1#ifndef Py_OBJECT_H
2#define Py_OBJECT_H
3#ifdef __cplusplus
4extern "C" {
5#endif
6
7
8/* Object and type object interface */
9
10/*
11Objects are structures allocated on the heap.  Special rules apply to
12the use of objects to ensure they are properly garbage-collected.
13Objects are never allocated statically or on the stack; they must be
14accessed through special macros and functions only.  (Type objects are
15exceptions to the first rule; the standard types are represented by
16statically initialized type objects, although work on type/class unification
17for Python 2.2 made it possible to have heap-allocated type objects too).
18
19An object has a 'reference count' that is increased or decreased when a
20pointer to the object is copied or deleted; when the reference count
21reaches zero there are no references to the object left and it can be
22removed from the heap.
23
24An object has a 'type' that determines what it represents and what kind
25of data it contains.  An object's type is fixed when it is created.
26Types themselves are represented as objects; an object contains a
27pointer to the corresponding type object.  The type itself has a type
28pointer pointing to the object representing the type 'type', which
29contains a pointer to itself!).
30
31Objects do not float around in memory; once allocated an object keeps
32the same size and address.  Objects that must hold variable-size data
33can contain pointers to variable-size parts of the object.  Not all
34objects of the same type have the same size; but the size cannot change
35after allocation.  (These restrictions are made so a reference to an
36object can be simply a pointer -- moving an object would require
37updating all the pointers, and changing an object's size would require
38moving it if there was another object right next to it.)
39
40Objects are always accessed through pointers of the type 'PyObject *'.
41The type 'PyObject' is a structure that only contains the reference count
42and the type pointer.  The actual memory allocated for an object
43contains other data that can only be accessed after casting the pointer
44to a pointer to a longer structure type.  This longer type must start
45with the reference count and type fields; the macro PyObject_HEAD should be
46used for this (to accommodate for future changes).  The implementation
47of a particular object type can cast the object pointer to the proper
48type and back.
49
50A standard interface exists for objects that contain an array of items
51whose size is determined when the object is allocated.
52*/
53
54/* Py_DEBUG implies Py_TRACE_REFS. */
55#if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
56#define Py_TRACE_REFS
57#endif
58
59/* Py_TRACE_REFS implies Py_REF_DEBUG. */
60#if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
61#define Py_REF_DEBUG
62#endif
63
64#ifdef Py_TRACE_REFS
65/* Define pointers to support a doubly-linked list of all live heap objects. */
66#define _PyObject_HEAD_EXTRA            \
67    struct _object *_ob_next;           \
68    struct _object *_ob_prev;
69
70#define _PyObject_EXTRA_INIT 0, 0,
71
72#else
73#define _PyObject_HEAD_EXTRA
74#define _PyObject_EXTRA_INIT
75#endif
76
77/* PyObject_HEAD defines the initial segment of every PyObject. */
78#define PyObject_HEAD                   \
79    _PyObject_HEAD_EXTRA                \
80    Py_ssize_t ob_refcnt;               \
81    struct _typeobject *ob_type;
82
83#define PyObject_HEAD_INIT(type)        \
84    _PyObject_EXTRA_INIT                \
85    1, type,
86
87#define PyVarObject_HEAD_INIT(type, size)       \
88    PyObject_HEAD_INIT(type) size,
89
90/* PyObject_VAR_HEAD defines the initial segment of all variable-size
91 * container objects.  These end with a declaration of an array with 1
92 * element, but enough space is malloc'ed so that the array actually
93 * has room for ob_size elements.  Note that ob_size is an element count,
94 * not necessarily a byte count.
95 */
96#define PyObject_VAR_HEAD               \
97    PyObject_HEAD                       \
98    Py_ssize_t ob_size; /* Number of items in variable part */
99#define Py_INVALID_SIZE (Py_ssize_t)-1
100
101/* Nothing is actually declared to be a PyObject, but every pointer to
102 * a Python object can be cast to a PyObject*.  This is inheritance built
103 * by hand.  Similarly every pointer to a variable-size Python object can,
104 * in addition, be cast to PyVarObject*.
105 */
106typedef struct _object {
107    PyObject_HEAD
108} PyObject;
109
110typedef struct {
111    PyObject_VAR_HEAD
112} PyVarObject;
113
114#define Py_REFCNT(ob)           (((PyObject*)(ob))->ob_refcnt)
115#define Py_TYPE(ob)             (((PyObject*)(ob))->ob_type)
116#define Py_SIZE(ob)             (((PyVarObject*)(ob))->ob_size)
117
118/*
119Type objects contain a string containing the type name (to help somewhat
120in debugging), the allocation parameters (see PyObject_New() and
121PyObject_NewVar()),
122and methods for accessing objects of the type.  Methods are optional, a
123nil pointer meaning that particular kind of access is not available for
124this type.  The Py_DECREF() macro uses the tp_dealloc method without
125checking for a nil pointer; it should always be implemented except if
126the implementation can guarantee that the reference count will never
127reach zero (e.g., for statically allocated type objects).
128
129NB: the methods for certain type groups are now contained in separate
130method blocks.
131*/
132
133typedef PyObject * (*unaryfunc)(PyObject *);
134typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
135typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
136typedef int (*inquiry)(PyObject *);
137typedef Py_ssize_t (*lenfunc)(PyObject *);
138typedef int (*coercion)(PyObject **, PyObject **);
139typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
140typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
141typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
142typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
143typedef int(*intobjargproc)(PyObject *, int, PyObject *);
144typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
145typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
146typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
147typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
148
149
150
151/* int-based buffer interface */
152typedef int (*getreadbufferproc)(PyObject *, int, void **);
153typedef int (*getwritebufferproc)(PyObject *, int, void **);
154typedef int (*getsegcountproc)(PyObject *, int *);
155typedef int (*getcharbufferproc)(PyObject *, int, char **);
156/* ssize_t-based buffer interface */
157typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
158typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
159typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
160typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
161
162
163/* Py3k buffer interface */
164typedef struct bufferinfo {
165    void *buf;
166    PyObject *obj;        /* owned reference */
167    Py_ssize_t len;
168    Py_ssize_t itemsize;  /* This is Py_ssize_t so it can be
169                             pointed to by strides in simple case.*/
170    int readonly;
171    int ndim;
172    char *format;
173    Py_ssize_t *shape;
174    Py_ssize_t *strides;
175    Py_ssize_t *suboffsets;
176    Py_ssize_t smalltable[2];  /* static store for shape and strides of
177                                  mono-dimensional buffers. */
178    void *internal;
179} Py_buffer;
180
181typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
182typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
183
184    /* Flags for getting buffers */
185#define PyBUF_SIMPLE 0
186#define PyBUF_WRITABLE 0x0001
187/*  we used to include an E, backwards compatible alias  */
188#define PyBUF_WRITEABLE PyBUF_WRITABLE
189#define PyBUF_FORMAT 0x0004
190#define PyBUF_ND 0x0008
191#define PyBUF_STRIDES (0x0010 | PyBUF_ND)
192#define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
193#define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
194#define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
195#define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
196
197#define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
198#define PyBUF_CONTIG_RO (PyBUF_ND)
199
200#define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
201#define PyBUF_STRIDED_RO (PyBUF_STRIDES)
202
203#define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
204#define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
205
206#define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
207#define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
208
209
210#define PyBUF_READ  0x100
211#define PyBUF_WRITE 0x200
212#define PyBUF_SHADOW 0x400
213/* end Py3k buffer interface */
214
215typedef int (*objobjproc)(PyObject *, PyObject *);
216typedef int (*visitproc)(PyObject *, void *);
217typedef int (*traverseproc)(PyObject *, visitproc, void *);
218
219typedef struct {
220    /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
221       arguments are guaranteed to be of the object's type (modulo
222       coercion hacks -- i.e. if the type's coercion function
223       returns other types, then these are allowed as well).  Numbers that
224       have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
225       arguments for proper type and implement the necessary conversions
226       in the slot functions themselves. */
227
228    binaryfunc nb_add;
229    binaryfunc nb_subtract;
230    binaryfunc nb_multiply;
231    binaryfunc nb_divide;
232    binaryfunc nb_remainder;
233    binaryfunc nb_divmod;
234    ternaryfunc nb_power;
235    unaryfunc nb_negative;
236    unaryfunc nb_positive;
237    unaryfunc nb_absolute;
238    inquiry nb_nonzero;
239    unaryfunc nb_invert;
240    binaryfunc nb_lshift;
241    binaryfunc nb_rshift;
242    binaryfunc nb_and;
243    binaryfunc nb_xor;
244    binaryfunc nb_or;
245    coercion nb_coerce;
246    unaryfunc nb_int;
247    unaryfunc nb_long;
248    unaryfunc nb_float;
249    unaryfunc nb_oct;
250    unaryfunc nb_hex;
251    /* Added in release 2.0 */
252    binaryfunc nb_inplace_add;
253    binaryfunc nb_inplace_subtract;
254    binaryfunc nb_inplace_multiply;
255    binaryfunc nb_inplace_divide;
256    binaryfunc nb_inplace_remainder;
257    ternaryfunc nb_inplace_power;
258    binaryfunc nb_inplace_lshift;
259    binaryfunc nb_inplace_rshift;
260    binaryfunc nb_inplace_and;
261    binaryfunc nb_inplace_xor;
262    binaryfunc nb_inplace_or;
263
264    /* Added in release 2.2 */
265    /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
266    binaryfunc nb_floor_divide;
267    binaryfunc nb_true_divide;
268    binaryfunc nb_inplace_floor_divide;
269    binaryfunc nb_inplace_true_divide;
270
271    /* Added in release 2.5 */
272    unaryfunc nb_index;
273} PyNumberMethods;
274
275typedef struct {
276    lenfunc sq_length;
277    binaryfunc sq_concat;
278    ssizeargfunc sq_repeat;
279    ssizeargfunc sq_item;
280    ssizessizeargfunc sq_slice;
281    ssizeobjargproc sq_ass_item;
282    ssizessizeobjargproc sq_ass_slice;
283    objobjproc sq_contains;
284    /* Added in release 2.0 */
285    binaryfunc sq_inplace_concat;
286    ssizeargfunc sq_inplace_repeat;
287} PySequenceMethods;
288
289typedef struct {
290    lenfunc mp_length;
291    binaryfunc mp_subscript;
292    objobjargproc mp_ass_subscript;
293} PyMappingMethods;
294
295typedef struct {
296    readbufferproc bf_getreadbuffer;
297    writebufferproc bf_getwritebuffer;
298    segcountproc bf_getsegcount;
299    charbufferproc bf_getcharbuffer;
300    getbufferproc bf_getbuffer;
301    releasebufferproc bf_releasebuffer;
302} PyBufferProcs;
303
304
305typedef void (*freefunc)(void *);
306typedef void (*destructor)(PyObject *);
307typedef int (*printfunc)(PyObject *, FILE *, int);
308typedef PyObject *(*getattrfunc)(PyObject *, char *);
309typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
310typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
311typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
312typedef int (*cmpfunc)(PyObject *, PyObject *);
313typedef PyObject *(*reprfunc)(PyObject *);
314typedef long (*hashfunc)(PyObject *);
315typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
316typedef PyObject *(*getiterfunc) (PyObject *);
317typedef PyObject *(*iternextfunc) (PyObject *);
318typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
319typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
320typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
321typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
322typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
323
324typedef struct _typeobject {
325    PyObject_VAR_HEAD
326    const char *tp_name; /* For printing, in format "<module>.<name>" */
327    Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
328
329    /* Methods to implement standard operations */
330
331    destructor tp_dealloc;
332    printfunc tp_print;
333    getattrfunc tp_getattr;
334    setattrfunc tp_setattr;
335    cmpfunc tp_compare;
336    reprfunc tp_repr;
337
338    /* Method suites for standard classes */
339
340    PyNumberMethods *tp_as_number;
341    PySequenceMethods *tp_as_sequence;
342    PyMappingMethods *tp_as_mapping;
343
344    /* More standard operations (here for binary compatibility) */
345
346    hashfunc tp_hash;
347    ternaryfunc tp_call;
348    reprfunc tp_str;
349    getattrofunc tp_getattro;
350    setattrofunc tp_setattro;
351
352    /* Functions to access object as input/output buffer */
353    PyBufferProcs *tp_as_buffer;
354
355    /* Flags to define presence of optional/expanded features */
356    long tp_flags;
357
358    const char *tp_doc; /* Documentation string */
359
360    /* Assigned meaning in release 2.0 */
361    /* call function for all accessible objects */
362    traverseproc tp_traverse;
363
364    /* delete references to contained objects */
365    inquiry tp_clear;
366
367    /* Assigned meaning in release 2.1 */
368    /* rich comparisons */
369    richcmpfunc tp_richcompare;
370
371    /* weak reference enabler */
372    Py_ssize_t tp_weaklistoffset;
373
374    /* Added in release 2.2 */
375    /* Iterators */
376    getiterfunc tp_iter;
377    iternextfunc tp_iternext;
378
379    /* Attribute descriptor and subclassing stuff */
380    struct PyMethodDef *tp_methods;
381    struct PyMemberDef *tp_members;
382    struct PyGetSetDef *tp_getset;
383    struct _typeobject *tp_base;
384    PyObject *tp_dict;
385    descrgetfunc tp_descr_get;
386    descrsetfunc tp_descr_set;
387    Py_ssize_t tp_dictoffset;
388    initproc tp_init;
389    allocfunc tp_alloc;
390    newfunc tp_new;
391    freefunc tp_free; /* Low-level free-memory routine */
392    inquiry tp_is_gc; /* For PyObject_IS_GC */
393    PyObject *tp_bases;
394    PyObject *tp_mro; /* method resolution order */
395    PyObject *tp_cache;
396    PyObject *tp_subclasses;
397    PyObject *tp_weaklist;
398    destructor tp_del;
399
400    /* Type attribute cache version tag. Added in version 2.6 */
401    unsigned int tp_version_tag;
402
403#ifdef COUNT_ALLOCS
404    /* these must be last and never explicitly initialized */
405    Py_ssize_t tp_allocs;
406    Py_ssize_t tp_frees;
407    Py_ssize_t tp_maxalloc;
408    struct _typeobject *tp_prev;
409    struct _typeobject *tp_next;
410#endif
411} PyTypeObject;
412
413
414/* The *real* layout of a type object when allocated on the heap */
415typedef struct _heaptypeobject {
416    /* Note: there's a dependency on the order of these members
417       in slotptr() in typeobject.c . */
418    PyTypeObject ht_type;
419    PyNumberMethods as_number;
420    PyMappingMethods as_mapping;
421    PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
422                                      so that the mapping wins when both
423                                      the mapping and the sequence define
424                                      a given operator (e.g. __getitem__).
425                                      see add_operators() in typeobject.c . */
426    PyBufferProcs as_buffer;
427    PyObject *ht_name, *ht_slots;
428    /* here are optional user slots, followed by the members. */
429} PyHeapTypeObject;
430
431/* access macro to the members which are floating "behind" the object */
432#define PyHeapType_GET_MEMBERS(etype) \
433    ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
434
435
436/* Generic type check */
437PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
438#define PyObject_TypeCheck(ob, tp) \
439    (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
440
441PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
442PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
443PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
444
445#define PyType_Check(op) \
446    PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
447#define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
448
449PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
450PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
451PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
452                                               PyObject *, PyObject *);
453PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
454PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
455PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
456PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
457
458/* Generic operations on objects */
459PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
460PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
461PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
462PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
463PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
464#define PyObject_Bytes PyObject_Str
465#ifdef Py_USING_UNICODE
466PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
467#endif
468PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
469PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
470PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
471PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
472PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
473PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
474PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
475PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
476PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
477PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
478PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
479PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
480PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
481PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
482                                              PyObject *, PyObject *);
483PyAPI_FUNC(long) PyObject_Hash(PyObject *);
484PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
485PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
486PyAPI_FUNC(int) PyObject_Not(PyObject *);
487PyAPI_FUNC(int) PyCallable_Check(PyObject *);
488PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
489PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
490
491PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
492
493/* A slot function whose address we need to compare */
494extern int _PyObject_SlotCompare(PyObject *, PyObject *);
495/* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes
496   dict as the last parameter. */
497PyAPI_FUNC(PyObject *)
498_PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *);
499PyAPI_FUNC(int)
500_PyObject_GenericSetAttrWithDict(PyObject *, PyObject *,
501                                 PyObject *, PyObject *);
502
503
504/* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
505   list of strings.  PyObject_Dir(NULL) is like __builtin__.dir(),
506   returning the names of the current locals.  In this case, if there are
507   no current locals, NULL is returned, and PyErr_Occurred() is false.
508*/
509PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
510
511
512/* Helpers for printing recursive container types */
513PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
514PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
515
516/* Helpers for hash functions */
517PyAPI_FUNC(long) _Py_HashDouble(double);
518PyAPI_FUNC(long) _Py_HashPointer(void*);
519
520/* Helper for passing objects to printf and the like */
521#define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
522
523/* Flag bits for printing: */
524#define Py_PRINT_RAW    1       /* No string quotes etc. */
525
526/*
527`Type flags (tp_flags)
528
529These flags are used to extend the type structure in a backwards-compatible
530fashion. Extensions can use the flags to indicate (and test) when a given
531type structure contains a new feature. The Python core will use these when
532introducing new functionality between major revisions (to avoid mid-version
533changes in the PYTHON_API_VERSION).
534
535Arbitration of the flag bit positions will need to be coordinated among
536all extension writers who publically release their extensions (this will
537be fewer than you might expect!)..
538
539Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
540
541Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
542
543Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
544given type object has a specified feature.
545
546NOTE: when building the core, Py_TPFLAGS_DEFAULT includes
547Py_TPFLAGS_HAVE_VERSION_TAG; outside the core, it doesn't.  This is so
548that extensions that modify tp_dict of their own types directly don't
549break, since this was allowed in 2.5.  In 3.0 they will have to
550manually remove this flag though!
551*/
552
553/* PyBufferProcs contains bf_getcharbuffer */
554#define Py_TPFLAGS_HAVE_GETCHARBUFFER  (1L<<0)
555
556/* PySequenceMethods contains sq_contains */
557#define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
558
559/* This is here for backwards compatibility.  Extensions that use the old GC
560 * API will still compile but the objects will not be tracked by the GC. */
561#define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
562
563/* PySequenceMethods and PyNumberMethods contain in-place operators */
564#define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
565
566/* PyNumberMethods do their own coercion */
567#define Py_TPFLAGS_CHECKTYPES (1L<<4)
568
569/* tp_richcompare is defined */
570#define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
571
572/* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
573#define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
574
575/* tp_iter is defined */
576#define Py_TPFLAGS_HAVE_ITER (1L<<7)
577
578/* New members introduced by Python 2.2 exist */
579#define Py_TPFLAGS_HAVE_CLASS (1L<<8)
580
581/* Set if the type object is dynamically allocated */
582#define Py_TPFLAGS_HEAPTYPE (1L<<9)
583
584/* Set if the type allows subclassing */
585#define Py_TPFLAGS_BASETYPE (1L<<10)
586
587/* Set if the type is 'ready' -- fully initialized */
588#define Py_TPFLAGS_READY (1L<<12)
589
590/* Set while the type is being 'readied', to prevent recursive ready calls */
591#define Py_TPFLAGS_READYING (1L<<13)
592
593/* Objects support garbage collection (see objimp.h) */
594#define Py_TPFLAGS_HAVE_GC (1L<<14)
595
596/* These two bits are preserved for Stackless Python, next after this is 17 */
597#ifdef STACKLESS
598#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
599#else
600#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
601#endif
602
603/* Objects support nb_index in PyNumberMethods */
604#define Py_TPFLAGS_HAVE_INDEX (1L<<17)
605
606/* Objects support type attribute cache */
607#define Py_TPFLAGS_HAVE_VERSION_TAG   (1L<<18)
608#define Py_TPFLAGS_VALID_VERSION_TAG  (1L<<19)
609
610/* Type is abstract and cannot be instantiated */
611#define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
612
613/* Has the new buffer protocol */
614#define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21)
615
616/* These flags are used to determine if a type is a subclass. */
617#define Py_TPFLAGS_INT_SUBCLASS         (1L<<23)
618#define Py_TPFLAGS_LONG_SUBCLASS        (1L<<24)
619#define Py_TPFLAGS_LIST_SUBCLASS        (1L<<25)
620#define Py_TPFLAGS_TUPLE_SUBCLASS       (1L<<26)
621#define Py_TPFLAGS_STRING_SUBCLASS      (1L<<27)
622#define Py_TPFLAGS_UNICODE_SUBCLASS     (1L<<28)
623#define Py_TPFLAGS_DICT_SUBCLASS        (1L<<29)
624#define Py_TPFLAGS_BASE_EXC_SUBCLASS    (1L<<30)
625#define Py_TPFLAGS_TYPE_SUBCLASS        (1L<<31)
626
627#define Py_TPFLAGS_DEFAULT_EXTERNAL ( \
628                 Py_TPFLAGS_HAVE_GETCHARBUFFER | \
629                 Py_TPFLAGS_HAVE_SEQUENCE_IN | \
630                 Py_TPFLAGS_HAVE_INPLACEOPS | \
631                 Py_TPFLAGS_HAVE_RICHCOMPARE | \
632                 Py_TPFLAGS_HAVE_WEAKREFS | \
633                 Py_TPFLAGS_HAVE_ITER | \
634                 Py_TPFLAGS_HAVE_CLASS | \
635                 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
636                 Py_TPFLAGS_HAVE_INDEX | \
637                 0)
638#define Py_TPFLAGS_DEFAULT_CORE (Py_TPFLAGS_DEFAULT_EXTERNAL | \
639                 Py_TPFLAGS_HAVE_VERSION_TAG)
640
641#ifdef Py_BUILD_CORE
642#define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_CORE
643#else
644#define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_EXTERNAL
645#endif
646
647#define PyType_HasFeature(t,f)  (((t)->tp_flags & (f)) != 0)
648#define PyType_FastSubclass(t,f)  PyType_HasFeature(t,f)
649
650
651/*
652The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
653reference counts.  Py_DECREF calls the object's deallocator function when
654the refcount falls to 0; for
655objects that don't contain references to other objects or heap memory
656this can be the standard function free().  Both macros can be used
657wherever a void expression is allowed.  The argument must not be a
658NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
659The macro _Py_NewReference(op) initialize reference counts to 1, and
660in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
661bookkeeping appropriate to the special build.
662
663We assume that the reference count field can never overflow; this can
664be proven when the size of the field is the same as the pointer size, so
665we ignore the possibility.  Provided a C int is at least 32 bits (which
666is implicitly assumed in many parts of this code), that's enough for
667about 2**31 references to an object.
668
669XXX The following became out of date in Python 2.2, but I'm not sure
670XXX what the full truth is now.  Certainly, heap-allocated type objects
671XXX can and should be deallocated.
672Type objects should never be deallocated; the type pointer in an object
673is not considered to be a reference to the type object, to save
674complications in the deallocation function.  (This is actually a
675decision that's up to the implementer of each new type so if you want,
676you can count such references to the type object.)
677
678*** WARNING*** The Py_DECREF macro must have a side-effect-free argument
679since it may evaluate its argument multiple times.  (The alternative
680would be to mace it a proper function or assign it to a global temporary
681variable first, both of which are slower; and in a multi-threaded
682environment the global variable trick is not safe.)
683*/
684
685/* First define a pile of simple helper macros, one set per special
686 * build symbol.  These either expand to the obvious things, or to
687 * nothing at all when the special mode isn't in effect.  The main
688 * macros can later be defined just once then, yet expand to different
689 * things depending on which special build options are and aren't in effect.
690 * Trust me <wink>:  while painful, this is 20x easier to understand than,
691 * e.g, defining _Py_NewReference five different times in a maze of nested
692 * #ifdefs (we used to do that -- it was impenetrable).
693 */
694#ifdef Py_REF_DEBUG
695PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
696PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
697                                            int lineno, PyObject *op);
698PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
699PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
700PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
701#define _Py_INC_REFTOTAL        _Py_RefTotal++
702#define _Py_DEC_REFTOTAL        _Py_RefTotal--
703#define _Py_REF_DEBUG_COMMA     ,
704#define _Py_CHECK_REFCNT(OP)                                    \
705{       if (((PyObject*)OP)->ob_refcnt < 0)                             \
706                _Py_NegativeRefcount(__FILE__, __LINE__,        \
707                                     (PyObject *)(OP));         \
708}
709#else
710#define _Py_INC_REFTOTAL
711#define _Py_DEC_REFTOTAL
712#define _Py_REF_DEBUG_COMMA
713#define _Py_CHECK_REFCNT(OP)    /* a semicolon */;
714#endif /* Py_REF_DEBUG */
715
716#ifdef COUNT_ALLOCS
717PyAPI_FUNC(void) inc_count(PyTypeObject *);
718PyAPI_FUNC(void) dec_count(PyTypeObject *);
719#define _Py_INC_TPALLOCS(OP)    inc_count(Py_TYPE(OP))
720#define _Py_INC_TPFREES(OP)     dec_count(Py_TYPE(OP))
721#define _Py_DEC_TPFREES(OP)     Py_TYPE(OP)->tp_frees--
722#define _Py_COUNT_ALLOCS_COMMA  ,
723#else
724#define _Py_INC_TPALLOCS(OP)
725#define _Py_INC_TPFREES(OP)
726#define _Py_DEC_TPFREES(OP)
727#define _Py_COUNT_ALLOCS_COMMA
728#endif /* COUNT_ALLOCS */
729
730#ifdef Py_TRACE_REFS
731/* Py_TRACE_REFS is such major surgery that we call external routines. */
732PyAPI_FUNC(void) _Py_NewReference(PyObject *);
733PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
734PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
735PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
736PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
737PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
738
739#else
740/* Without Py_TRACE_REFS, there's little enough to do that we expand code
741 * inline.
742 */
743#define _Py_NewReference(op) (                          \
744    _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA         \
745    _Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA               \
746    Py_REFCNT(op) = 1)
747
748#define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
749
750#define _Py_Dealloc(op) (                               \
751    _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA          \
752    (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
753#endif /* !Py_TRACE_REFS */
754
755#define Py_INCREF(op) (                         \
756    _Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA       \
757    ((PyObject*)(op))->ob_refcnt++)
758
759#define Py_DECREF(op)                                   \
760    do {                                                \
761        if (_Py_DEC_REFTOTAL  _Py_REF_DEBUG_COMMA       \
762        --((PyObject*)(op))->ob_refcnt != 0)            \
763            _Py_CHECK_REFCNT(op)                        \
764        else                                            \
765        _Py_Dealloc((PyObject *)(op));                  \
766    } while (0)
767
768/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
769 * and tp_dealloc implementatons.
770 *
771 * Note that "the obvious" code can be deadly:
772 *
773 *     Py_XDECREF(op);
774 *     op = NULL;
775 *
776 * Typically, `op` is something like self->containee, and `self` is done
777 * using its `containee` member.  In the code sequence above, suppose
778 * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
779 * 0 on the first line, which can trigger an arbitrary amount of code,
780 * possibly including finalizers (like __del__ methods or weakref callbacks)
781 * coded in Python, which in turn can release the GIL and allow other threads
782 * to run, etc.  Such code may even invoke methods of `self` again, or cause
783 * cyclic gc to trigger, but-- oops! --self->containee still points to the
784 * object being torn down, and it may be in an insane state while being torn
785 * down.  This has in fact been a rich historic source of miserable (rare &
786 * hard-to-diagnose) segfaulting (and other) bugs.
787 *
788 * The safe way is:
789 *
790 *      Py_CLEAR(op);
791 *
792 * That arranges to set `op` to NULL _before_ decref'ing, so that any code
793 * triggered as a side-effect of `op` getting torn down no longer believes
794 * `op` points to a valid object.
795 *
796 * There are cases where it's safe to use the naive code, but they're brittle.
797 * For example, if `op` points to a Python integer, you know that destroying
798 * one of those can't cause problems -- but in part that relies on that
799 * Python integers aren't currently weakly referencable.  Best practice is
800 * to use Py_CLEAR() even if you can't think of a reason for why you need to.
801 */
802#define Py_CLEAR(op)                            \
803    do {                                        \
804        if (op) {                               \
805            PyObject *_py_tmp = (PyObject *)(op);               \
806            (op) = NULL;                        \
807            Py_DECREF(_py_tmp);                 \
808        }                                       \
809    } while (0)
810
811/* Macros to use in case the object pointer may be NULL: */
812#define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
813#define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
814
815/*
816These are provided as conveniences to Python runtime embedders, so that
817they can have object code that is not dependent on Python compilation flags.
818*/
819PyAPI_FUNC(void) Py_IncRef(PyObject *);
820PyAPI_FUNC(void) Py_DecRef(PyObject *);
821
822/*
823_Py_NoneStruct is an object of undefined type which can be used in contexts
824where NULL (nil) is not suitable (since NULL often means 'error').
825
826Don't forget to apply Py_INCREF() when returning this value!!!
827*/
828PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
829#define Py_None (&_Py_NoneStruct)
830
831/* Macro for returning Py_None from a function */
832#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
833
834/*
835Py_NotImplemented is a singleton used to signal that an operation is
836not implemented for a given type combination.
837*/
838PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
839#define Py_NotImplemented (&_Py_NotImplementedStruct)
840
841/* Rich comparison opcodes */
842#define Py_LT 0
843#define Py_LE 1
844#define Py_EQ 2
845#define Py_NE 3
846#define Py_GT 4
847#define Py_GE 5
848
849/* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
850 * Defined in object.c.
851 */
852PyAPI_DATA(int) _Py_SwappedOp[];
853
854/*
855Define staticforward and statichere for source compatibility with old
856C extensions.
857
858The staticforward define was needed to support certain broken C
859compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
860static keyword when it was used with a forward declaration of a static
861initialized structure.  Standard C allows the forward declaration with
862static, and we've decided to stop catering to broken C compilers.
863(In fact, we expect that the compilers are all fixed eight years later.)
864*/
865
866#define staticforward static
867#define statichere static
868
869
870/*
871More conventions
872================
873
874Argument Checking
875-----------------
876
877Functions that take objects as arguments normally don't check for nil
878arguments, but they do check the type of the argument, and return an
879error if the function doesn't apply to the type.
880
881Failure Modes
882-------------
883
884Functions may fail for a variety of reasons, including running out of
885memory.  This is communicated to the caller in two ways: an error string
886is set (see errors.h), and the function result differs: functions that
887normally return a pointer return NULL for failure, functions returning
888an integer return -1 (which could be a legal return value too!), and
889other functions return 0 for success and -1 for failure.
890Callers should always check for errors before using the result.  If
891an error was set, the caller must either explicitly clear it, or pass
892the error on to its caller.
893
894Reference Counts
895----------------
896
897It takes a while to get used to the proper usage of reference counts.
898
899Functions that create an object set the reference count to 1; such new
900objects must be stored somewhere or destroyed again with Py_DECREF().
901Some functions that 'store' objects, such as PyTuple_SetItem() and
902PyList_SetItem(),
903don't increment the reference count of the object, since the most
904frequent use is to store a fresh object.  Functions that 'retrieve'
905objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
906don't increment
907the reference count, since most frequently the object is only looked at
908quickly.  Thus, to retrieve an object and store it again, the caller
909must call Py_INCREF() explicitly.
910
911NOTE: functions that 'consume' a reference count, like
912PyList_SetItem(), consume the reference even if the object wasn't
913successfully stored, to simplify error handling.
914
915It seems attractive to make other functions that take an object as
916argument consume a reference count; however, this may quickly get
917confusing (even the current practice is already confusing).  Consider
918it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
919times.
920*/
921
922
923/* Trashcan mechanism, thanks to Christian Tismer.
924
925When deallocating a container object, it's possible to trigger an unbounded
926chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
927next" object in the chain to 0.  This can easily lead to stack faults, and
928especially in threads (which typically have less stack space to work with).
929
930A container object that participates in cyclic gc can avoid this by
931bracketing the body of its tp_dealloc function with a pair of macros:
932
933static void
934mytype_dealloc(mytype *p)
935{
936    ... declarations go here ...
937
938    PyObject_GC_UnTrack(p);        // must untrack first
939    Py_TRASHCAN_SAFE_BEGIN(p)
940    ... The body of the deallocator goes here, including all calls ...
941    ... to Py_DECREF on contained objects.                         ...
942    Py_TRASHCAN_SAFE_END(p)
943}
944
945CAUTION:  Never return from the middle of the body!  If the body needs to
946"get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
947call, and goto it.  Else the call-depth counter (see below) will stay
948above 0 forever, and the trashcan will never get emptied.
949
950How it works:  The BEGIN macro increments a call-depth counter.  So long
951as this counter is small, the body of the deallocator is run directly without
952further ado.  But if the counter gets large, it instead adds p to a list of
953objects to be deallocated later, skips the body of the deallocator, and
954resumes execution after the END macro.  The tp_dealloc routine then returns
955without deallocating anything (and so unbounded call-stack depth is avoided).
956
957When the call stack finishes unwinding again, code generated by the END macro
958notices this, and calls another routine to deallocate all the objects that
959may have been added to the list of deferred deallocations.  In effect, a
960chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
961with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
962*/
963
964PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
965PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
966PyAPI_DATA(int) _PyTrash_delete_nesting;
967PyAPI_DATA(PyObject *) _PyTrash_delete_later;
968
969#define PyTrash_UNWIND_LEVEL 50
970
971#define Py_TRASHCAN_SAFE_BEGIN(op) \
972    if (_PyTrash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
973        ++_PyTrash_delete_nesting;
974        /* The body of the deallocator is here. */
975#define Py_TRASHCAN_SAFE_END(op) \
976        --_PyTrash_delete_nesting; \
977        if (_PyTrash_delete_later && _PyTrash_delete_nesting <= 0) \
978            _PyTrash_destroy_chain(); \
979    } \
980    else \
981        _PyTrash_deposit_object((PyObject*)op);
982
983#ifdef __cplusplus
984}
985#endif
986#endif /* !Py_OBJECT_H */
987