CFG.cpp revision dba3fb5413437dc613734fa4ffac892b11a37d25
1//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the CFG and CFGBuilder classes for representing and
11//  building Control-Flow Graphs (CFGs) from ASTs.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Analysis/Support/SaveAndRestore.h"
16#include "clang/Analysis/CFG.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/AST/PrettyPrinter.h"
20#include "clang/AST/CharUnits.h"
21#include "llvm/Support/GraphWriter.h"
22#include "llvm/Support/Allocator.h"
23#include "llvm/Support/Format.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/OwningPtr.h"
27
28using namespace clang;
29
30namespace {
31
32static SourceLocation GetEndLoc(Decl *D) {
33  if (VarDecl *VD = dyn_cast<VarDecl>(D))
34    if (Expr *Ex = VD->getInit())
35      return Ex->getSourceRange().getEnd();
36  return D->getLocation();
37}
38
39class CFGBuilder;
40
41/// The CFG builder uses a recursive algorithm to build the CFG.  When
42///  we process an expression, sometimes we know that we must add the
43///  subexpressions as block-level expressions.  For example:
44///
45///    exp1 || exp2
46///
47///  When processing the '||' expression, we know that exp1 and exp2
48///  need to be added as block-level expressions, even though they
49///  might not normally need to be.  AddStmtChoice records this
50///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
51///  the builder has an option not to add a subexpression as a
52///  block-level expression.
53///
54class AddStmtChoice {
55public:
56  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
57
58  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
59
60  bool alwaysAdd(CFGBuilder &builder,
61                 const Stmt *stmt) const;
62
63  /// Return a copy of this object, except with the 'always-add' bit
64  ///  set as specified.
65  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
66    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
67  }
68
69private:
70  Kind kind;
71};
72
73/// LocalScope - Node in tree of local scopes created for C++ implicit
74/// destructor calls generation. It contains list of automatic variables
75/// declared in the scope and link to position in previous scope this scope
76/// began in.
77///
78/// The process of creating local scopes is as follows:
79/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
80/// - Before processing statements in scope (e.g. CompoundStmt) create
81///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
82///   and set CFGBuilder::ScopePos to the end of new scope,
83/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
84///   at this VarDecl,
85/// - For every normal (without jump) end of scope add to CFGBlock destructors
86///   for objects in the current scope,
87/// - For every jump add to CFGBlock destructors for objects
88///   between CFGBuilder::ScopePos and local scope position saved for jump
89///   target. Thanks to C++ restrictions on goto jumps we can be sure that
90///   jump target position will be on the path to root from CFGBuilder::ScopePos
91///   (adding any variable that doesn't need constructor to be called to
92///   LocalScope can break this assumption),
93///
94class LocalScope {
95public:
96  typedef BumpVector<VarDecl*> AutomaticVarsTy;
97
98  /// const_iterator - Iterates local scope backwards and jumps to previous
99  /// scope on reaching the beginning of currently iterated scope.
100  class const_iterator {
101    const LocalScope* Scope;
102
103    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
104    /// Invalid iterator (with null Scope) has VarIter equal to 0.
105    unsigned VarIter;
106
107  public:
108    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
109    /// Incrementing invalid iterator is allowed and will result in invalid
110    /// iterator.
111    const_iterator()
112        : Scope(NULL), VarIter(0) {}
113
114    /// Create valid iterator. In case when S.Prev is an invalid iterator and
115    /// I is equal to 0, this will create invalid iterator.
116    const_iterator(const LocalScope& S, unsigned I)
117        : Scope(&S), VarIter(I) {
118      // Iterator to "end" of scope is not allowed. Handle it by going up
119      // in scopes tree possibly up to invalid iterator in the root.
120      if (VarIter == 0 && Scope)
121        *this = Scope->Prev;
122    }
123
124    VarDecl *const* operator->() const {
125      assert (Scope && "Dereferencing invalid iterator is not allowed");
126      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
127      return &Scope->Vars[VarIter - 1];
128    }
129    VarDecl *operator*() const {
130      return *this->operator->();
131    }
132
133    const_iterator &operator++() {
134      if (!Scope)
135        return *this;
136
137      assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
138      --VarIter;
139      if (VarIter == 0)
140        *this = Scope->Prev;
141      return *this;
142    }
143    const_iterator operator++(int) {
144      const_iterator P = *this;
145      ++*this;
146      return P;
147    }
148
149    bool operator==(const const_iterator &rhs) const {
150      return Scope == rhs.Scope && VarIter == rhs.VarIter;
151    }
152    bool operator!=(const const_iterator &rhs) const {
153      return !(*this == rhs);
154    }
155
156    operator bool() const {
157      return *this != const_iterator();
158    }
159
160    int distance(const_iterator L);
161  };
162
163  friend class const_iterator;
164
165private:
166  BumpVectorContext ctx;
167
168  /// Automatic variables in order of declaration.
169  AutomaticVarsTy Vars;
170  /// Iterator to variable in previous scope that was declared just before
171  /// begin of this scope.
172  const_iterator Prev;
173
174public:
175  /// Constructs empty scope linked to previous scope in specified place.
176  LocalScope(BumpVectorContext &ctx, const_iterator P)
177      : ctx(ctx), Vars(ctx, 4), Prev(P) {}
178
179  /// Begin of scope in direction of CFG building (backwards).
180  const_iterator begin() const { return const_iterator(*this, Vars.size()); }
181
182  void addVar(VarDecl *VD) {
183    Vars.push_back(VD, ctx);
184  }
185};
186
187/// distance - Calculates distance from this to L. L must be reachable from this
188/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
189/// number of scopes between this and L.
190int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
191  int D = 0;
192  const_iterator F = *this;
193  while (F.Scope != L.Scope) {
194    assert (F != const_iterator()
195        && "L iterator is not reachable from F iterator.");
196    D += F.VarIter;
197    F = F.Scope->Prev;
198  }
199  D += F.VarIter - L.VarIter;
200  return D;
201}
202
203/// BlockScopePosPair - Structure for specifying position in CFG during its
204/// build process. It consists of CFGBlock that specifies position in CFG graph
205/// and  LocalScope::const_iterator that specifies position in LocalScope graph.
206struct BlockScopePosPair {
207  BlockScopePosPair() : block(0) {}
208  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
209      : block(b), scopePosition(scopePos) {}
210
211  CFGBlock *block;
212  LocalScope::const_iterator scopePosition;
213};
214
215/// TryResult - a class representing a variant over the values
216///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
217///  and is used by the CFGBuilder to decide if a branch condition
218///  can be decided up front during CFG construction.
219class TryResult {
220  int X;
221public:
222  TryResult(bool b) : X(b ? 1 : 0) {}
223  TryResult() : X(-1) {}
224
225  bool isTrue() const { return X == 1; }
226  bool isFalse() const { return X == 0; }
227  bool isKnown() const { return X >= 0; }
228  void negate() {
229    assert(isKnown());
230    X ^= 0x1;
231  }
232};
233
234/// CFGBuilder - This class implements CFG construction from an AST.
235///   The builder is stateful: an instance of the builder should be used to only
236///   construct a single CFG.
237///
238///   Example usage:
239///
240///     CFGBuilder builder;
241///     CFG* cfg = builder.BuildAST(stmt1);
242///
243///  CFG construction is done via a recursive walk of an AST.  We actually parse
244///  the AST in reverse order so that the successor of a basic block is
245///  constructed prior to its predecessor.  This allows us to nicely capture
246///  implicit fall-throughs without extra basic blocks.
247///
248class CFGBuilder {
249  typedef BlockScopePosPair JumpTarget;
250  typedef BlockScopePosPair JumpSource;
251
252  ASTContext *Context;
253  llvm::OwningPtr<CFG> cfg;
254
255  CFGBlock *Block;
256  CFGBlock *Succ;
257  JumpTarget ContinueJumpTarget;
258  JumpTarget BreakJumpTarget;
259  CFGBlock *SwitchTerminatedBlock;
260  CFGBlock *DefaultCaseBlock;
261  CFGBlock *TryTerminatedBlock;
262
263  // Current position in local scope.
264  LocalScope::const_iterator ScopePos;
265
266  // LabelMap records the mapping from Label expressions to their jump targets.
267  typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
268  LabelMapTy LabelMap;
269
270  // A list of blocks that end with a "goto" that must be backpatched to their
271  // resolved targets upon completion of CFG construction.
272  typedef std::vector<JumpSource> BackpatchBlocksTy;
273  BackpatchBlocksTy BackpatchBlocks;
274
275  // A list of labels whose address has been taken (for indirect gotos).
276  typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
277  LabelSetTy AddressTakenLabels;
278
279  bool badCFG;
280  const CFG::BuildOptions &BuildOpts;
281
282  // State to track for building switch statements.
283  bool switchExclusivelyCovered;
284  Expr::EvalResult *switchCond;
285
286  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
287  const Stmt *lastLookup;
288
289public:
290  explicit CFGBuilder(ASTContext *astContext,
291                      const CFG::BuildOptions &buildOpts)
292    : Context(astContext), cfg(new CFG()), // crew a new CFG
293      Block(NULL), Succ(NULL),
294      SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL),
295      TryTerminatedBlock(NULL), badCFG(false), BuildOpts(buildOpts),
296      switchExclusivelyCovered(false), switchCond(0),
297      cachedEntry(0), lastLookup(0) {}
298
299  // buildCFG - Used by external clients to construct the CFG.
300  CFG* buildCFG(const Decl *D, Stmt *Statement);
301
302  bool alwaysAdd(const Stmt *stmt);
303
304private:
305  // Visitors to walk an AST and construct the CFG.
306  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
307  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
308  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
309  CFGBlock *VisitBreakStmt(BreakStmt *B);
310  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
311  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
312      AddStmtChoice asc);
313  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
314  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
315  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
316  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
317                                      AddStmtChoice asc);
318  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
319  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
320                                       AddStmtChoice asc);
321  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
322                                        AddStmtChoice asc);
323  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
324  CFGBlock *VisitCaseStmt(CaseStmt *C);
325  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
326  CFGBlock *VisitCompoundStmt(CompoundStmt *C);
327  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
328                                     AddStmtChoice asc);
329  CFGBlock *VisitContinueStmt(ContinueStmt *C);
330  CFGBlock *VisitDeclStmt(DeclStmt *DS);
331  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
332  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
333  CFGBlock *VisitDoStmt(DoStmt *D);
334  CFGBlock *VisitForStmt(ForStmt *F);
335  CFGBlock *VisitGotoStmt(GotoStmt *G);
336  CFGBlock *VisitIfStmt(IfStmt *I);
337  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
338  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
339  CFGBlock *VisitLabelStmt(LabelStmt *L);
340  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
341  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
342  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
343  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
344  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
345  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
346  CFGBlock *VisitReturnStmt(ReturnStmt *R);
347  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
348                                          AddStmtChoice asc);
349  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
350  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
351  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
352  CFGBlock *VisitWhileStmt(WhileStmt *W);
353
354  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
355  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
356  CFGBlock *VisitChildren(Stmt *S);
357
358  // Visitors to walk an AST and generate destructors of temporaries in
359  // full expression.
360  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
361  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
362  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
363  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
364      bool BindToTemporary);
365  CFGBlock *
366  VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
367                                            bool BindToTemporary);
368
369  // NYS == Not Yet Supported
370  CFGBlock *NYS() {
371    badCFG = true;
372    return Block;
373  }
374
375  void autoCreateBlock() { if (!Block) Block = createBlock(); }
376  CFGBlock *createBlock(bool add_successor = true);
377  CFGBlock *createNoReturnBlock();
378
379  CFGBlock *addStmt(Stmt *S) {
380    return Visit(S, AddStmtChoice::AlwaysAdd);
381  }
382  CFGBlock *addInitializer(CXXCtorInitializer *I);
383  void addAutomaticObjDtors(LocalScope::const_iterator B,
384                            LocalScope::const_iterator E, Stmt *S);
385  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
386
387  // Local scopes creation.
388  LocalScope* createOrReuseLocalScope(LocalScope* Scope);
389
390  void addLocalScopeForStmt(Stmt *S);
391  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, LocalScope* Scope = NULL);
392  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = NULL);
393
394  void addLocalScopeAndDtors(Stmt *S);
395
396  // Interface to CFGBlock - adding CFGElements.
397  void appendStmt(CFGBlock *B, const Stmt *S) {
398    if (alwaysAdd(S) && cachedEntry)
399      cachedEntry->second = B;
400
401    // All block-level expressions should have already been IgnoreParens()ed.
402    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
403    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
404  }
405  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
406    B->appendInitializer(I, cfg->getBumpVectorContext());
407  }
408  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
409    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
410  }
411  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
412    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
413  }
414  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
415    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
416  }
417  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
418    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
419  }
420
421  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
422      LocalScope::const_iterator B, LocalScope::const_iterator E);
423
424  void addSuccessor(CFGBlock *B, CFGBlock *S) {
425    B->addSuccessor(S, cfg->getBumpVectorContext());
426  }
427
428  /// Try and evaluate an expression to an integer constant.
429  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
430    if (!BuildOpts.PruneTriviallyFalseEdges)
431      return false;
432    return !S->isTypeDependent() &&
433           !S->isValueDependent() &&
434           S->Evaluate(outResult, *Context);
435  }
436
437  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
438  /// if we can evaluate to a known value, otherwise return -1.
439  TryResult tryEvaluateBool(Expr *S) {
440    Expr::EvalResult Result;
441    if (!tryEvaluate(S, Result))
442      return TryResult();
443
444    if (Result.Val.isInt())
445      return Result.Val.getInt().getBoolValue();
446
447    if (Result.Val.isLValue()) {
448      const Expr *e = Result.Val.getLValueBase();
449      const CharUnits &c = Result.Val.getLValueOffset();
450      if (!e && c.isZero())
451        return false;
452    }
453    return TryResult();
454  }
455
456};
457
458inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
459                                     const Stmt *stmt) const {
460  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
461}
462
463bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
464  bool shouldAdd = BuildOpts.alwaysAdd(stmt);
465
466  if (!BuildOpts.forcedBlkExprs)
467    return shouldAdd;
468
469  if (lastLookup == stmt) {
470    if (cachedEntry) {
471      assert(cachedEntry->first == stmt);
472      return true;
473    }
474    return shouldAdd;
475  }
476
477  lastLookup = stmt;
478
479  // Perform the lookup!
480  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
481
482  if (!fb) {
483    // No need to update 'cachedEntry', since it will always be null.
484    assert(cachedEntry == 0);
485    return shouldAdd;
486  }
487
488  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
489  if (itr == fb->end()) {
490    cachedEntry = 0;
491    return shouldAdd;
492  }
493
494  cachedEntry = &*itr;
495  return true;
496}
497
498// FIXME: Add support for dependent-sized array types in C++?
499// Does it even make sense to build a CFG for an uninstantiated template?
500static const VariableArrayType *FindVA(const Type *t) {
501  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
502    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
503      if (vat->getSizeExpr())
504        return vat;
505
506    t = vt->getElementType().getTypePtr();
507  }
508
509  return 0;
510}
511
512/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
513///  arbitrary statement.  Examples include a single expression or a function
514///  body (compound statement).  The ownership of the returned CFG is
515///  transferred to the caller.  If CFG construction fails, this method returns
516///  NULL.
517CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
518  assert(cfg.get());
519  if (!Statement)
520    return NULL;
521
522  // Create an empty block that will serve as the exit block for the CFG.  Since
523  // this is the first block added to the CFG, it will be implicitly registered
524  // as the exit block.
525  Succ = createBlock();
526  assert(Succ == &cfg->getExit());
527  Block = NULL;  // the EXIT block is empty.  Create all other blocks lazily.
528
529  if (BuildOpts.AddImplicitDtors)
530    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
531      addImplicitDtorsForDestructor(DD);
532
533  // Visit the statements and create the CFG.
534  CFGBlock *B = addStmt(Statement);
535
536  if (badCFG)
537    return NULL;
538
539  // For C++ constructor add initializers to CFG.
540  if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
541    for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
542        E = CD->init_rend(); I != E; ++I) {
543      B = addInitializer(*I);
544      if (badCFG)
545        return NULL;
546    }
547  }
548
549  if (B)
550    Succ = B;
551
552  // Backpatch the gotos whose label -> block mappings we didn't know when we
553  // encountered them.
554  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
555                                   E = BackpatchBlocks.end(); I != E; ++I ) {
556
557    CFGBlock *B = I->block;
558    GotoStmt *G = cast<GotoStmt>(B->getTerminator());
559    LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
560
561    // If there is no target for the goto, then we are looking at an
562    // incomplete AST.  Handle this by not registering a successor.
563    if (LI == LabelMap.end()) continue;
564
565    JumpTarget JT = LI->second;
566    prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
567                                           JT.scopePosition);
568    addSuccessor(B, JT.block);
569  }
570
571  // Add successors to the Indirect Goto Dispatch block (if we have one).
572  if (CFGBlock *B = cfg->getIndirectGotoBlock())
573    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
574                              E = AddressTakenLabels.end(); I != E; ++I ) {
575
576      // Lookup the target block.
577      LabelMapTy::iterator LI = LabelMap.find(*I);
578
579      // If there is no target block that contains label, then we are looking
580      // at an incomplete AST.  Handle this by not registering a successor.
581      if (LI == LabelMap.end()) continue;
582
583      addSuccessor(B, LI->second.block);
584    }
585
586  // Create an empty entry block that has no predecessors.
587  cfg->setEntry(createBlock());
588
589  return cfg.take();
590}
591
592/// createBlock - Used to lazily create blocks that are connected
593///  to the current (global) succcessor.
594CFGBlock *CFGBuilder::createBlock(bool add_successor) {
595  CFGBlock *B = cfg->createBlock();
596  if (add_successor && Succ)
597    addSuccessor(B, Succ);
598  return B;
599}
600
601/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
602/// CFG. It is *not* connected to the current (global) successor, and instead
603/// directly tied to the exit block in order to be reachable.
604CFGBlock *CFGBuilder::createNoReturnBlock() {
605  CFGBlock *B = createBlock(false);
606  addSuccessor(B, &cfg->getExit());
607  return B;
608}
609
610/// addInitializer - Add C++ base or member initializer element to CFG.
611CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
612  if (!BuildOpts.AddInitializers)
613    return Block;
614
615  bool IsReference = false;
616  bool HasTemporaries = false;
617
618  // Destructors of temporaries in initialization expression should be called
619  // after initialization finishes.
620  Expr *Init = I->getInit();
621  if (Init) {
622    if (FieldDecl *FD = I->getAnyMember())
623      IsReference = FD->getType()->isReferenceType();
624    HasTemporaries = isa<ExprWithCleanups>(Init);
625
626    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
627      // Generate destructors for temporaries in initialization expression.
628      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
629          IsReference);
630    }
631  }
632
633  autoCreateBlock();
634  appendInitializer(Block, I);
635
636  if (Init) {
637    if (HasTemporaries) {
638      // For expression with temporaries go directly to subexpression to omit
639      // generating destructors for the second time.
640      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
641    }
642    return Visit(Init);
643  }
644
645  return Block;
646}
647
648/// addAutomaticObjDtors - Add to current block automatic objects destructors
649/// for objects in range of local scope positions. Use S as trigger statement
650/// for destructors.
651void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
652                                      LocalScope::const_iterator E, Stmt *S) {
653  if (!BuildOpts.AddImplicitDtors)
654    return;
655
656  if (B == E)
657    return;
658
659  CFGBlock::iterator InsertPos;
660
661  // We need to append the destructors in reverse order, but any one of them
662  // may be a no-return destructor which changes the CFG. As a result, buffer
663  // this sequence up and replay them in reverse order when appending onto the
664  // CFGBlock(s).
665  SmallVector<VarDecl*, 10> Decls;
666  Decls.reserve(B.distance(E));
667  for (LocalScope::const_iterator I = B; I != E; ++I)
668    Decls.push_back(*I);
669
670  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
671                                                   E = Decls.rend();
672       I != E; ++I) {
673    // If this destructor is marked as a no-return destructor, we need to
674    // create a new block for the destructor which does not have as a successor
675    // anything built thus far: control won't flow out of this block.
676    QualType Ty = (*I)->getType().getNonReferenceType();
677    if (const ArrayType *AT = Context->getAsArrayType(Ty))
678      Ty = AT->getElementType();
679    const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
680    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
681      Block = createNoReturnBlock();
682    else
683      autoCreateBlock();
684
685    appendAutomaticObjDtor(Block, *I, S);
686  }
687}
688
689/// addImplicitDtorsForDestructor - Add implicit destructors generated for
690/// base and member objects in destructor.
691void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
692  assert (BuildOpts.AddImplicitDtors
693      && "Can be called only when dtors should be added");
694  const CXXRecordDecl *RD = DD->getParent();
695
696  // At the end destroy virtual base objects.
697  for (CXXRecordDecl::base_class_const_iterator VI = RD->vbases_begin(),
698      VE = RD->vbases_end(); VI != VE; ++VI) {
699    const CXXRecordDecl *CD = VI->getType()->getAsCXXRecordDecl();
700    if (!CD->hasTrivialDestructor()) {
701      autoCreateBlock();
702      appendBaseDtor(Block, VI);
703    }
704  }
705
706  // Before virtual bases destroy direct base objects.
707  for (CXXRecordDecl::base_class_const_iterator BI = RD->bases_begin(),
708      BE = RD->bases_end(); BI != BE; ++BI) {
709    if (!BI->isVirtual()) {
710      const CXXRecordDecl *CD = BI->getType()->getAsCXXRecordDecl();
711      if (!CD->hasTrivialDestructor()) {
712        autoCreateBlock();
713        appendBaseDtor(Block, BI);
714      }
715    }
716  }
717
718  // First destroy member objects.
719  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
720      FE = RD->field_end(); FI != FE; ++FI) {
721    // Check for constant size array. Set type to array element type.
722    QualType QT = FI->getType();
723    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
724      if (AT->getSize() == 0)
725        continue;
726      QT = AT->getElementType();
727    }
728
729    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
730      if (!CD->hasTrivialDestructor()) {
731        autoCreateBlock();
732        appendMemberDtor(Block, *FI);
733      }
734  }
735}
736
737/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
738/// way return valid LocalScope object.
739LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
740  if (!Scope) {
741    llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
742    Scope = alloc.Allocate<LocalScope>();
743    BumpVectorContext ctx(alloc);
744    new (Scope) LocalScope(ctx, ScopePos);
745  }
746  return Scope;
747}
748
749/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
750/// that should create implicit scope (e.g. if/else substatements).
751void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
752  if (!BuildOpts.AddImplicitDtors)
753    return;
754
755  LocalScope *Scope = 0;
756
757  // For compound statement we will be creating explicit scope.
758  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
759    for (CompoundStmt::body_iterator BI = CS->body_begin(), BE = CS->body_end()
760        ; BI != BE; ++BI) {
761      Stmt *SI = (*BI)->stripLabelLikeStatements();
762      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
763        Scope = addLocalScopeForDeclStmt(DS, Scope);
764    }
765    return;
766  }
767
768  // For any other statement scope will be implicit and as such will be
769  // interesting only for DeclStmt.
770  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
771    addLocalScopeForDeclStmt(DS);
772}
773
774/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
775/// reuse Scope if not NULL.
776LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
777                                                 LocalScope* Scope) {
778  if (!BuildOpts.AddImplicitDtors)
779    return Scope;
780
781  for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end()
782      ; DI != DE; ++DI) {
783    if (VarDecl *VD = dyn_cast<VarDecl>(*DI))
784      Scope = addLocalScopeForVarDecl(VD, Scope);
785  }
786  return Scope;
787}
788
789/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
790/// create add scope for automatic objects and temporary objects bound to
791/// const reference. Will reuse Scope if not NULL.
792LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
793                                                LocalScope* Scope) {
794  if (!BuildOpts.AddImplicitDtors)
795    return Scope;
796
797  // Check if variable is local.
798  switch (VD->getStorageClass()) {
799  case SC_None:
800  case SC_Auto:
801  case SC_Register:
802    break;
803  default: return Scope;
804  }
805
806  // Check for const references bound to temporary. Set type to pointee.
807  QualType QT = VD->getType();
808  if (const ReferenceType* RT = QT.getTypePtr()->getAs<ReferenceType>()) {
809    QT = RT->getPointeeType();
810    if (!QT.isConstQualified())
811      return Scope;
812    if (!VD->extendsLifetimeOfTemporary())
813      return Scope;
814  }
815
816  // Check for constant size array. Set type to array element type.
817  if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
818    if (AT->getSize() == 0)
819      return Scope;
820    QT = AT->getElementType();
821  }
822
823  // Check if type is a C++ class with non-trivial destructor.
824  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
825    if (!CD->hasTrivialDestructor()) {
826      // Add the variable to scope
827      Scope = createOrReuseLocalScope(Scope);
828      Scope->addVar(VD);
829      ScopePos = Scope->begin();
830    }
831  return Scope;
832}
833
834/// addLocalScopeAndDtors - For given statement add local scope for it and
835/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
836void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
837  if (!BuildOpts.AddImplicitDtors)
838    return;
839
840  LocalScope::const_iterator scopeBeginPos = ScopePos;
841  addLocalScopeForStmt(S);
842  addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
843}
844
845/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
846/// variables with automatic storage duration to CFGBlock's elements vector.
847/// Elements will be prepended to physical beginning of the vector which
848/// happens to be logical end. Use blocks terminator as statement that specifies
849/// destructors call site.
850/// FIXME: This mechanism for adding automatic destructors doesn't handle
851/// no-return destructors properly.
852void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
853    LocalScope::const_iterator B, LocalScope::const_iterator E) {
854  BumpVectorContext &C = cfg->getBumpVectorContext();
855  CFGBlock::iterator InsertPos
856    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
857  for (LocalScope::const_iterator I = B; I != E; ++I)
858    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
859                                            Blk->getTerminator());
860}
861
862/// Visit - Walk the subtree of a statement and add extra
863///   blocks for ternary operators, &&, and ||.  We also process "," and
864///   DeclStmts (which may contain nested control-flow).
865CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
866  if (!S) {
867    badCFG = true;
868    return 0;
869  }
870
871  if (Expr *E = dyn_cast<Expr>(S))
872    S = E->IgnoreParens();
873
874  switch (S->getStmtClass()) {
875    default:
876      return VisitStmt(S, asc);
877
878    case Stmt::AddrLabelExprClass:
879      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
880
881    case Stmt::BinaryConditionalOperatorClass:
882      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
883
884    case Stmt::BinaryOperatorClass:
885      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
886
887    case Stmt::BlockExprClass:
888      return VisitBlockExpr(cast<BlockExpr>(S), asc);
889
890    case Stmt::BreakStmtClass:
891      return VisitBreakStmt(cast<BreakStmt>(S));
892
893    case Stmt::CallExprClass:
894    case Stmt::CXXOperatorCallExprClass:
895    case Stmt::CXXMemberCallExprClass:
896      return VisitCallExpr(cast<CallExpr>(S), asc);
897
898    case Stmt::CaseStmtClass:
899      return VisitCaseStmt(cast<CaseStmt>(S));
900
901    case Stmt::ChooseExprClass:
902      return VisitChooseExpr(cast<ChooseExpr>(S), asc);
903
904    case Stmt::CompoundStmtClass:
905      return VisitCompoundStmt(cast<CompoundStmt>(S));
906
907    case Stmt::ConditionalOperatorClass:
908      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
909
910    case Stmt::ContinueStmtClass:
911      return VisitContinueStmt(cast<ContinueStmt>(S));
912
913    case Stmt::CXXCatchStmtClass:
914      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
915
916    case Stmt::ExprWithCleanupsClass:
917      return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
918
919    case Stmt::CXXBindTemporaryExprClass:
920      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
921
922    case Stmt::CXXConstructExprClass:
923      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
924
925    case Stmt::CXXFunctionalCastExprClass:
926      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
927
928    case Stmt::CXXTemporaryObjectExprClass:
929      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
930
931    case Stmt::CXXThrowExprClass:
932      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
933
934    case Stmt::CXXTryStmtClass:
935      return VisitCXXTryStmt(cast<CXXTryStmt>(S));
936
937    case Stmt::CXXForRangeStmtClass:
938      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
939
940    case Stmt::DeclStmtClass:
941      return VisitDeclStmt(cast<DeclStmt>(S));
942
943    case Stmt::DefaultStmtClass:
944      return VisitDefaultStmt(cast<DefaultStmt>(S));
945
946    case Stmt::DoStmtClass:
947      return VisitDoStmt(cast<DoStmt>(S));
948
949    case Stmt::ForStmtClass:
950      return VisitForStmt(cast<ForStmt>(S));
951
952    case Stmt::GotoStmtClass:
953      return VisitGotoStmt(cast<GotoStmt>(S));
954
955    case Stmt::IfStmtClass:
956      return VisitIfStmt(cast<IfStmt>(S));
957
958    case Stmt::ImplicitCastExprClass:
959      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
960
961    case Stmt::IndirectGotoStmtClass:
962      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
963
964    case Stmt::LabelStmtClass:
965      return VisitLabelStmt(cast<LabelStmt>(S));
966
967    case Stmt::MemberExprClass:
968      return VisitMemberExpr(cast<MemberExpr>(S), asc);
969
970    case Stmt::ObjCAtCatchStmtClass:
971      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
972
973    case Stmt::ObjCAtSynchronizedStmtClass:
974      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
975
976    case Stmt::ObjCAtThrowStmtClass:
977      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
978
979    case Stmt::ObjCAtTryStmtClass:
980      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
981
982    case Stmt::ObjCForCollectionStmtClass:
983      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
984
985    case Stmt::NullStmtClass:
986      return Block;
987
988    case Stmt::ReturnStmtClass:
989      return VisitReturnStmt(cast<ReturnStmt>(S));
990
991    case Stmt::UnaryExprOrTypeTraitExprClass:
992      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
993                                           asc);
994
995    case Stmt::StmtExprClass:
996      return VisitStmtExpr(cast<StmtExpr>(S), asc);
997
998    case Stmt::SwitchStmtClass:
999      return VisitSwitchStmt(cast<SwitchStmt>(S));
1000
1001    case Stmt::UnaryOperatorClass:
1002      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1003
1004    case Stmt::WhileStmtClass:
1005      return VisitWhileStmt(cast<WhileStmt>(S));
1006  }
1007}
1008
1009CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1010  if (asc.alwaysAdd(*this, S)) {
1011    autoCreateBlock();
1012    appendStmt(Block, S);
1013  }
1014
1015  return VisitChildren(S);
1016}
1017
1018/// VisitChildren - Visit the children of a Stmt.
1019CFGBlock *CFGBuilder::VisitChildren(Stmt *Terminator) {
1020  CFGBlock *lastBlock = Block;
1021  for (Stmt::child_range I = Terminator->children(); I; ++I)
1022    if (Stmt *child = *I)
1023      if (CFGBlock *b = Visit(child))
1024        lastBlock = b;
1025
1026  return lastBlock;
1027}
1028
1029CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1030                                         AddStmtChoice asc) {
1031  AddressTakenLabels.insert(A->getLabel());
1032
1033  if (asc.alwaysAdd(*this, A)) {
1034    autoCreateBlock();
1035    appendStmt(Block, A);
1036  }
1037
1038  return Block;
1039}
1040
1041CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1042           AddStmtChoice asc) {
1043  if (asc.alwaysAdd(*this, U)) {
1044    autoCreateBlock();
1045    appendStmt(Block, U);
1046  }
1047
1048  return Visit(U->getSubExpr(), AddStmtChoice());
1049}
1050
1051CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1052                                          AddStmtChoice asc) {
1053  if (B->isLogicalOp()) { // && or ||
1054    CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1055    appendStmt(ConfluenceBlock, B);
1056
1057    if (badCFG)
1058      return 0;
1059
1060    // create the block evaluating the LHS
1061    CFGBlock *LHSBlock = createBlock(false);
1062    LHSBlock->setTerminator(B);
1063
1064    // create the block evaluating the RHS
1065    Succ = ConfluenceBlock;
1066    Block = NULL;
1067    CFGBlock *RHSBlock = addStmt(B->getRHS());
1068
1069    if (RHSBlock) {
1070      if (badCFG)
1071        return 0;
1072    } else {
1073      // Create an empty block for cases where the RHS doesn't require
1074      // any explicit statements in the CFG.
1075      RHSBlock = createBlock();
1076    }
1077
1078    // See if this is a known constant.
1079    TryResult KnownVal = tryEvaluateBool(B->getLHS());
1080    if (KnownVal.isKnown() && (B->getOpcode() == BO_LOr))
1081      KnownVal.negate();
1082
1083    // Now link the LHSBlock with RHSBlock.
1084    if (B->getOpcode() == BO_LOr) {
1085      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1086      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1087    } else {
1088      assert(B->getOpcode() == BO_LAnd);
1089      addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
1090      addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
1091    }
1092
1093    // Generate the blocks for evaluating the LHS.
1094    Block = LHSBlock;
1095    return addStmt(B->getLHS());
1096  }
1097
1098  if (B->getOpcode() == BO_Comma) { // ,
1099    autoCreateBlock();
1100    appendStmt(Block, B);
1101    addStmt(B->getRHS());
1102    return addStmt(B->getLHS());
1103  }
1104
1105  if (B->isAssignmentOp()) {
1106    if (asc.alwaysAdd(*this, B)) {
1107      autoCreateBlock();
1108      appendStmt(Block, B);
1109    }
1110    Visit(B->getLHS());
1111    return Visit(B->getRHS());
1112  }
1113
1114  if (asc.alwaysAdd(*this, B)) {
1115    autoCreateBlock();
1116    appendStmt(Block, B);
1117  }
1118
1119  CFGBlock *RBlock = Visit(B->getRHS());
1120  CFGBlock *LBlock = Visit(B->getLHS());
1121  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1122  // containing a DoStmt, and the LHS doesn't create a new block, then we should
1123  // return RBlock.  Otherwise we'll incorrectly return NULL.
1124  return (LBlock ? LBlock : RBlock);
1125}
1126
1127CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
1128  if (asc.alwaysAdd(*this, E)) {
1129    autoCreateBlock();
1130    appendStmt(Block, E);
1131  }
1132  return Block;
1133}
1134
1135CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1136  // "break" is a control-flow statement.  Thus we stop processing the current
1137  // block.
1138  if (badCFG)
1139    return 0;
1140
1141  // Now create a new block that ends with the break statement.
1142  Block = createBlock(false);
1143  Block->setTerminator(B);
1144
1145  // If there is no target for the break, then we are looking at an incomplete
1146  // AST.  This means that the CFG cannot be constructed.
1147  if (BreakJumpTarget.block) {
1148    addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1149    addSuccessor(Block, BreakJumpTarget.block);
1150  } else
1151    badCFG = true;
1152
1153
1154  return Block;
1155}
1156
1157static bool CanThrow(Expr *E, ASTContext &Ctx) {
1158  QualType Ty = E->getType();
1159  if (Ty->isFunctionPointerType())
1160    Ty = Ty->getAs<PointerType>()->getPointeeType();
1161  else if (Ty->isBlockPointerType())
1162    Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1163
1164  const FunctionType *FT = Ty->getAs<FunctionType>();
1165  if (FT) {
1166    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1167      if (Proto->isNothrow(Ctx))
1168        return false;
1169  }
1170  return true;
1171}
1172
1173CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1174  // Compute the callee type.
1175  QualType calleeType = C->getCallee()->getType();
1176  if (calleeType == Context->BoundMemberTy) {
1177    QualType boundType = Expr::findBoundMemberType(C->getCallee());
1178
1179    // We should only get a null bound type if processing a dependent
1180    // CFG.  Recover by assuming nothing.
1181    if (!boundType.isNull()) calleeType = boundType;
1182  }
1183
1184  // If this is a call to a no-return function, this stops the block here.
1185  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1186
1187  bool AddEHEdge = false;
1188
1189  // Languages without exceptions are assumed to not throw.
1190  if (Context->getLangOptions().Exceptions) {
1191    if (BuildOpts.AddEHEdges)
1192      AddEHEdge = true;
1193  }
1194
1195  if (FunctionDecl *FD = C->getDirectCallee()) {
1196    if (FD->hasAttr<NoReturnAttr>())
1197      NoReturn = true;
1198    if (FD->hasAttr<NoThrowAttr>())
1199      AddEHEdge = false;
1200  }
1201
1202  if (!CanThrow(C->getCallee(), *Context))
1203    AddEHEdge = false;
1204
1205  if (!NoReturn && !AddEHEdge)
1206    return VisitStmt(C, asc.withAlwaysAdd(true));
1207
1208  if (Block) {
1209    Succ = Block;
1210    if (badCFG)
1211      return 0;
1212  }
1213
1214  if (NoReturn)
1215    Block = createNoReturnBlock();
1216  else
1217    Block = createBlock();
1218
1219  appendStmt(Block, C);
1220
1221  if (AddEHEdge) {
1222    // Add exceptional edges.
1223    if (TryTerminatedBlock)
1224      addSuccessor(Block, TryTerminatedBlock);
1225    else
1226      addSuccessor(Block, &cfg->getExit());
1227  }
1228
1229  return VisitChildren(C);
1230}
1231
1232CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1233                                      AddStmtChoice asc) {
1234  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1235  appendStmt(ConfluenceBlock, C);
1236  if (badCFG)
1237    return 0;
1238
1239  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1240  Succ = ConfluenceBlock;
1241  Block = NULL;
1242  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1243  if (badCFG)
1244    return 0;
1245
1246  Succ = ConfluenceBlock;
1247  Block = NULL;
1248  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1249  if (badCFG)
1250    return 0;
1251
1252  Block = createBlock(false);
1253  // See if this is a known constant.
1254  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1255  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1256  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1257  Block->setTerminator(C);
1258  return addStmt(C->getCond());
1259}
1260
1261
1262CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1263  addLocalScopeAndDtors(C);
1264  CFGBlock *LastBlock = Block;
1265
1266  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1267       I != E; ++I ) {
1268    // If we hit a segment of code just containing ';' (NullStmts), we can
1269    // get a null block back.  In such cases, just use the LastBlock
1270    if (CFGBlock *newBlock = addStmt(*I))
1271      LastBlock = newBlock;
1272
1273    if (badCFG)
1274      return NULL;
1275  }
1276
1277  return LastBlock;
1278}
1279
1280CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1281                                               AddStmtChoice asc) {
1282  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1283  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : NULL);
1284
1285  // Create the confluence block that will "merge" the results of the ternary
1286  // expression.
1287  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1288  appendStmt(ConfluenceBlock, C);
1289  if (badCFG)
1290    return 0;
1291
1292  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1293
1294  // Create a block for the LHS expression if there is an LHS expression.  A
1295  // GCC extension allows LHS to be NULL, causing the condition to be the
1296  // value that is returned instead.
1297  //  e.g: x ?: y is shorthand for: x ? x : y;
1298  Succ = ConfluenceBlock;
1299  Block = NULL;
1300  CFGBlock *LHSBlock = 0;
1301  const Expr *trueExpr = C->getTrueExpr();
1302  if (trueExpr != opaqueValue) {
1303    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1304    if (badCFG)
1305      return 0;
1306    Block = NULL;
1307  }
1308  else
1309    LHSBlock = ConfluenceBlock;
1310
1311  // Create the block for the RHS expression.
1312  Succ = ConfluenceBlock;
1313  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1314  if (badCFG)
1315    return 0;
1316
1317  // Create the block that will contain the condition.
1318  Block = createBlock(false);
1319
1320  // See if this is a known constant.
1321  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1322  addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
1323  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
1324  Block->setTerminator(C);
1325  Expr *condExpr = C->getCond();
1326
1327  if (opaqueValue) {
1328    // Run the condition expression if it's not trivially expressed in
1329    // terms of the opaque value (or if there is no opaque value).
1330    if (condExpr != opaqueValue)
1331      addStmt(condExpr);
1332
1333    // Before that, run the common subexpression if there was one.
1334    // At least one of this or the above will be run.
1335    return addStmt(BCO->getCommon());
1336  }
1337
1338  return addStmt(condExpr);
1339}
1340
1341CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1342  // Check if the Decl is for an __label__.  If so, elide it from the
1343  // CFG entirely.
1344  if (isa<LabelDecl>(*DS->decl_begin()))
1345    return Block;
1346
1347  // This case also handles static_asserts.
1348  if (DS->isSingleDecl())
1349    return VisitDeclSubExpr(DS);
1350
1351  CFGBlock *B = 0;
1352
1353  // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
1354  typedef SmallVector<Decl*,10> BufTy;
1355  BufTy Buf(DS->decl_begin(), DS->decl_end());
1356
1357  for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
1358    // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1359    unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1360               ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1361
1362    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
1363    // automatically freed with the CFG.
1364    DeclGroupRef DG(*I);
1365    Decl *D = *I;
1366    void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1367    DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1368
1369    // Append the fake DeclStmt to block.
1370    B = VisitDeclSubExpr(DSNew);
1371  }
1372
1373  return B;
1374}
1375
1376/// VisitDeclSubExpr - Utility method to add block-level expressions for
1377/// DeclStmts and initializers in them.
1378CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1379  assert(DS->isSingleDecl() && "Can handle single declarations only.");
1380  Decl *D = DS->getSingleDecl();
1381
1382  if (isa<StaticAssertDecl>(D)) {
1383    // static_asserts aren't added to the CFG because they do not impact
1384    // runtime semantics.
1385    return Block;
1386  }
1387
1388  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1389
1390  if (!VD) {
1391    autoCreateBlock();
1392    appendStmt(Block, DS);
1393    return Block;
1394  }
1395
1396  bool IsReference = false;
1397  bool HasTemporaries = false;
1398
1399  // Destructors of temporaries in initialization expression should be called
1400  // after initialization finishes.
1401  Expr *Init = VD->getInit();
1402  if (Init) {
1403    IsReference = VD->getType()->isReferenceType();
1404    HasTemporaries = isa<ExprWithCleanups>(Init);
1405
1406    if (BuildOpts.AddImplicitDtors && HasTemporaries) {
1407      // Generate destructors for temporaries in initialization expression.
1408      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1409          IsReference);
1410    }
1411  }
1412
1413  autoCreateBlock();
1414  appendStmt(Block, DS);
1415
1416  if (Init) {
1417    if (HasTemporaries)
1418      // For expression with temporaries go directly to subexpression to omit
1419      // generating destructors for the second time.
1420      Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1421    else
1422      Visit(Init);
1423  }
1424
1425  // If the type of VD is a VLA, then we must process its size expressions.
1426  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
1427       VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
1428    Block = addStmt(VA->getSizeExpr());
1429
1430  // Remove variable from local scope.
1431  if (ScopePos && VD == *ScopePos)
1432    ++ScopePos;
1433
1434  return Block;
1435}
1436
1437CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
1438  // We may see an if statement in the middle of a basic block, or it may be the
1439  // first statement we are processing.  In either case, we create a new basic
1440  // block.  First, we create the blocks for the then...else statements, and
1441  // then we create the block containing the if statement.  If we were in the
1442  // middle of a block, we stop processing that block.  That block is then the
1443  // implicit successor for the "then" and "else" clauses.
1444
1445  // Save local scope position because in case of condition variable ScopePos
1446  // won't be restored when traversing AST.
1447  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1448
1449  // Create local scope for possible condition variable.
1450  // Store scope position. Add implicit destructor.
1451  if (VarDecl *VD = I->getConditionVariable()) {
1452    LocalScope::const_iterator BeginScopePos = ScopePos;
1453    addLocalScopeForVarDecl(VD);
1454    addAutomaticObjDtors(ScopePos, BeginScopePos, I);
1455  }
1456
1457  // The block we were processing is now finished.  Make it the successor
1458  // block.
1459  if (Block) {
1460    Succ = Block;
1461    if (badCFG)
1462      return 0;
1463  }
1464
1465  // Process the false branch.
1466  CFGBlock *ElseBlock = Succ;
1467
1468  if (Stmt *Else = I->getElse()) {
1469    SaveAndRestore<CFGBlock*> sv(Succ);
1470
1471    // NULL out Block so that the recursive call to Visit will
1472    // create a new basic block.
1473    Block = NULL;
1474
1475    // If branch is not a compound statement create implicit scope
1476    // and add destructors.
1477    if (!isa<CompoundStmt>(Else))
1478      addLocalScopeAndDtors(Else);
1479
1480    ElseBlock = addStmt(Else);
1481
1482    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
1483      ElseBlock = sv.get();
1484    else if (Block) {
1485      if (badCFG)
1486        return 0;
1487    }
1488  }
1489
1490  // Process the true branch.
1491  CFGBlock *ThenBlock;
1492  {
1493    Stmt *Then = I->getThen();
1494    assert(Then);
1495    SaveAndRestore<CFGBlock*> sv(Succ);
1496    Block = NULL;
1497
1498    // If branch is not a compound statement create implicit scope
1499    // and add destructors.
1500    if (!isa<CompoundStmt>(Then))
1501      addLocalScopeAndDtors(Then);
1502
1503    ThenBlock = addStmt(Then);
1504
1505    if (!ThenBlock) {
1506      // We can reach here if the "then" body has all NullStmts.
1507      // Create an empty block so we can distinguish between true and false
1508      // branches in path-sensitive analyses.
1509      ThenBlock = createBlock(false);
1510      addSuccessor(ThenBlock, sv.get());
1511    } else if (Block) {
1512      if (badCFG)
1513        return 0;
1514    }
1515  }
1516
1517  // Now create a new block containing the if statement.
1518  Block = createBlock(false);
1519
1520  // Set the terminator of the new block to the If statement.
1521  Block->setTerminator(I);
1522
1523  // See if this is a known constant.
1524  const TryResult &KnownVal = tryEvaluateBool(I->getCond());
1525
1526  // Now add the successors.
1527  addSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
1528  addSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
1529
1530  // Add the condition as the last statement in the new block.  This may create
1531  // new blocks as the condition may contain control-flow.  Any newly created
1532  // blocks will be pointed to be "Block".
1533  Block = addStmt(I->getCond());
1534
1535  // Finally, if the IfStmt contains a condition variable, add both the IfStmt
1536  // and the condition variable initialization to the CFG.
1537  if (VarDecl *VD = I->getConditionVariable()) {
1538    if (Expr *Init = VD->getInit()) {
1539      autoCreateBlock();
1540      appendStmt(Block, I->getConditionVariableDeclStmt());
1541      addStmt(Init);
1542    }
1543  }
1544
1545  return Block;
1546}
1547
1548
1549CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
1550  // If we were in the middle of a block we stop processing that block.
1551  //
1552  // NOTE: If a "return" appears in the middle of a block, this means that the
1553  //       code afterwards is DEAD (unreachable).  We still keep a basic block
1554  //       for that code; a simple "mark-and-sweep" from the entry block will be
1555  //       able to report such dead blocks.
1556
1557  // Create the new block.
1558  Block = createBlock(false);
1559
1560  // The Exit block is the only successor.
1561  addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
1562  addSuccessor(Block, &cfg->getExit());
1563
1564  // Add the return statement to the block.  This may create new blocks if R
1565  // contains control-flow (short-circuit operations).
1566  return VisitStmt(R, AddStmtChoice::AlwaysAdd);
1567}
1568
1569CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
1570  // Get the block of the labeled statement.  Add it to our map.
1571  addStmt(L->getSubStmt());
1572  CFGBlock *LabelBlock = Block;
1573
1574  if (!LabelBlock)              // This can happen when the body is empty, i.e.
1575    LabelBlock = createBlock(); // scopes that only contains NullStmts.
1576
1577  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
1578         "label already in map");
1579  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
1580
1581  // Labels partition blocks, so this is the end of the basic block we were
1582  // processing (L is the block's label).  Because this is label (and we have
1583  // already processed the substatement) there is no extra control-flow to worry
1584  // about.
1585  LabelBlock->setLabel(L);
1586  if (badCFG)
1587    return 0;
1588
1589  // We set Block to NULL to allow lazy creation of a new block (if necessary);
1590  Block = NULL;
1591
1592  // This block is now the implicit successor of other blocks.
1593  Succ = LabelBlock;
1594
1595  return LabelBlock;
1596}
1597
1598CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
1599  // Goto is a control-flow statement.  Thus we stop processing the current
1600  // block and create a new one.
1601
1602  Block = createBlock(false);
1603  Block->setTerminator(G);
1604
1605  // If we already know the mapping to the label block add the successor now.
1606  LabelMapTy::iterator I = LabelMap.find(G->getLabel());
1607
1608  if (I == LabelMap.end())
1609    // We will need to backpatch this block later.
1610    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
1611  else {
1612    JumpTarget JT = I->second;
1613    addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
1614    addSuccessor(Block, JT.block);
1615  }
1616
1617  return Block;
1618}
1619
1620CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
1621  CFGBlock *LoopSuccessor = NULL;
1622
1623  // Save local scope position because in case of condition variable ScopePos
1624  // won't be restored when traversing AST.
1625  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1626
1627  // Create local scope for init statement and possible condition variable.
1628  // Add destructor for init statement and condition variable.
1629  // Store scope position for continue statement.
1630  if (Stmt *Init = F->getInit())
1631    addLocalScopeForStmt(Init);
1632  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1633
1634  if (VarDecl *VD = F->getConditionVariable())
1635    addLocalScopeForVarDecl(VD);
1636  LocalScope::const_iterator ContinueScopePos = ScopePos;
1637
1638  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
1639
1640  // "for" is a control-flow statement.  Thus we stop processing the current
1641  // block.
1642  if (Block) {
1643    if (badCFG)
1644      return 0;
1645    LoopSuccessor = Block;
1646  } else
1647    LoopSuccessor = Succ;
1648
1649  // Save the current value for the break targets.
1650  // All breaks should go to the code following the loop.
1651  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
1652  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1653
1654  // Because of short-circuit evaluation, the condition of the loop can span
1655  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1656  // evaluate the condition.
1657  CFGBlock *ExitConditionBlock = createBlock(false);
1658  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1659
1660  // Set the terminator for the "exit" condition block.
1661  ExitConditionBlock->setTerminator(F);
1662
1663  // Now add the actual condition to the condition block.  Because the condition
1664  // itself may contain control-flow, new blocks may be created.
1665  if (Stmt *C = F->getCond()) {
1666    Block = ExitConditionBlock;
1667    EntryConditionBlock = addStmt(C);
1668    if (badCFG)
1669      return 0;
1670    assert(Block == EntryConditionBlock ||
1671           (Block == 0 && EntryConditionBlock == Succ));
1672
1673    // If this block contains a condition variable, add both the condition
1674    // variable and initializer to the CFG.
1675    if (VarDecl *VD = F->getConditionVariable()) {
1676      if (Expr *Init = VD->getInit()) {
1677        autoCreateBlock();
1678        appendStmt(Block, F->getConditionVariableDeclStmt());
1679        EntryConditionBlock = addStmt(Init);
1680        assert(Block == EntryConditionBlock);
1681      }
1682    }
1683
1684    if (Block) {
1685      if (badCFG)
1686        return 0;
1687    }
1688  }
1689
1690  // The condition block is the implicit successor for the loop body as well as
1691  // any code above the loop.
1692  Succ = EntryConditionBlock;
1693
1694  // See if this is a known constant.
1695  TryResult KnownVal(true);
1696
1697  if (F->getCond())
1698    KnownVal = tryEvaluateBool(F->getCond());
1699
1700  // Now create the loop body.
1701  {
1702    assert(F->getBody());
1703
1704   // Save the current values for Block, Succ, and continue targets.
1705   SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1706   SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
1707
1708    // Create a new block to contain the (bottom) of the loop body.
1709    Block = NULL;
1710
1711    // Loop body should end with destructor of Condition variable (if any).
1712    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
1713
1714    if (Stmt *I = F->getInc()) {
1715      // Generate increment code in its own basic block.  This is the target of
1716      // continue statements.
1717      Succ = addStmt(I);
1718    } else {
1719      // No increment code.  Create a special, empty, block that is used as the
1720      // target block for "looping back" to the start of the loop.
1721      assert(Succ == EntryConditionBlock);
1722      Succ = Block ? Block : createBlock();
1723    }
1724
1725    // Finish up the increment (or empty) block if it hasn't been already.
1726    if (Block) {
1727      assert(Block == Succ);
1728      if (badCFG)
1729        return 0;
1730      Block = 0;
1731    }
1732
1733    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
1734
1735    // The starting block for the loop increment is the block that should
1736    // represent the 'loop target' for looping back to the start of the loop.
1737    ContinueJumpTarget.block->setLoopTarget(F);
1738
1739    // If body is not a compound statement create implicit scope
1740    // and add destructors.
1741    if (!isa<CompoundStmt>(F->getBody()))
1742      addLocalScopeAndDtors(F->getBody());
1743
1744    // Now populate the body block, and in the process create new blocks as we
1745    // walk the body of the loop.
1746    CFGBlock *BodyBlock = addStmt(F->getBody());
1747
1748    if (!BodyBlock)
1749      BodyBlock = ContinueJumpTarget.block;//can happen for "for (...;...;...);"
1750    else if (badCFG)
1751      return 0;
1752
1753    // This new body block is a successor to our "exit" condition block.
1754    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
1755  }
1756
1757  // Link up the condition block with the code that follows the loop.  (the
1758  // false branch).
1759  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
1760
1761  // If the loop contains initialization, create a new block for those
1762  // statements.  This block can also contain statements that precede the loop.
1763  if (Stmt *I = F->getInit()) {
1764    Block = createBlock();
1765    return addStmt(I);
1766  }
1767
1768  // There is no loop initialization.  We are thus basically a while loop.
1769  // NULL out Block to force lazy block construction.
1770  Block = NULL;
1771  Succ = EntryConditionBlock;
1772  return EntryConditionBlock;
1773}
1774
1775CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
1776  if (asc.alwaysAdd(*this, M)) {
1777    autoCreateBlock();
1778    appendStmt(Block, M);
1779  }
1780  return Visit(M->getBase());
1781}
1782
1783CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
1784  // Objective-C fast enumeration 'for' statements:
1785  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
1786  //
1787  //  for ( Type newVariable in collection_expression ) { statements }
1788  //
1789  //  becomes:
1790  //
1791  //   prologue:
1792  //     1. collection_expression
1793  //     T. jump to loop_entry
1794  //   loop_entry:
1795  //     1. side-effects of element expression
1796  //     1. ObjCForCollectionStmt [performs binding to newVariable]
1797  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
1798  //   TB:
1799  //     statements
1800  //     T. jump to loop_entry
1801  //   FB:
1802  //     what comes after
1803  //
1804  //  and
1805  //
1806  //  Type existingItem;
1807  //  for ( existingItem in expression ) { statements }
1808  //
1809  //  becomes:
1810  //
1811  //   the same with newVariable replaced with existingItem; the binding works
1812  //   the same except that for one ObjCForCollectionStmt::getElement() returns
1813  //   a DeclStmt and the other returns a DeclRefExpr.
1814  //
1815
1816  CFGBlock *LoopSuccessor = 0;
1817
1818  if (Block) {
1819    if (badCFG)
1820      return 0;
1821    LoopSuccessor = Block;
1822    Block = 0;
1823  } else
1824    LoopSuccessor = Succ;
1825
1826  // Build the condition blocks.
1827  CFGBlock *ExitConditionBlock = createBlock(false);
1828
1829  // Set the terminator for the "exit" condition block.
1830  ExitConditionBlock->setTerminator(S);
1831
1832  // The last statement in the block should be the ObjCForCollectionStmt, which
1833  // performs the actual binding to 'element' and determines if there are any
1834  // more items in the collection.
1835  appendStmt(ExitConditionBlock, S);
1836  Block = ExitConditionBlock;
1837
1838  // Walk the 'element' expression to see if there are any side-effects.  We
1839  // generate new blocks as necessary.  We DON'T add the statement by default to
1840  // the CFG unless it contains control-flow.
1841  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
1842                                        AddStmtChoice::NotAlwaysAdd);
1843  if (Block) {
1844    if (badCFG)
1845      return 0;
1846    Block = 0;
1847  }
1848
1849  // The condition block is the implicit successor for the loop body as well as
1850  // any code above the loop.
1851  Succ = EntryConditionBlock;
1852
1853  // Now create the true branch.
1854  {
1855    // Save the current values for Succ, continue and break targets.
1856    SaveAndRestore<CFGBlock*> save_Succ(Succ);
1857    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1858        save_break(BreakJumpTarget);
1859
1860    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
1861    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
1862
1863    CFGBlock *BodyBlock = addStmt(S->getBody());
1864
1865    if (!BodyBlock)
1866      BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
1867    else if (Block) {
1868      if (badCFG)
1869        return 0;
1870    }
1871
1872    // This new body block is a successor to our "exit" condition block.
1873    addSuccessor(ExitConditionBlock, BodyBlock);
1874  }
1875
1876  // Link up the condition block with the code that follows the loop.
1877  // (the false branch).
1878  addSuccessor(ExitConditionBlock, LoopSuccessor);
1879
1880  // Now create a prologue block to contain the collection expression.
1881  Block = createBlock();
1882  return addStmt(S->getCollection());
1883}
1884
1885CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
1886  // FIXME: Add locking 'primitives' to CFG for @synchronized.
1887
1888  // Inline the body.
1889  CFGBlock *SyncBlock = addStmt(S->getSynchBody());
1890
1891  // The sync body starts its own basic block.  This makes it a little easier
1892  // for diagnostic clients.
1893  if (SyncBlock) {
1894    if (badCFG)
1895      return 0;
1896
1897    Block = 0;
1898    Succ = SyncBlock;
1899  }
1900
1901  // Add the @synchronized to the CFG.
1902  autoCreateBlock();
1903  appendStmt(Block, S);
1904
1905  // Inline the sync expression.
1906  return addStmt(S->getSynchExpr());
1907}
1908
1909CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
1910  // FIXME
1911  return NYS();
1912}
1913
1914CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
1915  CFGBlock *LoopSuccessor = NULL;
1916
1917  // Save local scope position because in case of condition variable ScopePos
1918  // won't be restored when traversing AST.
1919  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
1920
1921  // Create local scope for possible condition variable.
1922  // Store scope position for continue statement.
1923  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
1924  if (VarDecl *VD = W->getConditionVariable()) {
1925    addLocalScopeForVarDecl(VD);
1926    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
1927  }
1928
1929  // "while" is a control-flow statement.  Thus we stop processing the current
1930  // block.
1931  if (Block) {
1932    if (badCFG)
1933      return 0;
1934    LoopSuccessor = Block;
1935    Block = 0;
1936  } else
1937    LoopSuccessor = Succ;
1938
1939  // Because of short-circuit evaluation, the condition of the loop can span
1940  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
1941  // evaluate the condition.
1942  CFGBlock *ExitConditionBlock = createBlock(false);
1943  CFGBlock *EntryConditionBlock = ExitConditionBlock;
1944
1945  // Set the terminator for the "exit" condition block.
1946  ExitConditionBlock->setTerminator(W);
1947
1948  // Now add the actual condition to the condition block.  Because the condition
1949  // itself may contain control-flow, new blocks may be created.  Thus we update
1950  // "Succ" after adding the condition.
1951  if (Stmt *C = W->getCond()) {
1952    Block = ExitConditionBlock;
1953    EntryConditionBlock = addStmt(C);
1954    // The condition might finish the current 'Block'.
1955    Block = EntryConditionBlock;
1956
1957    // If this block contains a condition variable, add both the condition
1958    // variable and initializer to the CFG.
1959    if (VarDecl *VD = W->getConditionVariable()) {
1960      if (Expr *Init = VD->getInit()) {
1961        autoCreateBlock();
1962        appendStmt(Block, W->getConditionVariableDeclStmt());
1963        EntryConditionBlock = addStmt(Init);
1964        assert(Block == EntryConditionBlock);
1965      }
1966    }
1967
1968    if (Block) {
1969      if (badCFG)
1970        return 0;
1971    }
1972  }
1973
1974  // The condition block is the implicit successor for the loop body as well as
1975  // any code above the loop.
1976  Succ = EntryConditionBlock;
1977
1978  // See if this is a known constant.
1979  const TryResult& KnownVal = tryEvaluateBool(W->getCond());
1980
1981  // Process the loop body.
1982  {
1983    assert(W->getBody());
1984
1985    // Save the current values for Block, Succ, and continue and break targets
1986    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
1987    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
1988        save_break(BreakJumpTarget);
1989
1990    // Create an empty block to represent the transition block for looping back
1991    // to the head of the loop.
1992    Block = 0;
1993    assert(Succ == EntryConditionBlock);
1994    Succ = createBlock();
1995    Succ->setLoopTarget(W);
1996    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
1997
1998    // All breaks should go to the code following the loop.
1999    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2000
2001    // NULL out Block to force lazy instantiation of blocks for the body.
2002    Block = NULL;
2003
2004    // Loop body should end with destructor of Condition variable (if any).
2005    addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2006
2007    // If body is not a compound statement create implicit scope
2008    // and add destructors.
2009    if (!isa<CompoundStmt>(W->getBody()))
2010      addLocalScopeAndDtors(W->getBody());
2011
2012    // Create the body.  The returned block is the entry to the loop body.
2013    CFGBlock *BodyBlock = addStmt(W->getBody());
2014
2015    if (!BodyBlock)
2016      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2017    else if (Block) {
2018      if (badCFG)
2019        return 0;
2020    }
2021
2022    // Add the loop body entry as a successor to the condition.
2023    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
2024  }
2025
2026  // Link up the condition block with the code that follows the loop.  (the
2027  // false branch).
2028  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2029
2030  // There can be no more statements in the condition block since we loop back
2031  // to this block.  NULL out Block to force lazy creation of another block.
2032  Block = NULL;
2033
2034  // Return the condition block, which is the dominating block for the loop.
2035  Succ = EntryConditionBlock;
2036  return EntryConditionBlock;
2037}
2038
2039
2040CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2041  // FIXME: For now we pretend that @catch and the code it contains does not
2042  //  exit.
2043  return Block;
2044}
2045
2046CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2047  // FIXME: This isn't complete.  We basically treat @throw like a return
2048  //  statement.
2049
2050  // If we were in the middle of a block we stop processing that block.
2051  if (badCFG)
2052    return 0;
2053
2054  // Create the new block.
2055  Block = createBlock(false);
2056
2057  // The Exit block is the only successor.
2058  addSuccessor(Block, &cfg->getExit());
2059
2060  // Add the statement to the block.  This may create new blocks if S contains
2061  // control-flow (short-circuit operations).
2062  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2063}
2064
2065CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2066  // If we were in the middle of a block we stop processing that block.
2067  if (badCFG)
2068    return 0;
2069
2070  // Create the new block.
2071  Block = createBlock(false);
2072
2073  if (TryTerminatedBlock)
2074    // The current try statement is the only successor.
2075    addSuccessor(Block, TryTerminatedBlock);
2076  else
2077    // otherwise the Exit block is the only successor.
2078    addSuccessor(Block, &cfg->getExit());
2079
2080  // Add the statement to the block.  This may create new blocks if S contains
2081  // control-flow (short-circuit operations).
2082  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2083}
2084
2085CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2086  CFGBlock *LoopSuccessor = NULL;
2087
2088  // "do...while" is a control-flow statement.  Thus we stop processing the
2089  // current block.
2090  if (Block) {
2091    if (badCFG)
2092      return 0;
2093    LoopSuccessor = Block;
2094  } else
2095    LoopSuccessor = Succ;
2096
2097  // Because of short-circuit evaluation, the condition of the loop can span
2098  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2099  // evaluate the condition.
2100  CFGBlock *ExitConditionBlock = createBlock(false);
2101  CFGBlock *EntryConditionBlock = ExitConditionBlock;
2102
2103  // Set the terminator for the "exit" condition block.
2104  ExitConditionBlock->setTerminator(D);
2105
2106  // Now add the actual condition to the condition block.  Because the condition
2107  // itself may contain control-flow, new blocks may be created.
2108  if (Stmt *C = D->getCond()) {
2109    Block = ExitConditionBlock;
2110    EntryConditionBlock = addStmt(C);
2111    if (Block) {
2112      if (badCFG)
2113        return 0;
2114    }
2115  }
2116
2117  // The condition block is the implicit successor for the loop body.
2118  Succ = EntryConditionBlock;
2119
2120  // See if this is a known constant.
2121  const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2122
2123  // Process the loop body.
2124  CFGBlock *BodyBlock = NULL;
2125  {
2126    assert(D->getBody());
2127
2128    // Save the current values for Block, Succ, and continue and break targets
2129    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2130    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2131        save_break(BreakJumpTarget);
2132
2133    // All continues within this loop should go to the condition block
2134    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2135
2136    // All breaks should go to the code following the loop.
2137    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2138
2139    // NULL out Block to force lazy instantiation of blocks for the body.
2140    Block = NULL;
2141
2142    // If body is not a compound statement create implicit scope
2143    // and add destructors.
2144    if (!isa<CompoundStmt>(D->getBody()))
2145      addLocalScopeAndDtors(D->getBody());
2146
2147    // Create the body.  The returned block is the entry to the loop body.
2148    BodyBlock = addStmt(D->getBody());
2149
2150    if (!BodyBlock)
2151      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2152    else if (Block) {
2153      if (badCFG)
2154        return 0;
2155    }
2156
2157    if (!KnownVal.isFalse()) {
2158      // Add an intermediate block between the BodyBlock and the
2159      // ExitConditionBlock to represent the "loop back" transition.  Create an
2160      // empty block to represent the transition block for looping back to the
2161      // head of the loop.
2162      // FIXME: Can we do this more efficiently without adding another block?
2163      Block = NULL;
2164      Succ = BodyBlock;
2165      CFGBlock *LoopBackBlock = createBlock();
2166      LoopBackBlock->setLoopTarget(D);
2167
2168      // Add the loop body entry as a successor to the condition.
2169      addSuccessor(ExitConditionBlock, LoopBackBlock);
2170    }
2171    else
2172      addSuccessor(ExitConditionBlock, NULL);
2173  }
2174
2175  // Link up the condition block with the code that follows the loop.
2176  // (the false branch).
2177  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
2178
2179  // There can be no more statements in the body block(s) since we loop back to
2180  // the body.  NULL out Block to force lazy creation of another block.
2181  Block = NULL;
2182
2183  // Return the loop body, which is the dominating block for the loop.
2184  Succ = BodyBlock;
2185  return BodyBlock;
2186}
2187
2188CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2189  // "continue" is a control-flow statement.  Thus we stop processing the
2190  // current block.
2191  if (badCFG)
2192    return 0;
2193
2194  // Now create a new block that ends with the continue statement.
2195  Block = createBlock(false);
2196  Block->setTerminator(C);
2197
2198  // If there is no target for the continue, then we are looking at an
2199  // incomplete AST.  This means the CFG cannot be constructed.
2200  if (ContinueJumpTarget.block) {
2201    addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2202    addSuccessor(Block, ContinueJumpTarget.block);
2203  } else
2204    badCFG = true;
2205
2206  return Block;
2207}
2208
2209CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2210                                                    AddStmtChoice asc) {
2211
2212  if (asc.alwaysAdd(*this, E)) {
2213    autoCreateBlock();
2214    appendStmt(Block, E);
2215  }
2216
2217  // VLA types have expressions that must be evaluated.
2218  CFGBlock *lastBlock = Block;
2219
2220  if (E->isArgumentType()) {
2221    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2222         VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
2223      lastBlock = addStmt(VA->getSizeExpr());
2224  }
2225  return lastBlock;
2226}
2227
2228/// VisitStmtExpr - Utility method to handle (nested) statement
2229///  expressions (a GCC extension).
2230CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2231  if (asc.alwaysAdd(*this, SE)) {
2232    autoCreateBlock();
2233    appendStmt(Block, SE);
2234  }
2235  return VisitCompoundStmt(SE->getSubStmt());
2236}
2237
2238CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2239  // "switch" is a control-flow statement.  Thus we stop processing the current
2240  // block.
2241  CFGBlock *SwitchSuccessor = NULL;
2242
2243  // Save local scope position because in case of condition variable ScopePos
2244  // won't be restored when traversing AST.
2245  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2246
2247  // Create local scope for possible condition variable.
2248  // Store scope position. Add implicit destructor.
2249  if (VarDecl *VD = Terminator->getConditionVariable()) {
2250    LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2251    addLocalScopeForVarDecl(VD);
2252    addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2253  }
2254
2255  if (Block) {
2256    if (badCFG)
2257      return 0;
2258    SwitchSuccessor = Block;
2259  } else SwitchSuccessor = Succ;
2260
2261  // Save the current "switch" context.
2262  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2263                            save_default(DefaultCaseBlock);
2264  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2265
2266  // Set the "default" case to be the block after the switch statement.  If the
2267  // switch statement contains a "default:", this value will be overwritten with
2268  // the block for that code.
2269  DefaultCaseBlock = SwitchSuccessor;
2270
2271  // Create a new block that will contain the switch statement.
2272  SwitchTerminatedBlock = createBlock(false);
2273
2274  // Now process the switch body.  The code after the switch is the implicit
2275  // successor.
2276  Succ = SwitchSuccessor;
2277  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2278
2279  // When visiting the body, the case statements should automatically get linked
2280  // up to the switch.  We also don't keep a pointer to the body, since all
2281  // control-flow from the switch goes to case/default statements.
2282  assert(Terminator->getBody() && "switch must contain a non-NULL body");
2283  Block = NULL;
2284
2285  // For pruning unreachable case statements, save the current state
2286  // for tracking the condition value.
2287  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2288                                                     false);
2289
2290  // Determine if the switch condition can be explicitly evaluated.
2291  assert(Terminator->getCond() && "switch condition must be non-NULL");
2292  Expr::EvalResult result;
2293  bool b = tryEvaluate(Terminator->getCond(), result);
2294  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2295                                                    b ? &result : 0);
2296
2297  // If body is not a compound statement create implicit scope
2298  // and add destructors.
2299  if (!isa<CompoundStmt>(Terminator->getBody()))
2300    addLocalScopeAndDtors(Terminator->getBody());
2301
2302  addStmt(Terminator->getBody());
2303  if (Block) {
2304    if (badCFG)
2305      return 0;
2306  }
2307
2308  // If we have no "default:" case, the default transition is to the code
2309  // following the switch body.  Moreover, take into account if all the
2310  // cases of a switch are covered (e.g., switching on an enum value).
2311  addSuccessor(SwitchTerminatedBlock,
2312               switchExclusivelyCovered || Terminator->isAllEnumCasesCovered()
2313               ? 0 : DefaultCaseBlock);
2314
2315  // Add the terminator and condition in the switch block.
2316  SwitchTerminatedBlock->setTerminator(Terminator);
2317  Block = SwitchTerminatedBlock;
2318  Block = addStmt(Terminator->getCond());
2319
2320  // Finally, if the SwitchStmt contains a condition variable, add both the
2321  // SwitchStmt and the condition variable initialization to the CFG.
2322  if (VarDecl *VD = Terminator->getConditionVariable()) {
2323    if (Expr *Init = VD->getInit()) {
2324      autoCreateBlock();
2325      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
2326      addStmt(Init);
2327    }
2328  }
2329
2330  return Block;
2331}
2332
2333static bool shouldAddCase(bool &switchExclusivelyCovered,
2334                          const Expr::EvalResult *switchCond,
2335                          const CaseStmt *CS,
2336                          ASTContext &Ctx) {
2337  if (!switchCond)
2338    return true;
2339
2340  bool addCase = false;
2341
2342  if (!switchExclusivelyCovered) {
2343    if (switchCond->Val.isInt()) {
2344      // Evaluate the LHS of the case value.
2345      Expr::EvalResult V1;
2346      CS->getLHS()->Evaluate(V1, Ctx);
2347      assert(V1.Val.isInt());
2348      const llvm::APSInt &condInt = switchCond->Val.getInt();
2349      const llvm::APSInt &lhsInt = V1.Val.getInt();
2350
2351      if (condInt == lhsInt) {
2352        addCase = true;
2353        switchExclusivelyCovered = true;
2354      }
2355      else if (condInt < lhsInt) {
2356        if (const Expr *RHS = CS->getRHS()) {
2357          // Evaluate the RHS of the case value.
2358          Expr::EvalResult V2;
2359          RHS->Evaluate(V2, Ctx);
2360          assert(V2.Val.isInt());
2361          if (V2.Val.getInt() <= condInt) {
2362            addCase = true;
2363            switchExclusivelyCovered = true;
2364          }
2365        }
2366      }
2367    }
2368    else
2369      addCase = true;
2370  }
2371  return addCase;
2372}
2373
2374CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
2375  // CaseStmts are essentially labels, so they are the first statement in a
2376  // block.
2377  CFGBlock *TopBlock = 0, *LastBlock = 0;
2378
2379  if (Stmt *Sub = CS->getSubStmt()) {
2380    // For deeply nested chains of CaseStmts, instead of doing a recursion
2381    // (which can blow out the stack), manually unroll and create blocks
2382    // along the way.
2383    while (isa<CaseStmt>(Sub)) {
2384      CFGBlock *currentBlock = createBlock(false);
2385      currentBlock->setLabel(CS);
2386
2387      if (TopBlock)
2388        addSuccessor(LastBlock, currentBlock);
2389      else
2390        TopBlock = currentBlock;
2391
2392      addSuccessor(SwitchTerminatedBlock,
2393                   shouldAddCase(switchExclusivelyCovered, switchCond,
2394                                 CS, *Context)
2395                   ? currentBlock : 0);
2396
2397      LastBlock = currentBlock;
2398      CS = cast<CaseStmt>(Sub);
2399      Sub = CS->getSubStmt();
2400    }
2401
2402    addStmt(Sub);
2403  }
2404
2405  CFGBlock *CaseBlock = Block;
2406  if (!CaseBlock)
2407    CaseBlock = createBlock();
2408
2409  // Cases statements partition blocks, so this is the top of the basic block we
2410  // were processing (the "case XXX:" is the label).
2411  CaseBlock->setLabel(CS);
2412
2413  if (badCFG)
2414    return 0;
2415
2416  // Add this block to the list of successors for the block with the switch
2417  // statement.
2418  assert(SwitchTerminatedBlock);
2419  addSuccessor(SwitchTerminatedBlock,
2420               shouldAddCase(switchExclusivelyCovered, switchCond,
2421                             CS, *Context)
2422               ? CaseBlock : 0);
2423
2424  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2425  Block = NULL;
2426
2427  if (TopBlock) {
2428    addSuccessor(LastBlock, CaseBlock);
2429    Succ = TopBlock;
2430  } else {
2431    // This block is now the implicit successor of other blocks.
2432    Succ = CaseBlock;
2433  }
2434
2435  return Succ;
2436}
2437
2438CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
2439  if (Terminator->getSubStmt())
2440    addStmt(Terminator->getSubStmt());
2441
2442  DefaultCaseBlock = Block;
2443
2444  if (!DefaultCaseBlock)
2445    DefaultCaseBlock = createBlock();
2446
2447  // Default statements partition blocks, so this is the top of the basic block
2448  // we were processing (the "default:" is the label).
2449  DefaultCaseBlock->setLabel(Terminator);
2450
2451  if (badCFG)
2452    return 0;
2453
2454  // Unlike case statements, we don't add the default block to the successors
2455  // for the switch statement immediately.  This is done when we finish
2456  // processing the switch statement.  This allows for the default case
2457  // (including a fall-through to the code after the switch statement) to always
2458  // be the last successor of a switch-terminated block.
2459
2460  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2461  Block = NULL;
2462
2463  // This block is now the implicit successor of other blocks.
2464  Succ = DefaultCaseBlock;
2465
2466  return DefaultCaseBlock;
2467}
2468
2469CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
2470  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
2471  // current block.
2472  CFGBlock *TrySuccessor = NULL;
2473
2474  if (Block) {
2475    if (badCFG)
2476      return 0;
2477    TrySuccessor = Block;
2478  } else TrySuccessor = Succ;
2479
2480  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
2481
2482  // Create a new block that will contain the try statement.
2483  CFGBlock *NewTryTerminatedBlock = createBlock(false);
2484  // Add the terminator in the try block.
2485  NewTryTerminatedBlock->setTerminator(Terminator);
2486
2487  bool HasCatchAll = false;
2488  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
2489    // The code after the try is the implicit successor.
2490    Succ = TrySuccessor;
2491    CXXCatchStmt *CS = Terminator->getHandler(h);
2492    if (CS->getExceptionDecl() == 0) {
2493      HasCatchAll = true;
2494    }
2495    Block = NULL;
2496    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
2497    if (CatchBlock == 0)
2498      return 0;
2499    // Add this block to the list of successors for the block with the try
2500    // statement.
2501    addSuccessor(NewTryTerminatedBlock, CatchBlock);
2502  }
2503  if (!HasCatchAll) {
2504    if (PrevTryTerminatedBlock)
2505      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
2506    else
2507      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
2508  }
2509
2510  // The code after the try is the implicit successor.
2511  Succ = TrySuccessor;
2512
2513  // Save the current "try" context.
2514  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
2515  cfg->addTryDispatchBlock(TryTerminatedBlock);
2516
2517  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
2518  Block = NULL;
2519  Block = addStmt(Terminator->getTryBlock());
2520  return Block;
2521}
2522
2523CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
2524  // CXXCatchStmt are treated like labels, so they are the first statement in a
2525  // block.
2526
2527  // Save local scope position because in case of exception variable ScopePos
2528  // won't be restored when traversing AST.
2529  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2530
2531  // Create local scope for possible exception variable.
2532  // Store scope position. Add implicit destructor.
2533  if (VarDecl *VD = CS->getExceptionDecl()) {
2534    LocalScope::const_iterator BeginScopePos = ScopePos;
2535    addLocalScopeForVarDecl(VD);
2536    addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
2537  }
2538
2539  if (CS->getHandlerBlock())
2540    addStmt(CS->getHandlerBlock());
2541
2542  CFGBlock *CatchBlock = Block;
2543  if (!CatchBlock)
2544    CatchBlock = createBlock();
2545
2546  CatchBlock->setLabel(CS);
2547
2548  if (badCFG)
2549    return 0;
2550
2551  // We set Block to NULL to allow lazy creation of a new block (if necessary)
2552  Block = NULL;
2553
2554  return CatchBlock;
2555}
2556
2557CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
2558  // C++0x for-range statements are specified as [stmt.ranged]:
2559  //
2560  // {
2561  //   auto && __range = range-init;
2562  //   for ( auto __begin = begin-expr,
2563  //         __end = end-expr;
2564  //         __begin != __end;
2565  //         ++__begin ) {
2566  //     for-range-declaration = *__begin;
2567  //     statement
2568  //   }
2569  // }
2570
2571  // Save local scope position before the addition of the implicit variables.
2572  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2573
2574  // Create local scopes and destructors for range, begin and end variables.
2575  if (Stmt *Range = S->getRangeStmt())
2576    addLocalScopeForStmt(Range);
2577  if (Stmt *BeginEnd = S->getBeginEndStmt())
2578    addLocalScopeForStmt(BeginEnd);
2579  addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
2580
2581  LocalScope::const_iterator ContinueScopePos = ScopePos;
2582
2583  // "for" is a control-flow statement.  Thus we stop processing the current
2584  // block.
2585  CFGBlock *LoopSuccessor = NULL;
2586  if (Block) {
2587    if (badCFG)
2588      return 0;
2589    LoopSuccessor = Block;
2590  } else
2591    LoopSuccessor = Succ;
2592
2593  // Save the current value for the break targets.
2594  // All breaks should go to the code following the loop.
2595  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2596  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2597
2598  // The block for the __begin != __end expression.
2599  CFGBlock *ConditionBlock = createBlock(false);
2600  ConditionBlock->setTerminator(S);
2601
2602  // Now add the actual condition to the condition block.
2603  if (Expr *C = S->getCond()) {
2604    Block = ConditionBlock;
2605    CFGBlock *BeginConditionBlock = addStmt(C);
2606    if (badCFG)
2607      return 0;
2608    assert(BeginConditionBlock == ConditionBlock &&
2609           "condition block in for-range was unexpectedly complex");
2610    (void)BeginConditionBlock;
2611  }
2612
2613  // The condition block is the implicit successor for the loop body as well as
2614  // any code above the loop.
2615  Succ = ConditionBlock;
2616
2617  // See if this is a known constant.
2618  TryResult KnownVal(true);
2619
2620  if (S->getCond())
2621    KnownVal = tryEvaluateBool(S->getCond());
2622
2623  // Now create the loop body.
2624  {
2625    assert(S->getBody());
2626
2627    // Save the current values for Block, Succ, and continue targets.
2628    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2629    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2630
2631    // Generate increment code in its own basic block.  This is the target of
2632    // continue statements.
2633    Block = 0;
2634    Succ = addStmt(S->getInc());
2635    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2636
2637    // The starting block for the loop increment is the block that should
2638    // represent the 'loop target' for looping back to the start of the loop.
2639    ContinueJumpTarget.block->setLoopTarget(S);
2640
2641    // Finish up the increment block and prepare to start the loop body.
2642    assert(Block);
2643    if (badCFG)
2644      return 0;
2645    Block = 0;
2646
2647
2648    // Add implicit scope and dtors for loop variable.
2649    addLocalScopeAndDtors(S->getLoopVarStmt());
2650
2651    // Populate a new block to contain the loop body and loop variable.
2652    Block = addStmt(S->getBody());
2653    if (badCFG)
2654      return 0;
2655    Block = addStmt(S->getLoopVarStmt());
2656    if (badCFG)
2657      return 0;
2658
2659    // This new body block is a successor to our condition block.
2660    addSuccessor(ConditionBlock, KnownVal.isFalse() ? 0 : Block);
2661  }
2662
2663  // Link up the condition block with the code that follows the loop (the
2664  // false branch).
2665  addSuccessor(ConditionBlock, KnownVal.isTrue() ? 0 : LoopSuccessor);
2666
2667  // Add the initialization statements.
2668  Block = createBlock();
2669  addStmt(S->getBeginEndStmt());
2670  return addStmt(S->getRangeStmt());
2671}
2672
2673CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
2674    AddStmtChoice asc) {
2675  if (BuildOpts.AddImplicitDtors) {
2676    // If adding implicit destructors visit the full expression for adding
2677    // destructors of temporaries.
2678    VisitForTemporaryDtors(E->getSubExpr());
2679
2680    // Full expression has to be added as CFGStmt so it will be sequenced
2681    // before destructors of it's temporaries.
2682    asc = asc.withAlwaysAdd(true);
2683  }
2684  return Visit(E->getSubExpr(), asc);
2685}
2686
2687CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
2688                                                AddStmtChoice asc) {
2689  if (asc.alwaysAdd(*this, E)) {
2690    autoCreateBlock();
2691    appendStmt(Block, E);
2692
2693    // We do not want to propagate the AlwaysAdd property.
2694    asc = asc.withAlwaysAdd(false);
2695  }
2696  return Visit(E->getSubExpr(), asc);
2697}
2698
2699CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
2700                                            AddStmtChoice asc) {
2701  autoCreateBlock();
2702  if (!C->isElidable())
2703    appendStmt(Block, C);
2704
2705  return VisitChildren(C);
2706}
2707
2708CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
2709                                                 AddStmtChoice asc) {
2710  if (asc.alwaysAdd(*this, E)) {
2711    autoCreateBlock();
2712    appendStmt(Block, E);
2713    // We do not want to propagate the AlwaysAdd property.
2714    asc = asc.withAlwaysAdd(false);
2715  }
2716  return Visit(E->getSubExpr(), asc);
2717}
2718
2719CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
2720                                                  AddStmtChoice asc) {
2721  autoCreateBlock();
2722  appendStmt(Block, C);
2723  return VisitChildren(C);
2724}
2725
2726CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
2727                                            AddStmtChoice asc) {
2728  if (asc.alwaysAdd(*this, E)) {
2729    autoCreateBlock();
2730    appendStmt(Block, E);
2731  }
2732  return Visit(E->getSubExpr(), AddStmtChoice());
2733}
2734
2735CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
2736  // Lazily create the indirect-goto dispatch block if there isn't one already.
2737  CFGBlock *IBlock = cfg->getIndirectGotoBlock();
2738
2739  if (!IBlock) {
2740    IBlock = createBlock(false);
2741    cfg->setIndirectGotoBlock(IBlock);
2742  }
2743
2744  // IndirectGoto is a control-flow statement.  Thus we stop processing the
2745  // current block and create a new one.
2746  if (badCFG)
2747    return 0;
2748
2749  Block = createBlock(false);
2750  Block->setTerminator(I);
2751  addSuccessor(Block, IBlock);
2752  return addStmt(I->getTarget());
2753}
2754
2755CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
2756tryAgain:
2757  if (!E) {
2758    badCFG = true;
2759    return NULL;
2760  }
2761  switch (E->getStmtClass()) {
2762    default:
2763      return VisitChildrenForTemporaryDtors(E);
2764
2765    case Stmt::BinaryOperatorClass:
2766      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
2767
2768    case Stmt::CXXBindTemporaryExprClass:
2769      return VisitCXXBindTemporaryExprForTemporaryDtors(
2770          cast<CXXBindTemporaryExpr>(E), BindToTemporary);
2771
2772    case Stmt::BinaryConditionalOperatorClass:
2773    case Stmt::ConditionalOperatorClass:
2774      return VisitConditionalOperatorForTemporaryDtors(
2775          cast<AbstractConditionalOperator>(E), BindToTemporary);
2776
2777    case Stmt::ImplicitCastExprClass:
2778      // For implicit cast we want BindToTemporary to be passed further.
2779      E = cast<CastExpr>(E)->getSubExpr();
2780      goto tryAgain;
2781
2782    case Stmt::ParenExprClass:
2783      E = cast<ParenExpr>(E)->getSubExpr();
2784      goto tryAgain;
2785
2786    case Stmt::MaterializeTemporaryExprClass:
2787      E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
2788      goto tryAgain;
2789  }
2790}
2791
2792CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
2793  // When visiting children for destructors we want to visit them in reverse
2794  // order. Because there's no reverse iterator for children must to reverse
2795  // them in helper vector.
2796  typedef SmallVector<Stmt *, 4> ChildrenVect;
2797  ChildrenVect ChildrenRev;
2798  for (Stmt::child_range I = E->children(); I; ++I) {
2799    if (*I) ChildrenRev.push_back(*I);
2800  }
2801
2802  CFGBlock *B = Block;
2803  for (ChildrenVect::reverse_iterator I = ChildrenRev.rbegin(),
2804      L = ChildrenRev.rend(); I != L; ++I) {
2805    if (CFGBlock *R = VisitForTemporaryDtors(*I))
2806      B = R;
2807  }
2808  return B;
2809}
2810
2811CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
2812  if (E->isLogicalOp()) {
2813    // Destructors for temporaries in LHS expression should be called after
2814    // those for RHS expression. Even if this will unnecessarily create a block,
2815    // this block will be used at least by the full expression.
2816    autoCreateBlock();
2817    CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
2818    if (badCFG)
2819      return NULL;
2820
2821    Succ = ConfluenceBlock;
2822    Block = NULL;
2823    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2824
2825    if (RHSBlock) {
2826      if (badCFG)
2827        return NULL;
2828
2829      // If RHS expression did produce destructors we need to connect created
2830      // blocks to CFG in same manner as for binary operator itself.
2831      CFGBlock *LHSBlock = createBlock(false);
2832      LHSBlock->setTerminator(CFGTerminator(E, true));
2833
2834      // For binary operator LHS block is before RHS in list of predecessors
2835      // of ConfluenceBlock.
2836      std::reverse(ConfluenceBlock->pred_begin(),
2837          ConfluenceBlock->pred_end());
2838
2839      // See if this is a known constant.
2840      TryResult KnownVal = tryEvaluateBool(E->getLHS());
2841      if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
2842        KnownVal.negate();
2843
2844      // Link LHSBlock with RHSBlock exactly the same way as for binary operator
2845      // itself.
2846      if (E->getOpcode() == BO_LOr) {
2847        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2848        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2849      } else {
2850        assert (E->getOpcode() == BO_LAnd);
2851        addSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
2852        addSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
2853      }
2854
2855      Block = LHSBlock;
2856      return LHSBlock;
2857    }
2858
2859    Block = ConfluenceBlock;
2860    return ConfluenceBlock;
2861  }
2862
2863  if (E->isAssignmentOp()) {
2864    // For assignment operator (=) LHS expression is visited
2865    // before RHS expression. For destructors visit them in reverse order.
2866    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2867    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2868    return LHSBlock ? LHSBlock : RHSBlock;
2869  }
2870
2871  // For any other binary operator RHS expression is visited before
2872  // LHS expression (order of children). For destructors visit them in reverse
2873  // order.
2874  CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
2875  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
2876  return RHSBlock ? RHSBlock : LHSBlock;
2877}
2878
2879CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
2880    CXXBindTemporaryExpr *E, bool BindToTemporary) {
2881  // First add destructors for temporaries in subexpression.
2882  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
2883  if (!BindToTemporary) {
2884    // If lifetime of temporary is not prolonged (by assigning to constant
2885    // reference) add destructor for it.
2886
2887    // If the destructor is marked as a no-return destructor, we need to create
2888    // a new block for the destructor which does not have as a successor
2889    // anything built thus far. Control won't flow out of this block.
2890    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
2891    if (cast<FunctionType>(Dtor->getType())->getNoReturnAttr())
2892      Block = createNoReturnBlock();
2893    else
2894      autoCreateBlock();
2895
2896    appendTemporaryDtor(Block, E);
2897    B = Block;
2898  }
2899  return B;
2900}
2901
2902CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
2903    AbstractConditionalOperator *E, bool BindToTemporary) {
2904  // First add destructors for condition expression.  Even if this will
2905  // unnecessarily create a block, this block will be used at least by the full
2906  // expression.
2907  autoCreateBlock();
2908  CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
2909  if (badCFG)
2910    return NULL;
2911  if (BinaryConditionalOperator *BCO
2912        = dyn_cast<BinaryConditionalOperator>(E)) {
2913    ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
2914    if (badCFG)
2915      return NULL;
2916  }
2917
2918  // Try to add block with destructors for LHS expression.
2919  CFGBlock *LHSBlock = NULL;
2920  Succ = ConfluenceBlock;
2921  Block = NULL;
2922  LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
2923  if (badCFG)
2924    return NULL;
2925
2926  // Try to add block with destructors for RHS expression;
2927  Succ = ConfluenceBlock;
2928  Block = NULL;
2929  CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
2930                                              BindToTemporary);
2931  if (badCFG)
2932    return NULL;
2933
2934  if (!RHSBlock && !LHSBlock) {
2935    // If neither LHS nor RHS expression had temporaries to destroy don't create
2936    // more blocks.
2937    Block = ConfluenceBlock;
2938    return Block;
2939  }
2940
2941  Block = createBlock(false);
2942  Block->setTerminator(CFGTerminator(E, true));
2943
2944  // See if this is a known constant.
2945  const TryResult &KnownVal = tryEvaluateBool(E->getCond());
2946
2947  if (LHSBlock) {
2948    addSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
2949  } else if (KnownVal.isFalse()) {
2950    addSuccessor(Block, NULL);
2951  } else {
2952    addSuccessor(Block, ConfluenceBlock);
2953    std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
2954  }
2955
2956  if (!RHSBlock)
2957    RHSBlock = ConfluenceBlock;
2958  addSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
2959
2960  return Block;
2961}
2962
2963} // end anonymous namespace
2964
2965/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
2966///  no successors or predecessors.  If this is the first block created in the
2967///  CFG, it is automatically set to be the Entry and Exit of the CFG.
2968CFGBlock *CFG::createBlock() {
2969  bool first_block = begin() == end();
2970
2971  // Create the block.
2972  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
2973  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
2974  Blocks.push_back(Mem, BlkBVC);
2975
2976  // If this is the first block, set it as the Entry and Exit.
2977  if (first_block)
2978    Entry = Exit = &back();
2979
2980  // Return the block.
2981  return &back();
2982}
2983
2984/// buildCFG - Constructs a CFG from an AST.  Ownership of the returned
2985///  CFG is returned to the caller.
2986CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
2987    const BuildOptions &BO) {
2988  CFGBuilder Builder(C, BO);
2989  return Builder.buildCFG(D, Statement);
2990}
2991
2992const CXXDestructorDecl *
2993CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
2994  switch (getKind()) {
2995    case CFGElement::Invalid:
2996    case CFGElement::Statement:
2997    case CFGElement::Initializer:
2998      llvm_unreachable("getDestructorDecl should only be used with "
2999                       "ImplicitDtors");
3000    case CFGElement::AutomaticObjectDtor: {
3001      const VarDecl *var = cast<CFGAutomaticObjDtor>(this)->getVarDecl();
3002      QualType ty = var->getType();
3003      ty = ty.getNonReferenceType();
3004      if (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3005        ty = arrayType->getElementType();
3006      }
3007      const RecordType *recordType = ty->getAs<RecordType>();
3008      const CXXRecordDecl *classDecl =
3009      cast<CXXRecordDecl>(recordType->getDecl());
3010      return classDecl->getDestructor();
3011    }
3012    case CFGElement::TemporaryDtor: {
3013      const CXXBindTemporaryExpr *bindExpr =
3014        cast<CFGTemporaryDtor>(this)->getBindTemporaryExpr();
3015      const CXXTemporary *temp = bindExpr->getTemporary();
3016      return temp->getDestructor();
3017    }
3018    case CFGElement::BaseDtor:
3019    case CFGElement::MemberDtor:
3020
3021      // Not yet supported.
3022      return 0;
3023  }
3024  llvm_unreachable("getKind() returned bogus value");
3025  return 0;
3026}
3027
3028bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3029  if (const CXXDestructorDecl *cdecl = getDestructorDecl(astContext)) {
3030    QualType ty = cdecl->getType();
3031    return cast<FunctionType>(ty)->getNoReturnAttr();
3032  }
3033  return false;
3034}
3035
3036//===----------------------------------------------------------------------===//
3037// CFG: Queries for BlkExprs.
3038//===----------------------------------------------------------------------===//
3039
3040namespace {
3041  typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
3042}
3043
3044static void FindSubExprAssignments(const Stmt *S,
3045                                   llvm::SmallPtrSet<const Expr*,50>& Set) {
3046  if (!S)
3047    return;
3048
3049  for (Stmt::const_child_range I = S->children(); I; ++I) {
3050    const Stmt *child = *I;
3051    if (!child)
3052      continue;
3053
3054    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(child))
3055      if (B->isAssignmentOp()) Set.insert(B);
3056
3057    FindSubExprAssignments(child, Set);
3058  }
3059}
3060
3061static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
3062  BlkExprMapTy* M = new BlkExprMapTy();
3063
3064  // Look for assignments that are used as subexpressions.  These are the only
3065  // assignments that we want to *possibly* register as a block-level
3066  // expression.  Basically, if an assignment occurs both in a subexpression and
3067  // at the block-level, it is a block-level expression.
3068  llvm::SmallPtrSet<const Expr*,50> SubExprAssignments;
3069
3070  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
3071    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
3072      if (const CFGStmt *S = BI->getAs<CFGStmt>())
3073        FindSubExprAssignments(S->getStmt(), SubExprAssignments);
3074
3075  for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
3076
3077    // Iterate over the statements again on identify the Expr* and Stmt* at the
3078    // block-level that are block-level expressions.
3079
3080    for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI) {
3081      const CFGStmt *CS = BI->getAs<CFGStmt>();
3082      if (!CS)
3083        continue;
3084      if (const Expr *Exp = dyn_cast<Expr>(CS->getStmt())) {
3085        assert((Exp->IgnoreParens() == Exp) && "No parens on block-level exps");
3086
3087        if (const BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
3088          // Assignment expressions that are not nested within another
3089          // expression are really "statements" whose value is never used by
3090          // another expression.
3091          if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
3092            continue;
3093        } else if (const StmtExpr *SE = dyn_cast<StmtExpr>(Exp)) {
3094          // Special handling for statement expressions.  The last statement in
3095          // the statement expression is also a block-level expr.
3096          const CompoundStmt *C = SE->getSubStmt();
3097          if (!C->body_empty()) {
3098            const Stmt *Last = C->body_back();
3099            if (const Expr *LastEx = dyn_cast<Expr>(Last))
3100              Last = LastEx->IgnoreParens();
3101            unsigned x = M->size();
3102            (*M)[Last] = x;
3103          }
3104        }
3105
3106        unsigned x = M->size();
3107        (*M)[Exp] = x;
3108      }
3109    }
3110
3111    // Look at terminators.  The condition is a block-level expression.
3112
3113    Stmt *S = (*I)->getTerminatorCondition();
3114
3115    if (S && M->find(S) == M->end()) {
3116      unsigned x = M->size();
3117      (*M)[S] = x;
3118    }
3119  }
3120
3121  return M;
3122}
3123
3124CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt *S) {
3125  assert(S != NULL);
3126  if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
3127
3128  BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
3129  BlkExprMapTy::iterator I = M->find(S);
3130  return (I == M->end()) ? CFG::BlkExprNumTy() : CFG::BlkExprNumTy(I->second);
3131}
3132
3133unsigned CFG::getNumBlkExprs() {
3134  if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
3135    return M->size();
3136
3137  // We assume callers interested in the number of BlkExprs will want
3138  // the map constructed if it doesn't already exist.
3139  BlkExprMap = (void*) PopulateBlkExprMap(*this);
3140  return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
3141}
3142
3143//===----------------------------------------------------------------------===//
3144// Filtered walking of the CFG.
3145//===----------------------------------------------------------------------===//
3146
3147bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3148        const CFGBlock *From, const CFGBlock *To) {
3149
3150  if (To && F.IgnoreDefaultsWithCoveredEnums) {
3151    // If the 'To' has no label or is labeled but the label isn't a
3152    // CaseStmt then filter this edge.
3153    if (const SwitchStmt *S =
3154        dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3155      if (S->isAllEnumCasesCovered()) {
3156        const Stmt *L = To->getLabel();
3157        if (!L || !isa<CaseStmt>(L))
3158          return true;
3159      }
3160    }
3161  }
3162
3163  return false;
3164}
3165
3166//===----------------------------------------------------------------------===//
3167// Cleanup: CFG dstor.
3168//===----------------------------------------------------------------------===//
3169
3170CFG::~CFG() {
3171  delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
3172}
3173
3174//===----------------------------------------------------------------------===//
3175// CFG pretty printing
3176//===----------------------------------------------------------------------===//
3177
3178namespace {
3179
3180class StmtPrinterHelper : public PrinterHelper  {
3181  typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3182  typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3183  StmtMapTy StmtMap;
3184  DeclMapTy DeclMap;
3185  signed currentBlock;
3186  unsigned currentStmt;
3187  const LangOptions &LangOpts;
3188public:
3189
3190  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3191    : currentBlock(0), currentStmt(0), LangOpts(LO)
3192  {
3193    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3194      unsigned j = 1;
3195      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3196           BI != BEnd; ++BI, ++j ) {
3197        if (const CFGStmt *SE = BI->getAs<CFGStmt>()) {
3198          const Stmt *stmt= SE->getStmt();
3199          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3200          StmtMap[stmt] = P;
3201
3202          switch (stmt->getStmtClass()) {
3203            case Stmt::DeclStmtClass:
3204                DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3205                break;
3206            case Stmt::IfStmtClass: {
3207              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3208              if (var)
3209                DeclMap[var] = P;
3210              break;
3211            }
3212            case Stmt::ForStmtClass: {
3213              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3214              if (var)
3215                DeclMap[var] = P;
3216              break;
3217            }
3218            case Stmt::WhileStmtClass: {
3219              const VarDecl *var =
3220                cast<WhileStmt>(stmt)->getConditionVariable();
3221              if (var)
3222                DeclMap[var] = P;
3223              break;
3224            }
3225            case Stmt::SwitchStmtClass: {
3226              const VarDecl *var =
3227                cast<SwitchStmt>(stmt)->getConditionVariable();
3228              if (var)
3229                DeclMap[var] = P;
3230              break;
3231            }
3232            case Stmt::CXXCatchStmtClass: {
3233              const VarDecl *var =
3234                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3235              if (var)
3236                DeclMap[var] = P;
3237              break;
3238            }
3239            default:
3240              break;
3241          }
3242        }
3243      }
3244    }
3245  }
3246
3247
3248  virtual ~StmtPrinterHelper() {}
3249
3250  const LangOptions &getLangOpts() const { return LangOpts; }
3251  void setBlockID(signed i) { currentBlock = i; }
3252  void setStmtID(unsigned i) { currentStmt = i; }
3253
3254  virtual bool handledStmt(Stmt *S, raw_ostream &OS) {
3255    StmtMapTy::iterator I = StmtMap.find(S);
3256
3257    if (I == StmtMap.end())
3258      return false;
3259
3260    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3261                          && I->second.second == currentStmt) {
3262      return false;
3263    }
3264
3265    OS << "[B" << I->second.first << "." << I->second.second << "]";
3266    return true;
3267  }
3268
3269  bool handleDecl(const Decl *D, raw_ostream &OS) {
3270    DeclMapTy::iterator I = DeclMap.find(D);
3271
3272    if (I == DeclMap.end())
3273      return false;
3274
3275    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3276                          && I->second.second == currentStmt) {
3277      return false;
3278    }
3279
3280    OS << "[B" << I->second.first << "." << I->second.second << "]";
3281    return true;
3282  }
3283};
3284} // end anonymous namespace
3285
3286
3287namespace {
3288class CFGBlockTerminatorPrint
3289  : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3290
3291  raw_ostream &OS;
3292  StmtPrinterHelper* Helper;
3293  PrintingPolicy Policy;
3294public:
3295  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3296                          const PrintingPolicy &Policy)
3297    : OS(os), Helper(helper), Policy(Policy) {}
3298
3299  void VisitIfStmt(IfStmt *I) {
3300    OS << "if ";
3301    I->getCond()->printPretty(OS,Helper,Policy);
3302  }
3303
3304  // Default case.
3305  void VisitStmt(Stmt *Terminator) {
3306    Terminator->printPretty(OS, Helper, Policy);
3307  }
3308
3309  void VisitForStmt(ForStmt *F) {
3310    OS << "for (" ;
3311    if (F->getInit())
3312      OS << "...";
3313    OS << "; ";
3314    if (Stmt *C = F->getCond())
3315      C->printPretty(OS, Helper, Policy);
3316    OS << "; ";
3317    if (F->getInc())
3318      OS << "...";
3319    OS << ")";
3320  }
3321
3322  void VisitWhileStmt(WhileStmt *W) {
3323    OS << "while " ;
3324    if (Stmt *C = W->getCond())
3325      C->printPretty(OS, Helper, Policy);
3326  }
3327
3328  void VisitDoStmt(DoStmt *D) {
3329    OS << "do ... while ";
3330    if (Stmt *C = D->getCond())
3331      C->printPretty(OS, Helper, Policy);
3332  }
3333
3334  void VisitSwitchStmt(SwitchStmt *Terminator) {
3335    OS << "switch ";
3336    Terminator->getCond()->printPretty(OS, Helper, Policy);
3337  }
3338
3339  void VisitCXXTryStmt(CXXTryStmt *CS) {
3340    OS << "try ...";
3341  }
3342
3343  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3344    C->getCond()->printPretty(OS, Helper, Policy);
3345    OS << " ? ... : ...";
3346  }
3347
3348  void VisitChooseExpr(ChooseExpr *C) {
3349    OS << "__builtin_choose_expr( ";
3350    C->getCond()->printPretty(OS, Helper, Policy);
3351    OS << " )";
3352  }
3353
3354  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3355    OS << "goto *";
3356    I->getTarget()->printPretty(OS, Helper, Policy);
3357  }
3358
3359  void VisitBinaryOperator(BinaryOperator* B) {
3360    if (!B->isLogicalOp()) {
3361      VisitExpr(B);
3362      return;
3363    }
3364
3365    B->getLHS()->printPretty(OS, Helper, Policy);
3366
3367    switch (B->getOpcode()) {
3368      case BO_LOr:
3369        OS << " || ...";
3370        return;
3371      case BO_LAnd:
3372        OS << " && ...";
3373        return;
3374      default:
3375        assert(false && "Invalid logical operator.");
3376    }
3377  }
3378
3379  void VisitExpr(Expr *E) {
3380    E->printPretty(OS, Helper, Policy);
3381  }
3382};
3383} // end anonymous namespace
3384
3385static void print_elem(raw_ostream &OS, StmtPrinterHelper* Helper,
3386                       const CFGElement &E) {
3387  if (const CFGStmt *CS = E.getAs<CFGStmt>()) {
3388    const Stmt *S = CS->getStmt();
3389
3390    if (Helper) {
3391
3392      // special printing for statement-expressions.
3393      if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
3394        const CompoundStmt *Sub = SE->getSubStmt();
3395
3396        if (Sub->children()) {
3397          OS << "({ ... ; ";
3398          Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
3399          OS << " })\n";
3400          return;
3401        }
3402      }
3403      // special printing for comma expressions.
3404      if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
3405        if (B->getOpcode() == BO_Comma) {
3406          OS << "... , ";
3407          Helper->handledStmt(B->getRHS(),OS);
3408          OS << '\n';
3409          return;
3410        }
3411      }
3412    }
3413    S->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3414
3415    if (isa<CXXOperatorCallExpr>(S)) {
3416      OS << " (OperatorCall)";
3417    } else if (isa<CXXBindTemporaryExpr>(S)) {
3418      OS << " (BindTemporary)";
3419    }
3420
3421    // Expressions need a newline.
3422    if (isa<Expr>(S))
3423      OS << '\n';
3424
3425  } else if (const CFGInitializer *IE = E.getAs<CFGInitializer>()) {
3426    const CXXCtorInitializer *I = IE->getInitializer();
3427    if (I->isBaseInitializer())
3428      OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
3429    else OS << I->getAnyMember()->getName();
3430
3431    OS << "(";
3432    if (Expr *IE = I->getInit())
3433      IE->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
3434    OS << ")";
3435
3436    if (I->isBaseInitializer())
3437      OS << " (Base initializer)\n";
3438    else OS << " (Member initializer)\n";
3439
3440  } else if (const CFGAutomaticObjDtor *DE = E.getAs<CFGAutomaticObjDtor>()){
3441    const VarDecl *VD = DE->getVarDecl();
3442    Helper->handleDecl(VD, OS);
3443
3444    const Type* T = VD->getType().getTypePtr();
3445    if (const ReferenceType* RT = T->getAs<ReferenceType>())
3446      T = RT->getPointeeType().getTypePtr();
3447    else if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3448      T = ET;
3449
3450    OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
3451    OS << " (Implicit destructor)\n";
3452
3453  } else if (const CFGBaseDtor *BE = E.getAs<CFGBaseDtor>()) {
3454    const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
3455    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
3456    OS << " (Base object destructor)\n";
3457
3458  } else if (const CFGMemberDtor *ME = E.getAs<CFGMemberDtor>()) {
3459    const FieldDecl *FD = ME->getFieldDecl();
3460
3461    const Type *T = FD->getType().getTypePtr();
3462    if (const Type *ET = T->getArrayElementTypeNoTypeQual())
3463      T = ET;
3464
3465    OS << "this->" << FD->getName();
3466    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
3467    OS << " (Member object destructor)\n";
3468
3469  } else if (const CFGTemporaryDtor *TE = E.getAs<CFGTemporaryDtor>()) {
3470    const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
3471    OS << "~" << BT->getType()->getAsCXXRecordDecl()->getName() << "()";
3472    OS << " (Temporary object destructor)\n";
3473  }
3474}
3475
3476static void print_block(raw_ostream &OS, const CFG* cfg,
3477                        const CFGBlock &B,
3478                        StmtPrinterHelper* Helper, bool print_edges) {
3479
3480  if (Helper) Helper->setBlockID(B.getBlockID());
3481
3482  // Print the header.
3483  OS << "\n [ B" << B.getBlockID();
3484
3485  if (&B == &cfg->getEntry())
3486    OS << " (ENTRY) ]\n";
3487  else if (&B == &cfg->getExit())
3488    OS << " (EXIT) ]\n";
3489  else if (&B == cfg->getIndirectGotoBlock())
3490    OS << " (INDIRECT GOTO DISPATCH) ]\n";
3491  else
3492    OS << " ]\n";
3493
3494  // Print the label of this block.
3495  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
3496
3497    if (print_edges)
3498      OS << "    ";
3499
3500    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
3501      OS << L->getName();
3502    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
3503      OS << "case ";
3504      C->getLHS()->printPretty(OS, Helper,
3505                               PrintingPolicy(Helper->getLangOpts()));
3506      if (C->getRHS()) {
3507        OS << " ... ";
3508        C->getRHS()->printPretty(OS, Helper,
3509                                 PrintingPolicy(Helper->getLangOpts()));
3510      }
3511    } else if (isa<DefaultStmt>(Label))
3512      OS << "default";
3513    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
3514      OS << "catch (";
3515      if (CS->getExceptionDecl())
3516        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper->getLangOpts()),
3517                                      0);
3518      else
3519        OS << "...";
3520      OS << ")";
3521
3522    } else
3523      assert(false && "Invalid label statement in CFGBlock.");
3524
3525    OS << ":\n";
3526  }
3527
3528  // Iterate through the statements in the block and print them.
3529  unsigned j = 1;
3530
3531  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
3532       I != E ; ++I, ++j ) {
3533
3534    // Print the statement # in the basic block and the statement itself.
3535    if (print_edges)
3536      OS << "    ";
3537
3538    OS << llvm::format("%3d", j) << ": ";
3539
3540    if (Helper)
3541      Helper->setStmtID(j);
3542
3543    print_elem(OS,Helper,*I);
3544  }
3545
3546  // Print the terminator of this block.
3547  if (B.getTerminator()) {
3548    if (print_edges)
3549      OS << "    ";
3550
3551    OS << "  T: ";
3552
3553    if (Helper) Helper->setBlockID(-1);
3554
3555    CFGBlockTerminatorPrint TPrinter(OS, Helper,
3556                                     PrintingPolicy(Helper->getLangOpts()));
3557    TPrinter.Visit(const_cast<Stmt*>(B.getTerminator().getStmt()));
3558    OS << '\n';
3559  }
3560
3561  if (print_edges) {
3562    // Print the predecessors of this block.
3563    OS << "    Predecessors (" << B.pred_size() << "):";
3564    unsigned i = 0;
3565
3566    for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
3567         I != E; ++I, ++i) {
3568
3569      if (i == 8 || (i-8) == 0)
3570        OS << "\n     ";
3571
3572      OS << " B" << (*I)->getBlockID();
3573    }
3574
3575    OS << '\n';
3576
3577    // Print the successors of this block.
3578    OS << "    Successors (" << B.succ_size() << "):";
3579    i = 0;
3580
3581    for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
3582         I != E; ++I, ++i) {
3583
3584      if (i == 8 || (i-8) % 10 == 0)
3585        OS << "\n    ";
3586
3587      if (*I)
3588        OS << " B" << (*I)->getBlockID();
3589      else
3590        OS  << " NULL";
3591    }
3592
3593    OS << '\n';
3594  }
3595}
3596
3597
3598/// dump - A simple pretty printer of a CFG that outputs to stderr.
3599void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
3600
3601/// print - A simple pretty printer of a CFG that outputs to an ostream.
3602void CFG::print(raw_ostream &OS, const LangOptions &LO) const {
3603  StmtPrinterHelper Helper(this, LO);
3604
3605  // Print the entry block.
3606  print_block(OS, this, getEntry(), &Helper, true);
3607
3608  // Iterate through the CFGBlocks and print them one by one.
3609  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
3610    // Skip the entry block, because we already printed it.
3611    if (&(**I) == &getEntry() || &(**I) == &getExit())
3612      continue;
3613
3614    print_block(OS, this, **I, &Helper, true);
3615  }
3616
3617  // Print the exit block.
3618  print_block(OS, this, getExit(), &Helper, true);
3619  OS.flush();
3620}
3621
3622/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
3623void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
3624  print(llvm::errs(), cfg, LO);
3625}
3626
3627/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
3628///   Generally this will only be called from CFG::print.
3629void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
3630                     const LangOptions &LO) const {
3631  StmtPrinterHelper Helper(cfg, LO);
3632  print_block(OS, cfg, *this, &Helper, true);
3633}
3634
3635/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
3636void CFGBlock::printTerminator(raw_ostream &OS,
3637                               const LangOptions &LO) const {
3638  CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
3639  TPrinter.Visit(const_cast<Stmt*>(getTerminator().getStmt()));
3640}
3641
3642Stmt *CFGBlock::getTerminatorCondition() {
3643  Stmt *Terminator = this->Terminator;
3644  if (!Terminator)
3645    return NULL;
3646
3647  Expr *E = NULL;
3648
3649  switch (Terminator->getStmtClass()) {
3650    default:
3651      break;
3652
3653    case Stmt::ForStmtClass:
3654      E = cast<ForStmt>(Terminator)->getCond();
3655      break;
3656
3657    case Stmt::WhileStmtClass:
3658      E = cast<WhileStmt>(Terminator)->getCond();
3659      break;
3660
3661    case Stmt::DoStmtClass:
3662      E = cast<DoStmt>(Terminator)->getCond();
3663      break;
3664
3665    case Stmt::IfStmtClass:
3666      E = cast<IfStmt>(Terminator)->getCond();
3667      break;
3668
3669    case Stmt::ChooseExprClass:
3670      E = cast<ChooseExpr>(Terminator)->getCond();
3671      break;
3672
3673    case Stmt::IndirectGotoStmtClass:
3674      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
3675      break;
3676
3677    case Stmt::SwitchStmtClass:
3678      E = cast<SwitchStmt>(Terminator)->getCond();
3679      break;
3680
3681    case Stmt::BinaryConditionalOperatorClass:
3682      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
3683      break;
3684
3685    case Stmt::ConditionalOperatorClass:
3686      E = cast<ConditionalOperator>(Terminator)->getCond();
3687      break;
3688
3689    case Stmt::BinaryOperatorClass: // '&&' and '||'
3690      E = cast<BinaryOperator>(Terminator)->getLHS();
3691      break;
3692
3693    case Stmt::ObjCForCollectionStmtClass:
3694      return Terminator;
3695  }
3696
3697  return E ? E->IgnoreParens() : NULL;
3698}
3699
3700//===----------------------------------------------------------------------===//
3701// CFG Graphviz Visualization
3702//===----------------------------------------------------------------------===//
3703
3704
3705#ifndef NDEBUG
3706static StmtPrinterHelper* GraphHelper;
3707#endif
3708
3709void CFG::viewCFG(const LangOptions &LO) const {
3710#ifndef NDEBUG
3711  StmtPrinterHelper H(this, LO);
3712  GraphHelper = &H;
3713  llvm::ViewGraph(this,"CFG");
3714  GraphHelper = NULL;
3715#endif
3716}
3717
3718namespace llvm {
3719template<>
3720struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
3721
3722  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3723
3724  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
3725
3726#ifndef NDEBUG
3727    std::string OutSStr;
3728    llvm::raw_string_ostream Out(OutSStr);
3729    print_block(Out,Graph, *Node, GraphHelper, false);
3730    std::string& OutStr = Out.str();
3731
3732    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
3733
3734    // Process string output to make it nicer...
3735    for (unsigned i = 0; i != OutStr.length(); ++i)
3736      if (OutStr[i] == '\n') {                            // Left justify
3737        OutStr[i] = '\\';
3738        OutStr.insert(OutStr.begin()+i+1, 'l');
3739      }
3740
3741    return OutStr;
3742#else
3743    return "";
3744#endif
3745  }
3746};
3747} // end namespace llvm
3748