MicrosoftMangle.cpp revision 0e376a0ca8372c9e809d08a9db2fae98394878b8
1//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides C++ name mangling targetting the Microsoft Visual C++ ABI.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Mangle.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/Basic/ABI.h"
23
24using namespace clang;
25
26namespace {
27
28/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
29/// Microsoft Visual C++ ABI.
30class MicrosoftCXXNameMangler {
31  MangleContext &Context;
32  llvm::raw_ostream &Out;
33
34  ASTContext &getASTContext() const { return Context.getASTContext(); }
35
36public:
37  MicrosoftCXXNameMangler(MangleContext &C, llvm::raw_ostream &Out_)
38  : Context(C), Out(Out_) { }
39
40  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "?");
41  void mangleName(const NamedDecl *ND);
42  void mangleFunctionEncoding(const FunctionDecl *FD);
43  void mangleVariableEncoding(const VarDecl *VD);
44  void mangleNumber(int64_t Number);
45  void mangleType(QualType T);
46
47private:
48  void mangleUnqualifiedName(const NamedDecl *ND) {
49    mangleUnqualifiedName(ND, ND->getDeclName());
50  }
51  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
52  void mangleSourceName(const IdentifierInfo *II);
53  void manglePostfix(const DeclContext *DC, bool NoFunction=false);
54  void mangleOperatorName(OverloadedOperatorKind OO);
55  void mangleQualifiers(Qualifiers Quals, bool IsMember);
56
57  void mangleObjCMethodName(const ObjCMethodDecl *MD);
58
59  // Declare manglers for every type class.
60#define ABSTRACT_TYPE(CLASS, PARENT)
61#define NON_CANONICAL_TYPE(CLASS, PARENT)
62#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
63#include "clang/AST/TypeNodes.def"
64
65  void mangleType(const TagType*);
66  void mangleType(const FunctionType *T, const FunctionDecl *D,
67                  bool IsStructor, bool IsInstMethod);
68  void mangleType(const ArrayType *T, bool IsGlobal);
69  void mangleExtraDimensions(QualType T);
70  void mangleFunctionClass(const FunctionDecl *FD);
71  void mangleCallingConvention(const FunctionType *T, bool IsInstMethod = false);
72  void mangleThrowSpecification(const FunctionProtoType *T);
73
74};
75
76/// MicrosoftMangleContext - Overrides the default MangleContext for the
77/// Microsoft Visual C++ ABI.
78class MicrosoftMangleContext : public MangleContext {
79public:
80  MicrosoftMangleContext(ASTContext &Context,
81                         Diagnostic &Diags) : MangleContext(Context, Diags) { }
82  virtual bool shouldMangleDeclName(const NamedDecl *D);
83  virtual void mangleName(const NamedDecl *D, llvm::raw_ostream &Out);
84  virtual void mangleThunk(const CXXMethodDecl *MD,
85                           const ThunkInfo &Thunk,
86                           llvm::SmallVectorImpl<char> &);
87  virtual void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
88                                  const ThisAdjustment &ThisAdjustment,
89                                  llvm::SmallVectorImpl<char> &);
90  virtual void mangleCXXVTable(const CXXRecordDecl *RD,
91                               llvm::SmallVectorImpl<char> &);
92  virtual void mangleCXXVTT(const CXXRecordDecl *RD,
93                            llvm::SmallVectorImpl<char> &);
94  virtual void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
95                                   const CXXRecordDecl *Type,
96                                   llvm::SmallVectorImpl<char> &);
97  virtual void mangleCXXRTTI(QualType T, llvm::SmallVectorImpl<char> &);
98  virtual void mangleCXXRTTIName(QualType T, llvm::SmallVectorImpl<char> &);
99  virtual void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
100                             llvm::raw_ostream &);
101  virtual void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
102                             llvm::raw_ostream &);
103  virtual void mangleReferenceTemporary(const clang::VarDecl *,
104                                        llvm::SmallVectorImpl<char> &);
105};
106
107}
108
109static bool isInCLinkageSpecification(const Decl *D) {
110  D = D->getCanonicalDecl();
111  for (const DeclContext *DC = D->getDeclContext();
112       !DC->isTranslationUnit(); DC = DC->getParent()) {
113    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
114      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
115  }
116
117  return false;
118}
119
120bool MicrosoftMangleContext::shouldMangleDeclName(const NamedDecl *D) {
121  // In C, functions with no attributes never need to be mangled. Fastpath them.
122  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
123    return false;
124
125  // Any decl can be declared with __asm("foo") on it, and this takes precedence
126  // over all other naming in the .o file.
127  if (D->hasAttr<AsmLabelAttr>())
128    return true;
129
130  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
131  // (always) as does passing a C++ member function and a function
132  // whose name is not a simple identifier.
133  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
134  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
135             !FD->getDeclName().isIdentifier()))
136    return true;
137
138  // Otherwise, no mangling is done outside C++ mode.
139  if (!getASTContext().getLangOptions().CPlusPlus)
140    return false;
141
142  // Variables at global scope with internal linkage are not mangled.
143  if (!FD) {
144    const DeclContext *DC = D->getDeclContext();
145    if (DC->isTranslationUnit() && D->getLinkage() == InternalLinkage)
146      return false;
147  }
148
149  // C functions and "main" are not mangled.
150  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
151    return false;
152
153  return true;
154}
155
156void MicrosoftCXXNameMangler::mangle(const NamedDecl *D,
157                                     llvm::StringRef Prefix) {
158  // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
159  // Therefore it's really important that we don't decorate the
160  // name with leading underscores or leading/trailing at signs. So, emit a
161  // asm marker at the start so we get the name right.
162  Out << '\01';  // LLVM IR Marker for __asm("foo")
163
164  // Any decl can be declared with __asm("foo") on it, and this takes precedence
165  // over all other naming in the .o file.
166  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
167    // If we have an asm name, then we use it as the mangling.
168    Out << ALA->getLabel();
169    return;
170  }
171
172  // <mangled-name> ::= ? <name> <type-encoding>
173  Out << Prefix;
174  mangleName(D);
175  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
176    mangleFunctionEncoding(FD);
177  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
178    mangleVariableEncoding(VD);
179  // TODO: Fields? Can MSVC even mangle them?
180}
181
182void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
183  // <type-encoding> ::= <function-class> <function-type>
184
185  // Don't mangle in the type if this isn't a decl we should typically mangle.
186  if (!Context.shouldMangleDeclName(FD))
187    return;
188
189  // We should never ever see a FunctionNoProtoType at this point.
190  // We don't even know how to mangle their types anyway :).
191  const FunctionProtoType *FT = cast<FunctionProtoType>(FD->getType());
192
193  bool InStructor = false, InInstMethod = false;
194  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
195  if (MD) {
196    if (MD->isInstance())
197      InInstMethod = true;
198    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
199      InStructor = true;
200  }
201
202  // First, the function class.
203  mangleFunctionClass(FD);
204
205  mangleType(FT, FD, InStructor, InInstMethod);
206}
207
208void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
209  // <type-encoding> ::= <storage-class> <variable-type>
210  // <storage-class> ::= 0  # private static member
211  //                 ::= 1  # protected static member
212  //                 ::= 2  # public static member
213  //                 ::= 3  # global
214  //                 ::= 4  # static local
215
216  // The first character in the encoding (after the name) is the storage class.
217  if (VD->isStaticDataMember()) {
218    // If it's a static member, it also encodes the access level.
219    switch (VD->getAccess()) {
220      default:
221      case AS_private: Out << '0'; break;
222      case AS_protected: Out << '1'; break;
223      case AS_public: Out << '2'; break;
224    }
225  }
226  else if (!VD->isStaticLocal())
227    Out << '3';
228  else
229    Out << '4';
230  // Now mangle the type.
231  // <variable-type> ::= <type> <cvr-qualifiers>
232  //                 ::= <type> A # pointers, references, arrays
233  // Pointers and references are odd. The type of 'int * const foo;' gets
234  // mangled as 'QAHA' instead of 'PAHB', for example.
235  QualType Ty = VD->getType();
236  if (Ty->isPointerType() || Ty->isReferenceType()) {
237    mangleType(Ty);
238    Out << 'A';
239  } else if (Ty->isArrayType()) {
240    // Global arrays are funny, too.
241    mangleType(cast<ArrayType>(Ty.getTypePtr()), true);
242    Out << 'A';
243  } else {
244    mangleType(Ty.getLocalUnqualifiedType());
245    mangleQualifiers(Ty.getLocalQualifiers(), false);
246  }
247}
248
249void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
250  // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
251  const DeclContext *DC = ND->getDeclContext();
252
253  // Always start with the unqualified name.
254  mangleUnqualifiedName(ND);
255
256  // If this is an extern variable declared locally, the relevant DeclContext
257  // is that of the containing namespace, or the translation unit.
258  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
259    while (!DC->isNamespace() && !DC->isTranslationUnit())
260      DC = DC->getParent();
261
262  manglePostfix(DC);
263
264  // Terminate the whole name with an '@'.
265  Out << '@';
266}
267
268void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
269  // <number> ::= [?] <decimal digit> # <= 9
270  //          ::= [?] <hex digit>+ @ # > 9; A = 0, B = 1, etc...
271  if (Number < 0) {
272    Out << '?';
273    Number = -Number;
274  }
275  if (Number >= 1 && Number <= 10) {
276    Out << Number-1;
277  } else {
278    // We have to build up the encoding in reverse order, so it will come
279    // out right when we write it out.
280    char Encoding[16];
281    char *EndPtr = Encoding+sizeof(Encoding);
282    char *CurPtr = EndPtr;
283    while (Number) {
284      *--CurPtr = 'A' + (Number % 16);
285      Number /= 16;
286    }
287    Out.write(CurPtr, EndPtr-CurPtr);
288    Out << '@';
289  }
290}
291
292void
293MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
294                                               DeclarationName Name) {
295  //  <unqualified-name> ::= <operator-name>
296  //                     ::= <ctor-dtor-name>
297  //                     ::= <source-name>
298  switch (Name.getNameKind()) {
299    case DeclarationName::Identifier: {
300      if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
301        mangleSourceName(II);
302        break;
303      }
304
305      // Otherwise, an anonymous entity.  We must have a declaration.
306      assert(ND && "mangling empty name without declaration");
307
308      if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
309        if (NS->isAnonymousNamespace()) {
310          Out << "?A";
311          break;
312        }
313      }
314
315      // We must have an anonymous struct.
316      const TagDecl *TD = cast<TagDecl>(ND);
317      if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
318        assert(TD->getDeclContext() == D->getDeclContext() &&
319               "Typedef should not be in another decl context!");
320        assert(D->getDeclName().getAsIdentifierInfo() &&
321               "Typedef was not named!");
322        mangleSourceName(D->getDeclName().getAsIdentifierInfo());
323        break;
324      }
325
326      // When VC encounters an anonymous type with no tag and no typedef,
327      // it literally emits '<unnamed-tag>'.
328      Out << "<unnamed-tag>";
329      break;
330    }
331
332    case DeclarationName::ObjCZeroArgSelector:
333    case DeclarationName::ObjCOneArgSelector:
334    case DeclarationName::ObjCMultiArgSelector:
335      assert(false && "Can't mangle Objective-C selector names here!");
336      break;
337
338    case DeclarationName::CXXConstructorName:
339      assert(false && "Can't mangle constructors yet!");
340      break;
341
342    case DeclarationName::CXXDestructorName:
343      assert(false && "Can't mangle destructors yet!");
344      break;
345
346    case DeclarationName::CXXConversionFunctionName:
347      // <operator-name> ::= ?B # (cast)
348      // The target type is encoded as the return type.
349      Out << "?B";
350      break;
351
352    case DeclarationName::CXXOperatorName:
353      mangleOperatorName(Name.getCXXOverloadedOperator());
354      break;
355
356    case DeclarationName::CXXLiteralOperatorName:
357      // FIXME: Was this added in VS2010? Does MS even know how to mangle this?
358      assert(false && "Don't know how to mangle literal operators yet!");
359      break;
360
361    case DeclarationName::CXXUsingDirective:
362      assert(false && "Can't mangle a using directive name!");
363      break;
364  }
365}
366
367void MicrosoftCXXNameMangler::manglePostfix(const DeclContext *DC,
368                                            bool NoFunction) {
369  // <postfix> ::= <unqualified-name> [<postfix>]
370  //           ::= <template-postfix> <template-args> [<postfix>]
371  //           ::= <template-param>
372  //           ::= <substitution> [<postfix>]
373
374  if (!DC) return;
375
376  while (isa<LinkageSpecDecl>(DC))
377    DC = DC->getParent();
378
379  if (DC->isTranslationUnit())
380    return;
381
382  if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
383    Context.mangleBlock(BD, Out);
384    Out << '@';
385    return manglePostfix(DC->getParent(), NoFunction);
386  }
387
388  if (NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
389    return;
390  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
391    mangleObjCMethodName(Method);
392  else {
393    mangleUnqualifiedName(cast<NamedDecl>(DC));
394    manglePostfix(DC->getParent(), NoFunction);
395  }
396}
397
398void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO) {
399  switch (OO) {
400  //                     ?0 # constructor
401  //                     ?1 # destructor
402  // <operator-name> ::= ?2 # new
403  case OO_New: Out << "?2"; break;
404  // <operator-name> ::= ?3 # delete
405  case OO_Delete: Out << "?3"; break;
406  // <operator-name> ::= ?4 # =
407  case OO_Equal: Out << "?4"; break;
408  // <operator-name> ::= ?5 # >>
409  case OO_GreaterGreater: Out << "?5"; break;
410  // <operator-name> ::= ?6 # <<
411  case OO_LessLess: Out << "?6"; break;
412  // <operator-name> ::= ?7 # !
413  case OO_Exclaim: Out << "?7"; break;
414  // <operator-name> ::= ?8 # ==
415  case OO_EqualEqual: Out << "?8"; break;
416  // <operator-name> ::= ?9 # !=
417  case OO_ExclaimEqual: Out << "?9"; break;
418  // <operator-name> ::= ?A # []
419  case OO_Subscript: Out << "?A"; break;
420  //                     ?B # conversion
421  // <operator-name> ::= ?C # ->
422  case OO_Arrow: Out << "?C"; break;
423  // <operator-name> ::= ?D # *
424  case OO_Star: Out << "?D"; break;
425  // <operator-name> ::= ?E # ++
426  case OO_PlusPlus: Out << "?E"; break;
427  // <operator-name> ::= ?F # --
428  case OO_MinusMinus: Out << "?F"; break;
429  // <operator-name> ::= ?G # -
430  case OO_Minus: Out << "?G"; break;
431  // <operator-name> ::= ?H # +
432  case OO_Plus: Out << "?H"; break;
433  // <operator-name> ::= ?I # &
434  case OO_Amp: Out << "?I"; break;
435  // <operator-name> ::= ?J # ->*
436  case OO_ArrowStar: Out << "?J"; break;
437  // <operator-name> ::= ?K # /
438  case OO_Slash: Out << "?K"; break;
439  // <operator-name> ::= ?L # %
440  case OO_Percent: Out << "?L"; break;
441  // <operator-name> ::= ?M # <
442  case OO_Less: Out << "?M"; break;
443  // <operator-name> ::= ?N # <=
444  case OO_LessEqual: Out << "?N"; break;
445  // <operator-name> ::= ?O # >
446  case OO_Greater: Out << "?O"; break;
447  // <operator-name> ::= ?P # >=
448  case OO_GreaterEqual: Out << "?P"; break;
449  // <operator-name> ::= ?Q # ,
450  case OO_Comma: Out << "?Q"; break;
451  // <operator-name> ::= ?R # ()
452  case OO_Call: Out << "?R"; break;
453  // <operator-name> ::= ?S # ~
454  case OO_Tilde: Out << "?S"; break;
455  // <operator-name> ::= ?T # ^
456  case OO_Caret: Out << "?T"; break;
457  // <operator-name> ::= ?U # |
458  case OO_Pipe: Out << "?U"; break;
459  // <operator-name> ::= ?V # &&
460  case OO_AmpAmp: Out << "?V"; break;
461  // <operator-name> ::= ?W # ||
462  case OO_PipePipe: Out << "?W"; break;
463  // <operator-name> ::= ?X # *=
464  case OO_StarEqual: Out << "?X"; break;
465  // <operator-name> ::= ?Y # +=
466  case OO_PlusEqual: Out << "?Y"; break;
467  // <operator-name> ::= ?Z # -=
468  case OO_MinusEqual: Out << "?Z"; break;
469  // <operator-name> ::= ?_0 # /=
470  case OO_SlashEqual: Out << "?_0"; break;
471  // <operator-name> ::= ?_1 # %=
472  case OO_PercentEqual: Out << "?_1"; break;
473  // <operator-name> ::= ?_2 # >>=
474  case OO_GreaterGreaterEqual: Out << "?_2"; break;
475  // <operator-name> ::= ?_3 # <<=
476  case OO_LessLessEqual: Out << "?_3"; break;
477  // <operator-name> ::= ?_4 # &=
478  case OO_AmpEqual: Out << "?_4"; break;
479  // <operator-name> ::= ?_5 # |=
480  case OO_PipeEqual: Out << "?_5"; break;
481  // <operator-name> ::= ?_6 # ^=
482  case OO_CaretEqual: Out << "?_6"; break;
483  //                     ?_7 # vftable
484  //                     ?_8 # vbtable
485  //                     ?_9 # vcall
486  //                     ?_A # typeof
487  //                     ?_B # local static guard
488  //                     ?_C # string
489  //                     ?_D # vbase destructor
490  //                     ?_E # vector deleting destructor
491  //                     ?_F # default constructor closure
492  //                     ?_G # scalar deleting destructor
493  //                     ?_H # vector constructor iterator
494  //                     ?_I # vector destructor iterator
495  //                     ?_J # vector vbase constructor iterator
496  //                     ?_K # virtual displacement map
497  //                     ?_L # eh vector constructor iterator
498  //                     ?_M # eh vector destructor iterator
499  //                     ?_N # eh vector vbase constructor iterator
500  //                     ?_O # copy constructor closure
501  //                     ?_P<name> # udt returning <name>
502  //                     ?_Q # <unknown>
503  //                     ?_R0 # RTTI Type Descriptor
504  //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
505  //                     ?_R2 # RTTI Base Class Array
506  //                     ?_R3 # RTTI Class Hierarchy Descriptor
507  //                     ?_R4 # RTTI Complete Object Locator
508  //                     ?_S # local vftable
509  //                     ?_T # local vftable constructor closure
510  // <operator-name> ::= ?_U # new[]
511  case OO_Array_New: Out << "?_U"; break;
512  // <operator-name> ::= ?_V # delete[]
513  case OO_Array_Delete: Out << "?_V"; break;
514
515  case OO_Conditional:
516    assert(false && "Don't know how to mangle ?:");
517    break;
518
519  case OO_None:
520  case NUM_OVERLOADED_OPERATORS:
521    assert(false && "Not an overloaded operator");
522    break;
523  }
524}
525
526void MicrosoftCXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
527  // <source name> ::= <identifier> @
528  Out << II->getName() << '@';
529}
530
531void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
532  llvm::SmallString<64> Buffer;
533  Context.mangleObjCMethodName(MD, Buffer);
534  Out << Buffer;
535}
536
537void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
538                                               bool IsMember) {
539  // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
540  // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
541  // 'I' means __restrict (32/64-bit).
542  // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
543  // keyword!
544  // <base-cvr-qualifiers> ::= A  # near
545  //                       ::= B  # near const
546  //                       ::= C  # near volatile
547  //                       ::= D  # near const volatile
548  //                       ::= E  # far (16-bit)
549  //                       ::= F  # far const (16-bit)
550  //                       ::= G  # far volatile (16-bit)
551  //                       ::= H  # far const volatile (16-bit)
552  //                       ::= I  # huge (16-bit)
553  //                       ::= J  # huge const (16-bit)
554  //                       ::= K  # huge volatile (16-bit)
555  //                       ::= L  # huge const volatile (16-bit)
556  //                       ::= M <basis> # based
557  //                       ::= N <basis> # based const
558  //                       ::= O <basis> # based volatile
559  //                       ::= P <basis> # based const volatile
560  //                       ::= Q  # near member
561  //                       ::= R  # near const member
562  //                       ::= S  # near volatile member
563  //                       ::= T  # near const volatile member
564  //                       ::= U  # far member (16-bit)
565  //                       ::= V  # far const member (16-bit)
566  //                       ::= W  # far volatile member (16-bit)
567  //                       ::= X  # far const volatile member (16-bit)
568  //                       ::= Y  # huge member (16-bit)
569  //                       ::= Z  # huge const member (16-bit)
570  //                       ::= 0  # huge volatile member (16-bit)
571  //                       ::= 1  # huge const volatile member (16-bit)
572  //                       ::= 2 <basis> # based member
573  //                       ::= 3 <basis> # based const member
574  //                       ::= 4 <basis> # based volatile member
575  //                       ::= 5 <basis> # based const volatile member
576  //                       ::= 6  # near function (pointers only)
577  //                       ::= 7  # far function (pointers only)
578  //                       ::= 8  # near method (pointers only)
579  //                       ::= 9  # far method (pointers only)
580  //                       ::= _A <basis> # based function (pointers only)
581  //                       ::= _B <basis> # based function (far?) (pointers only)
582  //                       ::= _C <basis> # based method (pointers only)
583  //                       ::= _D <basis> # based method (far?) (pointers only)
584  //                       ::= _E # block (Clang)
585  // <basis> ::= 0 # __based(void)
586  //         ::= 1 # __based(segment)?
587  //         ::= 2 <name> # __based(name)
588  //         ::= 3 # ?
589  //         ::= 4 # ?
590  //         ::= 5 # not really based
591  if (!IsMember) {
592    if (!Quals.hasVolatile()) {
593      if (!Quals.hasConst())
594        Out << 'A';
595      else
596        Out << 'B';
597    } else {
598      if (!Quals.hasConst())
599        Out << 'C';
600      else
601        Out << 'D';
602    }
603  } else {
604    if (!Quals.hasVolatile()) {
605      if (!Quals.hasConst())
606        Out << 'Q';
607      else
608        Out << 'R';
609    } else {
610      if (!Quals.hasConst())
611        Out << 'S';
612      else
613        Out << 'T';
614    }
615  }
616
617  // FIXME: For now, just drop all extension qualifiers on the floor.
618}
619
620void MicrosoftCXXNameMangler::mangleType(QualType T) {
621  // Only operate on the canonical type!
622  T = getASTContext().getCanonicalType(T);
623
624  Qualifiers Quals = T.getLocalQualifiers();
625  if (Quals) {
626    // We have to mangle these now, while we still have enough information.
627    // <pointer-cvr-qualifiers> ::= P  # pointer
628    //                          ::= Q  # const pointer
629    //                          ::= R  # volatile pointer
630    //                          ::= S  # const volatile pointer
631    if (T->isAnyPointerType() || T->isMemberPointerType() ||
632        T->isBlockPointerType()) {
633      if (!Quals.hasVolatile())
634        Out << 'Q';
635      else {
636        if (!Quals.hasConst())
637          Out << 'R';
638        else
639          Out << 'S';
640      }
641    } else
642      // Just emit qualifiers like normal.
643      // NB: When we mangle a pointer/reference type, and the pointee
644      // type has no qualifiers, the lack of qualifier gets mangled
645      // in there.
646      mangleQualifiers(Quals, false);
647  } else if (T->isAnyPointerType() || T->isMemberPointerType() ||
648             T->isBlockPointerType()) {
649    Out << 'P';
650  }
651  switch (T->getTypeClass()) {
652#define ABSTRACT_TYPE(CLASS, PARENT)
653#define NON_CANONICAL_TYPE(CLASS, PARENT) \
654case Type::CLASS: \
655llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
656return;
657#define TYPE(CLASS, PARENT) \
658case Type::CLASS: \
659mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
660break;
661#include "clang/AST/TypeNodes.def"
662  }
663}
664
665void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T) {
666  //  <type>         ::= <builtin-type>
667  //  <builtin-type> ::= X  # void
668  //                 ::= C  # signed char
669  //                 ::= D  # char
670  //                 ::= E  # unsigned char
671  //                 ::= F  # short
672  //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
673  //                 ::= H  # int
674  //                 ::= I  # unsigned int
675  //                 ::= J  # long
676  //                 ::= K  # unsigned long
677  //                     L  # <none>
678  //                 ::= M  # float
679  //                 ::= N  # double
680  //                 ::= O  # long double (__float80 is mangled differently)
681  //                 ::= _D # __int8 (yup, it's a distinct type in MSVC)
682  //                 ::= _E # unsigned __int8
683  //                 ::= _F # __int16
684  //                 ::= _G # unsigned __int16
685  //                 ::= _H # __int32
686  //                 ::= _I # unsigned __int32
687  //                 ::= _J # long long, __int64
688  //                 ::= _K # unsigned long long, __int64
689  //                 ::= _L # __int128
690  //                 ::= _M # unsigned __int128
691  //                 ::= _N # bool
692  //                     _O # <array in parameter>
693  //                 ::= _T # __float80 (Intel)
694  //                 ::= _W # wchar_t
695  //                 ::= _Z # __float80 (Digital Mars)
696  switch (T->getKind()) {
697  case BuiltinType::Void: Out << 'X'; break;
698  case BuiltinType::SChar: Out << 'C'; break;
699  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
700  case BuiltinType::UChar: Out << 'E'; break;
701  case BuiltinType::Short: Out << 'F'; break;
702  case BuiltinType::UShort: Out << 'G'; break;
703  case BuiltinType::Int: Out << 'H'; break;
704  case BuiltinType::UInt: Out << 'I'; break;
705  case BuiltinType::Long: Out << 'J'; break;
706  case BuiltinType::ULong: Out << 'K'; break;
707  case BuiltinType::Float: Out << 'M'; break;
708  case BuiltinType::Double: Out << 'N'; break;
709  // TODO: Determine size and mangle accordingly
710  case BuiltinType::LongDouble: Out << 'O'; break;
711  // TODO: __int8 and friends
712  case BuiltinType::LongLong: Out << "_J"; break;
713  case BuiltinType::ULongLong: Out << "_K"; break;
714  case BuiltinType::Int128: Out << "_L"; break;
715  case BuiltinType::UInt128: Out << "_M"; break;
716  case BuiltinType::Bool: Out << "_N"; break;
717  case BuiltinType::WChar_S:
718  case BuiltinType::WChar_U: Out << "_W"; break;
719
720  case BuiltinType::Overload:
721  case BuiltinType::Dependent:
722    assert(false &&
723           "Overloaded and dependent types shouldn't get to name mangling");
724    break;
725  case BuiltinType::UndeducedAuto:
726    assert(0 && "Should not see undeduced auto here");
727    break;
728  case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
729  case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
730  case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
731
732  case BuiltinType::Char16:
733  case BuiltinType::Char32:
734  case BuiltinType::NullPtr:
735    assert(false && "Don't know how to mangle this type");
736    break;
737  }
738}
739
740// <type>          ::= <function-type>
741void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T) {
742  // Structors only appear in decls, so at this point we know it's not a
743  // structor type.
744  // I'll probably have mangleType(MemberPointerType) call the mangleType()
745  // method directly.
746  mangleType(T, NULL, false, false);
747}
748void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T) {
749  llvm_unreachable("Can't mangle K&R function prototypes");
750}
751
752void MicrosoftCXXNameMangler::mangleType(const FunctionType *T,
753                                         const FunctionDecl *D,
754                                         bool IsStructor,
755                                         bool IsInstMethod) {
756  // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
757  //                     <return-type> <argument-list> <throw-spec>
758  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
759
760  // If this is a C++ instance method, mangle the CVR qualifiers for the
761  // this pointer.
762  if (IsInstMethod)
763    mangleQualifiers(Qualifiers::fromCVRMask(Proto->getTypeQuals()), false);
764
765  mangleCallingConvention(T, IsInstMethod);
766
767  // <return-type> ::= <type>
768  //               ::= @ # structors (they have no declared return type)
769  if (IsStructor)
770    Out << '@';
771  else
772    mangleType(Proto->getResultType());
773
774  // <argument-list> ::= X # void
775  //                 ::= <type>+ @
776  //                 ::= <type>* Z # varargs
777  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
778    Out << 'X';
779  } else {
780    if (D) {
781      // If we got a decl, use the "types-as-written" to make sure arrays
782      // get mangled right.
783      for (FunctionDecl::param_const_iterator Parm = D->param_begin(),
784           ParmEnd = D->param_end();
785           Parm != ParmEnd; ++Parm)
786        mangleType((*Parm)->getTypeSourceInfo()->getType());
787    } else {
788      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
789           ArgEnd = Proto->arg_type_end();
790           Arg != ArgEnd; ++Arg)
791        mangleType(*Arg);
792    }
793    // <builtin-type>      ::= Z  # ellipsis
794    if (Proto->isVariadic())
795      Out << 'Z';
796    else
797      Out << '@';
798  }
799
800  mangleThrowSpecification(Proto);
801}
802
803void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
804  // <function-class> ::= A # private: near
805  //                  ::= B # private: far
806  //                  ::= C # private: static near
807  //                  ::= D # private: static far
808  //                  ::= E # private: virtual near
809  //                  ::= F # private: virtual far
810  //                  ::= G # private: thunk near
811  //                  ::= H # private: thunk far
812  //                  ::= I # protected: near
813  //                  ::= J # protected: far
814  //                  ::= K # protected: static near
815  //                  ::= L # protected: static far
816  //                  ::= M # protected: virtual near
817  //                  ::= N # protected: virtual far
818  //                  ::= O # protected: thunk near
819  //                  ::= P # protected: thunk far
820  //                  ::= Q # public: near
821  //                  ::= R # public: far
822  //                  ::= S # public: static near
823  //                  ::= T # public: static far
824  //                  ::= U # public: virtual near
825  //                  ::= V # public: virtual far
826  //                  ::= W # public: thunk near
827  //                  ::= X # public: thunk far
828  //                  ::= Y # global near
829  //                  ::= Z # global far
830  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
831    switch (MD->getAccess()) {
832      default:
833      case AS_private:
834        if (MD->isStatic())
835          Out << 'C';
836        else if (MD->isVirtual())
837          Out << 'E';
838        else
839          Out << 'A';
840        break;
841      case AS_protected:
842        if (MD->isStatic())
843          Out << 'K';
844        else if (MD->isVirtual())
845          Out << 'M';
846        else
847          Out << 'I';
848        break;
849      case AS_public:
850        if (MD->isStatic())
851          Out << 'S';
852        else if (MD->isVirtual())
853          Out << 'U';
854        else
855          Out << 'Q';
856    }
857  } else
858    Out << 'Y';
859}
860void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T,
861                                                      bool IsInstMethod) {
862  // <calling-convention> ::= A # __cdecl
863  //                      ::= B # __export __cdecl
864  //                      ::= C # __pascal
865  //                      ::= D # __export __pascal
866  //                      ::= E # __thiscall
867  //                      ::= F # __export __thiscall
868  //                      ::= G # __stdcall
869  //                      ::= H # __export __stdcall
870  //                      ::= I # __fastcall
871  //                      ::= J # __export __fastcall
872  // The 'export' calling conventions are from a bygone era
873  // (*cough*Win16*cough*) when functions were declared for export with
874  // that keyword. (It didn't actually export them, it just made them so
875  // that they could be in a DLL and somebody from another module could call
876  // them.)
877  CallingConv CC = T->getCallConv();
878  if (CC == CC_Default)
879    CC = IsInstMethod ? getASTContext().getDefaultMethodCallConv() : CC_C;
880  switch (CC) {
881    case CC_Default:
882    case CC_C: Out << 'A'; break;
883    case CC_X86Pascal: Out << 'C'; break;
884    case CC_X86ThisCall: Out << 'E'; break;
885    case CC_X86StdCall: Out << 'G'; break;
886    case CC_X86FastCall: Out << 'I'; break;
887  }
888}
889void MicrosoftCXXNameMangler::mangleThrowSpecification(
890                                                const FunctionProtoType *FT) {
891  // <throw-spec> ::= Z # throw(...) (default)
892  //              ::= @ # throw() or __declspec/__attribute__((nothrow))
893  //              ::= <type>+
894  // NOTE: Since the Microsoft compiler ignores throw specifications, they are
895  // all actually mangled as 'Z'. (They're ignored because their associated
896  // functionality isn't implemented, and probably never will be.)
897  Out << 'Z';
898}
899
900void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T) {
901  assert(false && "Don't know how to mangle UnresolvedUsingTypes yet!");
902}
903
904// <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
905// <union-type>  ::= T <name>
906// <struct-type> ::= U <name>
907// <class-type>  ::= V <name>
908// <enum-type>   ::= W <size> <name>
909void MicrosoftCXXNameMangler::mangleType(const EnumType *T) {
910  mangleType(static_cast<const TagType*>(T));
911}
912void MicrosoftCXXNameMangler::mangleType(const RecordType *T) {
913  mangleType(static_cast<const TagType*>(T));
914}
915void MicrosoftCXXNameMangler::mangleType(const TagType *T) {
916  switch (T->getDecl()->getTagKind()) {
917    case TTK_Union:
918      Out << 'T';
919      break;
920    case TTK_Struct:
921      Out << 'U';
922      break;
923    case TTK_Class:
924      Out << 'V';
925      break;
926    case TTK_Enum:
927      Out << 'W';
928      Out << getASTContext().getTypeSizeInChars(
929                cast<EnumDecl>(T->getDecl())->getIntegerType()).getQuantity();
930      break;
931  }
932  mangleName(T->getDecl());
933}
934
935// <type>       ::= <array-type>
936// <array-type> ::= P <cvr-qualifiers> [Y <dimension-count> <dimension>+]
937//                                                  <element-type> # as global
938//              ::= Q <cvr-qualifiers> [Y <dimension-count> <dimension>+]
939//                                                  <element-type> # as param
940// It's supposed to be the other way around, but for some strange reason, it
941// isn't. Today this behavior is retained for the sole purpose of backwards
942// compatibility.
943void MicrosoftCXXNameMangler::mangleType(const ArrayType *T, bool IsGlobal) {
944  // This isn't a recursive mangling, so now we have to do it all in this
945  // one call.
946  if (IsGlobal)
947    Out << 'P';
948  else
949    Out << 'Q';
950  mangleExtraDimensions(T->getElementType());
951}
952void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T) {
953  mangleType(static_cast<const ArrayType *>(T), false);
954}
955void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T) {
956  mangleType(static_cast<const ArrayType *>(T), false);
957}
958void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T) {
959  mangleType(static_cast<const ArrayType *>(T), false);
960}
961void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T) {
962  mangleType(static_cast<const ArrayType *>(T), false);
963}
964void MicrosoftCXXNameMangler::mangleExtraDimensions(QualType ElementTy) {
965  llvm::SmallVector<llvm::APInt, 3> Dimensions;
966  for (;;) {
967    if (ElementTy->isConstantArrayType()) {
968      const ConstantArrayType *CAT =
969      static_cast<const ConstantArrayType *>(ElementTy.getTypePtr());
970      Dimensions.push_back(CAT->getSize());
971      ElementTy = CAT->getElementType();
972    } else if (ElementTy->isVariableArrayType()) {
973      assert(false && "Don't know how to mangle VLAs!");
974    } else if (ElementTy->isDependentSizedArrayType()) {
975      // The dependent expression has to be folded into a constant (TODO).
976      assert(false && "Don't know how to mangle dependent-sized arrays!");
977    } else if (ElementTy->isIncompleteArrayType()) continue;
978    else break;
979  }
980  mangleQualifiers(ElementTy.getQualifiers(), false);
981  // If there are any additional dimensions, mangle them now.
982  if (Dimensions.size() > 0) {
983    Out << 'Y';
984    // <dimension-count> ::= <number> # number of extra dimensions
985    mangleNumber(Dimensions.size());
986    for (unsigned Dim = 0; Dim < Dimensions.size(); ++Dim) {
987      mangleNumber(Dimensions[Dim].getLimitedValue());
988    }
989  }
990  mangleType(ElementTy.getLocalUnqualifiedType());
991}
992
993// <type>                   ::= <pointer-to-member-type>
994// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
995//                                                          <class name> <type>
996void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T) {
997  QualType PointeeType = T->getPointeeType();
998  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
999    Out << '8';
1000    mangleName(cast<RecordType>(T->getClass())->getDecl());
1001    mangleType(FPT, NULL, false, true);
1002  } else {
1003    mangleQualifiers(PointeeType.getQualifiers(), true);
1004    mangleName(cast<RecordType>(T->getClass())->getDecl());
1005    mangleType(PointeeType.getLocalUnqualifiedType());
1006  }
1007}
1008
1009void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1010  assert(false && "Don't know how to mangle TemplateTypeParmTypes yet!");
1011}
1012
1013void MicrosoftCXXNameMangler::mangleType(
1014                                       const SubstTemplateTypeParmPackType *T) {
1015  assert(false &&
1016         "Don't know how to mangle SubstTemplateTypeParmPackTypes yet!");
1017}
1018
1019// <type> ::= <pointer-type>
1020// <pointer-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1021void MicrosoftCXXNameMangler::mangleType(const PointerType *T) {
1022  QualType PointeeTy = T->getPointeeType();
1023  if (PointeeTy->isArrayType()) {
1024    // Pointers to arrays are mangled like arrays.
1025    mangleExtraDimensions(T->getPointeeType());
1026  } else if (PointeeTy->isFunctionType()) {
1027    // Function pointers are special.
1028    Out << '6';
1029    mangleType(static_cast<const FunctionType *>(PointeeTy.getTypePtr()),
1030               NULL, false, false);
1031  } else {
1032    if (!PointeeTy.hasQualifiers())
1033      // Lack of qualifiers is mangled as 'A'.
1034      Out << 'A';
1035    mangleType(PointeeTy);
1036  }
1037}
1038void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1039  // Object pointers never have qualifiers.
1040  Out << 'A';
1041  mangleType(T->getPointeeType());
1042}
1043
1044// <type> ::= <reference-type>
1045// <reference-type> ::= A <cvr-qualifiers> <type>
1046void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T) {
1047  Out << 'A';
1048  QualType PointeeTy = T->getPointeeType();
1049  if (!PointeeTy.hasQualifiers())
1050    // Lack of qualifiers is mangled as 'A'.
1051    Out << 'A';
1052  mangleType(PointeeTy);
1053}
1054
1055void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T) {
1056  assert(false && "Don't know how to mangle RValueReferenceTypes yet!");
1057}
1058
1059void MicrosoftCXXNameMangler::mangleType(const ComplexType *T) {
1060  assert(false && "Don't know how to mangle ComplexTypes yet!");
1061}
1062
1063void MicrosoftCXXNameMangler::mangleType(const VectorType *T) {
1064  assert(false && "Don't know how to mangle VectorTypes yet!");
1065}
1066void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T) {
1067  assert(false && "Don't know how to mangle ExtVectorTypes yet!");
1068}
1069void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1070  assert(false && "Don't know how to mangle DependentSizedExtVectorTypes yet!");
1071}
1072
1073void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1074  // ObjC interfaces have structs underlying them.
1075  Out << 'U';
1076  mangleName(T->getDecl());
1077}
1078
1079void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T) {
1080  // We don't allow overloading by different protocol qualification,
1081  // so mangling them isn't necessary.
1082  mangleType(T->getBaseType());
1083}
1084
1085void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T) {
1086  Out << "_E";
1087  mangleType(T->getPointeeType());
1088}
1089
1090void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *T) {
1091  assert(false && "Don't know how to mangle InjectedClassNameTypes yet!");
1092}
1093
1094void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1095  assert(false && "Don't know how to mangle TemplateSpecializationTypes yet!");
1096}
1097
1098void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T) {
1099  assert(false && "Don't know how to mangle DependentNameTypes yet!");
1100}
1101
1102void MicrosoftCXXNameMangler::mangleType(
1103                                 const DependentTemplateSpecializationType *T) {
1104  assert(false &&
1105         "Don't know how to mangle DependentTemplateSpecializationTypes yet!");
1106}
1107
1108void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T) {
1109  assert(false && "Don't know how to mangle PackExpansionTypes yet!");
1110}
1111
1112void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T) {
1113  assert(false && "Don't know how to mangle TypeOfTypes yet!");
1114}
1115
1116void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T) {
1117  assert(false && "Don't know how to mangle TypeOfExprTypes yet!");
1118}
1119
1120void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T) {
1121  assert(false && "Don't know how to mangle DecltypeTypes yet!");
1122}
1123
1124void MicrosoftMangleContext::mangleName(const NamedDecl *D,
1125                                        llvm::raw_ostream &Out) {
1126  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
1127         "Invalid mangleName() call, argument is not a variable or function!");
1128  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
1129         "Invalid mangleName() call on 'structor decl!");
1130
1131  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
1132                                 getASTContext().getSourceManager(),
1133                                 "Mangling declaration");
1134
1135  MicrosoftCXXNameMangler Mangler(*this, Out);
1136  return Mangler.mangle(D);
1137}
1138void MicrosoftMangleContext::mangleThunk(const CXXMethodDecl *MD,
1139                                         const ThunkInfo &Thunk,
1140                                         llvm::SmallVectorImpl<char> &) {
1141  assert(false && "Can't yet mangle thunks!");
1142}
1143void MicrosoftMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
1144                                                CXXDtorType Type,
1145                                                const ThisAdjustment &,
1146                                                llvm::SmallVectorImpl<char> &) {
1147  assert(false && "Can't yet mangle destructor thunks!");
1148}
1149void MicrosoftMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
1150                                             llvm::SmallVectorImpl<char> &) {
1151  assert(false && "Can't yet mangle virtual tables!");
1152}
1153void MicrosoftMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
1154                                          llvm::SmallVectorImpl<char> &) {
1155  llvm_unreachable("The MS C++ ABI does not have virtual table tables!");
1156}
1157void MicrosoftMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
1158                                                 int64_t Offset,
1159                                                 const CXXRecordDecl *Type,
1160                                                 llvm::SmallVectorImpl<char> &) {
1161  llvm_unreachable("The MS C++ ABI does not have constructor vtables!");
1162}
1163void MicrosoftMangleContext::mangleCXXRTTI(QualType T,
1164                                           llvm::SmallVectorImpl<char> &) {
1165  assert(false && "Can't yet mangle RTTI!");
1166}
1167void MicrosoftMangleContext::mangleCXXRTTIName(QualType T,
1168                                               llvm::SmallVectorImpl<char> &) {
1169  assert(false && "Can't yet mangle RTTI names!");
1170}
1171void MicrosoftMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
1172                                           CXXCtorType Type,
1173                                           llvm::raw_ostream &) {
1174  assert(false && "Can't yet mangle constructors!");
1175}
1176void MicrosoftMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
1177                                           CXXDtorType Type,
1178                                           llvm::raw_ostream &) {
1179  assert(false && "Can't yet mangle destructors!");
1180}
1181void MicrosoftMangleContext::mangleReferenceTemporary(const clang::VarDecl *,
1182                                                llvm::SmallVectorImpl<char> &) {
1183  assert(false && "Can't yet mangle reference temporaries!");
1184}
1185
1186MangleContext *clang::createMicrosoftMangleContext(ASTContext &Context,
1187                                                   Diagnostic &Diags) {
1188  return new MicrosoftMangleContext(Context, Diags);
1189}
1190