1/* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55/* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68#include <openssl/ec.h>
69
70#include <string.h>
71
72#include <openssl/bn.h>
73#include <openssl/err.h>
74#include <openssl/mem.h>
75#include <openssl/thread.h>
76
77#include "internal.h"
78#include "../internal.h"
79
80
81/* This file implements the wNAF-based interleaving multi-exponentation method
82 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
83 * */
84
85/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
86 * This is an array  r[]  of values that are either zero or odd with an
87 * absolute value less than  2^w  satisfying
88 *     scalar = \sum_j r[j]*2^j
89 * where at most one of any  w+1  consecutive digits is non-zero
90 * with the exception that the most significant digit may be only
91 * w-1 zeros away from that next non-zero digit.
92 */
93static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
94  int window_val;
95  int ok = 0;
96  int8_t *r = NULL;
97  int sign = 1;
98  int bit, next_bit, mask;
99  size_t len = 0, j;
100
101  if (BN_is_zero(scalar)) {
102    r = OPENSSL_malloc(1);
103    if (!r) {
104      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
105      goto err;
106    }
107    r[0] = 0;
108    *ret_len = 1;
109    return r;
110  }
111
112  /* 'int8_t' can represent integers with absolute values less than 2^7. */
113  if (w <= 0 || w > 7) {
114    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
115    goto err;
116  }
117  bit = 1 << w;        /* at most 128 */
118  next_bit = bit << 1; /* at most 256 */
119  mask = next_bit - 1; /* at most 255 */
120
121  if (BN_is_negative(scalar)) {
122    sign = -1;
123  }
124
125  if (scalar->d == NULL || scalar->top == 0) {
126    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
127    goto err;
128  }
129
130  len = BN_num_bits(scalar);
131  /* The modified wNAF may be one digit longer than binary representation
132   * (*ret_len will be set to the actual length, i.e. at most
133   * BN_num_bits(scalar) + 1). */
134  r = OPENSSL_malloc(len + 1);
135  if (r == NULL) {
136    OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
137    goto err;
138  }
139  window_val = scalar->d[0] & mask;
140  j = 0;
141  /* If j+w+1 >= len, window_val will not increase. */
142  while (window_val != 0 || j + w + 1 < len) {
143    int digit = 0;
144
145    /* 0 <= window_val <= 2^(w+1) */
146
147    if (window_val & 1) {
148      /* 0 < window_val < 2^(w+1) */
149
150      if (window_val & bit) {
151        digit = window_val - next_bit; /* -2^w < digit < 0 */
152
153#if 1 /* modified wNAF */
154        if (j + w + 1 >= len) {
155          /* special case for generating modified wNAFs:
156           * no new bits will be added into window_val,
157           * so using a positive digit here will decrease
158           * the total length of the representation */
159
160          digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
161        }
162#endif
163      } else {
164        digit = window_val; /* 0 < digit < 2^w */
165      }
166
167      if (digit <= -bit || digit >= bit || !(digit & 1)) {
168        OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
169        goto err;
170      }
171
172      window_val -= digit;
173
174      /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
175       * for modified window NAFs, it may also be 2^w. */
176      if (window_val != 0 && window_val != next_bit && window_val != bit) {
177        OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
178        goto err;
179      }
180    }
181
182    r[j++] = sign * digit;
183
184    window_val >>= 1;
185    window_val += bit * BN_is_bit_set(scalar, j + w);
186
187    if (window_val > next_bit) {
188      OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
189      goto err;
190    }
191  }
192
193  if (j > len + 1) {
194    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
195    goto err;
196  }
197  len = j;
198  ok = 1;
199
200err:
201  if (!ok) {
202    OPENSSL_free(r);
203    r = NULL;
204  }
205  if (ok) {
206    *ret_len = len;
207  }
208  return r;
209}
210
211
212/* TODO: table should be optimised for the wNAF-based implementation,
213 *       sometimes smaller windows will give better performance
214 *       (thus the boundaries should be increased)
215 */
216static size_t window_bits_for_scalar_size(size_t b) {
217  if (b >= 2000) {
218    return 6;
219  }
220
221  if (b >= 800) {
222    return 5;
223  }
224
225  if (b >= 300) {
226    return 4;
227  }
228
229  if (b >= 70) {
230    return 3;
231  }
232
233  if (b >= 20) {
234    return 2;
235  }
236
237  return 1;
238}
239
240int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
241                const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
242  BN_CTX *new_ctx = NULL;
243  const EC_POINT *generator = NULL;
244  EC_POINT *tmp = NULL;
245  size_t total_num = 0;
246  size_t i, j;
247  int k;
248  int r_is_inverted = 0;
249  int r_is_at_infinity = 1;
250  size_t *wsize = NULL;      /* individual window sizes */
251  int8_t **wNAF = NULL; /* individual wNAFs */
252  size_t *wNAF_len = NULL;
253  size_t max_len = 0;
254  size_t num_val = 0;
255  EC_POINT **val = NULL; /* precomputation */
256  EC_POINT **v;
257  EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
258  int ret = 0;
259
260  if (ctx == NULL) {
261    ctx = new_ctx = BN_CTX_new();
262    if (ctx == NULL) {
263      goto err;
264    }
265  }
266
267  /* TODO: This function used to take |points| and |scalars| as arrays of
268   * |num| elements. The code below should be simplified to work in terms of |p|
269   * and |p_scalar|. */
270  size_t num = p != NULL ? 1 : 0;
271  const EC_POINT **points = p != NULL ? &p : NULL;
272  const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
273
274  total_num = num;
275
276  if (g_scalar != NULL) {
277    generator = EC_GROUP_get0_generator(group);
278    if (generator == NULL) {
279      OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
280      goto err;
281    }
282
283    ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
284  }
285
286
287  wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
288  wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
289  wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
290  val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
291
292  /* Ensure wNAF is initialised in case we end up going to err. */
293  if (wNAF != NULL) {
294    OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
295  }
296
297  if (!wsize || !wNAF_len || !wNAF || !val_sub) {
298    OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
299    goto err;
300  }
301
302  /* num_val will be the total number of temporarily precomputed points */
303  num_val = 0;
304
305  for (i = 0; i < total_num; i++) {
306    size_t bits;
307
308    bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
309    wsize[i] = window_bits_for_scalar_size(bits);
310    num_val += (size_t)1 << (wsize[i] - 1);
311    wNAF[i] =
312        compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
313    if (wNAF[i] == NULL) {
314      goto err;
315    }
316    if (wNAF_len[i] > max_len) {
317      max_len = wNAF_len[i];
318    }
319  }
320
321  /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
322   * a pointer to the subarray for the i-th point. */
323  val = OPENSSL_malloc(num_val * sizeof(val[0]));
324  if (val == NULL) {
325    OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
326    goto err;
327  }
328  OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
329
330  /* allocate points for precomputation */
331  v = val;
332  for (i = 0; i < total_num; i++) {
333    val_sub[i] = v;
334    for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
335      *v = EC_POINT_new(group);
336      if (*v == NULL) {
337        goto err;
338      }
339      v++;
340    }
341  }
342  if (!(v == val + num_val)) {
343    OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
344    goto err;
345  }
346
347  if (!(tmp = EC_POINT_new(group))) {
348    goto err;
349  }
350
351  /* prepare precomputed values:
352   *    val_sub[i][0] :=     points[i]
353   *    val_sub[i][1] := 3 * points[i]
354   *    val_sub[i][2] := 5 * points[i]
355   *    ...
356   */
357  for (i = 0; i < total_num; i++) {
358    if (i < num) {
359      if (!EC_POINT_copy(val_sub[i][0], points[i])) {
360        goto err;
361      }
362    } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
363      goto err;
364    }
365
366    if (wsize[i] > 1) {
367      if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
368        goto err;
369      }
370      for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
371        if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
372          goto err;
373        }
374      }
375    }
376  }
377
378#if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
379  if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
380    goto err;
381  }
382#endif
383
384  r_is_at_infinity = 1;
385
386  for (k = max_len - 1; k >= 0; k--) {
387    if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
388      goto err;
389    }
390
391    for (i = 0; i < total_num; i++) {
392      if (wNAF_len[i] > (size_t)k) {
393        int digit = wNAF[i][k];
394        int is_neg;
395
396        if (digit) {
397          is_neg = digit < 0;
398
399          if (is_neg) {
400            digit = -digit;
401          }
402
403          if (is_neg != r_is_inverted) {
404            if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
405              goto err;
406            }
407            r_is_inverted = !r_is_inverted;
408          }
409
410          /* digit > 0 */
411
412          if (r_is_at_infinity) {
413            if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
414              goto err;
415            }
416            r_is_at_infinity = 0;
417          } else {
418            if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
419              goto err;
420            }
421          }
422        }
423      }
424    }
425  }
426
427  if (r_is_at_infinity) {
428    if (!EC_POINT_set_to_infinity(group, r)) {
429      goto err;
430    }
431  } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
432    goto err;
433  }
434
435  ret = 1;
436
437err:
438  BN_CTX_free(new_ctx);
439  EC_POINT_free(tmp);
440  OPENSSL_free(wsize);
441  OPENSSL_free(wNAF_len);
442  if (wNAF != NULL) {
443    for (i = 0; i < total_num; i++) {
444      OPENSSL_free(wNAF[i]);
445    }
446
447    OPENSSL_free(wNAF);
448  }
449  if (val != NULL) {
450    for (i = 0; i < num_val; i++) {
451      EC_POINT_clear_free(val[i]);
452    }
453
454    OPENSSL_free(val);
455  }
456  OPENSSL_free(val_sub);
457  return ret;
458}
459