CFG.cpp revision 534986f2b21e6050bf00163cd6423fd92155a6ed
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Basic/AttrKinds.h"
22#include "llvm/Support/GraphWriter.h"
23#include "llvm/Support/Allocator.h"
24#include "llvm/Support/Format.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/OwningPtr.h"
28
29using namespace clang;
30
31namespace {
32
33static SourceLocation GetEndLoc(Decl *D) {
34  if (VarDecl *VD = dyn_cast<VarDecl>(D))
35    if (Expr *Ex = VD->getInit())
36      return Ex->getSourceRange().getEnd();
37  return D->getLocation();
38}
39
40class CFGBuilder;
41
42/// The CFG builder uses a recursive algorithm to build the CFG.  When
43///  we process an expression, sometimes we know that we must add the
44///  subexpressions as block-level expressions.  For example:
45///
46///    exp1 || exp2
47///
48///  When processing the '||' expression, we know that exp1 and exp2
49///  need to be added as block-level expressions, even though they
50///  might not normally need to be.  AddStmtChoice records this
51///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
52///  the builder has an option not to add a subexpression as a
53///  block-level expression.
54///
55class AddStmtChoice {
56public:
57  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
58
59  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
60
61  bool alwaysAdd(CFGBuilder &builder,
62                 const Stmt *stmt) const;
63
64  /// Return a copy of this object, except with the 'always-add' bit
65  ///  set as specified.
66  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
67    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
68  }
69
70private:
71  Kind kind;
72};
73
74/// LocalScope - Node in tree of local scopes created for C++ implicit
75/// destructor calls generation. It contains list of automatic variables
76/// declared in the scope and link to position in previous scope this scope
77/// began in.
78///
79/// The process of creating local scopes is as follows:
80/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
81/// - Before processing statements in scope (e.g. CompoundStmt) create
82///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
83///   and set CFGBuilder::ScopePos to the end of new scope,
84/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
85///   at this VarDecl,
86/// - For every normal (without jump) end of scope add to CFGBlock destructors
87///   for objects in the current scope,
88/// - For every jump add to CFGBlock destructors for objects
89///   between CFGBuilder::ScopePos and local scope position saved for jump
90///   target. Thanks to C++ restrictions on goto jumps we can be sure that
91///   jump target position will be on the path to root from CFGBuilder::ScopePos
92///   (adding any variable that doesn't need constructor to be called to
93///   LocalScope can break this assumption),
94///
95class LocalScope {
96public:
97  typedef BumpVector<VarDecl*> AutomaticVarsTy;
98
99  /// const_iterator - Iterates local scope backwards and jumps to previous
100  /// scope on reaching the beginning of currently iterated scope.
101  class const_iterator {
102    const LocalScope* Scope;
103
104    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
105    /// Invalid iterator (with null Scope) has VarIter equal to 0.
106    unsigned VarIter;
107
108  public:
109    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
110    /// Incrementing invalid iterator is allowed and will result in invalid
111    /// iterator.
112    const_iterator()
113        : Scope(NULL), VarIter(0) {}
114
115    /// Create valid iterator. In case when S.Prev is an invalid iterator and
116    /// I is equal to 0, this will create invalid iterator.
117    const_iterator(const LocalScope& S, unsigned I)
118        : Scope(&S), VarIter(I) {
119      // Iterator to "end" of scope is not allowed. Handle it by going up
120      // in scopes tree possibly up to invalid iterator in the root.
121      if (VarIter == 0 && Scope)
122        *this = Scope->Prev;
123    }
124
125    VarDecl *const* operator->() const {
126      assert (Scope && "Dereferencing invalid iterator is not allowed");
127      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
128      return &Scope->Vars[VarIter - 1];
129    }
130    VarDecl *operator*() const {
131      return *this->operator->();
132    }
133
134    const_iterator &operator++() {
135      if (!Scope)
136        return *this;
137
138      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
139      --VarIter;
140      if (VarIter == 0)
141        *this = Scope->Prev;
142      return *this;
143    }
144    const_iterator operator++(int) {
145      const_iterator P = *this;
146      ++*this;
147      return P;
148    }
149
150    bool operator==(const const_iterator &rhs) const {
151      return Scope == rhs.Scope && VarIter == rhs.VarIter;
152    }
153    bool operator!=(const const_iterator &rhs) const {
154      return !(*this == rhs);
155    }
156
157    operator bool() const {
158      return *this != const_iterator();
159    }
160
161    int distance(const_iterator L);
162  };
163
164  friend class const_iterator;
165
166private:
167  BumpVectorContext ctx;
168
169  /// Automatic variables in order of declaration.
170  AutomaticVarsTy Vars;
171  /// Iterator to variable in previous scope that was declared just before
172  /// begin of this scope.
173  const_iterator Prev;
174
175public:
176  /// Constructs empty scope linked to previous scope in specified place.
177  LocalScope(BumpVectorContext &ctx, const_iterator P)
178      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
179
180  /// Begin of scope in direction of CFG building (backwards).
181  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
182
183  void addVar(VarDecl *VD) {
184    Vars.push_back(VD, ctx);
185  }
186};
187
188/// distance - Calculates distance from this to L. L must be reachable from this
189/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
190/// number of scopes between this and L.
191int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
192  int D = 0;
193  const_iterator F = *this;
194  while (F.Scope != L.Scope) {
195    assert (F != const_iterator()
196        && "L iterator is not reachable from F iterator.");
197    D += F.VarIter;
198    F = F.Scope->Prev;
199  }
200  D += F.VarIter - L.VarIter;
201  return D;
202}
203
204/// BlockScopePosPair - Structure for specifying position in CFG during its
205/// build process. It consists of CFGBlock that specifies position in CFG graph
206/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
207struct BlockScopePosPair {
208  BlockScopePosPair() : block(0) {}
209  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
210      : block(b), scopePosition(scopePos) {}
211
212  CFGBlock *block;
213  LocalScope::const_iterator scopePosition;
214};
215
216/// TryResult - a class representing a variant over the values
217///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
218///  and is used by the CFGBuilder to decide if a branch condition
219///  can be decided up front during CFG construction.
220class TryResult {
221  int X;
222public:
223  TryResult(bool b) : X(b ? 1 : 0) {}
224  TryResult() : X(-1) {}
225
226  bool isTrue() const { return X == 1; }
227  bool isFalse() const { return X == 0; }
228  bool isKnown() const { return X >= 0; }
229  void negate() {
230    assert(isKnown());
231    X ^= 0x1;
232  }
233};
234
235/// CFGBuilder - This class implements CFG construction from an AST.
236///   The builder is stateful: an instance of the builder should be used to only
237///   construct a single CFG.
238///
239///   Example usage:
240///
241///     CFGBuilder builder;
242///     CFG* cfg = builder.BuildAST(stmt1);
243///
244///  CFG construction is done via a recursive walk of an AST.  We actually parse
245///  the AST in reverse order so that the successor of a basic block is
246///  constructed prior to its predecessor.  This allows us to nicely capture
247///  implicit fall-throughs without extra basic blocks.
248///
249class CFGBuilder {
250  typedef BlockScopePosPair JumpTarget;
251  typedef BlockScopePosPair JumpSource;
252
253  ASTContext *Context;
254  OwningPtr<CFG> cfg;
255
256  CFGBlock *Block;
257  CFGBlock *Succ;
258  JumpTarget ContinueJumpTarget;
259  JumpTarget BreakJumpTarget;
260  CFGBlock *SwitchTerminatedBlock;
261  CFGBlock *DefaultCaseBlock;
262  CFGBlock *TryTerminatedBlock;
263
264  // Current position in local scope.
265  LocalScope::const_iterator ScopePos;
266
267  // LabelMap records the mapping from Label expressions to their jump targets.
268  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
269  LabelMapTy LabelMap;
270
271  // A list of blocks that end with a "goto" that must be backpatched to their
272  // resolved targets upon completion of CFG construction.
273  typedef std::vector<JumpSource> BackpatchBlocksTy;
274  BackpatchBlocksTy BackpatchBlocks;
275
276  // A list of labels whose address has been taken (for indirect gotos).
277  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
278  LabelSetTy AddressTakenLabels;
279
280  bool badCFG;
281  const CFG::BuildOptions &BuildOpts;
282
283  // State to track for building switch statements.
284  bool switchExclusivelyCovered;
285  Expr::EvalResult *switchCond;
286
287  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
288  const Stmt *lastLookup;
289
290  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
291  // during construction of branches for chained logical operators.
292  typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
293  CachedBoolEvalsTy CachedBoolEvals;
294
295public:
296  explicit CFGBuilder(ASTContext *astContext,
297                      const CFG::BuildOptions &buildOpts)
298    : Context(astContext), cfg(new CFG()), // crew a new CFG
299      Block(NULL), Succ(NULL),
300      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
301      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
302      switchExclusivelyCovered(false), switchCond(0),
303      cachedEntry(0), lastLookup(0) {}
304
305  // buildCFG - Used by external clients to construct the CFG.
306  CFG* buildCFG(const Decl *D, Stmt *Statement);
307
308  bool alwaysAdd(const Stmt *stmt);
309
310private:
311  // Visitors to walk an AST and construct the CFG.
312  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
313  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
314  CFGBlock *VisitBreakStmt(BreakStmt *B);
315  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
316  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
317      AddStmtChoice asc);
318  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
319  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
320  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
321  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
322                                      AddStmtChoice asc);
323  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
325                                       AddStmtChoice asc);
326  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
327                                        AddStmtChoice asc);
328  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
329  CFGBlock *VisitCaseStmt(CaseStmt *C);
330  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
331  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
332  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
333                                     AddStmtChoice asc);
334  CFGBlock *VisitContinueStmt(ContinueStmt *C);
335  CFGBlock *VisitDeclStmt(DeclStmt *DS);
336  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
337  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
338  CFGBlock *VisitDoStmt(DoStmt *D);
339  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
340  CFGBlock *VisitForStmt(ForStmt *F);
341  CFGBlock *VisitGotoStmt(GotoStmt *G);
342  CFGBlock *VisitIfStmt(IfStmt *I);
343  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
344  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
345  CFGBlock *VisitLabelStmt(LabelStmt *L);
346  CFGBlock *VisitLambdaExpr(LambdaExpr *L);
347  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
348  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
349  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
350  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
351  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
352  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
353  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
354  CFGBlock *VisitReturnStmt(ReturnStmt *R);
355  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
356  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
357                                          AddStmtChoice asc);
358  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
359  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
360  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
361  CFGBlock *VisitWhileStmt(WhileStmt *W);
362
363  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
364  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
365  CFGBlock *VisitChildren(Stmt *S);
366  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
367
368  // Visitors to walk an AST and generate destructors of temporaries in
369  // full expression.
370  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
371  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
372  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
373  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
374      bool BindToTemporary);
375  CFGBlock *
376  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
377                                            bool BindToTemporary);
378
379  // NYS == Not Yet Supported
380  CFGBlock *NYS() {
381    badCFG = true;
382    return Block;
383  }
384
385  void autoCreateBlock() { if (!Block) Block = createBlock(); }
386  CFGBlock *createBlock(bool add_successor = true);
387  CFGBlock *createNoReturnBlock();
388
389  CFGBlock *addStmt(Stmt *S) {
390    return Visit(S, AddStmtChoice::AlwaysAdd);
391  }
392  CFGBlock *addInitializer(CXXCtorInitializer *I);
393  void addAutomaticObjDtors(LocalScope::const_iterator B,
394                            LocalScope::const_iterator E, Stmt *S);
395  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
396
397  // Local scopes creation.
398  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
399
400  void addLocalScopeForStmt(Stmt *S);
401  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
402  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
403
404  void addLocalScopeAndDtors(Stmt *S);
405
406  // Interface to CFGBlock - adding CFGElements.
407  void appendStmt(CFGBlock *B, const Stmt *S) {
408    if (alwaysAdd(S) && cachedEntry)
409      cachedEntry->second = B;
410
411    // All block-level expressions should have already been IgnoreParens()ed.
412    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
413    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
414  }
415  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
416    B->appendInitializer(I, cfg->getBumpVectorContext());
417  }
418  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
419    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
420  }
421  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
422    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
423  }
424  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
425    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
426  }
427  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
428    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
429  }
430
431  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
432      LocalScope::const_iterator B, LocalScope::const_iterator E);
433
434  void addSuccessor(CFGBlock *B, CFGBlock *S) {
435    B->addSuccessor(S, cfg->getBumpVectorContext());
436  }
437
438  /// Try and evaluate an expression to an integer constant.
439  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
440    if (!BuildOpts.PruneTriviallyFalseEdges)
441      return false;
442    return !S->isTypeDependent() &&
443           !S->isValueDependent() &&
444           S->EvaluateAsRValue(outResult, *Context);
445  }
446
447  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
448  /// if we can evaluate to a known value, otherwise return -1.
449  TryResult tryEvaluateBool(Expr *S) {
450    if (!BuildOpts.PruneTriviallyFalseEdges ||
451        S->isTypeDependent() || S->isValueDependent())
452      return TryResult();
453
454    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
455      if (Bop->isLogicalOp()) {
456        // Check the cache first.
457        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
458        if (I != CachedBoolEvals.end())
459          return I->second; // already in map;
460
461        // Retrieve result at first, or the map might be updated.
462        TryResult Result = evaluateAsBooleanConditionNoCache(S);
463        CachedBoolEvals[S] = Result; // update or insert
464        return Result;
465      }
466    }
467
468    return evaluateAsBooleanConditionNoCache(S);
469  }
470
471  /// \brief Evaluate as boolean \param E without using the cache.
472  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
473    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
474      if (Bop->isLogicalOp()) {
475        TryResult LHS = tryEvaluateBool(Bop->getLHS());
476        if (LHS.isKnown()) {
477          // We were able to evaluate the LHS, see if we can get away with not
478          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
479          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
480            return LHS.isTrue();
481
482          TryResult RHS = tryEvaluateBool(Bop->getRHS());
483          if (RHS.isKnown()) {
484            if (Bop->getOpcode() == BO_LOr)
485              return LHS.isTrue() || RHS.isTrue();
486            else
487              return LHS.isTrue() && RHS.isTrue();
488          }
489        } else {
490          TryResult RHS = tryEvaluateBool(Bop->getRHS());
491          if (RHS.isKnown()) {
492            // We can't evaluate the LHS; however, sometimes the result
493            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
494            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
495              return RHS.isTrue();
496          }
497        }
498
499        return TryResult();
500      }
501    }
502
503    bool Result;
504    if (E->EvaluateAsBooleanCondition(Result, *Context))
505      return Result;
506
507    return TryResult();
508  }
509
510};
511
512inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
513                                     const Stmt *stmt) const {
514  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
515}
516
517bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
518  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
519
520  if (!BuildOpts.forcedBlkExprs)
521    return shouldAdd;
522
523  if (lastLookup == stmt) {
524    if (cachedEntry) {
525      assert(cachedEntry->first == stmt);
526      return true;
527    }
528    return shouldAdd;
529  }
530
531  lastLookup = stmt;
532
533  // Perform the lookup!
534  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
535
536  if (!fb) {
537    // No need to update 'cachedEntry', since it will always be null.
538    assert(cachedEntry == 0);
539    return shouldAdd;
540  }
541
542  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
543  if (itr == fb->end()) {
544    cachedEntry = 0;
545    return shouldAdd;
546  }
547
548  cachedEntry = &*itr;
549  return true;
550}
551
552// FIXME: Add support for dependent-sized array types in C++?
553// Does it even make sense to build a CFG for an uninstantiated template?
554static const VariableArrayType *FindVA(const Type *t) {
555  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
556    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
557      if (vat->getSizeExpr())
558        return vat;
559
560    t = vt->getElementType().getTypePtr();
561  }
562
563  return 0;
564}
565
566/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
567///  arbitrary statement.  Examples include a single expression or a function
568///  body (compound statement).  The ownership of the returned CFG is
569///  transferred to the caller.  If CFG construction fails, this method returns
570///  NULL.
571CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
572  assert(cfg.get());
573  if (!Statement)
574    return NULL;
575
576  // Create an empty block that will serve as the exit block for the CFG.  Since
577  // this is the first block added to the CFG, it will be implicitly registered
578  // as the exit block.
579  Succ = createBlock();
580  assert(Succ == &cfg->getExit());
581  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
582
583  if (BuildOpts.AddImplicitDtors)
584    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
585      addImplicitDtorsForDestructor(DD);
586
587  // Visit the statements and create the CFG.
588  CFGBlock *B = addStmt(Statement);
589
590  if (badCFG)
591    return NULL;
592
593  // For C++ constructor add initializers to CFG.
594  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
595    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
596        E = CD->init_rend(); I != E; ++I) {
597      B = addInitializer(*I);
598      if (badCFG)
599        return NULL;
600    }
601  }
602
603  if (B)
604    Succ = B;
605
606  // Backpatch the gotos whose label -> block mappings we didn't know when we
607  // encountered them.
608  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
609                                   E = BackpatchBlocks.end(); I != E; ++I ) {
610
611    CFGBlock *B = I->block;
612    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
613    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
614
615    // If there is no target for the goto, then we are looking at an
616    // incomplete AST.  Handle this by not registering a successor.
617    if (LI == LabelMap.end()) continue;
618
619    JumpTarget JT = LI->second;
620    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
621                                           JT.scopePosition);
622    addSuccessor(B, JT.block);
623  }
624
625  // Add successors to the Indirect Goto Dispatch block (if we have one).
626  if (CFGBlock *B = cfg->getIndirectGotoBlock())
627    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
628                              E = AddressTakenLabels.end(); I != E; ++I ) {
629
630      // Lookup the target block.
631      LabelMapTy::iterator LI = LabelMap.find(*I);
632
633      // If there is no target block that contains label, then we are looking
634      // at an incomplete AST.  Handle this by not registering a successor.
635      if (LI == LabelMap.end()) continue;
636
637      addSuccessor(B, LI->second.block);
638    }
639
640  // Create an empty entry block that has no predecessors.
641  cfg->setEntry(createBlock());
642
643  return cfg.take();
644}
645
646/// createBlock - Used to lazily create blocks that are connected
647///  to the current (global) succcessor.
648CFGBlock *CFGBuilder::createBlock(bool add_successor) {
649  CFGBlock *B = cfg->createBlock();
650  if (add_successor && Succ)
651    addSuccessor(B, Succ);
652  return B;
653}
654
655/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
656/// CFG. It is *not* connected to the current (global) successor, and instead
657/// directly tied to the exit block in order to be reachable.
658CFGBlock *CFGBuilder::createNoReturnBlock() {
659  CFGBlock *B = createBlock(false);
660  B->setHasNoReturnElement();
661  addSuccessor(B, &cfg->getExit());
662  return B;
663}
664
665/// addInitializer - Add C++ base or member initializer element to CFG.
666CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
667  if (!BuildOpts.AddInitializers)
668    return Block;
669
670  bool IsReference = false;
671  bool HasTemporaries = false;
672
673  // Destructors of temporaries in initialization expression should be called
674  // after initialization finishes.
675  Expr *Init = I->getInit();
676  if (Init) {
677    if (FieldDecl *FD = I->getAnyMember())
678      IsReference = FD->getType()->isReferenceType();
679    HasTemporaries = isa<ExprWithCleanups>(Init);
680
681    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
682      // Generate destructors for temporaries in initialization expression.
683      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
684          IsReference);
685    }
686  }
687
688  autoCreateBlock();
689  appendInitializer(Block, I);
690
691  if (Init) {
692    if (HasTemporaries) {
693      // For expression with temporaries go directly to subexpression to omit
694      // generating destructors for the second time.
695      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
696    }
697    return Visit(Init);
698  }
699
700  return Block;
701}
702
703/// \brief Retrieve the type of the temporary object whose lifetime was
704/// extended by a local reference with the given initializer.
705static QualType getReferenceInitTemporaryType(ASTContext &Context,
706                                              const Expr *Init) {
707  while (true) {
708    // Skip parentheses.
709    Init = Init->IgnoreParens();
710
711    // Skip through cleanups.
712    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
713      Init = EWC->getSubExpr();
714      continue;
715    }
716
717    // Skip through the temporary-materialization expression.
718    if (const MaterializeTemporaryExpr *MTE
719          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
720      Init = MTE->GetTemporaryExpr();
721      continue;
722    }
723
724    // Skip derived-to-base and no-op casts.
725    if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
726      if ((CE->getCastKind() == CK_DerivedToBase ||
727           CE->getCastKind() == CK_UncheckedDerivedToBase ||
728           CE->getCastKind() == CK_NoOp) &&
729          Init->getType()->isRecordType()) {
730        Init = CE->getSubExpr();
731        continue;
732      }
733    }
734
735    // Skip member accesses into rvalues.
736    if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
737      if (!ME->isArrow() && ME->getBase()->isRValue()) {
738        Init = ME->getBase();
739        continue;
740      }
741    }
742
743    break;
744  }
745
746  return Init->getType();
747}
748
749/// addAutomaticObjDtors - Add to current block automatic objects destructors
750/// for objects in range of local scope positions. Use S as trigger statement
751/// for destructors.
752void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
753                                      LocalScope::const_iterator E, Stmt *S) {
754  if (!BuildOpts.AddImplicitDtors)
755    return;
756
757  if (B == E)
758    return;
759
760  // We need to append the destructors in reverse order, but any one of them
761  // may be a no-return destructor which changes the CFG. As a result, buffer
762  // this sequence up and replay them in reverse order when appending onto the
763  // CFGBlock(s).
764  SmallVector<VarDecl*, 10> Decls;
765  Decls.reserve(B.distance(E));
766  for (LocalScope::const_iterator I = B; I != E; ++I)
767    Decls.push_back(*I);
768
769  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
770                                                   E = Decls.rend();
771       I != E; ++I) {
772    // If this destructor is marked as a no-return destructor, we need to
773    // create a new block for the destructor which does not have as a successor
774    // anything built thus far: control won't flow out of this block.
775    QualType Ty;
776    if ((*I)->getType()->isReferenceType()) {
777      Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
778    } else {
779      Ty = Context->getBaseElementType((*I)->getType());
780    }
781
782    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
783    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
784      Block = createNoReturnBlock();
785    else
786      autoCreateBlock();
787
788    appendAutomaticObjDtor(Block, *I, S);
789  }
790}
791
792/// addImplicitDtorsForDestructor - Add implicit destructors generated for
793/// base and member objects in destructor.
794void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
795  assert (BuildOpts.AddImplicitDtors
796      && "Can be called only when dtors should be added");
797  const CXXRecordDecl *RD = DD->getParent();
798
799  // At the end destroy virtual base objects.
800  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
801      VE = RD->vbases_end(); VI != VE; ++VI) {
802    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
803    if (!CD->hasTrivialDestructor()) {
804      autoCreateBlock();
805      appendBaseDtor(Block, VI);
806    }
807  }
808
809  // Before virtual bases destroy direct base objects.
810  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
811      BE = RD->bases_end(); BI != BE; ++BI) {
812    if (!BI->isVirtual()) {
813      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
814      if (!CD->hasTrivialDestructor()) {
815        autoCreateBlock();
816        appendBaseDtor(Block, BI);
817      }
818    }
819  }
820
821  // First destroy member objects.
822  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
823      FE = RD->field_end(); FI != FE; ++FI) {
824    // Check for constant size array. Set type to array element type.
825    QualType QT = FI->getType();
826    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
827      if (AT->getSize() == 0)
828        continue;
829      QT = AT->getElementType();
830    }
831
832    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
833      if (!CD->hasTrivialDestructor()) {
834        autoCreateBlock();
835        appendMemberDtor(Block, *FI);
836      }
837  }
838}
839
840/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
841/// way return valid LocalScope object.
842LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
843  if (!Scope) {
844    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
845    Scope = alloc.Allocate<LocalScope>();
846    BumpVectorContext ctx(alloc);
847    new (Scope) LocalScope(ctx, ScopePos);
848  }
849  return Scope;
850}
851
852/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
853/// that should create implicit scope (e.g. if/else substatements).
854void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
855  if (!BuildOpts.AddImplicitDtors)
856    return;
857
858  LocalScope *Scope = 0;
859
860  // For compound statement we will be creating explicit scope.
861  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
862    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
863        ; BI != BE; ++BI) {
864      Stmt *SI = (*BI)->stripLabelLikeStatements();
865      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
866        Scope = addLocalScopeForDeclStmt(DS, Scope);
867    }
868    return;
869  }
870
871  // For any other statement scope will be implicit and as such will be
872  // interesting only for DeclStmt.
873  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
874    addLocalScopeForDeclStmt(DS);
875}
876
877/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
878/// reuse Scope if not NULL.
879LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
880                                                 LocalScope* Scope) {
881  if (!BuildOpts.AddImplicitDtors)
882    return Scope;
883
884  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
885      ; DI != DE; ++DI) {
886    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
887      Scope = addLocalScopeForVarDecl(VD, Scope);
888  }
889  return Scope;
890}
891
892/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
893/// create add scope for automatic objects and temporary objects bound to
894/// const reference. Will reuse Scope if not NULL.
895LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
896                                                LocalScope* Scope) {
897  if (!BuildOpts.AddImplicitDtors)
898    return Scope;
899
900  // Check if variable is local.
901  switch (VD->getStorageClass()) {
902  case SC_None:
903  case SC_Auto:
904  case SC_Register:
905    break;
906  default: return Scope;
907  }
908
909  // Check for const references bound to temporary. Set type to pointee.
910  QualType QT = VD->getType();
911  if (QT.getTypePtr()->isReferenceType()) {
912    if (!VD->extendsLifetimeOfTemporary())
913      return Scope;
914
915    QT = getReferenceInitTemporaryType(*Context, VD->getInit());
916  }
917
918  // Check for constant size array. Set type to array element type.
919  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
920    if (AT->getSize() == 0)
921      return Scope;
922    QT = AT->getElementType();
923  }
924
925  // Check if type is a C++ class with non-trivial destructor.
926  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
927    if (!CD->hasTrivialDestructor()) {
928      // Add the variable to scope
929      Scope = createOrReuseLocalScope(Scope);
930      Scope->addVar(VD);
931      ScopePos = Scope->begin();
932    }
933  return Scope;
934}
935
936/// addLocalScopeAndDtors - For given statement add local scope for it and
937/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
938void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
939  if (!BuildOpts.AddImplicitDtors)
940    return;
941
942  LocalScope::const_iterator scopeBeginPos = ScopePos;
943  addLocalScopeForStmt(S);
944  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
945}
946
947/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
948/// variables with automatic storage duration to CFGBlock's elements vector.
949/// Elements will be prepended to physical beginning of the vector which
950/// happens to be logical end. Use blocks terminator as statement that specifies
951/// destructors call site.
952/// FIXME: This mechanism for adding automatic destructors doesn't handle
953/// no-return destructors properly.
954void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
955    LocalScope::const_iterator B, LocalScope::const_iterator E) {
956  BumpVectorContext &C = cfg->getBumpVectorContext();
957  CFGBlock::iterator InsertPos
958    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
959  for (LocalScope::const_iterator I = B; I != E; ++I)
960    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
961                                            Blk->getTerminator());
962}
963
964/// Visit - Walk the subtree of a statement and add extra
965///   blocks for ternary operators, &&, and ||.  We also process "," and
966///   DeclStmts (which may contain nested control-flow).
967CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
968  if (!S) {
969    badCFG = true;
970    return 0;
971  }
972
973  if (Expr *E = dyn_cast<Expr>(S))
974    S = E->IgnoreParens();
975
976  switch (S->getStmtClass()) {
977    default:
978      return VisitStmt(S, asc);
979
980    case Stmt::AddrLabelExprClass:
981      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
982
983    case Stmt::BinaryConditionalOperatorClass:
984      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
985
986    case Stmt::BinaryOperatorClass:
987      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
988
989    case Stmt::BlockExprClass:
990      return VisitNoRecurse(cast<Expr>(S), asc);
991
992    case Stmt::BreakStmtClass:
993      return VisitBreakStmt(cast<BreakStmt>(S));
994
995    case Stmt::CallExprClass:
996    case Stmt::CXXOperatorCallExprClass:
997    case Stmt::CXXMemberCallExprClass:
998    case Stmt::UserDefinedLiteralClass:
999      return VisitCallExpr(cast<CallExpr>(S), asc);
1000
1001    case Stmt::CaseStmtClass:
1002      return VisitCaseStmt(cast<CaseStmt>(S));
1003
1004    case Stmt::ChooseExprClass:
1005      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1006
1007    case Stmt::CompoundStmtClass:
1008      return VisitCompoundStmt(cast<CompoundStmt>(S));
1009
1010    case Stmt::ConditionalOperatorClass:
1011      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1012
1013    case Stmt::ContinueStmtClass:
1014      return VisitContinueStmt(cast<ContinueStmt>(S));
1015
1016    case Stmt::CXXCatchStmtClass:
1017      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1018
1019    case Stmt::ExprWithCleanupsClass:
1020      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1021
1022    case Stmt::CXXBindTemporaryExprClass:
1023      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1024
1025    case Stmt::CXXConstructExprClass:
1026      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1027
1028    case Stmt::CXXFunctionalCastExprClass:
1029      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1030
1031    case Stmt::CXXTemporaryObjectExprClass:
1032      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1033
1034    case Stmt::CXXThrowExprClass:
1035      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1036
1037    case Stmt::CXXTryStmtClass:
1038      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1039
1040    case Stmt::CXXForRangeStmtClass:
1041      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1042
1043    case Stmt::DeclStmtClass:
1044      return VisitDeclStmt(cast<DeclStmt>(S));
1045
1046    case Stmt::DefaultStmtClass:
1047      return VisitDefaultStmt(cast<DefaultStmt>(S));
1048
1049    case Stmt::DoStmtClass:
1050      return VisitDoStmt(cast<DoStmt>(S));
1051
1052    case Stmt::ForStmtClass:
1053      return VisitForStmt(cast<ForStmt>(S));
1054
1055    case Stmt::GotoStmtClass:
1056      return VisitGotoStmt(cast<GotoStmt>(S));
1057
1058    case Stmt::IfStmtClass:
1059      return VisitIfStmt(cast<IfStmt>(S));
1060
1061    case Stmt::ImplicitCastExprClass:
1062      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1063
1064    case Stmt::IndirectGotoStmtClass:
1065      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1066
1067    case Stmt::LabelStmtClass:
1068      return VisitLabelStmt(cast<LabelStmt>(S));
1069
1070    case Stmt::LambdaExprClass:
1071      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1072
1073    case Stmt::AttributedStmtClass:
1074      return Visit(cast<AttributedStmt>(S)->getSubStmt(), asc);
1075
1076    case Stmt::MemberExprClass:
1077      return VisitMemberExpr(cast<MemberExpr>(S), asc);
1078
1079    case Stmt::NullStmtClass:
1080      return Block;
1081
1082    case Stmt::ObjCAtCatchStmtClass:
1083      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1084
1085    case Stmt::ObjCAutoreleasePoolStmtClass:
1086    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1087
1088    case Stmt::ObjCAtSynchronizedStmtClass:
1089      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1090
1091    case Stmt::ObjCAtThrowStmtClass:
1092      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1093
1094    case Stmt::ObjCAtTryStmtClass:
1095      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1096
1097    case Stmt::ObjCForCollectionStmtClass:
1098      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1099
1100    case Stmt::OpaqueValueExprClass:
1101      return Block;
1102
1103    case Stmt::PseudoObjectExprClass:
1104      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1105
1106    case Stmt::ReturnStmtClass:
1107      return VisitReturnStmt(cast<ReturnStmt>(S));
1108
1109    case Stmt::UnaryExprOrTypeTraitExprClass:
1110      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1111                                           asc);
1112
1113    case Stmt::StmtExprClass:
1114      return VisitStmtExpr(cast<StmtExpr>(S), asc);
1115
1116    case Stmt::SwitchStmtClass:
1117      return VisitSwitchStmt(cast<SwitchStmt>(S));
1118
1119    case Stmt::UnaryOperatorClass:
1120      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1121
1122    case Stmt::WhileStmtClass:
1123      return VisitWhileStmt(cast<WhileStmt>(S));
1124  }
1125}
1126
1127CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1128  if (asc.alwaysAdd(*this, S)) {
1129    autoCreateBlock();
1130    appendStmt(Block, S);
1131  }
1132
1133  return VisitChildren(S);
1134}
1135
1136/// VisitChildren - Visit the children of a Stmt.
1137CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1138  CFGBlock *lastBlock = Block;
1139  for (Stmt::child_range I = Terminator->children(); I; ++I)
1140    if (Stmt *child = *I)
1141      if (CFGBlock *b = Visit(child))
1142        lastBlock = b;
1143
1144  return lastBlock;
1145}
1146
1147CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1148                                         AddStmtChoice asc) {
1149  AddressTakenLabels.insert(A->getLabel());
1150
1151  if (asc.alwaysAdd(*this, A)) {
1152    autoCreateBlock();
1153    appendStmt(Block, A);
1154  }
1155
1156  return Block;
1157}
1158
1159CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1160           AddStmtChoice asc) {
1161  if (asc.alwaysAdd(*this, U)) {
1162    autoCreateBlock();
1163    appendStmt(Block, U);
1164  }
1165
1166  return Visit(U->getSubExpr(), AddStmtChoice());
1167}
1168
1169CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1170                                          AddStmtChoice asc) {
1171  if (B->isLogicalOp()) { // && or ||
1172    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1173    appendStmt(ConfluenceBlock, B);
1174
1175    if (badCFG)
1176      return 0;
1177
1178    // create the block evaluating the LHS
1179    CFGBlock *LHSBlock = createBlock(false);
1180    LHSBlock->setTerminator(B);
1181
1182    // create the block evaluating the RHS
1183    Succ = ConfluenceBlock;
1184    Block = NULL;
1185    CFGBlock *RHSBlock = addStmt(B->getRHS());
1186
1187    if (RHSBlock) {
1188      if (badCFG)
1189        return 0;
1190    } else {
1191      // Create an empty block for cases where the RHS doesn't require
1192      // any explicit statements in the CFG.
1193      RHSBlock = createBlock();
1194    }
1195
1196    // Generate the blocks for evaluating the LHS.
1197    Block = LHSBlock;
1198    CFGBlock *EntryLHSBlock = addStmt(B->getLHS());
1199
1200    // See if this is a known constant.
1201    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1202    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1203      KnownVal.negate();
1204
1205    // Now link the LHSBlock with RHSBlock.
1206    if (B->getOpcode() == BO_LOr) {
1207      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1208      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1209    } else {
1210      assert(B->getOpcode() == BO_LAnd);
1211      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1212      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1213    }
1214
1215    return EntryLHSBlock;
1216  }
1217
1218  if (B->getOpcode() == BO_Comma) { // ,
1219    autoCreateBlock();
1220    appendStmt(Block, B);
1221    addStmt(B->getRHS());
1222    return addStmt(B->getLHS());
1223  }
1224
1225  if (B->isAssignmentOp()) {
1226    if (asc.alwaysAdd(*this, B)) {
1227      autoCreateBlock();
1228      appendStmt(Block, B);
1229    }
1230    Visit(B->getLHS());
1231    return Visit(B->getRHS());
1232  }
1233
1234  if (asc.alwaysAdd(*this, B)) {
1235    autoCreateBlock();
1236    appendStmt(Block, B);
1237  }
1238
1239  CFGBlock *RBlock = Visit(B->getRHS());
1240  CFGBlock *LBlock = Visit(B->getLHS());
1241  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1242  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1243  // return RBlock.  Otherwise we'll incorrectly return NULL.
1244  return (LBlock ? LBlock : RBlock);
1245}
1246
1247CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1248  if (asc.alwaysAdd(*this, E)) {
1249    autoCreateBlock();
1250    appendStmt(Block, E);
1251  }
1252  return Block;
1253}
1254
1255CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1256  // "break" is a control-flow statement.  Thus we stop processing the current
1257  // block.
1258  if (badCFG)
1259    return 0;
1260
1261  // Now create a new block that ends with the break statement.
1262  Block = createBlock(false);
1263  Block->setTerminator(B);
1264
1265  // If there is no target for the break, then we are looking at an incomplete
1266  // AST.  This means that the CFG cannot be constructed.
1267  if (BreakJumpTarget.block) {
1268    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1269    addSuccessor(Block, BreakJumpTarget.block);
1270  } else
1271    badCFG = true;
1272
1273
1274  return Block;
1275}
1276
1277static bool CanThrow(Expr *E, ASTContext &Ctx) {
1278  QualType Ty = E->getType();
1279  if (Ty->isFunctionPointerType())
1280    Ty = Ty->getAs<PointerType>()->getPointeeType();
1281  else if (Ty->isBlockPointerType())
1282    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1283
1284  const FunctionType *FT = Ty->getAs<FunctionType>();
1285  if (FT) {
1286    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1287      if (Proto->isNothrow(Ctx))
1288        return false;
1289  }
1290  return true;
1291}
1292
1293CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1294  // Compute the callee type.
1295  QualType calleeType = C->getCallee()->getType();
1296  if (calleeType == Context->BoundMemberTy) {
1297    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1298
1299    // We should only get a null bound type if processing a dependent
1300    // CFG.  Recover by assuming nothing.
1301    if (!boundType.isNull()) calleeType = boundType;
1302  }
1303
1304  // If this is a call to a no-return function, this stops the block here.
1305  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1306
1307  bool AddEHEdge = false;
1308
1309  // Languages without exceptions are assumed to not throw.
1310  if (Context->getLangOpts().Exceptions) {
1311    if (BuildOpts.AddEHEdges)
1312      AddEHEdge = true;
1313  }
1314
1315  if (FunctionDecl *FD = C->getDirectCallee()) {
1316    if (FD->hasAttr<NoReturnAttr>())
1317      NoReturn = true;
1318    if (FD->hasAttr<NoThrowAttr>())
1319      AddEHEdge = false;
1320  }
1321
1322  if (!CanThrow(C->getCallee(), *Context))
1323    AddEHEdge = false;
1324
1325  if (!NoReturn && !AddEHEdge)
1326    return VisitStmt(C, asc.withAlwaysAdd(true));
1327
1328  if (Block) {
1329    Succ = Block;
1330    if (badCFG)
1331      return 0;
1332  }
1333
1334  if (NoReturn)
1335    Block = createNoReturnBlock();
1336  else
1337    Block = createBlock();
1338
1339  appendStmt(Block, C);
1340
1341  if (AddEHEdge) {
1342    // Add exceptional edges.
1343    if (TryTerminatedBlock)
1344      addSuccessor(Block, TryTerminatedBlock);
1345    else
1346      addSuccessor(Block, &cfg->getExit());
1347  }
1348
1349  return VisitChildren(C);
1350}
1351
1352CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1353                                      AddStmtChoice asc) {
1354  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1355  appendStmt(ConfluenceBlock, C);
1356  if (badCFG)
1357    return 0;
1358
1359  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1360  Succ = ConfluenceBlock;
1361  Block = NULL;
1362  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1363  if (badCFG)
1364    return 0;
1365
1366  Succ = ConfluenceBlock;
1367  Block = NULL;
1368  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1369  if (badCFG)
1370    return 0;
1371
1372  Block = createBlock(false);
1373  // See if this is a known constant.
1374  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1375  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1376  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1377  Block->setTerminator(C);
1378  return addStmt(C->getCond());
1379}
1380
1381
1382CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1383  addLocalScopeAndDtors(C);
1384  CFGBlock *LastBlock = Block;
1385
1386  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1387       I != E; ++I ) {
1388    // If we hit a segment of code just containing ';' (NullStmts), we can
1389    // get a null block back.  In such cases, just use the LastBlock
1390    if (CFGBlock *newBlock = addStmt(*I))
1391      LastBlock = newBlock;
1392
1393    if (badCFG)
1394      return NULL;
1395  }
1396
1397  return LastBlock;
1398}
1399
1400CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1401                                               AddStmtChoice asc) {
1402  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1403  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1404
1405  // Create the confluence block that will "merge" the results of the ternary
1406  // expression.
1407  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1408  appendStmt(ConfluenceBlock, C);
1409  if (badCFG)
1410    return 0;
1411
1412  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1413
1414  // Create a block for the LHS expression if there is an LHS expression.  A
1415  // GCC extension allows LHS to be NULL, causing the condition to be the
1416  // value that is returned instead.
1417  //  e.g: x ?: y is shorthand for: x ? x : y;
1418  Succ = ConfluenceBlock;
1419  Block = NULL;
1420  CFGBlock *LHSBlock = 0;
1421  const Expr *trueExpr = C->getTrueExpr();
1422  if (trueExpr != opaqueValue) {
1423    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1424    if (badCFG)
1425      return 0;
1426    Block = NULL;
1427  }
1428  else
1429    LHSBlock = ConfluenceBlock;
1430
1431  // Create the block for the RHS expression.
1432  Succ = ConfluenceBlock;
1433  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1434  if (badCFG)
1435    return 0;
1436
1437  // Create the block that will contain the condition.
1438  Block = createBlock(false);
1439
1440  // See if this is a known constant.
1441  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1442  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1443  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1444  Block->setTerminator(C);
1445  Expr *condExpr = C->getCond();
1446
1447  if (opaqueValue) {
1448    // Run the condition expression if it's not trivially expressed in
1449    // terms of the opaque value (or if there is no opaque value).
1450    if (condExpr != opaqueValue)
1451      addStmt(condExpr);
1452
1453    // Before that, run the common subexpression if there was one.
1454    // At least one of this or the above will be run.
1455    return addStmt(BCO->getCommon());
1456  }
1457
1458  return addStmt(condExpr);
1459}
1460
1461CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1462  // Check if the Decl is for an __label__.  If so, elide it from the
1463  // CFG entirely.
1464  if (isa<LabelDecl>(*DS->decl_begin()))
1465    return Block;
1466
1467  // This case also handles static_asserts.
1468  if (DS->isSingleDecl())
1469    return VisitDeclSubExpr(DS);
1470
1471  CFGBlock *B = 0;
1472
1473  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1474  typedef SmallVector<Decl*,10> BufTy;
1475  BufTy Buf(DS->decl_begin(), DS->decl_end());
1476
1477  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1478    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1479    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1480               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1481
1482    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1483    // automatically freed with the CFG.
1484    DeclGroupRef DG(*I);
1485    Decl *D = *I;
1486    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1487    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1488
1489    // Append the fake DeclStmt to block.
1490    B = VisitDeclSubExpr(DSNew);
1491  }
1492
1493  return B;
1494}
1495
1496/// VisitDeclSubExpr - Utility method to add block-level expressions for
1497/// DeclStmts and initializers in them.
1498CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1499  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1500  Decl *D = DS->getSingleDecl();
1501
1502  if (isa<StaticAssertDecl>(D)) {
1503    // static_asserts aren't added to the CFG because they do not impact
1504    // runtime semantics.
1505    return Block;
1506  }
1507
1508  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1509
1510  if (!VD) {
1511    autoCreateBlock();
1512    appendStmt(Block, DS);
1513    return Block;
1514  }
1515
1516  bool IsReference = false;
1517  bool HasTemporaries = false;
1518
1519  // Destructors of temporaries in initialization expression should be called
1520  // after initialization finishes.
1521  Expr *Init = VD->getInit();
1522  if (Init) {
1523    IsReference = VD->getType()->isReferenceType();
1524    HasTemporaries = isa<ExprWithCleanups>(Init);
1525
1526    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1527      // Generate destructors for temporaries in initialization expression.
1528      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1529          IsReference);
1530    }
1531  }
1532
1533  autoCreateBlock();
1534  appendStmt(Block, DS);
1535
1536  // Keep track of the last non-null block, as 'Block' can be nulled out
1537  // if the initializer expression is something like a 'while' in a
1538  // statement-expression.
1539  CFGBlock *LastBlock = Block;
1540
1541  if (Init) {
1542    if (HasTemporaries) {
1543      // For expression with temporaries go directly to subexpression to omit
1544      // generating destructors for the second time.
1545      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1546      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1547        LastBlock = newBlock;
1548    }
1549    else {
1550      if (CFGBlock *newBlock = Visit(Init))
1551        LastBlock = newBlock;
1552    }
1553  }
1554
1555  // If the type of VD is a VLA, then we must process its size expressions.
1556  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1557       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1558    Block = addStmt(VA->getSizeExpr());
1559
1560  // Remove variable from local scope.
1561  if (ScopePos && VD == *ScopePos)
1562    ++ScopePos;
1563
1564  return Block ? Block : LastBlock;
1565}
1566
1567CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1568  // We may see an if statement in the middle of a basic block, or it may be the
1569  // first statement we are processing.  In either case, we create a new basic
1570  // block.  First, we create the blocks for the then...else statements, and
1571  // then we create the block containing the if statement.  If we were in the
1572  // middle of a block, we stop processing that block.  That block is then the
1573  // implicit successor for the "then" and "else" clauses.
1574
1575  // Save local scope position because in case of condition variable ScopePos
1576  // won't be restored when traversing AST.
1577  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1578
1579  // Create local scope for possible condition variable.
1580  // Store scope position. Add implicit destructor.
1581  if (VarDecl *VD = I->getConditionVariable()) {
1582    LocalScope::const_iterator BeginScopePos = ScopePos;
1583    addLocalScopeForVarDecl(VD);
1584    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1585  }
1586
1587  // The block we were processing is now finished.  Make it the successor
1588  // block.
1589  if (Block) {
1590    Succ = Block;
1591    if (badCFG)
1592      return 0;
1593  }
1594
1595  // Process the false branch.
1596  CFGBlock *ElseBlock = Succ;
1597
1598  if (Stmt *Else = I->getElse()) {
1599    SaveAndRestore<CFGBlock*> sv(Succ);
1600
1601    // NULL out Block so that the recursive call to Visit will
1602    // create a new basic block.
1603    Block = NULL;
1604
1605    // If branch is not a compound statement create implicit scope
1606    // and add destructors.
1607    if (!isa<CompoundStmt>(Else))
1608      addLocalScopeAndDtors(Else);
1609
1610    ElseBlock = addStmt(Else);
1611
1612    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1613      ElseBlock = sv.get();
1614    else if (Block) {
1615      if (badCFG)
1616        return 0;
1617    }
1618  }
1619
1620  // Process the true branch.
1621  CFGBlock *ThenBlock;
1622  {
1623    Stmt *Then = I->getThen();
1624    assert(Then);
1625    SaveAndRestore<CFGBlock*> sv(Succ);
1626    Block = NULL;
1627
1628    // If branch is not a compound statement create implicit scope
1629    // and add destructors.
1630    if (!isa<CompoundStmt>(Then))
1631      addLocalScopeAndDtors(Then);
1632
1633    ThenBlock = addStmt(Then);
1634
1635    if (!ThenBlock) {
1636      // We can reach here if the "then" body has all NullStmts.
1637      // Create an empty block so we can distinguish between true and false
1638      // branches in path-sensitive analyses.
1639      ThenBlock = createBlock(false);
1640      addSuccessor(ThenBlock, sv.get());
1641    } else if (Block) {
1642      if (badCFG)
1643        return 0;
1644    }
1645  }
1646
1647  // Now create a new block containing the if statement.
1648  Block = createBlock(false);
1649
1650  // Set the terminator of the new block to the If statement.
1651  Block->setTerminator(I);
1652
1653  // See if this is a known constant.
1654  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1655
1656  // Now add the successors.
1657  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1658  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1659
1660  // Add the condition as the last statement in the new block.  This may create
1661  // new blocks as the condition may contain control-flow.  Any newly created
1662  // blocks will be pointed to be "Block".
1663  Block = addStmt(I->getCond());
1664
1665  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1666  // and the condition variable initialization to the CFG.
1667  if (VarDecl *VD = I->getConditionVariable()) {
1668    if (Expr *Init = VD->getInit()) {
1669      autoCreateBlock();
1670      appendStmt(Block, I->getConditionVariableDeclStmt());
1671      addStmt(Init);
1672    }
1673  }
1674
1675  return Block;
1676}
1677
1678
1679CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1680  // If we were in the middle of a block we stop processing that block.
1681  //
1682  // NOTE: If a "return" appears in the middle of a block, this means that the
1683  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1684  //       for that code; a simple "mark-and-sweep" from the entry block will be
1685  //       able to report such dead blocks.
1686
1687  // Create the new block.
1688  Block = createBlock(false);
1689
1690  // The Exit block is the only successor.
1691  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1692  addSuccessor(Block, &cfg->getExit());
1693
1694  // Add the return statement to the block.  This may create new blocks if R
1695  // contains control-flow (short-circuit operations).
1696  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1697}
1698
1699CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1700  // Get the block of the labeled statement.  Add it to our map.
1701  addStmt(L->getSubStmt());
1702  CFGBlock *LabelBlock = Block;
1703
1704  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1705    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1706
1707  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1708         "label already in map");
1709  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1710
1711  // Labels partition blocks, so this is the end of the basic block we were
1712  // processing (L is the block's label).  Because this is label (and we have
1713  // already processed the substatement) there is no extra control-flow to worry
1714  // about.
1715  LabelBlock->setLabel(L);
1716  if (badCFG)
1717    return 0;
1718
1719  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1720  Block = NULL;
1721
1722  // This block is now the implicit successor of other blocks.
1723  Succ = LabelBlock;
1724
1725  return LabelBlock;
1726}
1727
1728CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
1729  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
1730  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
1731       et = E->capture_init_end(); it != et; ++it) {
1732    if (Expr *Init = *it) {
1733      CFGBlock *Tmp = Visit(Init);
1734      if (Tmp != 0)
1735        LastBlock = Tmp;
1736    }
1737  }
1738  return LastBlock;
1739}
1740
1741CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1742  // Goto is a control-flow statement.  Thus we stop processing the current
1743  // block and create a new one.
1744
1745  Block = createBlock(false);
1746  Block->setTerminator(G);
1747
1748  // If we already know the mapping to the label block add the successor now.
1749  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1750
1751  if (I == LabelMap.end())
1752    // We will need to backpatch this block later.
1753    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1754  else {
1755    JumpTarget JT = I->second;
1756    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1757    addSuccessor(Block, JT.block);
1758  }
1759
1760  return Block;
1761}
1762
1763CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1764  CFGBlock *LoopSuccessor = NULL;
1765
1766  // Save local scope position because in case of condition variable ScopePos
1767  // won't be restored when traversing AST.
1768  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1769
1770  // Create local scope for init statement and possible condition variable.
1771  // Add destructor for init statement and condition variable.
1772  // Store scope position for continue statement.
1773  if (Stmt *Init = F->getInit())
1774    addLocalScopeForStmt(Init);
1775  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1776
1777  if (VarDecl *VD = F->getConditionVariable())
1778    addLocalScopeForVarDecl(VD);
1779  LocalScope::const_iterator ContinueScopePos = ScopePos;
1780
1781  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1782
1783  // "for" is a control-flow statement.  Thus we stop processing the current
1784  // block.
1785  if (Block) {
1786    if (badCFG)
1787      return 0;
1788    LoopSuccessor = Block;
1789  } else
1790    LoopSuccessor = Succ;
1791
1792  // Save the current value for the break targets.
1793  // All breaks should go to the code following the loop.
1794  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1795  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1796
1797  // Because of short-circuit evaluation, the condition of the loop can span
1798  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1799  // evaluate the condition.
1800  CFGBlock *ExitConditionBlock = createBlock(false);
1801  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1802
1803  // Set the terminator for the "exit" condition block.
1804  ExitConditionBlock->setTerminator(F);
1805
1806  // Now add the actual condition to the condition block.  Because the condition
1807  // itself may contain control-flow, new blocks may be created.
1808  if (Stmt *C = F->getCond()) {
1809    Block = ExitConditionBlock;
1810    EntryConditionBlock = addStmt(C);
1811    if (badCFG)
1812      return 0;
1813    assert(Block == EntryConditionBlock ||
1814           (Block == 0 && EntryConditionBlock == Succ));
1815
1816    // If this block contains a condition variable, add both the condition
1817    // variable and initializer to the CFG.
1818    if (VarDecl *VD = F->getConditionVariable()) {
1819      if (Expr *Init = VD->getInit()) {
1820        autoCreateBlock();
1821        appendStmt(Block, F->getConditionVariableDeclStmt());
1822        EntryConditionBlock = addStmt(Init);
1823        assert(Block == EntryConditionBlock);
1824      }
1825    }
1826
1827    if (Block) {
1828      if (badCFG)
1829        return 0;
1830    }
1831  }
1832
1833  // The condition block is the implicit successor for the loop body as well as
1834  // any code above the loop.
1835  Succ = EntryConditionBlock;
1836
1837  // See if this is a known constant.
1838  TryResult KnownVal(true);
1839
1840  if (F->getCond())
1841    KnownVal = tryEvaluateBool(F->getCond());
1842
1843  // Now create the loop body.
1844  {
1845    assert(F->getBody());
1846
1847   // Save the current values for Block, Succ, and continue targets.
1848   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1849   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1850
1851    // Create a new block to contain the (bottom) of the loop body.
1852    Block = NULL;
1853
1854    // Loop body should end with destructor of Condition variable (if any).
1855    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1856
1857    if (Stmt *I = F->getInc()) {
1858      // Generate increment code in its own basic block.  This is the target of
1859      // continue statements.
1860      Succ = addStmt(I);
1861    } else {
1862      // No increment code.  Create a special, empty, block that is used as the
1863      // target block for "looping back" to the start of the loop.
1864      assert(Succ == EntryConditionBlock);
1865      Succ = Block ? Block : createBlock();
1866    }
1867
1868    // Finish up the increment (or empty) block if it hasn't been already.
1869    if (Block) {
1870      assert(Block == Succ);
1871      if (badCFG)
1872        return 0;
1873      Block = 0;
1874    }
1875
1876    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1877
1878    // The starting block for the loop increment is the block that should
1879    // represent the 'loop target' for looping back to the start of the loop.
1880    ContinueJumpTarget.block->setLoopTarget(F);
1881
1882    // If body is not a compound statement create implicit scope
1883    // and add destructors.
1884    if (!isa<CompoundStmt>(F->getBody()))
1885      addLocalScopeAndDtors(F->getBody());
1886
1887    // Now populate the body block, and in the process create new blocks as we
1888    // walk the body of the loop.
1889    CFGBlock *BodyBlock = addStmt(F->getBody());
1890
1891    if (!BodyBlock)
1892      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1893    else if (badCFG)
1894      return 0;
1895
1896    // This new body block is a successor to our "exit" condition block.
1897    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1898  }
1899
1900  // Link up the condition block with the code that follows the loop.  (the
1901  // false branch).
1902  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1903
1904  // If the loop contains initialization, create a new block for those
1905  // statements.  This block can also contain statements that precede the loop.
1906  if (Stmt *I = F->getInit()) {
1907    Block = createBlock();
1908    return addStmt(I);
1909  }
1910
1911  // There is no loop initialization.  We are thus basically a while loop.
1912  // NULL out Block to force lazy block construction.
1913  Block = NULL;
1914  Succ = EntryConditionBlock;
1915  return EntryConditionBlock;
1916}
1917
1918CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1919  if (asc.alwaysAdd(*this, M)) {
1920    autoCreateBlock();
1921    appendStmt(Block, M);
1922  }
1923  return Visit(M->getBase());
1924}
1925
1926CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1927  // Objective-C fast enumeration 'for' statements:
1928  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1929  //
1930  //  for ( Type newVariable in collection_expression ) { statements }
1931  //
1932  //  becomes:
1933  //
1934  //   prologue:
1935  //     1. collection_expression
1936  //     T. jump to loop_entry
1937  //   loop_entry:
1938  //     1. side-effects of element expression
1939  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1940  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1941  //   TB:
1942  //     statements
1943  //     T. jump to loop_entry
1944  //   FB:
1945  //     what comes after
1946  //
1947  //  and
1948  //
1949  //  Type existingItem;
1950  //  for ( existingItem in expression ) { statements }
1951  //
1952  //  becomes:
1953  //
1954  //   the same with newVariable replaced with existingItem; the binding works
1955  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1956  //   a DeclStmt and the other returns a DeclRefExpr.
1957  //
1958
1959  CFGBlock *LoopSuccessor = 0;
1960
1961  if (Block) {
1962    if (badCFG)
1963      return 0;
1964    LoopSuccessor = Block;
1965    Block = 0;
1966  } else
1967    LoopSuccessor = Succ;
1968
1969  // Build the condition blocks.
1970  CFGBlock *ExitConditionBlock = createBlock(false);
1971
1972  // Set the terminator for the "exit" condition block.
1973  ExitConditionBlock->setTerminator(S);
1974
1975  // The last statement in the block should be the ObjCForCollectionStmt, which
1976  // performs the actual binding to 'element' and determines if there are any
1977  // more items in the collection.
1978  appendStmt(ExitConditionBlock, S);
1979  Block = ExitConditionBlock;
1980
1981  // Walk the 'element' expression to see if there are any side-effects.  We
1982  // generate new blocks as necessary.  We DON'T add the statement by default to
1983  // the CFG unless it contains control-flow.
1984  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1985                                        AddStmtChoice::NotAlwaysAdd);
1986  if (Block) {
1987    if (badCFG)
1988      return 0;
1989    Block = 0;
1990  }
1991
1992  // The condition block is the implicit successor for the loop body as well as
1993  // any code above the loop.
1994  Succ = EntryConditionBlock;
1995
1996  // Now create the true branch.
1997  {
1998    // Save the current values for Succ, continue and break targets.
1999    SaveAndRestore<CFGBlock*> save_Succ(Succ);
2000    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2001        save_break(BreakJumpTarget);
2002
2003    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2004    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2005
2006    CFGBlock *BodyBlock = addStmt(S->getBody());
2007
2008    if (!BodyBlock)
2009      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
2010    else if (Block) {
2011      if (badCFG)
2012        return 0;
2013    }
2014
2015    // This new body block is a successor to our "exit" condition block.
2016    addSuccessor(ExitConditionBlock, BodyBlock);
2017  }
2018
2019  // Link up the condition block with the code that follows the loop.
2020  // (the false branch).
2021  addSuccessor(ExitConditionBlock, LoopSuccessor);
2022
2023  // Now create a prologue block to contain the collection expression.
2024  Block = createBlock();
2025  return addStmt(S->getCollection());
2026}
2027
2028CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2029  // Inline the body.
2030  return addStmt(S->getSubStmt());
2031  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2032}
2033
2034CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2035  // FIXME: Add locking 'primitives' to CFG for @synchronized.
2036
2037  // Inline the body.
2038  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2039
2040  // The sync body starts its own basic block.  This makes it a little easier
2041  // for diagnostic clients.
2042  if (SyncBlock) {
2043    if (badCFG)
2044      return 0;
2045
2046    Block = 0;
2047    Succ = SyncBlock;
2048  }
2049
2050  // Add the @synchronized to the CFG.
2051  autoCreateBlock();
2052  appendStmt(Block, S);
2053
2054  // Inline the sync expression.
2055  return addStmt(S->getSynchExpr());
2056}
2057
2058CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2059  // FIXME
2060  return NYS();
2061}
2062
2063CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2064  autoCreateBlock();
2065
2066  // Add the PseudoObject as the last thing.
2067  appendStmt(Block, E);
2068
2069  CFGBlock *lastBlock = Block;
2070
2071  // Before that, evaluate all of the semantics in order.  In
2072  // CFG-land, that means appending them in reverse order.
2073  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2074    Expr *Semantic = E->getSemanticExpr(--i);
2075
2076    // If the semantic is an opaque value, we're being asked to bind
2077    // it to its source expression.
2078    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2079      Semantic = OVE->getSourceExpr();
2080
2081    if (CFGBlock *B = Visit(Semantic))
2082      lastBlock = B;
2083  }
2084
2085  return lastBlock;
2086}
2087
2088CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2089  CFGBlock *LoopSuccessor = NULL;
2090
2091  // Save local scope position because in case of condition variable ScopePos
2092  // won't be restored when traversing AST.
2093  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2094
2095  // Create local scope for possible condition variable.
2096  // Store scope position for continue statement.
2097  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2098  if (VarDecl *VD = W->getConditionVariable()) {
2099    addLocalScopeForVarDecl(VD);
2100    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2101  }
2102
2103  // "while" is a control-flow statement.  Thus we stop processing the current
2104  // block.
2105  if (Block) {
2106    if (badCFG)
2107      return 0;
2108    LoopSuccessor = Block;
2109    Block = 0;
2110  } else
2111    LoopSuccessor = Succ;
2112
2113  // Because of short-circuit evaluation, the condition of the loop can span
2114  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2115  // evaluate the condition.
2116  CFGBlock *ExitConditionBlock = createBlock(false);
2117  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2118
2119  // Set the terminator for the "exit" condition block.
2120  ExitConditionBlock->setTerminator(W);
2121
2122  // Now add the actual condition to the condition block.  Because the condition
2123  // itself may contain control-flow, new blocks may be created.  Thus we update
2124  // "Succ" after adding the condition.
2125  if (Stmt *C = W->getCond()) {
2126    Block = ExitConditionBlock;
2127    EntryConditionBlock = addStmt(C);
2128    // The condition might finish the current 'Block'.
2129    Block = EntryConditionBlock;
2130
2131    // If this block contains a condition variable, add both the condition
2132    // variable and initializer to the CFG.
2133    if (VarDecl *VD = W->getConditionVariable()) {
2134      if (Expr *Init = VD->getInit()) {
2135        autoCreateBlock();
2136        appendStmt(Block, W->getConditionVariableDeclStmt());
2137        EntryConditionBlock = addStmt(Init);
2138        assert(Block == EntryConditionBlock);
2139      }
2140    }
2141
2142    if (Block) {
2143      if (badCFG)
2144        return 0;
2145    }
2146  }
2147
2148  // The condition block is the implicit successor for the loop body as well as
2149  // any code above the loop.
2150  Succ = EntryConditionBlock;
2151
2152  // See if this is a known constant.
2153  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
2154
2155  // Process the loop body.
2156  {
2157    assert(W->getBody());
2158
2159    // Save the current values for Block, Succ, and continue and break targets
2160    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2161    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2162        save_break(BreakJumpTarget);
2163
2164    // Create an empty block to represent the transition block for looping back
2165    // to the head of the loop.
2166    Block = 0;
2167    assert(Succ == EntryConditionBlock);
2168    Succ = createBlock();
2169    Succ->setLoopTarget(W);
2170    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2171
2172    // All breaks should go to the code following the loop.
2173    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2174
2175    // NULL out Block to force lazy instantiation of blocks for the body.
2176    Block = NULL;
2177
2178    // Loop body should end with destructor of Condition variable (if any).
2179    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2180
2181    // If body is not a compound statement create implicit scope
2182    // and add destructors.
2183    if (!isa<CompoundStmt>(W->getBody()))
2184      addLocalScopeAndDtors(W->getBody());
2185
2186    // Create the body.  The returned block is the entry to the loop body.
2187    CFGBlock *BodyBlock = addStmt(W->getBody());
2188
2189    if (!BodyBlock)
2190      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2191    else if (Block) {
2192      if (badCFG)
2193        return 0;
2194    }
2195
2196    // Add the loop body entry as a successor to the condition.
2197    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2198  }
2199
2200  // Link up the condition block with the code that follows the loop.  (the
2201  // false branch).
2202  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2203
2204  // There can be no more statements in the condition block since we loop back
2205  // to this block.  NULL out Block to force lazy creation of another block.
2206  Block = NULL;
2207
2208  // Return the condition block, which is the dominating block for the loop.
2209  Succ = EntryConditionBlock;
2210  return EntryConditionBlock;
2211}
2212
2213
2214CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2215  // FIXME: For now we pretend that @catch and the code it contains does not
2216  //  exit.
2217  return Block;
2218}
2219
2220CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2221  // FIXME: This isn't complete.  We basically treat @throw like a return
2222  //  statement.
2223
2224  // If we were in the middle of a block we stop processing that block.
2225  if (badCFG)
2226    return 0;
2227
2228  // Create the new block.
2229  Block = createBlock(false);
2230
2231  // The Exit block is the only successor.
2232  addSuccessor(Block, &cfg->getExit());
2233
2234  // Add the statement to the block.  This may create new blocks if S contains
2235  // control-flow (short-circuit operations).
2236  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2237}
2238
2239CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2240  // If we were in the middle of a block we stop processing that block.
2241  if (badCFG)
2242    return 0;
2243
2244  // Create the new block.
2245  Block = createBlock(false);
2246
2247  if (TryTerminatedBlock)
2248    // The current try statement is the only successor.
2249    addSuccessor(Block, TryTerminatedBlock);
2250  else
2251    // otherwise the Exit block is the only successor.
2252    addSuccessor(Block, &cfg->getExit());
2253
2254  // Add the statement to the block.  This may create new blocks if S contains
2255  // control-flow (short-circuit operations).
2256  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2257}
2258
2259CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2260  CFGBlock *LoopSuccessor = NULL;
2261
2262  // "do...while" is a control-flow statement.  Thus we stop processing the
2263  // current block.
2264  if (Block) {
2265    if (badCFG)
2266      return 0;
2267    LoopSuccessor = Block;
2268  } else
2269    LoopSuccessor = Succ;
2270
2271  // Because of short-circuit evaluation, the condition of the loop can span
2272  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2273  // evaluate the condition.
2274  CFGBlock *ExitConditionBlock = createBlock(false);
2275  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2276
2277  // Set the terminator for the "exit" condition block.
2278  ExitConditionBlock->setTerminator(D);
2279
2280  // Now add the actual condition to the condition block.  Because the condition
2281  // itself may contain control-flow, new blocks may be created.
2282  if (Stmt *C = D->getCond()) {
2283    Block = ExitConditionBlock;
2284    EntryConditionBlock = addStmt(C);
2285    if (Block) {
2286      if (badCFG)
2287        return 0;
2288    }
2289  }
2290
2291  // The condition block is the implicit successor for the loop body.
2292  Succ = EntryConditionBlock;
2293
2294  // See if this is a known constant.
2295  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2296
2297  // Process the loop body.
2298  CFGBlock *BodyBlock = NULL;
2299  {
2300    assert(D->getBody());
2301
2302    // Save the current values for Block, Succ, and continue and break targets
2303    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2304    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2305        save_break(BreakJumpTarget);
2306
2307    // All continues within this loop should go to the condition block
2308    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2309
2310    // All breaks should go to the code following the loop.
2311    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2312
2313    // NULL out Block to force lazy instantiation of blocks for the body.
2314    Block = NULL;
2315
2316    // If body is not a compound statement create implicit scope
2317    // and add destructors.
2318    if (!isa<CompoundStmt>(D->getBody()))
2319      addLocalScopeAndDtors(D->getBody());
2320
2321    // Create the body.  The returned block is the entry to the loop body.
2322    BodyBlock = addStmt(D->getBody());
2323
2324    if (!BodyBlock)
2325      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2326    else if (Block) {
2327      if (badCFG)
2328        return 0;
2329    }
2330
2331    if (!KnownVal.isFalse()) {
2332      // Add an intermediate block between the BodyBlock and the
2333      // ExitConditionBlock to represent the "loop back" transition.  Create an
2334      // empty block to represent the transition block for looping back to the
2335      // head of the loop.
2336      // FIXME: Can we do this more efficiently without adding another block?
2337      Block = NULL;
2338      Succ = BodyBlock;
2339      CFGBlock *LoopBackBlock = createBlock();
2340      LoopBackBlock->setLoopTarget(D);
2341
2342      // Add the loop body entry as a successor to the condition.
2343      addSuccessor(ExitConditionBlock, LoopBackBlock);
2344    }
2345    else
2346      addSuccessor(ExitConditionBlock, NULL);
2347  }
2348
2349  // Link up the condition block with the code that follows the loop.
2350  // (the false branch).
2351  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2352
2353  // There can be no more statements in the body block(s) since we loop back to
2354  // the body.  NULL out Block to force lazy creation of another block.
2355  Block = NULL;
2356
2357  // Return the loop body, which is the dominating block for the loop.
2358  Succ = BodyBlock;
2359  return BodyBlock;
2360}
2361
2362CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2363  // "continue" is a control-flow statement.  Thus we stop processing the
2364  // current block.
2365  if (badCFG)
2366    return 0;
2367
2368  // Now create a new block that ends with the continue statement.
2369  Block = createBlock(false);
2370  Block->setTerminator(C);
2371
2372  // If there is no target for the continue, then we are looking at an
2373  // incomplete AST.  This means the CFG cannot be constructed.
2374  if (ContinueJumpTarget.block) {
2375    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2376    addSuccessor(Block, ContinueJumpTarget.block);
2377  } else
2378    badCFG = true;
2379
2380  return Block;
2381}
2382
2383CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2384                                                    AddStmtChoice asc) {
2385
2386  if (asc.alwaysAdd(*this, E)) {
2387    autoCreateBlock();
2388    appendStmt(Block, E);
2389  }
2390
2391  // VLA types have expressions that must be evaluated.
2392  CFGBlock *lastBlock = Block;
2393
2394  if (E->isArgumentType()) {
2395    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2396         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2397      lastBlock = addStmt(VA->getSizeExpr());
2398  }
2399  return lastBlock;
2400}
2401
2402/// VisitStmtExpr - Utility method to handle (nested) statement
2403///  expressions (a GCC extension).
2404CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2405  if (asc.alwaysAdd(*this, SE)) {
2406    autoCreateBlock();
2407    appendStmt(Block, SE);
2408  }
2409  return VisitCompoundStmt(SE->getSubStmt());
2410}
2411
2412CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2413  // "switch" is a control-flow statement.  Thus we stop processing the current
2414  // block.
2415  CFGBlock *SwitchSuccessor = NULL;
2416
2417  // Save local scope position because in case of condition variable ScopePos
2418  // won't be restored when traversing AST.
2419  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2420
2421  // Create local scope for possible condition variable.
2422  // Store scope position. Add implicit destructor.
2423  if (VarDecl *VD = Terminator->getConditionVariable()) {
2424    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2425    addLocalScopeForVarDecl(VD);
2426    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2427  }
2428
2429  if (Block) {
2430    if (badCFG)
2431      return 0;
2432    SwitchSuccessor = Block;
2433  } else SwitchSuccessor = Succ;
2434
2435  // Save the current "switch" context.
2436  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2437                            save_default(DefaultCaseBlock);
2438  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2439
2440  // Set the "default" case to be the block after the switch statement.  If the
2441  // switch statement contains a "default:", this value will be overwritten with
2442  // the block for that code.
2443  DefaultCaseBlock = SwitchSuccessor;
2444
2445  // Create a new block that will contain the switch statement.
2446  SwitchTerminatedBlock = createBlock(false);
2447
2448  // Now process the switch body.  The code after the switch is the implicit
2449  // successor.
2450  Succ = SwitchSuccessor;
2451  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2452
2453  // When visiting the body, the case statements should automatically get linked
2454  // up to the switch.  We also don't keep a pointer to the body, since all
2455  // control-flow from the switch goes to case/default statements.
2456  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2457  Block = NULL;
2458
2459  // For pruning unreachable case statements, save the current state
2460  // for tracking the condition value.
2461  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2462                                                     false);
2463
2464  // Determine if the switch condition can be explicitly evaluated.
2465  assert(Terminator->getCond() && "switch condition must be non-NULL");
2466  Expr::EvalResult result;
2467  bool b = tryEvaluate(Terminator->getCond(), result);
2468  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2469                                                    b ? &result : 0);
2470
2471  // If body is not a compound statement create implicit scope
2472  // and add destructors.
2473  if (!isa<CompoundStmt>(Terminator->getBody()))
2474    addLocalScopeAndDtors(Terminator->getBody());
2475
2476  addStmt(Terminator->getBody());
2477  if (Block) {
2478    if (badCFG)
2479      return 0;
2480  }
2481
2482  // If we have no "default:" case, the default transition is to the code
2483  // following the switch body.  Moreover, take into account if all the
2484  // cases of a switch are covered (e.g., switching on an enum value).
2485  addSuccessor(SwitchTerminatedBlock,
2486               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2487               ? 0 : DefaultCaseBlock);
2488
2489  // Add the terminator and condition in the switch block.
2490  SwitchTerminatedBlock->setTerminator(Terminator);
2491  Block = SwitchTerminatedBlock;
2492  Block = addStmt(Terminator->getCond());
2493
2494  // Finally, if the SwitchStmt contains a condition variable, add both the
2495  // SwitchStmt and the condition variable initialization to the CFG.
2496  if (VarDecl *VD = Terminator->getConditionVariable()) {
2497    if (Expr *Init = VD->getInit()) {
2498      autoCreateBlock();
2499      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2500      addStmt(Init);
2501    }
2502  }
2503
2504  return Block;
2505}
2506
2507static bool shouldAddCase(bool &switchExclusivelyCovered,
2508                          const Expr::EvalResult *switchCond,
2509                          const CaseStmt *CS,
2510                          ASTContext &Ctx) {
2511  if (!switchCond)
2512    return true;
2513
2514  bool addCase = false;
2515
2516  if (!switchExclusivelyCovered) {
2517    if (switchCond->Val.isInt()) {
2518      // Evaluate the LHS of the case value.
2519      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
2520      const llvm::APSInt &condInt = switchCond->Val.getInt();
2521
2522      if (condInt == lhsInt) {
2523        addCase = true;
2524        switchExclusivelyCovered = true;
2525      }
2526      else if (condInt < lhsInt) {
2527        if (const Expr *RHS = CS->getRHS()) {
2528          // Evaluate the RHS of the case value.
2529          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
2530          if (V2 <= condInt) {
2531            addCase = true;
2532            switchExclusivelyCovered = true;
2533          }
2534        }
2535      }
2536    }
2537    else
2538      addCase = true;
2539  }
2540  return addCase;
2541}
2542
2543CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2544  // CaseStmts are essentially labels, so they are the first statement in a
2545  // block.
2546  CFGBlock *TopBlock = 0, *LastBlock = 0;
2547
2548  if (Stmt *Sub = CS->getSubStmt()) {
2549    // For deeply nested chains of CaseStmts, instead of doing a recursion
2550    // (which can blow out the stack), manually unroll and create blocks
2551    // along the way.
2552    while (isa<CaseStmt>(Sub)) {
2553      CFGBlock *currentBlock = createBlock(false);
2554      currentBlock->setLabel(CS);
2555
2556      if (TopBlock)
2557        addSuccessor(LastBlock, currentBlock);
2558      else
2559        TopBlock = currentBlock;
2560
2561      addSuccessor(SwitchTerminatedBlock,
2562                   shouldAddCase(switchExclusivelyCovered, switchCond,
2563                                 CS, *Context)
2564                   ? currentBlock : 0);
2565
2566      LastBlock = currentBlock;
2567      CS = cast<CaseStmt>(Sub);
2568      Sub = CS->getSubStmt();
2569    }
2570
2571    addStmt(Sub);
2572  }
2573
2574  CFGBlock *CaseBlock = Block;
2575  if (!CaseBlock)
2576    CaseBlock = createBlock();
2577
2578  // Cases statements partition blocks, so this is the top of the basic block we
2579  // were processing (the "case XXX:" is the label).
2580  CaseBlock->setLabel(CS);
2581
2582  if (badCFG)
2583    return 0;
2584
2585  // Add this block to the list of successors for the block with the switch
2586  // statement.
2587  assert(SwitchTerminatedBlock);
2588  addSuccessor(SwitchTerminatedBlock,
2589               shouldAddCase(switchExclusivelyCovered, switchCond,
2590                             CS, *Context)
2591               ? CaseBlock : 0);
2592
2593  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2594  Block = NULL;
2595
2596  if (TopBlock) {
2597    addSuccessor(LastBlock, CaseBlock);
2598    Succ = TopBlock;
2599  } else {
2600    // This block is now the implicit successor of other blocks.
2601    Succ = CaseBlock;
2602  }
2603
2604  return Succ;
2605}
2606
2607CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2608  if (Terminator->getSubStmt())
2609    addStmt(Terminator->getSubStmt());
2610
2611  DefaultCaseBlock = Block;
2612
2613  if (!DefaultCaseBlock)
2614    DefaultCaseBlock = createBlock();
2615
2616  // Default statements partition blocks, so this is the top of the basic block
2617  // we were processing (the "default:" is the label).
2618  DefaultCaseBlock->setLabel(Terminator);
2619
2620  if (badCFG)
2621    return 0;
2622
2623  // Unlike case statements, we don't add the default block to the successors
2624  // for the switch statement immediately.  This is done when we finish
2625  // processing the switch statement.  This allows for the default case
2626  // (including a fall-through to the code after the switch statement) to always
2627  // be the last successor of a switch-terminated block.
2628
2629  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2630  Block = NULL;
2631
2632  // This block is now the implicit successor of other blocks.
2633  Succ = DefaultCaseBlock;
2634
2635  return DefaultCaseBlock;
2636}
2637
2638CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2639  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2640  // current block.
2641  CFGBlock *TrySuccessor = NULL;
2642
2643  if (Block) {
2644    if (badCFG)
2645      return 0;
2646    TrySuccessor = Block;
2647  } else TrySuccessor = Succ;
2648
2649  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2650
2651  // Create a new block that will contain the try statement.
2652  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2653  // Add the terminator in the try block.
2654  NewTryTerminatedBlock->setTerminator(Terminator);
2655
2656  bool HasCatchAll = false;
2657  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2658    // The code after the try is the implicit successor.
2659    Succ = TrySuccessor;
2660    CXXCatchStmt *CS = Terminator->getHandler(h);
2661    if (CS->getExceptionDecl() == 0) {
2662      HasCatchAll = true;
2663    }
2664    Block = NULL;
2665    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2666    if (CatchBlock == 0)
2667      return 0;
2668    // Add this block to the list of successors for the block with the try
2669    // statement.
2670    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2671  }
2672  if (!HasCatchAll) {
2673    if (PrevTryTerminatedBlock)
2674      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2675    else
2676      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2677  }
2678
2679  // The code after the try is the implicit successor.
2680  Succ = TrySuccessor;
2681
2682  // Save the current "try" context.
2683  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2684  cfg->addTryDispatchBlock(TryTerminatedBlock);
2685
2686  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2687  Block = NULL;
2688  Block = addStmt(Terminator->getTryBlock());
2689  return Block;
2690}
2691
2692CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2693  // CXXCatchStmt are treated like labels, so they are the first statement in a
2694  // block.
2695
2696  // Save local scope position because in case of exception variable ScopePos
2697  // won't be restored when traversing AST.
2698  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2699
2700  // Create local scope for possible exception variable.
2701  // Store scope position. Add implicit destructor.
2702  if (VarDecl *VD = CS->getExceptionDecl()) {
2703    LocalScope::const_iterator BeginScopePos = ScopePos;
2704    addLocalScopeForVarDecl(VD);
2705    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2706  }
2707
2708  if (CS->getHandlerBlock())
2709    addStmt(CS->getHandlerBlock());
2710
2711  CFGBlock *CatchBlock = Block;
2712  if (!CatchBlock)
2713    CatchBlock = createBlock();
2714
2715  // CXXCatchStmt is more than just a label.  They have semantic meaning
2716  // as well, as they implicitly "initialize" the catch variable.  Add
2717  // it to the CFG as a CFGElement so that the control-flow of these
2718  // semantics gets captured.
2719  appendStmt(CatchBlock, CS);
2720
2721  // Also add the CXXCatchStmt as a label, to mirror handling of regular
2722  // labels.
2723  CatchBlock->setLabel(CS);
2724
2725  // Bail out if the CFG is bad.
2726  if (badCFG)
2727    return 0;
2728
2729  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2730  Block = NULL;
2731
2732  return CatchBlock;
2733}
2734
2735CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2736  // C++0x for-range statements are specified as [stmt.ranged]:
2737  //
2738  // {
2739  //   auto && __range = range-init;
2740  //   for ( auto __begin = begin-expr,
2741  //         __end = end-expr;
2742  //         __begin != __end;
2743  //         ++__begin ) {
2744  //     for-range-declaration = *__begin;
2745  //     statement
2746  //   }
2747  // }
2748
2749  // Save local scope position before the addition of the implicit variables.
2750  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2751
2752  // Create local scopes and destructors for range, begin and end variables.
2753  if (Stmt *Range = S->getRangeStmt())
2754    addLocalScopeForStmt(Range);
2755  if (Stmt *BeginEnd = S->getBeginEndStmt())
2756    addLocalScopeForStmt(BeginEnd);
2757  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2758
2759  LocalScope::const_iterator ContinueScopePos = ScopePos;
2760
2761  // "for" is a control-flow statement.  Thus we stop processing the current
2762  // block.
2763  CFGBlock *LoopSuccessor = NULL;
2764  if (Block) {
2765    if (badCFG)
2766      return 0;
2767    LoopSuccessor = Block;
2768  } else
2769    LoopSuccessor = Succ;
2770
2771  // Save the current value for the break targets.
2772  // All breaks should go to the code following the loop.
2773  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2774  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2775
2776  // The block for the __begin != __end expression.
2777  CFGBlock *ConditionBlock = createBlock(false);
2778  ConditionBlock->setTerminator(S);
2779
2780  // Now add the actual condition to the condition block.
2781  if (Expr *C = S->getCond()) {
2782    Block = ConditionBlock;
2783    CFGBlock *BeginConditionBlock = addStmt(C);
2784    if (badCFG)
2785      return 0;
2786    assert(BeginConditionBlock == ConditionBlock &&
2787           "condition block in for-range was unexpectedly complex");
2788    (void)BeginConditionBlock;
2789  }
2790
2791  // The condition block is the implicit successor for the loop body as well as
2792  // any code above the loop.
2793  Succ = ConditionBlock;
2794
2795  // See if this is a known constant.
2796  TryResult KnownVal(true);
2797
2798  if (S->getCond())
2799    KnownVal = tryEvaluateBool(S->getCond());
2800
2801  // Now create the loop body.
2802  {
2803    assert(S->getBody());
2804
2805    // Save the current values for Block, Succ, and continue targets.
2806    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2807    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2808
2809    // Generate increment code in its own basic block.  This is the target of
2810    // continue statements.
2811    Block = 0;
2812    Succ = addStmt(S->getInc());
2813    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2814
2815    // The starting block for the loop increment is the block that should
2816    // represent the 'loop target' for looping back to the start of the loop.
2817    ContinueJumpTarget.block->setLoopTarget(S);
2818
2819    // Finish up the increment block and prepare to start the loop body.
2820    assert(Block);
2821    if (badCFG)
2822      return 0;
2823    Block = 0;
2824
2825
2826    // Add implicit scope and dtors for loop variable.
2827    addLocalScopeAndDtors(S->getLoopVarStmt());
2828
2829    // Populate a new block to contain the loop body and loop variable.
2830    Block = addStmt(S->getBody());
2831    if (badCFG)
2832      return 0;
2833    Block = addStmt(S->getLoopVarStmt());
2834    if (badCFG)
2835      return 0;
2836
2837    // This new body block is a successor to our condition block.
2838    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2839  }
2840
2841  // Link up the condition block with the code that follows the loop (the
2842  // false branch).
2843  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2844
2845  // Add the initialization statements.
2846  Block = createBlock();
2847  addStmt(S->getBeginEndStmt());
2848  return addStmt(S->getRangeStmt());
2849}
2850
2851CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2852    AddStmtChoice asc) {
2853  if (BuildOpts.AddImplicitDtors) {
2854    // If adding implicit destructors visit the full expression for adding
2855    // destructors of temporaries.
2856    VisitForTemporaryDtors(E->getSubExpr());
2857
2858    // Full expression has to be added as CFGStmt so it will be sequenced
2859    // before destructors of it's temporaries.
2860    asc = asc.withAlwaysAdd(true);
2861  }
2862  return Visit(E->getSubExpr(), asc);
2863}
2864
2865CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2866                                                AddStmtChoice asc) {
2867  if (asc.alwaysAdd(*this, E)) {
2868    autoCreateBlock();
2869    appendStmt(Block, E);
2870
2871    // We do not want to propagate the AlwaysAdd property.
2872    asc = asc.withAlwaysAdd(false);
2873  }
2874  return Visit(E->getSubExpr(), asc);
2875}
2876
2877CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2878                                            AddStmtChoice asc) {
2879  autoCreateBlock();
2880  appendStmt(Block, C);
2881
2882  return VisitChildren(C);
2883}
2884
2885CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2886                                                 AddStmtChoice asc) {
2887  if (asc.alwaysAdd(*this, E)) {
2888    autoCreateBlock();
2889    appendStmt(Block, E);
2890    // We do not want to propagate the AlwaysAdd property.
2891    asc = asc.withAlwaysAdd(false);
2892  }
2893  return Visit(E->getSubExpr(), asc);
2894}
2895
2896CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2897                                                  AddStmtChoice asc) {
2898  autoCreateBlock();
2899  appendStmt(Block, C);
2900  return VisitChildren(C);
2901}
2902
2903CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2904                                            AddStmtChoice asc) {
2905  if (asc.alwaysAdd(*this, E)) {
2906    autoCreateBlock();
2907    appendStmt(Block, E);
2908  }
2909  return Visit(E->getSubExpr(), AddStmtChoice());
2910}
2911
2912CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2913  // Lazily create the indirect-goto dispatch block if there isn't one already.
2914  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2915
2916  if (!IBlock) {
2917    IBlock = createBlock(false);
2918    cfg->setIndirectGotoBlock(IBlock);
2919  }
2920
2921  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2922  // current block and create a new one.
2923  if (badCFG)
2924    return 0;
2925
2926  Block = createBlock(false);
2927  Block->setTerminator(I);
2928  addSuccessor(Block, IBlock);
2929  return addStmt(I->getTarget());
2930}
2931
2932CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2933tryAgain:
2934  if (!E) {
2935    badCFG = true;
2936    return NULL;
2937  }
2938  switch (E->getStmtClass()) {
2939    default:
2940      return VisitChildrenForTemporaryDtors(E);
2941
2942    case Stmt::BinaryOperatorClass:
2943      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2944
2945    case Stmt::CXXBindTemporaryExprClass:
2946      return VisitCXXBindTemporaryExprForTemporaryDtors(
2947          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2948
2949    case Stmt::BinaryConditionalOperatorClass:
2950    case Stmt::ConditionalOperatorClass:
2951      return VisitConditionalOperatorForTemporaryDtors(
2952          cast<AbstractConditionalOperator>(E), BindToTemporary);
2953
2954    case Stmt::ImplicitCastExprClass:
2955      // For implicit cast we want BindToTemporary to be passed further.
2956      E = cast<CastExpr>(E)->getSubExpr();
2957      goto tryAgain;
2958
2959    case Stmt::ParenExprClass:
2960      E = cast<ParenExpr>(E)->getSubExpr();
2961      goto tryAgain;
2962
2963    case Stmt::MaterializeTemporaryExprClass:
2964      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2965      goto tryAgain;
2966  }
2967}
2968
2969CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2970  // When visiting children for destructors we want to visit them in reverse
2971  // order. Because there's no reverse iterator for children must to reverse
2972  // them in helper vector.
2973  typedef SmallVector<Stmt *, 4> ChildrenVect;
2974  ChildrenVect ChildrenRev;
2975  for (Stmt::child_range I = E->children(); I; ++I) {
2976    if (*I) ChildrenRev.push_back(*I);
2977  }
2978
2979  CFGBlock *B = Block;
2980  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2981      L = ChildrenRev.rend(); I != L; ++I) {
2982    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2983      B = R;
2984  }
2985  return B;
2986}
2987
2988CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2989  if (E->isLogicalOp()) {
2990    // Destructors for temporaries in LHS expression should be called after
2991    // those for RHS expression. Even if this will unnecessarily create a block,
2992    // this block will be used at least by the full expression.
2993    autoCreateBlock();
2994    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2995    if (badCFG)
2996      return NULL;
2997
2998    Succ = ConfluenceBlock;
2999    Block = NULL;
3000    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3001
3002    if (RHSBlock) {
3003      if (badCFG)
3004        return NULL;
3005
3006      // If RHS expression did produce destructors we need to connect created
3007      // blocks to CFG in same manner as for binary operator itself.
3008      CFGBlock *LHSBlock = createBlock(false);
3009      LHSBlock->setTerminator(CFGTerminator(E, true));
3010
3011      // For binary operator LHS block is before RHS in list of predecessors
3012      // of ConfluenceBlock.
3013      std::reverse(ConfluenceBlock->pred_begin(),
3014          ConfluenceBlock->pred_end());
3015
3016      // See if this is a known constant.
3017      TryResult KnownVal = tryEvaluateBool(E->getLHS());
3018      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3019        KnownVal.negate();
3020
3021      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3022      // itself.
3023      if (E->getOpcode() == BO_LOr) {
3024        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3025        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3026      } else {
3027        assert (E->getOpcode() == BO_LAnd);
3028        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
3029        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
3030      }
3031
3032      Block = LHSBlock;
3033      return LHSBlock;
3034    }
3035
3036    Block = ConfluenceBlock;
3037    return ConfluenceBlock;
3038  }
3039
3040  if (E->isAssignmentOp()) {
3041    // For assignment operator (=) LHS expression is visited
3042    // before RHS expression. For destructors visit them in reverse order.
3043    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3044    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3045    return LHSBlock ? LHSBlock : RHSBlock;
3046  }
3047
3048  // For any other binary operator RHS expression is visited before
3049  // LHS expression (order of children). For destructors visit them in reverse
3050  // order.
3051  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3052  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3053  return RHSBlock ? RHSBlock : LHSBlock;
3054}
3055
3056CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3057    CXXBindTemporaryExpr *E, bool BindToTemporary) {
3058  // First add destructors for temporaries in subexpression.
3059  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3060  if (!BindToTemporary) {
3061    // If lifetime of temporary is not prolonged (by assigning to constant
3062    // reference) add destructor for it.
3063
3064    // If the destructor is marked as a no-return destructor, we need to create
3065    // a new block for the destructor which does not have as a successor
3066    // anything built thus far. Control won't flow out of this block.
3067    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3068    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
3069      Block = createNoReturnBlock();
3070    else
3071      autoCreateBlock();
3072
3073    appendTemporaryDtor(Block, E);
3074    B = Block;
3075  }
3076  return B;
3077}
3078
3079CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3080    AbstractConditionalOperator *E, bool BindToTemporary) {
3081  // First add destructors for condition expression.  Even if this will
3082  // unnecessarily create a block, this block will be used at least by the full
3083  // expression.
3084  autoCreateBlock();
3085  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3086  if (badCFG)
3087    return NULL;
3088  if (BinaryConditionalOperator *BCO
3089        = dyn_cast<BinaryConditionalOperator>(E)) {
3090    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3091    if (badCFG)
3092      return NULL;
3093  }
3094
3095  // Try to add block with destructors for LHS expression.
3096  CFGBlock *LHSBlock = NULL;
3097  Succ = ConfluenceBlock;
3098  Block = NULL;
3099  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3100  if (badCFG)
3101    return NULL;
3102
3103  // Try to add block with destructors for RHS expression;
3104  Succ = ConfluenceBlock;
3105  Block = NULL;
3106  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3107                                              BindToTemporary);
3108  if (badCFG)
3109    return NULL;
3110
3111  if (!RHSBlock && !LHSBlock) {
3112    // If neither LHS nor RHS expression had temporaries to destroy don't create
3113    // more blocks.
3114    Block = ConfluenceBlock;
3115    return Block;
3116  }
3117
3118  Block = createBlock(false);
3119  Block->setTerminator(CFGTerminator(E, true));
3120
3121  // See if this is a known constant.
3122  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3123
3124  if (LHSBlock) {
3125    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
3126  } else if (KnownVal.isFalse()) {
3127    addSuccessor(Block, NULL);
3128  } else {
3129    addSuccessor(Block, ConfluenceBlock);
3130    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3131  }
3132
3133  if (!RHSBlock)
3134    RHSBlock = ConfluenceBlock;
3135  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
3136
3137  return Block;
3138}
3139
3140} // end anonymous namespace
3141
3142/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3143///  no successors or predecessors.  If this is the first block created in the
3144///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3145CFGBlock *CFG::createBlock() {
3146  bool first_block = begin() == end();
3147
3148  // Create the block.
3149  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3150  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3151  Blocks.push_back(Mem, BlkBVC);
3152
3153  // If this is the first block, set it as the Entry and Exit.
3154  if (first_block)
3155    Entry = Exit = &back();
3156
3157  // Return the block.
3158  return &back();
3159}
3160
3161/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
3162///  CFG is returned to the caller.
3163CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3164    const BuildOptions &BO) {
3165  CFGBuilder Builder(C, BO);
3166  return Builder.buildCFG(D, Statement);
3167}
3168
3169const CXXDestructorDecl *
3170CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3171  switch (getKind()) {
3172    case CFGElement::Invalid:
3173    case CFGElement::Statement:
3174    case CFGElement::Initializer:
3175      llvm_unreachable("getDestructorDecl should only be used with "
3176                       "ImplicitDtors");
3177    case CFGElement::AutomaticObjectDtor: {
3178      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3179      QualType ty = var->getType();
3180      ty = ty.getNonReferenceType();
3181      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3182        ty = arrayType->getElementType();
3183      }
3184      const RecordType *recordType = ty->getAs<RecordType>();
3185      const CXXRecordDecl *classDecl =
3186      cast<CXXRecordDecl>(recordType->getDecl());
3187      return classDecl->getDestructor();
3188    }
3189    case CFGElement::TemporaryDtor: {
3190      const CXXBindTemporaryExpr *bindExpr =
3191        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3192      const CXXTemporary *temp = bindExpr->getTemporary();
3193      return temp->getDestructor();
3194    }
3195    case CFGElement::BaseDtor:
3196    case CFGElement::MemberDtor:
3197
3198      // Not yet supported.
3199      return 0;
3200  }
3201  llvm_unreachable("getKind() returned bogus value");
3202}
3203
3204bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3205  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3206    QualType ty = cdecl->getType();
3207    return cast<FunctionType>(ty)->getNoReturnAttr();
3208  }
3209  return false;
3210}
3211
3212//===----------------------------------------------------------------------===//
3213// CFG: Queries for BlkExprs.
3214//===----------------------------------------------------------------------===//
3215
3216namespace {
3217  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3218}
3219
3220static void FindSubExprAssignments(const Stmt *S,
3221                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3222  if (!S)
3223    return;
3224
3225  for (Stmt::const_child_range I = S->children(); I; ++I) {
3226    const Stmt *child = *I;
3227    if (!child)
3228      continue;
3229
3230    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3231      if (B->isAssignmentOp()) Set.insert(B);
3232
3233    FindSubExprAssignments(child, Set);
3234  }
3235}
3236
3237static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3238  BlkExprMapTy* M = new BlkExprMapTy();
3239
3240  // Look for assignments that are used as subexpressions.  These are the only
3241  // assignments that we want to *possibly* register as a block-level
3242  // expression.  Basically, if an assignment occurs both in a subexpression and
3243  // at the block-level, it is a block-level expression.
3244  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3245
3246  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3247    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3248      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3249        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3250
3251  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3252
3253    // Iterate over the statements again on identify the Expr* and Stmt* at the
3254    // block-level that are block-level expressions.
3255
3256    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3257      const CFGStmt *CS = BI->getAs<CFGStmt>();
3258      if (!CS)
3259        continue;
3260      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3261        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3262
3263        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3264          // Assignment expressions that are not nested within another
3265          // expression are really "statements" whose value is never used by
3266          // another expression.
3267          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3268            continue;
3269        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3270          // Special handling for statement expressions.  The last statement in
3271          // the statement expression is also a block-level expr.
3272          const CompoundStmt *C = SE->getSubStmt();
3273          if (!C->body_empty()) {
3274            const Stmt *Last = C->body_back();
3275            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3276              Last = LastEx->IgnoreParens();
3277            unsigned x = M->size();
3278            (*M)[Last] = x;
3279          }
3280        }
3281
3282        unsigned x = M->size();
3283        (*M)[Exp] = x;
3284      }
3285    }
3286
3287    // Look at terminators.  The condition is a block-level expression.
3288
3289    Stmt *S = (*I)->getTerminatorCondition();
3290
3291    if (S && M->find(S) == M->end()) {
3292      unsigned x = M->size();
3293      (*M)[S] = x;
3294    }
3295  }
3296
3297  return M;
3298}
3299
3300CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3301  assert(S != NULL);
3302  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3303
3304  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3305  BlkExprMapTy::iterator I = M->find(S);
3306  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3307}
3308
3309unsigned CFG::getNumBlkExprs() {
3310  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3311    return M->size();
3312
3313  // We assume callers interested in the number of BlkExprs will want
3314  // the map constructed if it doesn't already exist.
3315  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3316  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3317}
3318
3319//===----------------------------------------------------------------------===//
3320// Filtered walking of the CFG.
3321//===----------------------------------------------------------------------===//
3322
3323bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3324        const CFGBlock *From, const CFGBlock *To) {
3325
3326  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3327    // If the 'To' has no label or is labeled but the label isn't a
3328    // CaseStmt then filter this edge.
3329    if (const SwitchStmt *S =
3330        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3331      if (S->isAllEnumCasesCovered()) {
3332        const Stmt *L = To->getLabel();
3333        if (!L || !isa<CaseStmt>(L))
3334          return true;
3335      }
3336    }
3337  }
3338
3339  return false;
3340}
3341
3342//===----------------------------------------------------------------------===//
3343// Cleanup: CFG dstor.
3344//===----------------------------------------------------------------------===//
3345
3346CFG::~CFG() {
3347  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3348}
3349
3350//===----------------------------------------------------------------------===//
3351// CFG pretty printing
3352//===----------------------------------------------------------------------===//
3353
3354namespace {
3355
3356class StmtPrinterHelper : public PrinterHelper  {
3357  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3358  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3359  StmtMapTy StmtMap;
3360  DeclMapTy DeclMap;
3361  signed currentBlock;
3362  unsigned currentStmt;
3363  const LangOptions &LangOpts;
3364public:
3365
3366  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3367    : currentBlock(0), currentStmt(0), LangOpts(LO)
3368  {
3369    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3370      unsigned j = 1;
3371      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3372           BI != BEnd; ++BI, ++j ) {
3373        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3374          const Stmt *stmt= SE->getStmt();
3375          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3376          StmtMap[stmt] = P;
3377
3378          switch (stmt->getStmtClass()) {
3379            case Stmt::DeclStmtClass:
3380                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3381                break;
3382            case Stmt::IfStmtClass: {
3383              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3384              if (var)
3385                DeclMap[var] = P;
3386              break;
3387            }
3388            case Stmt::ForStmtClass: {
3389              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3390              if (var)
3391                DeclMap[var] = P;
3392              break;
3393            }
3394            case Stmt::WhileStmtClass: {
3395              const VarDecl *var =
3396                cast<WhileStmt>(stmt)->getConditionVariable();
3397              if (var)
3398                DeclMap[var] = P;
3399              break;
3400            }
3401            case Stmt::SwitchStmtClass: {
3402              const VarDecl *var =
3403                cast<SwitchStmt>(stmt)->getConditionVariable();
3404              if (var)
3405                DeclMap[var] = P;
3406              break;
3407            }
3408            case Stmt::CXXCatchStmtClass: {
3409              const VarDecl *var =
3410                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3411              if (var)
3412                DeclMap[var] = P;
3413              break;
3414            }
3415            default:
3416              break;
3417          }
3418        }
3419      }
3420    }
3421  }
3422
3423
3424  virtual ~StmtPrinterHelper() {}
3425
3426  const LangOptions &getLangOpts() const { return LangOpts; }
3427  void setBlockID(signed i) { currentBlock = i; }
3428  void setStmtID(unsigned i) { currentStmt = i; }
3429
3430  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3431    StmtMapTy::iterator I = StmtMap.find(S);
3432
3433    if (I == StmtMap.end())
3434      return false;
3435
3436    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3437                          && I->second.second == currentStmt) {
3438      return false;
3439    }
3440
3441    OS << "[B" << I->second.first << "." << I->second.second << "]";
3442    return true;
3443  }
3444
3445  bool handleDecl(const Decl *D, raw_ostream &OS) {
3446    DeclMapTy::iterator I = DeclMap.find(D);
3447
3448    if (I == DeclMap.end())
3449      return false;
3450
3451    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3452                          && I->second.second == currentStmt) {
3453      return false;
3454    }
3455
3456    OS << "[B" << I->second.first << "." << I->second.second << "]";
3457    return true;
3458  }
3459};
3460} // end anonymous namespace
3461
3462
3463namespace {
3464class CFGBlockTerminatorPrint
3465  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3466
3467  raw_ostream &OS;
3468  StmtPrinterHelper* Helper;
3469  PrintingPolicy Policy;
3470public:
3471  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3472                          const PrintingPolicy &Policy)
3473    : OS(os), Helper(helper), Policy(Policy) {}
3474
3475  void VisitIfStmt(IfStmt *I) {
3476    OS << "if ";
3477    I->getCond()->printPretty(OS,Helper,Policy);
3478  }
3479
3480  // Default case.
3481  void VisitStmt(Stmt *Terminator) {
3482    Terminator->printPretty(OS, Helper, Policy);
3483  }
3484
3485  void VisitForStmt(ForStmt *F) {
3486    OS << "for (" ;
3487    if (F->getInit())
3488      OS << "...";
3489    OS << "; ";
3490    if (Stmt *C = F->getCond())
3491      C->printPretty(OS, Helper, Policy);
3492    OS << "; ";
3493    if (F->getInc())
3494      OS << "...";
3495    OS << ")";
3496  }
3497
3498  void VisitWhileStmt(WhileStmt *W) {
3499    OS << "while " ;
3500    if (Stmt *C = W->getCond())
3501      C->printPretty(OS, Helper, Policy);
3502  }
3503
3504  void VisitDoStmt(DoStmt *D) {
3505    OS << "do ... while ";
3506    if (Stmt *C = D->getCond())
3507      C->printPretty(OS, Helper, Policy);
3508  }
3509
3510  void VisitSwitchStmt(SwitchStmt *Terminator) {
3511    OS << "switch ";
3512    Terminator->getCond()->printPretty(OS, Helper, Policy);
3513  }
3514
3515  void VisitCXXTryStmt(CXXTryStmt *CS) {
3516    OS << "try ...";
3517  }
3518
3519  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3520    C->getCond()->printPretty(OS, Helper, Policy);
3521    OS << " ? ... : ...";
3522  }
3523
3524  void VisitChooseExpr(ChooseExpr *C) {
3525    OS << "__builtin_choose_expr( ";
3526    C->getCond()->printPretty(OS, Helper, Policy);
3527    OS << " )";
3528  }
3529
3530  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3531    OS << "goto *";
3532    I->getTarget()->printPretty(OS, Helper, Policy);
3533  }
3534
3535  void VisitBinaryOperator(BinaryOperator* B) {
3536    if (!B->isLogicalOp()) {
3537      VisitExpr(B);
3538      return;
3539    }
3540
3541    B->getLHS()->printPretty(OS, Helper, Policy);
3542
3543    switch (B->getOpcode()) {
3544      case BO_LOr:
3545        OS << " || ...";
3546        return;
3547      case BO_LAnd:
3548        OS << " && ...";
3549        return;
3550      default:
3551        llvm_unreachable("Invalid logical operator.");
3552    }
3553  }
3554
3555  void VisitExpr(Expr *E) {
3556    E->printPretty(OS, Helper, Policy);
3557  }
3558};
3559} // end anonymous namespace
3560
3561static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3562                       const CFGElement &E) {
3563  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3564    const Stmt *S = CS->getStmt();
3565
3566    if (Helper) {
3567
3568      // special printing for statement-expressions.
3569      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3570        const CompoundStmt *Sub = SE->getSubStmt();
3571
3572        if (Sub->children()) {
3573          OS << "({ ... ; ";
3574          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3575          OS << " })\n";
3576          return;
3577        }
3578      }
3579      // special printing for comma expressions.
3580      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3581        if (B->getOpcode() == BO_Comma) {
3582          OS << "... , ";
3583          Helper->handledStmt(B->getRHS(),OS);
3584          OS << '\n';
3585          return;
3586        }
3587      }
3588    }
3589    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3590
3591    if (isa<CXXOperatorCallExpr>(S)) {
3592      OS << " (OperatorCall)";
3593    }
3594    else if (isa<CXXBindTemporaryExpr>(S)) {
3595      OS << " (BindTemporary)";
3596    }
3597    else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
3598      OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
3599    }
3600    else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
3601      OS << " (" << CE->getStmtClassName() << ", "
3602         << CE->getCastKindName()
3603         << ", " << CE->getType().getAsString()
3604         << ")";
3605    }
3606
3607    // Expressions need a newline.
3608    if (isa<Expr>(S))
3609      OS << '\n';
3610
3611  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3612    const CXXCtorInitializer *I = IE->getInitializer();
3613    if (I->isBaseInitializer())
3614      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3615    else OS << I->getAnyMember()->getName();
3616
3617    OS << "(";
3618    if (Expr *IE = I->getInit())
3619      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3620    OS << ")";
3621
3622    if (I->isBaseInitializer())
3623      OS << " (Base initializer)\n";
3624    else OS << " (Member initializer)\n";
3625
3626  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3627    const VarDecl *VD = DE->getVarDecl();
3628    Helper->handleDecl(VD, OS);
3629
3630    const Type* T = VD->getType().getTypePtr();
3631    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3632      T = RT->getPointeeType().getTypePtr();
3633    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3634      T = ET;
3635
3636    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3637    OS << " (Implicit destructor)\n";
3638
3639  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3640    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3641    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3642    OS << " (Base object destructor)\n";
3643
3644  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3645    const FieldDecl *FD = ME->getFieldDecl();
3646
3647    const Type *T = FD->getType().getTypePtr();
3648    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3649      T = ET;
3650
3651    OS << "this->" << FD->getName();
3652    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3653    OS << " (Member object destructor)\n";
3654
3655  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3656    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3657    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3658    OS << " (Temporary object destructor)\n";
3659  }
3660}
3661
3662static void print_block(raw_ostream &OS, const CFG* cfg,
3663                        const CFGBlock &B,
3664                        StmtPrinterHelper* Helper, bool print_edges,
3665                        bool ShowColors) {
3666
3667  if (Helper)
3668    Helper->setBlockID(B.getBlockID());
3669
3670  // Print the header.
3671  if (ShowColors)
3672    OS.changeColor(raw_ostream::YELLOW, true);
3673
3674  OS << "\n [B" << B.getBlockID();
3675
3676  if (&B == &cfg->getEntry())
3677    OS << " (ENTRY)]\n";
3678  else if (&B == &cfg->getExit())
3679    OS << " (EXIT)]\n";
3680  else if (&B == cfg->getIndirectGotoBlock())
3681    OS << " (INDIRECT GOTO DISPATCH)]\n";
3682  else
3683    OS << "]\n";
3684
3685  if (ShowColors)
3686    OS.resetColor();
3687
3688  // Print the label of this block.
3689  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3690
3691    if (print_edges)
3692      OS << "  ";
3693
3694    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3695      OS << L->getName();
3696    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3697      OS << "case ";
3698      C->getLHS()->printPretty(OS, Helper,
3699                               PrintingPolicy(Helper->getLangOpts()));
3700      if (C->getRHS()) {
3701        OS << " ... ";
3702        C->getRHS()->printPretty(OS, Helper,
3703                                 PrintingPolicy(Helper->getLangOpts()));
3704      }
3705    } else if (isa<DefaultStmt>(Label))
3706      OS << "default";
3707    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3708      OS << "catch (";
3709      if (CS->getExceptionDecl())
3710        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3711                                      0);
3712      else
3713        OS << "...";
3714      OS << ")";
3715
3716    } else
3717      llvm_unreachable("Invalid label statement in CFGBlock.");
3718
3719    OS << ":\n";
3720  }
3721
3722  // Iterate through the statements in the block and print them.
3723  unsigned j = 1;
3724
3725  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3726       I != E ; ++I, ++j ) {
3727
3728    // Print the statement # in the basic block and the statement itself.
3729    if (print_edges)
3730      OS << " ";
3731
3732    OS << llvm::format("%3d", j) << ": ";
3733
3734    if (Helper)
3735      Helper->setStmtID(j);
3736
3737    print_elem(OS, Helper, *I);
3738  }
3739
3740  // Print the terminator of this block.
3741  if (B.getTerminator()) {
3742    if (ShowColors)
3743      OS.changeColor(raw_ostream::GREEN);
3744
3745    OS << "   T: ";
3746
3747    if (Helper) Helper->setBlockID(-1);
3748
3749    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3750                                     PrintingPolicy(Helper->getLangOpts()));
3751    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3752    OS << '\n';
3753
3754    if (ShowColors)
3755      OS.resetColor();
3756  }
3757
3758  if (print_edges) {
3759    // Print the predecessors of this block.
3760    if (!B.pred_empty()) {
3761      const raw_ostream::Colors Color = raw_ostream::BLUE;
3762      if (ShowColors)
3763        OS.changeColor(Color);
3764      OS << "   Preds " ;
3765      if (ShowColors)
3766        OS.resetColor();
3767      OS << '(' << B.pred_size() << "):";
3768      unsigned i = 0;
3769
3770      if (ShowColors)
3771        OS.changeColor(Color);
3772
3773      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3774           I != E; ++I, ++i) {
3775
3776        if (i == 8 || (i-8) == 0)
3777          OS << "\n     ";
3778
3779        OS << " B" << (*I)->getBlockID();
3780      }
3781
3782      if (ShowColors)
3783        OS.resetColor();
3784
3785      OS << '\n';
3786    }
3787
3788    // Print the successors of this block.
3789    if (!B.succ_empty()) {
3790      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
3791      if (ShowColors)
3792        OS.changeColor(Color);
3793      OS << "   Succs ";
3794      if (ShowColors)
3795        OS.resetColor();
3796      OS << '(' << B.succ_size() << "):";
3797      unsigned i = 0;
3798
3799      if (ShowColors)
3800        OS.changeColor(Color);
3801
3802      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3803           I != E; ++I, ++i) {
3804
3805        if (i == 8 || (i-8) % 10 == 0)
3806          OS << "\n    ";
3807
3808        if (*I)
3809          OS << " B" << (*I)->getBlockID();
3810        else
3811          OS  << " NULL";
3812      }
3813
3814      if (ShowColors)
3815        OS.resetColor();
3816      OS << '\n';
3817    }
3818  }
3819}
3820
3821
3822/// dump - A simple pretty printer of a CFG that outputs to stderr.
3823void CFG::dump(const LangOptions &LO, bool ShowColors) const {
3824  print(llvm::errs(), LO, ShowColors);
3825}
3826
3827/// print - A simple pretty printer of a CFG that outputs to an ostream.
3828void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
3829  StmtPrinterHelper Helper(this, LO);
3830
3831  // Print the entry block.
3832  print_block(OS, this, getEntry(), &Helper, true, ShowColors);
3833
3834  // Iterate through the CFGBlocks and print them one by one.
3835  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3836    // Skip the entry block, because we already printed it.
3837    if (&(**I) == &getEntry() || &(**I) == &getExit())
3838      continue;
3839
3840    print_block(OS, this, **I, &Helper, true, ShowColors);
3841  }
3842
3843  // Print the exit block.
3844  print_block(OS, this, getExit(), &Helper, true, ShowColors);
3845  OS << '\n';
3846  OS.flush();
3847}
3848
3849/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3850void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
3851                    bool ShowColors) const {
3852  print(llvm::errs(), cfg, LO, ShowColors);
3853}
3854
3855/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3856///   Generally this will only be called from CFG::print.
3857void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3858                     const LangOptions &LO, bool ShowColors) const {
3859  StmtPrinterHelper Helper(cfg, LO);
3860  print_block(OS, cfg, *this, &Helper, true, ShowColors);
3861  OS << '\n';
3862}
3863
3864/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3865void CFGBlock::printTerminator(raw_ostream &OS,
3866                               const LangOptions &LO) const {
3867  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3868  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3869}
3870
3871Stmt *CFGBlock::getTerminatorCondition() {
3872  Stmt *Terminator = this->Terminator;
3873  if (!Terminator)
3874    return NULL;
3875
3876  Expr *E = NULL;
3877
3878  switch (Terminator->getStmtClass()) {
3879    default:
3880      break;
3881
3882    case Stmt::ForStmtClass:
3883      E = cast<ForStmt>(Terminator)->getCond();
3884      break;
3885
3886    case Stmt::WhileStmtClass:
3887      E = cast<WhileStmt>(Terminator)->getCond();
3888      break;
3889
3890    case Stmt::DoStmtClass:
3891      E = cast<DoStmt>(Terminator)->getCond();
3892      break;
3893
3894    case Stmt::IfStmtClass:
3895      E = cast<IfStmt>(Terminator)->getCond();
3896      break;
3897
3898    case Stmt::ChooseExprClass:
3899      E = cast<ChooseExpr>(Terminator)->getCond();
3900      break;
3901
3902    case Stmt::IndirectGotoStmtClass:
3903      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3904      break;
3905
3906    case Stmt::SwitchStmtClass:
3907      E = cast<SwitchStmt>(Terminator)->getCond();
3908      break;
3909
3910    case Stmt::BinaryConditionalOperatorClass:
3911      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3912      break;
3913
3914    case Stmt::ConditionalOperatorClass:
3915      E = cast<ConditionalOperator>(Terminator)->getCond();
3916      break;
3917
3918    case Stmt::BinaryOperatorClass: // '&&' and '||'
3919      E = cast<BinaryOperator>(Terminator)->getLHS();
3920      break;
3921
3922    case Stmt::ObjCForCollectionStmtClass:
3923      return Terminator;
3924  }
3925
3926  return E ? E->IgnoreParens() : NULL;
3927}
3928
3929//===----------------------------------------------------------------------===//
3930// CFG Graphviz Visualization
3931//===----------------------------------------------------------------------===//
3932
3933
3934#ifndef NDEBUG
3935static StmtPrinterHelper* GraphHelper;
3936#endif
3937
3938void CFG::viewCFG(const LangOptions &LO) const {
3939#ifndef NDEBUG
3940  StmtPrinterHelper H(this, LO);
3941  GraphHelper = &H;
3942  llvm::ViewGraph(this,"CFG");
3943  GraphHelper = NULL;
3944#endif
3945}
3946
3947namespace llvm {
3948template<>
3949struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3950
3951  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3952
3953  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3954
3955#ifndef NDEBUG
3956    std::string OutSStr;
3957    llvm::raw_string_ostream Out(OutSStr);
3958    print_block(Out,Graph, *Node, GraphHelper, false, false);
3959    std::string& OutStr = Out.str();
3960
3961    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3962
3963    // Process string output to make it nicer...
3964    for (unsigned i = 0; i != OutStr.length(); ++i)
3965      if (OutStr[i] == '\n') {                            // Left justify
3966        OutStr[i] = '\\';
3967        OutStr.insert(OutStr.begin()+i+1, 'l');
3968      }
3969
3970    return OutStr;
3971#else
3972    return "";
3973#endif
3974  }
3975};
3976} // end namespace llvm
3977