mark_sweep.cc revision a9a50926963b5093fb851ed966d201f3e95f72d3
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <functional> 20#include <numeric> 21#include <climits> 22#include <vector> 23 24#include "base/logging.h" 25#include "base/macros.h" 26#include "base/mutex-inl.h" 27#include "base/timing_logger.h" 28#include "gc/accounting/card_table-inl.h" 29#include "gc/accounting/heap_bitmap.h" 30#include "gc/accounting/space_bitmap-inl.h" 31#include "gc/heap.h" 32#include "gc/space/image_space.h" 33#include "gc/space/large_object_space.h" 34#include "gc/space/space-inl.h" 35#include "indirect_reference_table.h" 36#include "intern_table.h" 37#include "jni_internal.h" 38#include "monitor.h" 39#include "mark_sweep-inl.h" 40#include "mirror/class-inl.h" 41#include "mirror/class_loader.h" 42#include "mirror/dex_cache.h" 43#include "mirror/field.h" 44#include "mirror/field-inl.h" 45#include "mirror/object-inl.h" 46#include "mirror/object_array.h" 47#include "mirror/object_array-inl.h" 48#include "runtime.h" 49#include "thread-inl.h" 50#include "thread_list.h" 51#include "verifier/method_verifier.h" 52 53using ::art::mirror::Class; 54using ::art::mirror::Field; 55using ::art::mirror::Object; 56using ::art::mirror::ObjectArray; 57 58namespace art { 59namespace gc { 60namespace collector { 61 62// Performance options. 63static const bool kParallelMarkStack = true; 64static const bool kDisableFinger = true; // TODO: Fix, bit rotten. 65static const bool kUseMarkStackPrefetch = true; 66 67// Profiling and information flags. 68static const bool kCountClassesMarked = false; 69static const bool kProfileLargeObjects = false; 70static const bool kMeasureOverhead = false; 71static const bool kCountTasks = false; 72static const bool kCountJavaLangRefs = false; 73 74void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) { 75 // Bind live to mark bitmap if necessary. 76 if (space->GetLiveBitmap() != space->GetMarkBitmap()) { 77 BindLiveToMarkBitmap(space); 78 } 79 80 // Add the space to the immune region. 81 if (immune_begin_ == NULL) { 82 DCHECK(immune_end_ == NULL); 83 SetImmuneRange(reinterpret_cast<Object*>(space->Begin()), 84 reinterpret_cast<Object*>(space->End())); 85 } else { 86 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 87 const space::ContinuousSpace* prev_space = NULL; 88 // Find out if the previous space is immune. 89 // TODO: C++0x 90 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 91 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 92 if (*it == space) { 93 break; 94 } 95 prev_space = *it; 96 } 97 98 // If previous space was immune, then extend the immune region. Relies on continuous spaces 99 // being sorted by Heap::AddContinuousSpace. 100 if (prev_space != NULL && 101 immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) && 102 immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) { 103 immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_); 104 immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_); 105 } 106 } 107} 108 109void MarkSweep::BindBitmaps() { 110 timings_.StartSplit("BindBitmaps"); 111 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 112 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 113 114 // Mark all of the spaces we never collect as immune. 115 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 116 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 117 space::ContinuousSpace* space = *it; 118 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 119 ImmuneSpace(space); 120 } 121 } 122 timings_.EndSplit(); 123} 124 125MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 126 : GarbageCollector(heap, 127 name_prefix + (name_prefix.empty() ? "" : " ") + 128 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 129 current_mark_bitmap_(NULL), 130 java_lang_Class_(NULL), 131 mark_stack_(NULL), 132 immune_begin_(NULL), 133 immune_end_(NULL), 134 soft_reference_list_(NULL), 135 weak_reference_list_(NULL), 136 finalizer_reference_list_(NULL), 137 phantom_reference_list_(NULL), 138 cleared_reference_list_(NULL), 139 gc_barrier_(new Barrier(0)), 140 large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock), 141 mark_stack_expand_lock_("mark sweep mark stack expand lock"), 142 is_concurrent_(is_concurrent), 143 clear_soft_references_(false) { 144} 145 146void MarkSweep::InitializePhase() { 147 timings_.Reset(); 148 timings_.StartSplit("InitializePhase"); 149 mark_stack_ = GetHeap()->mark_stack_.get(); 150 DCHECK(mark_stack_ != NULL); 151 SetImmuneRange(NULL, NULL); 152 soft_reference_list_ = NULL; 153 weak_reference_list_ = NULL; 154 finalizer_reference_list_ = NULL; 155 phantom_reference_list_ = NULL; 156 cleared_reference_list_ = NULL; 157 freed_bytes_ = 0; 158 freed_objects_ = 0; 159 class_count_ = 0; 160 array_count_ = 0; 161 other_count_ = 0; 162 large_object_test_ = 0; 163 large_object_mark_ = 0; 164 classes_marked_ = 0; 165 overhead_time_ = 0; 166 work_chunks_created_ = 0; 167 work_chunks_deleted_ = 0; 168 reference_count_ = 0; 169 java_lang_Class_ = Class::GetJavaLangClass(); 170 CHECK(java_lang_Class_ != NULL); 171 timings_.EndSplit(); 172 173 FindDefaultMarkBitmap(); 174 175// Do any pre GC verification. 176 timings_.StartSplit("PreGcVerification"); 177 heap_->PreGcVerification(this); 178 timings_.EndSplit(); 179} 180 181void MarkSweep::ProcessReferences(Thread* self) { 182 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 183 ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_, 184 &finalizer_reference_list_, &phantom_reference_list_); 185} 186 187bool MarkSweep::HandleDirtyObjectsPhase() { 188 Thread* self = Thread::Current(); 189 accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get(); 190 Locks::mutator_lock_->AssertExclusiveHeld(self); 191 192 { 193 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 194 195 // Re-mark root set. 196 ReMarkRoots(); 197 198 // Scan dirty objects, this is only required if we are not doing concurrent GC. 199 RecursiveMarkDirtyObjects(accounting::CardTable::kCardDirty); 200 } 201 202 ProcessReferences(self); 203 204 // Only need to do this if we have the card mark verification on, and only during concurrent GC. 205 if (GetHeap()->verify_missing_card_marks_) { 206 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 207 // This second sweep makes sure that we don't have any objects in the live stack which point to 208 // freed objects. These cause problems since their references may be previously freed objects. 209 SweepArray(allocation_stack, false); 210 } 211 return true; 212} 213 214bool MarkSweep::IsConcurrent() const { 215 return is_concurrent_; 216} 217 218void MarkSweep::MarkingPhase() { 219 Heap* heap = GetHeap(); 220 Thread* self = Thread::Current(); 221 222 BindBitmaps(); 223 FindDefaultMarkBitmap(); 224 225 // Process dirty cards and add dirty cards to mod union tables. 226 heap->ProcessCards(timings_); 227 228 // Need to do this before the checkpoint since we don't want any threads to add references to 229 // the live stack during the recursive mark. 230 timings_.StartSplit("SwapStacks"); 231 heap->SwapStacks(); 232 timings_.EndSplit(); 233 234 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 235 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 236 // If we exclusively hold the mutator lock, all threads must be suspended. 237 MarkRoots(); 238 } else { 239 MarkRootsCheckpoint(self); 240 MarkNonThreadRoots(); 241 } 242 MarkConcurrentRoots(); 243 244 heap->UpdateAndMarkModUnion(this, timings_, GetGcType()); 245 MarkReachableObjects(); 246} 247 248void MarkSweep::MarkReachableObjects() { 249 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 250 // knowing that new allocations won't be marked as live. 251 timings_.StartSplit("MarkStackAsLive"); 252 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 253 heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(), 254 heap_->large_object_space_->GetLiveObjects(), 255 live_stack); 256 live_stack->Reset(); 257 timings_.EndSplit(); 258 // Recursively mark all the non-image bits set in the mark bitmap. 259 RecursiveMark(); 260} 261 262void MarkSweep::ReclaimPhase() { 263 Thread* self = Thread::Current(); 264 265 if (!IsConcurrent()) { 266 base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_); 267 ProcessReferences(self); 268 } else { 269 base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_); 270 accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get(); 271 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 272 // The allocation stack contains things allocated since the start of the GC. These may have been 273 // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC. 274 // Remove these objects from the mark bitmaps so that they will be eligible for sticky 275 // collection. 276 // There is a race here which is safely handled. Another thread such as the hprof could 277 // have flushed the alloc stack after we resumed the threads. This is safe however, since 278 // reseting the allocation stack zeros it out with madvise. This means that we will either 279 // read NULLs or attempt to unmark a newly allocated object which will not be marked in the 280 // first place. 281 mirror::Object** end = allocation_stack->End(); 282 for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) { 283 Object* obj = *it; 284 if (obj != NULL) { 285 UnMarkObjectNonNull(obj); 286 } 287 } 288 } 289 290 // Before freeing anything, lets verify the heap. 291 if (kIsDebugBuild) { 292 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 293 VerifyImageRoots(); 294 } 295 timings_.StartSplit("PreSweepingGcVerification"); 296 heap_->PreSweepingGcVerification(this); 297 timings_.EndSplit(); 298 299 { 300 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 301 302 // Reclaim unmarked objects. 303 Sweep(false); 304 305 // Swap the live and mark bitmaps for each space which we modified space. This is an 306 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 307 // bitmaps. 308 timings_.StartSplit("SwapBitmaps"); 309 SwapBitmaps(); 310 timings_.EndSplit(); 311 312 // Unbind the live and mark bitmaps. 313 UnBindBitmaps(); 314 } 315} 316 317void MarkSweep::SetImmuneRange(Object* begin, Object* end) { 318 immune_begin_ = begin; 319 immune_end_ = end; 320} 321 322void MarkSweep::FindDefaultMarkBitmap() { 323 timings_.StartSplit("FindDefaultMarkBitmap"); 324 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 325 // TODO: C++0x 326 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 327 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 328 space::ContinuousSpace* space = *it; 329 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 330 current_mark_bitmap_ = (*it)->GetMarkBitmap(); 331 CHECK(current_mark_bitmap_ != NULL); 332 timings_.EndSplit(); 333 return; 334 } 335 } 336 GetHeap()->DumpSpaces(); 337 LOG(FATAL) << "Could not find a default mark bitmap"; 338} 339 340void MarkSweep::ExpandMarkStack() { 341 // Rare case, no need to have Thread::Current be a parameter. 342 MutexLock mu(Thread::Current(), mark_stack_expand_lock_); 343 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 344 // Someone else acquired the lock and expanded the mark stack before us. 345 return; 346 } 347 std::vector<Object*> temp; 348 temp.insert(temp.begin(), mark_stack_->Begin(), mark_stack_->End()); 349 mark_stack_->Resize(mark_stack_->Capacity() * 2); 350 for (size_t i = 0; i < temp.size(); ++i) { 351 mark_stack_->PushBack(temp[i]); 352 } 353} 354 355inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) { 356 DCHECK(obj != NULL); 357 if (MarkObjectParallel(obj)) { 358 while (UNLIKELY(!mark_stack_->AtomicPushBack(const_cast<Object*>(obj)))) { 359 // Only reason a push can fail is that the mark stack is full. 360 ExpandMarkStack(); 361 } 362 } 363} 364 365inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) { 366 DCHECK(!IsImmune(obj)); 367 // Try to take advantage of locality of references within a space, failing this find the space 368 // the hard way. 369 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 370 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 371 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 372 if (LIKELY(new_bitmap != NULL)) { 373 object_bitmap = new_bitmap; 374 } else { 375 MarkLargeObject(obj, false); 376 return; 377 } 378 } 379 380 DCHECK(object_bitmap->HasAddress(obj)); 381 object_bitmap->Clear(obj); 382} 383 384inline void MarkSweep::MarkObjectNonNull(const Object* obj) { 385 DCHECK(obj != NULL); 386 387 if (IsImmune(obj)) { 388 DCHECK(IsMarked(obj)); 389 return; 390 } 391 392 // Try to take advantage of locality of references within a space, failing this find the space 393 // the hard way. 394 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 395 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 396 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 397 if (LIKELY(new_bitmap != NULL)) { 398 object_bitmap = new_bitmap; 399 } else { 400 MarkLargeObject(obj, true); 401 return; 402 } 403 } 404 405 // This object was not previously marked. 406 if (!object_bitmap->Test(obj)) { 407 object_bitmap->Set(obj); 408 // Do we need to expand the mark stack? 409 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 410 ExpandMarkStack(); 411 } 412 // The object must be pushed on to the mark stack. 413 mark_stack_->PushBack(const_cast<Object*>(obj)); 414 } 415} 416 417// Rare case, probably not worth inlining since it will increase instruction cache miss rate. 418bool MarkSweep::MarkLargeObject(const Object* obj, bool set) { 419 // TODO: support >1 discontinuous space. 420 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 421 accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects(); 422 if (kProfileLargeObjects) { 423 ++large_object_test_; 424 } 425 if (UNLIKELY(!large_objects->Test(obj))) { 426 if (!large_object_space->Contains(obj)) { 427 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 428 LOG(ERROR) << "Attempting see if it's a bad root"; 429 VerifyRoots(); 430 LOG(FATAL) << "Can't mark bad root"; 431 } 432 if (kProfileLargeObjects) { 433 ++large_object_mark_; 434 } 435 if (set) { 436 large_objects->Set(obj); 437 } else { 438 large_objects->Clear(obj); 439 } 440 return true; 441 } 442 return false; 443} 444 445inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 446 DCHECK(obj != NULL); 447 448 if (IsImmune(obj)) { 449 DCHECK(IsMarked(obj)); 450 return false; 451 } 452 453 // Try to take advantage of locality of references within a space, failing this find the space 454 // the hard way. 455 accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_; 456 if (UNLIKELY(!object_bitmap->HasAddress(obj))) { 457 accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj); 458 if (new_bitmap != NULL) { 459 object_bitmap = new_bitmap; 460 } else { 461 // TODO: Remove the Thread::Current here? 462 // TODO: Convert this to some kind of atomic marking? 463 MutexLock mu(Thread::Current(), large_object_lock_); 464 return MarkLargeObject(obj, true); 465 } 466 } 467 468 // Return true if the object was not previously marked. 469 return !object_bitmap->AtomicTestAndSet(obj); 470} 471 472// Used to mark objects when recursing. Recursion is done by moving 473// the finger across the bitmaps in address order and marking child 474// objects. Any newly-marked objects whose addresses are lower than 475// the finger won't be visited by the bitmap scan, so those objects 476// need to be added to the mark stack. 477void MarkSweep::MarkObject(const Object* obj) { 478 if (obj != NULL) { 479 MarkObjectNonNull(obj); 480 } 481} 482 483void MarkSweep::MarkRoot(const Object* obj) { 484 if (obj != NULL) { 485 MarkObjectNonNull(obj); 486 } 487} 488 489void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) { 490 DCHECK(root != NULL); 491 DCHECK(arg != NULL); 492 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 493 mark_sweep->MarkObjectNonNullParallel(root); 494} 495 496void MarkSweep::MarkObjectCallback(const Object* root, void* arg) { 497 DCHECK(root != NULL); 498 DCHECK(arg != NULL); 499 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 500 mark_sweep->MarkObjectNonNull(root); 501} 502 503void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) { 504 DCHECK(root != NULL); 505 DCHECK(arg != NULL); 506 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 507 mark_sweep->MarkObjectNonNull(root); 508} 509 510void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, 511 const StackVisitor* visitor) { 512 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor); 513} 514 515void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) { 516 // See if the root is on any space bitmap. 517 if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) { 518 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 519 if (!large_object_space->Contains(root)) { 520 LOG(ERROR) << "Found invalid root: " << root; 521 if (visitor != NULL) { 522 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; 523 } 524 } 525 } 526} 527 528void MarkSweep::VerifyRoots() { 529 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); 530} 531 532// Marks all objects in the root set. 533void MarkSweep::MarkRoots() { 534 timings_.StartSplit("MarkRoots"); 535 Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this); 536 timings_.EndSplit(); 537} 538 539void MarkSweep::MarkNonThreadRoots() { 540 timings_.StartSplit("MarkNonThreadRoots"); 541 Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this); 542 timings_.EndSplit(); 543} 544 545void MarkSweep::MarkConcurrentRoots() { 546 timings_.StartSplit("MarkConcurrentRoots"); 547 // Visit all runtime roots and clear dirty flags. 548 Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true); 549 timings_.EndSplit(); 550} 551 552class CheckObjectVisitor { 553 public: 554 explicit CheckObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {} 555 556 void operator()(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) const 557 NO_THREAD_SAFETY_ANALYSIS { 558 if (kDebugLocking) { 559 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current()); 560 } 561 mark_sweep_->CheckReference(obj, ref, offset, is_static); 562 } 563 564 private: 565 MarkSweep* const mark_sweep_; 566}; 567 568void MarkSweep::CheckObject(const Object* obj) { 569 DCHECK(obj != NULL); 570 CheckObjectVisitor visitor(this); 571 VisitObjectReferences(obj, visitor); 572} 573 574void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) { 575 DCHECK(root != NULL); 576 DCHECK(arg != NULL); 577 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 578 DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root)); 579 mark_sweep->CheckObject(root); 580} 581 582void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) { 583 CHECK(space->IsDlMallocSpace()); 584 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace(); 585 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 586 accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release(); 587 GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap); 588 alloc_space->temp_bitmap_.reset(mark_bitmap); 589 alloc_space->mark_bitmap_.reset(live_bitmap); 590} 591 592class ScanObjectVisitor { 593 public: 594 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {} 595 596 // TODO: Fixme when anotatalysis works with visitors. 597 void operator()(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS { 598 if (kDebugLocking) { 599 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 600 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 601 } 602 mark_sweep_->ScanObject(obj); 603 } 604 605 private: 606 MarkSweep* const mark_sweep_; 607}; 608 609void MarkSweep::ScanGrayObjects(byte minimum_age) { 610 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 611 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 612 ScanObjectVisitor visitor(this); 613 // TODO: C++0x 614 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 615 for (It it = spaces.begin(), space_end = spaces.end(); it != space_end; ++it) { 616 space::ContinuousSpace* space = *it; 617 switch (space->GetGcRetentionPolicy()) { 618 case space::kGcRetentionPolicyNeverCollect: 619 timings_.StartSplit("ScanGrayImageSpaceObjects"); 620 break; 621 case space::kGcRetentionPolicyFullCollect: 622 timings_.StartSplit("ScanGrayZygoteSpaceObjects"); 623 break; 624 case space::kGcRetentionPolicyAlwaysCollect: 625 timings_.StartSplit("ScanGrayAllocSpaceObjects"); 626 break; 627 } 628 byte* begin = space->Begin(); 629 byte* end = space->End(); 630 // Image spaces are handled properly since live == marked for them. 631 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 632 card_table->Scan(mark_bitmap, begin, end, visitor, minimum_age); 633 timings_.EndSplit(); 634 } 635} 636 637class CheckBitmapVisitor { 638 public: 639 explicit CheckBitmapVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} 640 641 void operator()(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS { 642 if (kDebugLocking) { 643 Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current()); 644 } 645 DCHECK(obj != NULL); 646 mark_sweep_->CheckObject(obj); 647 } 648 649 private: 650 MarkSweep* mark_sweep_; 651}; 652 653void MarkSweep::VerifyImageRoots() { 654 // Verify roots ensures that all the references inside the image space point 655 // objects which are either in the image space or marked objects in the alloc 656 // space 657 timings_.StartSplit("VerifyImageRoots"); 658 CheckBitmapVisitor visitor(this); 659 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 660 // TODO: C++0x 661 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 662 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 663 if ((*it)->IsImageSpace()) { 664 space::ImageSpace* space = (*it)->AsImageSpace(); 665 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 666 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 667 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 668 DCHECK(live_bitmap != NULL); 669 live_bitmap->VisitMarkedRange(begin, end, visitor); 670 } 671 } 672 timings_.EndSplit(); 673} 674 675// Populates the mark stack based on the set of marked objects and 676// recursively marks until the mark stack is emptied. 677void MarkSweep::RecursiveMark() { 678 base::TimingLogger::ScopedSplit("RecursiveMark", &timings_); 679 // RecursiveMark will build the lists of known instances of the Reference classes. 680 // See DelayReferenceReferent for details. 681 CHECK(soft_reference_list_ == NULL); 682 CHECK(weak_reference_list_ == NULL); 683 CHECK(finalizer_reference_list_ == NULL); 684 CHECK(phantom_reference_list_ == NULL); 685 CHECK(cleared_reference_list_ == NULL); 686 687 const bool partial = GetGcType() == kGcTypePartial; 688 ScanObjectVisitor scan_visitor(this); 689 if (!kDisableFinger) { 690 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 691 // TODO: C++0x 692 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 693 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 694 space::ContinuousSpace* space = *it; 695 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 696 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 697 current_mark_bitmap_ = space->GetMarkBitmap(); 698 if (current_mark_bitmap_ == NULL) { 699 GetHeap()->DumpSpaces(); 700 LOG(FATAL) << "invalid bitmap"; 701 } 702 // This function does not handle heap end increasing, so we must use the space end. 703 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 704 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 705 current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 706 } 707 } 708 } 709 ProcessMarkStack(); 710} 711 712bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) { 713 return 714 reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) || 715 !reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object); 716} 717 718void MarkSweep::RecursiveMarkDirtyObjects(byte minimum_age) { 719 ScanGrayObjects(minimum_age); 720 ProcessMarkStack(); 721} 722 723void MarkSweep::ReMarkRoots() { 724 timings_.StartSplit("ReMarkRoots"); 725 Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true); 726 timings_.EndSplit(); 727} 728 729void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) { 730 JavaVMExt* vm = Runtime::Current()->GetJavaVM(); 731 MutexLock mu(Thread::Current(), vm->weak_globals_lock); 732 IndirectReferenceTable* table = &vm->weak_globals; 733 typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto 734 for (It it = table->begin(), end = table->end(); it != end; ++it) { 735 const Object** entry = *it; 736 if (!is_marked(*entry, arg)) { 737 *entry = kClearedJniWeakGlobal; 738 } 739 } 740} 741 742struct ArrayMarkedCheck { 743 accounting::ObjectStack* live_stack; 744 MarkSweep* mark_sweep; 745}; 746 747// Either marked or not live. 748bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) { 749 ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg); 750 if (array_check->mark_sweep->IsMarked(object)) { 751 return true; 752 } 753 accounting::ObjectStack* live_stack = array_check->live_stack; 754 return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End(); 755} 756 757void MarkSweep::SweepSystemWeaksArray(accounting::ObjectStack* allocations) { 758 Runtime* runtime = Runtime::Current(); 759 // The callbacks check 760 // !is_marked where is_marked is the callback but we want 761 // !IsMarked && IsLive 762 // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive). 763 // Or for swapped (IsLive || !IsMarked). 764 765 timings_.StartSplit("SweepSystemWeaksArray"); 766 ArrayMarkedCheck visitor; 767 visitor.live_stack = allocations; 768 visitor.mark_sweep = this; 769 runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor); 770 runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor); 771 SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor); 772 timings_.EndSplit(); 773} 774 775void MarkSweep::SweepSystemWeaks() { 776 Runtime* runtime = Runtime::Current(); 777 // The callbacks check 778 // !is_marked where is_marked is the callback but we want 779 // !IsMarked && IsLive 780 // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive). 781 // Or for swapped (IsLive || !IsMarked). 782 timings_.StartSplit("SweepSystemWeaks"); 783 runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this); 784 runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this); 785 SweepJniWeakGlobals(IsMarkedCallback, this); 786 timings_.EndSplit(); 787} 788 789bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) { 790 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 791 // We don't actually want to sweep the object, so lets return "marked" 792 return true; 793} 794 795void MarkSweep::VerifyIsLive(const Object* obj) { 796 Heap* heap = GetHeap(); 797 if (!heap->GetLiveBitmap()->Test(obj)) { 798 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 799 if (!large_object_space->GetLiveObjects()->Test(obj)) { 800 if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) == 801 heap->allocation_stack_->End()) { 802 // Object not found! 803 heap->DumpSpaces(); 804 LOG(FATAL) << "Found dead object " << obj; 805 } 806 } 807 } 808} 809 810void MarkSweep::VerifySystemWeaks() { 811 Runtime* runtime = Runtime::Current(); 812 // Verify system weaks, uses a special IsMarked callback which always returns true. 813 runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this); 814 runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this); 815 816 JavaVMExt* vm = runtime->GetJavaVM(); 817 MutexLock mu(Thread::Current(), vm->weak_globals_lock); 818 IndirectReferenceTable* table = &vm->weak_globals; 819 typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto 820 for (It it = table->begin(), end = table->end(); it != end; ++it) { 821 const Object** entry = *it; 822 VerifyIsLive(*entry); 823 } 824} 825 826struct SweepCallbackContext { 827 MarkSweep* mark_sweep; 828 space::AllocSpace* space; 829 Thread* self; 830}; 831 832class CheckpointMarkThreadRoots : public Closure { 833 public: 834 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {} 835 836 virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 837 // Note: self is not necessarily equal to thread since thread may be suspended. 838 Thread* self = Thread::Current(); 839 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 840 << thread->GetState() << " thread " << thread << " self " << self; 841 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 842 mark_sweep_->GetBarrier().Pass(self); 843 } 844 845 private: 846 MarkSweep* mark_sweep_; 847}; 848 849void MarkSweep::MarkRootsCheckpoint(Thread* self) { 850 CheckpointMarkThreadRoots check_point(this); 851 timings_.StartSplit("MarkRootsCheckpoint"); 852 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 853 // Request the check point is run on all threads returning a count of the threads that must 854 // run through the barrier including self. 855 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 856 // Release locks then wait for all mutator threads to pass the barrier. 857 // TODO: optimize to not release locks when there are no threads to wait for. 858 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 859 Locks::mutator_lock_->SharedUnlock(self); 860 ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun); 861 CHECK_EQ(old_state, kWaitingPerformingGc); 862 gc_barrier_->Increment(self, barrier_count); 863 self->SetState(kWaitingPerformingGc); 864 Locks::mutator_lock_->SharedLock(self); 865 Locks::heap_bitmap_lock_->ExclusiveLock(self); 866 timings_.EndSplit(); 867} 868 869void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { 870 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 871 MarkSweep* mark_sweep = context->mark_sweep; 872 Heap* heap = mark_sweep->GetHeap(); 873 space::AllocSpace* space = context->space; 874 Thread* self = context->self; 875 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self); 876 // Use a bulk free, that merges consecutive objects before freeing or free per object? 877 // Documentation suggests better free performance with merging, but this may be at the expensive 878 // of allocation. 879 size_t freed_objects = num_ptrs; 880 // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit 881 size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs); 882 heap->RecordFree(freed_objects, freed_bytes); 883 mark_sweep->freed_objects_.fetch_add(freed_objects); 884 mark_sweep->freed_bytes_.fetch_add(freed_bytes); 885} 886 887void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { 888 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 889 Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self); 890 Heap* heap = context->mark_sweep->GetHeap(); 891 // We don't free any actual memory to avoid dirtying the shared zygote pages. 892 for (size_t i = 0; i < num_ptrs; ++i) { 893 Object* obj = static_cast<Object*>(ptrs[i]); 894 heap->GetLiveBitmap()->Clear(obj); 895 heap->GetCardTable()->MarkCard(obj); 896 } 897} 898 899void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 900 size_t freed_bytes = 0; 901 space::DlMallocSpace* space = heap_->GetAllocSpace(); 902 903 // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark 904 // bitmap, resulting in occasional frees of Weaks which are still in use. 905 SweepSystemWeaksArray(allocations); 906 907 timings_.StartSplit("Process allocation stack"); 908 // Newly allocated objects MUST be in the alloc space and those are the only objects which we are 909 // going to free. 910 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 911 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 912 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 913 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects(); 914 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects(); 915 if (swap_bitmaps) { 916 std::swap(live_bitmap, mark_bitmap); 917 std::swap(large_live_objects, large_mark_objects); 918 } 919 920 size_t freed_large_objects = 0; 921 size_t count = allocations->Size(); 922 Object** objects = const_cast<Object**>(allocations->Begin()); 923 Object** out = objects; 924 925 // Empty the allocation stack. 926 Thread* self = Thread::Current(); 927 for (size_t i = 0; i < count; ++i) { 928 Object* obj = objects[i]; 929 // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack. 930 if (LIKELY(mark_bitmap->HasAddress(obj))) { 931 if (!mark_bitmap->Test(obj)) { 932 // Don't bother un-marking since we clear the mark bitmap anyways. 933 *(out++) = obj; 934 } 935 } else if (!large_mark_objects->Test(obj)) { 936 ++freed_large_objects; 937 freed_bytes += large_object_space->Free(self, obj); 938 } 939 } 940 CHECK_EQ(count, allocations->Size()); 941 timings_.EndSplit(); 942 943 timings_.StartSplit("FreeList"); 944 size_t freed_objects = out - objects; 945 freed_bytes += space->FreeList(self, freed_objects, objects); 946 VLOG(heap) << "Freed " << freed_objects << "/" << count 947 << " objects with size " << PrettySize(freed_bytes); 948 heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes); 949 freed_objects_.fetch_add(freed_objects); 950 freed_bytes_.fetch_add(freed_bytes); 951 timings_.EndSplit(); 952 953 timings_.StartSplit("ResetStack"); 954 allocations->Reset(); 955 timings_.EndSplit(); 956} 957 958void MarkSweep::Sweep(bool swap_bitmaps) { 959 DCHECK(mark_stack_->IsEmpty()); 960 961 // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark 962 // bitmap, resulting in occasional frees of Weaks which are still in use. 963 SweepSystemWeaks(); 964 965 const bool partial = (GetGcType() == kGcTypePartial); 966 SweepCallbackContext scc; 967 scc.mark_sweep = this; 968 scc.self = Thread::Current(); 969 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 970 // TODO: C++0x 971 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 972 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 973 space::ContinuousSpace* space = *it; 974 // We always sweep always collect spaces. 975 bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect); 976 if (!partial && !sweep_space) { 977 // We sweep full collect spaces when the GC isn't a partial GC (ie its full). 978 sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect); 979 } 980 if (sweep_space) { 981 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 982 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 983 scc.space = space->AsDlMallocSpace(); 984 accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap(); 985 accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 986 if (swap_bitmaps) { 987 std::swap(live_bitmap, mark_bitmap); 988 } 989 if (!space->IsZygoteSpace()) { 990 timings_.StartSplit("SweepAllocSpace"); 991 // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked. 992 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end, 993 &SweepCallback, reinterpret_cast<void*>(&scc)); 994 timings_.EndSplit(); 995 } else { 996 timings_.StartSplit("SweepZygote"); 997 // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual 998 // memory. 999 accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end, 1000 &ZygoteSweepCallback, reinterpret_cast<void*>(&scc)); 1001 timings_.EndSplit(); 1002 } 1003 } 1004 } 1005 1006 timings_.StartSplit("SweepLargeObjects"); 1007 SweepLargeObjects(swap_bitmaps); 1008 timings_.EndSplit(); 1009} 1010 1011void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1012 // Sweep large objects 1013 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1014 accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects(); 1015 accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects(); 1016 if (swap_bitmaps) { 1017 std::swap(large_live_objects, large_mark_objects); 1018 } 1019 accounting::SpaceSetMap::Objects& live_objects = large_live_objects->GetObjects(); 1020 // O(n*log(n)) but hopefully there are not too many large objects. 1021 size_t freed_objects = 0; 1022 size_t freed_bytes = 0; 1023 Thread* self = Thread::Current(); 1024 // TODO: C++0x 1025 typedef accounting::SpaceSetMap::Objects::iterator It; 1026 for (It it = live_objects.begin(), end = live_objects.end(); it != end; ++it) { 1027 if (!large_mark_objects->Test(*it)) { 1028 freed_bytes += large_object_space->Free(self, const_cast<Object*>(*it)); 1029 ++freed_objects; 1030 } 1031 } 1032 freed_objects_.fetch_add(freed_objects); 1033 freed_bytes_.fetch_add(freed_bytes); 1034 GetHeap()->RecordFree(freed_objects, freed_bytes); 1035} 1036 1037void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) { 1038 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 1039 // TODO: C++0x 1040 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 1041 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 1042 space::ContinuousSpace* space = *it; 1043 if (space->IsDlMallocSpace() && space->Contains(ref)) { 1044 DCHECK(IsMarked(obj)); 1045 1046 bool is_marked = IsMarked(ref); 1047 if (!is_marked) { 1048 LOG(INFO) << *space; 1049 LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref) 1050 << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj) 1051 << "' (" << reinterpret_cast<const void*>(obj) << ") at offset " 1052 << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked"; 1053 1054 const Class* klass = is_static ? obj->AsClass() : obj->GetClass(); 1055 DCHECK(klass != NULL); 1056 const ObjectArray<Field>* fields = is_static ? klass->GetSFields() : klass->GetIFields(); 1057 DCHECK(fields != NULL); 1058 bool found = false; 1059 for (int32_t i = 0; i < fields->GetLength(); ++i) { 1060 const Field* cur = fields->Get(i); 1061 if (cur->GetOffset().Int32Value() == offset.Int32Value()) { 1062 LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur); 1063 found = true; 1064 break; 1065 } 1066 } 1067 if (!found) { 1068 LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value(); 1069 } 1070 1071 bool obj_marked = heap_->GetCardTable()->IsDirty(obj); 1072 if (!obj_marked) { 1073 LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' " 1074 << "(" << reinterpret_cast<const void*>(obj) << ") contains references to " 1075 << "the alloc space, but wasn't card marked"; 1076 } 1077 } 1078 } 1079 break; 1080 } 1081} 1082 1083// Process the "referent" field in a java.lang.ref.Reference. If the 1084// referent has not yet been marked, put it on the appropriate list in 1085// the gcHeap for later processing. 1086void MarkSweep::DelayReferenceReferent(Object* obj) { 1087 DCHECK(obj != NULL); 1088 Class* klass = obj->GetClass(); 1089 DCHECK(klass != NULL); 1090 DCHECK(klass->IsReferenceClass()); 1091 Object* pending = obj->GetFieldObject<Object*>(heap_->GetReferencePendingNextOffset(), false); 1092 Object* referent = heap_->GetReferenceReferent(obj); 1093 if (kCountJavaLangRefs) { 1094 ++reference_count_; 1095 } 1096 if (pending == NULL && referent != NULL && !IsMarked(referent)) { 1097 Object** list = NULL; 1098 if (klass->IsSoftReferenceClass()) { 1099 list = &soft_reference_list_; 1100 } else if (klass->IsWeakReferenceClass()) { 1101 list = &weak_reference_list_; 1102 } else if (klass->IsFinalizerReferenceClass()) { 1103 list = &finalizer_reference_list_; 1104 } else if (klass->IsPhantomReferenceClass()) { 1105 list = &phantom_reference_list_; 1106 } 1107 DCHECK(list != NULL) << PrettyClass(klass) << " " << std::hex << klass->GetAccessFlags(); 1108 // TODO: One lock per list? 1109 heap_->EnqueuePendingReference(obj, list); 1110 } 1111} 1112 1113void MarkSweep::ScanRoot(const Object* obj) { 1114 ScanObject(obj); 1115} 1116 1117class MarkObjectVisitor { 1118 public: 1119 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {} 1120 1121 // TODO: Fixme when anotatalysis works with visitors. 1122 void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */, 1123 bool /* is_static */) const 1124 NO_THREAD_SAFETY_ANALYSIS { 1125 if (kDebugLocking) { 1126 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1127 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1128 } 1129 mark_sweep_->MarkObject(ref); 1130 } 1131 1132 private: 1133 MarkSweep* const mark_sweep_; 1134}; 1135 1136// Scans an object reference. Determines the type of the reference 1137// and dispatches to a specialized scanning routine. 1138void MarkSweep::ScanObject(const Object* obj) { 1139 MarkObjectVisitor visitor(this); 1140 ScanObjectVisit(obj, visitor); 1141} 1142 1143class MarkStackChunk : public Task { 1144 public: 1145 MarkStackChunk(ThreadPool* thread_pool, MarkSweep* mark_sweep, Object** begin, Object** end) 1146 : mark_sweep_(mark_sweep), 1147 thread_pool_(thread_pool), 1148 index_(0), 1149 length_(0), 1150 output_(NULL) { 1151 length_ = end - begin; 1152 if (begin != end) { 1153 // Cost not significant since we only do this for the initial set of mark stack chunks. 1154 memcpy(data_, begin, length_ * sizeof(*begin)); 1155 } 1156 if (kCountTasks) { 1157 ++mark_sweep_->work_chunks_created_; 1158 } 1159 } 1160 1161 ~MarkStackChunk() { 1162 DCHECK(output_ == NULL || output_->length_ == 0); 1163 DCHECK_GE(index_, length_); 1164 delete output_; 1165 if (kCountTasks) { 1166 ++mark_sweep_->work_chunks_deleted_; 1167 } 1168 } 1169 1170 MarkSweep* const mark_sweep_; 1171 ThreadPool* const thread_pool_; 1172 static const size_t max_size = 1 * KB; 1173 // Index of which object we are scanning. Only needs to be atomic if we are doing work stealing. 1174 size_t index_; 1175 // Input / output mark stack. We add newly marked references to data_ until length reaches 1176 // max_size. This is an optimization so that less tasks are created. 1177 // TODO: Investigate using a bounded buffer FIFO. 1178 Object* data_[max_size]; 1179 // How many elements in data_ we need to scan. 1180 size_t length_; 1181 // Output block, newly marked references get added to the ouput block so that another thread can 1182 // scan them. 1183 MarkStackChunk* output_; 1184 1185 class MarkObjectParallelVisitor { 1186 public: 1187 explicit MarkObjectParallelVisitor(MarkStackChunk* chunk_task) : chunk_task_(chunk_task) {} 1188 1189 void operator()(const Object* /* obj */, const Object* ref, 1190 const MemberOffset& /* offset */, bool /* is_static */) const { 1191 if (ref != NULL && chunk_task_->mark_sweep_->MarkObjectParallel(ref)) { 1192 chunk_task_->MarkStackPush(ref); 1193 } 1194 } 1195 1196 private: 1197 MarkStackChunk* const chunk_task_; 1198 }; 1199 1200 // Push an object into the block. 1201 // Don't need to use atomic ++ since we only one thread is writing to an output block at any 1202 // given time. 1203 void Push(Object* obj) { 1204 CHECK(obj != NULL); 1205 data_[length_++] = obj; 1206 } 1207 1208 void MarkStackPush(const Object* obj) { 1209 if (static_cast<size_t>(length_) < max_size) { 1210 Push(const_cast<Object*>(obj)); 1211 } else { 1212 // Internal (thread-local) buffer is full, push to a new buffer instead. 1213 if (UNLIKELY(output_ == NULL)) { 1214 AllocateOutputChunk(); 1215 } else if (UNLIKELY(static_cast<size_t>(output_->length_) == max_size)) { 1216 // Output block is full, queue it up for processing and obtain a new block. 1217 EnqueueOutput(); 1218 AllocateOutputChunk(); 1219 } 1220 output_->Push(const_cast<Object*>(obj)); 1221 } 1222 } 1223 1224 void ScanObject(Object* obj) { 1225 mark_sweep_->ScanObjectVisit(obj, MarkObjectParallelVisitor(this)); 1226 } 1227 1228 void EnqueueOutput() { 1229 if (output_ != NULL) { 1230 uint64_t start = 0; 1231 if (kMeasureOverhead) { 1232 start = NanoTime(); 1233 } 1234 thread_pool_->AddTask(Thread::Current(), output_); 1235 output_ = NULL; 1236 if (kMeasureOverhead) { 1237 mark_sweep_->overhead_time_.fetch_add(NanoTime() - start); 1238 } 1239 } 1240 } 1241 1242 void AllocateOutputChunk() { 1243 uint64_t start = 0; 1244 if (kMeasureOverhead) { 1245 start = NanoTime(); 1246 } 1247 output_ = new MarkStackChunk(thread_pool_, mark_sweep_, NULL, NULL); 1248 if (kMeasureOverhead) { 1249 mark_sweep_->overhead_time_.fetch_add(NanoTime() - start); 1250 } 1251 } 1252 1253 void Finalize() { 1254 EnqueueOutput(); 1255 delete this; 1256 } 1257 1258 // Scans all of the objects 1259 virtual void Run(Thread* self) { 1260 size_t index; 1261 while ((index = index_++) < length_) { 1262 if (kUseMarkStackPrefetch) { 1263 static const size_t prefetch_look_ahead = 1; 1264 __builtin_prefetch(data_[std::min(index + prefetch_look_ahead, length_ - 1)]); 1265 } 1266 Object* obj = data_[index]; 1267 DCHECK(obj != NULL); 1268 ScanObject(obj); 1269 } 1270 } 1271}; 1272 1273void MarkSweep::ProcessMarkStackParallel() { 1274 CHECK(kDisableFinger) << "parallel mark stack processing cannot work when finger is enabled"; 1275 Thread* self = Thread::Current(); 1276 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1277 // Split the current mark stack up into work tasks. 1278 const size_t num_threads = thread_pool->GetThreadCount(); 1279 const size_t stack_size = mark_stack_->Size(); 1280 const size_t chunk_size = 1281 std::min((stack_size + num_threads - 1) / num_threads, 1282 static_cast<size_t>(MarkStackChunk::max_size)); 1283 size_t index = 0; 1284 for (size_t i = 0; i < num_threads || index < stack_size; ++i) { 1285 Object** begin = &mark_stack_->Begin()[std::min(stack_size, index)]; 1286 Object** end = &mark_stack_->Begin()[std::min(stack_size, index + chunk_size)]; 1287 index += chunk_size; 1288 thread_pool->AddTask(self, new MarkStackChunk(thread_pool, this, begin, end)); 1289 } 1290 thread_pool->StartWorkers(self); 1291 thread_pool->Wait(self, true, true); 1292 mark_stack_->Reset(); 1293 // LOG(INFO) << "Idle wait time " << PrettyDuration(thread_pool->GetWaitTime()); 1294 CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked"; 1295} 1296 1297// Scan anything that's on the mark stack. 1298void MarkSweep::ProcessMarkStack() { 1299 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1300 timings_.StartSplit("ProcessMarkStack"); 1301 if (kParallelMarkStack && thread_pool != NULL && thread_pool->GetThreadCount() > 0) { 1302 ProcessMarkStackParallel(); 1303 timings_.EndSplit(); 1304 return; 1305 } 1306 1307 if (kUseMarkStackPrefetch) { 1308 const size_t fifo_size = 4; 1309 const size_t fifo_mask = fifo_size - 1; 1310 const Object* fifo[fifo_size]; 1311 for (size_t i = 0; i < fifo_size; ++i) { 1312 fifo[i] = NULL; 1313 } 1314 size_t fifo_pos = 0; 1315 size_t fifo_count = 0; 1316 for (;;) { 1317 const Object* obj = fifo[fifo_pos & fifo_mask]; 1318 if (obj != NULL) { 1319 ScanObject(obj); 1320 fifo[fifo_pos & fifo_mask] = NULL; 1321 --fifo_count; 1322 } 1323 1324 if (!mark_stack_->IsEmpty()) { 1325 const Object* obj = mark_stack_->PopBack(); 1326 DCHECK(obj != NULL); 1327 fifo[fifo_pos & fifo_mask] = obj; 1328 __builtin_prefetch(obj); 1329 fifo_count++; 1330 } 1331 fifo_pos++; 1332 1333 if (!fifo_count) { 1334 CHECK(mark_stack_->IsEmpty()) << mark_stack_->Size(); 1335 break; 1336 } 1337 } 1338 } else { 1339 while (!mark_stack_->IsEmpty()) { 1340 const Object* obj = mark_stack_->PopBack(); 1341 DCHECK(obj != NULL); 1342 ScanObject(obj); 1343 } 1344 } 1345 timings_.EndSplit(); 1346} 1347 1348// Walks the reference list marking any references subject to the 1349// reference clearing policy. References with a black referent are 1350// removed from the list. References with white referents biased 1351// toward saving are blackened and also removed from the list. 1352void MarkSweep::PreserveSomeSoftReferences(Object** list) { 1353 DCHECK(list != NULL); 1354 Object* clear = NULL; 1355 size_t counter = 0; 1356 1357 DCHECK(mark_stack_->IsEmpty()); 1358 1359 timings_.StartSplit("PreserveSomeSoftReferences"); 1360 while (*list != NULL) { 1361 Object* ref = heap_->DequeuePendingReference(list); 1362 Object* referent = heap_->GetReferenceReferent(ref); 1363 if (referent == NULL) { 1364 // Referent was cleared by the user during marking. 1365 continue; 1366 } 1367 bool is_marked = IsMarked(referent); 1368 if (!is_marked && ((++counter) & 1)) { 1369 // Referent is white and biased toward saving, mark it. 1370 MarkObject(referent); 1371 is_marked = true; 1372 } 1373 if (!is_marked) { 1374 // Referent is white, queue it for clearing. 1375 heap_->EnqueuePendingReference(ref, &clear); 1376 } 1377 } 1378 *list = clear; 1379 timings_.EndSplit(); 1380 1381 // Restart the mark with the newly black references added to the 1382 // root set. 1383 ProcessMarkStack(); 1384} 1385 1386inline bool MarkSweep::IsMarked(const Object* object) const 1387 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1388 if (IsImmune(object)) { 1389 return true; 1390 } 1391 DCHECK(current_mark_bitmap_ != NULL); 1392 if (current_mark_bitmap_->HasAddress(object)) { 1393 return current_mark_bitmap_->Test(object); 1394 } 1395 return heap_->GetMarkBitmap()->Test(object); 1396} 1397 1398 1399// Unlink the reference list clearing references objects with white 1400// referents. Cleared references registered to a reference queue are 1401// scheduled for appending by the heap worker thread. 1402void MarkSweep::ClearWhiteReferences(Object** list) { 1403 DCHECK(list != NULL); 1404 while (*list != NULL) { 1405 Object* ref = heap_->DequeuePendingReference(list); 1406 Object* referent = heap_->GetReferenceReferent(ref); 1407 if (referent != NULL && !IsMarked(referent)) { 1408 // Referent is white, clear it. 1409 heap_->ClearReferenceReferent(ref); 1410 if (heap_->IsEnqueuable(ref)) { 1411 heap_->EnqueueReference(ref, &cleared_reference_list_); 1412 } 1413 } 1414 } 1415 DCHECK(*list == NULL); 1416} 1417 1418// Enqueues finalizer references with white referents. White 1419// referents are blackened, moved to the zombie field, and the 1420// referent field is cleared. 1421void MarkSweep::EnqueueFinalizerReferences(Object** list) { 1422 DCHECK(list != NULL); 1423 timings_.StartSplit("EnqueueFinalizerReferences"); 1424 MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset(); 1425 bool has_enqueued = false; 1426 while (*list != NULL) { 1427 Object* ref = heap_->DequeuePendingReference(list); 1428 Object* referent = heap_->GetReferenceReferent(ref); 1429 if (referent != NULL && !IsMarked(referent)) { 1430 MarkObject(referent); 1431 // If the referent is non-null the reference must queuable. 1432 DCHECK(heap_->IsEnqueuable(ref)); 1433 ref->SetFieldObject(zombie_offset, referent, false); 1434 heap_->ClearReferenceReferent(ref); 1435 heap_->EnqueueReference(ref, &cleared_reference_list_); 1436 has_enqueued = true; 1437 } 1438 } 1439 timings_.EndSplit(); 1440 if (has_enqueued) { 1441 ProcessMarkStack(); 1442 } 1443 DCHECK(*list == NULL); 1444} 1445 1446// Process reference class instances and schedule finalizations. 1447void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft, 1448 Object** weak_references, 1449 Object** finalizer_references, 1450 Object** phantom_references) { 1451 DCHECK(soft_references != NULL); 1452 DCHECK(weak_references != NULL); 1453 DCHECK(finalizer_references != NULL); 1454 DCHECK(phantom_references != NULL); 1455 1456 // Unless we are in the zygote or required to clear soft references 1457 // with white references, preserve some white referents. 1458 if (!clear_soft && !Runtime::Current()->IsZygote()) { 1459 PreserveSomeSoftReferences(soft_references); 1460 } 1461 1462 timings_.StartSplit("ProcessReferences"); 1463 // Clear all remaining soft and weak references with white 1464 // referents. 1465 ClearWhiteReferences(soft_references); 1466 ClearWhiteReferences(weak_references); 1467 timings_.EndSplit(); 1468 1469 // Preserve all white objects with finalize methods and schedule 1470 // them for finalization. 1471 EnqueueFinalizerReferences(finalizer_references); 1472 1473 timings_.StartSplit("ProcessReferences"); 1474 // Clear all f-reachable soft and weak references with white 1475 // referents. 1476 ClearWhiteReferences(soft_references); 1477 ClearWhiteReferences(weak_references); 1478 1479 // Clear all phantom references with white referents. 1480 ClearWhiteReferences(phantom_references); 1481 1482 // At this point all reference lists should be empty. 1483 DCHECK(*soft_references == NULL); 1484 DCHECK(*weak_references == NULL); 1485 DCHECK(*finalizer_references == NULL); 1486 DCHECK(*phantom_references == NULL); 1487 timings_.EndSplit(); 1488} 1489 1490void MarkSweep::UnBindBitmaps() { 1491 timings_.StartSplit("UnBindBitmaps"); 1492 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 1493 // TODO: C++0x 1494 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 1495 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 1496 space::ContinuousSpace* space = *it; 1497 if (space->IsDlMallocSpace()) { 1498 space::DlMallocSpace* alloc_space = space->AsDlMallocSpace(); 1499 if (alloc_space->temp_bitmap_.get() != NULL) { 1500 // At this point, the temp_bitmap holds our old mark bitmap. 1501 accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release(); 1502 GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap); 1503 CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get()); 1504 alloc_space->mark_bitmap_.reset(new_bitmap); 1505 DCHECK(alloc_space->temp_bitmap_.get() == NULL); 1506 } 1507 } 1508 } 1509 timings_.EndSplit(); 1510} 1511 1512void MarkSweep::FinishPhase() { 1513 // Can't enqueue referneces if we hold the mutator lock. 1514 Object* cleared_references = GetClearedReferences(); 1515 Heap* heap = GetHeap(); 1516 heap->EnqueueClearedReferences(&cleared_references); 1517 1518 heap->PostGcVerification(this); 1519 1520 timings_.StartSplit("GrowForUtilization"); 1521 heap->GrowForUtilization(GetGcType(), GetDurationNs()); 1522 timings_.EndSplit(); 1523 1524 timings_.StartSplit("RequestHeapTrim"); 1525 heap->RequestHeapTrim(); 1526 timings_.EndSplit(); 1527 1528 // Update the cumulative statistics 1529 total_time_ns_ += GetDurationNs(); 1530 total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0, 1531 std::plus<uint64_t>()); 1532 total_freed_objects_ += GetFreedObjects(); 1533 total_freed_bytes_ += GetFreedBytes(); 1534 1535 // Ensure that the mark stack is empty. 1536 CHECK(mark_stack_->IsEmpty()); 1537 1538 if (kCountScannedTypes) { 1539 VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_ 1540 << " other=" << other_count_; 1541 } 1542 1543 if (kCountTasks) { 1544 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_; 1545 } 1546 1547 if (kMeasureOverhead) { 1548 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_); 1549 } 1550 1551 if (kProfileLargeObjects) { 1552 VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_; 1553 } 1554 1555 if (kCountClassesMarked) { 1556 VLOG(gc) << "Classes marked " << classes_marked_; 1557 } 1558 1559 if (kCountJavaLangRefs) { 1560 VLOG(gc) << "References scanned " << reference_count_; 1561 } 1562 1563 // Update the cumulative loggers. 1564 cumulative_timings_.Start(); 1565 cumulative_timings_.AddLogger(timings_); 1566 cumulative_timings_.End(); 1567 1568 // Clear all of the spaces' mark bitmaps. 1569 const std::vector<space::ContinuousSpace*>& spaces = GetHeap()->GetContinuousSpaces(); 1570 // TODO: C++0x 1571 typedef std::vector<space::ContinuousSpace*>::const_iterator It; 1572 for (It it = spaces.begin(), end = spaces.end(); it != end; ++it) { 1573 space::ContinuousSpace* space = *it; 1574 if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) { 1575 space->GetMarkBitmap()->Clear(); 1576 } 1577 } 1578 mark_stack_->Reset(); 1579 1580 // Reset the marked large objects. 1581 space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace(); 1582 large_objects->GetMarkObjects()->Clear(); 1583} 1584 1585} // namespace collector 1586} // namespace gc 1587} // namespace art 1588