1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "runtime.h"
18
19// sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
20#include <sys/mount.h>
21#ifdef __linux__
22#include <linux/fs.h>
23#include <sys/prctl.h>
24#endif
25
26#include <signal.h>
27#include <sys/syscall.h>
28#include "base/memory_tool.h"
29#if defined(__APPLE__)
30#include <crt_externs.h>  // for _NSGetEnviron
31#endif
32
33#include <cstdio>
34#include <cstdlib>
35#include <limits>
36#include <memory_representation.h>
37#include <vector>
38#include <fcntl.h>
39
40#include "android-base/strings.h"
41
42#include "JniConstants.h"
43#include "ScopedLocalRef.h"
44#include "arch/arm/quick_method_frame_info_arm.h"
45#include "arch/arm/registers_arm.h"
46#include "arch/arm64/quick_method_frame_info_arm64.h"
47#include "arch/arm64/registers_arm64.h"
48#include "arch/instruction_set_features.h"
49#include "arch/mips/quick_method_frame_info_mips.h"
50#include "arch/mips/registers_mips.h"
51#include "arch/mips64/quick_method_frame_info_mips64.h"
52#include "arch/mips64/registers_mips64.h"
53#include "arch/x86/quick_method_frame_info_x86.h"
54#include "arch/x86/registers_x86.h"
55#include "arch/x86_64/quick_method_frame_info_x86_64.h"
56#include "arch/x86_64/registers_x86_64.h"
57#include "art_field-inl.h"
58#include "art_method-inl.h"
59#include "asm_support.h"
60#include "atomic.h"
61#include "base/arena_allocator.h"
62#include "base/dumpable.h"
63#include "base/enums.h"
64#include "base/stl_util.h"
65#include "base/systrace.h"
66#include "base/unix_file/fd_file.h"
67#include "cha.h"
68#include "class_linker-inl.h"
69#include "compiler_callbacks.h"
70#include "debugger.h"
71#include "elf_file.h"
72#include "entrypoints/runtime_asm_entrypoints.h"
73#include "experimental_flags.h"
74#include "fault_handler.h"
75#include "gc/accounting/card_table-inl.h"
76#include "gc/heap.h"
77#include "gc/scoped_gc_critical_section.h"
78#include "gc/space/image_space.h"
79#include "gc/space/space-inl.h"
80#include "gc/system_weak.h"
81#include "handle_scope-inl.h"
82#include "image-inl.h"
83#include "instrumentation.h"
84#include "intern_table.h"
85#include "interpreter/interpreter.h"
86#include "java_vm_ext.h"
87#include "jit/jit.h"
88#include "jit/jit_code_cache.h"
89#include "jni_internal.h"
90#include "linear_alloc.h"
91#include "mirror/array.h"
92#include "mirror/class-inl.h"
93#include "mirror/class_ext.h"
94#include "mirror/class_loader.h"
95#include "mirror/emulated_stack_frame.h"
96#include "mirror/field.h"
97#include "mirror/method.h"
98#include "mirror/method_handle_impl.h"
99#include "mirror/method_handles_lookup.h"
100#include "mirror/method_type.h"
101#include "mirror/stack_trace_element.h"
102#include "mirror/throwable.h"
103#include "monitor.h"
104#include "native/dalvik_system_DexFile.h"
105#include "native/dalvik_system_VMDebug.h"
106#include "native/dalvik_system_VMRuntime.h"
107#include "native/dalvik_system_VMStack.h"
108#include "native/dalvik_system_ZygoteHooks.h"
109#include "native/java_lang_Class.h"
110#include "native/java_lang_Object.h"
111#include "native/java_lang_String.h"
112#include "native/java_lang_StringFactory.h"
113#include "native/java_lang_System.h"
114#include "native/java_lang_Thread.h"
115#include "native/java_lang_Throwable.h"
116#include "native/java_lang_VMClassLoader.h"
117#include "native/java_lang_Void.h"
118#include "native/java_lang_invoke_MethodHandleImpl.h"
119#include "native/java_lang_ref_FinalizerReference.h"
120#include "native/java_lang_ref_Reference.h"
121#include "native/java_lang_reflect_Array.h"
122#include "native/java_lang_reflect_Constructor.h"
123#include "native/java_lang_reflect_Executable.h"
124#include "native/java_lang_reflect_Field.h"
125#include "native/java_lang_reflect_Method.h"
126#include "native/java_lang_reflect_Parameter.h"
127#include "native/java_lang_reflect_Proxy.h"
128#include "native/java_util_concurrent_atomic_AtomicLong.h"
129#include "native/libcore_util_CharsetUtils.h"
130#include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
131#include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
132#include "native/sun_misc_Unsafe.h"
133#include "native_bridge_art_interface.h"
134#include "native_stack_dump.h"
135#include "oat_file.h"
136#include "oat_file_manager.h"
137#include "os.h"
138#include "parsed_options.h"
139#include "jit/profile_saver.h"
140#include "quick/quick_method_frame_info.h"
141#include "reflection.h"
142#include "runtime_callbacks.h"
143#include "runtime_options.h"
144#include "ScopedLocalRef.h"
145#include "scoped_thread_state_change-inl.h"
146#include "sigchain.h"
147#include "signal_catcher.h"
148#include "signal_set.h"
149#include "thread.h"
150#include "thread_list.h"
151#include "ti/agent.h"
152#include "trace.h"
153#include "transaction.h"
154#include "utils.h"
155#include "vdex_file.h"
156#include "verifier/method_verifier.h"
157#include "well_known_classes.h"
158
159#ifdef ART_TARGET_ANDROID
160#include <android/set_abort_message.h>
161#endif
162
163namespace art {
164
165// If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
166static constexpr bool kEnableJavaStackTraceHandler = false;
167// Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
168// linking.
169static constexpr double kLowMemoryMinLoadFactor = 0.5;
170static constexpr double kLowMemoryMaxLoadFactor = 0.8;
171static constexpr double kNormalMinLoadFactor = 0.4;
172static constexpr double kNormalMaxLoadFactor = 0.7;
173Runtime* Runtime::instance_ = nullptr;
174
175struct TraceConfig {
176  Trace::TraceMode trace_mode;
177  Trace::TraceOutputMode trace_output_mode;
178  std::string trace_file;
179  size_t trace_file_size;
180};
181
182namespace {
183#ifdef __APPLE__
184inline char** GetEnviron() {
185  // When Google Test is built as a framework on MacOS X, the environ variable
186  // is unavailable. Apple's documentation (man environ) recommends using
187  // _NSGetEnviron() instead.
188  return *_NSGetEnviron();
189}
190#else
191// Some POSIX platforms expect you to declare environ. extern "C" makes
192// it reside in the global namespace.
193extern "C" char** environ;
194inline char** GetEnviron() { return environ; }
195#endif
196}  // namespace
197
198Runtime::Runtime()
199    : resolution_method_(nullptr),
200      imt_conflict_method_(nullptr),
201      imt_unimplemented_method_(nullptr),
202      instruction_set_(kNone),
203      compiler_callbacks_(nullptr),
204      is_zygote_(false),
205      must_relocate_(false),
206      is_concurrent_gc_enabled_(true),
207      is_explicit_gc_disabled_(false),
208      dex2oat_enabled_(true),
209      image_dex2oat_enabled_(true),
210      default_stack_size_(0),
211      heap_(nullptr),
212      max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
213      monitor_list_(nullptr),
214      monitor_pool_(nullptr),
215      thread_list_(nullptr),
216      intern_table_(nullptr),
217      class_linker_(nullptr),
218      signal_catcher_(nullptr),
219      java_vm_(nullptr),
220      fault_message_lock_("Fault message lock"),
221      fault_message_(""),
222      threads_being_born_(0),
223      shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
224      shutting_down_(false),
225      shutting_down_started_(false),
226      started_(false),
227      finished_starting_(false),
228      vfprintf_(nullptr),
229      exit_(nullptr),
230      abort_(nullptr),
231      stats_enabled_(false),
232      is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
233      instrumentation_(),
234      main_thread_group_(nullptr),
235      system_thread_group_(nullptr),
236      system_class_loader_(nullptr),
237      dump_gc_performance_on_shutdown_(false),
238      preinitialization_transaction_(nullptr),
239      verify_(verifier::VerifyMode::kNone),
240      allow_dex_file_fallback_(true),
241      target_sdk_version_(0),
242      implicit_null_checks_(false),
243      implicit_so_checks_(false),
244      implicit_suspend_checks_(false),
245      no_sig_chain_(false),
246      force_native_bridge_(false),
247      is_native_bridge_loaded_(false),
248      is_native_debuggable_(false),
249      is_java_debuggable_(false),
250      zygote_max_failed_boots_(0),
251      experimental_flags_(ExperimentalFlags::kNone),
252      oat_file_manager_(nullptr),
253      is_low_memory_mode_(false),
254      safe_mode_(false),
255      dump_native_stack_on_sig_quit_(true),
256      pruned_dalvik_cache_(false),
257      // Initially assume we perceive jank in case the process state is never updated.
258      process_state_(kProcessStateJankPerceptible),
259      zygote_no_threads_(false),
260      cha_(nullptr) {
261  CheckAsmSupportOffsetsAndSizes();
262  std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
263  interpreter::CheckInterpreterAsmConstants();
264  callbacks_.reset(new RuntimeCallbacks());
265  for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
266    deoptimization_counts_[i] = 0u;
267  }
268}
269
270Runtime::~Runtime() {
271  ScopedTrace trace("Runtime shutdown");
272  if (is_native_bridge_loaded_) {
273    UnloadNativeBridge();
274  }
275
276  Thread* self = Thread::Current();
277  const bool attach_shutdown_thread = self == nullptr;
278  if (attach_shutdown_thread) {
279    CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
280    self = Thread::Current();
281  } else {
282    LOG(WARNING) << "Current thread not detached in Runtime shutdown";
283  }
284
285  if (dump_gc_performance_on_shutdown_) {
286    // This can't be called from the Heap destructor below because it
287    // could call RosAlloc::InspectAll() which needs the thread_list
288    // to be still alive.
289    heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
290  }
291
292  if (jit_ != nullptr) {
293    // Stop the profile saver thread before marking the runtime as shutting down.
294    // The saver will try to dump the profiles before being sopped and that
295    // requires holding the mutator lock.
296    jit_->StopProfileSaver();
297  }
298
299  {
300    ScopedTrace trace2("Wait for shutdown cond");
301    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
302    shutting_down_started_ = true;
303    while (threads_being_born_ > 0) {
304      shutdown_cond_->Wait(self);
305    }
306    shutting_down_ = true;
307  }
308  // Shutdown and wait for the daemons.
309  CHECK(self != nullptr);
310  if (IsFinishedStarting()) {
311    ScopedTrace trace2("Waiting for Daemons");
312    self->ClearException();
313    self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
314                                            WellKnownClasses::java_lang_Daemons_stop);
315  }
316
317  Trace::Shutdown();
318
319  // Report death. Clients me require a working thread, still, so do it before GC completes and
320  // all non-daemon threads are done.
321  {
322    ScopedObjectAccess soa(self);
323    callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
324  }
325
326  if (attach_shutdown_thread) {
327    DetachCurrentThread();
328    self = nullptr;
329  }
330
331  // Make sure to let the GC complete if it is running.
332  heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
333  heap_->DeleteThreadPool();
334  if (jit_ != nullptr) {
335    ScopedTrace trace2("Delete jit");
336    VLOG(jit) << "Deleting jit thread pool";
337    // Delete thread pool before the thread list since we don't want to wait forever on the
338    // JIT compiler threads.
339    jit_->DeleteThreadPool();
340  }
341
342  // TODO Maybe do some locking.
343  for (auto& agent : agents_) {
344    agent.Unload();
345  }
346
347  // TODO Maybe do some locking
348  for (auto& plugin : plugins_) {
349    plugin.Unload();
350  }
351
352  // Make sure our internal threads are dead before we start tearing down things they're using.
353  Dbg::StopJdwp();
354  delete signal_catcher_;
355
356  // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
357  {
358    ScopedTrace trace2("Delete thread list");
359    delete thread_list_;
360  }
361  // Delete the JIT after thread list to ensure that there is no remaining threads which could be
362  // accessing the instrumentation when we delete it.
363  if (jit_ != nullptr) {
364    VLOG(jit) << "Deleting jit";
365    jit_.reset(nullptr);
366  }
367
368  // Shutdown the fault manager if it was initialized.
369  fault_manager.Shutdown();
370
371  ScopedTrace trace2("Delete state");
372  delete monitor_list_;
373  delete monitor_pool_;
374  delete class_linker_;
375  delete cha_;
376  delete heap_;
377  delete intern_table_;
378  delete oat_file_manager_;
379  Thread::Shutdown();
380  QuasiAtomic::Shutdown();
381  verifier::MethodVerifier::Shutdown();
382
383  // Destroy allocators before shutting down the MemMap because they may use it.
384  java_vm_.reset();
385  linear_alloc_.reset();
386  low_4gb_arena_pool_.reset();
387  arena_pool_.reset();
388  jit_arena_pool_.reset();
389  MemMap::Shutdown();
390
391  // TODO: acquire a static mutex on Runtime to avoid racing.
392  CHECK(instance_ == nullptr || instance_ == this);
393  instance_ = nullptr;
394}
395
396struct AbortState {
397  void Dump(std::ostream& os) const {
398    if (gAborting > 1) {
399      os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
400      DumpRecursiveAbort(os);
401      return;
402    }
403    gAborting++;
404    os << "Runtime aborting...\n";
405    if (Runtime::Current() == nullptr) {
406      os << "(Runtime does not yet exist!)\n";
407      DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
408      return;
409    }
410    Thread* self = Thread::Current();
411    if (self == nullptr) {
412      os << "(Aborting thread was not attached to runtime!)\n";
413      DumpKernelStack(os, GetTid(), "  kernel: ", false);
414      DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
415    } else {
416      os << "Aborting thread:\n";
417      if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
418        DumpThread(os, self);
419      } else {
420        if (Locks::mutator_lock_->SharedTryLock(self)) {
421          DumpThread(os, self);
422          Locks::mutator_lock_->SharedUnlock(self);
423        }
424      }
425    }
426    DumpAllThreads(os, self);
427  }
428
429  // No thread-safety analysis as we do explicitly test for holding the mutator lock.
430  void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
431    DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
432    self->Dump(os);
433    if (self->IsExceptionPending()) {
434      mirror::Throwable* exception = self->GetException();
435      os << "Pending exception " << exception->Dump();
436    }
437  }
438
439  void DumpAllThreads(std::ostream& os, Thread* self) const {
440    Runtime* runtime = Runtime::Current();
441    if (runtime != nullptr) {
442      ThreadList* thread_list = runtime->GetThreadList();
443      if (thread_list != nullptr) {
444        bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
445        bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
446        if (!tll_already_held || !ml_already_held) {
447          os << "Dumping all threads without appropriate locks held:"
448              << (!tll_already_held ? " thread list lock" : "")
449              << (!ml_already_held ? " mutator lock" : "")
450              << "\n";
451        }
452        os << "All threads:\n";
453        thread_list->Dump(os);
454      }
455    }
456  }
457
458  // For recursive aborts.
459  void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
460    // The only thing we'll attempt is dumping the native stack of the current thread. We will only
461    // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
462    // die.
463    // Note: as we're using a global counter for the recursive abort detection, there is a potential
464    //       race here and it is not OK to just print when the counter is "2" (one from
465    //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
466    static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
467    if (gAborting < kOnlyPrintWhenRecursionLessThan) {
468      gAborting++;
469      DumpNativeStack(os, GetTid());
470    }
471  }
472};
473
474void Runtime::Abort(const char* msg) {
475  gAborting++;  // set before taking any locks
476
477  // Ensure that we don't have multiple threads trying to abort at once,
478  // which would result in significantly worse diagnostics.
479  MutexLock mu(Thread::Current(), *Locks::abort_lock_);
480
481  // Get any pending output out of the way.
482  fflush(nullptr);
483
484  // Many people have difficulty distinguish aborts from crashes,
485  // so be explicit.
486  // Note: use cerr on the host to print log lines immediately, so we get at least some output
487  //       in case of recursive aborts. We lose annotation with the source file and line number
488  //       here, which is a minor issue. The same is significantly more complicated on device,
489  //       which is why we ignore the issue there.
490  AbortState state;
491  if (kIsTargetBuild) {
492    LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
493  } else {
494    std::cerr << Dumpable<AbortState>(state);
495  }
496
497  // Sometimes we dump long messages, and the Android abort message only retains the first line.
498  // In those cases, just log the message again, to avoid logcat limits.
499  if (msg != nullptr && strchr(msg, '\n') != nullptr) {
500    LOG(FATAL_WITHOUT_ABORT) << msg;
501  }
502
503  // Call the abort hook if we have one.
504  if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
505    LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
506    Runtime::Current()->abort_();
507    // notreached
508    LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
509  }
510
511#if defined(__GLIBC__)
512  // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
513  // which POSIX defines in terms of raise(3), which POSIX defines in terms
514  // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
515  // libpthread, which means the stacks we dump would be useless. Calling
516  // tgkill(2) directly avoids that.
517  syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
518  // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
519  // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
520  exit(1);
521#else
522  abort();
523#endif
524  // notreached
525}
526
527void Runtime::PreZygoteFork() {
528  heap_->PreZygoteFork();
529}
530
531void Runtime::CallExitHook(jint status) {
532  if (exit_ != nullptr) {
533    ScopedThreadStateChange tsc(Thread::Current(), kNative);
534    exit_(status);
535    LOG(WARNING) << "Exit hook returned instead of exiting!";
536  }
537}
538
539void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
540  GetInternTable()->SweepInternTableWeaks(visitor);
541  GetMonitorList()->SweepMonitorList(visitor);
542  GetJavaVM()->SweepJniWeakGlobals(visitor);
543  GetHeap()->SweepAllocationRecords(visitor);
544  if (GetJit() != nullptr) {
545    // Visit JIT literal tables. Objects in these tables are classes and strings
546    // and only classes can be affected by class unloading. The strings always
547    // stay alive as they are strongly interned.
548    // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
549    // from mutators. See b/32167580.
550    GetJit()->GetCodeCache()->SweepRootTables(visitor);
551  }
552
553  // All other generic system-weak holders.
554  for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
555    holder->Sweep(visitor);
556  }
557}
558
559bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
560                           bool ignore_unrecognized,
561                           RuntimeArgumentMap* runtime_options) {
562  InitLogging(/* argv */ nullptr, Aborter);  // Calls Locks::Init() as a side effect.
563  bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
564  if (!parsed) {
565    LOG(ERROR) << "Failed to parse options";
566    return false;
567  }
568  return true;
569}
570
571// Callback to check whether it is safe to call Abort (e.g., to use a call to
572// LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
573// properly initialized, and has not shut down.
574static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
575  Runtime* runtime = Runtime::Current();
576  return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
577}
578
579bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
580  // TODO: acquire a static mutex on Runtime to avoid racing.
581  if (Runtime::instance_ != nullptr) {
582    return false;
583  }
584  instance_ = new Runtime;
585  Locks::SetClientCallback(IsSafeToCallAbort);
586  if (!instance_->Init(std::move(runtime_options))) {
587    // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
588    // leak memory, instead. Fix the destructor. b/19100793.
589    // delete instance_;
590    instance_ = nullptr;
591    return false;
592  }
593  return true;
594}
595
596bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
597  RuntimeArgumentMap runtime_options;
598  return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
599      Create(std::move(runtime_options));
600}
601
602static jobject CreateSystemClassLoader(Runtime* runtime) {
603  if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
604    return nullptr;
605  }
606
607  ScopedObjectAccess soa(Thread::Current());
608  ClassLinker* cl = Runtime::Current()->GetClassLinker();
609  auto pointer_size = cl->GetImagePointerSize();
610
611  StackHandleScope<2> hs(soa.Self());
612  Handle<mirror::Class> class_loader_class(
613      hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
614  CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
615
616  ArtMethod* getSystemClassLoader = class_loader_class->FindDirectMethod(
617      "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
618  CHECK(getSystemClassLoader != nullptr);
619
620  JValue result = InvokeWithJValues(soa,
621                                    nullptr,
622                                    jni::EncodeArtMethod(getSystemClassLoader),
623                                    nullptr);
624  JNIEnv* env = soa.Self()->GetJniEnv();
625  ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
626  CHECK(system_class_loader.get() != nullptr);
627
628  soa.Self()->SetClassLoaderOverride(system_class_loader.get());
629
630  Handle<mirror::Class> thread_class(
631      hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
632  CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
633
634  ArtField* contextClassLoader =
635      thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
636  CHECK(contextClassLoader != nullptr);
637
638  // We can't run in a transaction yet.
639  contextClassLoader->SetObject<false>(
640      soa.Self()->GetPeer(),
641      soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
642
643  return env->NewGlobalRef(system_class_loader.get());
644}
645
646std::string Runtime::GetPatchoatExecutable() const {
647  if (!patchoat_executable_.empty()) {
648    return patchoat_executable_;
649  }
650  std::string patchoat_executable(GetAndroidRoot());
651  patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
652  return patchoat_executable;
653}
654
655std::string Runtime::GetCompilerExecutable() const {
656  if (!compiler_executable_.empty()) {
657    return compiler_executable_;
658  }
659  std::string compiler_executable(GetAndroidRoot());
660  compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
661  return compiler_executable;
662}
663
664bool Runtime::Start() {
665  VLOG(startup) << "Runtime::Start entering";
666
667  CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
668
669  // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
670  // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
671#if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
672  if (kIsDebugBuild) {
673    CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
674  }
675#endif
676
677  // Restore main thread state to kNative as expected by native code.
678  Thread* self = Thread::Current();
679
680  self->TransitionFromRunnableToSuspended(kNative);
681
682  started_ = true;
683
684  if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
685    ScopedObjectAccess soa(self);
686    StackHandleScope<2> hs(soa.Self());
687
688    auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
689    auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
690
691    class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
692    // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
693    class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
694  }
695
696  // InitNativeMethods needs to be after started_ so that the classes
697  // it touches will have methods linked to the oat file if necessary.
698  {
699    ScopedTrace trace2("InitNativeMethods");
700    InitNativeMethods();
701  }
702
703  // Initialize well known thread group values that may be accessed threads while attaching.
704  InitThreadGroups(self);
705
706  Thread::FinishStartup();
707
708  // Create the JIT either if we have to use JIT compilation or save profiling info. This is
709  // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
710  // ThreadGroup to exist.
711  //
712  // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
713  // recoding profiles. Maybe we should consider changing the name to be more clear it's
714  // not only about compiling. b/28295073.
715  if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
716    std::string error_msg;
717    if (!IsZygote()) {
718    // If we are the zygote then we need to wait until after forking to create the code cache
719    // due to SELinux restrictions on r/w/x memory regions.
720      CreateJit();
721    } else if (jit_options_->UseJitCompilation()) {
722      if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
723        // Try to load compiler pre zygote to reduce PSS. b/27744947
724        LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
725      }
726    }
727  }
728
729  // Send the start phase event. We have to wait till here as this is when the main thread peer
730  // has just been generated, important root clinits have been run and JNI is completely functional.
731  {
732    ScopedObjectAccess soa(self);
733    callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
734  }
735
736  system_class_loader_ = CreateSystemClassLoader(this);
737
738  if (!is_zygote_) {
739    if (is_native_bridge_loaded_) {
740      PreInitializeNativeBridge(".");
741    }
742    NativeBridgeAction action = force_native_bridge_
743        ? NativeBridgeAction::kInitialize
744        : NativeBridgeAction::kUnload;
745    InitNonZygoteOrPostFork(self->GetJniEnv(),
746                            /* is_system_server */ false,
747                            action,
748                            GetInstructionSetString(kRuntimeISA));
749  }
750
751  // Send the initialized phase event. Send it before starting daemons, as otherwise
752  // sending thread events becomes complicated.
753  {
754    ScopedObjectAccess soa(self);
755    callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
756  }
757
758  StartDaemonThreads();
759
760  {
761    ScopedObjectAccess soa(self);
762    self->GetJniEnv()->locals.AssertEmpty();
763  }
764
765  VLOG(startup) << "Runtime::Start exiting";
766  finished_starting_ = true;
767
768  if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
769    ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
770    Trace::Start(trace_config_->trace_file.c_str(),
771                 -1,
772                 static_cast<int>(trace_config_->trace_file_size),
773                 0,
774                 trace_config_->trace_output_mode,
775                 trace_config_->trace_mode,
776                 0);
777  }
778
779  return true;
780}
781
782void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
783  DCHECK_GT(threads_being_born_, 0U);
784  threads_being_born_--;
785  if (shutting_down_started_ && threads_being_born_ == 0) {
786    shutdown_cond_->Broadcast(Thread::Current());
787  }
788}
789
790void Runtime::InitNonZygoteOrPostFork(
791    JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
792  is_zygote_ = false;
793
794  if (is_native_bridge_loaded_) {
795    switch (action) {
796      case NativeBridgeAction::kUnload:
797        UnloadNativeBridge();
798        is_native_bridge_loaded_ = false;
799        break;
800
801      case NativeBridgeAction::kInitialize:
802        InitializeNativeBridge(env, isa);
803        break;
804    }
805  }
806
807  // Create the thread pools.
808  heap_->CreateThreadPool();
809  // Reset the gc performance data at zygote fork so that the GCs
810  // before fork aren't attributed to an app.
811  heap_->ResetGcPerformanceInfo();
812
813  // We may want to collect profiling samples for system server, but we never want to JIT there.
814  if ((!is_system_server || !jit_options_->UseJitCompilation()) &&
815      !safe_mode_ &&
816      (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
817      jit_ == nullptr) {
818    // Note that when running ART standalone (not zygote, nor zygote fork),
819    // the jit may have already been created.
820    CreateJit();
821  }
822
823  StartSignalCatcher();
824
825  // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
826  // this will pause the runtime, so we probably want this to come last.
827  Dbg::StartJdwp();
828}
829
830void Runtime::StartSignalCatcher() {
831  if (!is_zygote_) {
832    signal_catcher_ = new SignalCatcher(stack_trace_file_);
833  }
834}
835
836bool Runtime::IsShuttingDown(Thread* self) {
837  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
838  return IsShuttingDownLocked();
839}
840
841void Runtime::StartDaemonThreads() {
842  ScopedTrace trace(__FUNCTION__);
843  VLOG(startup) << "Runtime::StartDaemonThreads entering";
844
845  Thread* self = Thread::Current();
846
847  // Must be in the kNative state for calling native methods.
848  CHECK_EQ(self->GetState(), kNative);
849
850  JNIEnv* env = self->GetJniEnv();
851  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
852                            WellKnownClasses::java_lang_Daemons_start);
853  if (env->ExceptionCheck()) {
854    env->ExceptionDescribe();
855    LOG(FATAL) << "Error starting java.lang.Daemons";
856  }
857
858  VLOG(startup) << "Runtime::StartDaemonThreads exiting";
859}
860
861// Attempts to open dex files from image(s). Given the image location, try to find the oat file
862// and open it to get the stored dex file. If the image is the first for a multi-image boot
863// classpath, go on and also open the other images.
864static bool OpenDexFilesFromImage(const std::string& image_location,
865                                  std::vector<std::unique_ptr<const DexFile>>* dex_files,
866                                  size_t* failures) {
867  DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
868
869  // Use a work-list approach, so that we can easily reuse the opening code.
870  std::vector<std::string> image_locations;
871  image_locations.push_back(image_location);
872
873  for (size_t index = 0; index < image_locations.size(); ++index) {
874    std::string system_filename;
875    bool has_system = false;
876    std::string cache_filename_unused;
877    bool dalvik_cache_exists_unused;
878    bool has_cache_unused;
879    bool is_global_cache_unused;
880    bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
881                                                                kRuntimeISA,
882                                                                &system_filename,
883                                                                &has_system,
884                                                                &cache_filename_unused,
885                                                                &dalvik_cache_exists_unused,
886                                                                &has_cache_unused,
887                                                                &is_global_cache_unused);
888
889    if (!found_image || !has_system) {
890      return false;
891    }
892
893    // We are falling back to non-executable use of the oat file because patching failed, presumably
894    // due to lack of space.
895    std::string vdex_filename =
896        ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
897    std::string oat_filename =
898        ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
899    std::string oat_location =
900        ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
901    // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
902    //       that here.
903    if (android::base::EndsWith(oat_location, ".jar")) {
904      oat_location.replace(oat_location.length() - 3, 3, "oat");
905    }
906    std::string error_msg;
907
908    std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
909                                                       false /* writable */,
910                                                       false /* low_4gb */,
911                                                       false, /* unquicken */
912                                                       &error_msg));
913    if (vdex_file.get() == nullptr) {
914      return false;
915    }
916
917    std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
918    if (file.get() == nullptr) {
919      return false;
920    }
921    std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
922                                                    false /* writable */,
923                                                    false /* program_header_only */,
924                                                    false /* low_4gb */,
925                                                    &error_msg));
926    if (elf_file.get() == nullptr) {
927      return false;
928    }
929    std::unique_ptr<const OatFile> oat_file(
930        OatFile::OpenWithElfFile(elf_file.release(),
931                                 vdex_file.release(),
932                                 oat_location,
933                                 nullptr,
934                                 &error_msg));
935    if (oat_file == nullptr) {
936      LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
937      return false;
938    }
939
940    for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
941      if (oat_dex_file == nullptr) {
942        *failures += 1;
943        continue;
944      }
945      std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
946      if (dex_file.get() == nullptr) {
947        *failures += 1;
948      } else {
949        dex_files->push_back(std::move(dex_file));
950      }
951    }
952
953    if (index == 0) {
954      // First file. See if this is a multi-image environment, and if so, enqueue the other images.
955      const OatHeader& boot_oat_header = oat_file->GetOatHeader();
956      const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
957      if (boot_cp != nullptr) {
958        gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
959                                                          boot_cp,
960                                                          &image_locations);
961      }
962    }
963
964    Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
965  }
966  return true;
967}
968
969
970static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
971                           const std::vector<std::string>& dex_locations,
972                           const std::string& image_location,
973                           std::vector<std::unique_ptr<const DexFile>>* dex_files) {
974  DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
975  size_t failure_count = 0;
976  if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
977    return failure_count;
978  }
979  failure_count = 0;
980  for (size_t i = 0; i < dex_filenames.size(); i++) {
981    const char* dex_filename = dex_filenames[i].c_str();
982    const char* dex_location = dex_locations[i].c_str();
983    static constexpr bool kVerifyChecksum = true;
984    std::string error_msg;
985    if (!OS::FileExists(dex_filename)) {
986      LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
987      continue;
988    }
989    if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) {
990      LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
991      ++failure_count;
992    }
993  }
994  return failure_count;
995}
996
997void Runtime::SetSentinel(mirror::Object* sentinel) {
998  CHECK(sentinel_.Read() == nullptr);
999  CHECK(sentinel != nullptr);
1000  CHECK(!heap_->IsMovableObject(sentinel));
1001  sentinel_ = GcRoot<mirror::Object>(sentinel);
1002}
1003
1004bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
1005  // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
1006  // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
1007  env_snapshot_.TakeSnapshot();
1008
1009  RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
1010  ScopedTrace trace(__FUNCTION__);
1011  CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
1012
1013  MemMap::Init();
1014
1015  using Opt = RuntimeArgumentMap;
1016  VLOG(startup) << "Runtime::Init -verbose:startup enabled";
1017
1018  QuasiAtomic::Startup();
1019
1020  oat_file_manager_ = new OatFileManager;
1021
1022  Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
1023  Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold));
1024
1025  boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
1026  class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
1027  properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
1028
1029  compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
1030  patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
1031  must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
1032  is_zygote_ = runtime_options.Exists(Opt::Zygote);
1033  is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
1034  dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
1035  image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
1036  dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
1037
1038  vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
1039  exit_ = runtime_options.GetOrDefault(Opt::HookExit);
1040  abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
1041
1042  default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
1043  stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
1044
1045  compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
1046  compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
1047  for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
1048    if (option.starts_with("--debuggable")) {
1049      SetJavaDebuggable(true);
1050      break;
1051    }
1052  }
1053  image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
1054  image_location_ = runtime_options.GetOrDefault(Opt::Image);
1055
1056  max_spins_before_thin_lock_inflation_ =
1057      runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
1058
1059  monitor_list_ = new MonitorList;
1060  monitor_pool_ = MonitorPool::Create();
1061  thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
1062  intern_table_ = new InternTable;
1063
1064  verify_ = runtime_options.GetOrDefault(Opt::Verify);
1065  allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
1066
1067  no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
1068  force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
1069
1070  Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
1071
1072  fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
1073
1074  if (runtime_options.GetOrDefault(Opt::Interpret)) {
1075    GetInstrumentation()->ForceInterpretOnly();
1076  }
1077
1078  zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
1079  experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
1080  is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
1081
1082  plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
1083  agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
1084  // TODO Add back in -agentlib
1085  // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
1086  //   agents_.push_back(lib);
1087  // }
1088
1089  XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
1090  heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
1091                       runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
1092                       runtime_options.GetOrDefault(Opt::HeapMinFree),
1093                       runtime_options.GetOrDefault(Opt::HeapMaxFree),
1094                       runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
1095                       runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier),
1096                       runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
1097                       runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
1098                       runtime_options.GetOrDefault(Opt::Image),
1099                       runtime_options.GetOrDefault(Opt::ImageInstructionSet),
1100                       // Override the collector type to CC if the read barrier config.
1101                       kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
1102                       kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
1103                                       : runtime_options.GetOrDefault(Opt::BackgroundGc),
1104                       runtime_options.GetOrDefault(Opt::LargeObjectSpace),
1105                       runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
1106                       runtime_options.GetOrDefault(Opt::ParallelGCThreads),
1107                       runtime_options.GetOrDefault(Opt::ConcGCThreads),
1108                       runtime_options.Exists(Opt::LowMemoryMode),
1109                       runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
1110                       runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
1111                       runtime_options.Exists(Opt::IgnoreMaxFootprint),
1112                       runtime_options.GetOrDefault(Opt::UseTLAB),
1113                       xgc_option.verify_pre_gc_heap_,
1114                       xgc_option.verify_pre_sweeping_heap_,
1115                       xgc_option.verify_post_gc_heap_,
1116                       xgc_option.verify_pre_gc_rosalloc_,
1117                       xgc_option.verify_pre_sweeping_rosalloc_,
1118                       xgc_option.verify_post_gc_rosalloc_,
1119                       xgc_option.gcstress_,
1120                       xgc_option.measure_,
1121                       runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
1122                       runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
1123
1124  if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
1125    LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
1126    return false;
1127  }
1128
1129  dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
1130
1131  if (runtime_options.Exists(Opt::JdwpOptions)) {
1132    Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
1133  }
1134  callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
1135  callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
1136
1137  jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
1138  if (IsAotCompiler()) {
1139    // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
1140    // this case.
1141    // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
1142    // null and we don't create the jit.
1143    jit_options_->SetUseJitCompilation(false);
1144    jit_options_->SetSaveProfilingInfo(false);
1145  }
1146
1147  // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
1148  // can't be trimmed as easily.
1149  const bool use_malloc = IsAotCompiler();
1150  arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
1151  jit_arena_pool_.reset(
1152      new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
1153
1154  if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
1155    // 4gb, no malloc. Explanation in header.
1156    low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
1157  }
1158  linear_alloc_.reset(CreateLinearAlloc());
1159
1160  BlockSignals();
1161  InitPlatformSignalHandlers();
1162
1163  // Change the implicit checks flags based on runtime architecture.
1164  switch (kRuntimeISA) {
1165    case kArm:
1166    case kThumb2:
1167    case kX86:
1168    case kArm64:
1169    case kX86_64:
1170    case kMips:
1171    case kMips64:
1172      implicit_null_checks_ = true;
1173      // Installing stack protection does not play well with valgrind.
1174      implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
1175      break;
1176    default:
1177      // Keep the defaults.
1178      break;
1179  }
1180
1181  if (!no_sig_chain_) {
1182    // Dex2Oat's Runtime does not need the signal chain or the fault handler.
1183    if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
1184      fault_manager.Init();
1185
1186      // These need to be in a specific order.  The null point check handler must be
1187      // after the suspend check and stack overflow check handlers.
1188      //
1189      // Note: the instances attach themselves to the fault manager and are handled by it. The manager
1190      //       will delete the instance on Shutdown().
1191      if (implicit_suspend_checks_) {
1192        new SuspensionHandler(&fault_manager);
1193      }
1194
1195      if (implicit_so_checks_) {
1196        new StackOverflowHandler(&fault_manager);
1197      }
1198
1199      if (implicit_null_checks_) {
1200        new NullPointerHandler(&fault_manager);
1201      }
1202
1203      if (kEnableJavaStackTraceHandler) {
1204        new JavaStackTraceHandler(&fault_manager);
1205      }
1206    }
1207  }
1208
1209  std::string error_msg;
1210  java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
1211  if (java_vm_.get() == nullptr) {
1212    LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
1213    return false;
1214  }
1215
1216  // Add the JniEnv handler.
1217  // TODO Refactor this stuff.
1218  java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
1219
1220  Thread::Startup();
1221
1222  // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
1223  // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
1224  // thread, we do not get a java peer.
1225  Thread* self = Thread::Attach("main", false, nullptr, false);
1226  CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
1227  CHECK(self != nullptr);
1228
1229  self->SetCanCallIntoJava(!IsAotCompiler());
1230
1231  // Set us to runnable so tools using a runtime can allocate and GC by default
1232  self->TransitionFromSuspendedToRunnable();
1233
1234  // Now we're attached, we can take the heap locks and validate the heap.
1235  GetHeap()->EnableObjectValidation();
1236
1237  CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
1238  class_linker_ = new ClassLinker(intern_table_);
1239  cha_ = new ClassHierarchyAnalysis;
1240  if (GetHeap()->HasBootImageSpace()) {
1241    bool result = class_linker_->InitFromBootImage(&error_msg);
1242    if (!result) {
1243      LOG(ERROR) << "Could not initialize from image: " << error_msg;
1244      return false;
1245    }
1246    if (kIsDebugBuild) {
1247      for (auto image_space : GetHeap()->GetBootImageSpaces()) {
1248        image_space->VerifyImageAllocations();
1249      }
1250    }
1251    if (boot_class_path_string_.empty()) {
1252      // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
1253      const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
1254      std::vector<std::string> dex_locations;
1255      dex_locations.reserve(boot_class_path.size());
1256      for (const DexFile* dex_file : boot_class_path) {
1257        dex_locations.push_back(dex_file->GetLocation());
1258      }
1259      boot_class_path_string_ = android::base::Join(dex_locations, ':');
1260    }
1261    {
1262      ScopedTrace trace2("AddImageStringsToTable");
1263      GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
1264    }
1265    if (IsJavaDebuggable()) {
1266      // Now that we have loaded the boot image, deoptimize its methods if we are running
1267      // debuggable, as the code may have been compiled non-debuggable.
1268      DeoptimizeBootImage();
1269    }
1270  } else {
1271    std::vector<std::string> dex_filenames;
1272    Split(boot_class_path_string_, ':', &dex_filenames);
1273
1274    std::vector<std::string> dex_locations;
1275    if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
1276      dex_locations = dex_filenames;
1277    } else {
1278      dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
1279      CHECK_EQ(dex_filenames.size(), dex_locations.size());
1280    }
1281
1282    std::vector<std::unique_ptr<const DexFile>> boot_class_path;
1283    if (runtime_options.Exists(Opt::BootClassPathDexList)) {
1284      boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
1285    } else {
1286      OpenDexFiles(dex_filenames,
1287                   dex_locations,
1288                   runtime_options.GetOrDefault(Opt::Image),
1289                   &boot_class_path);
1290    }
1291    instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
1292    if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
1293      LOG(ERROR) << "Could not initialize without image: " << error_msg;
1294      return false;
1295    }
1296
1297    // TODO: Should we move the following to InitWithoutImage?
1298    SetInstructionSet(instruction_set_);
1299    for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
1300      Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
1301      if (!HasCalleeSaveMethod(type)) {
1302        SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
1303      }
1304    }
1305  }
1306
1307  CHECK(class_linker_ != nullptr);
1308
1309  verifier::MethodVerifier::Init();
1310
1311  if (runtime_options.Exists(Opt::MethodTrace)) {
1312    trace_config_.reset(new TraceConfig());
1313    trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
1314    trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
1315    trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
1316    trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
1317        Trace::TraceOutputMode::kStreaming :
1318        Trace::TraceOutputMode::kFile;
1319  }
1320
1321  // TODO: move this to just be an Trace::Start argument
1322  Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
1323
1324  // Pre-allocate an OutOfMemoryError for the double-OOME case.
1325  self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
1326                          "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
1327                          "no stack trace available");
1328  pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
1329  self->ClearException();
1330
1331  // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
1332  // ahead of checking the application's class loader.
1333  self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
1334                          "Class not found using the boot class loader; no stack trace available");
1335  pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
1336  self->ClearException();
1337
1338  // Runtime initialization is largely done now.
1339  // We load plugins first since that can modify the runtime state slightly.
1340  // Load all plugins
1341  for (auto& plugin : plugins_) {
1342    std::string err;
1343    if (!plugin.Load(&err)) {
1344      LOG(FATAL) << plugin << " failed to load: " << err;
1345    }
1346  }
1347
1348  // Look for a native bridge.
1349  //
1350  // The intended flow here is, in the case of a running system:
1351  //
1352  // Runtime::Init() (zygote):
1353  //   LoadNativeBridge -> dlopen from cmd line parameter.
1354  //  |
1355  //  V
1356  // Runtime::Start() (zygote):
1357  //   No-op wrt native bridge.
1358  //  |
1359  //  | start app
1360  //  V
1361  // DidForkFromZygote(action)
1362  //   action = kUnload -> dlclose native bridge.
1363  //   action = kInitialize -> initialize library
1364  //
1365  //
1366  // The intended flow here is, in the case of a simple dalvikvm call:
1367  //
1368  // Runtime::Init():
1369  //   LoadNativeBridge -> dlopen from cmd line parameter.
1370  //  |
1371  //  V
1372  // Runtime::Start():
1373  //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
1374  //   No-op wrt native bridge.
1375  {
1376    std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
1377    is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
1378  }
1379
1380  // Startup agents
1381  // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
1382  for (auto& agent : agents_) {
1383    // TODO Check err
1384    int res = 0;
1385    std::string err = "";
1386    ti::Agent::LoadError result = agent.Load(&res, &err);
1387    if (result == ti::Agent::kInitializationError) {
1388      LOG(FATAL) << "Unable to initialize agent!";
1389    } else if (result != ti::Agent::kNoError) {
1390      LOG(ERROR) << "Unable to load an agent: " << err;
1391    }
1392  }
1393  {
1394    ScopedObjectAccess soa(self);
1395    callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
1396  }
1397
1398  VLOG(startup) << "Runtime::Init exiting";
1399
1400  return true;
1401}
1402
1403static bool EnsureJvmtiPlugin(Runtime* runtime,
1404                              std::vector<Plugin>* plugins,
1405                              std::string* error_msg) {
1406  constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
1407
1408  // Is the plugin already loaded?
1409  for (const Plugin& p : *plugins) {
1410    if (p.GetLibrary() == plugin_name) {
1411      return true;
1412    }
1413  }
1414
1415  // Is the process debuggable? Otherwise, do not attempt to load the plugin.
1416  if (!runtime->IsJavaDebuggable()) {
1417    *error_msg = "Process is not debuggable.";
1418    return false;
1419  }
1420
1421  Plugin new_plugin = Plugin::Create(plugin_name);
1422
1423  if (!new_plugin.Load(error_msg)) {
1424    return false;
1425  }
1426
1427  plugins->push_back(std::move(new_plugin));
1428  return true;
1429}
1430
1431// Attach a new agent and add it to the list of runtime agents
1432//
1433// TODO: once we decide on the threading model for agents,
1434//   revisit this and make sure we're doing this on the right thread
1435//   (and we synchronize access to any shared data structures like "agents_")
1436//
1437void Runtime::AttachAgent(const std::string& agent_arg) {
1438  std::string error_msg;
1439  if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
1440    LOG(WARNING) << "Could not load plugin: " << error_msg;
1441    ScopedObjectAccess soa(Thread::Current());
1442    ThrowIOException("%s", error_msg.c_str());
1443    return;
1444  }
1445
1446  ti::Agent agent(agent_arg);
1447
1448  int res = 0;
1449  ti::Agent::LoadError result = agent.Attach(&res, &error_msg);
1450
1451  if (result == ti::Agent::kNoError) {
1452    agents_.push_back(std::move(agent));
1453  } else {
1454    LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg;
1455    ScopedObjectAccess soa(Thread::Current());
1456    ThrowIOException("%s", error_msg.c_str());
1457  }
1458}
1459
1460void Runtime::InitNativeMethods() {
1461  VLOG(startup) << "Runtime::InitNativeMethods entering";
1462  Thread* self = Thread::Current();
1463  JNIEnv* env = self->GetJniEnv();
1464
1465  // Must be in the kNative state for calling native methods (JNI_OnLoad code).
1466  CHECK_EQ(self->GetState(), kNative);
1467
1468  // First set up JniConstants, which is used by both the runtime's built-in native
1469  // methods and libcore.
1470  JniConstants::init(env);
1471
1472  // Then set up the native methods provided by the runtime itself.
1473  RegisterRuntimeNativeMethods(env);
1474
1475  // Initialize classes used in JNI. The initialization requires runtime native
1476  // methods to be loaded first.
1477  WellKnownClasses::Init(env);
1478
1479  // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
1480  // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
1481  // libcore can't because it's the library that implements System.loadLibrary!
1482  {
1483    std::string error_msg;
1484    if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
1485      LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
1486    }
1487  }
1488  {
1489    constexpr const char* kOpenJdkLibrary = kIsDebugBuild
1490                                                ? "libopenjdkd.so"
1491                                                : "libopenjdk.so";
1492    std::string error_msg;
1493    if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
1494      LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
1495    }
1496  }
1497
1498  // Initialize well known classes that may invoke runtime native methods.
1499  WellKnownClasses::LateInit(env);
1500
1501  VLOG(startup) << "Runtime::InitNativeMethods exiting";
1502}
1503
1504void Runtime::ReclaimArenaPoolMemory() {
1505  arena_pool_->LockReclaimMemory();
1506}
1507
1508void Runtime::InitThreadGroups(Thread* self) {
1509  JNIEnvExt* env = self->GetJniEnv();
1510  ScopedJniEnvLocalRefState env_state(env);
1511  main_thread_group_ =
1512      env->NewGlobalRef(env->GetStaticObjectField(
1513          WellKnownClasses::java_lang_ThreadGroup,
1514          WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
1515  CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1516  system_thread_group_ =
1517      env->NewGlobalRef(env->GetStaticObjectField(
1518          WellKnownClasses::java_lang_ThreadGroup,
1519          WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
1520  CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1521}
1522
1523jobject Runtime::GetMainThreadGroup() const {
1524  CHECK(main_thread_group_ != nullptr || IsAotCompiler());
1525  return main_thread_group_;
1526}
1527
1528jobject Runtime::GetSystemThreadGroup() const {
1529  CHECK(system_thread_group_ != nullptr || IsAotCompiler());
1530  return system_thread_group_;
1531}
1532
1533jobject Runtime::GetSystemClassLoader() const {
1534  CHECK(system_class_loader_ != nullptr || IsAotCompiler());
1535  return system_class_loader_;
1536}
1537
1538void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
1539  register_dalvik_system_DexFile(env);
1540  register_dalvik_system_VMDebug(env);
1541  register_dalvik_system_VMRuntime(env);
1542  register_dalvik_system_VMStack(env);
1543  register_dalvik_system_ZygoteHooks(env);
1544  register_java_lang_Class(env);
1545  register_java_lang_Object(env);
1546  register_java_lang_invoke_MethodHandleImpl(env);
1547  register_java_lang_ref_FinalizerReference(env);
1548  register_java_lang_reflect_Array(env);
1549  register_java_lang_reflect_Constructor(env);
1550  register_java_lang_reflect_Executable(env);
1551  register_java_lang_reflect_Field(env);
1552  register_java_lang_reflect_Method(env);
1553  register_java_lang_reflect_Parameter(env);
1554  register_java_lang_reflect_Proxy(env);
1555  register_java_lang_ref_Reference(env);
1556  register_java_lang_String(env);
1557  register_java_lang_StringFactory(env);
1558  register_java_lang_System(env);
1559  register_java_lang_Thread(env);
1560  register_java_lang_Throwable(env);
1561  register_java_lang_VMClassLoader(env);
1562  register_java_lang_Void(env);
1563  register_java_util_concurrent_atomic_AtomicLong(env);
1564  register_libcore_util_CharsetUtils(env);
1565  register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
1566  register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
1567  register_sun_misc_Unsafe(env);
1568}
1569
1570std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
1571  os << GetDeoptimizationKindName(kind);
1572  return os;
1573}
1574
1575void Runtime::DumpDeoptimizations(std::ostream& os) {
1576  for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
1577    if (deoptimization_counts_[i] != 0) {
1578      os << "Number of "
1579         << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
1580         << " deoptimizations: "
1581         << deoptimization_counts_[i]
1582         << "\n";
1583    }
1584  }
1585}
1586
1587void Runtime::DumpForSigQuit(std::ostream& os) {
1588  GetClassLinker()->DumpForSigQuit(os);
1589  GetInternTable()->DumpForSigQuit(os);
1590  GetJavaVM()->DumpForSigQuit(os);
1591  GetHeap()->DumpForSigQuit(os);
1592  oat_file_manager_->DumpForSigQuit(os);
1593  if (GetJit() != nullptr) {
1594    GetJit()->DumpForSigQuit(os);
1595  } else {
1596    os << "Running non JIT\n";
1597  }
1598  DumpDeoptimizations(os);
1599  TrackedAllocators::Dump(os);
1600  os << "\n";
1601
1602  thread_list_->DumpForSigQuit(os);
1603  BaseMutex::DumpAll(os);
1604
1605  // Inform anyone else who is interested in SigQuit.
1606  {
1607    ScopedObjectAccess soa(Thread::Current());
1608    callbacks_->SigQuit();
1609  }
1610}
1611
1612void Runtime::DumpLockHolders(std::ostream& os) {
1613  uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
1614  pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
1615  pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
1616  pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
1617  if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
1618    os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
1619       << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
1620       << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
1621       << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
1622  }
1623}
1624
1625void Runtime::SetStatsEnabled(bool new_state) {
1626  Thread* self = Thread::Current();
1627  MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
1628  if (new_state == true) {
1629    GetStats()->Clear(~0);
1630    // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1631    self->GetStats()->Clear(~0);
1632    if (stats_enabled_ != new_state) {
1633      GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
1634    }
1635  } else if (stats_enabled_ != new_state) {
1636    GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
1637  }
1638  stats_enabled_ = new_state;
1639}
1640
1641void Runtime::ResetStats(int kinds) {
1642  GetStats()->Clear(kinds & 0xffff);
1643  // TODO: wouldn't it make more sense to clear _all_ threads' stats?
1644  Thread::Current()->GetStats()->Clear(kinds >> 16);
1645}
1646
1647int32_t Runtime::GetStat(int kind) {
1648  RuntimeStats* stats;
1649  if (kind < (1<<16)) {
1650    stats = GetStats();
1651  } else {
1652    stats = Thread::Current()->GetStats();
1653    kind >>= 16;
1654  }
1655  switch (kind) {
1656  case KIND_ALLOCATED_OBJECTS:
1657    return stats->allocated_objects;
1658  case KIND_ALLOCATED_BYTES:
1659    return stats->allocated_bytes;
1660  case KIND_FREED_OBJECTS:
1661    return stats->freed_objects;
1662  case KIND_FREED_BYTES:
1663    return stats->freed_bytes;
1664  case KIND_GC_INVOCATIONS:
1665    return stats->gc_for_alloc_count;
1666  case KIND_CLASS_INIT_COUNT:
1667    return stats->class_init_count;
1668  case KIND_CLASS_INIT_TIME:
1669    // Convert ns to us, reduce to 32 bits.
1670    return static_cast<int>(stats->class_init_time_ns / 1000);
1671  case KIND_EXT_ALLOCATED_OBJECTS:
1672  case KIND_EXT_ALLOCATED_BYTES:
1673  case KIND_EXT_FREED_OBJECTS:
1674  case KIND_EXT_FREED_BYTES:
1675    return 0;  // backward compatibility
1676  default:
1677    LOG(FATAL) << "Unknown statistic " << kind;
1678    return -1;  // unreachable
1679  }
1680}
1681
1682void Runtime::BlockSignals() {
1683  SignalSet signals;
1684  signals.Add(SIGPIPE);
1685  // SIGQUIT is used to dump the runtime's state (including stack traces).
1686  signals.Add(SIGQUIT);
1687  // SIGUSR1 is used to initiate a GC.
1688  signals.Add(SIGUSR1);
1689  signals.Block();
1690}
1691
1692bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
1693                                  bool create_peer) {
1694  ScopedTrace trace(__FUNCTION__);
1695  return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
1696}
1697
1698void Runtime::DetachCurrentThread() {
1699  ScopedTrace trace(__FUNCTION__);
1700  Thread* self = Thread::Current();
1701  if (self == nullptr) {
1702    LOG(FATAL) << "attempting to detach thread that is not attached";
1703  }
1704  if (self->HasManagedStack()) {
1705    LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
1706  }
1707  thread_list_->Unregister(self);
1708}
1709
1710mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
1711  mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
1712  if (oome == nullptr) {
1713    LOG(ERROR) << "Failed to return pre-allocated OOME";
1714  }
1715  return oome;
1716}
1717
1718mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
1719  mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
1720  if (ncdfe == nullptr) {
1721    LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
1722  }
1723  return ncdfe;
1724}
1725
1726void Runtime::VisitConstantRoots(RootVisitor* visitor) {
1727  // Visit the classes held as static in mirror classes, these can be visited concurrently and only
1728  // need to be visited once per GC since they never change.
1729  mirror::Class::VisitRoots(visitor);
1730  mirror::Constructor::VisitRoots(visitor);
1731  mirror::Reference::VisitRoots(visitor);
1732  mirror::Method::VisitRoots(visitor);
1733  mirror::StackTraceElement::VisitRoots(visitor);
1734  mirror::String::VisitRoots(visitor);
1735  mirror::Throwable::VisitRoots(visitor);
1736  mirror::Field::VisitRoots(visitor);
1737  mirror::MethodType::VisitRoots(visitor);
1738  mirror::MethodHandleImpl::VisitRoots(visitor);
1739  mirror::MethodHandlesLookup::VisitRoots(visitor);
1740  mirror::EmulatedStackFrame::VisitRoots(visitor);
1741  mirror::ClassExt::VisitRoots(visitor);
1742  mirror::CallSite::VisitRoots(visitor);
1743  // Visit all the primitive array types classes.
1744  mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
1745  mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
1746  mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
1747  mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
1748  mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
1749  mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
1750  mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
1751  mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
1752  // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
1753  // null.
1754  BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
1755  const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
1756  if (HasResolutionMethod()) {
1757    resolution_method_->VisitRoots(buffered_visitor, pointer_size);
1758  }
1759  if (HasImtConflictMethod()) {
1760    imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
1761  }
1762  if (imt_unimplemented_method_ != nullptr) {
1763    imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
1764  }
1765  for (size_t i = 0; i < kLastCalleeSaveType; ++i) {
1766    auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
1767    if (m != nullptr) {
1768      m->VisitRoots(buffered_visitor, pointer_size);
1769    }
1770  }
1771}
1772
1773void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1774  intern_table_->VisitRoots(visitor, flags);
1775  class_linker_->VisitRoots(visitor, flags);
1776  heap_->VisitAllocationRecords(visitor);
1777  if ((flags & kVisitRootFlagNewRoots) == 0) {
1778    // Guaranteed to have no new roots in the constant roots.
1779    VisitConstantRoots(visitor);
1780  }
1781  Dbg::VisitRoots(visitor);
1782}
1783
1784void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
1785  if (preinitialization_transaction_ != nullptr) {
1786    preinitialization_transaction_->VisitRoots(visitor);
1787  }
1788}
1789
1790void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
1791  java_vm_->VisitRoots(visitor);
1792  sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1793  pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1794  pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
1795  verifier::MethodVerifier::VisitStaticRoots(visitor);
1796  VisitTransactionRoots(visitor);
1797}
1798
1799void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
1800  VisitThreadRoots(visitor, flags);
1801  VisitNonThreadRoots(visitor);
1802}
1803
1804void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
1805  thread_list_->VisitRoots(visitor, flags);
1806}
1807
1808size_t Runtime::FlipThreadRoots(Closure* thread_flip_visitor, Closure* flip_callback,
1809                                gc::collector::GarbageCollector* collector) {
1810  return thread_list_->FlipThreadRoots(thread_flip_visitor, flip_callback, collector);
1811}
1812
1813void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
1814  VisitNonConcurrentRoots(visitor, flags);
1815  VisitConcurrentRoots(visitor, flags);
1816}
1817
1818void Runtime::VisitImageRoots(RootVisitor* visitor) {
1819  for (auto* space : GetHeap()->GetContinuousSpaces()) {
1820    if (space->IsImageSpace()) {
1821      auto* image_space = space->AsImageSpace();
1822      const auto& image_header = image_space->GetImageHeader();
1823      for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
1824        auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
1825        if (obj != nullptr) {
1826          auto* after_obj = obj;
1827          visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
1828          CHECK_EQ(after_obj, obj);
1829        }
1830      }
1831    }
1832  }
1833}
1834
1835static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
1836  const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
1837  const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
1838  const size_t method_size = ArtMethod::Size(image_pointer_size);
1839  LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
1840      Thread::Current(),
1841      linear_alloc,
1842      1);
1843  ArtMethod* method = &method_array->At(0, method_size, method_alignment);
1844  CHECK(method != nullptr);
1845  method->SetDexMethodIndex(DexFile::kDexNoIndex);
1846  CHECK(method->IsRuntimeMethod());
1847  return method;
1848}
1849
1850ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
1851  ClassLinker* const class_linker = GetClassLinker();
1852  ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
1853  // When compiling, the code pointer will get set later when the image is loaded.
1854  const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1855  if (IsAotCompiler()) {
1856    method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1857  } else {
1858    method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
1859  }
1860  // Create empty conflict table.
1861  method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
1862                              pointer_size);
1863  return method;
1864}
1865
1866void Runtime::SetImtConflictMethod(ArtMethod* method) {
1867  CHECK(method != nullptr);
1868  CHECK(method->IsRuntimeMethod());
1869  imt_conflict_method_ = method;
1870}
1871
1872ArtMethod* Runtime::CreateResolutionMethod() {
1873  auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1874  // When compiling, the code pointer will get set later when the image is loaded.
1875  if (IsAotCompiler()) {
1876    PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1877    method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1878  } else {
1879    method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
1880  }
1881  return method;
1882}
1883
1884ArtMethod* Runtime::CreateCalleeSaveMethod() {
1885  auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
1886  PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
1887  method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
1888  DCHECK_NE(instruction_set_, kNone);
1889  DCHECK(method->IsRuntimeMethod());
1890  return method;
1891}
1892
1893void Runtime::DisallowNewSystemWeaks() {
1894  CHECK(!kUseReadBarrier);
1895  monitor_list_->DisallowNewMonitors();
1896  intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
1897  java_vm_->DisallowNewWeakGlobals();
1898  heap_->DisallowNewAllocationRecords();
1899  if (GetJit() != nullptr) {
1900    GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
1901  }
1902
1903  // All other generic system-weak holders.
1904  for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1905    holder->Disallow();
1906  }
1907}
1908
1909void Runtime::AllowNewSystemWeaks() {
1910  CHECK(!kUseReadBarrier);
1911  monitor_list_->AllowNewMonitors();
1912  intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
1913  java_vm_->AllowNewWeakGlobals();
1914  heap_->AllowNewAllocationRecords();
1915  if (GetJit() != nullptr) {
1916    GetJit()->GetCodeCache()->AllowInlineCacheAccess();
1917  }
1918
1919  // All other generic system-weak holders.
1920  for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1921    holder->Allow();
1922  }
1923}
1924
1925void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
1926  // This is used for the read barrier case that uses the thread-local
1927  // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
1928  // (see ThreadList::RunCheckpoint).
1929  monitor_list_->BroadcastForNewMonitors();
1930  intern_table_->BroadcastForNewInterns();
1931  java_vm_->BroadcastForNewWeakGlobals();
1932  heap_->BroadcastForNewAllocationRecords();
1933  if (GetJit() != nullptr) {
1934    GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
1935  }
1936
1937  // All other generic system-weak holders.
1938  for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
1939    holder->Broadcast(broadcast_for_checkpoint);
1940  }
1941}
1942
1943void Runtime::SetInstructionSet(InstructionSet instruction_set) {
1944  instruction_set_ = instruction_set;
1945  if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
1946    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1947      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1948      callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
1949    }
1950  } else if (instruction_set_ == kMips) {
1951    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1952      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1953      callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
1954    }
1955  } else if (instruction_set_ == kMips64) {
1956    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1957      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1958      callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
1959    }
1960  } else if (instruction_set_ == kX86) {
1961    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1962      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1963      callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
1964    }
1965  } else if (instruction_set_ == kX86_64) {
1966    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1967      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1968      callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
1969    }
1970  } else if (instruction_set_ == kArm64) {
1971    for (int i = 0; i != kLastCalleeSaveType; ++i) {
1972      CalleeSaveType type = static_cast<CalleeSaveType>(i);
1973      callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
1974    }
1975  } else {
1976    UNIMPLEMENTED(FATAL) << instruction_set_;
1977  }
1978}
1979
1980void Runtime::ClearInstructionSet() {
1981  instruction_set_ = InstructionSet::kNone;
1982}
1983
1984void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
1985  DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
1986  CHECK(method != nullptr);
1987  callee_save_methods_[type] = reinterpret_cast<uintptr_t>(method);
1988}
1989
1990void Runtime::ClearCalleeSaveMethods() {
1991  for (size_t i = 0; i < static_cast<size_t>(kLastCalleeSaveType); ++i) {
1992    CalleeSaveType type = static_cast<CalleeSaveType>(i);
1993    callee_save_methods_[type] = reinterpret_cast<uintptr_t>(nullptr);
1994  }
1995}
1996
1997void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
1998                              const std::string& profile_output_filename) {
1999  if (jit_.get() == nullptr) {
2000    // We are not JITing. Nothing to do.
2001    return;
2002  }
2003
2004  VLOG(profiler) << "Register app with " << profile_output_filename
2005      << " " << android::base::Join(code_paths, ':');
2006
2007  if (profile_output_filename.empty()) {
2008    LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
2009    return;
2010  }
2011  if (!FileExists(profile_output_filename)) {
2012    LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
2013    return;
2014  }
2015  if (code_paths.empty()) {
2016    LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
2017    return;
2018  }
2019
2020  jit_->StartProfileSaver(profile_output_filename, code_paths);
2021}
2022
2023// Transaction support.
2024void Runtime::EnterTransactionMode(Transaction* transaction) {
2025  DCHECK(IsAotCompiler());
2026  DCHECK(transaction != nullptr);
2027  DCHECK(!IsActiveTransaction());
2028  preinitialization_transaction_ = transaction;
2029}
2030
2031void Runtime::ExitTransactionMode() {
2032  DCHECK(IsAotCompiler());
2033  DCHECK(IsActiveTransaction());
2034  preinitialization_transaction_ = nullptr;
2035}
2036
2037bool Runtime::IsTransactionAborted() const {
2038  if (!IsActiveTransaction()) {
2039    return false;
2040  } else {
2041    DCHECK(IsAotCompiler());
2042    return preinitialization_transaction_->IsAborted();
2043  }
2044}
2045
2046void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
2047  DCHECK(IsAotCompiler());
2048  DCHECK(IsActiveTransaction());
2049  // Throwing an exception may cause its class initialization. If we mark the transaction
2050  // aborted before that, we may warn with a false alarm. Throwing the exception before
2051  // marking the transaction aborted avoids that.
2052  preinitialization_transaction_->ThrowAbortError(self, &abort_message);
2053  preinitialization_transaction_->Abort(abort_message);
2054}
2055
2056void Runtime::ThrowTransactionAbortError(Thread* self) {
2057  DCHECK(IsAotCompiler());
2058  DCHECK(IsActiveTransaction());
2059  // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
2060  preinitialization_transaction_->ThrowAbortError(self, nullptr);
2061}
2062
2063void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
2064                                      uint8_t value, bool is_volatile) const {
2065  DCHECK(IsAotCompiler());
2066  DCHECK(IsActiveTransaction());
2067  preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
2068}
2069
2070void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
2071                                   int8_t value, bool is_volatile) const {
2072  DCHECK(IsAotCompiler());
2073  DCHECK(IsActiveTransaction());
2074  preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
2075}
2076
2077void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
2078                                   uint16_t value, bool is_volatile) const {
2079  DCHECK(IsAotCompiler());
2080  DCHECK(IsActiveTransaction());
2081  preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
2082}
2083
2084void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
2085                                    int16_t value, bool is_volatile) const {
2086  DCHECK(IsAotCompiler());
2087  DCHECK(IsActiveTransaction());
2088  preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
2089}
2090
2091void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
2092                                 uint32_t value, bool is_volatile) const {
2093  DCHECK(IsAotCompiler());
2094  DCHECK(IsActiveTransaction());
2095  preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
2096}
2097
2098void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
2099                                 uint64_t value, bool is_volatile) const {
2100  DCHECK(IsAotCompiler());
2101  DCHECK(IsActiveTransaction());
2102  preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
2103}
2104
2105void Runtime::RecordWriteFieldReference(mirror::Object* obj,
2106                                        MemberOffset field_offset,
2107                                        ObjPtr<mirror::Object> value,
2108                                        bool is_volatile) const {
2109  DCHECK(IsAotCompiler());
2110  DCHECK(IsActiveTransaction());
2111  preinitialization_transaction_->RecordWriteFieldReference(obj,
2112                                                            field_offset,
2113                                                            value.Ptr(),
2114                                                            is_volatile);
2115}
2116
2117void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
2118  DCHECK(IsAotCompiler());
2119  DCHECK(IsActiveTransaction());
2120  preinitialization_transaction_->RecordWriteArray(array, index, value);
2121}
2122
2123void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
2124  DCHECK(IsAotCompiler());
2125  DCHECK(IsActiveTransaction());
2126  preinitialization_transaction_->RecordStrongStringInsertion(s);
2127}
2128
2129void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
2130  DCHECK(IsAotCompiler());
2131  DCHECK(IsActiveTransaction());
2132  preinitialization_transaction_->RecordWeakStringInsertion(s);
2133}
2134
2135void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
2136  DCHECK(IsAotCompiler());
2137  DCHECK(IsActiveTransaction());
2138  preinitialization_transaction_->RecordStrongStringRemoval(s);
2139}
2140
2141void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
2142  DCHECK(IsAotCompiler());
2143  DCHECK(IsActiveTransaction());
2144  preinitialization_transaction_->RecordWeakStringRemoval(s);
2145}
2146
2147void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
2148                                  dex::StringIndex string_idx) const {
2149  DCHECK(IsAotCompiler());
2150  DCHECK(IsActiveTransaction());
2151  preinitialization_transaction_->RecordResolveString(dex_cache, string_idx);
2152}
2153
2154void Runtime::SetFaultMessage(const std::string& message) {
2155  MutexLock mu(Thread::Current(), fault_message_lock_);
2156  fault_message_ = message;
2157}
2158
2159void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
2160    const {
2161  if (GetInstrumentation()->InterpretOnly()) {
2162    argv->push_back("--compiler-filter=quicken");
2163  }
2164
2165  // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
2166  // architecture support, dex2oat may be compiled as a different instruction-set than that
2167  // currently being executed.
2168  std::string instruction_set("--instruction-set=");
2169  instruction_set += GetInstructionSetString(kRuntimeISA);
2170  argv->push_back(instruction_set);
2171
2172  std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
2173  std::string feature_string("--instruction-set-features=");
2174  feature_string += features->GetFeatureString();
2175  argv->push_back(feature_string);
2176}
2177
2178void Runtime::CreateJit() {
2179  CHECK(!IsAotCompiler());
2180  if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
2181    DCHECK(!jit_options_->UseJitCompilation());
2182  }
2183  std::string error_msg;
2184  jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
2185  if (jit_.get() == nullptr) {
2186    LOG(WARNING) << "Failed to create JIT " << error_msg;
2187    return;
2188  }
2189
2190  // In case we have a profile path passed as a command line argument,
2191  // register the current class path for profiling now. Note that we cannot do
2192  // this before we create the JIT and having it here is the most convenient way.
2193  // This is used when testing profiles with dalvikvm command as there is no
2194  // framework to register the dex files for profiling.
2195  if (jit_options_->GetSaveProfilingInfo() &&
2196      !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
2197    std::vector<std::string> dex_filenames;
2198    Split(class_path_string_, ':', &dex_filenames);
2199    RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
2200  }
2201}
2202
2203bool Runtime::CanRelocate() const {
2204  return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
2205}
2206
2207bool Runtime::IsCompilingBootImage() const {
2208  return IsCompiler() && compiler_callbacks_->IsBootImage();
2209}
2210
2211void Runtime::SetResolutionMethod(ArtMethod* method) {
2212  CHECK(method != nullptr);
2213  CHECK(method->IsRuntimeMethod()) << method;
2214  resolution_method_ = method;
2215}
2216
2217void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
2218  CHECK(method != nullptr);
2219  CHECK(method->IsRuntimeMethod());
2220  imt_unimplemented_method_ = method;
2221}
2222
2223void Runtime::FixupConflictTables() {
2224  // We can only do this after the class linker is created.
2225  const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
2226  if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
2227    imt_unimplemented_method_->SetImtConflictTable(
2228        ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2229        pointer_size);
2230  }
2231  if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
2232    imt_conflict_method_->SetImtConflictTable(
2233          ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
2234          pointer_size);
2235  }
2236}
2237
2238bool Runtime::IsVerificationEnabled() const {
2239  return verify_ == verifier::VerifyMode::kEnable ||
2240      verify_ == verifier::VerifyMode::kSoftFail;
2241}
2242
2243bool Runtime::IsVerificationSoftFail() const {
2244  return verify_ == verifier::VerifyMode::kSoftFail;
2245}
2246
2247bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
2248  // We only support async deopt (ie the compiled code is not explicitly asking for
2249  // deopt, but something else like the debugger) in debuggable JIT code.
2250  // We could look at the oat file where `code` is being defined,
2251  // and check whether it's been compiled debuggable, but we decided to
2252  // only rely on the JIT for debuggable apps.
2253  return IsJavaDebuggable() &&
2254      GetJit() != nullptr &&
2255      GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
2256}
2257
2258LinearAlloc* Runtime::CreateLinearAlloc() {
2259  // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
2260  // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
2261  // when we have 64 bit ArtMethod pointers.
2262  return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
2263      ? new LinearAlloc(low_4gb_arena_pool_.get())
2264      : new LinearAlloc(arena_pool_.get());
2265}
2266
2267double Runtime::GetHashTableMinLoadFactor() const {
2268  return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
2269}
2270
2271double Runtime::GetHashTableMaxLoadFactor() const {
2272  return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
2273}
2274
2275void Runtime::UpdateProcessState(ProcessState process_state) {
2276  ProcessState old_process_state = process_state_;
2277  process_state_ = process_state;
2278  GetHeap()->UpdateProcessState(old_process_state, process_state);
2279}
2280
2281void Runtime::RegisterSensitiveThread() const {
2282  Thread::SetJitSensitiveThread();
2283}
2284
2285// Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
2286bool Runtime::UseJitCompilation() const {
2287  return (jit_ != nullptr) && jit_->UseJitCompilation();
2288}
2289
2290void Runtime::EnvSnapshot::TakeSnapshot() {
2291  char** env = GetEnviron();
2292  for (size_t i = 0; env[i] != nullptr; ++i) {
2293    name_value_pairs_.emplace_back(new std::string(env[i]));
2294  }
2295  // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
2296  // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
2297  c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
2298  for (size_t i = 0; env[i] != nullptr; ++i) {
2299    c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
2300  }
2301  c_env_vector_[name_value_pairs_.size()] = nullptr;
2302}
2303
2304char** Runtime::EnvSnapshot::GetSnapshot() const {
2305  return c_env_vector_.get();
2306}
2307
2308void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2309  gc::ScopedGCCriticalSection gcs(Thread::Current(),
2310                                  gc::kGcCauseAddRemoveSystemWeakHolder,
2311                                  gc::kCollectorTypeAddRemoveSystemWeakHolder);
2312  // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
2313  //       a critical section.
2314  system_weak_holders_.push_back(holder);
2315}
2316
2317void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
2318  gc::ScopedGCCriticalSection gcs(Thread::Current(),
2319                                  gc::kGcCauseAddRemoveSystemWeakHolder,
2320                                  gc::kCollectorTypeAddRemoveSystemWeakHolder);
2321  auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
2322  if (it != system_weak_holders_.end()) {
2323    system_weak_holders_.erase(it);
2324  }
2325}
2326
2327NO_RETURN
2328void Runtime::Aborter(const char* abort_message) {
2329#ifdef ART_TARGET_ANDROID
2330  android_set_abort_message(abort_message);
2331#endif
2332  Runtime::Abort(abort_message);
2333}
2334
2335RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
2336  return callbacks_.get();
2337}
2338
2339// Used to patch boot image method entry point to interpreter bridge.
2340class UpdateEntryPointsClassVisitor : public ClassVisitor {
2341 public:
2342  explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
2343      : instrumentation_(instrumentation) {}
2344
2345  bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
2346    auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2347    for (auto& m : klass->GetMethods(pointer_size)) {
2348      const void* code = m.GetEntryPointFromQuickCompiledCode();
2349      if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
2350          !m.IsNative() &&
2351          !m.IsProxyMethod()) {
2352        instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
2353      }
2354    }
2355    return true;
2356  }
2357
2358 private:
2359  instrumentation::Instrumentation* const instrumentation_;
2360};
2361
2362void Runtime::SetJavaDebuggable(bool value) {
2363  is_java_debuggable_ = value;
2364  // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
2365}
2366
2367void Runtime::DeoptimizeBootImage() {
2368  // If we've already started and we are setting this runtime to debuggable,
2369  // we patch entry points of methods in boot image to interpreter bridge, as
2370  // boot image code may be AOT compiled as not debuggable.
2371  if (!GetInstrumentation()->IsForcedInterpretOnly()) {
2372    ScopedObjectAccess soa(Thread::Current());
2373    UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
2374    GetClassLinker()->VisitClasses(&visitor);
2375  }
2376}
2377
2378}  // namespace art
2379