CFG.cpp revision 2794bc0e3757992194dd587d0f6a253ec72afc9a
1  //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/CFG.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/PrettyPrinter.h"
21#include "clang/AST/StmtVisitor.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/OwningPtr.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/Allocator.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/GraphWriter.h"
28#include "llvm/Support/SaveAndRestore.h"
29
30using namespace clang;
31
32namespace {
33
34static SourceLocation GetEndLoc(Decl *D) {
35  if (VarDecl *VD = dyn_cast<VarDecl>(D))
36    if (Expr *Ex = VD->getInit())
37      return Ex->getSourceRange().getEnd();
38  return D->getLocation();
39}
40
41class CFGBuilder;
42
43/// The CFG builder uses a recursive algorithm to build the CFG.  When
44///  we process an expression, sometimes we know that we must add the
45///  subexpressions as block-level expressions.  For example:
46///
47///    exp1 || exp2
48///
49///  When processing the '||' expression, we know that exp1 and exp2
50///  need to be added as block-level expressions, even though they
51///  might not normally need to be.  AddStmtChoice records this
52///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
53///  the builder has an option not to add a subexpression as a
54///  block-level expression.
55///
56class AddStmtChoice {
57public:
58  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
59
60  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
61
62  bool alwaysAdd(CFGBuilder &builder,
63                 const Stmt *stmt) const;
64
65  /// Return a copy of this object, except with the 'always-add' bit
66  ///  set as specified.
67  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
68    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
69  }
70
71private:
72  Kind kind;
73};
74
75/// LocalScope - Node in tree of local scopes created for C++ implicit
76/// destructor calls generation. It contains list of automatic variables
77/// declared in the scope and link to position in previous scope this scope
78/// began in.
79///
80/// The process of creating local scopes is as follows:
81/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
82/// - Before processing statements in scope (e.g. CompoundStmt) create
83///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
84///   and set CFGBuilder::ScopePos to the end of new scope,
85/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
86///   at this VarDecl,
87/// - For every normal (without jump) end of scope add to CFGBlock destructors
88///   for objects in the current scope,
89/// - For every jump add to CFGBlock destructors for objects
90///   between CFGBuilder::ScopePos and local scope position saved for jump
91///   target. Thanks to C++ restrictions on goto jumps we can be sure that
92///   jump target position will be on the path to root from CFGBuilder::ScopePos
93///   (adding any variable that doesn't need constructor to be called to
94///   LocalScope can break this assumption),
95///
96class LocalScope {
97public:
98  typedef BumpVector<VarDecl*> AutomaticVarsTy;
99
100  /// const_iterator - Iterates local scope backwards and jumps to previous
101  /// scope on reaching the beginning of currently iterated scope.
102  class const_iterator {
103    const LocalScope* Scope;
104
105    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
106    /// Invalid iterator (with null Scope) has VarIter equal to 0.
107    unsigned VarIter;
108
109  public:
110    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
111    /// Incrementing invalid iterator is allowed and will result in invalid
112    /// iterator.
113    const_iterator()
114        : Scope(NULL), VarIter(0) {}
115
116    /// Create valid iterator. In case when S.Prev is an invalid iterator and
117    /// I is equal to 0, this will create invalid iterator.
118    const_iterator(const LocalScope& S, unsigned I)
119        : Scope(&S), VarIter(I) {
120      // Iterator to "end" of scope is not allowed. Handle it by going up
121      // in scopes tree possibly up to invalid iterator in the root.
122      if (VarIter == 0 && Scope)
123        *this = Scope->Prev;
124    }
125
126    VarDecl *const* operator->() const {
127      assert (Scope && "Dereferencing invalid iterator is not allowed");
128      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
129      return &Scope->Vars[VarIter - 1];
130    }
131    VarDecl *operator*() const {
132      return *this->operator->();
133    }
134
135    const_iterator &operator++() {
136      if (!Scope)
137        return *this;
138
139      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
140      --VarIter;
141      if (VarIter == 0)
142        *this = Scope->Prev;
143      return *this;
144    }
145    const_iterator operator++(int) {
146      const_iterator P = *this;
147      ++*this;
148      return P;
149    }
150
151    bool operator==(const const_iterator &rhs) const {
152      return Scope == rhs.Scope && VarIter == rhs.VarIter;
153    }
154    bool operator!=(const const_iterator &rhs) const {
155      return !(*this == rhs);
156    }
157
158    LLVM_EXPLICIT operator bool() const {
159      return *this != const_iterator();
160    }
161
162    int distance(const_iterator L);
163  };
164
165  friend class const_iterator;
166
167private:
168  BumpVectorContext ctx;
169
170  /// Automatic variables in order of declaration.
171  AutomaticVarsTy Vars;
172  /// Iterator to variable in previous scope that was declared just before
173  /// begin of this scope.
174  const_iterator Prev;
175
176public:
177  /// Constructs empty scope linked to previous scope in specified place.
178  LocalScope(BumpVectorContext &ctx, const_iterator P)
179      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
180
181  /// Begin of scope in direction of CFG building (backwards).
182  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
183
184  void addVar(VarDecl *VD) {
185    Vars.push_back(VD, ctx);
186  }
187};
188
189/// distance - Calculates distance from this to L. L must be reachable from this
190/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
191/// number of scopes between this and L.
192int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
193  int D = 0;
194  const_iterator F = *this;
195  while (F.Scope != L.Scope) {
196    assert (F != const_iterator()
197        && "L iterator is not reachable from F iterator.");
198    D += F.VarIter;
199    F = F.Scope->Prev;
200  }
201  D += F.VarIter - L.VarIter;
202  return D;
203}
204
205/// BlockScopePosPair - Structure for specifying position in CFG during its
206/// build process. It consists of CFGBlock that specifies position in CFG graph
207/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
208struct BlockScopePosPair {
209  BlockScopePosPair() : block(0) {}
210  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
211      : block(b), scopePosition(scopePos) {}
212
213  CFGBlock *block;
214  LocalScope::const_iterator scopePosition;
215};
216
217/// TryResult - a class representing a variant over the values
218///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
219///  and is used by the CFGBuilder to decide if a branch condition
220///  can be decided up front during CFG construction.
221class TryResult {
222  int X;
223public:
224  TryResult(bool b) : X(b ? 1 : 0) {}
225  TryResult() : X(-1) {}
226
227  bool isTrue() const { return X == 1; }
228  bool isFalse() const { return X == 0; }
229  bool isKnown() const { return X >= 0; }
230  void negate() {
231    assert(isKnown());
232    X ^= 0x1;
233  }
234};
235
236class reverse_children {
237  llvm::SmallVector<Stmt *, 12> childrenBuf;
238  ArrayRef<Stmt*> children;
239public:
240  reverse_children(Stmt *S);
241
242  typedef ArrayRef<Stmt*>::reverse_iterator iterator;
243  iterator begin() const { return children.rbegin(); }
244  iterator end() const { return children.rend(); }
245};
246
247
248reverse_children::reverse_children(Stmt *S) {
249  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
250    children = CE->getRawSubExprs();
251    return;
252  }
253  switch (S->getStmtClass()) {
254    // Note: Fill in this switch with more cases we want to optimize.
255    case Stmt::InitListExprClass: {
256      InitListExpr *IE = cast<InitListExpr>(S);
257      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
258                                    IE->getNumInits());
259      return;
260    }
261    default:
262      break;
263  }
264
265  // Default case for all other statements.
266  for (Stmt::child_range I = S->children(); I; ++I) {
267    childrenBuf.push_back(*I);
268  }
269
270  // This needs to be done *after* childrenBuf has been populated.
271  children = childrenBuf;
272}
273
274/// CFGBuilder - This class implements CFG construction from an AST.
275///   The builder is stateful: an instance of the builder should be used to only
276///   construct a single CFG.
277///
278///   Example usage:
279///
280///     CFGBuilder builder;
281///     CFG* cfg = builder.BuildAST(stmt1);
282///
283///  CFG construction is done via a recursive walk of an AST.  We actually parse
284///  the AST in reverse order so that the successor of a basic block is
285///  constructed prior to its predecessor.  This allows us to nicely capture
286///  implicit fall-throughs without extra basic blocks.
287///
288class CFGBuilder {
289  typedef BlockScopePosPair JumpTarget;
290  typedef BlockScopePosPair JumpSource;
291
292  ASTContext *Context;
293  OwningPtr<CFG> cfg;
294
295  CFGBlock *Block;
296  CFGBlock *Succ;
297  JumpTarget ContinueJumpTarget;
298  JumpTarget BreakJumpTarget;
299  CFGBlock *SwitchTerminatedBlock;
300  CFGBlock *DefaultCaseBlock;
301  CFGBlock *TryTerminatedBlock;
302
303  // Current position in local scope.
304  LocalScope::const_iterator ScopePos;
305
306  // LabelMap records the mapping from Label expressions to their jump targets.
307  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
308  LabelMapTy LabelMap;
309
310  // A list of blocks that end with a "goto" that must be backpatched to their
311  // resolved targets upon completion of CFG construction.
312  typedef std::vector<JumpSource> BackpatchBlocksTy;
313  BackpatchBlocksTy BackpatchBlocks;
314
315  // A list of labels whose address has been taken (for indirect gotos).
316  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
317  LabelSetTy AddressTakenLabels;
318
319  bool badCFG;
320  const CFG::BuildOptions &BuildOpts;
321
322  // State to track for building switch statements.
323  bool switchExclusivelyCovered;
324  Expr::EvalResult *switchCond;
325
326  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
327  const Stmt *lastLookup;
328
329  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
330  // during construction of branches for chained logical operators.
331  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
332  CachedBoolEvalsTy CachedBoolEvals;
333
334public:
335  explicit CFGBuilder(ASTContext *astContext,
336                      const CFG::BuildOptions &buildOpts)
337    : Context(astContext), cfg(new CFG()), // crew a new CFG
338      Block(NULL), Succ(NULL),
339      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
340      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
341      switchExclusivelyCovered(false), switchCond(0),
342      cachedEntry(0), lastLookup(0) {}
343
344  // buildCFG - Used by external clients to construct the CFG.
345  CFG* buildCFG(const Decl *D, Stmt *Statement);
346
347  bool alwaysAdd(const Stmt *stmt);
348
349private:
350  // Visitors to walk an AST and construct the CFG.
351  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
352  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
353  CFGBlock *VisitBreakStmt(BreakStmt *B);
354  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
355  CFGBlock *VisitCaseStmt(CaseStmt *C);
356  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
357  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
358  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
359                                     AddStmtChoice asc);
360  CFGBlock *VisitContinueStmt(ContinueStmt *C);
361  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
362                                      AddStmtChoice asc);
363  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
364  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
365  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
366  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
367                                       AddStmtChoice asc);
368  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
369                                        AddStmtChoice asc);
370  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
371  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
372  CFGBlock *VisitDeclStmt(DeclStmt *DS);
373  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
374  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
375  CFGBlock *VisitDoStmt(DoStmt *D);
376  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
377  CFGBlock *VisitForStmt(ForStmt *F);
378  CFGBlock *VisitGotoStmt(GotoStmt *G);
379  CFGBlock *VisitIfStmt(IfStmt *I);
380  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
381  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
382  CFGBlock *VisitLabelStmt(LabelStmt *L);
383  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
384  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
385  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
386                                                         Stmt *Term,
387                                                         CFGBlock *TrueBlock,
388                                                         CFGBlock *FalseBlock);
389  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
390  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
391  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
392  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
393  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
394  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
395  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
396  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
397  CFGBlock *VisitReturnStmt(ReturnStmt *R);
398  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
399  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
400  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
401                                          AddStmtChoice asc);
402  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
403  CFGBlock *VisitWhileStmt(WhileStmt *W);
404
405  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
406  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
407  CFGBlock *VisitChildren(Stmt *S);
408  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
409
410  // Visitors to walk an AST and generate destructors of temporaries in
411  // full expression.
412  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
413  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
414  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
415  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
416      bool BindToTemporary);
417  CFGBlock *
418  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
419                                            bool BindToTemporary);
420
421  // NYS == Not Yet Supported
422  CFGBlock *NYS() {
423    badCFG = true;
424    return Block;
425  }
426
427  void autoCreateBlock() { if (!Block) Block = createBlock(); }
428  CFGBlock *createBlock(bool add_successor = true);
429  CFGBlock *createNoReturnBlock();
430
431  CFGBlock *addStmt(Stmt *S) {
432    return Visit(S, AddStmtChoice::AlwaysAdd);
433  }
434  CFGBlock *addInitializer(CXXCtorInitializer *I);
435  void addAutomaticObjDtors(LocalScope::const_iterator B,
436                            LocalScope::const_iterator E, Stmt *S);
437  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
438
439  // Local scopes creation.
440  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
441
442  void addLocalScopeForStmt(Stmt *S);
443  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
444  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
445
446  void addLocalScopeAndDtors(Stmt *S);
447
448  // Interface to CFGBlock - adding CFGElements.
449  void appendStmt(CFGBlock *B, const Stmt *S) {
450    if (alwaysAdd(S) && cachedEntry)
451      cachedEntry->second = B;
452
453    // All block-level expressions should have already been IgnoreParens()ed.
454    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
455    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
456  }
457  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
458    B->appendInitializer(I, cfg->getBumpVectorContext());
459  }
460  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
461    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
462  }
463  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
464    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
465  }
466  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
467    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
468  }
469  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
470    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
471  }
472
473  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
474      LocalScope::const_iterator B, LocalScope::const_iterator E);
475
476  void addSuccessor(CFGBlock *B, CFGBlock *S) {
477    B->addSuccessor(S, cfg->getBumpVectorContext());
478  }
479
480  /// Try and evaluate an expression to an integer constant.
481  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
482    if (!BuildOpts.PruneTriviallyFalseEdges)
483      return false;
484    return !S->isTypeDependent() &&
485           !S->isValueDependent() &&
486           S->EvaluateAsRValue(outResult, *Context);
487  }
488
489  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
490  /// if we can evaluate to a known value, otherwise return -1.
491  TryResult tryEvaluateBool(Expr *S) {
492    if (!BuildOpts.PruneTriviallyFalseEdges ||
493        S->isTypeDependent() || S->isValueDependent())
494      return TryResult();
495
496    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
497      if (Bop->isLogicalOp()) {
498        // Check the cache first.
499        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
500        if (I != CachedBoolEvals.end())
501          return I->second; // already in map;
502
503        // Retrieve result at first, or the map might be updated.
504        TryResult Result = evaluateAsBooleanConditionNoCache(S);
505        CachedBoolEvals[S] = Result; // update or insert
506        return Result;
507      }
508      else {
509        switch (Bop->getOpcode()) {
510          default: break;
511          // For 'x & 0' and 'x * 0', we can determine that
512          // the value is always false.
513          case BO_Mul:
514          case BO_And: {
515            // If either operand is zero, we know the value
516            // must be false.
517            llvm::APSInt IntVal;
518            if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
519              if (IntVal.getBoolValue() == false) {
520                return TryResult(false);
521              }
522            }
523            if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
524              if (IntVal.getBoolValue() == false) {
525                return TryResult(false);
526              }
527            }
528          }
529          break;
530        }
531      }
532    }
533
534    return evaluateAsBooleanConditionNoCache(S);
535  }
536
537  /// \brief Evaluate as boolean \param E without using the cache.
538  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
539    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
540      if (Bop->isLogicalOp()) {
541        TryResult LHS = tryEvaluateBool(Bop->getLHS());
542        if (LHS.isKnown()) {
543          // We were able to evaluate the LHS, see if we can get away with not
544          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
545          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
546            return LHS.isTrue();
547
548          TryResult RHS = tryEvaluateBool(Bop->getRHS());
549          if (RHS.isKnown()) {
550            if (Bop->getOpcode() == BO_LOr)
551              return LHS.isTrue() || RHS.isTrue();
552            else
553              return LHS.isTrue() && RHS.isTrue();
554          }
555        } else {
556          TryResult RHS = tryEvaluateBool(Bop->getRHS());
557          if (RHS.isKnown()) {
558            // We can't evaluate the LHS; however, sometimes the result
559            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
560            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
561              return RHS.isTrue();
562          }
563        }
564
565        return TryResult();
566      }
567    }
568
569    bool Result;
570    if (E->EvaluateAsBooleanCondition(Result, *Context))
571      return Result;
572
573    return TryResult();
574  }
575
576};
577
578inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
579                                     const Stmt *stmt) const {
580  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
581}
582
583bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
584  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
585
586  if (!BuildOpts.forcedBlkExprs)
587    return shouldAdd;
588
589  if (lastLookup == stmt) {
590    if (cachedEntry) {
591      assert(cachedEntry->first == stmt);
592      return true;
593    }
594    return shouldAdd;
595  }
596
597  lastLookup = stmt;
598
599  // Perform the lookup!
600  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
601
602  if (!fb) {
603    // No need to update 'cachedEntry', since it will always be null.
604    assert(cachedEntry == 0);
605    return shouldAdd;
606  }
607
608  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
609  if (itr == fb->end()) {
610    cachedEntry = 0;
611    return shouldAdd;
612  }
613
614  cachedEntry = &*itr;
615  return true;
616}
617
618// FIXME: Add support for dependent-sized array types in C++?
619// Does it even make sense to build a CFG for an uninstantiated template?
620static const VariableArrayType *FindVA(const Type *t) {
621  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
622    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
623      if (vat->getSizeExpr())
624        return vat;
625
626    t = vt->getElementType().getTypePtr();
627  }
628
629  return 0;
630}
631
632/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
633///  arbitrary statement.  Examples include a single expression or a function
634///  body (compound statement).  The ownership of the returned CFG is
635///  transferred to the caller.  If CFG construction fails, this method returns
636///  NULL.
637CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
638  assert(cfg.get());
639  if (!Statement)
640    return NULL;
641
642  // Create an empty block that will serve as the exit block for the CFG.  Since
643  // this is the first block added to the CFG, it will be implicitly registered
644  // as the exit block.
645  Succ = createBlock();
646  assert(Succ == &cfg->getExit());
647  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
648
649  if (BuildOpts.AddImplicitDtors)
650    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
651      addImplicitDtorsForDestructor(DD);
652
653  // Visit the statements and create the CFG.
654  CFGBlock *B = addStmt(Statement);
655
656  if (badCFG)
657    return NULL;
658
659  // For C++ constructor add initializers to CFG.
660  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
661    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
662        E = CD->init_rend(); I != E; ++I) {
663      B = addInitializer(*I);
664      if (badCFG)
665        return NULL;
666    }
667  }
668
669  if (B)
670    Succ = B;
671
672  // Backpatch the gotos whose label -> block mappings we didn't know when we
673  // encountered them.
674  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
675                                   E = BackpatchBlocks.end(); I != E; ++I ) {
676
677    CFGBlock *B = I->block;
678    const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
679    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
680
681    // If there is no target for the goto, then we are looking at an
682    // incomplete AST.  Handle this by not registering a successor.
683    if (LI == LabelMap.end()) continue;
684
685    JumpTarget JT = LI->second;
686    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
687                                           JT.scopePosition);
688    addSuccessor(B, JT.block);
689  }
690
691  // Add successors to the Indirect Goto Dispatch block (if we have one).
692  if (CFGBlock *B = cfg->getIndirectGotoBlock())
693    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
694                              E = AddressTakenLabels.end(); I != E; ++I ) {
695
696      // Lookup the target block.
697      LabelMapTy::iterator LI = LabelMap.find(*I);
698
699      // If there is no target block that contains label, then we are looking
700      // at an incomplete AST.  Handle this by not registering a successor.
701      if (LI == LabelMap.end()) continue;
702
703      addSuccessor(B, LI->second.block);
704    }
705
706  // Create an empty entry block that has no predecessors.
707  cfg->setEntry(createBlock());
708
709  return cfg.take();
710}
711
712/// createBlock - Used to lazily create blocks that are connected
713///  to the current (global) succcessor.
714CFGBlock *CFGBuilder::createBlock(bool add_successor) {
715  CFGBlock *B = cfg->createBlock();
716  if (add_successor && Succ)
717    addSuccessor(B, Succ);
718  return B;
719}
720
721/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
722/// CFG. It is *not* connected to the current (global) successor, and instead
723/// directly tied to the exit block in order to be reachable.
724CFGBlock *CFGBuilder::createNoReturnBlock() {
725  CFGBlock *B = createBlock(false);
726  B->setHasNoReturnElement();
727  addSuccessor(B, &cfg->getExit());
728  return B;
729}
730
731/// addInitializer - Add C++ base or member initializer element to CFG.
732CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
733  if (!BuildOpts.AddInitializers)
734    return Block;
735
736  bool IsReference = false;
737  bool HasTemporaries = false;
738
739  // Destructors of temporaries in initialization expression should be called
740  // after initialization finishes.
741  Expr *Init = I->getInit();
742  if (Init) {
743    if (FieldDecl *FD = I->getAnyMember())
744      IsReference = FD->getType()->isReferenceType();
745    HasTemporaries = isa<ExprWithCleanups>(Init);
746
747    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
748      // Generate destructors for temporaries in initialization expression.
749      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
750          IsReference);
751    }
752  }
753
754  autoCreateBlock();
755  appendInitializer(Block, I);
756
757  if (Init) {
758    if (HasTemporaries) {
759      // For expression with temporaries go directly to subexpression to omit
760      // generating destructors for the second time.
761      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
762    }
763    return Visit(Init);
764  }
765
766  return Block;
767}
768
769/// \brief Retrieve the type of the temporary object whose lifetime was
770/// extended by a local reference with the given initializer.
771static QualType getReferenceInitTemporaryType(ASTContext &Context,
772                                              const Expr *Init) {
773  while (true) {
774    // Skip parentheses.
775    Init = Init->IgnoreParens();
776
777    // Skip through cleanups.
778    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
779      Init = EWC->getSubExpr();
780      continue;
781    }
782
783    // Skip through the temporary-materialization expression.
784    if (const MaterializeTemporaryExpr *MTE
785          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
786      Init = MTE->GetTemporaryExpr();
787      continue;
788    }
789
790    // Skip derived-to-base and no-op casts.
791    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
792      if ((CE->getCastKind() == CK_DerivedToBase ||
793           CE->getCastKind() == CK_UncheckedDerivedToBase ||
794           CE->getCastKind() == CK_NoOp) &&
795          Init->getType()->isRecordType()) {
796        Init = CE->getSubExpr();
797        continue;
798      }
799    }
800
801    // Skip member accesses into rvalues.
802    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
803      if (!ME->isArrow() && ME->getBase()->isRValue()) {
804        Init = ME->getBase();
805        continue;
806      }
807    }
808
809    break;
810  }
811
812  return Init->getType();
813}
814
815/// addAutomaticObjDtors - Add to current block automatic objects destructors
816/// for objects in range of local scope positions. Use S as trigger statement
817/// for destructors.
818void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
819                                      LocalScope::const_iterator E, Stmt *S) {
820  if (!BuildOpts.AddImplicitDtors)
821    return;
822
823  if (B == E)
824    return;
825
826  // We need to append the destructors in reverse order, but any one of them
827  // may be a no-return destructor which changes the CFG. As a result, buffer
828  // this sequence up and replay them in reverse order when appending onto the
829  // CFGBlock(s).
830  SmallVector<VarDecl*, 10> Decls;
831  Decls.reserve(B.distance(E));
832  for (LocalScope::const_iterator I = B; I != E; ++I)
833    Decls.push_back(*I);
834
835  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
836                                                   E = Decls.rend();
837       I != E; ++I) {
838    // If this destructor is marked as a no-return destructor, we need to
839    // create a new block for the destructor which does not have as a successor
840    // anything built thus far: control won't flow out of this block.
841    QualType Ty = (*I)->getType();
842    if (Ty->isReferenceType()) {
843      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
844    }
845    Ty = Context->getBaseElementType(Ty);
846
847    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
848    if (Dtor->isNoReturn())
849      Block = createNoReturnBlock();
850    else
851      autoCreateBlock();
852
853    appendAutomaticObjDtor(Block, *I, S);
854  }
855}
856
857/// addImplicitDtorsForDestructor - Add implicit destructors generated for
858/// base and member objects in destructor.
859void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
860  assert (BuildOpts.AddImplicitDtors
861      && "Can be called only when dtors should be added");
862  const CXXRecordDecl *RD = DD->getParent();
863
864  // At the end destroy virtual base objects.
865  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
866      VE = RD->vbases_end(); VI != VE; ++VI) {
867    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
868    if (!CD->hasTrivialDestructor()) {
869      autoCreateBlock();
870      appendBaseDtor(Block, VI);
871    }
872  }
873
874  // Before virtual bases destroy direct base objects.
875  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
876      BE = RD->bases_end(); BI != BE; ++BI) {
877    if (!BI->isVirtual()) {
878      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
879      if (!CD->hasTrivialDestructor()) {
880        autoCreateBlock();
881        appendBaseDtor(Block, BI);
882      }
883    }
884  }
885
886  // First destroy member objects.
887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
888      FE = RD->field_end(); FI != FE; ++FI) {
889    // Check for constant size array. Set type to array element type.
890    QualType QT = FI->getType();
891    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
892      if (AT->getSize() == 0)
893        continue;
894      QT = AT->getElementType();
895    }
896
897    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
898      if (!CD->hasTrivialDestructor()) {
899        autoCreateBlock();
900        appendMemberDtor(Block, *FI);
901      }
902  }
903}
904
905/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
906/// way return valid LocalScope object.
907LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
908  if (!Scope) {
909    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
910    Scope = alloc.Allocate<LocalScope>();
911    BumpVectorContext ctx(alloc);
912    new (Scope) LocalScope(ctx, ScopePos);
913  }
914  return Scope;
915}
916
917/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
918/// that should create implicit scope (e.g. if/else substatements).
919void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
920  if (!BuildOpts.AddImplicitDtors)
921    return;
922
923  LocalScope *Scope = 0;
924
925  // For compound statement we will be creating explicit scope.
926  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
927    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
928        ; BI != BE; ++BI) {
929      Stmt *SI = (*BI)->stripLabelLikeStatements();
930      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
931        Scope = addLocalScopeForDeclStmt(DS, Scope);
932    }
933    return;
934  }
935
936  // For any other statement scope will be implicit and as such will be
937  // interesting only for DeclStmt.
938  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
939    addLocalScopeForDeclStmt(DS);
940}
941
942/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
943/// reuse Scope if not NULL.
944LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
945                                                 LocalScope* Scope) {
946  if (!BuildOpts.AddImplicitDtors)
947    return Scope;
948
949  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
950      ; DI != DE; ++DI) {
951    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
952      Scope = addLocalScopeForVarDecl(VD, Scope);
953  }
954  return Scope;
955}
956
957/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
958/// create add scope for automatic objects and temporary objects bound to
959/// const reference. Will reuse Scope if not NULL.
960LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
961                                                LocalScope* Scope) {
962  if (!BuildOpts.AddImplicitDtors)
963    return Scope;
964
965  // Check if variable is local.
966  switch (VD->getStorageClass()) {
967  case SC_None:
968  case SC_Auto:
969  case SC_Register:
970    break;
971  default: return Scope;
972  }
973
974  // Check for const references bound to temporary. Set type to pointee.
975  QualType QT = VD->getType();
976  if (QT.getTypePtr()->isReferenceType()) {
977    if (!VD->extendsLifetimeOfTemporary())
978      return Scope;
979
980    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
981  }
982
983  // Check for constant size array. Set type to array element type.
984  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
985    if (AT->getSize() == 0)
986      return Scope;
987    QT = AT->getElementType();
988  }
989
990  // Check if type is a C++ class with non-trivial destructor.
991  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
992    if (!CD->hasTrivialDestructor()) {
993      // Add the variable to scope
994      Scope = createOrReuseLocalScope(Scope);
995      Scope->addVar(VD);
996      ScopePos = Scope->begin();
997    }
998  return Scope;
999}
1000
1001/// addLocalScopeAndDtors - For given statement add local scope for it and
1002/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1003void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1004  if (!BuildOpts.AddImplicitDtors)
1005    return;
1006
1007  LocalScope::const_iterator scopeBeginPos = ScopePos;
1008  addLocalScopeForStmt(S);
1009  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1010}
1011
1012/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1013/// variables with automatic storage duration to CFGBlock's elements vector.
1014/// Elements will be prepended to physical beginning of the vector which
1015/// happens to be logical end. Use blocks terminator as statement that specifies
1016/// destructors call site.
1017/// FIXME: This mechanism for adding automatic destructors doesn't handle
1018/// no-return destructors properly.
1019void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1020    LocalScope::const_iterator B, LocalScope::const_iterator E) {
1021  BumpVectorContext &C = cfg->getBumpVectorContext();
1022  CFGBlock::iterator InsertPos
1023    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1024  for (LocalScope::const_iterator I = B; I != E; ++I)
1025    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1026                                            Blk->getTerminator());
1027}
1028
1029/// Visit - Walk the subtree of a statement and add extra
1030///   blocks for ternary operators, &&, and ||.  We also process "," and
1031///   DeclStmts (which may contain nested control-flow).
1032CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1033  if (!S) {
1034    badCFG = true;
1035    return 0;
1036  }
1037
1038  if (Expr *E = dyn_cast<Expr>(S))
1039    S = E->IgnoreParens();
1040
1041  switch (S->getStmtClass()) {
1042    default:
1043      return VisitStmt(S, asc);
1044
1045    case Stmt::AddrLabelExprClass:
1046      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1047
1048    case Stmt::BinaryConditionalOperatorClass:
1049      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1050
1051    case Stmt::BinaryOperatorClass:
1052      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1053
1054    case Stmt::BlockExprClass:
1055      return VisitNoRecurse(cast<Expr>(S), asc);
1056
1057    case Stmt::BreakStmtClass:
1058      return VisitBreakStmt(cast<BreakStmt>(S));
1059
1060    case Stmt::CallExprClass:
1061    case Stmt::CXXOperatorCallExprClass:
1062    case Stmt::CXXMemberCallExprClass:
1063    case Stmt::UserDefinedLiteralClass:
1064      return VisitCallExpr(cast<CallExpr>(S), asc);
1065
1066    case Stmt::CaseStmtClass:
1067      return VisitCaseStmt(cast<CaseStmt>(S));
1068
1069    case Stmt::ChooseExprClass:
1070      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1071
1072    case Stmt::CompoundStmtClass:
1073      return VisitCompoundStmt(cast<CompoundStmt>(S));
1074
1075    case Stmt::ConditionalOperatorClass:
1076      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1077
1078    case Stmt::ContinueStmtClass:
1079      return VisitContinueStmt(cast<ContinueStmt>(S));
1080
1081    case Stmt::CXXCatchStmtClass:
1082      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1083
1084    case Stmt::ExprWithCleanupsClass:
1085      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1086
1087    case Stmt::CXXDefaultArgExprClass:
1088    case Stmt::CXXDefaultInitExprClass:
1089      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1090      // called function's declaration, not by the caller. If we simply add
1091      // this expression to the CFG, we could end up with the same Expr
1092      // appearing multiple times.
1093      // PR13385 / <rdar://problem/12156507>
1094      //
1095      // It's likewise possible for multiple CXXDefaultInitExprs for the same
1096      // expression to be used in the same function (through aggregate
1097      // initialization).
1098      return VisitStmt(S, asc);
1099
1100    case Stmt::CXXBindTemporaryExprClass:
1101      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1102
1103    case Stmt::CXXConstructExprClass:
1104      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1105
1106    case Stmt::CXXFunctionalCastExprClass:
1107      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1108
1109    case Stmt::CXXTemporaryObjectExprClass:
1110      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1111
1112    case Stmt::CXXThrowExprClass:
1113      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1114
1115    case Stmt::CXXTryStmtClass:
1116      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1117
1118    case Stmt::CXXForRangeStmtClass:
1119      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1120
1121    case Stmt::DeclStmtClass:
1122      return VisitDeclStmt(cast<DeclStmt>(S));
1123
1124    case Stmt::DefaultStmtClass:
1125      return VisitDefaultStmt(cast<DefaultStmt>(S));
1126
1127    case Stmt::DoStmtClass:
1128      return VisitDoStmt(cast<DoStmt>(S));
1129
1130    case Stmt::ForStmtClass:
1131      return VisitForStmt(cast<ForStmt>(S));
1132
1133    case Stmt::GotoStmtClass:
1134      return VisitGotoStmt(cast<GotoStmt>(S));
1135
1136    case Stmt::IfStmtClass:
1137      return VisitIfStmt(cast<IfStmt>(S));
1138
1139    case Stmt::ImplicitCastExprClass:
1140      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1141
1142    case Stmt::IndirectGotoStmtClass:
1143      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1144
1145    case Stmt::LabelStmtClass:
1146      return VisitLabelStmt(cast<LabelStmt>(S));
1147
1148    case Stmt::LambdaExprClass:
1149      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1150
1151    case Stmt::MemberExprClass:
1152      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1153
1154    case Stmt::NullStmtClass:
1155      return Block;
1156
1157    case Stmt::ObjCAtCatchStmtClass:
1158      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1159
1160    case Stmt::ObjCAutoreleasePoolStmtClass:
1161    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1162
1163    case Stmt::ObjCAtSynchronizedStmtClass:
1164      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1165
1166    case Stmt::ObjCAtThrowStmtClass:
1167      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1168
1169    case Stmt::ObjCAtTryStmtClass:
1170      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1171
1172    case Stmt::ObjCForCollectionStmtClass:
1173      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1174
1175    case Stmt::OpaqueValueExprClass:
1176      return Block;
1177
1178    case Stmt::PseudoObjectExprClass:
1179      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1180
1181    case Stmt::ReturnStmtClass:
1182      return VisitReturnStmt(cast<ReturnStmt>(S));
1183
1184    case Stmt::UnaryExprOrTypeTraitExprClass:
1185      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1186                                           asc);
1187
1188    case Stmt::StmtExprClass:
1189      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1190
1191    case Stmt::SwitchStmtClass:
1192      return VisitSwitchStmt(cast<SwitchStmt>(S));
1193
1194    case Stmt::UnaryOperatorClass:
1195      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1196
1197    case Stmt::WhileStmtClass:
1198      return VisitWhileStmt(cast<WhileStmt>(S));
1199  }
1200}
1201
1202CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1203  if (asc.alwaysAdd(*this, S)) {
1204    autoCreateBlock();
1205    appendStmt(Block, S);
1206  }
1207
1208  return VisitChildren(S);
1209}
1210
1211/// VisitChildren - Visit the children of a Stmt.
1212CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1213  CFGBlock *B = Block;
1214
1215  // Visit the children in their reverse order so that they appear in
1216  // left-to-right (natural) order in the CFG.
1217  reverse_children RChildren(S);
1218  for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1219       I != E; ++I) {
1220    if (Stmt *Child = *I)
1221      if (CFGBlock *R = Visit(Child))
1222        B = R;
1223  }
1224  return B;
1225}
1226
1227CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1228                                         AddStmtChoice asc) {
1229  AddressTakenLabels.insert(A->getLabel());
1230
1231  if (asc.alwaysAdd(*this, A)) {
1232    autoCreateBlock();
1233    appendStmt(Block, A);
1234  }
1235
1236  return Block;
1237}
1238
1239CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1240           AddStmtChoice asc) {
1241  if (asc.alwaysAdd(*this, U)) {
1242    autoCreateBlock();
1243    appendStmt(Block, U);
1244  }
1245
1246  return Visit(U->getSubExpr(), AddStmtChoice());
1247}
1248
1249CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1250  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1251  appendStmt(ConfluenceBlock, B);
1252
1253  if (badCFG)
1254    return 0;
1255
1256  return VisitLogicalOperator(B, 0, ConfluenceBlock, ConfluenceBlock).first;
1257}
1258
1259std::pair<CFGBlock*, CFGBlock*>
1260CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1261                                 Stmt *Term,
1262                                 CFGBlock *TrueBlock,
1263                                 CFGBlock *FalseBlock) {
1264
1265  // Introspect the RHS.  If it is a nested logical operation, we recursively
1266  // build the CFG using this function.  Otherwise, resort to default
1267  // CFG construction behavior.
1268  Expr *RHS = B->getRHS()->IgnoreParens();
1269  CFGBlock *RHSBlock, *ExitBlock;
1270
1271  do {
1272    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1273      if (B_RHS->isLogicalOp()) {
1274        llvm::tie(RHSBlock, ExitBlock) =
1275          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1276        break;
1277      }
1278
1279    // The RHS is not a nested logical operation.  Don't push the terminator
1280    // down further, but instead visit RHS and construct the respective
1281    // pieces of the CFG, and link up the RHSBlock with the terminator
1282    // we have been provided.
1283    ExitBlock = RHSBlock = createBlock(false);
1284
1285    if (!Term) {
1286      assert(TrueBlock == FalseBlock);
1287      addSuccessor(RHSBlock, TrueBlock);
1288    }
1289    else {
1290      RHSBlock->setTerminator(Term);
1291      TryResult KnownVal = tryEvaluateBool(RHS);
1292      addSuccessor(RHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1293      addSuccessor(RHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1294    }
1295
1296    Block = RHSBlock;
1297    RHSBlock = addStmt(RHS);
1298  }
1299  while (false);
1300
1301  if (badCFG)
1302    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1303
1304  // Generate the blocks for evaluating the LHS.
1305  Expr *LHS = B->getLHS()->IgnoreParens();
1306
1307  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1308    if (B_LHS->isLogicalOp()) {
1309      if (B->getOpcode() == BO_LOr)
1310        FalseBlock = RHSBlock;
1311      else
1312        TrueBlock = RHSBlock;
1313
1314      // For the LHS, treat 'B' as the terminator that we want to sink
1315      // into the nested branch.  The RHS always gets the top-most
1316      // terminator.
1317      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1318    }
1319
1320  // Create the block evaluating the LHS.
1321  // This contains the '&&' or '||' as the terminator.
1322  CFGBlock *LHSBlock = createBlock(false);
1323  LHSBlock->setTerminator(B);
1324
1325  Block = LHSBlock;
1326  CFGBlock *EntryLHSBlock = addStmt(LHS);
1327
1328  if (badCFG)
1329    return std::make_pair((CFGBlock*)0, (CFGBlock*)0);
1330
1331  // See if this is a known constant.
1332  TryResult KnownVal = tryEvaluateBool(LHS);
1333
1334  // Now link the LHSBlock with RHSBlock.
1335  if (B->getOpcode() == BO_LOr) {
1336    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : TrueBlock);
1337    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : RHSBlock);
1338  } else {
1339    assert(B->getOpcode() == BO_LAnd);
1340    addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1341    addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : FalseBlock);
1342  }
1343
1344  return std::make_pair(EntryLHSBlock, ExitBlock);
1345}
1346
1347
1348CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1349                                          AddStmtChoice asc) {
1350   // && or ||
1351  if (B->isLogicalOp())
1352    return VisitLogicalOperator(B);
1353
1354  if (B->getOpcode() == BO_Comma) { // ,
1355    autoCreateBlock();
1356    appendStmt(Block, B);
1357    addStmt(B->getRHS());
1358    return addStmt(B->getLHS());
1359  }
1360
1361  if (B->isAssignmentOp()) {
1362    if (asc.alwaysAdd(*this, B)) {
1363      autoCreateBlock();
1364      appendStmt(Block, B);
1365    }
1366    Visit(B->getLHS());
1367    return Visit(B->getRHS());
1368  }
1369
1370  if (asc.alwaysAdd(*this, B)) {
1371    autoCreateBlock();
1372    appendStmt(Block, B);
1373  }
1374
1375  CFGBlock *RBlock = Visit(B->getRHS());
1376  CFGBlock *LBlock = Visit(B->getLHS());
1377  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1378  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1379  // return RBlock.  Otherwise we'll incorrectly return NULL.
1380  return (LBlock ? LBlock : RBlock);
1381}
1382
1383CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1384  if (asc.alwaysAdd(*this, E)) {
1385    autoCreateBlock();
1386    appendStmt(Block, E);
1387  }
1388  return Block;
1389}
1390
1391CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1392  // "break" is a control-flow statement.  Thus we stop processing the current
1393  // block.
1394  if (badCFG)
1395    return 0;
1396
1397  // Now create a new block that ends with the break statement.
1398  Block = createBlock(false);
1399  Block->setTerminator(B);
1400
1401  // If there is no target for the break, then we are looking at an incomplete
1402  // AST.  This means that the CFG cannot be constructed.
1403  if (BreakJumpTarget.block) {
1404    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1405    addSuccessor(Block, BreakJumpTarget.block);
1406  } else
1407    badCFG = true;
1408
1409
1410  return Block;
1411}
1412
1413static bool CanThrow(Expr *E, ASTContext &Ctx) {
1414  QualType Ty = E->getType();
1415  if (Ty->isFunctionPointerType())
1416    Ty = Ty->getAs<PointerType>()->getPointeeType();
1417  else if (Ty->isBlockPointerType())
1418    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1419
1420  const FunctionType *FT = Ty->getAs<FunctionType>();
1421  if (FT) {
1422    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1423      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1424          Proto->isNothrow(Ctx))
1425        return false;
1426  }
1427  return true;
1428}
1429
1430CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1431  // Compute the callee type.
1432  QualType calleeType = C->getCallee()->getType();
1433  if (calleeType == Context->BoundMemberTy) {
1434    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1435
1436    // We should only get a null bound type if processing a dependent
1437    // CFG.  Recover by assuming nothing.
1438    if (!boundType.isNull()) calleeType = boundType;
1439  }
1440
1441  // If this is a call to a no-return function, this stops the block here.
1442  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1443
1444  bool AddEHEdge = false;
1445
1446  // Languages without exceptions are assumed to not throw.
1447  if (Context->getLangOpts().Exceptions) {
1448    if (BuildOpts.AddEHEdges)
1449      AddEHEdge = true;
1450  }
1451
1452  if (FunctionDecl *FD = C->getDirectCallee()) {
1453    if (FD->isNoReturn())
1454      NoReturn = true;
1455    if (FD->hasAttr<NoThrowAttr>())
1456      AddEHEdge = false;
1457  }
1458
1459  if (!CanThrow(C->getCallee(), *Context))
1460    AddEHEdge = false;
1461
1462  if (!NoReturn && !AddEHEdge)
1463    return VisitStmt(C, asc.withAlwaysAdd(true));
1464
1465  if (Block) {
1466    Succ = Block;
1467    if (badCFG)
1468      return 0;
1469  }
1470
1471  if (NoReturn)
1472    Block = createNoReturnBlock();
1473  else
1474    Block = createBlock();
1475
1476  appendStmt(Block, C);
1477
1478  if (AddEHEdge) {
1479    // Add exceptional edges.
1480    if (TryTerminatedBlock)
1481      addSuccessor(Block, TryTerminatedBlock);
1482    else
1483      addSuccessor(Block, &cfg->getExit());
1484  }
1485
1486  return VisitChildren(C);
1487}
1488
1489CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1490                                      AddStmtChoice asc) {
1491  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1492  appendStmt(ConfluenceBlock, C);
1493  if (badCFG)
1494    return 0;
1495
1496  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1497  Succ = ConfluenceBlock;
1498  Block = NULL;
1499  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1500  if (badCFG)
1501    return 0;
1502
1503  Succ = ConfluenceBlock;
1504  Block = NULL;
1505  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1506  if (badCFG)
1507    return 0;
1508
1509  Block = createBlock(false);
1510  // See if this is a known constant.
1511  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1512  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1513  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1514  Block->setTerminator(C);
1515  return addStmt(C->getCond());
1516}
1517
1518
1519CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1520  addLocalScopeAndDtors(C);
1521  CFGBlock *LastBlock = Block;
1522
1523  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1524       I != E; ++I ) {
1525    // If we hit a segment of code just containing ';' (NullStmts), we can
1526    // get a null block back.  In such cases, just use the LastBlock
1527    if (CFGBlock *newBlock = addStmt(*I))
1528      LastBlock = newBlock;
1529
1530    if (badCFG)
1531      return NULL;
1532  }
1533
1534  return LastBlock;
1535}
1536
1537CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1538                                               AddStmtChoice asc) {
1539  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1540  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1541
1542  // Create the confluence block that will "merge" the results of the ternary
1543  // expression.
1544  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1545  appendStmt(ConfluenceBlock, C);
1546  if (badCFG)
1547    return 0;
1548
1549  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1550
1551  // Create a block for the LHS expression if there is an LHS expression.  A
1552  // GCC extension allows LHS to be NULL, causing the condition to be the
1553  // value that is returned instead.
1554  //  e.g: x ?: y is shorthand for: x ? x : y;
1555  Succ = ConfluenceBlock;
1556  Block = NULL;
1557  CFGBlock *LHSBlock = 0;
1558  const Expr *trueExpr = C->getTrueExpr();
1559  if (trueExpr != opaqueValue) {
1560    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1561    if (badCFG)
1562      return 0;
1563    Block = NULL;
1564  }
1565  else
1566    LHSBlock = ConfluenceBlock;
1567
1568  // Create the block for the RHS expression.
1569  Succ = ConfluenceBlock;
1570  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1571  if (badCFG)
1572    return 0;
1573
1574  // If the condition is a logical '&&' or '||', build a more accurate CFG.
1575  if (BinaryOperator *Cond =
1576        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1577    if (Cond->isLogicalOp())
1578      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1579
1580  // Create the block that will contain the condition.
1581  Block = createBlock(false);
1582
1583  // See if this is a known constant.
1584  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1585  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1586  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1587  Block->setTerminator(C);
1588  Expr *condExpr = C->getCond();
1589
1590  if (opaqueValue) {
1591    // Run the condition expression if it's not trivially expressed in
1592    // terms of the opaque value (or if there is no opaque value).
1593    if (condExpr != opaqueValue)
1594      addStmt(condExpr);
1595
1596    // Before that, run the common subexpression if there was one.
1597    // At least one of this or the above will be run.
1598    return addStmt(BCO->getCommon());
1599  }
1600
1601  return addStmt(condExpr);
1602}
1603
1604CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1605  // Check if the Decl is for an __label__.  If so, elide it from the
1606  // CFG entirely.
1607  if (isa<LabelDecl>(*DS->decl_begin()))
1608    return Block;
1609
1610  // This case also handles static_asserts.
1611  if (DS->isSingleDecl())
1612    return VisitDeclSubExpr(DS);
1613
1614  CFGBlock *B = 0;
1615
1616  // Build an individual DeclStmt for each decl.
1617  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1618                                       E = DS->decl_rend();
1619       I != E; ++I) {
1620    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1621    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1622               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1623
1624    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1625    // automatically freed with the CFG.
1626    DeclGroupRef DG(*I);
1627    Decl *D = *I;
1628    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1629    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1630
1631    // Append the fake DeclStmt to block.
1632    B = VisitDeclSubExpr(DSNew);
1633  }
1634
1635  return B;
1636}
1637
1638/// VisitDeclSubExpr - Utility method to add block-level expressions for
1639/// DeclStmts and initializers in them.
1640CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1641  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1642  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1643
1644  if (!VD) {
1645    // Of everything that can be declared in a DeclStmt, only VarDecls impact
1646    // runtime semantics.
1647    return Block;
1648  }
1649
1650  bool IsReference = false;
1651  bool HasTemporaries = false;
1652
1653  // Guard static initializers under a branch.
1654  CFGBlock *blockAfterStaticInit = 0;
1655
1656  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1657    // For static variables, we need to create a branch to track
1658    // whether or not they are initialized.
1659    if (Block) {
1660      Succ = Block;
1661      Block = 0;
1662      if (badCFG)
1663        return 0;
1664    }
1665    blockAfterStaticInit = Succ;
1666  }
1667
1668  // Destructors of temporaries in initialization expression should be called
1669  // after initialization finishes.
1670  Expr *Init = VD->getInit();
1671  if (Init) {
1672    IsReference = VD->getType()->isReferenceType();
1673    HasTemporaries = isa<ExprWithCleanups>(Init);
1674
1675    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1676      // Generate destructors for temporaries in initialization expression.
1677      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1678          IsReference);
1679    }
1680  }
1681
1682  autoCreateBlock();
1683  appendStmt(Block, DS);
1684
1685  // Keep track of the last non-null block, as 'Block' can be nulled out
1686  // if the initializer expression is something like a 'while' in a
1687  // statement-expression.
1688  CFGBlock *LastBlock = Block;
1689
1690  if (Init) {
1691    if (HasTemporaries) {
1692      // For expression with temporaries go directly to subexpression to omit
1693      // generating destructors for the second time.
1694      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1695      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1696        LastBlock = newBlock;
1697    }
1698    else {
1699      if (CFGBlock *newBlock = Visit(Init))
1700        LastBlock = newBlock;
1701    }
1702  }
1703
1704  // If the type of VD is a VLA, then we must process its size expressions.
1705  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1706       VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) {
1707    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
1708      LastBlock = newBlock;
1709  }
1710
1711  // Remove variable from local scope.
1712  if (ScopePos && VD == *ScopePos)
1713    ++ScopePos;
1714
1715  CFGBlock *B = LastBlock;
1716  if (blockAfterStaticInit) {
1717    Succ = B;
1718    Block = createBlock(false);
1719    Block->setTerminator(DS);
1720    addSuccessor(Block, blockAfterStaticInit);
1721    addSuccessor(Block, B);
1722    B = Block;
1723  }
1724
1725  return B;
1726}
1727
1728CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1729  // We may see an if statement in the middle of a basic block, or it may be the
1730  // first statement we are processing.  In either case, we create a new basic
1731  // block.  First, we create the blocks for the then...else statements, and
1732  // then we create the block containing the if statement.  If we were in the
1733  // middle of a block, we stop processing that block.  That block is then the
1734  // implicit successor for the "then" and "else" clauses.
1735
1736  // Save local scope position because in case of condition variable ScopePos
1737  // won't be restored when traversing AST.
1738  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1739
1740  // Create local scope for possible condition variable.
1741  // Store scope position. Add implicit destructor.
1742  if (VarDecl *VD = I->getConditionVariable()) {
1743    LocalScope::const_iterator BeginScopePos = ScopePos;
1744    addLocalScopeForVarDecl(VD);
1745    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1746  }
1747
1748  // The block we were processing is now finished.  Make it the successor
1749  // block.
1750  if (Block) {
1751    Succ = Block;
1752    if (badCFG)
1753      return 0;
1754  }
1755
1756  // Process the false branch.
1757  CFGBlock *ElseBlock = Succ;
1758
1759  if (Stmt *Else = I->getElse()) {
1760    SaveAndRestore<CFGBlock*> sv(Succ);
1761
1762    // NULL out Block so that the recursive call to Visit will
1763    // create a new basic block.
1764    Block = NULL;
1765
1766    // If branch is not a compound statement create implicit scope
1767    // and add destructors.
1768    if (!isa<CompoundStmt>(Else))
1769      addLocalScopeAndDtors(Else);
1770
1771    ElseBlock = addStmt(Else);
1772
1773    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1774      ElseBlock = sv.get();
1775    else if (Block) {
1776      if (badCFG)
1777        return 0;
1778    }
1779  }
1780
1781  // Process the true branch.
1782  CFGBlock *ThenBlock;
1783  {
1784    Stmt *Then = I->getThen();
1785    assert(Then);
1786    SaveAndRestore<CFGBlock*> sv(Succ);
1787    Block = NULL;
1788
1789    // If branch is not a compound statement create implicit scope
1790    // and add destructors.
1791    if (!isa<CompoundStmt>(Then))
1792      addLocalScopeAndDtors(Then);
1793
1794    ThenBlock = addStmt(Then);
1795
1796    if (!ThenBlock) {
1797      // We can reach here if the "then" body has all NullStmts.
1798      // Create an empty block so we can distinguish between true and false
1799      // branches in path-sensitive analyses.
1800      ThenBlock = createBlock(false);
1801      addSuccessor(ThenBlock, sv.get());
1802    } else if (Block) {
1803      if (badCFG)
1804        return 0;
1805    }
1806  }
1807
1808  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
1809  // having these handle the actual control-flow jump.  Note that
1810  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
1811  // we resort to the old control-flow behavior.  This special handling
1812  // removes infeasible paths from the control-flow graph by having the
1813  // control-flow transfer of '&&' or '||' go directly into the then/else
1814  // blocks directly.
1815  if (!I->getConditionVariable())
1816    if (BinaryOperator *Cond =
1817            dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
1818      if (Cond->isLogicalOp())
1819        return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
1820
1821  // Now create a new block containing the if statement.
1822  Block = createBlock(false);
1823
1824  // Set the terminator of the new block to the If statement.
1825  Block->setTerminator(I);
1826
1827  // See if this is a known constant.
1828  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1829
1830  // Now add the successors.
1831  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1832  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1833
1834  // Add the condition as the last statement in the new block.  This may create
1835  // new blocks as the condition may contain control-flow.  Any newly created
1836  // blocks will be pointed to be "Block".
1837  CFGBlock *LastBlock = addStmt(I->getCond());
1838
1839  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1840  // and the condition variable initialization to the CFG.
1841  if (VarDecl *VD = I->getConditionVariable()) {
1842    if (Expr *Init = VD->getInit()) {
1843      autoCreateBlock();
1844      appendStmt(Block, I->getConditionVariableDeclStmt());
1845      LastBlock = addStmt(Init);
1846    }
1847  }
1848
1849  return LastBlock;
1850}
1851
1852
1853CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1854  // If we were in the middle of a block we stop processing that block.
1855  //
1856  // NOTE: If a "return" appears in the middle of a block, this means that the
1857  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1858  //       for that code; a simple "mark-and-sweep" from the entry block will be
1859  //       able to report such dead blocks.
1860
1861  // Create the new block.
1862  Block = createBlock(false);
1863
1864  // The Exit block is the only successor.
1865  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1866  addSuccessor(Block, &cfg->getExit());
1867
1868  // Add the return statement to the block.  This may create new blocks if R
1869  // contains control-flow (short-circuit operations).
1870  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1871}
1872
1873CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1874  // Get the block of the labeled statement.  Add it to our map.
1875  addStmt(L->getSubStmt());
1876  CFGBlock *LabelBlock = Block;
1877
1878  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1879    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1880
1881  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1882         "label already in map");
1883  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1884
1885  // Labels partition blocks, so this is the end of the basic block we were
1886  // processing (L is the block's label).  Because this is label (and we have
1887  // already processed the substatement) there is no extra control-flow to worry
1888  // about.
1889  LabelBlock->setLabel(L);
1890  if (badCFG)
1891    return 0;
1892
1893  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1894  Block = NULL;
1895
1896  // This block is now the implicit successor of other blocks.
1897  Succ = LabelBlock;
1898
1899  return LabelBlock;
1900}
1901
1902CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1903  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1904  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1905       et = E->capture_init_end(); it != et; ++it) {
1906    if (Expr *Init = *it) {
1907      CFGBlock *Tmp = Visit(Init);
1908      if (Tmp != 0)
1909        LastBlock = Tmp;
1910    }
1911  }
1912  return LastBlock;
1913}
1914
1915CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1916  // Goto is a control-flow statement.  Thus we stop processing the current
1917  // block and create a new one.
1918
1919  Block = createBlock(false);
1920  Block->setTerminator(G);
1921
1922  // If we already know the mapping to the label block add the successor now.
1923  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1924
1925  if (I == LabelMap.end())
1926    // We will need to backpatch this block later.
1927    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1928  else {
1929    JumpTarget JT = I->second;
1930    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1931    addSuccessor(Block, JT.block);
1932  }
1933
1934  return Block;
1935}
1936
1937CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1938  CFGBlock *LoopSuccessor = NULL;
1939
1940  // Save local scope position because in case of condition variable ScopePos
1941  // won't be restored when traversing AST.
1942  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1943
1944  // Create local scope for init statement and possible condition variable.
1945  // Add destructor for init statement and condition variable.
1946  // Store scope position for continue statement.
1947  if (Stmt *Init = F->getInit())
1948    addLocalScopeForStmt(Init);
1949  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1950
1951  if (VarDecl *VD = F->getConditionVariable())
1952    addLocalScopeForVarDecl(VD);
1953  LocalScope::const_iterator ContinueScopePos = ScopePos;
1954
1955  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1956
1957  // "for" is a control-flow statement.  Thus we stop processing the current
1958  // block.
1959  if (Block) {
1960    if (badCFG)
1961      return 0;
1962    LoopSuccessor = Block;
1963  } else
1964    LoopSuccessor = Succ;
1965
1966  // Save the current value for the break targets.
1967  // All breaks should go to the code following the loop.
1968  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1969  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1970
1971  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
1972
1973  // Now create the loop body.
1974  {
1975    assert(F->getBody());
1976
1977    // Save the current values for Block, Succ, continue and break targets.
1978    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1979    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1980
1981    // Create an empty block to represent the transition block for looping back
1982    // to the head of the loop.  If we have increment code, it will
1983    // go in this block as well.
1984    Block = Succ = TransitionBlock = createBlock(false);
1985    TransitionBlock->setLoopTarget(F);
1986
1987    if (Stmt *I = F->getInc()) {
1988      // Generate increment code in its own basic block.  This is the target of
1989      // continue statements.
1990      Succ = addStmt(I);
1991    }
1992
1993    // Finish up the increment (or empty) block if it hasn't been already.
1994    if (Block) {
1995      assert(Block == Succ);
1996      if (badCFG)
1997        return 0;
1998      Block = 0;
1999    }
2000
2001   // The starting block for the loop increment is the block that should
2002   // represent the 'loop target' for looping back to the start of the loop.
2003   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2004   ContinueJumpTarget.block->setLoopTarget(F);
2005
2006    // Loop body should end with destructor of Condition variable (if any).
2007    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2008
2009    // If body is not a compound statement create implicit scope
2010    // and add destructors.
2011    if (!isa<CompoundStmt>(F->getBody()))
2012      addLocalScopeAndDtors(F->getBody());
2013
2014    // Now populate the body block, and in the process create new blocks as we
2015    // walk the body of the loop.
2016    BodyBlock = addStmt(F->getBody());
2017
2018    if (!BodyBlock) {
2019      // In the case of "for (...;...;...);" we can have a null BodyBlock.
2020      // Use the continue jump target as the proxy for the body.
2021      BodyBlock = ContinueJumpTarget.block;
2022    }
2023    else if (badCFG)
2024      return 0;
2025  }
2026
2027  // Because of short-circuit evaluation, the condition of the loop can span
2028  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2029  // evaluate the condition.
2030  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2031
2032  do {
2033    Expr *C = F->getCond();
2034
2035    // Specially handle logical operators, which have a slightly
2036    // more optimal CFG representation.
2037    if (BinaryOperator *Cond =
2038            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : 0))
2039      if (Cond->isLogicalOp()) {
2040        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2041          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2042        break;
2043      }
2044
2045    // The default case when not handling logical operators.
2046    EntryConditionBlock = ExitConditionBlock = createBlock(false);
2047    ExitConditionBlock->setTerminator(F);
2048
2049    // See if this is a known constant.
2050    TryResult KnownVal(true);
2051
2052    if (C) {
2053      // Now add the actual condition to the condition block.
2054      // Because the condition itself may contain control-flow, new blocks may
2055      // be created.  Thus we update "Succ" after adding the condition.
2056      Block = ExitConditionBlock;
2057      EntryConditionBlock = addStmt(C);
2058
2059      // If this block contains a condition variable, add both the condition
2060      // variable and initializer to the CFG.
2061      if (VarDecl *VD = F->getConditionVariable()) {
2062        if (Expr *Init = VD->getInit()) {
2063          autoCreateBlock();
2064          appendStmt(Block, F->getConditionVariableDeclStmt());
2065          EntryConditionBlock = addStmt(Init);
2066          assert(Block == EntryConditionBlock);
2067        }
2068      }
2069
2070      if (Block && badCFG)
2071        return 0;
2072
2073      KnownVal = tryEvaluateBool(C);
2074    }
2075
2076    // Add the loop body entry as a successor to the condition.
2077    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2078    // Link up the condition block with the code that follows the loop.  (the
2079    // false branch).
2080    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2081
2082  } while (false);
2083
2084  // Link up the loop-back block to the entry condition block.
2085  addSuccessor(TransitionBlock, EntryConditionBlock);
2086
2087  // The condition block is the implicit successor for any code above the loop.
2088  Succ = EntryConditionBlock;
2089
2090  // If the loop contains initialization, create a new block for those
2091  // statements.  This block can also contain statements that precede the loop.
2092  if (Stmt *I = F->getInit()) {
2093    Block = createBlock();
2094    return addStmt(I);
2095  }
2096
2097  // There is no loop initialization.  We are thus basically a while loop.
2098  // NULL out Block to force lazy block construction.
2099  Block = NULL;
2100  Succ = EntryConditionBlock;
2101  return EntryConditionBlock;
2102}
2103
2104CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2105  if (asc.alwaysAdd(*this, M)) {
2106    autoCreateBlock();
2107    appendStmt(Block, M);
2108  }
2109  return Visit(M->getBase());
2110}
2111
2112CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2113  // Objective-C fast enumeration 'for' statements:
2114  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2115  //
2116  //  for ( Type newVariable in collection_expression ) { statements }
2117  //
2118  //  becomes:
2119  //
2120  //   prologue:
2121  //     1. collection_expression
2122  //     T. jump to loop_entry
2123  //   loop_entry:
2124  //     1. side-effects of element expression
2125  //     1. ObjCForCollectionStmt [performs binding to newVariable]
2126  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2127  //   TB:
2128  //     statements
2129  //     T. jump to loop_entry
2130  //   FB:
2131  //     what comes after
2132  //
2133  //  and
2134  //
2135  //  Type existingItem;
2136  //  for ( existingItem in expression ) { statements }
2137  //
2138  //  becomes:
2139  //
2140  //   the same with newVariable replaced with existingItem; the binding works
2141  //   the same except that for one ObjCForCollectionStmt::getElement() returns
2142  //   a DeclStmt and the other returns a DeclRefExpr.
2143  //
2144
2145  CFGBlock *LoopSuccessor = 0;
2146
2147  if (Block) {
2148    if (badCFG)
2149      return 0;
2150    LoopSuccessor = Block;
2151    Block = 0;
2152  } else
2153    LoopSuccessor = Succ;
2154
2155  // Build the condition blocks.
2156  CFGBlock *ExitConditionBlock = createBlock(false);
2157
2158  // Set the terminator for the "exit" condition block.
2159  ExitConditionBlock->setTerminator(S);
2160
2161  // The last statement in the block should be the ObjCForCollectionStmt, which
2162  // performs the actual binding to 'element' and determines if there are any
2163  // more items in the collection.
2164  appendStmt(ExitConditionBlock, S);
2165  Block = ExitConditionBlock;
2166
2167  // Walk the 'element' expression to see if there are any side-effects.  We
2168  // generate new blocks as necessary.  We DON'T add the statement by default to
2169  // the CFG unless it contains control-flow.
2170  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2171                                        AddStmtChoice::NotAlwaysAdd);
2172  if (Block) {
2173    if (badCFG)
2174      return 0;
2175    Block = 0;
2176  }
2177
2178  // The condition block is the implicit successor for the loop body as well as
2179  // any code above the loop.
2180  Succ = EntryConditionBlock;
2181
2182  // Now create the true branch.
2183  {
2184    // Save the current values for Succ, continue and break targets.
2185    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2186    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2187        save_break(BreakJumpTarget);
2188
2189    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2190    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2191
2192    CFGBlock *BodyBlock = addStmt(S->getBody());
2193
2194    if (!BodyBlock)
2195      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2196    else if (Block) {
2197      if (badCFG)
2198        return 0;
2199    }
2200
2201    // This new body block is a successor to our "exit" condition block.
2202    addSuccessor(ExitConditionBlock, BodyBlock);
2203  }
2204
2205  // Link up the condition block with the code that follows the loop.
2206  // (the false branch).
2207  addSuccessor(ExitConditionBlock, LoopSuccessor);
2208
2209  // Now create a prologue block to contain the collection expression.
2210  Block = createBlock();
2211  return addStmt(S->getCollection());
2212}
2213
2214CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2215  // Inline the body.
2216  return addStmt(S->getSubStmt());
2217  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2218}
2219
2220CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2221  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2222
2223  // Inline the body.
2224  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2225
2226  // The sync body starts its own basic block.  This makes it a little easier
2227  // for diagnostic clients.
2228  if (SyncBlock) {
2229    if (badCFG)
2230      return 0;
2231
2232    Block = 0;
2233    Succ = SyncBlock;
2234  }
2235
2236  // Add the @synchronized to the CFG.
2237  autoCreateBlock();
2238  appendStmt(Block, S);
2239
2240  // Inline the sync expression.
2241  return addStmt(S->getSynchExpr());
2242}
2243
2244CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2245  // FIXME
2246  return NYS();
2247}
2248
2249CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2250  autoCreateBlock();
2251
2252  // Add the PseudoObject as the last thing.
2253  appendStmt(Block, E);
2254
2255  CFGBlock *lastBlock = Block;
2256
2257  // Before that, evaluate all of the semantics in order.  In
2258  // CFG-land, that means appending them in reverse order.
2259  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2260    Expr *Semantic = E->getSemanticExpr(--i);
2261
2262    // If the semantic is an opaque value, we're being asked to bind
2263    // it to its source expression.
2264    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2265      Semantic = OVE->getSourceExpr();
2266
2267    if (CFGBlock *B = Visit(Semantic))
2268      lastBlock = B;
2269  }
2270
2271  return lastBlock;
2272}
2273
2274CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2275  CFGBlock *LoopSuccessor = NULL;
2276
2277  // Save local scope position because in case of condition variable ScopePos
2278  // won't be restored when traversing AST.
2279  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2280
2281  // Create local scope for possible condition variable.
2282  // Store scope position for continue statement.
2283  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2284  if (VarDecl *VD = W->getConditionVariable()) {
2285    addLocalScopeForVarDecl(VD);
2286    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2287  }
2288
2289  // "while" is a control-flow statement.  Thus we stop processing the current
2290  // block.
2291  if (Block) {
2292    if (badCFG)
2293      return 0;
2294    LoopSuccessor = Block;
2295    Block = 0;
2296  } else {
2297    LoopSuccessor = Succ;
2298  }
2299
2300  CFGBlock *BodyBlock = 0, *TransitionBlock = 0;
2301
2302  // Process the loop body.
2303  {
2304    assert(W->getBody());
2305
2306    // Save the current values for Block, Succ, continue and break targets.
2307    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2308    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2309                               save_break(BreakJumpTarget);
2310
2311    // Create an empty block to represent the transition block for looping back
2312    // to the head of the loop.
2313    Succ = TransitionBlock = createBlock(false);
2314    TransitionBlock->setLoopTarget(W);
2315    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2316
2317    // All breaks should go to the code following the loop.
2318    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2319
2320    // Loop body should end with destructor of Condition variable (if any).
2321    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2322
2323    // If body is not a compound statement create implicit scope
2324    // and add destructors.
2325    if (!isa<CompoundStmt>(W->getBody()))
2326      addLocalScopeAndDtors(W->getBody());
2327
2328    // Create the body.  The returned block is the entry to the loop body.
2329    BodyBlock = addStmt(W->getBody());
2330
2331    if (!BodyBlock)
2332      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2333    else if (Block && badCFG)
2334      return 0;
2335  }
2336
2337  // Because of short-circuit evaluation, the condition of the loop can span
2338  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2339  // evaluate the condition.
2340  CFGBlock *EntryConditionBlock = 0, *ExitConditionBlock = 0;
2341
2342  do {
2343    Expr *C = W->getCond();
2344
2345    // Specially handle logical operators, which have a slightly
2346    // more optimal CFG representation.
2347    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2348      if (Cond->isLogicalOp()) {
2349        llvm::tie(EntryConditionBlock, ExitConditionBlock) =
2350          VisitLogicalOperator(Cond, W, BodyBlock,
2351                               LoopSuccessor);
2352        break;
2353      }
2354
2355    // The default case when not handling logical operators.
2356    ExitConditionBlock = createBlock(false);
2357    ExitConditionBlock->setTerminator(W);
2358
2359    // Now add the actual condition to the condition block.
2360    // Because the condition itself may contain control-flow, new blocks may
2361    // be created.  Thus we update "Succ" after adding the condition.
2362    Block = ExitConditionBlock;
2363    Block = EntryConditionBlock = addStmt(C);
2364
2365    // If this block contains a condition variable, add both the condition
2366    // variable and initializer to the CFG.
2367    if (VarDecl *VD = W->getConditionVariable()) {
2368      if (Expr *Init = VD->getInit()) {
2369        autoCreateBlock();
2370        appendStmt(Block, W->getConditionVariableDeclStmt());
2371        EntryConditionBlock = addStmt(Init);
2372        assert(Block == EntryConditionBlock);
2373      }
2374    }
2375
2376    if (Block && badCFG)
2377      return 0;
2378
2379    // See if this is a known constant.
2380    const TryResult& KnownVal = tryEvaluateBool(C);
2381
2382    // Add the loop body entry as a successor to the condition.
2383    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2384    // Link up the condition block with the code that follows the loop.  (the
2385    // false branch).
2386    addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2387
2388  } while(false);
2389
2390  // Link up the loop-back block to the entry condition block.
2391  addSuccessor(TransitionBlock, EntryConditionBlock);
2392
2393  // There can be no more statements in the condition block since we loop back
2394  // to this block.  NULL out Block to force lazy creation of another block.
2395  Block = NULL;
2396
2397  // Return the condition block, which is the dominating block for the loop.
2398  Succ = EntryConditionBlock;
2399  return EntryConditionBlock;
2400}
2401
2402
2403CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2404  // FIXME: For now we pretend that @catch and the code it contains does not
2405  //  exit.
2406  return Block;
2407}
2408
2409CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2410  // FIXME: This isn't complete.  We basically treat @throw like a return
2411  //  statement.
2412
2413  // If we were in the middle of a block we stop processing that block.
2414  if (badCFG)
2415    return 0;
2416
2417  // Create the new block.
2418  Block = createBlock(false);
2419
2420  // The Exit block is the only successor.
2421  addSuccessor(Block, &cfg->getExit());
2422
2423  // Add the statement to the block.  This may create new blocks if S contains
2424  // control-flow (short-circuit operations).
2425  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2426}
2427
2428CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2429  // If we were in the middle of a block we stop processing that block.
2430  if (badCFG)
2431    return 0;
2432
2433  // Create the new block.
2434  Block = createBlock(false);
2435
2436  if (TryTerminatedBlock)
2437    // The current try statement is the only successor.
2438    addSuccessor(Block, TryTerminatedBlock);
2439  else
2440    // otherwise the Exit block is the only successor.
2441    addSuccessor(Block, &cfg->getExit());
2442
2443  // Add the statement to the block.  This may create new blocks if S contains
2444  // control-flow (short-circuit operations).
2445  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2446}
2447
2448CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2449  CFGBlock *LoopSuccessor = NULL;
2450
2451  // "do...while" is a control-flow statement.  Thus we stop processing the
2452  // current block.
2453  if (Block) {
2454    if (badCFG)
2455      return 0;
2456    LoopSuccessor = Block;
2457  } else
2458    LoopSuccessor = Succ;
2459
2460  // Because of short-circuit evaluation, the condition of the loop can span
2461  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2462  // evaluate the condition.
2463  CFGBlock *ExitConditionBlock = createBlock(false);
2464  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2465
2466  // Set the terminator for the "exit" condition block.
2467  ExitConditionBlock->setTerminator(D);
2468
2469  // Now add the actual condition to the condition block.  Because the condition
2470  // itself may contain control-flow, new blocks may be created.
2471  if (Stmt *C = D->getCond()) {
2472    Block = ExitConditionBlock;
2473    EntryConditionBlock = addStmt(C);
2474    if (Block) {
2475      if (badCFG)
2476        return 0;
2477    }
2478  }
2479
2480  // The condition block is the implicit successor for the loop body.
2481  Succ = EntryConditionBlock;
2482
2483  // See if this is a known constant.
2484  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2485
2486  // Process the loop body.
2487  CFGBlock *BodyBlock = NULL;
2488  {
2489    assert(D->getBody());
2490
2491    // Save the current values for Block, Succ, and continue and break targets
2492    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2493    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2494        save_break(BreakJumpTarget);
2495
2496    // All continues within this loop should go to the condition block
2497    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2498
2499    // All breaks should go to the code following the loop.
2500    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2501
2502    // NULL out Block to force lazy instantiation of blocks for the body.
2503    Block = NULL;
2504
2505    // If body is not a compound statement create implicit scope
2506    // and add destructors.
2507    if (!isa<CompoundStmt>(D->getBody()))
2508      addLocalScopeAndDtors(D->getBody());
2509
2510    // Create the body.  The returned block is the entry to the loop body.
2511    BodyBlock = addStmt(D->getBody());
2512
2513    if (!BodyBlock)
2514      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2515    else if (Block) {
2516      if (badCFG)
2517        return 0;
2518    }
2519
2520    if (!KnownVal.isFalse()) {
2521      // Add an intermediate block between the BodyBlock and the
2522      // ExitConditionBlock to represent the "loop back" transition.  Create an
2523      // empty block to represent the transition block for looping back to the
2524      // head of the loop.
2525      // FIXME: Can we do this more efficiently without adding another block?
2526      Block = NULL;
2527      Succ = BodyBlock;
2528      CFGBlock *LoopBackBlock = createBlock();
2529      LoopBackBlock->setLoopTarget(D);
2530
2531      // Add the loop body entry as a successor to the condition.
2532      addSuccessor(ExitConditionBlock, LoopBackBlock);
2533    }
2534    else
2535      addSuccessor(ExitConditionBlock, NULL);
2536  }
2537
2538  // Link up the condition block with the code that follows the loop.
2539  // (the false branch).
2540  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2541
2542  // There can be no more statements in the body block(s) since we loop back to
2543  // the body.  NULL out Block to force lazy creation of another block.
2544  Block = NULL;
2545
2546  // Return the loop body, which is the dominating block for the loop.
2547  Succ = BodyBlock;
2548  return BodyBlock;
2549}
2550
2551CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2552  // "continue" is a control-flow statement.  Thus we stop processing the
2553  // current block.
2554  if (badCFG)
2555    return 0;
2556
2557  // Now create a new block that ends with the continue statement.
2558  Block = createBlock(false);
2559  Block->setTerminator(C);
2560
2561  // If there is no target for the continue, then we are looking at an
2562  // incomplete AST.  This means the CFG cannot be constructed.
2563  if (ContinueJumpTarget.block) {
2564    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2565    addSuccessor(Block, ContinueJumpTarget.block);
2566  } else
2567    badCFG = true;
2568
2569  return Block;
2570}
2571
2572CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2573                                                    AddStmtChoice asc) {
2574
2575  if (asc.alwaysAdd(*this, E)) {
2576    autoCreateBlock();
2577    appendStmt(Block, E);
2578  }
2579
2580  // VLA types have expressions that must be evaluated.
2581  CFGBlock *lastBlock = Block;
2582
2583  if (E->isArgumentType()) {
2584    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2585         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2586      lastBlock = addStmt(VA->getSizeExpr());
2587  }
2588  return lastBlock;
2589}
2590
2591/// VisitStmtExpr - Utility method to handle (nested) statement
2592///  expressions (a GCC extension).
2593CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2594  if (asc.alwaysAdd(*this, SE)) {
2595    autoCreateBlock();
2596    appendStmt(Block, SE);
2597  }
2598  return VisitCompoundStmt(SE->getSubStmt());
2599}
2600
2601CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2602  // "switch" is a control-flow statement.  Thus we stop processing the current
2603  // block.
2604  CFGBlock *SwitchSuccessor = NULL;
2605
2606  // Save local scope position because in case of condition variable ScopePos
2607  // won't be restored when traversing AST.
2608  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2609
2610  // Create local scope for possible condition variable.
2611  // Store scope position. Add implicit destructor.
2612  if (VarDecl *VD = Terminator->getConditionVariable()) {
2613    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2614    addLocalScopeForVarDecl(VD);
2615    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2616  }
2617
2618  if (Block) {
2619    if (badCFG)
2620      return 0;
2621    SwitchSuccessor = Block;
2622  } else SwitchSuccessor = Succ;
2623
2624  // Save the current "switch" context.
2625  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2626                            save_default(DefaultCaseBlock);
2627  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2628
2629  // Set the "default" case to be the block after the switch statement.  If the
2630  // switch statement contains a "default:", this value will be overwritten with
2631  // the block for that code.
2632  DefaultCaseBlock = SwitchSuccessor;
2633
2634  // Create a new block that will contain the switch statement.
2635  SwitchTerminatedBlock = createBlock(false);
2636
2637  // Now process the switch body.  The code after the switch is the implicit
2638  // successor.
2639  Succ = SwitchSuccessor;
2640  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2641
2642  // When visiting the body, the case statements should automatically get linked
2643  // up to the switch.  We also don't keep a pointer to the body, since all
2644  // control-flow from the switch goes to case/default statements.
2645  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2646  Block = NULL;
2647
2648  // For pruning unreachable case statements, save the current state
2649  // for tracking the condition value.
2650  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2651                                                     false);
2652
2653  // Determine if the switch condition can be explicitly evaluated.
2654  assert(Terminator->getCond() && "switch condition must be non-NULL");
2655  Expr::EvalResult result;
2656  bool b = tryEvaluate(Terminator->getCond(), result);
2657  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2658                                                    b ? &result : 0);
2659
2660  // If body is not a compound statement create implicit scope
2661  // and add destructors.
2662  if (!isa<CompoundStmt>(Terminator->getBody()))
2663    addLocalScopeAndDtors(Terminator->getBody());
2664
2665  addStmt(Terminator->getBody());
2666  if (Block) {
2667    if (badCFG)
2668      return 0;
2669  }
2670
2671  // If we have no "default:" case, the default transition is to the code
2672  // following the switch body.  Moreover, take into account if all the
2673  // cases of a switch are covered (e.g., switching on an enum value).
2674  addSuccessor(SwitchTerminatedBlock,
2675               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2676               ? 0 : DefaultCaseBlock);
2677
2678  // Add the terminator and condition in the switch block.
2679  SwitchTerminatedBlock->setTerminator(Terminator);
2680  Block = SwitchTerminatedBlock;
2681  CFGBlock *LastBlock = addStmt(Terminator->getCond());
2682
2683  // Finally, if the SwitchStmt contains a condition variable, add both the
2684  // SwitchStmt and the condition variable initialization to the CFG.
2685  if (VarDecl *VD = Terminator->getConditionVariable()) {
2686    if (Expr *Init = VD->getInit()) {
2687      autoCreateBlock();
2688      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2689      LastBlock = addStmt(Init);
2690    }
2691  }
2692
2693  return LastBlock;
2694}
2695
2696static bool shouldAddCase(bool &switchExclusivelyCovered,
2697                          const Expr::EvalResult *switchCond,
2698                          const CaseStmt *CS,
2699                          ASTContext &Ctx) {
2700  if (!switchCond)
2701    return true;
2702
2703  bool addCase = false;
2704
2705  if (!switchExclusivelyCovered) {
2706    if (switchCond->Val.isInt()) {
2707      // Evaluate the LHS of the case value.
2708      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2709      const llvm::APSInt &condInt = switchCond->Val.getInt();
2710
2711      if (condInt == lhsInt) {
2712        addCase = true;
2713        switchExclusivelyCovered = true;
2714      }
2715      else if (condInt < lhsInt) {
2716        if (const Expr *RHS = CS->getRHS()) {
2717          // Evaluate the RHS of the case value.
2718          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2719          if (V2 <= condInt) {
2720            addCase = true;
2721            switchExclusivelyCovered = true;
2722          }
2723        }
2724      }
2725    }
2726    else
2727      addCase = true;
2728  }
2729  return addCase;
2730}
2731
2732CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2733  // CaseStmts are essentially labels, so they are the first statement in a
2734  // block.
2735  CFGBlock *TopBlock = 0, *LastBlock = 0;
2736
2737  if (Stmt *Sub = CS->getSubStmt()) {
2738    // For deeply nested chains of CaseStmts, instead of doing a recursion
2739    // (which can blow out the stack), manually unroll and create blocks
2740    // along the way.
2741    while (isa<CaseStmt>(Sub)) {
2742      CFGBlock *currentBlock = createBlock(false);
2743      currentBlock->setLabel(CS);
2744
2745      if (TopBlock)
2746        addSuccessor(LastBlock, currentBlock);
2747      else
2748        TopBlock = currentBlock;
2749
2750      addSuccessor(SwitchTerminatedBlock,
2751                   shouldAddCase(switchExclusivelyCovered, switchCond,
2752                                 CS, *Context)
2753                   ? currentBlock : 0);
2754
2755      LastBlock = currentBlock;
2756      CS = cast<CaseStmt>(Sub);
2757      Sub = CS->getSubStmt();
2758    }
2759
2760    addStmt(Sub);
2761  }
2762
2763  CFGBlock *CaseBlock = Block;
2764  if (!CaseBlock)
2765    CaseBlock = createBlock();
2766
2767  // Cases statements partition blocks, so this is the top of the basic block we
2768  // were processing (the "case XXX:" is the label).
2769  CaseBlock->setLabel(CS);
2770
2771  if (badCFG)
2772    return 0;
2773
2774  // Add this block to the list of successors for the block with the switch
2775  // statement.
2776  assert(SwitchTerminatedBlock);
2777  addSuccessor(SwitchTerminatedBlock,
2778               shouldAddCase(switchExclusivelyCovered, switchCond,
2779                             CS, *Context)
2780               ? CaseBlock : 0);
2781
2782  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2783  Block = NULL;
2784
2785  if (TopBlock) {
2786    addSuccessor(LastBlock, CaseBlock);
2787    Succ = TopBlock;
2788  } else {
2789    // This block is now the implicit successor of other blocks.
2790    Succ = CaseBlock;
2791  }
2792
2793  return Succ;
2794}
2795
2796CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2797  if (Terminator->getSubStmt())
2798    addStmt(Terminator->getSubStmt());
2799
2800  DefaultCaseBlock = Block;
2801
2802  if (!DefaultCaseBlock)
2803    DefaultCaseBlock = createBlock();
2804
2805  // Default statements partition blocks, so this is the top of the basic block
2806  // we were processing (the "default:" is the label).
2807  DefaultCaseBlock->setLabel(Terminator);
2808
2809  if (badCFG)
2810    return 0;
2811
2812  // Unlike case statements, we don't add the default block to the successors
2813  // for the switch statement immediately.  This is done when we finish
2814  // processing the switch statement.  This allows for the default case
2815  // (including a fall-through to the code after the switch statement) to always
2816  // be the last successor of a switch-terminated block.
2817
2818  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2819  Block = NULL;
2820
2821  // This block is now the implicit successor of other blocks.
2822  Succ = DefaultCaseBlock;
2823
2824  return DefaultCaseBlock;
2825}
2826
2827CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2828  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2829  // current block.
2830  CFGBlock *TrySuccessor = NULL;
2831
2832  if (Block) {
2833    if (badCFG)
2834      return 0;
2835    TrySuccessor = Block;
2836  } else TrySuccessor = Succ;
2837
2838  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2839
2840  // Create a new block that will contain the try statement.
2841  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2842  // Add the terminator in the try block.
2843  NewTryTerminatedBlock->setTerminator(Terminator);
2844
2845  bool HasCatchAll = false;
2846  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2847    // The code after the try is the implicit successor.
2848    Succ = TrySuccessor;
2849    CXXCatchStmt *CS = Terminator->getHandler(h);
2850    if (CS->getExceptionDecl() == 0) {
2851      HasCatchAll = true;
2852    }
2853    Block = NULL;
2854    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2855    if (CatchBlock == 0)
2856      return 0;
2857    // Add this block to the list of successors for the block with the try
2858    // statement.
2859    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2860  }
2861  if (!HasCatchAll) {
2862    if (PrevTryTerminatedBlock)
2863      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2864    else
2865      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2866  }
2867
2868  // The code after the try is the implicit successor.
2869  Succ = TrySuccessor;
2870
2871  // Save the current "try" context.
2872  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2873  cfg->addTryDispatchBlock(TryTerminatedBlock);
2874
2875  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2876  Block = NULL;
2877  return addStmt(Terminator->getTryBlock());
2878}
2879
2880CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2881  // CXXCatchStmt are treated like labels, so they are the first statement in a
2882  // block.
2883
2884  // Save local scope position because in case of exception variable ScopePos
2885  // won't be restored when traversing AST.
2886  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2887
2888  // Create local scope for possible exception variable.
2889  // Store scope position. Add implicit destructor.
2890  if (VarDecl *VD = CS->getExceptionDecl()) {
2891    LocalScope::const_iterator BeginScopePos = ScopePos;
2892    addLocalScopeForVarDecl(VD);
2893    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2894  }
2895
2896  if (CS->getHandlerBlock())
2897    addStmt(CS->getHandlerBlock());
2898
2899  CFGBlock *CatchBlock = Block;
2900  if (!CatchBlock)
2901    CatchBlock = createBlock();
2902
2903  // CXXCatchStmt is more than just a label.  They have semantic meaning
2904  // as well, as they implicitly "initialize" the catch variable.  Add
2905  // it to the CFG as a CFGElement so that the control-flow of these
2906  // semantics gets captured.
2907  appendStmt(CatchBlock, CS);
2908
2909  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2910  // labels.
2911  CatchBlock->setLabel(CS);
2912
2913  // Bail out if the CFG is bad.
2914  if (badCFG)
2915    return 0;
2916
2917  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2918  Block = NULL;
2919
2920  return CatchBlock;
2921}
2922
2923CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2924  // C++0x for-range statements are specified as [stmt.ranged]:
2925  //
2926  // {
2927  //   auto && __range = range-init;
2928  //   for ( auto __begin = begin-expr,
2929  //         __end = end-expr;
2930  //         __begin != __end;
2931  //         ++__begin ) {
2932  //     for-range-declaration = *__begin;
2933  //     statement
2934  //   }
2935  // }
2936
2937  // Save local scope position before the addition of the implicit variables.
2938  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2939
2940  // Create local scopes and destructors for range, begin and end variables.
2941  if (Stmt *Range = S->getRangeStmt())
2942    addLocalScopeForStmt(Range);
2943  if (Stmt *BeginEnd = S->getBeginEndStmt())
2944    addLocalScopeForStmt(BeginEnd);
2945  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2946
2947  LocalScope::const_iterator ContinueScopePos = ScopePos;
2948
2949  // "for" is a control-flow statement.  Thus we stop processing the current
2950  // block.
2951  CFGBlock *LoopSuccessor = NULL;
2952  if (Block) {
2953    if (badCFG)
2954      return 0;
2955    LoopSuccessor = Block;
2956  } else
2957    LoopSuccessor = Succ;
2958
2959  // Save the current value for the break targets.
2960  // All breaks should go to the code following the loop.
2961  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2962  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2963
2964  // The block for the __begin != __end expression.
2965  CFGBlock *ConditionBlock = createBlock(false);
2966  ConditionBlock->setTerminator(S);
2967
2968  // Now add the actual condition to the condition block.
2969  if (Expr *C = S->getCond()) {
2970    Block = ConditionBlock;
2971    CFGBlock *BeginConditionBlock = addStmt(C);
2972    if (badCFG)
2973      return 0;
2974    assert(BeginConditionBlock == ConditionBlock &&
2975           "condition block in for-range was unexpectedly complex");
2976    (void)BeginConditionBlock;
2977  }
2978
2979  // The condition block is the implicit successor for the loop body as well as
2980  // any code above the loop.
2981  Succ = ConditionBlock;
2982
2983  // See if this is a known constant.
2984  TryResult KnownVal(true);
2985
2986  if (S->getCond())
2987    KnownVal = tryEvaluateBool(S->getCond());
2988
2989  // Now create the loop body.
2990  {
2991    assert(S->getBody());
2992
2993    // Save the current values for Block, Succ, and continue targets.
2994    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2995    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2996
2997    // Generate increment code in its own basic block.  This is the target of
2998    // continue statements.
2999    Block = 0;
3000    Succ = addStmt(S->getInc());
3001    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3002
3003    // The starting block for the loop increment is the block that should
3004    // represent the 'loop target' for looping back to the start of the loop.
3005    ContinueJumpTarget.block->setLoopTarget(S);
3006
3007    // Finish up the increment block and prepare to start the loop body.
3008    assert(Block);
3009    if (badCFG)
3010      return 0;
3011    Block = 0;
3012
3013
3014    // Add implicit scope and dtors for loop variable.
3015    addLocalScopeAndDtors(S->getLoopVarStmt());
3016
3017    // Populate a new block to contain the loop body and loop variable.
3018    addStmt(S->getBody());
3019    if (badCFG)
3020      return 0;
3021    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3022    if (badCFG)
3023      return 0;
3024
3025    // This new body block is a successor to our condition block.
3026    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : LoopVarStmtBlock);
3027  }
3028
3029  // Link up the condition block with the code that follows the loop (the
3030  // false branch).
3031  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
3032
3033  // Add the initialization statements.
3034  Block = createBlock();
3035  addStmt(S->getBeginEndStmt());
3036  return addStmt(S->getRangeStmt());
3037}
3038
3039CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3040    AddStmtChoice asc) {
3041  if (BuildOpts.AddTemporaryDtors) {
3042    // If adding implicit destructors visit the full expression for adding
3043    // destructors of temporaries.
3044    VisitForTemporaryDtors(E->getSubExpr());
3045
3046    // Full expression has to be added as CFGStmt so it will be sequenced
3047    // before destructors of it's temporaries.
3048    asc = asc.withAlwaysAdd(true);
3049  }
3050  return Visit(E->getSubExpr(), asc);
3051}
3052
3053CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3054                                                AddStmtChoice asc) {
3055  if (asc.alwaysAdd(*this, E)) {
3056    autoCreateBlock();
3057    appendStmt(Block, E);
3058
3059    // We do not want to propagate the AlwaysAdd property.
3060    asc = asc.withAlwaysAdd(false);
3061  }
3062  return Visit(E->getSubExpr(), asc);
3063}
3064
3065CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3066                                            AddStmtChoice asc) {
3067  autoCreateBlock();
3068  appendStmt(Block, C);
3069
3070  return VisitChildren(C);
3071}
3072
3073CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3074                                                 AddStmtChoice asc) {
3075  if (asc.alwaysAdd(*this, E)) {
3076    autoCreateBlock();
3077    appendStmt(Block, E);
3078    // We do not want to propagate the AlwaysAdd property.
3079    asc = asc.withAlwaysAdd(false);
3080  }
3081  return Visit(E->getSubExpr(), asc);
3082}
3083
3084CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3085                                                  AddStmtChoice asc) {
3086  autoCreateBlock();
3087  appendStmt(Block, C);
3088  return VisitChildren(C);
3089}
3090
3091CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3092                                            AddStmtChoice asc) {
3093  if (asc.alwaysAdd(*this, E)) {
3094    autoCreateBlock();
3095    appendStmt(Block, E);
3096  }
3097  return Visit(E->getSubExpr(), AddStmtChoice());
3098}
3099
3100CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3101  // Lazily create the indirect-goto dispatch block if there isn't one already.
3102  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3103
3104  if (!IBlock) {
3105    IBlock = createBlock(false);
3106    cfg->setIndirectGotoBlock(IBlock);
3107  }
3108
3109  // IndirectGoto is a control-flow statement.  Thus we stop processing the
3110  // current block and create a new one.
3111  if (badCFG)
3112    return 0;
3113
3114  Block = createBlock(false);
3115  Block->setTerminator(I);
3116  addSuccessor(Block, IBlock);
3117  return addStmt(I->getTarget());
3118}
3119
3120CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3121  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3122
3123tryAgain:
3124  if (!E) {
3125    badCFG = true;
3126    return NULL;
3127  }
3128  switch (E->getStmtClass()) {
3129    default:
3130      return VisitChildrenForTemporaryDtors(E);
3131
3132    case Stmt::BinaryOperatorClass:
3133      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3134
3135    case Stmt::CXXBindTemporaryExprClass:
3136      return VisitCXXBindTemporaryExprForTemporaryDtors(
3137          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3138
3139    case Stmt::BinaryConditionalOperatorClass:
3140    case Stmt::ConditionalOperatorClass:
3141      return VisitConditionalOperatorForTemporaryDtors(
3142          cast<AbstractConditionalOperator>(E), BindToTemporary);
3143
3144    case Stmt::ImplicitCastExprClass:
3145      // For implicit cast we want BindToTemporary to be passed further.
3146      E = cast<CastExpr>(E)->getSubExpr();
3147      goto tryAgain;
3148
3149    case Stmt::ParenExprClass:
3150      E = cast<ParenExpr>(E)->getSubExpr();
3151      goto tryAgain;
3152
3153    case Stmt::MaterializeTemporaryExprClass:
3154      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3155      goto tryAgain;
3156  }
3157}
3158
3159CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3160  // When visiting children for destructors we want to visit them in reverse
3161  // order that they will appear in the CFG.  Because the CFG is built
3162  // bottom-up, this means we visit them in their natural order, which
3163  // reverses them in the CFG.
3164  CFGBlock *B = Block;
3165  for (Stmt::child_range I = E->children(); I; ++I) {
3166    if (Stmt *Child = *I)
3167      if (CFGBlock *R = VisitForTemporaryDtors(Child))
3168        B = R;
3169  }
3170  return B;
3171}
3172
3173CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3174  if (E->isLogicalOp()) {
3175    // Destructors for temporaries in LHS expression should be called after
3176    // those for RHS expression. Even if this will unnecessarily create a block,
3177    // this block will be used at least by the full expression.
3178    autoCreateBlock();
3179    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3180    if (badCFG)
3181      return NULL;
3182
3183    Succ = ConfluenceBlock;
3184    Block = NULL;
3185    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3186
3187    if (RHSBlock) {
3188      if (badCFG)
3189        return NULL;
3190
3191      // If RHS expression did produce destructors we need to connect created
3192      // blocks to CFG in same manner as for binary operator itself.
3193      CFGBlock *LHSBlock = createBlock(false);
3194      LHSBlock->setTerminator(CFGTerminator(E, true));
3195
3196      // For binary operator LHS block is before RHS in list of predecessors
3197      // of ConfluenceBlock.
3198      std::reverse(ConfluenceBlock->pred_begin(),
3199          ConfluenceBlock->pred_end());
3200
3201      // See if this is a known constant.
3202      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3203      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3204        KnownVal.negate();
3205
3206      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3207      // itself.
3208      if (E->getOpcode() == BO_LOr) {
3209        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3210        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3211      } else {
3212        assert (E->getOpcode() == BO_LAnd);
3213        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3214        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3215      }
3216
3217      Block = LHSBlock;
3218      return LHSBlock;
3219    }
3220
3221    Block = ConfluenceBlock;
3222    return ConfluenceBlock;
3223  }
3224
3225  if (E->isAssignmentOp()) {
3226    // For assignment operator (=) LHS expression is visited
3227    // before RHS expression. For destructors visit them in reverse order.
3228    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3229    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3230    return LHSBlock ? LHSBlock : RHSBlock;
3231  }
3232
3233  // For any other binary operator RHS expression is visited before
3234  // LHS expression (order of children). For destructors visit them in reverse
3235  // order.
3236  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3237  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3238  return RHSBlock ? RHSBlock : LHSBlock;
3239}
3240
3241CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3242    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3243  // First add destructors for temporaries in subexpression.
3244  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3245  if (!BindToTemporary) {
3246    // If lifetime of temporary is not prolonged (by assigning to constant
3247    // reference) add destructor for it.
3248
3249    // If the destructor is marked as a no-return destructor, we need to create
3250    // a new block for the destructor which does not have as a successor
3251    // anything built thus far. Control won't flow out of this block.
3252    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3253    if (Dtor->isNoReturn())
3254      Block = createNoReturnBlock();
3255    else
3256      autoCreateBlock();
3257
3258    appendTemporaryDtor(Block, E);
3259    B = Block;
3260  }
3261  return B;
3262}
3263
3264CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3265    AbstractConditionalOperator *E, bool BindToTemporary) {
3266  // First add destructors for condition expression.  Even if this will
3267  // unnecessarily create a block, this block will be used at least by the full
3268  // expression.
3269  autoCreateBlock();
3270  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3271  if (badCFG)
3272    return NULL;
3273  if (BinaryConditionalOperator *BCO
3274        = dyn_cast<BinaryConditionalOperator>(E)) {
3275    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3276    if (badCFG)
3277      return NULL;
3278  }
3279
3280  // Try to add block with destructors for LHS expression.
3281  CFGBlock *LHSBlock = NULL;
3282  Succ = ConfluenceBlock;
3283  Block = NULL;
3284  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3285  if (badCFG)
3286    return NULL;
3287
3288  // Try to add block with destructors for RHS expression;
3289  Succ = ConfluenceBlock;
3290  Block = NULL;
3291  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3292                                              BindToTemporary);
3293  if (badCFG)
3294    return NULL;
3295
3296  if (!RHSBlock && !LHSBlock) {
3297    // If neither LHS nor RHS expression had temporaries to destroy don't create
3298    // more blocks.
3299    Block = ConfluenceBlock;
3300    return Block;
3301  }
3302
3303  Block = createBlock(false);
3304  Block->setTerminator(CFGTerminator(E, true));
3305
3306  // See if this is a known constant.
3307  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3308
3309  if (LHSBlock) {
3310    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3311  } else if (KnownVal.isFalse()) {
3312    addSuccessor(Block, NULL);
3313  } else {
3314    addSuccessor(Block, ConfluenceBlock);
3315    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3316  }
3317
3318  if (!RHSBlock)
3319    RHSBlock = ConfluenceBlock;
3320  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3321
3322  return Block;
3323}
3324
3325} // end anonymous namespace
3326
3327/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3328///  no successors or predecessors.  If this is the first block created in the
3329///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3330CFGBlock *CFG::createBlock() {
3331  bool first_block = begin() == end();
3332
3333  // Create the block.
3334  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3335  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3336  Blocks.push_back(Mem, BlkBVC);
3337
3338  // If this is the first block, set it as the Entry and Exit.
3339  if (first_block)
3340    Entry = Exit = &back();
3341
3342  // Return the block.
3343  return &back();
3344}
3345
3346/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3347///  CFG is returned to the caller.
3348CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3349    const BuildOptions &BO) {
3350  CFGBuilder Builder(C, BO);
3351  return Builder.buildCFG(D, Statement);
3352}
3353
3354const CXXDestructorDecl *
3355CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3356  switch (getKind()) {
3357    case CFGElement::Statement:
3358    case CFGElement::Initializer:
3359      llvm_unreachable("getDestructorDecl should only be used with "
3360                       "ImplicitDtors");
3361    case CFGElement::AutomaticObjectDtor: {
3362      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3363      QualType ty = var->getType();
3364      ty = ty.getNonReferenceType();
3365      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3366        ty = arrayType->getElementType();
3367      }
3368      const RecordType *recordType = ty->getAs<RecordType>();
3369      const CXXRecordDecl *classDecl =
3370      cast<CXXRecordDecl>(recordType->getDecl());
3371      return classDecl->getDestructor();
3372    }
3373    case CFGElement::TemporaryDtor: {
3374      const CXXBindTemporaryExpr *bindExpr =
3375        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3376      const CXXTemporary *temp = bindExpr->getTemporary();
3377      return temp->getDestructor();
3378    }
3379    case CFGElement::BaseDtor:
3380    case CFGElement::MemberDtor:
3381
3382      // Not yet supported.
3383      return 0;
3384  }
3385  llvm_unreachable("getKind() returned bogus value");
3386}
3387
3388bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3389  if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3390    return DD->isNoReturn();
3391  return false;
3392}
3393
3394//===----------------------------------------------------------------------===//
3395// Filtered walking of the CFG.
3396//===----------------------------------------------------------------------===//
3397
3398bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3399        const CFGBlock *From, const CFGBlock *To) {
3400
3401  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3402    // If the 'To' has no label or is labeled but the label isn't a
3403    // CaseStmt then filter this edge.
3404    if (const SwitchStmt *S =
3405        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3406      if (S->isAllEnumCasesCovered()) {
3407        const Stmt *L = To->getLabel();
3408        if (!L || !isa<CaseStmt>(L))
3409          return true;
3410      }
3411    }
3412  }
3413
3414  return false;
3415}
3416
3417//===----------------------------------------------------------------------===//
3418// CFG pretty printing
3419//===----------------------------------------------------------------------===//
3420
3421namespace {
3422
3423class StmtPrinterHelper : public PrinterHelper  {
3424  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3425  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3426  StmtMapTy StmtMap;
3427  DeclMapTy DeclMap;
3428  signed currentBlock;
3429  unsigned currStmt;
3430  const LangOptions &LangOpts;
3431public:
3432
3433  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3434    : currentBlock(0), currStmt(0), LangOpts(LO)
3435  {
3436    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3437      unsigned j = 1;
3438      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3439           BI != BEnd; ++BI, ++j ) {
3440        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3441          const Stmt *stmt= SE->getStmt();
3442          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3443          StmtMap[stmt] = P;
3444
3445          switch (stmt->getStmtClass()) {
3446            case Stmt::DeclStmtClass:
3447                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3448                break;
3449            case Stmt::IfStmtClass: {
3450              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3451              if (var)
3452                DeclMap[var] = P;
3453              break;
3454            }
3455            case Stmt::ForStmtClass: {
3456              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3457              if (var)
3458                DeclMap[var] = P;
3459              break;
3460            }
3461            case Stmt::WhileStmtClass: {
3462              const VarDecl *var =
3463                cast<WhileStmt>(stmt)->getConditionVariable();
3464              if (var)
3465                DeclMap[var] = P;
3466              break;
3467            }
3468            case Stmt::SwitchStmtClass: {
3469              const VarDecl *var =
3470                cast<SwitchStmt>(stmt)->getConditionVariable();
3471              if (var)
3472                DeclMap[var] = P;
3473              break;
3474            }
3475            case Stmt::CXXCatchStmtClass: {
3476              const VarDecl *var =
3477                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3478              if (var)
3479                DeclMap[var] = P;
3480              break;
3481            }
3482            default:
3483              break;
3484          }
3485        }
3486      }
3487    }
3488  }
3489
3490
3491  virtual ~StmtPrinterHelper() {}
3492
3493  const LangOptions &getLangOpts() const { return LangOpts; }
3494  void setBlockID(signed i) { currentBlock = i; }
3495  void setStmtID(unsigned i) { currStmt = i; }
3496
3497  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3498    StmtMapTy::iterator I = StmtMap.find(S);
3499
3500    if (I == StmtMap.end())
3501      return false;
3502
3503    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3504                          && I->second.second == currStmt) {
3505      return false;
3506    }
3507
3508    OS << "[B" << I->second.first << "." << I->second.second << "]";
3509    return true;
3510  }
3511
3512  bool handleDecl(const Decl *D, raw_ostream &OS) {
3513    DeclMapTy::iterator I = DeclMap.find(D);
3514
3515    if (I == DeclMap.end())
3516      return false;
3517
3518    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3519                          && I->second.second == currStmt) {
3520      return false;
3521    }
3522
3523    OS << "[B" << I->second.first << "." << I->second.second << "]";
3524    return true;
3525  }
3526};
3527} // end anonymous namespace
3528
3529
3530namespace {
3531class CFGBlockTerminatorPrint
3532  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3533
3534  raw_ostream &OS;
3535  StmtPrinterHelper* Helper;
3536  PrintingPolicy Policy;
3537public:
3538  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3539                          const PrintingPolicy &Policy)
3540    : OS(os), Helper(helper), Policy(Policy) {}
3541
3542  void VisitIfStmt(IfStmt *I) {
3543    OS << "if ";
3544    I->getCond()->printPretty(OS,Helper,Policy);
3545  }
3546
3547  // Default case.
3548  void VisitStmt(Stmt *Terminator) {
3549    Terminator->printPretty(OS, Helper, Policy);
3550  }
3551
3552  void VisitDeclStmt(DeclStmt *DS) {
3553    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3554    OS << "static init " << VD->getName();
3555  }
3556
3557  void VisitForStmt(ForStmt *F) {
3558    OS << "for (" ;
3559    if (F->getInit())
3560      OS << "...";
3561    OS << "; ";
3562    if (Stmt *C = F->getCond())
3563      C->printPretty(OS, Helper, Policy);
3564    OS << "; ";
3565    if (F->getInc())
3566      OS << "...";
3567    OS << ")";
3568  }
3569
3570  void VisitWhileStmt(WhileStmt *W) {
3571    OS << "while " ;
3572    if (Stmt *C = W->getCond())
3573      C->printPretty(OS, Helper, Policy);
3574  }
3575
3576  void VisitDoStmt(DoStmt *D) {
3577    OS << "do ... while ";
3578    if (Stmt *C = D->getCond())
3579      C->printPretty(OS, Helper, Policy);
3580  }
3581
3582  void VisitSwitchStmt(SwitchStmt *Terminator) {
3583    OS << "switch ";
3584    Terminator->getCond()->printPretty(OS, Helper, Policy);
3585  }
3586
3587  void VisitCXXTryStmt(CXXTryStmt *CS) {
3588    OS << "try ...";
3589  }
3590
3591  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3592    C->getCond()->printPretty(OS, Helper, Policy);
3593    OS << " ? ... : ...";
3594  }
3595
3596  void VisitChooseExpr(ChooseExpr *C) {
3597    OS << "__builtin_choose_expr( ";
3598    C->getCond()->printPretty(OS, Helper, Policy);
3599    OS << " )";
3600  }
3601
3602  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3603    OS << "goto *";
3604    I->getTarget()->printPretty(OS, Helper, Policy);
3605  }
3606
3607  void VisitBinaryOperator(BinaryOperator* B) {
3608    if (!B->isLogicalOp()) {
3609      VisitExpr(B);
3610      return;
3611    }
3612
3613    B->getLHS()->printPretty(OS, Helper, Policy);
3614
3615    switch (B->getOpcode()) {
3616      case BO_LOr:
3617        OS << " || ...";
3618        return;
3619      case BO_LAnd:
3620        OS << " && ...";
3621        return;
3622      default:
3623        llvm_unreachable("Invalid logical operator.");
3624    }
3625  }
3626
3627  void VisitExpr(Expr *E) {
3628    E->printPretty(OS, Helper, Policy);
3629  }
3630};
3631} // end anonymous namespace
3632
3633static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3634                       const CFGElement &E) {
3635  if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
3636    const Stmt *S = CS->getStmt();
3637
3638    if (Helper) {
3639
3640      // special printing for statement-expressions.
3641      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3642        const CompoundStmt *Sub = SE->getSubStmt();
3643
3644        if (Sub->children()) {
3645          OS << "({ ... ; ";
3646          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3647          OS << " })\n";
3648          return;
3649        }
3650      }
3651      // special printing for comma expressions.
3652      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3653        if (B->getOpcode() == BO_Comma) {
3654          OS << "... , ";
3655          Helper->handledStmt(B->getRHS(),OS);
3656          OS << '\n';
3657          return;
3658        }
3659      }
3660    }
3661    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3662
3663    if (isa<CXXOperatorCallExpr>(S)) {
3664      OS << " (OperatorCall)";
3665    }
3666    else if (isa<CXXBindTemporaryExpr>(S)) {
3667      OS << " (BindTemporary)";
3668    }
3669    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3670      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3671    }
3672    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3673      OS << " (" << CE->getStmtClassName() << ", "
3674         << CE->getCastKindName()
3675         << ", " << CE->getType().getAsString()
3676         << ")";
3677    }
3678
3679    // Expressions need a newline.
3680    if (isa<Expr>(S))
3681      OS << '\n';
3682
3683  } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
3684    const CXXCtorInitializer *I = IE->getInitializer();
3685    if (I->isBaseInitializer())
3686      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3687    else OS << I->getAnyMember()->getName();
3688
3689    OS << "(";
3690    if (Expr *IE = I->getInit())
3691      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3692    OS << ")";
3693
3694    if (I->isBaseInitializer())
3695      OS << " (Base initializer)\n";
3696    else OS << " (Member initializer)\n";
3697
3698  } else if (Optional<CFGAutomaticObjDtor> DE =
3699                 E.getAs<CFGAutomaticObjDtor>()) {
3700    const VarDecl *VD = DE->getVarDecl();
3701    Helper->handleDecl(VD, OS);
3702
3703    const Type* T = VD->getType().getTypePtr();
3704    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3705      T = RT->getPointeeType().getTypePtr();
3706    T = T->getBaseElementTypeUnsafe();
3707
3708    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3709    OS << " (Implicit destructor)\n";
3710
3711  } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
3712    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3713    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3714    OS << " (Base object destructor)\n";
3715
3716  } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
3717    const FieldDecl *FD = ME->getFieldDecl();
3718    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
3719    OS << "this->" << FD->getName();
3720    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3721    OS << " (Member object destructor)\n";
3722
3723  } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
3724    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3725    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3726    OS << " (Temporary object destructor)\n";
3727  }
3728}
3729
3730static void print_block(raw_ostream &OS, const CFG* cfg,
3731                        const CFGBlock &B,
3732                        StmtPrinterHelper* Helper, bool print_edges,
3733                        bool ShowColors) {
3734
3735  if (Helper)
3736    Helper->setBlockID(B.getBlockID());
3737
3738  // Print the header.
3739  if (ShowColors)
3740    OS.changeColor(raw_ostream::YELLOW, true);
3741
3742  OS << "\n [B" << B.getBlockID();
3743
3744  if (&B == &cfg->getEntry())
3745    OS << " (ENTRY)]\n";
3746  else if (&B == &cfg->getExit())
3747    OS << " (EXIT)]\n";
3748  else if (&B == cfg->getIndirectGotoBlock())
3749    OS << " (INDIRECT GOTO DISPATCH)]\n";
3750  else
3751    OS << "]\n";
3752
3753  if (ShowColors)
3754    OS.resetColor();
3755
3756  // Print the label of this block.
3757  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3758
3759    if (print_edges)
3760      OS << "  ";
3761
3762    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3763      OS << L->getName();
3764    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3765      OS << "case ";
3766      C->getLHS()->printPretty(OS, Helper,
3767                               PrintingPolicy(Helper->getLangOpts()));
3768      if (C->getRHS()) {
3769        OS << " ... ";
3770        C->getRHS()->printPretty(OS, Helper,
3771                                 PrintingPolicy(Helper->getLangOpts()));
3772      }
3773    } else if (isa<DefaultStmt>(Label))
3774      OS << "default";
3775    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3776      OS << "catch (";
3777      if (CS->getExceptionDecl())
3778        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3779                                      0);
3780      else
3781        OS << "...";
3782      OS << ")";
3783
3784    } else
3785      llvm_unreachable("Invalid label statement in CFGBlock.");
3786
3787    OS << ":\n";
3788  }
3789
3790  // Iterate through the statements in the block and print them.
3791  unsigned j = 1;
3792
3793  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3794       I != E ; ++I, ++j ) {
3795
3796    // Print the statement # in the basic block and the statement itself.
3797    if (print_edges)
3798      OS << " ";
3799
3800    OS << llvm::format("%3d", j) << ": ";
3801
3802    if (Helper)
3803      Helper->setStmtID(j);
3804
3805    print_elem(OS, Helper, *I);
3806  }
3807
3808  // Print the terminator of this block.
3809  if (B.getTerminator()) {
3810    if (ShowColors)
3811      OS.changeColor(raw_ostream::GREEN);
3812
3813    OS << "   T: ";
3814
3815    if (Helper) Helper->setBlockID(-1);
3816
3817    PrintingPolicy PP(Helper ? Helper->getLangOpts() : LangOptions());
3818    CFGBlockTerminatorPrint TPrinter(OS, Helper, PP);
3819    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3820    OS << '\n';
3821
3822    if (ShowColors)
3823      OS.resetColor();
3824  }
3825
3826  if (print_edges) {
3827    // Print the predecessors of this block.
3828    if (!B.pred_empty()) {
3829      const raw_ostream::Colors Color = raw_ostream::BLUE;
3830      if (ShowColors)
3831        OS.changeColor(Color);
3832      OS << "   Preds " ;
3833      if (ShowColors)
3834        OS.resetColor();
3835      OS << '(' << B.pred_size() << "):";
3836      unsigned i = 0;
3837
3838      if (ShowColors)
3839        OS.changeColor(Color);
3840
3841      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3842           I != E; ++I, ++i) {
3843
3844        if (i % 10 == 8)
3845          OS << "\n     ";
3846
3847        OS << " B" << (*I)->getBlockID();
3848      }
3849
3850      if (ShowColors)
3851        OS.resetColor();
3852
3853      OS << '\n';
3854    }
3855
3856    // Print the successors of this block.
3857    if (!B.succ_empty()) {
3858      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3859      if (ShowColors)
3860        OS.changeColor(Color);
3861      OS << "   Succs ";
3862      if (ShowColors)
3863        OS.resetColor();
3864      OS << '(' << B.succ_size() << "):";
3865      unsigned i = 0;
3866
3867      if (ShowColors)
3868        OS.changeColor(Color);
3869
3870      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3871           I != E; ++I, ++i) {
3872
3873        if (i % 10 == 8)
3874          OS << "\n    ";
3875
3876        if (*I)
3877          OS << " B" << (*I)->getBlockID();
3878        else
3879          OS  << " NULL";
3880      }
3881
3882      if (ShowColors)
3883        OS.resetColor();
3884      OS << '\n';
3885    }
3886  }
3887}
3888
3889
3890/// dump - A simple pretty printer of a CFG that outputs to stderr.
3891void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3892  print(llvm::errs(), LO, ShowColors);
3893}
3894
3895/// print - A simple pretty printer of a CFG that outputs to an ostream.
3896void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3897  StmtPrinterHelper Helper(this, LO);
3898
3899  // Print the entry block.
3900  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3901
3902  // Iterate through the CFGBlocks and print them one by one.
3903  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3904    // Skip the entry block, because we already printed it.
3905    if (&(**I) == &getEntry() || &(**I) == &getExit())
3906      continue;
3907
3908    print_block(OS, this, **I, &Helper, true, ShowColors);
3909  }
3910
3911  // Print the exit block.
3912  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3913  OS << '\n';
3914  OS.flush();
3915}
3916
3917/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3918void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3919                    bool ShowColors) const {
3920  print(llvm::errs(), cfg, LO, ShowColors);
3921}
3922
3923/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3924///   Generally this will only be called from CFG::print.
3925void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3926                     const LangOptions &LO, bool ShowColors) const {
3927  StmtPrinterHelper Helper(cfg, LO);
3928  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3929  OS << '\n';
3930}
3931
3932/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3933void CFGBlock::printTerminator(raw_ostream &OS,
3934                               const LangOptions &LO) const {
3935  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3936  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3937}
3938
3939Stmt *CFGBlock::getTerminatorCondition() {
3940  Stmt *Terminator = this->Terminator;
3941  if (!Terminator)
3942    return NULL;
3943
3944  Expr *E = NULL;
3945
3946  switch (Terminator->getStmtClass()) {
3947    default:
3948      break;
3949
3950    case Stmt::ForStmtClass:
3951      E = cast<ForStmt>(Terminator)->getCond();
3952      break;
3953
3954    case Stmt::WhileStmtClass:
3955      E = cast<WhileStmt>(Terminator)->getCond();
3956      break;
3957
3958    case Stmt::DoStmtClass:
3959      E = cast<DoStmt>(Terminator)->getCond();
3960      break;
3961
3962    case Stmt::IfStmtClass:
3963      E = cast<IfStmt>(Terminator)->getCond();
3964      break;
3965
3966    case Stmt::ChooseExprClass:
3967      E = cast<ChooseExpr>(Terminator)->getCond();
3968      break;
3969
3970    case Stmt::IndirectGotoStmtClass:
3971      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3972      break;
3973
3974    case Stmt::SwitchStmtClass:
3975      E = cast<SwitchStmt>(Terminator)->getCond();
3976      break;
3977
3978    case Stmt::BinaryConditionalOperatorClass:
3979      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3980      break;
3981
3982    case Stmt::ConditionalOperatorClass:
3983      E = cast<ConditionalOperator>(Terminator)->getCond();
3984      break;
3985
3986    case Stmt::BinaryOperatorClass: // '&&' and '||'
3987      E = cast<BinaryOperator>(Terminator)->getLHS();
3988      break;
3989
3990    case Stmt::ObjCForCollectionStmtClass:
3991      return Terminator;
3992  }
3993
3994  return E ? E->IgnoreParens() : NULL;
3995}
3996
3997//===----------------------------------------------------------------------===//
3998// CFG Graphviz Visualization
3999//===----------------------------------------------------------------------===//
4000
4001
4002#ifndef NDEBUG
4003static StmtPrinterHelper* GraphHelper;
4004#endif
4005
4006void CFG::viewCFG(const LangOptions &LO) const {
4007#ifndef NDEBUG
4008  StmtPrinterHelper H(this, LO);
4009  GraphHelper = &H;
4010  llvm::ViewGraph(this,"CFG");
4011  GraphHelper = NULL;
4012#endif
4013}
4014
4015namespace llvm {
4016template<>
4017struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4018
4019  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4020
4021  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4022
4023#ifndef NDEBUG
4024    std::string OutSStr;
4025    llvm::raw_string_ostream Out(OutSStr);
4026    print_block(Out,Graph, *Node, GraphHelper, false, false);
4027    std::string& OutStr = Out.str();
4028
4029    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4030
4031    // Process string output to make it nicer...
4032    for (unsigned i = 0; i != OutStr.length(); ++i)
4033      if (OutStr[i] == '\n') {                            // Left justify
4034        OutStr[i] = '\\';
4035        OutStr.insert(OutStr.begin()+i+1, 'l');
4036      }
4037
4038    return OutStr;
4039#else
4040    return "";
4041#endif
4042  }
4043};
4044} // end namespace llvm
4045