      // Calculate how much address range each task gets.
787      const size_t card_delta = RoundUp(address_range / thread_count + 1,
788                                        accounting::CardTable::kCardSize);
789      // Create the worker tasks for this space.
790      while (card_begin != card_end) {
791        // Add a range of cards.
792        size_t addr_remaining = card_end - card_begin;
793        size_t card_increment = std::min(card_delta, addr_remaining);
794        // Take from the back of the mark stack.
795        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
796        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
797        mark_stack_end -= mark_stack_increment;
798        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
799        DCHECK_EQ(mark_stack_end, mark_stack_->End());
800        // Add the new task to the thread pool.
801        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
802                                      card_begin + card_increment, minimum_age,
803                                      mark_stack_increment, mark_stack_end);
804        thread_pool->AddTask(self, task);
805        card_begin += card_increment;
806      }
807    }
808    thread_pool->SetMaxActiveWorkers(thread_count - 1);
809    thread_pool->StartWorkers(self);
810    thread_pool->Wait(self, true, true);
811    thread_pool->StopWorkers(self);
812    timings_.EndSplit();
813  } else {
814    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
815      // Image spaces are handled properly since live == marked for them.
816      switch (space->GetGcRetentionPolicy()) {
817        case space::kGcRetentionPolicyNeverCollect:
818          timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
819              "ScanGrayImageSpaceObjects");
820          break;
821        case space::kGcRetentionPolicyFullCollect:
822          timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
823              "ScanGrayZygoteSpaceObjects");
824          break;
825        case space::kGcRetentionPolicyAlwaysCollect:
826          timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
827              "ScanGrayAllocSpaceObjects");
828          break;
829        }
830      ScanObjectVisitor visitor(this);
831      card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
832      timings_.EndSplit();
833    }
834  }
835}
836
837void MarkSweep::VerifyImageRoots() {
838  // Verify roots ensures that all the references inside the image space point
839  // objects which are either in the image space or marked objects in the alloc
840  // space
841  timings_.StartSplit("VerifyImageRoots");
842  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
843    if (space->IsImageSpace()) {
844      space::ImageSpace* image_space = space->AsImageSpace();
845      uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
846      uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
847      accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
848      DCHECK(live_bitmap != NULL);
849      live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
850        if (kCheckLocks) {
851          Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
852        }
853        DCHECK(obj != NULL);
854        CheckObject(obj);
855      });
856    }
857  }
858  timings_.EndSplit();
859}
860
861class RecursiveMarkTask : public MarkStackTask<false> {
862 public:
863  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
864                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
865      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
866        bitmap_(bitmap),
867        begin_(begin),
868        end_(end) {
869  }
870
871 protected:
872  accounting::SpaceBitmap* const bitmap_;
873  const uintptr_t begin_;
874  const uintptr_t end_;
875
876  virtual void Finalize() {
877    delete this;
878  }
879
880  // Scans all of the objects
881  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
882    ScanObjectParallelVisitor visitor(this);
883    bitmap_->VisitMarkedRange(begin_, end_, visitor);
884    // Finish by emptying our local mark stack.
885    MarkStackTask::Run(self);
886  }
887};
888
889// Populates the mark stack based on the set of marked objects and
890// recursively marks until the mark stack is emptied.
891void MarkSweep::RecursiveMark() {
892  base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
893  // RecursiveMark will build the lists of known instances of the Reference classes.
894  // See DelayReferenceReferent for details.
895  CHECK(soft_reference_list_ == NULL);
896  CHECK(weak_reference_list_ == NULL);
897  CHECK(finalizer_reference_list_ == NULL);
898  CHECK(phantom_reference_list_ == NULL);
899  CHECK(cleared_reference_list_ == NULL);
900
901  if (kUseRecursiveMark) {
902    const bool partial = GetGcType() == kGcTypePartial;
903    ScanObjectVisitor scan_visitor(this);
904    auto* self = Thread::Current();
905    ThreadPool* thread_pool = heap_->GetThreadPool();
906    size_t thread_count = GetThreadCount(false);
907    const bool parallel = kParallelRecursiveMark && thread_count > 1;
908    mark_stack_->Reset();
909    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
910      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
911          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
912        current_mark_bitmap_ = space->GetMarkBitmap();
913        if (current_mark_bitmap_ == NULL) {
914          GetHeap()->DumpSpaces();
915          LOG(FATAL) << "invalid bitmap";
916        }
917        if (parallel) {
918          // We will use the mark stack the future.
919          // CHECK(mark_stack_->IsEmpty());
920          // This function does not handle heap end increasing, so we must use the space end.
921          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
922          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
923          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
924
925          // Create a few worker tasks.
926          const size_t n = thread_count * 2;
927          while (begin != end) {
928            uintptr_t start = begin;
929            uintptr_t delta = (end - begin) / n;
930            delta = RoundUp(delta, KB);
931            if (delta < 16 * KB) delta = end - begin;
932            begin += delta;
933            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
934                                               begin);
935            thread_pool->AddTask(self, task);
936          }
937          thread_pool->SetMaxActiveWorkers(thread_count - 1);
938          thread_pool->StartWorkers(self);
939          thread_pool->Wait(self, true, true);
940          thread_pool->StopWorkers(self);
941        } else {
942          // This function does not handle heap end increasing, so we must use the space end.
943          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
944          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
945          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
946        }
947      }
948    }
949  }
950  ProcessMarkStack(false);
951}
952
953bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
954  return
955      reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) ||
956      !reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object);
957}
958
959void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
960  ScanGrayObjects(paused, minimum_age);
961  ProcessMarkStack(paused);
962}
963
964void MarkSweep::ReMarkRoots() {
965  timings_.StartSplit("ReMarkRoots");
966  Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
967  timings_.EndSplit();
968}
969
970void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
971  JavaVMExt* vm = Runtime::Current()->GetJavaVM();
972  WriterMutexLock mu(Thread::Current(), vm->weak_globals_lock);
973  for (const Object** entry : vm->weak_globals) {
974    if (!is_marked(*entry, arg)) {
975      *entry = kClearedJniWeakGlobal;
976    }
977  }
978}
979
980struct ArrayMarkedCheck {
981  accounting::ObjectStack* live_stack;
982  MarkSweep* mark_sweep;
983};
984
985// Either marked or not live.
986bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
987  ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
988  if (array_check->mark_sweep->IsMarked(object)) {
989    return true;
990  }
991  accounting::ObjectStack* live_stack = array_check->live_stack;
992  return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End();
993}
994
995void MarkSweep::SweepSystemWeaksArray(accounting::ObjectStack* allocations) {
996  Runtime* runtime = Runtime::Current();
997  // The callbacks check
998  // !is_marked where is_marked is the callback but we want
999  // !IsMarked && IsLive
1000  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
1001  // Or for swapped (IsLive || !IsMarked).
1002
1003  timings_.StartSplit("SweepSystemWeaksArray");
1004  ArrayMarkedCheck visitor;
1005  visitor.live_stack = allocations;
1006  visitor.mark_sweep = this;
1007  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor);
1008  runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor);
1009  SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor);
1010  timings_.EndSplit();
1011}
1012
1013void MarkSweep::SweepSystemWeaks() {
1014  Runtime* runtime = Runtime::Current();
1015  // The callbacks check
1016  // !is_marked where is_marked is the callback but we want
1017  // !IsMarked && IsLive
1018  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
1019  // Or for swapped (IsLive || !IsMarked).
1020  timings_.StartSplit("SweepSystemWeaks");
1021  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
1022  runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
1023  SweepJniWeakGlobals(IsMarkedCallback, this);
1024  timings_.EndSplit();
1025}
1026
1027bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
1028  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1029  // We don't actually want to sweep the object, so lets return "marked"
1030  return true;
1031}
1032
1033void MarkSweep::VerifyIsLive(const Object* obj) {
1034  Heap* heap = GetHeap();
1035  if (!heap->GetLiveBitmap()->Test(obj)) {
1036    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1037    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1038      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1039          heap->allocation_stack_->End()) {
1040        // Object not found!
1041        heap->DumpSpaces();
1042        LOG(FATAL) << "Found dead object " << obj;
1043      }
1044    }
1045  }
1046}
1047
1048void MarkSweep::VerifySystemWeaks() {
1049  Runtime* runtime = Runtime::Current();
1050  // Verify system weaks, uses a special IsMarked callback which always returns true.
1051  runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
1052  runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
1053
1054  JavaVMExt* vm = runtime->GetJavaVM();
1055  ReaderMutexLock mu(Thread::Current(), vm->weak_globals_lock);
1056  for (const Object** entry : vm->weak_globals) {
1057    VerifyIsLive(*entry);
1058  }
1059}
1060
1061struct SweepCallbackContext {
1062  MarkSweep* mark_sweep;
1063  space::AllocSpace* space;
1064  Thread* self;
1065};
1066
1067class CheckpointMarkThreadRoots : public Closure {
1068 public:
1069  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1070
1071  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1072    // Note: self is not necessarily equal to thread since thread may be suspended.
1073    Thread* self = Thread::Current();
1074    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1075        << thread->GetState() << " thread " << thread << " self " << self;
1076    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1077    mark_sweep_->GetBarrier().Pass(self);
1078  }
1079
1080 private:
1081  MarkSweep* mark_sweep_;
1082};
1083
1084void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1085  CheckpointMarkThreadRoots check_point(this);
1086  timings_.StartSplit("MarkRootsCheckpoint");
1087  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1088  // Request the check point is run on all threads returning a count of the threads that must
1089  // run through the barrier including self.
1090  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1091  // Release locks then wait for all mutator threads to pass the barrier.
1092  // TODO: optimize to not release locks when there are no threads to wait for.
1093  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1094  Locks::mutator_lock_->SharedUnlock(self);
1095  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1096  CHECK_EQ(old_state, kWaitingPerformingGc);
1097  gc_barrier_->Increment(self, barrier_count);
1098  self->SetState(kWaitingPerformingGc);
1099  Locks::mutator_lock_->SharedLock(self);
1100  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1101  timings_.EndSplit();
1102}
1103
1104void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1105  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1106  MarkSweep* mark_sweep = context->mark_sweep;
1107  Heap* heap = mark_sweep->GetHeap();
1108  space::AllocSpace* space = context->space;
1109  Thread* self = context->self;
1110  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1111  // Use a bulk free, that merges consecutive objects before freeing or free per object?
1112  // Documentation suggests better free performance with merging, but this may be at the expensive
1113  // of allocation.
1114  size_t freed_objects = num_ptrs;
1115  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1116  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1117  heap->RecordFree(freed_objects, freed_bytes);
1118  mark_sweep->freed_objects_.fetch_add(freed_objects);
1119  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1120}
1121
1122void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1123  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1124  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1125  Heap* heap = context->mark_sweep->GetHeap();
1126  // We don't free any actual memory to avoid dirtying the shared zygote pages.
1127  for (size_t i = 0; i < num_ptrs; ++i) {
1128    Object* obj = static_cast<Object*>(ptrs[i]);
1129    heap->GetLiveBitmap()->Clear(obj);
1130    heap->GetCardTable()->MarkCard(obj);
1131  }
1132}
1133
1134void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1135  space::DlMallocSpace* space = heap_->GetAllocSpace();
1136
1137  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1138  // bitmap, resulting in occasional frees of Weaks which are still in use.
1139  SweepSystemWeaksArray(allocations);
1140
1141  timings_.StartSplit("SweepArray");
1142  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1143  // going to free.
1144  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1145  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1146  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1147  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1148  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1149  if (swap_bitmaps) {
1150    std::swap(live_bitmap, mark_bitmap);
1151    std::swap(large_live_objects, large_mark_objects);
1152  }
1153
1154  size_t freed_bytes = 0;
1155  size_t freed_large_object_bytes = 0;
1156  size_t freed_objects = 0;
1157  size_t freed_large_objects = 0;
1158  size_t count = allocations->Size();
1159  Object** objects = const_cast<Object**>(allocations->Begin());
1160  Object** out = objects;
1161  Object** objects_to_chunk_free = out;
1162
1163  // Empty the allocation stack.
1164  Thread* self = Thread::Current();
1165  for (size_t i = 0; i < count; ++i) {
1166    Object* obj = objects[i];
1167    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1168    if (LIKELY(mark_bitmap->HasAddress(obj))) {
1169      if (!mark_bitmap->Test(obj)) {
1170        // Don't bother un-marking since we clear the mark bitmap anyways.
1171        *(out++) = obj;
1172        // Free objects in chunks.
1173        DCHECK_GE(out, objects_to_chunk_free);
1174        DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1175        if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1176          timings_.StartSplit("FreeList");
1177          size_t chunk_freed_objects = out - objects_to_chunk_free;
1178          freed_objects += chunk_freed_objects;
1179          freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1180          objects_to_chunk_free = out;
1181          timings_.EndSplit();
1182        }
1183      }
1184    } else if (!large_mark_objects->Test(obj)) {
1185      ++freed_large_objects;
1186      freed_large_object_bytes += large_object_space->Free(self, obj);
1187    }
1188  }
1189  // Free the remaining objects in chunks.
1190  DCHECK_GE(out, objects_to_chunk_free);
1191  DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1192  if (out - objects_to_chunk_free > 0) {
1193    timings_.StartSplit("FreeList");
1194    size_t chunk_freed_objects = out - objects_to_chunk_free;
1195    freed_objects += chunk_freed_objects;
1196    freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1197    timings_.EndSplit();
1198  }
1199  CHECK_EQ(count, allocations->Size());
1200  timings_.EndSplit();
1201
1202  timings_.StartSplit("RecordFree");
1203  VLOG(heap) << "Freed " << freed_objects << "/" << count
1204             << " objects with size " << PrettySize(freed_bytes);
1205  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1206  freed_objects_.fetch_add(freed_objects);
1207  freed_large_objects_.fetch_add(freed_large_objects);
1208  freed_bytes_.fetch_add(freed_bytes);
1209  freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
1210  timings_.EndSplit();
1211
1212  timings_.StartSplit("ResetStack");
1213  allocations->Reset();
1214  timings_.EndSplit();
1215}
1216
1217void MarkSweep::Sweep(bool swap_bitmaps) {
1218  DCHECK(mark_stack_->IsEmpty());
1219  base::TimingLogger::ScopedSplit("Sweep", &timings_);
1220
1221  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1222  // bitmap, resulting in occasional frees of Weaks which are still in use.
1223  SweepSystemWeaks();
1224
1225  const bool partial = (GetGcType() == kGcTypePartial);
1226  SweepCallbackContext scc;
1227  scc.mark_sweep = this;
1228  scc.self = Thread::Current();
1229  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1230    // We always sweep always collect spaces.
1231    bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
1232    if (!partial && !sweep_space) {
1233      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1234      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1235    }
1236    if (sweep_space) {
1237      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1238      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1239      scc.space = space->AsDlMallocSpace();
1240      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1241      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1242      if (swap_bitmaps) {
1243        std::swap(live_bitmap, mark_bitmap);
1244      }
1245      if (!space->IsZygoteSpace()) {
1246        base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1247        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1248        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1249                                           &SweepCallback, reinterpret_cast<void*>(&scc));
1250      } else {
1251        base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1252        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1253        // memory.
1254        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1255                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1256      }
1257    }
1258  }
1259
1260  SweepLargeObjects(swap_bitmaps);
1261}
1262
1263void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1264  base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1265  // Sweep large objects
1266  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1267  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1268  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1269  if (swap_bitmaps) {
1270    std::swap(large_live_objects, large_mark_objects);
1271  }
1272  // O(n*log(n)) but hopefully there are not too many large objects.
1273  size_t freed_objects = 0;
1274  size_t freed_bytes = 0;
1275  Thread* self = Thread::Current();
1276  for (const Object* obj : large_live_objects->GetObjects()) {
1277    if (!large_mark_objects->Test(obj)) {
1278      freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1279      ++freed_objects;
1280    }
1281  }
1282  freed_large_objects_.fetch_add(freed_objects);
1283  freed_large_object_bytes_.fetch_add(freed_bytes);
1284  GetHeap()->RecordFree(freed_objects, freed_bytes);
1285}
1286
1287void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1288  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1289    if (space->IsDlMallocSpace() && space->Contains(ref)) {
1290      DCHECK(IsMarked(obj));
1291
1292      bool is_marked = IsMarked(ref);
1293      if (!is_marked) {
1294        LOG(INFO) << *space;
1295        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1296                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1297                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1298                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1299
1300        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1301        DCHECK(klass != NULL);
1302        const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1303        DCHECK(fields != NULL);
1304        bool found = false;
1305        for (int32_t i = 0; i < fields->GetLength(); ++i) {
1306          const ArtField* cur = fields->Get(i);
1307          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1308            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1309            found = true;
1310            break;
1311          }
1312        }
1313        if (!found) {
1314          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1315        }
1316
1317        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1318        if (!obj_marked) {
1319          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1320                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1321                       << "the alloc space, but wasn't card marked";
1322        }
1323      }
1324    }
1325    break;
1326  }
1327}
1328
1329// Process the "referent" field in a java.lang.ref.Reference.  If the
1330// referent has not yet been marked, put it on the appropriate list in
1331// the heap for later processing.
1332void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1333  DCHECK(klass != nullptr);
1334  DCHECK(klass->IsReferenceClass());
1335  DCHECK(obj != NULL);
1336  Object* referent = heap_->GetReferenceReferent(obj);
1337  if (referent != NULL && !IsMarked(referent)) {
1338    if (kCountJavaLangRefs) {
1339      ++reference_count_;
1340    }
1341    Thread* self = Thread::Current();
1342    // TODO: Remove these locks, and use atomic stacks for storing references?
1343    if (klass->IsSoftReferenceClass()) {
1344      MutexLock mu(self, *heap_->GetSoftRefQueueLock());
1345      heap_->EnqueuePendingReference(obj, &soft_reference_list_);
1346    } else if (klass->IsWeakReferenceClass()) {
1347      MutexLock mu(self, *heap_->GetWeakRefQueueLock());
1348      heap_->EnqueuePendingReference(obj, &weak_reference_list_);
1349    } else if (klass->IsFinalizerReferenceClass()) {
1350      MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
1351      heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
1352    } else if (klass->IsPhantomReferenceClass()) {
1353      MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
1354      heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
1355    } else {
1356      LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
1357                 << " " << std::hex << klass->GetAccessFlags();
1358    }
1359  }
1360}
1361
1362void MarkSweep::ScanRoot(const Object* obj) {
1363  ScanObject(obj);
1364}
1365
1366class MarkObjectVisitor {
1367 public:
1368  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1369
1370  // TODO: Fixme when anotatalysis works with visitors.
1371  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1372                  bool /* is_static */) const ALWAYS_INLINE
1373      NO_THREAD_SAFETY_ANALYSIS {
1374    if (kCheckLocks) {
1375      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1376      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1377    }
1378    mark_sweep_->MarkObject(ref);
1379  }
1380
1381 private:
1382  MarkSweep* const mark_sweep_;
1383};
1384
1385// Scans an object reference.  Determines the type of the reference
1386// and dispatches to a specialized scanning routine.
1387void MarkSweep::ScanObject(const Object* obj) {
1388  MarkObjectVisitor visitor(this);
1389  ScanObjectVisit(obj, visitor);
1390}
1391
1392void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1393  Thread* self = Thread::Current();
1394  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1395  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1396                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1397  CHECK_GT(chunk_size, 0U);
1398  // Split the current mark stack up into work tasks.
1399  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1400    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1401    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1402                                                        const_cast<const mirror::Object**>(it)));
1403    it += delta;
1404  }
1405  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1406  thread_pool->StartWorkers(self);
1407  thread_pool->Wait(self, true, true);
1408  thread_pool->StopWorkers(self);
1409  mark_stack_->Reset();
1410  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1411}
1412
1413// Scan anything that's on the mark stack.
1414void MarkSweep::ProcessMarkStack(bool paused) {
1415  timings_.StartSplit("ProcessMarkStack");
1416  size_t thread_count = GetThreadCount(paused);
1417  if (kParallelProcessMarkStack && thread_count > 1 &&
1418      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1419    ProcessMarkStackParallel(thread_count);
1420  } else {
1421    // TODO: Tune this.
1422    static const size_t kFifoSize = 4;
1423    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
1424    for (;;) {
1425      const Object* obj = NULL;
1426      if (kUseMarkStackPrefetch) {
1427        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1428          const Object* obj = mark_stack_->PopBack();
1429          DCHECK(obj != NULL);
1430          __builtin_prefetch(obj);
1431          prefetch_fifo.push_back(obj);
1432        }
1433        if (prefetch_fifo.empty()) {
1434          break;
1435        }
1436        obj = prefetch_fifo.front();
1437        prefetch_fifo.pop_front();
1438      } else {
1439        if (mark_stack_->IsEmpty()) {
1440          break;
1441        }
1442        obj = mark_stack_->PopBack();
1443      }
1444      DCHECK(obj != NULL);
1445      ScanObject(obj);
1446    }
1447  }
1448  timings_.EndSplit();
1449}
1450
1451// Walks the reference list marking any references subject to the
1452// reference clearing policy.  References with a black referent are
1453// removed from the list.  References with white referents biased
1454// toward saving are blackened and also removed from the list.
1455void MarkSweep::PreserveSomeSoftReferences(Object** list) {
1456  DCHECK(list != NULL);
1457  Object* clear = NULL;
1458  size_t counter = 0;
1459
1460  DCHECK(mark_stack_->IsEmpty());
1461
1462  timings_.StartSplit("PreserveSomeSoftReferences");
1463  while (*list != NULL) {
1464    Object* ref = heap_->DequeuePendingReference(list);
1465    Object* referent = heap_->GetReferenceReferent(ref);
1466    if (referent == NULL) {
1467      // Referent was cleared by the user during marking.
1468      continue;
1469    }
1470    bool is_marked = IsMarked(referent);
1471    if (!is_marked && ((++counter) & 1)) {
1472      // Referent is white and biased toward saving, mark it.
1473      MarkObject(referent);
1474      is_marked = true;
1475    }
1476    if (!is_marked) {
1477      // Referent is white, queue it for clearing.
1478      heap_->EnqueuePendingReference(ref, &clear);
1479    }
1480  }
1481  *list = clear;
1482  timings_.EndSplit();
1483
1484  // Restart the mark with the newly black references added to the root set.
1485  ProcessMarkStack(true);
1486}
1487
1488inline bool MarkSweep::IsMarked(const Object* object) const
1489    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1490  if (IsImmune(object)) {
1491    return true;
1492  }
1493  DCHECK(current_mark_bitmap_ != NULL);
1494  if (current_mark_bitmap_->HasAddress(object)) {
1495    return current_mark_bitmap_->Test(object);
1496  }
1497  return heap_->GetMarkBitmap()->Test(object);
1498}
1499
1500
1501// Unlink the reference list clearing references objects with white
1502// referents.  Cleared references registered to a reference queue are
1503// scheduled for appending by the heap worker thread.
1504void MarkSweep::ClearWhiteReferences(Object** list) {
1505  DCHECK(list != NULL);
1506  while (*list != NULL) {
1507    Object* ref = heap_->DequeuePendingReference(list);
1508    Object* referent = heap_->GetReferenceReferent(ref);
1509    if (referent != NULL && !IsMarked(referent)) {
1510      // Referent is white, clear it.
1511      heap_->ClearReferenceReferent(ref);
1512      if (heap_->IsEnqueuable(ref)) {
1513        heap_->EnqueueReference(ref, &cleared_reference_list_);
1514      }
1515    }
1516  }
1517  DCHECK(*list == NULL);
1518}
1519
1520// Enqueues finalizer references with white referents.  White
1521// referents are blackened, moved to the zombie field, and the
1522// referent field is cleared.
1523void MarkSweep::EnqueueFinalizerReferences(Object** list) {
1524  DCHECK(list != NULL);
1525  timings_.StartSplit("EnqueueFinalizerReferences");
1526  MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
1527  bool has_enqueued = false;
1528  while (*list != NULL) {
1529    Object* ref = heap_->DequeuePendingReference(list);
1530    Object* referent = heap_->GetReferenceReferent(ref);
1531    if (referent != NULL && !IsMarked(referent)) {
1532      MarkObject(referent);
1533      // If the referent is non-null the reference must queuable.
1534      DCHECK(heap_->IsEnqueuable(ref));
1535      ref->SetFieldObject(zombie_offset, referent, false);
1536      heap_->ClearReferenceReferent(ref);
1537      heap_->EnqueueReference(ref, &cleared_reference_list_);
1538      has_enqueued = true;
1539    }
1540  }
1541  timings_.EndSplit();
1542  if (has_enqueued) {
1543    ProcessMarkStack(true);
1544  }
1545  DCHECK(*list == NULL);
1546}
1547
1548// Process reference class instances and schedule finalizations.
1549void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
1550                                  Object** weak_references,
1551                                  Object** finalizer_references,
1552                                  Object** phantom_references) {
1553  DCHECK(soft_references != NULL);
1554  DCHECK(weak_references != NULL);
1555  DCHECK(finalizer_references != NULL);
1556  DCHECK(phantom_references != NULL);
1557
1558  // Unless we are in the zygote or required to clear soft references
1559  // with white references, preserve some white referents.
1560  if (!clear_soft && !Runtime::Current()->IsZygote()) {
1561    PreserveSomeSoftReferences(soft_references);
1562  }
1563
1564  timings_.StartSplit("ProcessReferences");
1565  // Clear all remaining soft and weak references with white
1566  // referents.
1567  ClearWhiteReferences(soft_references);
1568  ClearWhiteReferences(weak_references);
1569  timings_.EndSplit();
1570
1571  // Preserve all white objects with finalize methods and schedule
1572  // them for finalization.
1573  EnqueueFinalizerReferences(finalizer_references);
1574
1575  timings_.StartSplit("ProcessReferences");
1576  // Clear all f-reachable soft and weak references with white
1577  // referents.
1578  ClearWhiteReferences(soft_references);
1579  ClearWhiteReferences(weak_references);
1580
1581  // Clear all phantom references with white referents.
1582  ClearWhiteReferences(phantom_references);
1583
1584  // At this point all reference lists should be empty.
1585  DCHECK(*soft_references == NULL);
1586  DCHECK(*weak_references == NULL);
1587  DCHECK(*finalizer_references == NULL);
1588  DCHECK(*phantom_references == NULL);
1589  timings_.EndSplit();
1590}
1591
1592void MarkSweep::UnBindBitmaps() {
1593  base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1594  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1595    if (space->IsDlMallocSpace()) {
1596      space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
1597      if (alloc_space->temp_bitmap_.get() != NULL) {
1598        // At this point, the temp_bitmap holds our old mark bitmap.
1599        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1600        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1601        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1602        alloc_space->mark_bitmap_.reset(new_bitmap);
1603        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1604      }
1605    }
1606  }
1607}
1608
1609void MarkSweep::FinishPhase() {
1610  base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1611  // Can't enqueue references if we hold the mutator lock.
1612  Object* cleared_references = GetClearedReferences();
1613  Heap* heap = GetHeap();
1614  timings_.NewSplit("EnqueueClearedReferences");
1615  heap->EnqueueClearedReferences(&cleared_references);
1616
1617  timings_.NewSplit("PostGcVerification");
1618  heap->PostGcVerification(this);
1619
1620  timings_.NewSplit("GrowForUtilization");
1621  heap->GrowForUtilization(GetGcType(), GetDurationNs());
1622
1623  timings_.NewSplit("RequestHeapTrim");
1624  heap->RequestHeapTrim();
1625
1626  // Update the cumulative statistics
1627  total_time_ns_ += GetDurationNs();
1628  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1629                                           std::plus<uint64_t>());
1630  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1631  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1632
1633  // Ensure that the mark stack is empty.
1634  CHECK(mark_stack_->IsEmpty());
1635
1636  if (kCountScannedTypes) {
1637    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1638             << " other=" << other_count_;
1639  }
1640
1641  if (kCountTasks) {
1642    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1643  }
1644
1645  if (kMeasureOverhead) {
1646    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1647  }
1648
1649  if (kProfileLargeObjects) {
1650    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1651  }
1652
1653  if (kCountClassesMarked) {
1654    VLOG(gc) << "Classes marked " << classes_marked_;
1655  }
1656
1657  if (kCountJavaLangRefs) {
1658    VLOG(gc) << "References scanned " << reference_count_;
1659  }
1660
1661  // Update the cumulative loggers.
1662  cumulative_timings_.Start();
1663  cumulative_timings_.AddLogger(timings_);
1664  cumulative_timings_.End();
1665
1666  // Clear all of the spaces' mark bitmaps.
1667  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1668    if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1669      space->GetMarkBitmap()->Clear();
1670    }
1671  }
1672  mark_stack_->Reset();
1673
1674  // Reset the marked large objects.
1675  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1676  large_objects->GetMarkObjects()->Clear();
1677}
1678
1679}  // namespace collector
1680}  // namespace gc
1681}  // namespace art
1682