sha512.c revision 4969cc9b0ab2905ec478277f50ed3849b37a6c6b
1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57#include <openssl/sha.h>
58
59#include <string.h>
60
61#include <openssl/mem.h>
62
63
64/* IMPLEMENTATION NOTES.
65 *
66 * The 32-bit hash algorithms share a common byte-order neutral collector and
67 * padding function implementations that operate on unaligned data,
68 * ../md32_common.h. This SHA-512 implementation does not. Reasons
69 * [in reverse order] are:
70 *
71 * - It's the only 64-bit hash algorithm for the moment of this writing,
72 *   there is no need for common collector/padding implementation [yet];
73 * - By supporting only a transform function that operates on *aligned* data
74 *   the collector/padding function is simpler and easier to optimize. */
75
76#if !defined(OPENSSL_NO_ASM) &&                         \
77    (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
78     defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
79#define SHA512_ASM
80#endif
81
82#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
83    defined(__ARM_FEATURE_UNALIGNED)
84#define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
85#endif
86
87int SHA384_Init(SHA512_CTX *sha) {
88  sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
89  sha->h[1] = UINT64_C(0x629a292a367cd507);
90  sha->h[2] = UINT64_C(0x9159015a3070dd17);
91  sha->h[3] = UINT64_C(0x152fecd8f70e5939);
92  sha->h[4] = UINT64_C(0x67332667ffc00b31);
93  sha->h[5] = UINT64_C(0x8eb44a8768581511);
94  sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
95  sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
96
97  sha->Nl = 0;
98  sha->Nh = 0;
99  sha->num = 0;
100  sha->md_len = SHA384_DIGEST_LENGTH;
101  return 1;
102}
103
104
105int SHA512_Init(SHA512_CTX *sha) {
106  sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
107  sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
108  sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
109  sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
110  sha->h[4] = UINT64_C(0x510e527fade682d1);
111  sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
112  sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
113  sha->h[7] = UINT64_C(0x5be0cd19137e2179);
114
115  sha->Nl = 0;
116  sha->Nh = 0;
117  sha->num = 0;
118  sha->md_len = SHA512_DIGEST_LENGTH;
119  return 1;
120}
121
122uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
123  SHA512_CTX ctx;
124  static uint8_t buf[SHA384_DIGEST_LENGTH];
125
126  /* TODO(fork): remove this static buffer. */
127  if (out == NULL) {
128    out = buf;
129  }
130
131  SHA384_Init(&ctx);
132  SHA384_Update(&ctx, data, len);
133  SHA384_Final(out, &ctx);
134  OPENSSL_cleanse(&ctx, sizeof(ctx));
135  return out;
136}
137
138uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
139  SHA512_CTX ctx;
140  static uint8_t buf[SHA512_DIGEST_LENGTH];
141
142  /* TODO(fork): remove this static buffer. */
143  if (out == NULL) {
144    out = buf;
145  }
146  SHA512_Init(&ctx);
147  SHA512_Update(&ctx, data, len);
148  SHA512_Final(out, &ctx);
149  OPENSSL_cleanse(&ctx, sizeof(ctx));
150  return out;
151}
152
153#if !defined(SHA512_ASM)
154static
155#endif
156void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
157
158
159int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
160  return SHA512_Final(md, sha);
161}
162
163int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
164  return SHA512_Update(sha, data, len);
165}
166
167void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
168#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
169  if ((size_t)data % sizeof(c->u.d[0]) != 0) {
170    memcpy(c->u.p, data, sizeof(c->u.p));
171    data = c->u.p;
172  }
173#endif
174  sha512_block_data_order(c->h, (uint64_t *)data, 1);
175}
176
177int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
178  uint64_t l;
179  uint8_t *p = c->u.p;
180  const uint8_t *data = (const uint8_t *)in_data;
181
182  if (len == 0) {
183    return 1;
184  }
185
186  l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
187  if (l < c->Nl) {
188    c->Nh++;
189  }
190  if (sizeof(len) >= 8) {
191    c->Nh += (((uint64_t)len) >> 61);
192  }
193  c->Nl = l;
194
195  if (c->num != 0) {
196    size_t n = sizeof(c->u) - c->num;
197
198    if (len < n) {
199      memcpy(p + c->num, data, len);
200      c->num += (unsigned int)len;
201      return 1;
202    } else {
203      memcpy(p + c->num, data, n), c->num = 0;
204      len -= n;
205      data += n;
206      sha512_block_data_order(c->h, (uint64_t *)p, 1);
207    }
208  }
209
210  if (len >= sizeof(c->u)) {
211#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
212    if ((size_t)data % sizeof(c->u.d[0]) != 0) {
213      while (len >= sizeof(c->u)) {
214        memcpy(p, data, sizeof(c->u));
215        sha512_block_data_order(c->h, (uint64_t *)p, 1);
216        len -= sizeof(c->u);
217        data += sizeof(c->u);
218      }
219    } else
220#endif
221    {
222      sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
223      data += len;
224      len %= sizeof(c->u);
225      data -= len;
226    }
227  }
228
229  if (len != 0) {
230    memcpy(p, data, len);
231    c->num = (int)len;
232  }
233
234  return 1;
235}
236
237int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
238  uint8_t *p = (uint8_t *)sha->u.p;
239  size_t n = sha->num;
240
241  p[n] = 0x80; /* There always is a room for one */
242  n++;
243  if (n > (sizeof(sha->u) - 16)) {
244    memset(p + n, 0, sizeof(sha->u) - n);
245    n = 0;
246    sha512_block_data_order(sha->h, (uint64_t *)p, 1);
247  }
248
249  memset(p + n, 0, sizeof(sha->u) - 16 - n);
250  p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
251  p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
252  p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
253  p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
254  p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
255  p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
256  p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
257  p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
258  p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
259  p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
260  p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
261  p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
262  p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
263  p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
264  p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
265  p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
266
267  sha512_block_data_order(sha->h, (uint64_t *)p, 1);
268
269  if (md == NULL) {
270    /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
271     * functions and is one of the few places one can fail. */
272    return 0;
273  }
274
275  switch (sha->md_len) {
276    /* Let compiler decide if it's appropriate to unroll... */
277    case SHA384_DIGEST_LENGTH:
278      for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
279        uint64_t t = sha->h[n];
280
281        *(md++) = (uint8_t)(t >> 56);
282        *(md++) = (uint8_t)(t >> 48);
283        *(md++) = (uint8_t)(t >> 40);
284        *(md++) = (uint8_t)(t >> 32);
285        *(md++) = (uint8_t)(t >> 24);
286        *(md++) = (uint8_t)(t >> 16);
287        *(md++) = (uint8_t)(t >> 8);
288        *(md++) = (uint8_t)(t);
289      }
290      break;
291    case SHA512_DIGEST_LENGTH:
292      for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
293        uint64_t t = sha->h[n];
294
295        *(md++) = (uint8_t)(t >> 56);
296        *(md++) = (uint8_t)(t >> 48);
297        *(md++) = (uint8_t)(t >> 40);
298        *(md++) = (uint8_t)(t >> 32);
299        *(md++) = (uint8_t)(t >> 24);
300        *(md++) = (uint8_t)(t >> 16);
301        *(md++) = (uint8_t)(t >> 8);
302        *(md++) = (uint8_t)(t);
303      }
304      break;
305    /* ... as well as make sure md_len is not abused. */
306    default:
307      /* TODO(davidben): This bad |md_len| case is one of the few places a
308       * low-level hash 'final' function can fail. This should never happen. */
309      return 0;
310  }
311
312  return 1;
313}
314
315#ifndef SHA512_ASM
316static const uint64_t K512[80] = {
317    UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
318    UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
319    UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
320    UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
321    UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
322    UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
323    UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
324    UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
325    UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
326    UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
327    UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
328    UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
329    UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
330    UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
331    UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
332    UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
333    UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
334    UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
335    UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
336    UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
337    UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
338    UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
339    UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
340    UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
341    UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
342    UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
343    UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
344    UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
345    UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
346    UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
347    UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
348    UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
349    UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
350    UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
351    UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
352    UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
353    UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
354    UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
355    UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
356    UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
357};
358
359#if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
360#if defined(__x86_64) || defined(__x86_64__)
361#define ROTR(a, n)                                              \
362  ({                                                            \
363    uint64_t ret;                                               \
364    __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
365    ret;                                                        \
366  })
367#define PULL64(x)                                \
368  ({                                             \
369    uint64_t ret = *((const uint64_t *)(&(x)));  \
370    __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
371    ret;                                         \
372  })
373#elif(defined(__i386) || defined(__i386__))
374#define PULL64(x)                                                             \
375  ({                                                                          \
376    const unsigned int *p = (const unsigned int *)(&(x));                     \
377    unsigned int hi = p[0], lo = p[1];                                        \
378    __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
379    ((uint64_t)hi) << 32 | lo;                                                \
380  })
381#elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
382#define ROTR(a, n)                                             \
383  ({                                                           \
384    uint64_t ret;                                              \
385    __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
386    ret;                                                       \
387  })
388#elif defined(__aarch64__)
389#define ROTR(a, n)                                          \
390  ({                                                        \
391    uint64_t ret;                                           \
392    __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
393    ret;                                                    \
394  })
395#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
396    __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
397#define PULL64(x)                                                         \
398  ({                                                                      \
399    uint64_t ret;                                                         \
400    __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
401    ret;                                                                  \
402  })
403#endif
404#endif
405#elif defined(_MSC_VER)
406#if defined(_WIN64) /* applies to both IA-64 and AMD64 */
407#pragma intrinsic(_rotr64)
408#define ROTR(a, n) _rotr64((a), n)
409#endif
410#if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
411static uint64_t __fastcall __pull64be(const void *x) {
412  _asm mov edx, [ecx + 0]
413  _asm mov eax, [ecx + 4]
414  _asm bswap edx
415  _asm bswap eax
416}
417#define PULL64(x) __pull64be(&(x))
418#if _MSC_VER <= 1200
419#pragma inline_depth(0)
420#endif
421#endif
422#endif
423
424#ifndef PULL64
425#define B(x, j) \
426  (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
427#define PULL64(x)                                                        \
428  (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
429   B(x, 7))
430#endif
431
432#ifndef ROTR
433#define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
434#endif
435
436#define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
437#define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
438#define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
439#define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
440
441#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
442#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
443
444
445#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
446/*
447 * This code should give better results on 32-bit CPU with less than
448 * ~24 registers, both size and performance wise...
449 */
450static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
451                                    size_t num) {
452  uint64_t A, E, T;
453  uint64_t X[9 + 80], *F;
454  int i;
455
456  while (num--) {
457    F = X + 80;
458    A = state[0];
459    F[1] = state[1];
460    F[2] = state[2];
461    F[3] = state[3];
462    E = state[4];
463    F[5] = state[5];
464    F[6] = state[6];
465    F[7] = state[7];
466
467    for (i = 0; i < 16; i++, F--) {
468      T = PULL64(W[i]);
469      F[0] = A;
470      F[4] = E;
471      F[8] = T;
472      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
473      E = F[3] + T;
474      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
475    }
476
477    for (; i < 80; i++, F--) {
478      T = sigma0(F[8 + 16 - 1]);
479      T += sigma1(F[8 + 16 - 14]);
480      T += F[8 + 16] + F[8 + 16 - 9];
481
482      F[0] = A;
483      F[4] = E;
484      F[8] = T;
485      T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
486      E = F[3] + T;
487      A = T + Sigma0(A) + Maj(A, F[1], F[2]);
488    }
489
490    state[0] += A;
491    state[1] += F[1];
492    state[2] += F[2];
493    state[3] += F[3];
494    state[4] += E;
495    state[5] += F[5];
496    state[6] += F[6];
497    state[7] += F[7];
498
499    W += 16;
500  }
501}
502
503#else
504
505#define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
506  do {                                           \
507    T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
508    h = Sigma0(a) + Maj(a, b, c);                \
509    d += T1;                                     \
510    h += T1;                                     \
511  } while (0)
512
513#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
514  do {                                                 \
515    s0 = X[(j + 1) & 0x0f];                            \
516    s0 = sigma0(s0);                                   \
517    s1 = X[(j + 14) & 0x0f];                           \
518    s1 = sigma1(s1);                                   \
519    T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
520    ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
521  } while (0)
522
523static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
524                                    size_t num) {
525  uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
526  uint64_t X[16];
527  int i;
528
529  while (num--) {
530
531    a = state[0];
532    b = state[1];
533    c = state[2];
534    d = state[3];
535    e = state[4];
536    f = state[5];
537    g = state[6];
538    h = state[7];
539
540    T1 = X[0] = PULL64(W[0]);
541    ROUND_00_15(0, a, b, c, d, e, f, g, h);
542    T1 = X[1] = PULL64(W[1]);
543    ROUND_00_15(1, h, a, b, c, d, e, f, g);
544    T1 = X[2] = PULL64(W[2]);
545    ROUND_00_15(2, g, h, a, b, c, d, e, f);
546    T1 = X[3] = PULL64(W[3]);
547    ROUND_00_15(3, f, g, h, a, b, c, d, e);
548    T1 = X[4] = PULL64(W[4]);
549    ROUND_00_15(4, e, f, g, h, a, b, c, d);
550    T1 = X[5] = PULL64(W[5]);
551    ROUND_00_15(5, d, e, f, g, h, a, b, c);
552    T1 = X[6] = PULL64(W[6]);
553    ROUND_00_15(6, c, d, e, f, g, h, a, b);
554    T1 = X[7] = PULL64(W[7]);
555    ROUND_00_15(7, b, c, d, e, f, g, h, a);
556    T1 = X[8] = PULL64(W[8]);
557    ROUND_00_15(8, a, b, c, d, e, f, g, h);
558    T1 = X[9] = PULL64(W[9]);
559    ROUND_00_15(9, h, a, b, c, d, e, f, g);
560    T1 = X[10] = PULL64(W[10]);
561    ROUND_00_15(10, g, h, a, b, c, d, e, f);
562    T1 = X[11] = PULL64(W[11]);
563    ROUND_00_15(11, f, g, h, a, b, c, d, e);
564    T1 = X[12] = PULL64(W[12]);
565    ROUND_00_15(12, e, f, g, h, a, b, c, d);
566    T1 = X[13] = PULL64(W[13]);
567    ROUND_00_15(13, d, e, f, g, h, a, b, c);
568    T1 = X[14] = PULL64(W[14]);
569    ROUND_00_15(14, c, d, e, f, g, h, a, b);
570    T1 = X[15] = PULL64(W[15]);
571    ROUND_00_15(15, b, c, d, e, f, g, h, a);
572
573    for (i = 16; i < 80; i += 16) {
574      ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
575      ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
576      ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
577      ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
578      ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
579      ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
580      ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
581      ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
582      ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
583      ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
584      ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
585      ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
586      ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
587      ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
588      ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
589      ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
590    }
591
592    state[0] += a;
593    state[1] += b;
594    state[2] += c;
595    state[3] += d;
596    state[4] += e;
597    state[5] += f;
598    state[6] += g;
599    state[7] += h;
600
601    W += 16;
602  }
603}
604
605#endif
606
607#endif /* SHA512_ASM */
608