ThreadSafety.cpp revision 2fa67efeaf66a9332c30a026dc1c21bef6c33a6c
1//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
13// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
15//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
19#include "clang/Analysis/Analyses/PostOrderCFGView.h"
20#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
23#include "clang/AST/Attr.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/OperatorKinds.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/SourceManager.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/FoldingSet.h"
33#include "llvm/ADT/ImmutableMap.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <utility>
40#include <vector>
41
42using namespace clang;
43using namespace thread_safety;
44
45// Key method definition
46ThreadSafetyHandler::~ThreadSafetyHandler() {}
47
48namespace {
49
50/// SExpr implements a simple expression language that is used to store,
51/// compare, and pretty-print C++ expressions.  Unlike a clang Expr, a SExpr
52/// does not capture surface syntax, and it does not distinguish between
53/// C++ concepts, like pointers and references, that have no real semantic
54/// differences.  This simplicity allows SExprs to be meaningfully compared,
55/// e.g.
56///        (x)          =  x
57///        (*this).foo  =  this->foo
58///        *&a          =  a
59///
60/// Thread-safety analysis works by comparing lock expressions.  Within the
61/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
62/// a particular mutex object at run-time.  Subsequent occurrences of the same
63/// expression (where "same" means syntactic equality) will refer to the same
64/// run-time object if three conditions hold:
65/// (1) Local variables in the expression, such as "x" have not changed.
66/// (2) Values on the heap that affect the expression have not changed.
67/// (3) The expression involves only pure function calls.
68///
69/// The current implementation assumes, but does not verify, that multiple uses
70/// of the same lock expression satisfies these criteria.
71class SExpr {
72private:
73  enum ExprOp {
74    EOP_Nop,       ///< No-op
75    EOP_Wildcard,  ///< Matches anything.
76    EOP_Universal, ///< Universal lock.
77    EOP_This,      ///< This keyword.
78    EOP_NVar,      ///< Named variable.
79    EOP_LVar,      ///< Local variable.
80    EOP_Dot,       ///< Field access
81    EOP_Call,      ///< Function call
82    EOP_MCall,     ///< Method call
83    EOP_Index,     ///< Array index
84    EOP_Unary,     ///< Unary operation
85    EOP_Binary,    ///< Binary operation
86    EOP_Unknown    ///< Catchall for everything else
87  };
88
89
90  class SExprNode {
91   private:
92    unsigned char  Op;     ///< Opcode of the root node
93    unsigned char  Flags;  ///< Additional opcode-specific data
94    unsigned short Sz;     ///< Number of child nodes
95    const void*    Data;   ///< Additional opcode-specific data
96
97   public:
98    SExprNode(ExprOp O, unsigned F, const void* D)
99      : Op(static_cast<unsigned char>(O)),
100        Flags(static_cast<unsigned char>(F)), Sz(1), Data(D)
101    { }
102
103    unsigned size() const        { return Sz; }
104    void     setSize(unsigned S) { Sz = S;    }
105
106    ExprOp   kind() const { return static_cast<ExprOp>(Op); }
107
108    const NamedDecl* getNamedDecl() const {
109      assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot);
110      return reinterpret_cast<const NamedDecl*>(Data);
111    }
112
113    const NamedDecl* getFunctionDecl() const {
114      assert(Op == EOP_Call || Op == EOP_MCall);
115      return reinterpret_cast<const NamedDecl*>(Data);
116    }
117
118    bool isArrow() const { return Op == EOP_Dot && Flags == 1; }
119    void setArrow(bool A) { Flags = A ? 1 : 0; }
120
121    unsigned arity() const {
122      switch (Op) {
123        case EOP_Nop:       return 0;
124        case EOP_Wildcard:  return 0;
125        case EOP_Universal: return 0;
126        case EOP_NVar:      return 0;
127        case EOP_LVar:      return 0;
128        case EOP_This:      return 0;
129        case EOP_Dot:       return 1;
130        case EOP_Call:      return Flags+1;  // First arg is function.
131        case EOP_MCall:     return Flags+1;  // First arg is implicit obj.
132        case EOP_Index:     return 2;
133        case EOP_Unary:     return 1;
134        case EOP_Binary:    return 2;
135        case EOP_Unknown:   return Flags;
136      }
137      return 0;
138    }
139
140    bool operator==(const SExprNode& Other) const {
141      // Ignore flags and size -- they don't matter.
142      return (Op == Other.Op &&
143              Data == Other.Data);
144    }
145
146    bool operator!=(const SExprNode& Other) const {
147      return !(*this == Other);
148    }
149
150    bool matches(const SExprNode& Other) const {
151      return (*this == Other) ||
152             (Op == EOP_Wildcard) ||
153             (Other.Op == EOP_Wildcard);
154    }
155  };
156
157
158  /// \brief Encapsulates the lexical context of a function call.  The lexical
159  /// context includes the arguments to the call, including the implicit object
160  /// argument.  When an attribute containing a mutex expression is attached to
161  /// a method, the expression may refer to formal parameters of the method.
162  /// Actual arguments must be substituted for formal parameters to derive
163  /// the appropriate mutex expression in the lexical context where the function
164  /// is called.  PrevCtx holds the context in which the arguments themselves
165  /// should be evaluated; multiple calling contexts can be chained together
166  /// by the lock_returned attribute.
167  struct CallingContext {
168    const NamedDecl* AttrDecl;   // The decl to which the attribute is attached.
169    Expr*            SelfArg;    // Implicit object argument -- e.g. 'this'
170    bool             SelfArrow;  // is Self referred to with -> or .?
171    unsigned         NumArgs;    // Number of funArgs
172    Expr**           FunArgs;    // Function arguments
173    CallingContext*  PrevCtx;    // The previous context; or 0 if none.
174
175    CallingContext(const NamedDecl *D = 0, Expr *S = 0,
176                   unsigned N = 0, Expr **A = 0, CallingContext *P = 0)
177      : AttrDecl(D), SelfArg(S), SelfArrow(false),
178        NumArgs(N), FunArgs(A), PrevCtx(P)
179    { }
180  };
181
182  typedef SmallVector<SExprNode, 4> NodeVector;
183
184private:
185  // A SExpr is a list of SExprNodes in prefix order.  The Size field allows
186  // the list to be traversed as a tree.
187  NodeVector NodeVec;
188
189private:
190  unsigned makeNop() {
191    NodeVec.push_back(SExprNode(EOP_Nop, 0, 0));
192    return NodeVec.size()-1;
193  }
194
195  unsigned makeWildcard() {
196    NodeVec.push_back(SExprNode(EOP_Wildcard, 0, 0));
197    return NodeVec.size()-1;
198  }
199
200  unsigned makeUniversal() {
201    NodeVec.push_back(SExprNode(EOP_Universal, 0, 0));
202    return NodeVec.size()-1;
203  }
204
205  unsigned makeNamedVar(const NamedDecl *D) {
206    NodeVec.push_back(SExprNode(EOP_NVar, 0, D));
207    return NodeVec.size()-1;
208  }
209
210  unsigned makeLocalVar(const NamedDecl *D) {
211    NodeVec.push_back(SExprNode(EOP_LVar, 0, D));
212    return NodeVec.size()-1;
213  }
214
215  unsigned makeThis() {
216    NodeVec.push_back(SExprNode(EOP_This, 0, 0));
217    return NodeVec.size()-1;
218  }
219
220  unsigned makeDot(const NamedDecl *D, bool Arrow) {
221    NodeVec.push_back(SExprNode(EOP_Dot, Arrow ? 1 : 0, D));
222    return NodeVec.size()-1;
223  }
224
225  unsigned makeCall(unsigned NumArgs, const NamedDecl *D) {
226    NodeVec.push_back(SExprNode(EOP_Call, NumArgs, D));
227    return NodeVec.size()-1;
228  }
229
230  // Grab the very first declaration of virtual method D
231  const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
232    while (true) {
233      D = D->getCanonicalDecl();
234      CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
235                                     E = D->end_overridden_methods();
236      if (I == E)
237        return D;  // Method does not override anything
238      D = *I;      // FIXME: this does not work with multiple inheritance.
239    }
240    return 0;
241  }
242
243  unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) {
244    NodeVec.push_back(SExprNode(EOP_MCall, NumArgs, getFirstVirtualDecl(D)));
245    return NodeVec.size()-1;
246  }
247
248  unsigned makeIndex() {
249    NodeVec.push_back(SExprNode(EOP_Index, 0, 0));
250    return NodeVec.size()-1;
251  }
252
253  unsigned makeUnary() {
254    NodeVec.push_back(SExprNode(EOP_Unary, 0, 0));
255    return NodeVec.size()-1;
256  }
257
258  unsigned makeBinary() {
259    NodeVec.push_back(SExprNode(EOP_Binary, 0, 0));
260    return NodeVec.size()-1;
261  }
262
263  unsigned makeUnknown(unsigned Arity) {
264    NodeVec.push_back(SExprNode(EOP_Unknown, Arity, 0));
265    return NodeVec.size()-1;
266  }
267
268  /// Build an SExpr from the given C++ expression.
269  /// Recursive function that terminates on DeclRefExpr.
270  /// Note: this function merely creates a SExpr; it does not check to
271  /// ensure that the original expression is a valid mutex expression.
272  ///
273  /// NDeref returns the number of Derefence and AddressOf operations
274  /// preceeding the Expr; this is used to decide whether to pretty-print
275  /// SExprs with . or ->.
276  unsigned buildSExpr(Expr *Exp, CallingContext* CallCtx, int* NDeref = 0) {
277    if (!Exp)
278      return 0;
279
280    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
281      NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
282      ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
283      if (PV) {
284        FunctionDecl *FD =
285          cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
286        unsigned i = PV->getFunctionScopeIndex();
287
288        if (CallCtx && CallCtx->FunArgs &&
289            FD == CallCtx->AttrDecl->getCanonicalDecl()) {
290          // Substitute call arguments for references to function parameters
291          assert(i < CallCtx->NumArgs);
292          return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref);
293        }
294        // Map the param back to the param of the original function declaration.
295        makeNamedVar(FD->getParamDecl(i));
296        return 1;
297      }
298      // Not a function parameter -- just store the reference.
299      makeNamedVar(ND);
300      return 1;
301    } else if (isa<CXXThisExpr>(Exp)) {
302      // Substitute parent for 'this'
303      if (CallCtx && CallCtx->SelfArg) {
304        if (!CallCtx->SelfArrow && NDeref)
305          // 'this' is a pointer, but self is not, so need to take address.
306          --(*NDeref);
307        return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref);
308      }
309      else {
310        makeThis();
311        return 1;
312      }
313    } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
314      NamedDecl *ND = ME->getMemberDecl();
315      int ImplicitDeref = ME->isArrow() ? 1 : 0;
316      unsigned Root = makeDot(ND, false);
317      unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref);
318      NodeVec[Root].setArrow(ImplicitDeref > 0);
319      NodeVec[Root].setSize(Sz + 1);
320      return Sz + 1;
321    } else if (CXXMemberCallExpr *CMCE = dyn_cast<CXXMemberCallExpr>(Exp)) {
322      // When calling a function with a lock_returned attribute, replace
323      // the function call with the expression in lock_returned.
324      CXXMethodDecl* MD =
325        cast<CXXMethodDecl>(CMCE->getMethodDecl()->getMostRecentDecl());
326      if (LockReturnedAttr* At = MD->getAttr<LockReturnedAttr>()) {
327        CallingContext LRCallCtx(CMCE->getMethodDecl());
328        LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument();
329        LRCallCtx.SelfArrow =
330          dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow();
331        LRCallCtx.NumArgs = CMCE->getNumArgs();
332        LRCallCtx.FunArgs = CMCE->getArgs();
333        LRCallCtx.PrevCtx = CallCtx;
334        return buildSExpr(At->getArg(), &LRCallCtx);
335      }
336      // Hack to treat smart pointers and iterators as pointers;
337      // ignore any method named get().
338      if (CMCE->getMethodDecl()->getNameAsString() == "get" &&
339          CMCE->getNumArgs() == 0) {
340        if (NDeref && dyn_cast<MemberExpr>(CMCE->getCallee())->isArrow())
341          ++(*NDeref);
342        return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref);
343      }
344      unsigned NumCallArgs = CMCE->getNumArgs();
345      unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl());
346      unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx);
347      Expr** CallArgs = CMCE->getArgs();
348      for (unsigned i = 0; i < NumCallArgs; ++i) {
349        Sz += buildSExpr(CallArgs[i], CallCtx);
350      }
351      NodeVec[Root].setSize(Sz + 1);
352      return Sz + 1;
353    } else if (CallExpr *CE = dyn_cast<CallExpr>(Exp)) {
354      FunctionDecl* FD =
355        cast<FunctionDecl>(CE->getDirectCallee()->getMostRecentDecl());
356      if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
357        CallingContext LRCallCtx(CE->getDirectCallee());
358        LRCallCtx.NumArgs = CE->getNumArgs();
359        LRCallCtx.FunArgs = CE->getArgs();
360        LRCallCtx.PrevCtx = CallCtx;
361        return buildSExpr(At->getArg(), &LRCallCtx);
362      }
363      // Treat smart pointers and iterators as pointers;
364      // ignore the * and -> operators.
365      if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(CE)) {
366        OverloadedOperatorKind k = OE->getOperator();
367        if (k == OO_Star) {
368          if (NDeref) ++(*NDeref);
369          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
370        }
371        else if (k == OO_Arrow) {
372          return buildSExpr(OE->getArg(0), CallCtx, NDeref);
373        }
374      }
375      unsigned NumCallArgs = CE->getNumArgs();
376      unsigned Root = makeCall(NumCallArgs, 0);
377      unsigned Sz = buildSExpr(CE->getCallee(), CallCtx);
378      Expr** CallArgs = CE->getArgs();
379      for (unsigned i = 0; i < NumCallArgs; ++i) {
380        Sz += buildSExpr(CallArgs[i], CallCtx);
381      }
382      NodeVec[Root].setSize(Sz+1);
383      return Sz+1;
384    } else if (BinaryOperator *BOE = dyn_cast<BinaryOperator>(Exp)) {
385      unsigned Root = makeBinary();
386      unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx);
387      Sz += buildSExpr(BOE->getRHS(), CallCtx);
388      NodeVec[Root].setSize(Sz);
389      return Sz;
390    } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp)) {
391      // Ignore & and * operators -- they're no-ops.
392      // However, we try to figure out whether the expression is a pointer,
393      // so we can use . and -> appropriately in error messages.
394      if (UOE->getOpcode() == UO_Deref) {
395        if (NDeref) ++(*NDeref);
396        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
397      }
398      if (UOE->getOpcode() == UO_AddrOf) {
399        if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UOE->getSubExpr())) {
400          if (DRE->getDecl()->isCXXInstanceMember()) {
401            // This is a pointer-to-member expression, e.g. &MyClass::mu_.
402            // We interpret this syntax specially, as a wildcard.
403            unsigned Root = makeDot(DRE->getDecl(), false);
404            makeWildcard();
405            NodeVec[Root].setSize(2);
406            return 2;
407          }
408        }
409        if (NDeref) --(*NDeref);
410        return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref);
411      }
412      unsigned Root = makeUnary();
413      unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx);
414      NodeVec[Root].setSize(Sz);
415      return Sz;
416    } else if (ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Exp)) {
417      unsigned Root = makeIndex();
418      unsigned Sz = buildSExpr(ASE->getBase(), CallCtx);
419      Sz += buildSExpr(ASE->getIdx(), CallCtx);
420      NodeVec[Root].setSize(Sz);
421      return Sz;
422    } else if (AbstractConditionalOperator *CE =
423               dyn_cast<AbstractConditionalOperator>(Exp)) {
424      unsigned Root = makeUnknown(3);
425      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
426      Sz += buildSExpr(CE->getTrueExpr(), CallCtx);
427      Sz += buildSExpr(CE->getFalseExpr(), CallCtx);
428      NodeVec[Root].setSize(Sz);
429      return Sz;
430    } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(Exp)) {
431      unsigned Root = makeUnknown(3);
432      unsigned Sz = buildSExpr(CE->getCond(), CallCtx);
433      Sz += buildSExpr(CE->getLHS(), CallCtx);
434      Sz += buildSExpr(CE->getRHS(), CallCtx);
435      NodeVec[Root].setSize(Sz);
436      return Sz;
437    } else if (CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
438      return buildSExpr(CE->getSubExpr(), CallCtx, NDeref);
439    } else if (ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
440      return buildSExpr(PE->getSubExpr(), CallCtx, NDeref);
441    } else if (ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Exp)) {
442      return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref);
443    } else if (CXXBindTemporaryExpr *E = dyn_cast<CXXBindTemporaryExpr>(Exp)) {
444      return buildSExpr(E->getSubExpr(), CallCtx, NDeref);
445    } else if (isa<CharacterLiteral>(Exp) ||
446               isa<CXXNullPtrLiteralExpr>(Exp) ||
447               isa<GNUNullExpr>(Exp) ||
448               isa<CXXBoolLiteralExpr>(Exp) ||
449               isa<FloatingLiteral>(Exp) ||
450               isa<ImaginaryLiteral>(Exp) ||
451               isa<IntegerLiteral>(Exp) ||
452               isa<StringLiteral>(Exp) ||
453               isa<ObjCStringLiteral>(Exp)) {
454      makeNop();
455      return 1;  // FIXME: Ignore literals for now
456    } else {
457      makeNop();
458      return 1;  // Ignore.  FIXME: mark as invalid expression?
459    }
460  }
461
462  /// \brief Construct a SExpr from an expression.
463  /// \param MutexExp The original mutex expression within an attribute
464  /// \param DeclExp An expression involving the Decl on which the attribute
465  ///        occurs.
466  /// \param D  The declaration to which the lock/unlock attribute is attached.
467  void buildSExprFromExpr(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D,
468                          VarDecl *SelfDecl = 0) {
469    CallingContext CallCtx(D);
470
471    if (MutexExp) {
472      if (StringLiteral* SLit = dyn_cast<StringLiteral>(MutexExp)) {
473        if (SLit->getString() == StringRef("*"))
474          // The "*" expr is a universal lock, which essentially turns off
475          // checks until it is removed from the lockset.
476          makeUniversal();
477        else
478          // Ignore other string literals for now.
479          makeNop();
480        return;
481      }
482    }
483
484    // If we are processing a raw attribute expression, with no substitutions.
485    if (DeclExp == 0) {
486      buildSExpr(MutexExp, 0);
487      return;
488    }
489
490    // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
491    // for formal parameters when we call buildMutexID later.
492    if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
493      CallCtx.SelfArg   = ME->getBase();
494      CallCtx.SelfArrow = ME->isArrow();
495    } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
496      CallCtx.SelfArg   = CE->getImplicitObjectArgument();
497      CallCtx.SelfArrow = dyn_cast<MemberExpr>(CE->getCallee())->isArrow();
498      CallCtx.NumArgs   = CE->getNumArgs();
499      CallCtx.FunArgs   = CE->getArgs();
500    } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
501      CallCtx.NumArgs = CE->getNumArgs();
502      CallCtx.FunArgs = CE->getArgs();
503    } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
504      CallCtx.SelfArg = 0;  // Will be set below
505      CallCtx.NumArgs = CE->getNumArgs();
506      CallCtx.FunArgs = CE->getArgs();
507    } else if (D && isa<CXXDestructorDecl>(D)) {
508      // There's no such thing as a "destructor call" in the AST.
509      CallCtx.SelfArg = DeclExp;
510    }
511
512    // Hack to handle constructors, where self cannot be recovered from
513    // the expression.
514    if (SelfDecl && !CallCtx.SelfArg) {
515      DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
516                          SelfDecl->getLocation());
517      CallCtx.SelfArg = &SelfDRE;
518
519      // If the attribute has no arguments, then assume the argument is "this".
520      if (MutexExp == 0)
521        buildSExpr(CallCtx.SelfArg, 0);
522      else  // For most attributes.
523        buildSExpr(MutexExp, &CallCtx);
524      return;
525    }
526
527    // If the attribute has no arguments, then assume the argument is "this".
528    if (MutexExp == 0)
529      buildSExpr(CallCtx.SelfArg, 0);
530    else  // For most attributes.
531      buildSExpr(MutexExp, &CallCtx);
532  }
533
534  /// \brief Get index of next sibling of node i.
535  unsigned getNextSibling(unsigned i) const {
536    return i + NodeVec[i].size();
537  }
538
539public:
540  explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); }
541
542  /// \param MutexExp The original mutex expression within an attribute
543  /// \param DeclExp An expression involving the Decl on which the attribute
544  ///        occurs.
545  /// \param D  The declaration to which the lock/unlock attribute is attached.
546  /// Caller must check isValid() after construction.
547  SExpr(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D,
548        VarDecl *SelfDecl=0) {
549    buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl);
550  }
551
552  /// Return true if this is a valid decl sequence.
553  /// Caller must call this by hand after construction to handle errors.
554  bool isValid() const {
555    return !NodeVec.empty();
556  }
557
558  bool shouldIgnore() const {
559    // Nop is a mutex that we have decided to deliberately ignore.
560    assert(NodeVec.size() > 0 && "Invalid Mutex");
561    return NodeVec[0].kind() == EOP_Nop;
562  }
563
564  bool isUniversal() const {
565    assert(NodeVec.size() > 0 && "Invalid Mutex");
566    return NodeVec[0].kind() == EOP_Universal;
567  }
568
569  /// Issue a warning about an invalid lock expression
570  static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
571                              Expr *DeclExp, const NamedDecl* D) {
572    SourceLocation Loc;
573    if (DeclExp)
574      Loc = DeclExp->getExprLoc();
575
576    // FIXME: add a note about the attribute location in MutexExp or D
577    if (Loc.isValid())
578      Handler.handleInvalidLockExp(Loc);
579  }
580
581  bool operator==(const SExpr &other) const {
582    return NodeVec == other.NodeVec;
583  }
584
585  bool operator!=(const SExpr &other) const {
586    return !(*this == other);
587  }
588
589  bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const {
590    if (NodeVec[i].matches(Other.NodeVec[j])) {
591      unsigned ni = NodeVec[i].arity();
592      unsigned nj = Other.NodeVec[j].arity();
593      unsigned n = (ni < nj) ? ni : nj;
594      bool Result = true;
595      unsigned ci = i+1;  // first child of i
596      unsigned cj = j+1;  // first child of j
597      for (unsigned k = 0; k < n;
598           ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) {
599        Result = Result && matches(Other, ci, cj);
600      }
601      return Result;
602    }
603    return false;
604  }
605
606  // A partial match between a.mu and b.mu returns true a and b have the same
607  // type (and thus mu refers to the same mutex declaration), regardless of
608  // whether a and b are different objects or not.
609  bool partiallyMatches(const SExpr &Other) const {
610    if (NodeVec[0].kind() == EOP_Dot)
611      return NodeVec[0].matches(Other.NodeVec[0]);
612    return false;
613  }
614
615  /// \brief Pretty print a lock expression for use in error messages.
616  std::string toString(unsigned i = 0) const {
617    assert(isValid());
618    if (i >= NodeVec.size())
619      return "";
620
621    const SExprNode* N = &NodeVec[i];
622    switch (N->kind()) {
623      case EOP_Nop:
624        return "_";
625      case EOP_Wildcard:
626        return "(?)";
627      case EOP_Universal:
628        return "*";
629      case EOP_This:
630        return "this";
631      case EOP_NVar:
632      case EOP_LVar: {
633        return N->getNamedDecl()->getNameAsString();
634      }
635      case EOP_Dot: {
636        if (NodeVec[i+1].kind() == EOP_Wildcard) {
637          std::string S = "&";
638          S += N->getNamedDecl()->getQualifiedNameAsString();
639          return S;
640        }
641        std::string FieldName = N->getNamedDecl()->getNameAsString();
642        if (NodeVec[i+1].kind() == EOP_This)
643          return FieldName;
644
645        std::string S = toString(i+1);
646        if (N->isArrow())
647          return S + "->" + FieldName;
648        else
649          return S + "." + FieldName;
650      }
651      case EOP_Call: {
652        std::string S = toString(i+1) + "(";
653        unsigned NumArgs = N->arity()-1;
654        unsigned ci = getNextSibling(i+1);
655        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
656          S += toString(ci);
657          if (k+1 < NumArgs) S += ",";
658        }
659        S += ")";
660        return S;
661      }
662      case EOP_MCall: {
663        std::string S = "";
664        if (NodeVec[i+1].kind() != EOP_This)
665          S = toString(i+1) + ".";
666        if (const NamedDecl *D = N->getFunctionDecl())
667          S += D->getNameAsString() + "(";
668        else
669          S += "#(";
670        unsigned NumArgs = N->arity()-1;
671        unsigned ci = getNextSibling(i+1);
672        for (unsigned k=0; k<NumArgs; ++k, ci = getNextSibling(ci)) {
673          S += toString(ci);
674          if (k+1 < NumArgs) S += ",";
675        }
676        S += ")";
677        return S;
678      }
679      case EOP_Index: {
680        std::string S1 = toString(i+1);
681        std::string S2 = toString(i+1 + NodeVec[i+1].size());
682        return S1 + "[" + S2 + "]";
683      }
684      case EOP_Unary: {
685        std::string S = toString(i+1);
686        return "#" + S;
687      }
688      case EOP_Binary: {
689        std::string S1 = toString(i+1);
690        std::string S2 = toString(i+1 + NodeVec[i+1].size());
691        return "(" + S1 + "#" + S2 + ")";
692      }
693      case EOP_Unknown: {
694        unsigned NumChildren = N->arity();
695        if (NumChildren == 0)
696          return "(...)";
697        std::string S = "(";
698        unsigned ci = i+1;
699        for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) {
700          S += toString(ci);
701          if (j+1 < NumChildren) S += "#";
702        }
703        S += ")";
704        return S;
705      }
706    }
707    return "";
708  }
709};
710
711
712
713/// \brief A short list of SExprs
714class MutexIDList : public SmallVector<SExpr, 3> {
715public:
716  /// \brief Return true if the list contains the specified SExpr
717  /// Performs a linear search, because these lists are almost always very small.
718  bool contains(const SExpr& M) {
719    for (iterator I=begin(),E=end(); I != E; ++I)
720      if ((*I) == M) return true;
721    return false;
722  }
723
724  /// \brief Push M onto list, bud discard duplicates
725  void push_back_nodup(const SExpr& M) {
726    if (!contains(M)) push_back(M);
727  }
728};
729
730
731
732/// \brief This is a helper class that stores info about the most recent
733/// accquire of a Lock.
734///
735/// The main body of the analysis maps MutexIDs to LockDatas.
736struct LockData {
737  SourceLocation AcquireLoc;
738
739  /// \brief LKind stores whether a lock is held shared or exclusively.
740  /// Note that this analysis does not currently support either re-entrant
741  /// locking or lock "upgrading" and "downgrading" between exclusive and
742  /// shared.
743  ///
744  /// FIXME: add support for re-entrant locking and lock up/downgrading
745  LockKind LKind;
746  bool     Managed;            // for ScopedLockable objects
747  SExpr    UnderlyingMutex;    // for ScopedLockable objects
748
749  LockData(SourceLocation AcquireLoc, LockKind LKind, bool M = false)
750    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(M),
751      UnderlyingMutex(Decl::EmptyShell())
752  {}
753
754  LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu)
755    : AcquireLoc(AcquireLoc), LKind(LKind), Managed(false),
756      UnderlyingMutex(Mu)
757  {}
758
759  bool operator==(const LockData &other) const {
760    return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
761  }
762
763  bool operator!=(const LockData &other) const {
764    return !(*this == other);
765  }
766
767  void Profile(llvm::FoldingSetNodeID &ID) const {
768    ID.AddInteger(AcquireLoc.getRawEncoding());
769    ID.AddInteger(LKind);
770  }
771
772  bool isAtLeast(LockKind LK) {
773    return (LK == LK_Shared) || (LKind == LK_Exclusive);
774  }
775};
776
777
778/// \brief A FactEntry stores a single fact that is known at a particular point
779/// in the program execution.  Currently, this is information regarding a lock
780/// that is held at that point.
781struct FactEntry {
782  SExpr    MutID;
783  LockData LDat;
784
785  FactEntry(const SExpr& M, const LockData& L)
786    : MutID(M), LDat(L)
787  { }
788};
789
790
791typedef unsigned short FactID;
792
793/// \brief FactManager manages the memory for all facts that are created during
794/// the analysis of a single routine.
795class FactManager {
796private:
797  std::vector<FactEntry> Facts;
798
799public:
800  FactID newLock(const SExpr& M, const LockData& L) {
801    Facts.push_back(FactEntry(M,L));
802    return static_cast<unsigned short>(Facts.size() - 1);
803  }
804
805  const FactEntry& operator[](FactID F) const { return Facts[F]; }
806  FactEntry&       operator[](FactID F)       { return Facts[F]; }
807};
808
809
810/// \brief A FactSet is the set of facts that are known to be true at a
811/// particular program point.  FactSets must be small, because they are
812/// frequently copied, and are thus implemented as a set of indices into a
813/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
814/// locks, so we can get away with doing a linear search for lookup.  Note
815/// that a hashtable or map is inappropriate in this case, because lookups
816/// may involve partial pattern matches, rather than exact matches.
817class FactSet {
818private:
819  typedef SmallVector<FactID, 4> FactVec;
820
821  FactVec FactIDs;
822
823public:
824  typedef FactVec::iterator       iterator;
825  typedef FactVec::const_iterator const_iterator;
826
827  iterator       begin()       { return FactIDs.begin(); }
828  const_iterator begin() const { return FactIDs.begin(); }
829
830  iterator       end()       { return FactIDs.end(); }
831  const_iterator end() const { return FactIDs.end(); }
832
833  bool isEmpty() const { return FactIDs.size() == 0; }
834
835  FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) {
836    FactID F = FM.newLock(M, L);
837    FactIDs.push_back(F);
838    return F;
839  }
840
841  bool removeLock(FactManager& FM, const SExpr& M) {
842    unsigned n = FactIDs.size();
843    if (n == 0)
844      return false;
845
846    for (unsigned i = 0; i < n-1; ++i) {
847      if (FM[FactIDs[i]].MutID.matches(M)) {
848        FactIDs[i] = FactIDs[n-1];
849        FactIDs.pop_back();
850        return true;
851      }
852    }
853    if (FM[FactIDs[n-1]].MutID.matches(M)) {
854      FactIDs.pop_back();
855      return true;
856    }
857    return false;
858  }
859
860  LockData* findLock(FactManager &FM, const SExpr &M) const {
861    for (const_iterator I = begin(), E = end(); I != E; ++I) {
862      const SExpr &Exp = FM[*I].MutID;
863      if (Exp.matches(M))
864        return &FM[*I].LDat;
865    }
866    return 0;
867  }
868
869  LockData* findLockUniv(FactManager &FM, const SExpr &M) const {
870    for (const_iterator I = begin(), E = end(); I != E; ++I) {
871      const SExpr &Exp = FM[*I].MutID;
872      if (Exp.matches(M) || Exp.isUniversal())
873        return &FM[*I].LDat;
874    }
875    return 0;
876  }
877
878  FactEntry* findPartialMatch(FactManager &FM, const SExpr &M) const {
879    for (const_iterator I=begin(), E=end(); I != E; ++I) {
880      const SExpr& Exp = FM[*I].MutID;
881      if (Exp.partiallyMatches(M)) return &FM[*I];
882    }
883    return 0;
884  }
885};
886
887
888
889/// A Lockset maps each SExpr (defined above) to information about how it has
890/// been locked.
891typedef llvm::ImmutableMap<SExpr, LockData> Lockset;
892typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
893
894class LocalVariableMap;
895
896/// A side (entry or exit) of a CFG node.
897enum CFGBlockSide { CBS_Entry, CBS_Exit };
898
899/// CFGBlockInfo is a struct which contains all the information that is
900/// maintained for each block in the CFG.  See LocalVariableMap for more
901/// information about the contexts.
902struct CFGBlockInfo {
903  FactSet EntrySet;             // Lockset held at entry to block
904  FactSet ExitSet;              // Lockset held at exit from block
905  LocalVarContext EntryContext; // Context held at entry to block
906  LocalVarContext ExitContext;  // Context held at exit from block
907  SourceLocation EntryLoc;      // Location of first statement in block
908  SourceLocation ExitLoc;       // Location of last statement in block.
909  unsigned EntryIndex;          // Used to replay contexts later
910  bool Reachable;               // Is this block reachable?
911
912  const FactSet &getSet(CFGBlockSide Side) const {
913    return Side == CBS_Entry ? EntrySet : ExitSet;
914  }
915  SourceLocation getLocation(CFGBlockSide Side) const {
916    return Side == CBS_Entry ? EntryLoc : ExitLoc;
917  }
918
919private:
920  CFGBlockInfo(LocalVarContext EmptyCtx)
921    : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
922  { }
923
924public:
925  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
926};
927
928
929
930// A LocalVariableMap maintains a map from local variables to their currently
931// valid definitions.  It provides SSA-like functionality when traversing the
932// CFG.  Like SSA, each definition or assignment to a variable is assigned a
933// unique name (an integer), which acts as the SSA name for that definition.
934// The total set of names is shared among all CFG basic blocks.
935// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
936// with their SSA-names.  Instead, we compute a Context for each point in the
937// code, which maps local variables to the appropriate SSA-name.  This map
938// changes with each assignment.
939//
940// The map is computed in a single pass over the CFG.  Subsequent analyses can
941// then query the map to find the appropriate Context for a statement, and use
942// that Context to look up the definitions of variables.
943class LocalVariableMap {
944public:
945  typedef LocalVarContext Context;
946
947  /// A VarDefinition consists of an expression, representing the value of the
948  /// variable, along with the context in which that expression should be
949  /// interpreted.  A reference VarDefinition does not itself contain this
950  /// information, but instead contains a pointer to a previous VarDefinition.
951  struct VarDefinition {
952  public:
953    friend class LocalVariableMap;
954
955    const NamedDecl *Dec;  // The original declaration for this variable.
956    const Expr *Exp;       // The expression for this variable, OR
957    unsigned Ref;          // Reference to another VarDefinition
958    Context Ctx;           // The map with which Exp should be interpreted.
959
960    bool isReference() { return !Exp; }
961
962  private:
963    // Create ordinary variable definition
964    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
965      : Dec(D), Exp(E), Ref(0), Ctx(C)
966    { }
967
968    // Create reference to previous definition
969    VarDefinition(const NamedDecl *D, unsigned R, Context C)
970      : Dec(D), Exp(0), Ref(R), Ctx(C)
971    { }
972  };
973
974private:
975  Context::Factory ContextFactory;
976  std::vector<VarDefinition> VarDefinitions;
977  std::vector<unsigned> CtxIndices;
978  std::vector<std::pair<Stmt*, Context> > SavedContexts;
979
980public:
981  LocalVariableMap() {
982    // index 0 is a placeholder for undefined variables (aka phi-nodes).
983    VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
984  }
985
986  /// Look up a definition, within the given context.
987  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
988    const unsigned *i = Ctx.lookup(D);
989    if (!i)
990      return 0;
991    assert(*i < VarDefinitions.size());
992    return &VarDefinitions[*i];
993  }
994
995  /// Look up the definition for D within the given context.  Returns
996  /// NULL if the expression is not statically known.  If successful, also
997  /// modifies Ctx to hold the context of the return Expr.
998  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
999    const unsigned *P = Ctx.lookup(D);
1000    if (!P)
1001      return 0;
1002
1003    unsigned i = *P;
1004    while (i > 0) {
1005      if (VarDefinitions[i].Exp) {
1006        Ctx = VarDefinitions[i].Ctx;
1007        return VarDefinitions[i].Exp;
1008      }
1009      i = VarDefinitions[i].Ref;
1010    }
1011    return 0;
1012  }
1013
1014  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
1015
1016  /// Return the next context after processing S.  This function is used by
1017  /// clients of the class to get the appropriate context when traversing the
1018  /// CFG.  It must be called for every assignment or DeclStmt.
1019  Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
1020    if (SavedContexts[CtxIndex+1].first == S) {
1021      CtxIndex++;
1022      Context Result = SavedContexts[CtxIndex].second;
1023      return Result;
1024    }
1025    return C;
1026  }
1027
1028  void dumpVarDefinitionName(unsigned i) {
1029    if (i == 0) {
1030      llvm::errs() << "Undefined";
1031      return;
1032    }
1033    const NamedDecl *Dec = VarDefinitions[i].Dec;
1034    if (!Dec) {
1035      llvm::errs() << "<<NULL>>";
1036      return;
1037    }
1038    Dec->printName(llvm::errs());
1039    llvm::errs() << "." << i << " " << ((const void*) Dec);
1040  }
1041
1042  /// Dumps an ASCII representation of the variable map to llvm::errs()
1043  void dump() {
1044    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
1045      const Expr *Exp = VarDefinitions[i].Exp;
1046      unsigned Ref = VarDefinitions[i].Ref;
1047
1048      dumpVarDefinitionName(i);
1049      llvm::errs() << " = ";
1050      if (Exp) Exp->dump();
1051      else {
1052        dumpVarDefinitionName(Ref);
1053        llvm::errs() << "\n";
1054      }
1055    }
1056  }
1057
1058  /// Dumps an ASCII representation of a Context to llvm::errs()
1059  void dumpContext(Context C) {
1060    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1061      const NamedDecl *D = I.getKey();
1062      D->printName(llvm::errs());
1063      const unsigned *i = C.lookup(D);
1064      llvm::errs() << " -> ";
1065      dumpVarDefinitionName(*i);
1066      llvm::errs() << "\n";
1067    }
1068  }
1069
1070  /// Builds the variable map.
1071  void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
1072                     std::vector<CFGBlockInfo> &BlockInfo);
1073
1074protected:
1075  // Get the current context index
1076  unsigned getContextIndex() { return SavedContexts.size()-1; }
1077
1078  // Save the current context for later replay
1079  void saveContext(Stmt *S, Context C) {
1080    SavedContexts.push_back(std::make_pair(S,C));
1081  }
1082
1083  // Adds a new definition to the given context, and returns a new context.
1084  // This method should be called when declaring a new variable.
1085  Context addDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1086    assert(!Ctx.contains(D));
1087    unsigned newID = VarDefinitions.size();
1088    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1089    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1090    return NewCtx;
1091  }
1092
1093  // Add a new reference to an existing definition.
1094  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
1095    unsigned newID = VarDefinitions.size();
1096    Context NewCtx = ContextFactory.add(Ctx, D, newID);
1097    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
1098    return NewCtx;
1099  }
1100
1101  // Updates a definition only if that definition is already in the map.
1102  // This method should be called when assigning to an existing variable.
1103  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
1104    if (Ctx.contains(D)) {
1105      unsigned newID = VarDefinitions.size();
1106      Context NewCtx = ContextFactory.remove(Ctx, D);
1107      NewCtx = ContextFactory.add(NewCtx, D, newID);
1108      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
1109      return NewCtx;
1110    }
1111    return Ctx;
1112  }
1113
1114  // Removes a definition from the context, but keeps the variable name
1115  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
1116  Context clearDefinition(const NamedDecl *D, Context Ctx) {
1117    Context NewCtx = Ctx;
1118    if (NewCtx.contains(D)) {
1119      NewCtx = ContextFactory.remove(NewCtx, D);
1120      NewCtx = ContextFactory.add(NewCtx, D, 0);
1121    }
1122    return NewCtx;
1123  }
1124
1125  // Remove a definition entirely frmo the context.
1126  Context removeDefinition(const NamedDecl *D, Context Ctx) {
1127    Context NewCtx = Ctx;
1128    if (NewCtx.contains(D)) {
1129      NewCtx = ContextFactory.remove(NewCtx, D);
1130    }
1131    return NewCtx;
1132  }
1133
1134  Context intersectContexts(Context C1, Context C2);
1135  Context createReferenceContext(Context C);
1136  void intersectBackEdge(Context C1, Context C2);
1137
1138  friend class VarMapBuilder;
1139};
1140
1141
1142// This has to be defined after LocalVariableMap.
1143CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
1144  return CFGBlockInfo(M.getEmptyContext());
1145}
1146
1147
1148/// Visitor which builds a LocalVariableMap
1149class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
1150public:
1151  LocalVariableMap* VMap;
1152  LocalVariableMap::Context Ctx;
1153
1154  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
1155    : VMap(VM), Ctx(C) {}
1156
1157  void VisitDeclStmt(DeclStmt *S);
1158  void VisitBinaryOperator(BinaryOperator *BO);
1159};
1160
1161
1162// Add new local variables to the variable map
1163void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
1164  bool modifiedCtx = false;
1165  DeclGroupRef DGrp = S->getDeclGroup();
1166  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1167    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
1168      Expr *E = VD->getInit();
1169
1170      // Add local variables with trivial type to the variable map
1171      QualType T = VD->getType();
1172      if (T.isTrivialType(VD->getASTContext())) {
1173        Ctx = VMap->addDefinition(VD, E, Ctx);
1174        modifiedCtx = true;
1175      }
1176    }
1177  }
1178  if (modifiedCtx)
1179    VMap->saveContext(S, Ctx);
1180}
1181
1182// Update local variable definitions in variable map
1183void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
1184  if (!BO->isAssignmentOp())
1185    return;
1186
1187  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1188
1189  // Update the variable map and current context.
1190  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
1191    ValueDecl *VDec = DRE->getDecl();
1192    if (Ctx.lookup(VDec)) {
1193      if (BO->getOpcode() == BO_Assign)
1194        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
1195      else
1196        // FIXME -- handle compound assignment operators
1197        Ctx = VMap->clearDefinition(VDec, Ctx);
1198      VMap->saveContext(BO, Ctx);
1199    }
1200  }
1201}
1202
1203
1204// Computes the intersection of two contexts.  The intersection is the
1205// set of variables which have the same definition in both contexts;
1206// variables with different definitions are discarded.
1207LocalVariableMap::Context
1208LocalVariableMap::intersectContexts(Context C1, Context C2) {
1209  Context Result = C1;
1210  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1211    const NamedDecl *Dec = I.getKey();
1212    unsigned i1 = I.getData();
1213    const unsigned *i2 = C2.lookup(Dec);
1214    if (!i2)             // variable doesn't exist on second path
1215      Result = removeDefinition(Dec, Result);
1216    else if (*i2 != i1)  // variable exists, but has different definition
1217      Result = clearDefinition(Dec, Result);
1218  }
1219  return Result;
1220}
1221
1222// For every variable in C, create a new variable that refers to the
1223// definition in C.  Return a new context that contains these new variables.
1224// (We use this for a naive implementation of SSA on loop back-edges.)
1225LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
1226  Context Result = getEmptyContext();
1227  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
1228    const NamedDecl *Dec = I.getKey();
1229    unsigned i = I.getData();
1230    Result = addReference(Dec, i, Result);
1231  }
1232  return Result;
1233}
1234
1235// This routine also takes the intersection of C1 and C2, but it does so by
1236// altering the VarDefinitions.  C1 must be the result of an earlier call to
1237// createReferenceContext.
1238void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
1239  for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
1240    const NamedDecl *Dec = I.getKey();
1241    unsigned i1 = I.getData();
1242    VarDefinition *VDef = &VarDefinitions[i1];
1243    assert(VDef->isReference());
1244
1245    const unsigned *i2 = C2.lookup(Dec);
1246    if (!i2 || (*i2 != i1))
1247      VDef->Ref = 0;    // Mark this variable as undefined
1248  }
1249}
1250
1251
1252// Traverse the CFG in topological order, so all predecessors of a block
1253// (excluding back-edges) are visited before the block itself.  At
1254// each point in the code, we calculate a Context, which holds the set of
1255// variable definitions which are visible at that point in execution.
1256// Visible variables are mapped to their definitions using an array that
1257// contains all definitions.
1258//
1259// At join points in the CFG, the set is computed as the intersection of
1260// the incoming sets along each edge, E.g.
1261//
1262//                       { Context                 | VarDefinitions }
1263//   int x = 0;          { x -> x1                 | x1 = 0 }
1264//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
1265//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
1266//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
1267//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
1268//
1269// This is essentially a simpler and more naive version of the standard SSA
1270// algorithm.  Those definitions that remain in the intersection are from blocks
1271// that strictly dominate the current block.  We do not bother to insert proper
1272// phi nodes, because they are not used in our analysis; instead, wherever
1273// a phi node would be required, we simply remove that definition from the
1274// context (E.g. x above).
1275//
1276// The initial traversal does not capture back-edges, so those need to be
1277// handled on a separate pass.  Whenever the first pass encounters an
1278// incoming back edge, it duplicates the context, creating new definitions
1279// that refer back to the originals.  (These correspond to places where SSA
1280// might have to insert a phi node.)  On the second pass, these definitions are
1281// set to NULL if the variable has changed on the back-edge (i.e. a phi
1282// node was actually required.)  E.g.
1283//
1284//                       { Context           | VarDefinitions }
1285//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
1286//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
1287//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
1288//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
1289//
1290void LocalVariableMap::traverseCFG(CFG *CFGraph,
1291                                   PostOrderCFGView *SortedGraph,
1292                                   std::vector<CFGBlockInfo> &BlockInfo) {
1293  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
1294
1295  CtxIndices.resize(CFGraph->getNumBlockIDs());
1296
1297  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1298       E = SortedGraph->end(); I!= E; ++I) {
1299    const CFGBlock *CurrBlock = *I;
1300    int CurrBlockID = CurrBlock->getBlockID();
1301    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
1302
1303    VisitedBlocks.insert(CurrBlock);
1304
1305    // Calculate the entry context for the current block
1306    bool HasBackEdges = false;
1307    bool CtxInit = true;
1308    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1309         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
1310      // if *PI -> CurrBlock is a back edge, so skip it
1311      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
1312        HasBackEdges = true;
1313        continue;
1314      }
1315
1316      int PrevBlockID = (*PI)->getBlockID();
1317      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1318
1319      if (CtxInit) {
1320        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
1321        CtxInit = false;
1322      }
1323      else {
1324        CurrBlockInfo->EntryContext =
1325          intersectContexts(CurrBlockInfo->EntryContext,
1326                            PrevBlockInfo->ExitContext);
1327      }
1328    }
1329
1330    // Duplicate the context if we have back-edges, so we can call
1331    // intersectBackEdges later.
1332    if (HasBackEdges)
1333      CurrBlockInfo->EntryContext =
1334        createReferenceContext(CurrBlockInfo->EntryContext);
1335
1336    // Create a starting context index for the current block
1337    saveContext(0, CurrBlockInfo->EntryContext);
1338    CurrBlockInfo->EntryIndex = getContextIndex();
1339
1340    // Visit all the statements in the basic block.
1341    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
1342    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1343         BE = CurrBlock->end(); BI != BE; ++BI) {
1344      switch (BI->getKind()) {
1345        case CFGElement::Statement: {
1346          const CFGStmt *CS = cast<CFGStmt>(&*BI);
1347          VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1348          break;
1349        }
1350        default:
1351          break;
1352      }
1353    }
1354    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
1355
1356    // Mark variables on back edges as "unknown" if they've been changed.
1357    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1358         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
1359      // if CurrBlock -> *SI is *not* a back edge
1360      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1361        continue;
1362
1363      CFGBlock *FirstLoopBlock = *SI;
1364      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
1365      Context LoopEnd   = CurrBlockInfo->ExitContext;
1366      intersectBackEdge(LoopBegin, LoopEnd);
1367    }
1368  }
1369
1370  // Put an extra entry at the end of the indexed context array
1371  unsigned exitID = CFGraph->getExit().getBlockID();
1372  saveContext(0, BlockInfo[exitID].ExitContext);
1373}
1374
1375/// Find the appropriate source locations to use when producing diagnostics for
1376/// each block in the CFG.
1377static void findBlockLocations(CFG *CFGraph,
1378                               PostOrderCFGView *SortedGraph,
1379                               std::vector<CFGBlockInfo> &BlockInfo) {
1380  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1381       E = SortedGraph->end(); I!= E; ++I) {
1382    const CFGBlock *CurrBlock = *I;
1383    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
1384
1385    // Find the source location of the last statement in the block, if the
1386    // block is not empty.
1387    if (const Stmt *S = CurrBlock->getTerminator()) {
1388      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
1389    } else {
1390      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
1391           BE = CurrBlock->rend(); BI != BE; ++BI) {
1392        // FIXME: Handle other CFGElement kinds.
1393        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1394          CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
1395          break;
1396        }
1397      }
1398    }
1399
1400    if (!CurrBlockInfo->ExitLoc.isInvalid()) {
1401      // This block contains at least one statement. Find the source location
1402      // of the first statement in the block.
1403      for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1404           BE = CurrBlock->end(); BI != BE; ++BI) {
1405        // FIXME: Handle other CFGElement kinds.
1406        if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
1407          CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
1408          break;
1409        }
1410      }
1411    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
1412               CurrBlock != &CFGraph->getExit()) {
1413      // The block is empty, and has a single predecessor. Use its exit
1414      // location.
1415      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
1416          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
1417    }
1418  }
1419}
1420
1421/// \brief Class which implements the core thread safety analysis routines.
1422class ThreadSafetyAnalyzer {
1423  friend class BuildLockset;
1424
1425  ThreadSafetyHandler       &Handler;
1426  LocalVariableMap          LocalVarMap;
1427  FactManager               FactMan;
1428  std::vector<CFGBlockInfo> BlockInfo;
1429
1430public:
1431  ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
1432
1433  void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat);
1434  void removeLock(FactSet &FSet, const SExpr &Mutex,
1435                  SourceLocation UnlockLoc, bool FullyRemove=false);
1436
1437  template <typename AttrType>
1438  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1439                   const NamedDecl *D, VarDecl *SelfDecl=0);
1440
1441  template <class AttrType>
1442  void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp,
1443                   const NamedDecl *D,
1444                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1445                   Expr *BrE, bool Neg);
1446
1447  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1448                                     bool &Negate);
1449
1450  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1451                      const CFGBlock* PredBlock,
1452                      const CFGBlock *CurrBlock);
1453
1454  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1455                        SourceLocation JoinLoc,
1456                        LockErrorKind LEK1, LockErrorKind LEK2,
1457                        bool Modify=true);
1458
1459  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1460                        SourceLocation JoinLoc, LockErrorKind LEK1,
1461                        bool Modify=true) {
1462    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1463  }
1464
1465  void runAnalysis(AnalysisDeclContext &AC);
1466};
1467
1468
1469/// \brief Add a new lock to the lockset, warning if the lock is already there.
1470/// \param Mutex -- the Mutex expression for the lock
1471/// \param LDat  -- the LockData for the lock
1472void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex,
1473                                   const LockData &LDat) {
1474  // FIXME: deal with acquired before/after annotations.
1475  // FIXME: Don't always warn when we have support for reentrant locks.
1476  if (Mutex.shouldIgnore())
1477    return;
1478
1479  if (FSet.findLock(FactMan, Mutex)) {
1480    Handler.handleDoubleLock(Mutex.toString(), LDat.AcquireLoc);
1481  } else {
1482    FSet.addLock(FactMan, Mutex, LDat);
1483  }
1484}
1485
1486
1487/// \brief Remove a lock from the lockset, warning if the lock is not there.
1488/// \param Mutex The lock expression corresponding to the lock to be removed
1489/// \param UnlockLoc The source location of the unlock (only used in error msg)
1490void ThreadSafetyAnalyzer::removeLock(FactSet &FSet,
1491                                      const SExpr &Mutex,
1492                                      SourceLocation UnlockLoc,
1493                                      bool FullyRemove) {
1494  if (Mutex.shouldIgnore())
1495    return;
1496
1497  const LockData *LDat = FSet.findLock(FactMan, Mutex);
1498  if (!LDat) {
1499    Handler.handleUnmatchedUnlock(Mutex.toString(), UnlockLoc);
1500    return;
1501  }
1502
1503  if (LDat->UnderlyingMutex.isValid()) {
1504    // This is scoped lockable object, which manages the real mutex.
1505    if (FullyRemove) {
1506      // We're destroying the managing object.
1507      // Remove the underlying mutex if it exists; but don't warn.
1508      if (FSet.findLock(FactMan, LDat->UnderlyingMutex))
1509        FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1510    } else {
1511      // We're releasing the underlying mutex, but not destroying the
1512      // managing object.  Warn on dual release.
1513      if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) {
1514        Handler.handleUnmatchedUnlock(LDat->UnderlyingMutex.toString(),
1515                                      UnlockLoc);
1516      }
1517      FSet.removeLock(FactMan, LDat->UnderlyingMutex);
1518      return;
1519    }
1520  }
1521  FSet.removeLock(FactMan, Mutex);
1522}
1523
1524
1525/// \brief Extract the list of mutexIDs from the attribute on an expression,
1526/// and push them onto Mtxs, discarding any duplicates.
1527template <typename AttrType>
1528void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1529                                       Expr *Exp, const NamedDecl *D,
1530                                       VarDecl *SelfDecl) {
1531  typedef typename AttrType::args_iterator iterator_type;
1532
1533  if (Attr->args_size() == 0) {
1534    // The mutex held is the "this" object.
1535    SExpr Mu(0, Exp, D, SelfDecl);
1536    if (!Mu.isValid())
1537      SExpr::warnInvalidLock(Handler, 0, Exp, D);
1538    else
1539      Mtxs.push_back_nodup(Mu);
1540    return;
1541  }
1542
1543  for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
1544    SExpr Mu(*I, Exp, D, SelfDecl);
1545    if (!Mu.isValid())
1546      SExpr::warnInvalidLock(Handler, *I, Exp, D);
1547    else
1548      Mtxs.push_back_nodup(Mu);
1549  }
1550}
1551
1552
1553/// \brief Extract the list of mutexIDs from a trylock attribute.  If the
1554/// trylock applies to the given edge, then push them onto Mtxs, discarding
1555/// any duplicates.
1556template <class AttrType>
1557void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr,
1558                                       Expr *Exp, const NamedDecl *D,
1559                                       const CFGBlock *PredBlock,
1560                                       const CFGBlock *CurrBlock,
1561                                       Expr *BrE, bool Neg) {
1562  // Find out which branch has the lock
1563  bool branch = 0;
1564  if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1565    branch = BLE->getValue();
1566  }
1567  else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1568    branch = ILE->getValue().getBoolValue();
1569  }
1570  int branchnum = branch ? 0 : 1;
1571  if (Neg) branchnum = !branchnum;
1572
1573  // If we've taken the trylock branch, then add the lock
1574  int i = 0;
1575  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1576       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1577    if (*SI == CurrBlock && i == branchnum) {
1578      getMutexIDs(Mtxs, Attr, Exp, D);
1579    }
1580  }
1581}
1582
1583
1584bool getStaticBooleanValue(Expr* E, bool& TCond) {
1585  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1586    TCond = false;
1587    return true;
1588  } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1589    TCond = BLE->getValue();
1590    return true;
1591  } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
1592    TCond = ILE->getValue().getBoolValue();
1593    return true;
1594  } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
1595    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1596  }
1597  return false;
1598}
1599
1600
1601// If Cond can be traced back to a function call, return the call expression.
1602// The negate variable should be called with false, and will be set to true
1603// if the function call is negated, e.g. if (!mu.tryLock(...))
1604const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1605                                                         LocalVarContext C,
1606                                                         bool &Negate) {
1607  if (!Cond)
1608    return 0;
1609
1610  if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1611    return CallExp;
1612  }
1613  else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
1614    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1615  }
1616  else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1617    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1618  }
1619  else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
1620    return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1621  }
1622  else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1623    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1624    return getTrylockCallExpr(E, C, Negate);
1625  }
1626  else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1627    if (UOP->getOpcode() == UO_LNot) {
1628      Negate = !Negate;
1629      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1630    }
1631    return 0;
1632  }
1633  else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
1634    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1635      if (BOP->getOpcode() == BO_NE)
1636        Negate = !Negate;
1637
1638      bool TCond = false;
1639      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1640        if (!TCond) Negate = !Negate;
1641        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1642      }
1643      else if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1644        if (!TCond) Negate = !Negate;
1645        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1646      }
1647      return 0;
1648    }
1649    return 0;
1650  }
1651  // FIXME -- handle && and || as well.
1652  return 0;
1653}
1654
1655
1656/// \brief Find the lockset that holds on the edge between PredBlock
1657/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1658/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1659void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1660                                          const FactSet &ExitSet,
1661                                          const CFGBlock *PredBlock,
1662                                          const CFGBlock *CurrBlock) {
1663  Result = ExitSet;
1664
1665  if (!PredBlock->getTerminatorCondition())
1666    return;
1667
1668  bool Negate = false;
1669  const Stmt *Cond = PredBlock->getTerminatorCondition();
1670  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1671  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1672
1673  CallExpr *Exp =
1674    const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1675  if (!Exp)
1676    return;
1677
1678  NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1679  if(!FunDecl || !FunDecl->hasAttrs())
1680    return;
1681
1682
1683  MutexIDList ExclusiveLocksToAdd;
1684  MutexIDList SharedLocksToAdd;
1685
1686  // If the condition is a call to a Trylock function, then grab the attributes
1687  AttrVec &ArgAttrs = FunDecl->getAttrs();
1688  for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1689    Attr *Attr = ArgAttrs[i];
1690    switch (Attr->getKind()) {
1691      case attr::ExclusiveTrylockFunction: {
1692        ExclusiveTrylockFunctionAttr *A =
1693          cast<ExclusiveTrylockFunctionAttr>(Attr);
1694        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1695                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1696        break;
1697      }
1698      case attr::SharedTrylockFunction: {
1699        SharedTrylockFunctionAttr *A =
1700          cast<SharedTrylockFunctionAttr>(Attr);
1701        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1702                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1703        break;
1704      }
1705      default:
1706        break;
1707    }
1708  }
1709
1710  // Add and remove locks.
1711  SourceLocation Loc = Exp->getExprLoc();
1712  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1713    addLock(Result, ExclusiveLocksToAdd[i],
1714            LockData(Loc, LK_Exclusive));
1715  }
1716  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1717    addLock(Result, SharedLocksToAdd[i],
1718            LockData(Loc, LK_Shared));
1719  }
1720}
1721
1722
1723/// \brief We use this class to visit different types of expressions in
1724/// CFGBlocks, and build up the lockset.
1725/// An expression may cause us to add or remove locks from the lockset, or else
1726/// output error messages related to missing locks.
1727/// FIXME: In future, we may be able to not inherit from a visitor.
1728class BuildLockset : public StmtVisitor<BuildLockset> {
1729  friend class ThreadSafetyAnalyzer;
1730
1731  ThreadSafetyAnalyzer *Analyzer;
1732  FactSet FSet;
1733  LocalVariableMap::Context LVarCtx;
1734  unsigned CtxIndex;
1735
1736  // Helper functions
1737  const ValueDecl *getValueDecl(Expr *Exp);
1738
1739  void warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp, AccessKind AK,
1740                          Expr *MutexExp, ProtectedOperationKind POK);
1741  void warnIfMutexHeld(const NamedDecl *D, Expr *Exp, Expr *MutexExp);
1742
1743  void checkAccess(Expr *Exp, AccessKind AK);
1744  void checkDereference(Expr *Exp, AccessKind AK);
1745  void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = 0);
1746
1747public:
1748  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1749    : StmtVisitor<BuildLockset>(),
1750      Analyzer(Anlzr),
1751      FSet(Info.EntrySet),
1752      LVarCtx(Info.EntryContext),
1753      CtxIndex(Info.EntryIndex)
1754  {}
1755
1756  void VisitUnaryOperator(UnaryOperator *UO);
1757  void VisitBinaryOperator(BinaryOperator *BO);
1758  void VisitCastExpr(CastExpr *CE);
1759  void VisitCallExpr(CallExpr *Exp);
1760  void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1761  void VisitDeclStmt(DeclStmt *S);
1762};
1763
1764
1765/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1766const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1767  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1768    return DR->getDecl();
1769
1770  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1771    return ME->getMemberDecl();
1772
1773  return 0;
1774}
1775
1776/// \brief Warn if the LSet does not contain a lock sufficient to protect access
1777/// of at least the passed in AccessKind.
1778void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1779                                      AccessKind AK, Expr *MutexExp,
1780                                      ProtectedOperationKind POK) {
1781  LockKind LK = getLockKindFromAccessKind(AK);
1782
1783  SExpr Mutex(MutexExp, Exp, D);
1784  if (!Mutex.isValid()) {
1785    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1786    return;
1787  } else if (Mutex.shouldIgnore()) {
1788    return;
1789  }
1790
1791  LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex);
1792  bool NoError = true;
1793  if (!LDat) {
1794    // No exact match found.  Look for a partial match.
1795    FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex);
1796    if (FEntry) {
1797      // Warn that there's no precise match.
1798      LDat = &FEntry->LDat;
1799      std::string PartMatchStr = FEntry->MutID.toString();
1800      StringRef   PartMatchName(PartMatchStr);
1801      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1802                                           Exp->getExprLoc(), &PartMatchName);
1803    } else {
1804      // Warn that there's no match at all.
1805      Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1806                                           Exp->getExprLoc());
1807    }
1808    NoError = false;
1809  }
1810  // Make sure the mutex we found is the right kind.
1811  if (NoError && LDat && !LDat->isAtLeast(LK))
1812    Analyzer->Handler.handleMutexNotHeld(D, POK, Mutex.toString(), LK,
1813                                         Exp->getExprLoc());
1814}
1815
1816/// \brief Warn if the LSet contains the given lock.
1817void BuildLockset::warnIfMutexHeld(const NamedDecl *D, Expr* Exp,
1818                                   Expr *MutexExp) {
1819  SExpr Mutex(MutexExp, Exp, D);
1820  if (!Mutex.isValid()) {
1821    SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D);
1822    return;
1823  }
1824
1825  LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex);
1826  if (LDat) {
1827    std::string DeclName = D->getNameAsString();
1828    StringRef   DeclNameSR (DeclName);
1829    Analyzer->Handler.handleFunExcludesLock(DeclNameSR, Mutex.toString(),
1830                                            Exp->getExprLoc());
1831  }
1832}
1833
1834
1835/// \brief This method identifies variable dereferences and checks pt_guarded_by
1836/// and pt_guarded_var annotations. Note that we only check these annotations
1837/// at the time a pointer is dereferenced.
1838/// FIXME: We need to check for other types of pointer dereferences
1839/// (e.g. [], ->) and deal with them here.
1840/// \param Exp An expression that has been read or written.
1841void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1842  UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1843  if (!UO || UO->getOpcode() != clang::UO_Deref)
1844    return;
1845  Exp = UO->getSubExpr()->IgnoreParenCasts();
1846
1847  const ValueDecl *D = getValueDecl(Exp);
1848  if(!D || !D->hasAttrs())
1849    return;
1850
1851  if (D->getAttr<PtGuardedVarAttr>() && FSet.isEmpty())
1852    Analyzer->Handler.handleNoMutexHeld(D, POK_VarDereference, AK,
1853                                        Exp->getExprLoc());
1854
1855  const AttrVec &ArgAttrs = D->getAttrs();
1856  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1857    if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1858      warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1859}
1860
1861/// \brief Checks guarded_by and guarded_var attributes.
1862/// Whenever we identify an access (read or write) of a DeclRefExpr or
1863/// MemberExpr, we need to check whether there are any guarded_by or
1864/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1865void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1866  const ValueDecl *D = getValueDecl(Exp);
1867  if(!D || !D->hasAttrs())
1868    return;
1869
1870  if (D->getAttr<GuardedVarAttr>() && FSet.isEmpty())
1871    Analyzer->Handler.handleNoMutexHeld(D, POK_VarAccess, AK,
1872                                        Exp->getExprLoc());
1873
1874  const AttrVec &ArgAttrs = D->getAttrs();
1875  for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1876    if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1877      warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1878}
1879
1880/// \brief Process a function call, method call, constructor call,
1881/// or destructor call.  This involves looking at the attributes on the
1882/// corresponding function/method/constructor/destructor, issuing warnings,
1883/// and updating the locksets accordingly.
1884///
1885/// FIXME: For classes annotated with one of the guarded annotations, we need
1886/// to treat const method calls as reads and non-const method calls as writes,
1887/// and check that the appropriate locks are held. Non-const method calls with
1888/// the same signature as const method calls can be also treated as reads.
1889///
1890void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1891  const AttrVec &ArgAttrs = D->getAttrs();
1892  MutexIDList ExclusiveLocksToAdd;
1893  MutexIDList SharedLocksToAdd;
1894  MutexIDList LocksToRemove;
1895
1896  for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1897    Attr *At = const_cast<Attr*>(ArgAttrs[i]);
1898    switch (At->getKind()) {
1899      // When we encounter an exclusive lock function, we need to add the lock
1900      // to our lockset with kind exclusive.
1901      case attr::ExclusiveLockFunction: {
1902        ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(At);
1903        Analyzer->getMutexIDs(ExclusiveLocksToAdd, A, Exp, D, VD);
1904        break;
1905      }
1906
1907      // When we encounter a shared lock function, we need to add the lock
1908      // to our lockset with kind shared.
1909      case attr::SharedLockFunction: {
1910        SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(At);
1911        Analyzer->getMutexIDs(SharedLocksToAdd, A, Exp, D, VD);
1912        break;
1913      }
1914
1915      // When we encounter an unlock function, we need to remove unlocked
1916      // mutexes from the lockset, and flag a warning if they are not there.
1917      case attr::UnlockFunction: {
1918        UnlockFunctionAttr *A = cast<UnlockFunctionAttr>(At);
1919        Analyzer->getMutexIDs(LocksToRemove, A, Exp, D, VD);
1920        break;
1921      }
1922
1923      case attr::ExclusiveLocksRequired: {
1924        ExclusiveLocksRequiredAttr *A = cast<ExclusiveLocksRequiredAttr>(At);
1925
1926        for (ExclusiveLocksRequiredAttr::args_iterator
1927             I = A->args_begin(), E = A->args_end(); I != E; ++I)
1928          warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1929        break;
1930      }
1931
1932      case attr::SharedLocksRequired: {
1933        SharedLocksRequiredAttr *A = cast<SharedLocksRequiredAttr>(At);
1934
1935        for (SharedLocksRequiredAttr::args_iterator I = A->args_begin(),
1936             E = A->args_end(); I != E; ++I)
1937          warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1938        break;
1939      }
1940
1941      case attr::LocksExcluded: {
1942        LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
1943
1944        for (LocksExcludedAttr::args_iterator I = A->args_begin(),
1945            E = A->args_end(); I != E; ++I) {
1946          warnIfMutexHeld(D, Exp, *I);
1947        }
1948        break;
1949      }
1950
1951      // Ignore other (non thread-safety) attributes
1952      default:
1953        break;
1954    }
1955  }
1956
1957  // Figure out if we're calling the constructor of scoped lockable class
1958  bool isScopedVar = false;
1959  if (VD) {
1960    if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1961      const CXXRecordDecl* PD = CD->getParent();
1962      if (PD && PD->getAttr<ScopedLockableAttr>())
1963        isScopedVar = true;
1964    }
1965  }
1966
1967  // Add locks.
1968  SourceLocation Loc = Exp->getExprLoc();
1969  for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1970    Analyzer->addLock(FSet, ExclusiveLocksToAdd[i],
1971                            LockData(Loc, LK_Exclusive, isScopedVar));
1972  }
1973  for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1974    Analyzer->addLock(FSet, SharedLocksToAdd[i],
1975                            LockData(Loc, LK_Shared, isScopedVar));
1976  }
1977
1978  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1979  // FIXME -- this doesn't work if we acquire multiple locks.
1980  if (isScopedVar) {
1981    SourceLocation MLoc = VD->getLocation();
1982    DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1983    SExpr SMutex(&DRE, 0, 0);
1984
1985    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
1986      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive,
1987                                               ExclusiveLocksToAdd[i]));
1988    }
1989    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
1990      Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared,
1991                                               SharedLocksToAdd[i]));
1992    }
1993  }
1994
1995  // Remove locks.
1996  // FIXME -- should only fully remove if the attribute refers to 'this'.
1997  bool Dtor = isa<CXXDestructorDecl>(D);
1998  for (unsigned i=0,n=LocksToRemove.size(); i<n; ++i) {
1999    Analyzer->removeLock(FSet, LocksToRemove[i], Loc, Dtor);
2000  }
2001}
2002
2003
2004/// \brief For unary operations which read and write a variable, we need to
2005/// check whether we hold any required mutexes. Reads are checked in
2006/// VisitCastExpr.
2007void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
2008  switch (UO->getOpcode()) {
2009    case clang::UO_PostDec:
2010    case clang::UO_PostInc:
2011    case clang::UO_PreDec:
2012    case clang::UO_PreInc: {
2013      Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
2014      checkAccess(SubExp, AK_Written);
2015      checkDereference(SubExp, AK_Written);
2016      break;
2017    }
2018    default:
2019      break;
2020  }
2021}
2022
2023/// For binary operations which assign to a variable (writes), we need to check
2024/// whether we hold any required mutexes.
2025/// FIXME: Deal with non-primitive types.
2026void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
2027  if (!BO->isAssignmentOp())
2028    return;
2029
2030  // adjust the context
2031  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2032
2033  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
2034  checkAccess(LHSExp, AK_Written);
2035  checkDereference(LHSExp, AK_Written);
2036}
2037
2038/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2039/// need to ensure we hold any required mutexes.
2040/// FIXME: Deal with non-primitive types.
2041void BuildLockset::VisitCastExpr(CastExpr *CE) {
2042  if (CE->getCastKind() != CK_LValueToRValue)
2043    return;
2044  Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
2045  checkAccess(SubExp, AK_Read);
2046  checkDereference(SubExp, AK_Read);
2047}
2048
2049
2050void BuildLockset::VisitCallExpr(CallExpr *Exp) {
2051  NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2052  if(!D || !D->hasAttrs())
2053    return;
2054  handleCall(Exp, D);
2055}
2056
2057void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2058  // FIXME -- only handles constructors in DeclStmt below.
2059}
2060
2061void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2062  // adjust the context
2063  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2064
2065  DeclGroupRef DGrp = S->getDeclGroup();
2066  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
2067    Decl *D = *I;
2068    if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
2069      Expr *E = VD->getInit();
2070      // handle constructors that involve temporaries
2071      if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
2072        E = EWC->getSubExpr();
2073
2074      if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
2075        NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2076        if (!CtorD || !CtorD->hasAttrs())
2077          return;
2078        handleCall(CE, CtorD, VD);
2079      }
2080    }
2081  }
2082}
2083
2084
2085
2086/// \brief Compute the intersection of two locksets and issue warnings for any
2087/// locks in the symmetric difference.
2088///
2089/// This function is used at a merge point in the CFG when comparing the lockset
2090/// of each branch being merged. For example, given the following sequence:
2091/// A; if () then B; else C; D; we need to check that the lockset after B and C
2092/// are the same. In the event of a difference, we use the intersection of these
2093/// two locksets at the start of D.
2094///
2095/// \param FSet1 The first lockset.
2096/// \param FSet2 The second lockset.
2097/// \param JoinLoc The location of the join point for error reporting
2098/// \param LEK1 The error message to report if a mutex is missing from LSet1
2099/// \param LEK2 The error message to report if a mutex is missing from Lset2
2100void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2101                                            const FactSet &FSet2,
2102                                            SourceLocation JoinLoc,
2103                                            LockErrorKind LEK1,
2104                                            LockErrorKind LEK2,
2105                                            bool Modify) {
2106  FactSet FSet1Orig = FSet1;
2107
2108  for (FactSet::const_iterator I = FSet2.begin(), E = FSet2.end();
2109       I != E; ++I) {
2110    const SExpr &FSet2Mutex = FactMan[*I].MutID;
2111    const LockData &LDat2 = FactMan[*I].LDat;
2112
2113    if (const LockData *LDat1 = FSet1.findLock(FactMan, FSet2Mutex)) {
2114      if (LDat1->LKind != LDat2.LKind) {
2115        Handler.handleExclusiveAndShared(FSet2Mutex.toString(),
2116                                         LDat2.AcquireLoc,
2117                                         LDat1->AcquireLoc);
2118        if (Modify && LDat1->LKind != LK_Exclusive) {
2119          FSet1.removeLock(FactMan, FSet2Mutex);
2120          FSet1.addLock(FactMan, FSet2Mutex, LDat2);
2121        }
2122      }
2123    } else {
2124      if (LDat2.UnderlyingMutex.isValid()) {
2125        if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) {
2126          // If this is a scoped lock that manages another mutex, and if the
2127          // underlying mutex is still held, then warn about the underlying
2128          // mutex.
2129          Handler.handleMutexHeldEndOfScope(LDat2.UnderlyingMutex.toString(),
2130                                            LDat2.AcquireLoc,
2131                                            JoinLoc, LEK1);
2132        }
2133      }
2134      else if (!LDat2.Managed && !FSet2Mutex.isUniversal())
2135        Handler.handleMutexHeldEndOfScope(FSet2Mutex.toString(),
2136                                          LDat2.AcquireLoc,
2137                                          JoinLoc, LEK1);
2138    }
2139  }
2140
2141  for (FactSet::const_iterator I = FSet1.begin(), E = FSet1.end();
2142       I != E; ++I) {
2143    const SExpr &FSet1Mutex = FactMan[*I].MutID;
2144    const LockData &LDat1 = FactMan[*I].LDat;
2145
2146    if (!FSet2.findLock(FactMan, FSet1Mutex)) {
2147      if (LDat1.UnderlyingMutex.isValid()) {
2148        if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) {
2149          // If this is a scoped lock that manages another mutex, and if the
2150          // underlying mutex is still held, then warn about the underlying
2151          // mutex.
2152          Handler.handleMutexHeldEndOfScope(LDat1.UnderlyingMutex.toString(),
2153                                            LDat1.AcquireLoc,
2154                                            JoinLoc, LEK1);
2155        }
2156      }
2157      else if (!LDat1.Managed && !FSet1Mutex.isUniversal())
2158        Handler.handleMutexHeldEndOfScope(FSet1Mutex.toString(),
2159                                          LDat1.AcquireLoc,
2160                                          JoinLoc, LEK2);
2161      if (Modify)
2162        FSet1.removeLock(FactMan, FSet1Mutex);
2163    }
2164  }
2165}
2166
2167
2168
2169/// \brief Check a function's CFG for thread-safety violations.
2170///
2171/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2172/// at the end of each block, and issue warnings for thread safety violations.
2173/// Each block in the CFG is traversed exactly once.
2174void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2175  CFG *CFGraph = AC.getCFG();
2176  if (!CFGraph) return;
2177  const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
2178
2179  // AC.dumpCFG(true);
2180
2181  if (!D)
2182    return;  // Ignore anonymous functions for now.
2183  if (D->getAttr<NoThreadSafetyAnalysisAttr>())
2184    return;
2185  // FIXME: Do something a bit more intelligent inside constructor and
2186  // destructor code.  Constructors and destructors must assume unique access
2187  // to 'this', so checks on member variable access is disabled, but we should
2188  // still enable checks on other objects.
2189  if (isa<CXXConstructorDecl>(D))
2190    return;  // Don't check inside constructors.
2191  if (isa<CXXDestructorDecl>(D))
2192    return;  // Don't check inside destructors.
2193
2194  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2195    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2196
2197  // We need to explore the CFG via a "topological" ordering.
2198  // That way, we will be guaranteed to have information about required
2199  // predecessor locksets when exploring a new block.
2200  PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
2201  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2202
2203  // Mark entry block as reachable
2204  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2205
2206  // Compute SSA names for local variables
2207  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2208
2209  // Fill in source locations for all CFGBlocks.
2210  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2211
2212  // Add locks from exclusive_locks_required and shared_locks_required
2213  // to initial lockset. Also turn off checking for lock and unlock functions.
2214  // FIXME: is there a more intelligent way to check lock/unlock functions?
2215  if (!SortedGraph->empty() && D->hasAttrs()) {
2216    const CFGBlock *FirstBlock = *SortedGraph->begin();
2217    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2218    const AttrVec &ArgAttrs = D->getAttrs();
2219
2220    MutexIDList ExclusiveLocksToAdd;
2221    MutexIDList SharedLocksToAdd;
2222
2223    SourceLocation Loc = D->getLocation();
2224    for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
2225      Attr *Attr = ArgAttrs[i];
2226      Loc = Attr->getLocation();
2227      if (ExclusiveLocksRequiredAttr *A
2228            = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
2229        getMutexIDs(ExclusiveLocksToAdd, A, (Expr*) 0, D);
2230      } else if (SharedLocksRequiredAttr *A
2231                   = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
2232        getMutexIDs(SharedLocksToAdd, A, (Expr*) 0, D);
2233      } else if (isa<UnlockFunctionAttr>(Attr)) {
2234        // Don't try to check unlock functions for now
2235        return;
2236      } else if (isa<ExclusiveLockFunctionAttr>(Attr)) {
2237        // Don't try to check lock functions for now
2238        return;
2239      } else if (isa<SharedLockFunctionAttr>(Attr)) {
2240        // Don't try to check lock functions for now
2241        return;
2242      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2243        // Don't try to check trylock functions for now
2244        return;
2245      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2246        // Don't try to check trylock functions for now
2247        return;
2248      }
2249    }
2250
2251    // FIXME -- Loc can be wrong here.
2252    for (unsigned i=0,n=ExclusiveLocksToAdd.size(); i<n; ++i) {
2253      addLock(InitialLockset, ExclusiveLocksToAdd[i],
2254              LockData(Loc, LK_Exclusive));
2255    }
2256    for (unsigned i=0,n=SharedLocksToAdd.size(); i<n; ++i) {
2257      addLock(InitialLockset, SharedLocksToAdd[i],
2258              LockData(Loc, LK_Shared));
2259    }
2260  }
2261
2262  for (PostOrderCFGView::iterator I = SortedGraph->begin(),
2263       E = SortedGraph->end(); I!= E; ++I) {
2264    const CFGBlock *CurrBlock = *I;
2265    int CurrBlockID = CurrBlock->getBlockID();
2266    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2267
2268    // Use the default initial lockset in case there are no predecessors.
2269    VisitedBlocks.insert(CurrBlock);
2270
2271    // Iterate through the predecessor blocks and warn if the lockset for all
2272    // predecessors is not the same. We take the entry lockset of the current
2273    // block to be the intersection of all previous locksets.
2274    // FIXME: By keeping the intersection, we may output more errors in future
2275    // for a lock which is not in the intersection, but was in the union. We
2276    // may want to also keep the union in future. As an example, let's say
2277    // the intersection contains Mutex L, and the union contains L and M.
2278    // Later we unlock M. At this point, we would output an error because we
2279    // never locked M; although the real error is probably that we forgot to
2280    // lock M on all code paths. Conversely, let's say that later we lock M.
2281    // In this case, we should compare against the intersection instead of the
2282    // union because the real error is probably that we forgot to unlock M on
2283    // all code paths.
2284    bool LocksetInitialized = false;
2285    llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
2286    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2287         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2288
2289      // if *PI -> CurrBlock is a back edge
2290      if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
2291        continue;
2292
2293      int PrevBlockID = (*PI)->getBlockID();
2294      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2295
2296      // Ignore edges from blocks that can't return.
2297      if ((*PI)->hasNoReturnElement() || !PrevBlockInfo->Reachable)
2298        continue;
2299
2300      // Okay, we can reach this block from the entry.
2301      CurrBlockInfo->Reachable = true;
2302
2303      // If the previous block ended in a 'continue' or 'break' statement, then
2304      // a difference in locksets is probably due to a bug in that block, rather
2305      // than in some other predecessor. In that case, keep the other
2306      // predecessor's lockset.
2307      if (const Stmt *Terminator = (*PI)->getTerminator()) {
2308        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2309          SpecialBlocks.push_back(*PI);
2310          continue;
2311        }
2312      }
2313
2314
2315      FactSet PrevLockset;
2316      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2317
2318      if (!LocksetInitialized) {
2319        CurrBlockInfo->EntrySet = PrevLockset;
2320        LocksetInitialized = true;
2321      } else {
2322        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2323                         CurrBlockInfo->EntryLoc,
2324                         LEK_LockedSomePredecessors);
2325      }
2326    }
2327
2328    // Skip rest of block if it's not reachable.
2329    if (!CurrBlockInfo->Reachable)
2330      continue;
2331
2332    // Process continue and break blocks. Assume that the lockset for the
2333    // resulting block is unaffected by any discrepancies in them.
2334    for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
2335         SpecialI < SpecialN; ++SpecialI) {
2336      CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
2337      int PrevBlockID = PrevBlock->getBlockID();
2338      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2339
2340      if (!LocksetInitialized) {
2341        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2342        LocksetInitialized = true;
2343      } else {
2344        // Determine whether this edge is a loop terminator for diagnostic
2345        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2346        // it might also be part of a switch. Also, a subsequent destructor
2347        // might add to the lockset, in which case the real issue might be a
2348        // double lock on the other path.
2349        const Stmt *Terminator = PrevBlock->getTerminator();
2350        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2351
2352        FactSet PrevLockset;
2353        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2354                       PrevBlock, CurrBlock);
2355
2356        // Do not update EntrySet.
2357        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2358                         PrevBlockInfo->ExitLoc,
2359                         IsLoop ? LEK_LockedSomeLoopIterations
2360                                : LEK_LockedSomePredecessors,
2361                         false);
2362      }
2363    }
2364
2365    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2366
2367    // Visit all the statements in the basic block.
2368    for (CFGBlock::const_iterator BI = CurrBlock->begin(),
2369         BE = CurrBlock->end(); BI != BE; ++BI) {
2370      switch (BI->getKind()) {
2371        case CFGElement::Statement: {
2372          const CFGStmt *CS = cast<CFGStmt>(&*BI);
2373          LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
2374          break;
2375        }
2376        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2377        case CFGElement::AutomaticObjectDtor: {
2378          const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
2379          CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
2380            AD->getDestructorDecl(AC.getASTContext()));
2381          if (!DD->hasAttrs())
2382            break;
2383
2384          // Create a dummy expression,
2385          VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
2386          DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue,
2387                          AD->getTriggerStmt()->getLocEnd());
2388          LocksetBuilder.handleCall(&DRE, DD);
2389          break;
2390        }
2391        default:
2392          break;
2393      }
2394    }
2395    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2396
2397    // For every back edge from CurrBlock (the end of the loop) to another block
2398    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2399    // the one held at the beginning of FirstLoopBlock. We can look up the
2400    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2401    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2402         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2403
2404      // if CurrBlock -> *SI is *not* a back edge
2405      if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
2406        continue;
2407
2408      CFGBlock *FirstLoopBlock = *SI;
2409      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2410      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2411      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2412                       PreLoop->EntryLoc,
2413                       LEK_LockedSomeLoopIterations,
2414                       false);
2415    }
2416  }
2417
2418  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2419  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2420
2421  // Skip the final check if the exit block is unreachable.
2422  if (!Final->Reachable)
2423    return;
2424
2425  // FIXME: Should we call this function for all blocks which exit the function?
2426  intersectAndWarn(Initial->EntrySet, Final->ExitSet,
2427                   Final->ExitLoc,
2428                   LEK_LockedAtEndOfFunction,
2429                   LEK_NotLockedAtEndOfFunction,
2430                   false);
2431}
2432
2433} // end anonymous namespace
2434
2435
2436namespace clang {
2437namespace thread_safety {
2438
2439/// \brief Check a function's CFG for thread-safety violations.
2440///
2441/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2442/// at the end of each block, and issue warnings for thread safety violations.
2443/// Each block in the CFG is traversed exactly once.
2444void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2445                             ThreadSafetyHandler &Handler) {
2446  ThreadSafetyAnalyzer Analyzer(Handler);
2447  Analyzer.runAnalysis(AC);
2448}
2449
2450/// \brief Helper function that returns a LockKind required for the given level
2451/// of access.
2452LockKind getLockKindFromAccessKind(AccessKind AK) {
2453  switch (AK) {
2454    case AK_Read :
2455      return LK_Shared;
2456    case AK_Written :
2457      return LK_Exclusive;
2458  }
2459  llvm_unreachable("Unknown AccessKind");
2460}
2461
2462}} // end namespace clang::thread_safety
2463