mark_sweep.cc revision f85c2fb317399ab540854cd7551ac47690366543
1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "mark_sweep.h" 18 19#include <functional> 20#include <numeric> 21#include <climits> 22#include <vector> 23 24#include "base/bounded_fifo.h" 25#include "base/logging.h" 26#include "base/macros.h" 27#include "base/mutex-inl.h" 28#include "base/timing_logger.h" 29#include "gc/accounting/card_table-inl.h" 30#include "gc/accounting/heap_bitmap-inl.h" 31#include "gc/accounting/mod_union_table.h" 32#include "gc/accounting/space_bitmap-inl.h" 33#include "gc/heap.h" 34#include "gc/reference_processor.h" 35#include "gc/space/image_space.h" 36#include "gc/space/large_object_space.h" 37#include "gc/space/space-inl.h" 38#include "mark_sweep-inl.h" 39#include "mirror/art_field-inl.h" 40#include "mirror/object-inl.h" 41#include "runtime.h" 42#include "scoped_thread_state_change.h" 43#include "thread-inl.h" 44#include "thread_list.h" 45 46using ::art::mirror::Object; 47 48namespace art { 49namespace gc { 50namespace collector { 51 52// Performance options. 53static constexpr bool kUseRecursiveMark = false; 54static constexpr bool kUseMarkStackPrefetch = true; 55static constexpr size_t kSweepArrayChunkFreeSize = 1024; 56static constexpr bool kPreCleanCards = true; 57 58// Parallelism options. 59static constexpr bool kParallelCardScan = true; 60static constexpr bool kParallelRecursiveMark = true; 61// Don't attempt to parallelize mark stack processing unless the mark stack is at least n 62// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not 63// having this can add overhead in ProcessReferences since we may end up doing many calls of 64// ProcessMarkStack with very small mark stacks. 65static constexpr size_t kMinimumParallelMarkStackSize = 128; 66static constexpr bool kParallelProcessMarkStack = true; 67 68// Profiling and information flags. 69static constexpr bool kProfileLargeObjects = false; 70static constexpr bool kMeasureOverhead = false; 71static constexpr bool kCountTasks = false; 72static constexpr bool kCountJavaLangRefs = false; 73static constexpr bool kCountMarkedObjects = false; 74 75// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%. 76static constexpr bool kCheckLocks = kDebugLocking; 77static constexpr bool kVerifyRootsMarked = kIsDebugBuild; 78 79// If true, revoke the rosalloc thread-local buffers at the 80// checkpoint, as opposed to during the pause. 81static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true; 82 83void MarkSweep::BindBitmaps() { 84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 86 // Mark all of the spaces we never collect as immune. 87 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) { 89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space; 90 } 91 } 92} 93 94MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix) 95 : GarbageCollector(heap, 96 name_prefix + 97 (is_concurrent ? "concurrent mark sweep": "mark sweep")), 98 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr), 99 gc_barrier_(new Barrier(0)), 100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock), 101 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) { 102 std::string error_msg; 103 MemMap* mem_map = MemMap::MapAnonymous( 104 "mark sweep sweep array free buffer", nullptr, 105 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize), 106 PROT_READ | PROT_WRITE, false, &error_msg); 107 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg; 108 sweep_array_free_buffer_mem_map_.reset(mem_map); 109} 110 111void MarkSweep::InitializePhase() { 112 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 113 mark_stack_ = heap_->GetMarkStack(); 114 DCHECK(mark_stack_ != nullptr); 115 immune_region_.Reset(); 116 class_count_.StoreRelaxed(0); 117 array_count_.StoreRelaxed(0); 118 other_count_.StoreRelaxed(0); 119 large_object_test_.StoreRelaxed(0); 120 large_object_mark_.StoreRelaxed(0); 121 overhead_time_ .StoreRelaxed(0); 122 work_chunks_created_.StoreRelaxed(0); 123 work_chunks_deleted_.StoreRelaxed(0); 124 reference_count_.StoreRelaxed(0); 125 mark_null_count_.StoreRelaxed(0); 126 mark_immune_count_.StoreRelaxed(0); 127 mark_fastpath_count_.StoreRelaxed(0); 128 mark_slowpath_count_.StoreRelaxed(0); 129 { 130 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap. 131 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 132 mark_bitmap_ = heap_->GetMarkBitmap(); 133 } 134 if (!GetCurrentIteration()->GetClearSoftReferences()) { 135 // Always clear soft references if a non-sticky collection. 136 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky); 137 } 138} 139 140void MarkSweep::RunPhases() { 141 Thread* self = Thread::Current(); 142 InitializePhase(); 143 Locks::mutator_lock_->AssertNotHeld(self); 144 if (IsConcurrent()) { 145 GetHeap()->PreGcVerification(this); 146 { 147 ReaderMutexLock mu(self, *Locks::mutator_lock_); 148 MarkingPhase(); 149 } 150 ScopedPause pause(this); 151 GetHeap()->PrePauseRosAllocVerification(this); 152 PausePhase(); 153 RevokeAllThreadLocalBuffers(); 154 } else { 155 ScopedPause pause(this); 156 GetHeap()->PreGcVerificationPaused(this); 157 MarkingPhase(); 158 GetHeap()->PrePauseRosAllocVerification(this); 159 PausePhase(); 160 RevokeAllThreadLocalBuffers(); 161 } 162 { 163 // Sweeping always done concurrently, even for non concurrent mark sweep. 164 ReaderMutexLock mu(self, *Locks::mutator_lock_); 165 ReclaimPhase(); 166 } 167 GetHeap()->PostGcVerification(this); 168 FinishPhase(); 169} 170 171void MarkSweep::ProcessReferences(Thread* self) { 172 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 173 GetHeap()->GetReferenceProcessor()->ProcessReferences( 174 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), 175 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this); 176} 177 178void MarkSweep::PausePhase() { 179 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings()); 180 Thread* self = Thread::Current(); 181 Locks::mutator_lock_->AssertExclusiveHeld(self); 182 if (IsConcurrent()) { 183 // Handle the dirty objects if we are a concurrent GC. 184 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 185 // Re-mark root set. 186 ReMarkRoots(); 187 // Scan dirty objects, this is only required if we are not doing concurrent GC. 188 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty); 189 } 190 { 191 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings()); 192 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 193 heap_->SwapStacks(self); 194 live_stack_freeze_size_ = heap_->GetLiveStack()->Size(); 195 // Need to revoke all the thread local allocation stacks since we just swapped the allocation 196 // stacks and don't want anybody to allocate into the live stack. 197 RevokeAllThreadLocalAllocationStacks(self); 198 } 199 heap_->PreSweepingGcVerification(this); 200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system 201 // weak before we sweep them. Since this new system weak may not be marked, the GC may 202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong 203 // reference to a string that is about to be swept. 204 Runtime::Current()->DisallowNewSystemWeaks(); 205 // Enable the reference processing slow path, needs to be done with mutators paused since there 206 // is no lock in the GetReferent fast path. 207 GetHeap()->GetReferenceProcessor()->EnableSlowPath(); 208} 209 210void MarkSweep::PreCleanCards() { 211 // Don't do this for non concurrent GCs since they don't have any dirty cards. 212 if (kPreCleanCards && IsConcurrent()) { 213 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 214 Thread* self = Thread::Current(); 215 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)); 216 // Process dirty cards and add dirty cards to mod union tables, also ages cards. 217 heap_->ProcessCards(GetTimings(), false); 218 // The checkpoint root marking is required to avoid a race condition which occurs if the 219 // following happens during a reference write: 220 // 1. mutator dirties the card (write barrier) 221 // 2. GC ages the card (the above ProcessCards call) 222 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below) 223 // 4. mutator writes the value (corresponding to the write barrier in 1.) 224 // This causes the GC to age the card but not necessarily mark the reference which the mutator 225 // wrote into the object stored in the card. 226 // Having the checkpoint fixes this issue since it ensures that the card mark and the 227 // reference write are visible to the GC before the card is scanned (this is due to locks being 228 // acquired / released in the checkpoint code). 229 // The other roots are also marked to help reduce the pause. 230 MarkRootsCheckpoint(self, false); 231 MarkNonThreadRoots(); 232 MarkConcurrentRoots( 233 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots)); 234 // Process the newly aged cards. 235 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1); 236 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live 237 // in the next GC. 238 } 239} 240 241void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) { 242 if (kUseThreadLocalAllocationStack) { 243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 244 Locks::mutator_lock_->AssertExclusiveHeld(self); 245 heap_->RevokeAllThreadLocalAllocationStacks(self); 246 } 247} 248 249void MarkSweep::MarkingPhase() { 250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 251 Thread* self = Thread::Current(); 252 BindBitmaps(); 253 FindDefaultSpaceBitmap(); 254 // Process dirty cards and add dirty cards to mod union tables. 255 heap_->ProcessCards(GetTimings(), false); 256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 257 MarkRoots(self); 258 MarkReachableObjects(); 259 // Pre-clean dirtied cards to reduce pauses. 260 PreCleanCards(); 261} 262 263void MarkSweep::UpdateAndMarkModUnion() { 264 for (const auto& space : heap_->GetContinuousSpaces()) { 265 if (immune_region_.ContainsSpace(space)) { 266 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" : 267 "UpdateAndMarkImageModUnionTable"; 268 TimingLogger::ScopedTiming t(name, GetTimings()); 269 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space); 270 CHECK(mod_union_table != nullptr); 271 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this); 272 } 273 } 274} 275 276void MarkSweep::MarkReachableObjects() { 277 UpdateAndMarkModUnion(); 278 // Recursively mark all the non-image bits set in the mark bitmap. 279 RecursiveMark(); 280} 281 282void MarkSweep::ReclaimPhase() { 283 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 284 Thread* self = Thread::Current(); 285 // Process the references concurrently. 286 ProcessReferences(self); 287 SweepSystemWeaks(self); 288 Runtime::Current()->AllowNewSystemWeaks(); 289 { 290 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 291 // Reclaim unmarked objects. 292 Sweep(false); 293 // Swap the live and mark bitmaps for each space which we modified space. This is an 294 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound 295 // bitmaps. 296 SwapBitmaps(); 297 // Unbind the live and mark bitmaps. 298 GetHeap()->UnBindBitmaps(); 299 } 300} 301 302void MarkSweep::FindDefaultSpaceBitmap() { 303 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 304 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 305 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap(); 306 // We want to have the main space instead of non moving if possible. 307 if (bitmap != nullptr && 308 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) { 309 current_space_bitmap_ = bitmap; 310 // If we are not the non moving space exit the loop early since this will be good enough. 311 if (space != heap_->GetNonMovingSpace()) { 312 break; 313 } 314 } 315 } 316 if (current_space_bitmap_ == nullptr) { 317 heap_->DumpSpaces(); 318 LOG(FATAL) << "Could not find a default mark bitmap"; 319 } 320} 321 322void MarkSweep::ExpandMarkStack() { 323 ResizeMarkStack(mark_stack_->Capacity() * 2); 324} 325 326void MarkSweep::ResizeMarkStack(size_t new_size) { 327 // Rare case, no need to have Thread::Current be a parameter. 328 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) { 329 // Someone else acquired the lock and expanded the mark stack before us. 330 return; 331 } 332 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End()); 333 CHECK_LE(mark_stack_->Size(), new_size); 334 mark_stack_->Resize(new_size); 335 for (const auto& obj : temp) { 336 mark_stack_->PushBack(obj); 337 } 338} 339 340inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) { 341 DCHECK(obj != nullptr); 342 if (MarkObjectParallel(obj)) { 343 MutexLock mu(Thread::Current(), mark_stack_lock_); 344 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 345 ExpandMarkStack(); 346 } 347 // The object must be pushed on to the mark stack. 348 mark_stack_->PushBack(obj); 349 } 350} 351 352mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) { 353 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg); 354 mark_sweep->MarkObject(obj); 355 return obj; 356} 357 358void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 359 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr()); 360} 361 362bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) { 363 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr()); 364} 365 366class MarkSweepMarkObjectSlowPath { 367 public: 368 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { 369 } 370 371 void operator()(const Object* obj) const ALWAYS_INLINE { 372 if (kProfileLargeObjects) { 373 // TODO: Differentiate between marking and testing somehow. 374 ++mark_sweep_->large_object_test_; 375 ++mark_sweep_->large_object_mark_; 376 } 377 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace(); 378 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) || 379 (kIsDebugBuild && !large_object_space->Contains(obj)))) { 380 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces"; 381 LOG(ERROR) << "Attempting see if it's a bad root"; 382 mark_sweep_->VerifyRoots(); 383 LOG(FATAL) << "Can't mark invalid object"; 384 } 385 } 386 387 private: 388 MarkSweep* const mark_sweep_; 389}; 390 391inline void MarkSweep::MarkObjectNonNull(Object* obj) { 392 DCHECK(obj != nullptr); 393 if (kUseBakerOrBrooksReadBarrier) { 394 // Verify all the objects have the correct pointer installed. 395 obj->AssertReadBarrierPointer(); 396 } 397 if (immune_region_.ContainsObject(obj)) { 398 if (kCountMarkedObjects) { 399 ++mark_immune_count_; 400 } 401 DCHECK(mark_bitmap_->Test(obj)); 402 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) { 403 if (kCountMarkedObjects) { 404 ++mark_fastpath_count_; 405 } 406 if (UNLIKELY(!current_space_bitmap_->Set(obj))) { 407 PushOnMarkStack(obj); // This object was not previously marked. 408 } 409 } else { 410 if (kCountMarkedObjects) { 411 ++mark_slowpath_count_; 412 } 413 MarkSweepMarkObjectSlowPath visitor(this); 414 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set 415 // will check again. 416 if (!mark_bitmap_->Set(obj, visitor)) { 417 PushOnMarkStack(obj); // Was not already marked, push. 418 } 419 } 420} 421 422inline void MarkSweep::PushOnMarkStack(Object* obj) { 423 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) { 424 // Lock is not needed but is here anyways to please annotalysis. 425 MutexLock mu(Thread::Current(), mark_stack_lock_); 426 ExpandMarkStack(); 427 } 428 // The object must be pushed on to the mark stack. 429 mark_stack_->PushBack(obj); 430} 431 432inline bool MarkSweep::MarkObjectParallel(const Object* obj) { 433 DCHECK(obj != nullptr); 434 if (kUseBakerOrBrooksReadBarrier) { 435 // Verify all the objects have the correct pointer installed. 436 obj->AssertReadBarrierPointer(); 437 } 438 if (immune_region_.ContainsObject(obj)) { 439 DCHECK(IsMarked(obj)); 440 return false; 441 } 442 // Try to take advantage of locality of references within a space, failing this find the space 443 // the hard way. 444 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_; 445 if (LIKELY(object_bitmap->HasAddress(obj))) { 446 return !object_bitmap->AtomicTestAndSet(obj); 447 } 448 MarkSweepMarkObjectSlowPath visitor(this); 449 return !mark_bitmap_->AtomicTestAndSet(obj, visitor); 450} 451 452// Used to mark objects when processing the mark stack. If an object is null, it is not marked. 453inline void MarkSweep::MarkObject(Object* obj) { 454 if (obj != nullptr) { 455 MarkObjectNonNull(obj); 456 } else if (kCountMarkedObjects) { 457 ++mark_null_count_; 458 } 459} 460 461void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/, 462 RootType /*root_type*/) { 463 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root); 464} 465 466void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/, 467 RootType /*root_type*/) { 468 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root)); 469} 470 471void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/, 472 RootType /*root_type*/) { 473 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root); 474} 475 476void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg, 477 const StackVisitor* visitor, RootType root_type) { 478 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type); 479} 480 481void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor, 482 RootType root_type) { 483 // See if the root is on any space bitmap. 484 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) { 485 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 486 if (!large_object_space->Contains(root)) { 487 LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type; 488 if (visitor != NULL) { 489 LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg; 490 } 491 } 492 } 493} 494 495void MarkSweep::VerifyRoots() { 496 Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this); 497} 498 499void MarkSweep::MarkRoots(Thread* self) { 500 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 501 if (Locks::mutator_lock_->IsExclusiveHeld(self)) { 502 // If we exclusively hold the mutator lock, all threads must be suspended. 503 Runtime::Current()->VisitRoots(MarkRootCallback, this); 504 RevokeAllThreadLocalAllocationStacks(self); 505 } else { 506 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint); 507 // At this point the live stack should no longer have any mutators which push into it. 508 MarkNonThreadRoots(); 509 MarkConcurrentRoots( 510 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots)); 511 } 512} 513 514void MarkSweep::MarkNonThreadRoots() { 515 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 516 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this); 517} 518 519void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) { 520 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 521 // Visit all runtime roots and clear dirty flags. 522 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags); 523} 524 525class ScanObjectVisitor { 526 public: 527 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE 528 : mark_sweep_(mark_sweep) {} 529 530 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 531 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 532 if (kCheckLocks) { 533 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 534 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 535 } 536 mark_sweep_->ScanObject(obj); 537 } 538 539 private: 540 MarkSweep* const mark_sweep_; 541}; 542 543class DelayReferenceReferentVisitor { 544 public: 545 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) { 546 } 547 548 void operator()(mirror::Class* klass, mirror::Reference* ref) const 549 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 550 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 551 collector_->DelayReferenceReferent(klass, ref); 552 } 553 554 private: 555 MarkSweep* const collector_; 556}; 557 558template <bool kUseFinger = false> 559class MarkStackTask : public Task { 560 public: 561 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size, 562 Object** mark_stack) 563 : mark_sweep_(mark_sweep), 564 thread_pool_(thread_pool), 565 mark_stack_pos_(mark_stack_size) { 566 // We may have to copy part of an existing mark stack when another mark stack overflows. 567 if (mark_stack_size != 0) { 568 DCHECK(mark_stack != NULL); 569 // TODO: Check performance? 570 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_); 571 } 572 if (kCountTasks) { 573 ++mark_sweep_->work_chunks_created_; 574 } 575 } 576 577 static const size_t kMaxSize = 1 * KB; 578 579 protected: 580 class MarkObjectParallelVisitor { 581 public: 582 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task, 583 MarkSweep* mark_sweep) ALWAYS_INLINE 584 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {} 585 586 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE 587 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 588 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset); 589 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) { 590 if (kUseFinger) { 591 android_memory_barrier(); 592 if (reinterpret_cast<uintptr_t>(ref) >= 593 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) { 594 return; 595 } 596 } 597 chunk_task_->MarkStackPush(ref); 598 } 599 } 600 601 private: 602 MarkStackTask<kUseFinger>* const chunk_task_; 603 MarkSweep* const mark_sweep_; 604 }; 605 606 class ScanObjectParallelVisitor { 607 public: 608 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE 609 : chunk_task_(chunk_task) {} 610 611 // No thread safety analysis since multiple threads will use this visitor. 612 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 613 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 614 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_; 615 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep); 616 DelayReferenceReferentVisitor ref_visitor(mark_sweep); 617 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor); 618 } 619 620 private: 621 MarkStackTask<kUseFinger>* const chunk_task_; 622 }; 623 624 virtual ~MarkStackTask() { 625 // Make sure that we have cleared our mark stack. 626 DCHECK_EQ(mark_stack_pos_, 0U); 627 if (kCountTasks) { 628 ++mark_sweep_->work_chunks_deleted_; 629 } 630 } 631 632 MarkSweep* const mark_sweep_; 633 ThreadPool* const thread_pool_; 634 // Thread local mark stack for this task. 635 Object* mark_stack_[kMaxSize]; 636 // Mark stack position. 637 size_t mark_stack_pos_; 638 639 void MarkStackPush(Object* obj) ALWAYS_INLINE { 640 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) { 641 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task. 642 mark_stack_pos_ /= 2; 643 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_, 644 mark_stack_ + mark_stack_pos_); 645 thread_pool_->AddTask(Thread::Current(), task); 646 } 647 DCHECK(obj != nullptr); 648 DCHECK_LT(mark_stack_pos_, kMaxSize); 649 mark_stack_[mark_stack_pos_++] = obj; 650 } 651 652 virtual void Finalize() { 653 delete this; 654 } 655 656 // Scans all of the objects 657 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 658 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 659 ScanObjectParallelVisitor visitor(this); 660 // TODO: Tune this. 661 static const size_t kFifoSize = 4; 662 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 663 for (;;) { 664 Object* obj = nullptr; 665 if (kUseMarkStackPrefetch) { 666 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) { 667 Object* obj = mark_stack_[--mark_stack_pos_]; 668 DCHECK(obj != nullptr); 669 __builtin_prefetch(obj); 670 prefetch_fifo.push_back(obj); 671 } 672 if (UNLIKELY(prefetch_fifo.empty())) { 673 break; 674 } 675 obj = prefetch_fifo.front(); 676 prefetch_fifo.pop_front(); 677 } else { 678 if (UNLIKELY(mark_stack_pos_ == 0)) { 679 break; 680 } 681 obj = mark_stack_[--mark_stack_pos_]; 682 } 683 DCHECK(obj != nullptr); 684 visitor(obj); 685 } 686 } 687}; 688 689class CardScanTask : public MarkStackTask<false> { 690 public: 691 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 692 accounting::ContinuousSpaceBitmap* bitmap, 693 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size, 694 Object** mark_stack_obj) 695 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj), 696 bitmap_(bitmap), 697 begin_(begin), 698 end_(end), 699 minimum_age_(minimum_age) { 700 } 701 702 protected: 703 accounting::ContinuousSpaceBitmap* const bitmap_; 704 byte* const begin_; 705 byte* const end_; 706 const byte minimum_age_; 707 708 virtual void Finalize() { 709 delete this; 710 } 711 712 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 713 ScanObjectParallelVisitor visitor(this); 714 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable(); 715 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_); 716 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - " 717 << reinterpret_cast<void*>(end_) << " = " << cards_scanned; 718 // Finish by emptying our local mark stack. 719 MarkStackTask::Run(self); 720 } 721}; 722 723size_t MarkSweep::GetThreadCount(bool paused) const { 724 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) { 725 return 1; 726 } 727 if (paused) { 728 return heap_->GetParallelGCThreadCount() + 1; 729 } else { 730 return heap_->GetConcGCThreadCount() + 1; 731 } 732} 733 734void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) { 735 accounting::CardTable* card_table = GetHeap()->GetCardTable(); 736 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 737 size_t thread_count = GetThreadCount(paused); 738 // The parallel version with only one thread is faster for card scanning, TODO: fix. 739 if (kParallelCardScan && thread_count > 1) { 740 Thread* self = Thread::Current(); 741 // Can't have a different split for each space since multiple spaces can have their cards being 742 // scanned at the same time. 743 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__, 744 GetTimings()); 745 // Try to take some of the mark stack since we can pass this off to the worker tasks. 746 Object** mark_stack_begin = mark_stack_->Begin(); 747 Object** mark_stack_end = mark_stack_->End(); 748 const size_t mark_stack_size = mark_stack_end - mark_stack_begin; 749 // Estimated number of work tasks we will create. 750 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count; 751 DCHECK_NE(mark_stack_tasks, 0U); 752 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2, 753 mark_stack_size / mark_stack_tasks + 1); 754 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 755 if (space->GetMarkBitmap() == nullptr) { 756 continue; 757 } 758 byte* card_begin = space->Begin(); 759 byte* card_end = space->End(); 760 // Align up the end address. For example, the image space's end 761 // may not be card-size-aligned. 762 card_end = AlignUp(card_end, accounting::CardTable::kCardSize); 763 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin)); 764 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end)); 765 // Calculate how many bytes of heap we will scan, 766 const size_t address_range = card_end - card_begin; 767 // Calculate how much address range each task gets. 768 const size_t card_delta = RoundUp(address_range / thread_count + 1, 769 accounting::CardTable::kCardSize); 770 // Create the worker tasks for this space. 771 while (card_begin != card_end) { 772 // Add a range of cards. 773 size_t addr_remaining = card_end - card_begin; 774 size_t card_increment = std::min(card_delta, addr_remaining); 775 // Take from the back of the mark stack. 776 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin; 777 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining); 778 mark_stack_end -= mark_stack_increment; 779 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment)); 780 DCHECK_EQ(mark_stack_end, mark_stack_->End()); 781 // Add the new task to the thread pool. 782 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin, 783 card_begin + card_increment, minimum_age, 784 mark_stack_increment, mark_stack_end); 785 thread_pool->AddTask(self, task); 786 card_begin += card_increment; 787 } 788 } 789 790 // Note: the card scan below may dirty new cards (and scan them) 791 // as a side effect when a Reference object is encountered and 792 // queued during the marking. See b/11465268. 793 thread_pool->SetMaxActiveWorkers(thread_count - 1); 794 thread_pool->StartWorkers(self); 795 thread_pool->Wait(self, true, true); 796 thread_pool->StopWorkers(self); 797 } else { 798 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 799 if (space->GetMarkBitmap() != nullptr) { 800 // Image spaces are handled properly since live == marked for them. 801 const char* name = nullptr; 802 switch (space->GetGcRetentionPolicy()) { 803 case space::kGcRetentionPolicyNeverCollect: 804 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects"; 805 break; 806 case space::kGcRetentionPolicyFullCollect: 807 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects"; 808 break; 809 case space::kGcRetentionPolicyAlwaysCollect: 810 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects"; 811 break; 812 default: 813 LOG(FATAL) << "Unreachable"; 814 } 815 TimingLogger::ScopedTiming t(name, GetTimings()); 816 ScanObjectVisitor visitor(this); 817 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, 818 minimum_age); 819 } 820 } 821 } 822} 823 824class RecursiveMarkTask : public MarkStackTask<false> { 825 public: 826 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, 827 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end) 828 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin), 829 end_(end) { 830 } 831 832 protected: 833 accounting::ContinuousSpaceBitmap* const bitmap_; 834 const uintptr_t begin_; 835 const uintptr_t end_; 836 837 virtual void Finalize() { 838 delete this; 839 } 840 841 // Scans all of the objects 842 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 843 ScanObjectParallelVisitor visitor(this); 844 bitmap_->VisitMarkedRange(begin_, end_, visitor); 845 // Finish by emptying our local mark stack. 846 MarkStackTask::Run(self); 847 } 848}; 849 850// Populates the mark stack based on the set of marked objects and 851// recursively marks until the mark stack is emptied. 852void MarkSweep::RecursiveMark() { 853 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 854 // RecursiveMark will build the lists of known instances of the Reference classes. See 855 // DelayReferenceReferent for details. 856 if (kUseRecursiveMark) { 857 const bool partial = GetGcType() == kGcTypePartial; 858 ScanObjectVisitor scan_visitor(this); 859 auto* self = Thread::Current(); 860 ThreadPool* thread_pool = heap_->GetThreadPool(); 861 size_t thread_count = GetThreadCount(false); 862 const bool parallel = kParallelRecursiveMark && thread_count > 1; 863 mark_stack_->Reset(); 864 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 865 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) || 866 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) { 867 current_space_bitmap_ = space->GetMarkBitmap(); 868 if (current_space_bitmap_ == nullptr) { 869 continue; 870 } 871 if (parallel) { 872 // We will use the mark stack the future. 873 // CHECK(mark_stack_->IsEmpty()); 874 // This function does not handle heap end increasing, so we must use the space end. 875 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 876 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 877 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue()); 878 879 // Create a few worker tasks. 880 const size_t n = thread_count * 2; 881 while (begin != end) { 882 uintptr_t start = begin; 883 uintptr_t delta = (end - begin) / n; 884 delta = RoundUp(delta, KB); 885 if (delta < 16 * KB) delta = end - begin; 886 begin += delta; 887 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start, 888 begin); 889 thread_pool->AddTask(self, task); 890 } 891 thread_pool->SetMaxActiveWorkers(thread_count - 1); 892 thread_pool->StartWorkers(self); 893 thread_pool->Wait(self, true, true); 894 thread_pool->StopWorkers(self); 895 } else { 896 // This function does not handle heap end increasing, so we must use the space end. 897 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin()); 898 uintptr_t end = reinterpret_cast<uintptr_t>(space->End()); 899 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor); 900 } 901 } 902 } 903 } 904 ProcessMarkStack(false); 905} 906 907mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) { 908 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) { 909 return object; 910 } 911 return nullptr; 912} 913 914void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) { 915 ScanGrayObjects(paused, minimum_age); 916 ProcessMarkStack(paused); 917} 918 919void MarkSweep::ReMarkRoots() { 920 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 921 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); 922 Runtime::Current()->VisitRoots( 923 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots | 924 kVisitRootFlagStopLoggingNewRoots | 925 kVisitRootFlagClearRootLog)); 926 if (kVerifyRootsMarked) { 927 TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings()); 928 Runtime::Current()->VisitRoots(VerifyRootMarked, this); 929 } 930} 931 932void MarkSweep::SweepSystemWeaks(Thread* self) { 933 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 934 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); 935 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this); 936} 937 938mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) { 939 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj); 940 // We don't actually want to sweep the object, so lets return "marked" 941 return obj; 942} 943 944void MarkSweep::VerifyIsLive(const Object* obj) { 945 if (!heap_->GetLiveBitmap()->Test(obj)) { 946 if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) == 947 heap_->allocation_stack_->End()) { 948 // Object not found! 949 heap_->DumpSpaces(); 950 LOG(FATAL) << "Found dead object " << obj; 951 } 952 } 953} 954 955void MarkSweep::VerifySystemWeaks() { 956 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 957 // Verify system weaks, uses a special object visitor which returns the input object. 958 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this); 959} 960 961class CheckpointMarkThreadRoots : public Closure { 962 public: 963 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep, 964 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) 965 : mark_sweep_(mark_sweep), 966 revoke_ros_alloc_thread_local_buffers_at_checkpoint_( 967 revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 968 } 969 970 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 971 ATRACE_BEGIN("Marking thread roots"); 972 // Note: self is not necessarily equal to thread since thread may be suspended. 973 Thread* self = Thread::Current(); 974 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc) 975 << thread->GetState() << " thread " << thread << " self " << self; 976 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_); 977 ATRACE_END(); 978 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) { 979 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers"); 980 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread); 981 ATRACE_END(); 982 } 983 mark_sweep_->GetBarrier().Pass(self); 984 } 985 986 private: 987 MarkSweep* const mark_sweep_; 988 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_; 989}; 990 991void MarkSweep::MarkRootsCheckpoint(Thread* self, 992 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) { 993 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 994 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint); 995 ThreadList* thread_list = Runtime::Current()->GetThreadList(); 996 // Request the check point is run on all threads returning a count of the threads that must 997 // run through the barrier including self. 998 size_t barrier_count = thread_list->RunCheckpoint(&check_point); 999 // Release locks then wait for all mutator threads to pass the barrier. 1000 // TODO: optimize to not release locks when there are no threads to wait for. 1001 Locks::heap_bitmap_lock_->ExclusiveUnlock(self); 1002 Locks::mutator_lock_->SharedUnlock(self); 1003 { 1004 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); 1005 gc_barrier_->Increment(self, barrier_count); 1006 } 1007 Locks::mutator_lock_->SharedLock(self); 1008 Locks::heap_bitmap_lock_->ExclusiveLock(self); 1009} 1010 1011void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) { 1012 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1013 Thread* self = Thread::Current(); 1014 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>( 1015 sweep_array_free_buffer_mem_map_->BaseBegin()); 1016 size_t chunk_free_pos = 0; 1017 ObjectBytePair freed; 1018 ObjectBytePair freed_los; 1019 // How many objects are left in the array, modified after each space is swept. 1020 Object** objects = allocations->Begin(); 1021 size_t count = allocations->Size(); 1022 // Change the order to ensure that the non-moving space last swept as an optimization. 1023 std::vector<space::ContinuousSpace*> sweep_spaces; 1024 space::ContinuousSpace* non_moving_space = nullptr; 1025 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) { 1026 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) && 1027 space->GetLiveBitmap() != nullptr) { 1028 if (space == heap_->GetNonMovingSpace()) { 1029 non_moving_space = space; 1030 } else { 1031 sweep_spaces.push_back(space); 1032 } 1033 } 1034 } 1035 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after 1036 // the other alloc spaces as an optimization. 1037 if (non_moving_space != nullptr) { 1038 sweep_spaces.push_back(non_moving_space); 1039 } 1040 // Start by sweeping the continuous spaces. 1041 for (space::ContinuousSpace* space : sweep_spaces) { 1042 space::AllocSpace* alloc_space = space->AsAllocSpace(); 1043 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap(); 1044 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap(); 1045 if (swap_bitmaps) { 1046 std::swap(live_bitmap, mark_bitmap); 1047 } 1048 Object** out = objects; 1049 for (size_t i = 0; i < count; ++i) { 1050 Object* obj = objects[i]; 1051 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1052 continue; 1053 } 1054 if (space->HasAddress(obj)) { 1055 // This object is in the space, remove it from the array and add it to the sweep buffer 1056 // if needed. 1057 if (!mark_bitmap->Test(obj)) { 1058 if (chunk_free_pos >= kSweepArrayChunkFreeSize) { 1059 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1060 freed.objects += chunk_free_pos; 1061 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1062 chunk_free_pos = 0; 1063 } 1064 chunk_free_buffer[chunk_free_pos++] = obj; 1065 } 1066 } else { 1067 *(out++) = obj; 1068 } 1069 } 1070 if (chunk_free_pos > 0) { 1071 TimingLogger::ScopedTiming t("FreeList", GetTimings()); 1072 freed.objects += chunk_free_pos; 1073 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer); 1074 chunk_free_pos = 0; 1075 } 1076 // All of the references which space contained are no longer in the allocation stack, update 1077 // the count. 1078 count = out - objects; 1079 } 1080 // Handle the large object space. 1081 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace(); 1082 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap(); 1083 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap(); 1084 if (swap_bitmaps) { 1085 std::swap(large_live_objects, large_mark_objects); 1086 } 1087 for (size_t i = 0; i < count; ++i) { 1088 Object* obj = objects[i]; 1089 // Handle large objects. 1090 if (kUseThreadLocalAllocationStack && obj == nullptr) { 1091 continue; 1092 } 1093 if (!large_mark_objects->Test(obj)) { 1094 ++freed_los.objects; 1095 freed_los.bytes += large_object_space->Free(self, obj); 1096 } 1097 } 1098 { 1099 TimingLogger::ScopedTiming t("RecordFree", GetTimings()); 1100 RecordFree(freed); 1101 RecordFreeLOS(freed_los); 1102 t.NewTiming("ResetStack"); 1103 allocations->Reset(); 1104 } 1105 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero(); 1106} 1107 1108void MarkSweep::Sweep(bool swap_bitmaps) { 1109 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1110 // Ensure that nobody inserted items in the live stack after we swapped the stacks. 1111 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size()); 1112 { 1113 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings()); 1114 // Mark everything allocated since the last as GC live so that we can sweep concurrently, 1115 // knowing that new allocations won't be marked as live. 1116 accounting::ObjectStack* live_stack = heap_->GetLiveStack(); 1117 heap_->MarkAllocStackAsLive(live_stack); 1118 live_stack->Reset(); 1119 DCHECK(mark_stack_->IsEmpty()); 1120 } 1121 for (const auto& space : GetHeap()->GetContinuousSpaces()) { 1122 if (space->IsContinuousMemMapAllocSpace()) { 1123 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace(); 1124 TimingLogger::ScopedTiming split( 1125 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings()); 1126 RecordFree(alloc_space->Sweep(swap_bitmaps)); 1127 } 1128 } 1129 SweepLargeObjects(swap_bitmaps); 1130} 1131 1132void MarkSweep::SweepLargeObjects(bool swap_bitmaps) { 1133 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings()); 1134 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps)); 1135} 1136 1137// Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 1138// marked, put it on the appropriate list in the heap for later processing. 1139void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) { 1140 if (kCountJavaLangRefs) { 1141 ++reference_count_; 1142 } 1143 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback, 1144 this); 1145} 1146 1147class MarkObjectVisitor { 1148 public: 1149 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) { 1150 } 1151 1152 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const 1153 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 1154 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 1155 if (kCheckLocks) { 1156 Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); 1157 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current()); 1158 } 1159 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset)); 1160 } 1161 1162 private: 1163 MarkSweep* const mark_sweep_; 1164}; 1165 1166// Scans an object reference. Determines the type of the reference 1167// and dispatches to a specialized scanning routine. 1168void MarkSweep::ScanObject(Object* obj) { 1169 MarkObjectVisitor mark_visitor(this); 1170 DelayReferenceReferentVisitor ref_visitor(this); 1171 ScanObjectVisit(obj, mark_visitor, ref_visitor); 1172} 1173 1174void MarkSweep::ProcessMarkStackCallback(void* arg) { 1175 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false); 1176} 1177 1178void MarkSweep::ProcessMarkStackParallel(size_t thread_count) { 1179 Thread* self = Thread::Current(); 1180 ThreadPool* thread_pool = GetHeap()->GetThreadPool(); 1181 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1, 1182 static_cast<size_t>(MarkStackTask<false>::kMaxSize)); 1183 CHECK_GT(chunk_size, 0U); 1184 // Split the current mark stack up into work tasks. 1185 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) { 1186 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size); 1187 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it)); 1188 it += delta; 1189 } 1190 thread_pool->SetMaxActiveWorkers(thread_count - 1); 1191 thread_pool->StartWorkers(self); 1192 thread_pool->Wait(self, true, true); 1193 thread_pool->StopWorkers(self); 1194 mark_stack_->Reset(); 1195 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(), 1196 work_chunks_deleted_.LoadSequentiallyConsistent()) 1197 << " some of the work chunks were leaked"; 1198} 1199 1200// Scan anything that's on the mark stack. 1201void MarkSweep::ProcessMarkStack(bool paused) { 1202 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings()); 1203 size_t thread_count = GetThreadCount(paused); 1204 if (kParallelProcessMarkStack && thread_count > 1 && 1205 mark_stack_->Size() >= kMinimumParallelMarkStackSize) { 1206 ProcessMarkStackParallel(thread_count); 1207 } else { 1208 // TODO: Tune this. 1209 static const size_t kFifoSize = 4; 1210 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo; 1211 for (;;) { 1212 Object* obj = NULL; 1213 if (kUseMarkStackPrefetch) { 1214 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) { 1215 Object* obj = mark_stack_->PopBack(); 1216 DCHECK(obj != NULL); 1217 __builtin_prefetch(obj); 1218 prefetch_fifo.push_back(obj); 1219 } 1220 if (prefetch_fifo.empty()) { 1221 break; 1222 } 1223 obj = prefetch_fifo.front(); 1224 prefetch_fifo.pop_front(); 1225 } else { 1226 if (mark_stack_->IsEmpty()) { 1227 break; 1228 } 1229 obj = mark_stack_->PopBack(); 1230 } 1231 DCHECK(obj != nullptr); 1232 ScanObject(obj); 1233 } 1234 } 1235} 1236 1237inline bool MarkSweep::IsMarked(const Object* object) const { 1238 if (immune_region_.ContainsObject(object)) { 1239 return true; 1240 } 1241 if (current_space_bitmap_->HasAddress(object)) { 1242 return current_space_bitmap_->Test(object); 1243 } 1244 return mark_bitmap_->Test(object); 1245} 1246 1247void MarkSweep::FinishPhase() { 1248 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1249 if (kCountScannedTypes) { 1250 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed() 1251 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed(); 1252 } 1253 if (kCountTasks) { 1254 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed(); 1255 } 1256 if (kMeasureOverhead) { 1257 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed()); 1258 } 1259 if (kProfileLargeObjects) { 1260 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed() 1261 << " marked " << large_object_mark_.LoadRelaxed(); 1262 } 1263 if (kCountJavaLangRefs) { 1264 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed(); 1265 } 1266 if (kCountMarkedObjects) { 1267 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed() 1268 << " immune=" << mark_immune_count_.LoadRelaxed() 1269 << " fastpath=" << mark_fastpath_count_.LoadRelaxed() 1270 << " slowpath=" << mark_slowpath_count_.LoadRelaxed(); 1271 } 1272 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty. 1273 mark_stack_->Reset(); 1274 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); 1275 heap_->ClearMarkedObjects(); 1276} 1277 1278void MarkSweep::RevokeAllThreadLocalBuffers() { 1279 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) { 1280 // If concurrent, rosalloc thread-local buffers are revoked at the 1281 // thread checkpoint. Bump pointer space thread-local buffers must 1282 // not be in use. 1283 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 1284 } else { 1285 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings()); 1286 GetHeap()->RevokeAllThreadLocalBuffers(); 1287 } 1288} 1289 1290} // namespace collector 1291} // namespace gc 1292} // namespace art 1293