CGBuiltin.cpp revision 0cd6bd62f3f7ee42f08ad130395ac65564768990
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/Basic/TargetBuiltins.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Intrinsics.h"
24
25using namespace clang;
26using namespace CodeGen;
27using namespace llvm;
28
29/// getBuiltinLibFunction - Given a builtin id for a function like
30/// "__builtin_fabsf", return a Function* for "fabsf".
31llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
32                                                  unsigned BuiltinID) {
33  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
34
35  // Get the name, skip over the __builtin_ prefix (if necessary).
36  StringRef Name;
37  GlobalDecl D(FD);
38
39  // If the builtin has been declared explicitly with an assembler label,
40  // use the mangled name. This differs from the plain label on platforms
41  // that prefix labels.
42  if (FD->hasAttr<AsmLabelAttr>())
43    Name = getMangledName(D);
44  else
45    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
46
47  llvm::FunctionType *Ty =
48    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
49
50  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
51}
52
53/// Emit the conversions required to turn the given value into an
54/// integer of the given size.
55static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
56                        QualType T, llvm::IntegerType *IntType) {
57  V = CGF.EmitToMemory(V, T);
58
59  if (V->getType()->isPointerTy())
60    return CGF.Builder.CreatePtrToInt(V, IntType);
61
62  assert(V->getType() == IntType);
63  return V;
64}
65
66static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
67                          QualType T, llvm::Type *ResultType) {
68  V = CGF.EmitFromMemory(V, T);
69
70  if (ResultType->isPointerTy())
71    return CGF.Builder.CreateIntToPtr(V, ResultType);
72
73  assert(V->getType() == ResultType);
74  return V;
75}
76
77/// Utility to insert an atomic instruction based on Instrinsic::ID
78/// and the expression node.
79static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
80                               llvm::AtomicRMWInst::BinOp Kind,
81                               const CallExpr *E) {
82  QualType T = E->getType();
83  assert(E->getArg(0)->getType()->isPointerType());
84  assert(CGF.getContext().hasSameUnqualifiedType(T,
85                                  E->getArg(0)->getType()->getPointeeType()));
86  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
87
88  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
89  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
90
91  llvm::IntegerType *IntType =
92    llvm::IntegerType::get(CGF.getLLVMContext(),
93                           CGF.getContext().getTypeSize(T));
94  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
95
96  llvm::Value *Args[2];
97  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
98  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
99  llvm::Type *ValueType = Args[1]->getType();
100  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
101
102  llvm::Value *Result =
103      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
104                                  llvm::SequentiallyConsistent);
105  Result = EmitFromInt(CGF, Result, T, ValueType);
106  return RValue::get(Result);
107}
108
109/// Utility to insert an atomic instruction based Instrinsic::ID and
110/// the expression node, where the return value is the result of the
111/// operation.
112static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
113                                   llvm::AtomicRMWInst::BinOp Kind,
114                                   const CallExpr *E,
115                                   Instruction::BinaryOps Op) {
116  QualType T = E->getType();
117  assert(E->getArg(0)->getType()->isPointerType());
118  assert(CGF.getContext().hasSameUnqualifiedType(T,
119                                  E->getArg(0)->getType()->getPointeeType()));
120  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
121
122  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
123  unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
124
125  llvm::IntegerType *IntType =
126    llvm::IntegerType::get(CGF.getLLVMContext(),
127                           CGF.getContext().getTypeSize(T));
128  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
129
130  llvm::Value *Args[2];
131  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
132  llvm::Type *ValueType = Args[1]->getType();
133  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
134  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
135
136  llvm::Value *Result =
137      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
138                                  llvm::SequentiallyConsistent);
139  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
140  Result = EmitFromInt(CGF, Result, T, ValueType);
141  return RValue::get(Result);
142}
143
144/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
145/// which must be a scalar floating point type.
146static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
147  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
148  assert(ValTyP && "isn't scalar fp type!");
149
150  StringRef FnName;
151  switch (ValTyP->getKind()) {
152  default: llvm_unreachable("Isn't a scalar fp type!");
153  case BuiltinType::Float:      FnName = "fabsf"; break;
154  case BuiltinType::Double:     FnName = "fabs"; break;
155  case BuiltinType::LongDouble: FnName = "fabsl"; break;
156  }
157
158  // The prototype is something that takes and returns whatever V's type is.
159  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
160                                                   false);
161  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
162
163  return CGF.EmitNounwindRuntimeCall(Fn, V, "abs");
164}
165
166static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
167                              const CallExpr *E, llvm::Value *calleeValue) {
168  return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
169                      ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
170}
171
172/// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
173/// depending on IntrinsicID.
174///
175/// \arg CGF The current codegen function.
176/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
177/// \arg X The first argument to the llvm.*.with.overflow.*.
178/// \arg Y The second argument to the llvm.*.with.overflow.*.
179/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
180/// \returns The result (i.e. sum/product) returned by the intrinsic.
181static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
182                                          const llvm::Intrinsic::ID IntrinsicID,
183                                          llvm::Value *X, llvm::Value *Y,
184                                          llvm::Value *&Carry) {
185  // Make sure we have integers of the same width.
186  assert(X->getType() == Y->getType() &&
187         "Arguments must be the same type. (Did you forget to make sure both "
188         "arguments have the same integer width?)");
189
190  llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
191  llvm::Value *Tmp = CGF.Builder.CreateCall2(Callee, X, Y);
192  Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
193  return CGF.Builder.CreateExtractValue(Tmp, 0);
194}
195
196RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
197                                        unsigned BuiltinID, const CallExpr *E) {
198  // See if we can constant fold this builtin.  If so, don't emit it at all.
199  Expr::EvalResult Result;
200  if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
201      !Result.hasSideEffects()) {
202    if (Result.Val.isInt())
203      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
204                                                Result.Val.getInt()));
205    if (Result.Val.isFloat())
206      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
207                                               Result.Val.getFloat()));
208  }
209
210  switch (BuiltinID) {
211  default: break;  // Handle intrinsics and libm functions below.
212  case Builtin::BI__builtin___CFStringMakeConstantString:
213  case Builtin::BI__builtin___NSStringMakeConstantString:
214    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
215  case Builtin::BI__builtin_stdarg_start:
216  case Builtin::BI__builtin_va_start:
217  case Builtin::BI__builtin_va_end: {
218    Value *ArgValue = EmitVAListRef(E->getArg(0));
219    llvm::Type *DestType = Int8PtrTy;
220    if (ArgValue->getType() != DestType)
221      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
222                                       ArgValue->getName().data());
223
224    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
225      Intrinsic::vaend : Intrinsic::vastart;
226    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
227  }
228  case Builtin::BI__builtin_va_copy: {
229    Value *DstPtr = EmitVAListRef(E->getArg(0));
230    Value *SrcPtr = EmitVAListRef(E->getArg(1));
231
232    llvm::Type *Type = Int8PtrTy;
233
234    DstPtr = Builder.CreateBitCast(DstPtr, Type);
235    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
236    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
237                                           DstPtr, SrcPtr));
238  }
239  case Builtin::BI__builtin_abs:
240  case Builtin::BI__builtin_labs:
241  case Builtin::BI__builtin_llabs: {
242    Value *ArgValue = EmitScalarExpr(E->getArg(0));
243
244    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
245    Value *CmpResult =
246    Builder.CreateICmpSGE(ArgValue,
247                          llvm::Constant::getNullValue(ArgValue->getType()),
248                                                            "abscond");
249    Value *Result =
250      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
251
252    return RValue::get(Result);
253  }
254
255  case Builtin::BI__builtin_conj:
256  case Builtin::BI__builtin_conjf:
257  case Builtin::BI__builtin_conjl: {
258    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
259    Value *Real = ComplexVal.first;
260    Value *Imag = ComplexVal.second;
261    Value *Zero =
262      Imag->getType()->isFPOrFPVectorTy()
263        ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
264        : llvm::Constant::getNullValue(Imag->getType());
265
266    Imag = Builder.CreateFSub(Zero, Imag, "sub");
267    return RValue::getComplex(std::make_pair(Real, Imag));
268  }
269  case Builtin::BI__builtin_creal:
270  case Builtin::BI__builtin_crealf:
271  case Builtin::BI__builtin_creall:
272  case Builtin::BIcreal:
273  case Builtin::BIcrealf:
274  case Builtin::BIcreall: {
275    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
276    return RValue::get(ComplexVal.first);
277  }
278
279  case Builtin::BI__builtin_cimag:
280  case Builtin::BI__builtin_cimagf:
281  case Builtin::BI__builtin_cimagl:
282  case Builtin::BIcimag:
283  case Builtin::BIcimagf:
284  case Builtin::BIcimagl: {
285    ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
286    return RValue::get(ComplexVal.second);
287  }
288
289  case Builtin::BI__builtin_ctzs:
290  case Builtin::BI__builtin_ctz:
291  case Builtin::BI__builtin_ctzl:
292  case Builtin::BI__builtin_ctzll: {
293    Value *ArgValue = EmitScalarExpr(E->getArg(0));
294
295    llvm::Type *ArgType = ArgValue->getType();
296    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
297
298    llvm::Type *ResultType = ConvertType(E->getType());
299    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
300    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
301    if (Result->getType() != ResultType)
302      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
303                                     "cast");
304    return RValue::get(Result);
305  }
306  case Builtin::BI__builtin_clzs:
307  case Builtin::BI__builtin_clz:
308  case Builtin::BI__builtin_clzl:
309  case Builtin::BI__builtin_clzll: {
310    Value *ArgValue = EmitScalarExpr(E->getArg(0));
311
312    llvm::Type *ArgType = ArgValue->getType();
313    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
314
315    llvm::Type *ResultType = ConvertType(E->getType());
316    Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
317    Value *Result = Builder.CreateCall2(F, ArgValue, ZeroUndef);
318    if (Result->getType() != ResultType)
319      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
320                                     "cast");
321    return RValue::get(Result);
322  }
323  case Builtin::BI__builtin_ffs:
324  case Builtin::BI__builtin_ffsl:
325  case Builtin::BI__builtin_ffsll: {
326    // ffs(x) -> x ? cttz(x) + 1 : 0
327    Value *ArgValue = EmitScalarExpr(E->getArg(0));
328
329    llvm::Type *ArgType = ArgValue->getType();
330    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
331
332    llvm::Type *ResultType = ConvertType(E->getType());
333    Value *Tmp = Builder.CreateAdd(Builder.CreateCall2(F, ArgValue,
334                                                       Builder.getTrue()),
335                                   llvm::ConstantInt::get(ArgType, 1));
336    Value *Zero = llvm::Constant::getNullValue(ArgType);
337    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
338    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
339    if (Result->getType() != ResultType)
340      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
341                                     "cast");
342    return RValue::get(Result);
343  }
344  case Builtin::BI__builtin_parity:
345  case Builtin::BI__builtin_parityl:
346  case Builtin::BI__builtin_parityll: {
347    // parity(x) -> ctpop(x) & 1
348    Value *ArgValue = EmitScalarExpr(E->getArg(0));
349
350    llvm::Type *ArgType = ArgValue->getType();
351    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
352
353    llvm::Type *ResultType = ConvertType(E->getType());
354    Value *Tmp = Builder.CreateCall(F, ArgValue);
355    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
356    if (Result->getType() != ResultType)
357      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
358                                     "cast");
359    return RValue::get(Result);
360  }
361  case Builtin::BI__builtin_popcount:
362  case Builtin::BI__builtin_popcountl:
363  case Builtin::BI__builtin_popcountll: {
364    Value *ArgValue = EmitScalarExpr(E->getArg(0));
365
366    llvm::Type *ArgType = ArgValue->getType();
367    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
368
369    llvm::Type *ResultType = ConvertType(E->getType());
370    Value *Result = Builder.CreateCall(F, ArgValue);
371    if (Result->getType() != ResultType)
372      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
373                                     "cast");
374    return RValue::get(Result);
375  }
376  case Builtin::BI__builtin_expect: {
377    Value *ArgValue = EmitScalarExpr(E->getArg(0));
378    llvm::Type *ArgType = ArgValue->getType();
379
380    Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
381    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
382
383    Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
384                                        "expval");
385    return RValue::get(Result);
386  }
387  case Builtin::BI__builtin_bswap16:
388  case Builtin::BI__builtin_bswap32:
389  case Builtin::BI__builtin_bswap64: {
390    Value *ArgValue = EmitScalarExpr(E->getArg(0));
391    llvm::Type *ArgType = ArgValue->getType();
392    Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
393    return RValue::get(Builder.CreateCall(F, ArgValue));
394  }
395  case Builtin::BI__builtin_object_size: {
396    // We rely on constant folding to deal with expressions with side effects.
397    assert(!E->getArg(0)->HasSideEffects(getContext()) &&
398           "should have been constant folded");
399
400    // We pass this builtin onto the optimizer so that it can
401    // figure out the object size in more complex cases.
402    llvm::Type *ResType = ConvertType(E->getType());
403
404    // LLVM only supports 0 and 2, make sure that we pass along that
405    // as a boolean.
406    Value *Ty = EmitScalarExpr(E->getArg(1));
407    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
408    assert(CI);
409    uint64_t val = CI->getZExtValue();
410    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
411
412    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
413    return RValue::get(Builder.CreateCall2(F, EmitScalarExpr(E->getArg(0)),CI));
414  }
415  case Builtin::BI__builtin_prefetch: {
416    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
417    // FIXME: Technically these constants should of type 'int', yes?
418    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
419      llvm::ConstantInt::get(Int32Ty, 0);
420    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
421      llvm::ConstantInt::get(Int32Ty, 3);
422    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
423    Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
424    return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
425  }
426  case Builtin::BI__builtin_readcyclecounter: {
427    Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
428    return RValue::get(Builder.CreateCall(F));
429  }
430  case Builtin::BI__builtin_trap: {
431    Value *F = CGM.getIntrinsic(Intrinsic::trap);
432    return RValue::get(Builder.CreateCall(F));
433  }
434  case Builtin::BI__debugbreak: {
435    Value *F = CGM.getIntrinsic(Intrinsic::debugtrap);
436    return RValue::get(Builder.CreateCall(F));
437  }
438  case Builtin::BI__builtin_unreachable: {
439    if (SanOpts->Unreachable)
440      EmitCheck(Builder.getFalse(), "builtin_unreachable",
441                EmitCheckSourceLocation(E->getExprLoc()),
442                ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
443    else
444      Builder.CreateUnreachable();
445
446    // We do need to preserve an insertion point.
447    EmitBlock(createBasicBlock("unreachable.cont"));
448
449    return RValue::get(0);
450  }
451
452  case Builtin::BI__builtin_powi:
453  case Builtin::BI__builtin_powif:
454  case Builtin::BI__builtin_powil: {
455    Value *Base = EmitScalarExpr(E->getArg(0));
456    Value *Exponent = EmitScalarExpr(E->getArg(1));
457    llvm::Type *ArgType = Base->getType();
458    Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
459    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
460  }
461
462  case Builtin::BI__builtin_isgreater:
463  case Builtin::BI__builtin_isgreaterequal:
464  case Builtin::BI__builtin_isless:
465  case Builtin::BI__builtin_islessequal:
466  case Builtin::BI__builtin_islessgreater:
467  case Builtin::BI__builtin_isunordered: {
468    // Ordered comparisons: we know the arguments to these are matching scalar
469    // floating point values.
470    Value *LHS = EmitScalarExpr(E->getArg(0));
471    Value *RHS = EmitScalarExpr(E->getArg(1));
472
473    switch (BuiltinID) {
474    default: llvm_unreachable("Unknown ordered comparison");
475    case Builtin::BI__builtin_isgreater:
476      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
477      break;
478    case Builtin::BI__builtin_isgreaterequal:
479      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
480      break;
481    case Builtin::BI__builtin_isless:
482      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
483      break;
484    case Builtin::BI__builtin_islessequal:
485      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
486      break;
487    case Builtin::BI__builtin_islessgreater:
488      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
489      break;
490    case Builtin::BI__builtin_isunordered:
491      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
492      break;
493    }
494    // ZExt bool to int type.
495    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
496  }
497  case Builtin::BI__builtin_isnan: {
498    Value *V = EmitScalarExpr(E->getArg(0));
499    V = Builder.CreateFCmpUNO(V, V, "cmp");
500    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
501  }
502
503  case Builtin::BI__builtin_isinf: {
504    // isinf(x) --> fabs(x) == infinity
505    Value *V = EmitScalarExpr(E->getArg(0));
506    V = EmitFAbs(*this, V, E->getArg(0)->getType());
507
508    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
509    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
510  }
511
512  // TODO: BI__builtin_isinf_sign
513  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
514
515  case Builtin::BI__builtin_isnormal: {
516    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
517    Value *V = EmitScalarExpr(E->getArg(0));
518    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
519
520    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
521    Value *IsLessThanInf =
522      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
523    APFloat Smallest = APFloat::getSmallestNormalized(
524                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
525    Value *IsNormal =
526      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
527                            "isnormal");
528    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
529    V = Builder.CreateAnd(V, IsNormal, "and");
530    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
531  }
532
533  case Builtin::BI__builtin_isfinite: {
534    // isfinite(x) --> x == x && fabs(x) != infinity;
535    Value *V = EmitScalarExpr(E->getArg(0));
536    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
537
538    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
539    Value *IsNotInf =
540      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
541
542    V = Builder.CreateAnd(Eq, IsNotInf, "and");
543    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
544  }
545
546  case Builtin::BI__builtin_fpclassify: {
547    Value *V = EmitScalarExpr(E->getArg(5));
548    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
549
550    // Create Result
551    BasicBlock *Begin = Builder.GetInsertBlock();
552    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
553    Builder.SetInsertPoint(End);
554    PHINode *Result =
555      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
556                        "fpclassify_result");
557
558    // if (V==0) return FP_ZERO
559    Builder.SetInsertPoint(Begin);
560    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
561                                          "iszero");
562    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
563    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
564    Builder.CreateCondBr(IsZero, End, NotZero);
565    Result->addIncoming(ZeroLiteral, Begin);
566
567    // if (V != V) return FP_NAN
568    Builder.SetInsertPoint(NotZero);
569    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
570    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
571    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
572    Builder.CreateCondBr(IsNan, End, NotNan);
573    Result->addIncoming(NanLiteral, NotZero);
574
575    // if (fabs(V) == infinity) return FP_INFINITY
576    Builder.SetInsertPoint(NotNan);
577    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
578    Value *IsInf =
579      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
580                            "isinf");
581    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
582    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
583    Builder.CreateCondBr(IsInf, End, NotInf);
584    Result->addIncoming(InfLiteral, NotNan);
585
586    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
587    Builder.SetInsertPoint(NotInf);
588    APFloat Smallest = APFloat::getSmallestNormalized(
589        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
590    Value *IsNormal =
591      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
592                            "isnormal");
593    Value *NormalResult =
594      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
595                           EmitScalarExpr(E->getArg(3)));
596    Builder.CreateBr(End);
597    Result->addIncoming(NormalResult, NotInf);
598
599    // return Result
600    Builder.SetInsertPoint(End);
601    return RValue::get(Result);
602  }
603
604  case Builtin::BIalloca:
605  case Builtin::BI__builtin_alloca: {
606    Value *Size = EmitScalarExpr(E->getArg(0));
607    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
608  }
609  case Builtin::BIbzero:
610  case Builtin::BI__builtin_bzero: {
611    std::pair<llvm::Value*, unsigned> Dest =
612        EmitPointerWithAlignment(E->getArg(0));
613    Value *SizeVal = EmitScalarExpr(E->getArg(1));
614    Builder.CreateMemSet(Dest.first, Builder.getInt8(0), SizeVal,
615                         Dest.second, false);
616    return RValue::get(Dest.first);
617  }
618  case Builtin::BImemcpy:
619  case Builtin::BI__builtin_memcpy: {
620    std::pair<llvm::Value*, unsigned> Dest =
621        EmitPointerWithAlignment(E->getArg(0));
622    std::pair<llvm::Value*, unsigned> Src =
623        EmitPointerWithAlignment(E->getArg(1));
624    Value *SizeVal = EmitScalarExpr(E->getArg(2));
625    unsigned Align = std::min(Dest.second, Src.second);
626    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
627    return RValue::get(Dest.first);
628  }
629
630  case Builtin::BI__builtin___memcpy_chk: {
631    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
632    llvm::APSInt Size, DstSize;
633    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
634        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
635      break;
636    if (Size.ugt(DstSize))
637      break;
638    std::pair<llvm::Value*, unsigned> Dest =
639        EmitPointerWithAlignment(E->getArg(0));
640    std::pair<llvm::Value*, unsigned> Src =
641        EmitPointerWithAlignment(E->getArg(1));
642    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
643    unsigned Align = std::min(Dest.second, Src.second);
644    Builder.CreateMemCpy(Dest.first, Src.first, SizeVal, Align, false);
645    return RValue::get(Dest.first);
646  }
647
648  case Builtin::BI__builtin_objc_memmove_collectable: {
649    Value *Address = EmitScalarExpr(E->getArg(0));
650    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
651    Value *SizeVal = EmitScalarExpr(E->getArg(2));
652    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
653                                                  Address, SrcAddr, SizeVal);
654    return RValue::get(Address);
655  }
656
657  case Builtin::BI__builtin___memmove_chk: {
658    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
659    llvm::APSInt Size, DstSize;
660    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
661        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
662      break;
663    if (Size.ugt(DstSize))
664      break;
665    std::pair<llvm::Value*, unsigned> Dest =
666        EmitPointerWithAlignment(E->getArg(0));
667    std::pair<llvm::Value*, unsigned> Src =
668        EmitPointerWithAlignment(E->getArg(1));
669    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
670    unsigned Align = std::min(Dest.second, Src.second);
671    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
672    return RValue::get(Dest.first);
673  }
674
675  case Builtin::BImemmove:
676  case Builtin::BI__builtin_memmove: {
677    std::pair<llvm::Value*, unsigned> Dest =
678        EmitPointerWithAlignment(E->getArg(0));
679    std::pair<llvm::Value*, unsigned> Src =
680        EmitPointerWithAlignment(E->getArg(1));
681    Value *SizeVal = EmitScalarExpr(E->getArg(2));
682    unsigned Align = std::min(Dest.second, Src.second);
683    Builder.CreateMemMove(Dest.first, Src.first, SizeVal, Align, false);
684    return RValue::get(Dest.first);
685  }
686  case Builtin::BImemset:
687  case Builtin::BI__builtin_memset: {
688    std::pair<llvm::Value*, unsigned> Dest =
689        EmitPointerWithAlignment(E->getArg(0));
690    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
691                                         Builder.getInt8Ty());
692    Value *SizeVal = EmitScalarExpr(E->getArg(2));
693    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
694    return RValue::get(Dest.first);
695  }
696  case Builtin::BI__builtin___memset_chk: {
697    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
698    llvm::APSInt Size, DstSize;
699    if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
700        !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
701      break;
702    if (Size.ugt(DstSize))
703      break;
704    std::pair<llvm::Value*, unsigned> Dest =
705        EmitPointerWithAlignment(E->getArg(0));
706    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
707                                         Builder.getInt8Ty());
708    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
709    Builder.CreateMemSet(Dest.first, ByteVal, SizeVal, Dest.second, false);
710    return RValue::get(Dest.first);
711  }
712  case Builtin::BI__builtin_dwarf_cfa: {
713    // The offset in bytes from the first argument to the CFA.
714    //
715    // Why on earth is this in the frontend?  Is there any reason at
716    // all that the backend can't reasonably determine this while
717    // lowering llvm.eh.dwarf.cfa()?
718    //
719    // TODO: If there's a satisfactory reason, add a target hook for
720    // this instead of hard-coding 0, which is correct for most targets.
721    int32_t Offset = 0;
722
723    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
724    return RValue::get(Builder.CreateCall(F,
725                                      llvm::ConstantInt::get(Int32Ty, Offset)));
726  }
727  case Builtin::BI__builtin_return_address: {
728    Value *Depth = EmitScalarExpr(E->getArg(0));
729    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
730    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
731    return RValue::get(Builder.CreateCall(F, Depth));
732  }
733  case Builtin::BI__builtin_frame_address: {
734    Value *Depth = EmitScalarExpr(E->getArg(0));
735    Depth = Builder.CreateIntCast(Depth, Int32Ty, false);
736    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
737    return RValue::get(Builder.CreateCall(F, Depth));
738  }
739  case Builtin::BI__builtin_extract_return_addr: {
740    Value *Address = EmitScalarExpr(E->getArg(0));
741    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
742    return RValue::get(Result);
743  }
744  case Builtin::BI__builtin_frob_return_addr: {
745    Value *Address = EmitScalarExpr(E->getArg(0));
746    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
747    return RValue::get(Result);
748  }
749  case Builtin::BI__builtin_dwarf_sp_column: {
750    llvm::IntegerType *Ty
751      = cast<llvm::IntegerType>(ConvertType(E->getType()));
752    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
753    if (Column == -1) {
754      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
755      return RValue::get(llvm::UndefValue::get(Ty));
756    }
757    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
758  }
759  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
760    Value *Address = EmitScalarExpr(E->getArg(0));
761    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
762      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
763    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
764  }
765  case Builtin::BI__builtin_eh_return: {
766    Value *Int = EmitScalarExpr(E->getArg(0));
767    Value *Ptr = EmitScalarExpr(E->getArg(1));
768
769    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
770    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
771           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
772    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
773                                  ? Intrinsic::eh_return_i32
774                                  : Intrinsic::eh_return_i64);
775    Builder.CreateCall2(F, Int, Ptr);
776    Builder.CreateUnreachable();
777
778    // We do need to preserve an insertion point.
779    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
780
781    return RValue::get(0);
782  }
783  case Builtin::BI__builtin_unwind_init: {
784    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
785    return RValue::get(Builder.CreateCall(F));
786  }
787  case Builtin::BI__builtin_extend_pointer: {
788    // Extends a pointer to the size of an _Unwind_Word, which is
789    // uint64_t on all platforms.  Generally this gets poked into a
790    // register and eventually used as an address, so if the
791    // addressing registers are wider than pointers and the platform
792    // doesn't implicitly ignore high-order bits when doing
793    // addressing, we need to make sure we zext / sext based on
794    // the platform's expectations.
795    //
796    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
797
798    // Cast the pointer to intptr_t.
799    Value *Ptr = EmitScalarExpr(E->getArg(0));
800    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
801
802    // If that's 64 bits, we're done.
803    if (IntPtrTy->getBitWidth() == 64)
804      return RValue::get(Result);
805
806    // Otherwise, ask the codegen data what to do.
807    if (getTargetHooks().extendPointerWithSExt())
808      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
809    else
810      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
811  }
812  case Builtin::BI__builtin_setjmp: {
813    // Buffer is a void**.
814    Value *Buf = EmitScalarExpr(E->getArg(0));
815
816    // Store the frame pointer to the setjmp buffer.
817    Value *FrameAddr =
818      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
819                         ConstantInt::get(Int32Ty, 0));
820    Builder.CreateStore(FrameAddr, Buf);
821
822    // Store the stack pointer to the setjmp buffer.
823    Value *StackAddr =
824      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
825    Value *StackSaveSlot =
826      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
827    Builder.CreateStore(StackAddr, StackSaveSlot);
828
829    // Call LLVM's EH setjmp, which is lightweight.
830    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
831    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
832    return RValue::get(Builder.CreateCall(F, Buf));
833  }
834  case Builtin::BI__builtin_longjmp: {
835    Value *Buf = EmitScalarExpr(E->getArg(0));
836    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
837
838    // Call LLVM's EH longjmp, which is lightweight.
839    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
840
841    // longjmp doesn't return; mark this as unreachable.
842    Builder.CreateUnreachable();
843
844    // We do need to preserve an insertion point.
845    EmitBlock(createBasicBlock("longjmp.cont"));
846
847    return RValue::get(0);
848  }
849  case Builtin::BI__sync_fetch_and_add:
850  case Builtin::BI__sync_fetch_and_sub:
851  case Builtin::BI__sync_fetch_and_or:
852  case Builtin::BI__sync_fetch_and_and:
853  case Builtin::BI__sync_fetch_and_xor:
854  case Builtin::BI__sync_add_and_fetch:
855  case Builtin::BI__sync_sub_and_fetch:
856  case Builtin::BI__sync_and_and_fetch:
857  case Builtin::BI__sync_or_and_fetch:
858  case Builtin::BI__sync_xor_and_fetch:
859  case Builtin::BI__sync_val_compare_and_swap:
860  case Builtin::BI__sync_bool_compare_and_swap:
861  case Builtin::BI__sync_lock_test_and_set:
862  case Builtin::BI__sync_lock_release:
863  case Builtin::BI__sync_swap:
864    llvm_unreachable("Shouldn't make it through sema");
865  case Builtin::BI__sync_fetch_and_add_1:
866  case Builtin::BI__sync_fetch_and_add_2:
867  case Builtin::BI__sync_fetch_and_add_4:
868  case Builtin::BI__sync_fetch_and_add_8:
869  case Builtin::BI__sync_fetch_and_add_16:
870    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
871  case Builtin::BI__sync_fetch_and_sub_1:
872  case Builtin::BI__sync_fetch_and_sub_2:
873  case Builtin::BI__sync_fetch_and_sub_4:
874  case Builtin::BI__sync_fetch_and_sub_8:
875  case Builtin::BI__sync_fetch_and_sub_16:
876    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
877  case Builtin::BI__sync_fetch_and_or_1:
878  case Builtin::BI__sync_fetch_and_or_2:
879  case Builtin::BI__sync_fetch_and_or_4:
880  case Builtin::BI__sync_fetch_and_or_8:
881  case Builtin::BI__sync_fetch_and_or_16:
882    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
883  case Builtin::BI__sync_fetch_and_and_1:
884  case Builtin::BI__sync_fetch_and_and_2:
885  case Builtin::BI__sync_fetch_and_and_4:
886  case Builtin::BI__sync_fetch_and_and_8:
887  case Builtin::BI__sync_fetch_and_and_16:
888    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
889  case Builtin::BI__sync_fetch_and_xor_1:
890  case Builtin::BI__sync_fetch_and_xor_2:
891  case Builtin::BI__sync_fetch_and_xor_4:
892  case Builtin::BI__sync_fetch_and_xor_8:
893  case Builtin::BI__sync_fetch_and_xor_16:
894    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
895
896  // Clang extensions: not overloaded yet.
897  case Builtin::BI__sync_fetch_and_min:
898    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
899  case Builtin::BI__sync_fetch_and_max:
900    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
901  case Builtin::BI__sync_fetch_and_umin:
902    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
903  case Builtin::BI__sync_fetch_and_umax:
904    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
905
906  case Builtin::BI__sync_add_and_fetch_1:
907  case Builtin::BI__sync_add_and_fetch_2:
908  case Builtin::BI__sync_add_and_fetch_4:
909  case Builtin::BI__sync_add_and_fetch_8:
910  case Builtin::BI__sync_add_and_fetch_16:
911    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
912                                llvm::Instruction::Add);
913  case Builtin::BI__sync_sub_and_fetch_1:
914  case Builtin::BI__sync_sub_and_fetch_2:
915  case Builtin::BI__sync_sub_and_fetch_4:
916  case Builtin::BI__sync_sub_and_fetch_8:
917  case Builtin::BI__sync_sub_and_fetch_16:
918    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
919                                llvm::Instruction::Sub);
920  case Builtin::BI__sync_and_and_fetch_1:
921  case Builtin::BI__sync_and_and_fetch_2:
922  case Builtin::BI__sync_and_and_fetch_4:
923  case Builtin::BI__sync_and_and_fetch_8:
924  case Builtin::BI__sync_and_and_fetch_16:
925    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
926                                llvm::Instruction::And);
927  case Builtin::BI__sync_or_and_fetch_1:
928  case Builtin::BI__sync_or_and_fetch_2:
929  case Builtin::BI__sync_or_and_fetch_4:
930  case Builtin::BI__sync_or_and_fetch_8:
931  case Builtin::BI__sync_or_and_fetch_16:
932    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
933                                llvm::Instruction::Or);
934  case Builtin::BI__sync_xor_and_fetch_1:
935  case Builtin::BI__sync_xor_and_fetch_2:
936  case Builtin::BI__sync_xor_and_fetch_4:
937  case Builtin::BI__sync_xor_and_fetch_8:
938  case Builtin::BI__sync_xor_and_fetch_16:
939    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
940                                llvm::Instruction::Xor);
941
942  case Builtin::BI__sync_val_compare_and_swap_1:
943  case Builtin::BI__sync_val_compare_and_swap_2:
944  case Builtin::BI__sync_val_compare_and_swap_4:
945  case Builtin::BI__sync_val_compare_and_swap_8:
946  case Builtin::BI__sync_val_compare_and_swap_16: {
947    QualType T = E->getType();
948    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
949    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
950
951    llvm::IntegerType *IntType =
952      llvm::IntegerType::get(getLLVMContext(),
953                             getContext().getTypeSize(T));
954    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
955
956    Value *Args[3];
957    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
958    Args[1] = EmitScalarExpr(E->getArg(1));
959    llvm::Type *ValueType = Args[1]->getType();
960    Args[1] = EmitToInt(*this, Args[1], T, IntType);
961    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
962
963    Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
964                                                llvm::SequentiallyConsistent);
965    Result = EmitFromInt(*this, Result, T, ValueType);
966    return RValue::get(Result);
967  }
968
969  case Builtin::BI__sync_bool_compare_and_swap_1:
970  case Builtin::BI__sync_bool_compare_and_swap_2:
971  case Builtin::BI__sync_bool_compare_and_swap_4:
972  case Builtin::BI__sync_bool_compare_and_swap_8:
973  case Builtin::BI__sync_bool_compare_and_swap_16: {
974    QualType T = E->getArg(1)->getType();
975    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
976    unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
977
978    llvm::IntegerType *IntType =
979      llvm::IntegerType::get(getLLVMContext(),
980                             getContext().getTypeSize(T));
981    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
982
983    Value *Args[3];
984    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
985    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
986    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
987
988    Value *OldVal = Args[1];
989    Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
990                                                 llvm::SequentiallyConsistent);
991    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
992    // zext bool to int.
993    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
994    return RValue::get(Result);
995  }
996
997  case Builtin::BI__sync_swap_1:
998  case Builtin::BI__sync_swap_2:
999  case Builtin::BI__sync_swap_4:
1000  case Builtin::BI__sync_swap_8:
1001  case Builtin::BI__sync_swap_16:
1002    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1003
1004  case Builtin::BI__sync_lock_test_and_set_1:
1005  case Builtin::BI__sync_lock_test_and_set_2:
1006  case Builtin::BI__sync_lock_test_and_set_4:
1007  case Builtin::BI__sync_lock_test_and_set_8:
1008  case Builtin::BI__sync_lock_test_and_set_16:
1009    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1010
1011  case Builtin::BI__sync_lock_release_1:
1012  case Builtin::BI__sync_lock_release_2:
1013  case Builtin::BI__sync_lock_release_4:
1014  case Builtin::BI__sync_lock_release_8:
1015  case Builtin::BI__sync_lock_release_16: {
1016    Value *Ptr = EmitScalarExpr(E->getArg(0));
1017    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1018    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1019    llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1020                                             StoreSize.getQuantity() * 8);
1021    Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1022    llvm::StoreInst *Store =
1023      Builder.CreateStore(llvm::Constant::getNullValue(ITy), Ptr);
1024    Store->setAlignment(StoreSize.getQuantity());
1025    Store->setAtomic(llvm::Release);
1026    return RValue::get(0);
1027  }
1028
1029  case Builtin::BI__sync_synchronize: {
1030    // We assume this is supposed to correspond to a C++0x-style
1031    // sequentially-consistent fence (i.e. this is only usable for
1032    // synchonization, not device I/O or anything like that). This intrinsic
1033    // is really badly designed in the sense that in theory, there isn't
1034    // any way to safely use it... but in practice, it mostly works
1035    // to use it with non-atomic loads and stores to get acquire/release
1036    // semantics.
1037    Builder.CreateFence(llvm::SequentiallyConsistent);
1038    return RValue::get(0);
1039  }
1040
1041  case Builtin::BI__c11_atomic_is_lock_free:
1042  case Builtin::BI__atomic_is_lock_free: {
1043    // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1044    // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1045    // _Atomic(T) is always properly-aligned.
1046    const char *LibCallName = "__atomic_is_lock_free";
1047    CallArgList Args;
1048    Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1049             getContext().getSizeType());
1050    if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1051      Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1052               getContext().VoidPtrTy);
1053    else
1054      Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1055               getContext().VoidPtrTy);
1056    const CGFunctionInfo &FuncInfo =
1057        CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1058                                               FunctionType::ExtInfo(),
1059                                               RequiredArgs::All);
1060    llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1061    llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1062    return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1063  }
1064
1065  case Builtin::BI__atomic_test_and_set: {
1066    // Look at the argument type to determine whether this is a volatile
1067    // operation. The parameter type is always volatile.
1068    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1069    bool Volatile =
1070        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1071
1072    Value *Ptr = EmitScalarExpr(E->getArg(0));
1073    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1074    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1075    Value *NewVal = Builder.getInt8(1);
1076    Value *Order = EmitScalarExpr(E->getArg(1));
1077    if (isa<llvm::ConstantInt>(Order)) {
1078      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1079      AtomicRMWInst *Result = 0;
1080      switch (ord) {
1081      case 0:  // memory_order_relaxed
1082      default: // invalid order
1083        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1084                                         Ptr, NewVal,
1085                                         llvm::Monotonic);
1086        break;
1087      case 1:  // memory_order_consume
1088      case 2:  // memory_order_acquire
1089        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1090                                         Ptr, NewVal,
1091                                         llvm::Acquire);
1092        break;
1093      case 3:  // memory_order_release
1094        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1095                                         Ptr, NewVal,
1096                                         llvm::Release);
1097        break;
1098      case 4:  // memory_order_acq_rel
1099        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1100                                         Ptr, NewVal,
1101                                         llvm::AcquireRelease);
1102        break;
1103      case 5:  // memory_order_seq_cst
1104        Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1105                                         Ptr, NewVal,
1106                                         llvm::SequentiallyConsistent);
1107        break;
1108      }
1109      Result->setVolatile(Volatile);
1110      return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1111    }
1112
1113    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1114
1115    llvm::BasicBlock *BBs[5] = {
1116      createBasicBlock("monotonic", CurFn),
1117      createBasicBlock("acquire", CurFn),
1118      createBasicBlock("release", CurFn),
1119      createBasicBlock("acqrel", CurFn),
1120      createBasicBlock("seqcst", CurFn)
1121    };
1122    llvm::AtomicOrdering Orders[5] = {
1123      llvm::Monotonic, llvm::Acquire, llvm::Release,
1124      llvm::AcquireRelease, llvm::SequentiallyConsistent
1125    };
1126
1127    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1128    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1129
1130    Builder.SetInsertPoint(ContBB);
1131    PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1132
1133    for (unsigned i = 0; i < 5; ++i) {
1134      Builder.SetInsertPoint(BBs[i]);
1135      AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1136                                                   Ptr, NewVal, Orders[i]);
1137      RMW->setVolatile(Volatile);
1138      Result->addIncoming(RMW, BBs[i]);
1139      Builder.CreateBr(ContBB);
1140    }
1141
1142    SI->addCase(Builder.getInt32(0), BBs[0]);
1143    SI->addCase(Builder.getInt32(1), BBs[1]);
1144    SI->addCase(Builder.getInt32(2), BBs[1]);
1145    SI->addCase(Builder.getInt32(3), BBs[2]);
1146    SI->addCase(Builder.getInt32(4), BBs[3]);
1147    SI->addCase(Builder.getInt32(5), BBs[4]);
1148
1149    Builder.SetInsertPoint(ContBB);
1150    return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1151  }
1152
1153  case Builtin::BI__atomic_clear: {
1154    QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1155    bool Volatile =
1156        PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1157
1158    Value *Ptr = EmitScalarExpr(E->getArg(0));
1159    unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1160    Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1161    Value *NewVal = Builder.getInt8(0);
1162    Value *Order = EmitScalarExpr(E->getArg(1));
1163    if (isa<llvm::ConstantInt>(Order)) {
1164      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1165      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1166      Store->setAlignment(1);
1167      switch (ord) {
1168      case 0:  // memory_order_relaxed
1169      default: // invalid order
1170        Store->setOrdering(llvm::Monotonic);
1171        break;
1172      case 3:  // memory_order_release
1173        Store->setOrdering(llvm::Release);
1174        break;
1175      case 5:  // memory_order_seq_cst
1176        Store->setOrdering(llvm::SequentiallyConsistent);
1177        break;
1178      }
1179      return RValue::get(0);
1180    }
1181
1182    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1183
1184    llvm::BasicBlock *BBs[3] = {
1185      createBasicBlock("monotonic", CurFn),
1186      createBasicBlock("release", CurFn),
1187      createBasicBlock("seqcst", CurFn)
1188    };
1189    llvm::AtomicOrdering Orders[3] = {
1190      llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1191    };
1192
1193    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1194    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1195
1196    for (unsigned i = 0; i < 3; ++i) {
1197      Builder.SetInsertPoint(BBs[i]);
1198      StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1199      Store->setAlignment(1);
1200      Store->setOrdering(Orders[i]);
1201      Builder.CreateBr(ContBB);
1202    }
1203
1204    SI->addCase(Builder.getInt32(0), BBs[0]);
1205    SI->addCase(Builder.getInt32(3), BBs[1]);
1206    SI->addCase(Builder.getInt32(5), BBs[2]);
1207
1208    Builder.SetInsertPoint(ContBB);
1209    return RValue::get(0);
1210  }
1211
1212  case Builtin::BI__atomic_thread_fence:
1213  case Builtin::BI__atomic_signal_fence:
1214  case Builtin::BI__c11_atomic_thread_fence:
1215  case Builtin::BI__c11_atomic_signal_fence: {
1216    llvm::SynchronizationScope Scope;
1217    if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1218        BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1219      Scope = llvm::SingleThread;
1220    else
1221      Scope = llvm::CrossThread;
1222    Value *Order = EmitScalarExpr(E->getArg(0));
1223    if (isa<llvm::ConstantInt>(Order)) {
1224      int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1225      switch (ord) {
1226      case 0:  // memory_order_relaxed
1227      default: // invalid order
1228        break;
1229      case 1:  // memory_order_consume
1230      case 2:  // memory_order_acquire
1231        Builder.CreateFence(llvm::Acquire, Scope);
1232        break;
1233      case 3:  // memory_order_release
1234        Builder.CreateFence(llvm::Release, Scope);
1235        break;
1236      case 4:  // memory_order_acq_rel
1237        Builder.CreateFence(llvm::AcquireRelease, Scope);
1238        break;
1239      case 5:  // memory_order_seq_cst
1240        Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1241        break;
1242      }
1243      return RValue::get(0);
1244    }
1245
1246    llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1247    AcquireBB = createBasicBlock("acquire", CurFn);
1248    ReleaseBB = createBasicBlock("release", CurFn);
1249    AcqRelBB = createBasicBlock("acqrel", CurFn);
1250    SeqCstBB = createBasicBlock("seqcst", CurFn);
1251    llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1252
1253    Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1254    llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1255
1256    Builder.SetInsertPoint(AcquireBB);
1257    Builder.CreateFence(llvm::Acquire, Scope);
1258    Builder.CreateBr(ContBB);
1259    SI->addCase(Builder.getInt32(1), AcquireBB);
1260    SI->addCase(Builder.getInt32(2), AcquireBB);
1261
1262    Builder.SetInsertPoint(ReleaseBB);
1263    Builder.CreateFence(llvm::Release, Scope);
1264    Builder.CreateBr(ContBB);
1265    SI->addCase(Builder.getInt32(3), ReleaseBB);
1266
1267    Builder.SetInsertPoint(AcqRelBB);
1268    Builder.CreateFence(llvm::AcquireRelease, Scope);
1269    Builder.CreateBr(ContBB);
1270    SI->addCase(Builder.getInt32(4), AcqRelBB);
1271
1272    Builder.SetInsertPoint(SeqCstBB);
1273    Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1274    Builder.CreateBr(ContBB);
1275    SI->addCase(Builder.getInt32(5), SeqCstBB);
1276
1277    Builder.SetInsertPoint(ContBB);
1278    return RValue::get(0);
1279  }
1280
1281    // Library functions with special handling.
1282  case Builtin::BIsqrt:
1283  case Builtin::BIsqrtf:
1284  case Builtin::BIsqrtl: {
1285    // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1286    // in finite- or unsafe-math mode (the intrinsic has different semantics
1287    // for handling negative numbers compared to the library function, so
1288    // -fmath-errno=0 is not enough).
1289    if (!FD->hasAttr<ConstAttr>())
1290      break;
1291    if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1292          CGM.getCodeGenOpts().NoNaNsFPMath))
1293      break;
1294    Value *Arg0 = EmitScalarExpr(E->getArg(0));
1295    llvm::Type *ArgType = Arg0->getType();
1296    Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1297    return RValue::get(Builder.CreateCall(F, Arg0));
1298  }
1299
1300  case Builtin::BIpow:
1301  case Builtin::BIpowf:
1302  case Builtin::BIpowl: {
1303    // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1304    if (!FD->hasAttr<ConstAttr>())
1305      break;
1306    Value *Base = EmitScalarExpr(E->getArg(0));
1307    Value *Exponent = EmitScalarExpr(E->getArg(1));
1308    llvm::Type *ArgType = Base->getType();
1309    Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1310    return RValue::get(Builder.CreateCall2(F, Base, Exponent));
1311    break;
1312  }
1313
1314  case Builtin::BIfma:
1315  case Builtin::BIfmaf:
1316  case Builtin::BIfmal:
1317  case Builtin::BI__builtin_fma:
1318  case Builtin::BI__builtin_fmaf:
1319  case Builtin::BI__builtin_fmal: {
1320    // Rewrite fma to intrinsic.
1321    Value *FirstArg = EmitScalarExpr(E->getArg(0));
1322    llvm::Type *ArgType = FirstArg->getType();
1323    Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1324    return RValue::get(Builder.CreateCall3(F, FirstArg,
1325                                              EmitScalarExpr(E->getArg(1)),
1326                                              EmitScalarExpr(E->getArg(2))));
1327  }
1328
1329  case Builtin::BI__builtin_signbit:
1330  case Builtin::BI__builtin_signbitf:
1331  case Builtin::BI__builtin_signbitl: {
1332    LLVMContext &C = CGM.getLLVMContext();
1333
1334    Value *Arg = EmitScalarExpr(E->getArg(0));
1335    llvm::Type *ArgTy = Arg->getType();
1336    if (ArgTy->isPPC_FP128Ty())
1337      break; // FIXME: I'm not sure what the right implementation is here.
1338    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1339    llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1340    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1341    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1342    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1343    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1344  }
1345  case Builtin::BI__builtin_annotation: {
1346    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1347    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1348                                      AnnVal->getType());
1349
1350    // Get the annotation string, go through casts. Sema requires this to be a
1351    // non-wide string literal, potentially casted, so the cast<> is safe.
1352    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1353    StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1354    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1355  }
1356  case Builtin::BI__builtin_addcb:
1357  case Builtin::BI__builtin_addcs:
1358  case Builtin::BI__builtin_addc:
1359  case Builtin::BI__builtin_addcl:
1360  case Builtin::BI__builtin_addcll:
1361  case Builtin::BI__builtin_subcb:
1362  case Builtin::BI__builtin_subcs:
1363  case Builtin::BI__builtin_subc:
1364  case Builtin::BI__builtin_subcl:
1365  case Builtin::BI__builtin_subcll: {
1366
1367    // We translate all of these builtins from expressions of the form:
1368    //   int x = ..., y = ..., carryin = ..., carryout, result;
1369    //   result = __builtin_addc(x, y, carryin, &carryout);
1370    //
1371    // to LLVM IR of the form:
1372    //
1373    //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1374    //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1375    //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1376    //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1377    //                                                       i32 %carryin)
1378    //   %result = extractvalue {i32, i1} %tmp2, 0
1379    //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1380    //   %tmp3 = or i1 %carry1, %carry2
1381    //   %tmp4 = zext i1 %tmp3 to i32
1382    //   store i32 %tmp4, i32* %carryout
1383
1384    // Scalarize our inputs.
1385    llvm::Value *X = EmitScalarExpr(E->getArg(0));
1386    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1387    llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1388    std::pair<llvm::Value*, unsigned> CarryOutPtr =
1389      EmitPointerWithAlignment(E->getArg(3));
1390
1391    // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1392    llvm::Intrinsic::ID IntrinsicId;
1393    switch (BuiltinID) {
1394    default: llvm_unreachable("Unknown multiprecision builtin id.");
1395    case Builtin::BI__builtin_addcb:
1396    case Builtin::BI__builtin_addcs:
1397    case Builtin::BI__builtin_addc:
1398    case Builtin::BI__builtin_addcl:
1399    case Builtin::BI__builtin_addcll:
1400      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1401      break;
1402    case Builtin::BI__builtin_subcb:
1403    case Builtin::BI__builtin_subcs:
1404    case Builtin::BI__builtin_subc:
1405    case Builtin::BI__builtin_subcl:
1406    case Builtin::BI__builtin_subcll:
1407      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1408      break;
1409    }
1410
1411    // Construct our resulting LLVM IR expression.
1412    llvm::Value *Carry1;
1413    llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1414                                              X, Y, Carry1);
1415    llvm::Value *Carry2;
1416    llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1417                                              Sum1, Carryin, Carry2);
1418    llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1419                                               X->getType());
1420    llvm::StoreInst *CarryOutStore = Builder.CreateStore(CarryOut,
1421                                                         CarryOutPtr.first);
1422    CarryOutStore->setAlignment(CarryOutPtr.second);
1423    return RValue::get(Sum2);
1424  }
1425  case Builtin::BI__builtin_uadd_overflow:
1426  case Builtin::BI__builtin_uaddl_overflow:
1427  case Builtin::BI__builtin_uaddll_overflow:
1428  case Builtin::BI__builtin_usub_overflow:
1429  case Builtin::BI__builtin_usubl_overflow:
1430  case Builtin::BI__builtin_usubll_overflow:
1431  case Builtin::BI__builtin_umul_overflow:
1432  case Builtin::BI__builtin_umull_overflow:
1433  case Builtin::BI__builtin_umulll_overflow:
1434  case Builtin::BI__builtin_sadd_overflow:
1435  case Builtin::BI__builtin_saddl_overflow:
1436  case Builtin::BI__builtin_saddll_overflow:
1437  case Builtin::BI__builtin_ssub_overflow:
1438  case Builtin::BI__builtin_ssubl_overflow:
1439  case Builtin::BI__builtin_ssubll_overflow:
1440  case Builtin::BI__builtin_smul_overflow:
1441  case Builtin::BI__builtin_smull_overflow:
1442  case Builtin::BI__builtin_smulll_overflow: {
1443
1444    // We translate all of these builtins directly to the relevant llvm IR node.
1445
1446    // Scalarize our inputs.
1447    llvm::Value *X = EmitScalarExpr(E->getArg(0));
1448    llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1449    std::pair<llvm::Value *, unsigned> SumOutPtr =
1450      EmitPointerWithAlignment(E->getArg(2));
1451
1452    // Decide which of the overflow intrinsics we are lowering to:
1453    llvm::Intrinsic::ID IntrinsicId;
1454    switch (BuiltinID) {
1455    default: llvm_unreachable("Unknown security overflow builtin id.");
1456    case Builtin::BI__builtin_uadd_overflow:
1457    case Builtin::BI__builtin_uaddl_overflow:
1458    case Builtin::BI__builtin_uaddll_overflow:
1459      IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1460      break;
1461    case Builtin::BI__builtin_usub_overflow:
1462    case Builtin::BI__builtin_usubl_overflow:
1463    case Builtin::BI__builtin_usubll_overflow:
1464      IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1465      break;
1466    case Builtin::BI__builtin_umul_overflow:
1467    case Builtin::BI__builtin_umull_overflow:
1468    case Builtin::BI__builtin_umulll_overflow:
1469      IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1470      break;
1471    case Builtin::BI__builtin_sadd_overflow:
1472    case Builtin::BI__builtin_saddl_overflow:
1473    case Builtin::BI__builtin_saddll_overflow:
1474      IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1475      break;
1476    case Builtin::BI__builtin_ssub_overflow:
1477    case Builtin::BI__builtin_ssubl_overflow:
1478    case Builtin::BI__builtin_ssubll_overflow:
1479      IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1480      break;
1481    case Builtin::BI__builtin_smul_overflow:
1482    case Builtin::BI__builtin_smull_overflow:
1483    case Builtin::BI__builtin_smulll_overflow:
1484      IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1485      break;
1486    }
1487
1488
1489    llvm::Value *Carry;
1490    llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1491    llvm::StoreInst *SumOutStore = Builder.CreateStore(Sum, SumOutPtr.first);
1492    SumOutStore->setAlignment(SumOutPtr.second);
1493
1494    return RValue::get(Carry);
1495  }
1496  case Builtin::BI__builtin_addressof:
1497    return RValue::get(EmitLValue(E->getArg(0)).getAddress());
1498  case Builtin::BI__noop:
1499    return RValue::get(0);
1500  }
1501
1502  // If this is an alias for a lib function (e.g. __builtin_sin), emit
1503  // the call using the normal call path, but using the unmangled
1504  // version of the function name.
1505  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1506    return emitLibraryCall(*this, FD, E,
1507                           CGM.getBuiltinLibFunction(FD, BuiltinID));
1508
1509  // If this is a predefined lib function (e.g. malloc), emit the call
1510  // using exactly the normal call path.
1511  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1512    return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1513
1514  // See if we have a target specific intrinsic.
1515  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1516  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1517  if (const char *Prefix =
1518      llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()))
1519    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1520
1521  if (IntrinsicID != Intrinsic::not_intrinsic) {
1522    SmallVector<Value*, 16> Args;
1523
1524    // Find out if any arguments are required to be integer constant
1525    // expressions.
1526    unsigned ICEArguments = 0;
1527    ASTContext::GetBuiltinTypeError Error;
1528    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1529    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1530
1531    Function *F = CGM.getIntrinsic(IntrinsicID);
1532    llvm::FunctionType *FTy = F->getFunctionType();
1533
1534    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1535      Value *ArgValue;
1536      // If this is a normal argument, just emit it as a scalar.
1537      if ((ICEArguments & (1 << i)) == 0) {
1538        ArgValue = EmitScalarExpr(E->getArg(i));
1539      } else {
1540        // If this is required to be a constant, constant fold it so that we
1541        // know that the generated intrinsic gets a ConstantInt.
1542        llvm::APSInt Result;
1543        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1544        assert(IsConst && "Constant arg isn't actually constant?");
1545        (void)IsConst;
1546        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1547      }
1548
1549      // If the intrinsic arg type is different from the builtin arg type
1550      // we need to do a bit cast.
1551      llvm::Type *PTy = FTy->getParamType(i);
1552      if (PTy != ArgValue->getType()) {
1553        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1554               "Must be able to losslessly bit cast to param");
1555        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1556      }
1557
1558      Args.push_back(ArgValue);
1559    }
1560
1561    Value *V = Builder.CreateCall(F, Args);
1562    QualType BuiltinRetType = E->getType();
1563
1564    llvm::Type *RetTy = VoidTy;
1565    if (!BuiltinRetType->isVoidType())
1566      RetTy = ConvertType(BuiltinRetType);
1567
1568    if (RetTy != V->getType()) {
1569      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1570             "Must be able to losslessly bit cast result type");
1571      V = Builder.CreateBitCast(V, RetTy);
1572    }
1573
1574    return RValue::get(V);
1575  }
1576
1577  // See if we have a target specific builtin that needs to be lowered.
1578  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1579    return RValue::get(V);
1580
1581  ErrorUnsupported(E, "builtin function");
1582
1583  // Unknown builtin, for now just dump it out and return undef.
1584  return GetUndefRValue(E->getType());
1585}
1586
1587Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1588                                              const CallExpr *E) {
1589  switch (getTarget().getTriple().getArch()) {
1590  case llvm::Triple::aarch64:
1591    return EmitAArch64BuiltinExpr(BuiltinID, E);
1592  case llvm::Triple::arm:
1593  case llvm::Triple::thumb:
1594    return EmitARMBuiltinExpr(BuiltinID, E);
1595  case llvm::Triple::x86:
1596  case llvm::Triple::x86_64:
1597    return EmitX86BuiltinExpr(BuiltinID, E);
1598  case llvm::Triple::ppc:
1599  case llvm::Triple::ppc64:
1600  case llvm::Triple::ppc64le:
1601    return EmitPPCBuiltinExpr(BuiltinID, E);
1602  default:
1603    return 0;
1604  }
1605}
1606
1607static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
1608                                     NeonTypeFlags TypeFlags,
1609                                     bool V1Ty=false) {
1610  int IsQuad = TypeFlags.isQuad();
1611  switch (TypeFlags.getEltType()) {
1612  case NeonTypeFlags::Int8:
1613  case NeonTypeFlags::Poly8:
1614    return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
1615  case NeonTypeFlags::Int16:
1616  case NeonTypeFlags::Poly16:
1617  case NeonTypeFlags::Float16:
1618    return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
1619  case NeonTypeFlags::Int32:
1620    return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
1621  case NeonTypeFlags::Int64:
1622    return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
1623  case NeonTypeFlags::Float32:
1624    return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
1625  case NeonTypeFlags::Float64:
1626    return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
1627  }
1628  llvm_unreachable("Unknown vector element type!");
1629}
1630
1631Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1632  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1633  Value* SV = llvm::ConstantVector::getSplat(nElts, C);
1634  return Builder.CreateShuffleVector(V, V, SV, "lane");
1635}
1636
1637Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1638                                     const char *name,
1639                                     unsigned shift, bool rightshift) {
1640  unsigned j = 0;
1641  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1642       ai != ae; ++ai, ++j)
1643    if (shift > 0 && shift == j)
1644      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1645    else
1646      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1647
1648  return Builder.CreateCall(F, Ops, name);
1649}
1650
1651Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1652                                            bool neg) {
1653  int SV = cast<ConstantInt>(V)->getSExtValue();
1654
1655  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1656  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1657  return llvm::ConstantVector::getSplat(VTy->getNumElements(), C);
1658}
1659
1660/// GetPointeeAlignment - Given an expression with a pointer type, find the
1661/// alignment of the type referenced by the pointer.  Skip over implicit
1662/// casts.
1663std::pair<llvm::Value*, unsigned>
1664CodeGenFunction::EmitPointerWithAlignment(const Expr *Addr) {
1665  assert(Addr->getType()->isPointerType());
1666  Addr = Addr->IgnoreParens();
1667  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Addr)) {
1668    if ((ICE->getCastKind() == CK_BitCast || ICE->getCastKind() == CK_NoOp) &&
1669        ICE->getSubExpr()->getType()->isPointerType()) {
1670      std::pair<llvm::Value*, unsigned> Ptr =
1671          EmitPointerWithAlignment(ICE->getSubExpr());
1672      Ptr.first = Builder.CreateBitCast(Ptr.first,
1673                                        ConvertType(Addr->getType()));
1674      return Ptr;
1675    } else if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1676      LValue LV = EmitLValue(ICE->getSubExpr());
1677      unsigned Align = LV.getAlignment().getQuantity();
1678      if (!Align) {
1679        // FIXME: Once LValues are fixed to always set alignment,
1680        // zap this code.
1681        QualType PtTy = ICE->getSubExpr()->getType();
1682        if (!PtTy->isIncompleteType())
1683          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1684        else
1685          Align = 1;
1686      }
1687      return std::make_pair(LV.getAddress(), Align);
1688    }
1689  }
1690  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Addr)) {
1691    if (UO->getOpcode() == UO_AddrOf) {
1692      LValue LV = EmitLValue(UO->getSubExpr());
1693      unsigned Align = LV.getAlignment().getQuantity();
1694      if (!Align) {
1695        // FIXME: Once LValues are fixed to always set alignment,
1696        // zap this code.
1697        QualType PtTy = UO->getSubExpr()->getType();
1698        if (!PtTy->isIncompleteType())
1699          Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1700        else
1701          Align = 1;
1702      }
1703      return std::make_pair(LV.getAddress(), Align);
1704    }
1705  }
1706
1707  unsigned Align = 1;
1708  QualType PtTy = Addr->getType()->getPointeeType();
1709  if (!PtTy->isIncompleteType())
1710    Align = getContext().getTypeAlignInChars(PtTy).getQuantity();
1711
1712  return std::make_pair(EmitScalarExpr(Addr), Align);
1713}
1714
1715static Value *EmitAArch64ScalarBuiltinExpr(CodeGenFunction &CGF,
1716                                           unsigned BuiltinID,
1717                                           const CallExpr *E) {
1718  NeonTypeFlags::EltType ET;
1719  bool usgn;
1720  unsigned int Int = 0;
1721  bool OverloadInt = true;
1722  const char *s = NULL;
1723
1724  SmallVector<Value *, 4> Ops;
1725  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1726    Ops.push_back(CGF.EmitScalarExpr(E->getArg(i)));
1727  }
1728
1729  // AArch64 scalar builtins are not overloaded, they do not have an extra
1730  // argument that specifies the vector type, need to handle each case.
1731  switch (BuiltinID) {
1732  default: break;
1733  // Scalar Add
1734  case AArch64::BI__builtin_neon_vaddd_s64:
1735    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vaddds;
1736    s = "vaddds"; usgn = false; OverloadInt = false; break;
1737  case AArch64::BI__builtin_neon_vaddd_u64:
1738    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vadddu;
1739    s = "vadddu"; usgn = true; OverloadInt = false; break;
1740  // Scalar Sub
1741  case AArch64::BI__builtin_neon_vsubd_s64:
1742    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vsubds;
1743    s = "vsubds"; usgn = false; OverloadInt = false; break;
1744  case AArch64::BI__builtin_neon_vsubd_u64:
1745    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vsubdu;
1746    s = "vsubdu"; usgn = true; OverloadInt = false; break;
1747  // Scalar Saturating Add
1748  case AArch64::BI__builtin_neon_vqaddb_s8:
1749    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqadds;
1750    s = "vqadds"; usgn = false; OverloadInt = true; break;
1751  case AArch64::BI__builtin_neon_vqaddh_s16:
1752    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqadds;
1753    s = "vqadds"; usgn = false; OverloadInt = true; break;
1754  case AArch64::BI__builtin_neon_vqadds_s32:
1755    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqadds;
1756    s = "vqadds"; usgn = false; OverloadInt = true; break;
1757  case AArch64::BI__builtin_neon_vqaddd_s64:
1758    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqadds;
1759    s = "vqadds"; usgn = false; OverloadInt = true; break;
1760  case AArch64::BI__builtin_neon_vqaddb_u8:
1761    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqaddu;
1762    s = "vqaddu"; usgn = true; OverloadInt = true; break;
1763  case AArch64::BI__builtin_neon_vqaddh_u16:
1764    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqaddu;
1765    s = "vqaddu"; usgn = true; OverloadInt = true; break;
1766  case AArch64::BI__builtin_neon_vqadds_u32:
1767    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqaddu;
1768    s = "vqaddu"; usgn = true; OverloadInt = true; break;
1769  case AArch64::BI__builtin_neon_vqaddd_u64:
1770    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqaddu;
1771    s = "vqaddu"; usgn = true; OverloadInt = true; break;
1772  // Scalar Saturating Sub
1773  case AArch64::BI__builtin_neon_vqsubb_s8:
1774    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqsubs;
1775    s = "vqsubs"; usgn = false; OverloadInt = true; break;
1776  case AArch64::BI__builtin_neon_vqsubh_s16:
1777    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqsubs;
1778    s = "vqsubs"; usgn = false; OverloadInt = true; break;
1779  case AArch64::BI__builtin_neon_vqsubs_s32:
1780    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqsubs;
1781    s = "vqsubs"; usgn = false; OverloadInt = true; break;
1782  case AArch64::BI__builtin_neon_vqsubd_s64:
1783    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqsubs;
1784    s = "vqsubs"; usgn = false; OverloadInt = true; break;
1785  case AArch64::BI__builtin_neon_vqsubb_u8:
1786    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqsubu;
1787    s = "vqsubu"; usgn = true; OverloadInt = true; break;
1788  case AArch64::BI__builtin_neon_vqsubh_u16:
1789    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqsubu;
1790    s = "vqsubu"; usgn = true; OverloadInt = true; break;
1791  case AArch64::BI__builtin_neon_vqsubs_u32:
1792    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqsubu;
1793    s = "vqsubu"; usgn = true; OverloadInt = true; break;
1794  case AArch64::BI__builtin_neon_vqsubd_u64:
1795    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqsubu;
1796    s = "vqsubu"; usgn = true; OverloadInt = true; break;
1797  // Scalar Shift Left
1798  case AArch64::BI__builtin_neon_vshld_s64:
1799    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vshlds;
1800    s = "vshlds"; usgn = false; OverloadInt=false; break;
1801  case AArch64::BI__builtin_neon_vshld_u64:
1802    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vshldu;
1803    s = "vshldu"; usgn = true; OverloadInt = false; break;
1804  // Scalar Saturating Shift Left
1805  case AArch64::BI__builtin_neon_vqshlb_s8:
1806    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqshls;
1807    s = "vqshls"; usgn = false; OverloadInt = true; break;
1808  case AArch64::BI__builtin_neon_vqshlh_s16:
1809    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqshls;
1810    s = "vqshls"; usgn = false; OverloadInt = true; break;
1811  case AArch64::BI__builtin_neon_vqshls_s32:
1812    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqshls;
1813    s = "vqshls"; usgn = false; OverloadInt = true; break;
1814  case AArch64::BI__builtin_neon_vqshld_s64:
1815    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqshls;
1816    s = "vqshls"; usgn = false; OverloadInt = true; break;
1817  case AArch64::BI__builtin_neon_vqshlb_u8:
1818    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqshlu;
1819    s = "vqshlu"; usgn = true; OverloadInt = true; break;
1820  case AArch64::BI__builtin_neon_vqshlh_u16:
1821    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqshlu;
1822    s = "vqshlu"; usgn = true; OverloadInt = true; break;
1823  case AArch64::BI__builtin_neon_vqshls_u32:
1824    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqshlu;
1825    s = "vqshlu"; usgn = true; OverloadInt = true; break;
1826  case AArch64::BI__builtin_neon_vqshld_u64:
1827    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqshlu;
1828    s = "vqshlu"; usgn = true; OverloadInt = true; break;
1829  // Scalar Rouding Shift Left
1830  case AArch64::BI__builtin_neon_vrshld_s64:
1831    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vrshlds;
1832    s = "vrshlds"; usgn = false; OverloadInt=false; break;
1833  case AArch64::BI__builtin_neon_vrshld_u64:
1834    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vrshldu;
1835    s = "vrshldu"; usgn = true; OverloadInt=false; break;
1836  // Scalar Saturating Rouding Shift Left
1837  case AArch64::BI__builtin_neon_vqrshlb_s8:
1838    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqrshls;
1839    s = "vqrshls"; usgn = false; OverloadInt = true; break;
1840  case AArch64::BI__builtin_neon_vqrshlh_s16:
1841    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqrshls;
1842    s = "vqrshls"; usgn = false; OverloadInt = true; break;
1843  case AArch64::BI__builtin_neon_vqrshls_s32:
1844    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqrshls;
1845    s = "vqrshls"; usgn = false; OverloadInt = true; break;
1846  case AArch64::BI__builtin_neon_vqrshld_s64:
1847    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqrshls;
1848    s = "vqrshls"; usgn = false; OverloadInt = true; break;
1849  case AArch64::BI__builtin_neon_vqrshlb_u8:
1850    ET = NeonTypeFlags::Int8; Int = Intrinsic::aarch64_neon_vqrshlu;
1851    s = "vqrshlu"; usgn = true; OverloadInt = true; break;
1852  case AArch64::BI__builtin_neon_vqrshlh_u16:
1853    ET = NeonTypeFlags::Int16; Int = Intrinsic::aarch64_neon_vqrshlu;
1854    s = "vqrshlu"; usgn = true; OverloadInt = true; break;
1855  case AArch64::BI__builtin_neon_vqrshls_u32:
1856    ET = NeonTypeFlags::Int32; Int = Intrinsic::aarch64_neon_vqrshlu;
1857    s = "vqrshlu"; usgn = true; OverloadInt = true; break;
1858  case AArch64::BI__builtin_neon_vqrshld_u64:
1859    ET = NeonTypeFlags::Int64; Int = Intrinsic::aarch64_neon_vqrshlu;
1860    s = "vqrshlu"; usgn = true; OverloadInt = true; break;
1861  // Scalar Reduce Pairwise Add
1862  case AArch64::BI__builtin_neon_vpaddd_s64:
1863    Int = Intrinsic::aarch64_neon_vpadd; s = "vpadd";
1864    OverloadInt = false; break;
1865  case AArch64::BI__builtin_neon_vpadds_f32:
1866    Int = Intrinsic::aarch64_neon_vpfadd; s = "vpfadd";
1867    OverloadInt = false; break;
1868  case AArch64::BI__builtin_neon_vpaddd_f64:
1869    Int = Intrinsic::aarch64_neon_vpfaddq; s = "vpfaddq";
1870    OverloadInt = false; break;
1871  // Scalar Reduce Pairwise Floating Point Max
1872  case AArch64::BI__builtin_neon_vpmaxs_f32:
1873    Int = Intrinsic::aarch64_neon_vpmax; s = "vpmax";
1874    OverloadInt = false; break;
1875  case AArch64::BI__builtin_neon_vpmaxqd_f64:
1876    Int = Intrinsic::aarch64_neon_vpmaxq; s = "vpmaxq";
1877    OverloadInt = false; break;
1878  // Scalar Reduce Pairwise Floating Point Min
1879  case AArch64::BI__builtin_neon_vpmins_f32:
1880    Int = Intrinsic::aarch64_neon_vpmin; s = "vpmin";
1881    OverloadInt = false; break;
1882  case AArch64::BI__builtin_neon_vpminqd_f64:
1883    Int = Intrinsic::aarch64_neon_vpminq; s = "vpminq";
1884    OverloadInt = false; break;
1885  // Scalar Reduce Pairwise Floating Point Maxnm
1886  case AArch64::BI__builtin_neon_vpmaxnms_f32:
1887    Int = Intrinsic::aarch64_neon_vpfmaxnm; s = "vpfmaxnm";
1888    OverloadInt = false; break;
1889  case AArch64::BI__builtin_neon_vpmaxnmqd_f64:
1890    Int = Intrinsic::aarch64_neon_vpfmaxnmq; s = "vpfmaxnmq";
1891    OverloadInt = false; break;
1892   // Scalar Reduce Pairwise Floating Point Minnm
1893  case AArch64::BI__builtin_neon_vpminnms_f32:
1894    Int = Intrinsic::aarch64_neon_vpfminnm; s = "vpfminnm";
1895    OverloadInt = false; break;
1896  case AArch64::BI__builtin_neon_vpminnmqd_f64:
1897    Int = Intrinsic::aarch64_neon_vpfminnmq; s = "vpfminnmq";
1898    OverloadInt = false; break;
1899  }
1900
1901  if (!Int)
1902    return 0;
1903
1904  // AArch64 scalar builtin that returns scalar type
1905  // and should be mapped to AArch64 intrinsic that takes
1906  // one-element vector type arguments and returns
1907  // one-element vector type.
1908  llvm::Type *Ty = 0;
1909  Function *F = 0;
1910  if (OverloadInt) {
1911    // Determine the type of this overloaded AArch64 intrinsic
1912    NeonTypeFlags Type(ET, usgn, false);
1913    llvm::VectorType *VTy = GetNeonType(&CGF, Type, true);
1914    Ty = VTy;
1915    if (!Ty)
1916      return 0;
1917    F = CGF.CGM.getIntrinsic(Int, Ty);
1918  } else
1919    F = CGF.CGM.getIntrinsic(Int);
1920
1921  Value *Result = CGF.EmitNeonCall(F, Ops, s);
1922  llvm::Type *ResultType = CGF.ConvertType(E->getType());
1923  // AArch64 intrinsic one-element vector type cast to
1924  // scalar type expected by the builtin
1925  return CGF.Builder.CreateBitCast(Result, ResultType, s);
1926}
1927
1928Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
1929                                               const CallExpr *E) {
1930
1931  // Process AArch64 scalar builtins
1932  if (Value *Result = EmitAArch64ScalarBuiltinExpr(*this, BuiltinID, E))
1933    return Result;
1934
1935  if (BuiltinID == AArch64::BI__clear_cache) {
1936    assert(E->getNumArgs() == 2 &&
1937           "Variadic __clear_cache slipped through on AArch64");
1938
1939    const FunctionDecl *FD = E->getDirectCallee();
1940    SmallVector<Value *, 2> Ops;
1941    for (unsigned i = 0; i < E->getNumArgs(); i++)
1942      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1943    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1944    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1945    StringRef Name = FD->getName();
1946    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1947  }
1948
1949  SmallVector<Value *, 4> Ops;
1950  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
1951    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1952  }
1953
1954  // Get the last argument, which specifies the vector type.
1955  llvm::APSInt Result;
1956  const Expr *Arg = E->getArg(E->getNumArgs() - 1);
1957  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1958    return 0;
1959
1960  // Determine the type of this overloaded NEON intrinsic.
1961  NeonTypeFlags Type(Result.getZExtValue());
1962  bool usgn = Type.isUnsigned();
1963
1964  llvm::VectorType *VTy = GetNeonType(this, Type);
1965  llvm::Type *Ty = VTy;
1966  if (!Ty)
1967    return 0;
1968
1969  unsigned Int;
1970  switch (BuiltinID) {
1971  default:
1972    return 0;
1973
1974  // AArch64 builtins mapping to legacy ARM v7 builtins.
1975  // FIXME: the mapped builtins listed correspond to what has been tested
1976  // in aarch64-neon-intrinsics.c so far.
1977  case AArch64::BI__builtin_neon_vmul_v:
1978    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmul_v, E);
1979  case AArch64::BI__builtin_neon_vmulq_v:
1980    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmulq_v, E);
1981  case AArch64::BI__builtin_neon_vabd_v:
1982    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabd_v, E);
1983  case AArch64::BI__builtin_neon_vabdq_v:
1984    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vabdq_v, E);
1985  case AArch64::BI__builtin_neon_vfma_v:
1986    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfma_v, E);
1987  case AArch64::BI__builtin_neon_vfmaq_v:
1988    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vfmaq_v, E);
1989  case AArch64::BI__builtin_neon_vbsl_v:
1990    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbsl_v, E);
1991  case AArch64::BI__builtin_neon_vbslq_v:
1992    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vbslq_v, E);
1993  case AArch64::BI__builtin_neon_vrsqrts_v:
1994    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrts_v, E);
1995  case AArch64::BI__builtin_neon_vrsqrtsq_v:
1996    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsqrtsq_v, E);
1997  case AArch64::BI__builtin_neon_vrecps_v:
1998    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecps_v, E);
1999  case AArch64::BI__builtin_neon_vrecpsq_v:
2000    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrecpsq_v, E);
2001  case AArch64::BI__builtin_neon_vcage_v:
2002    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcage_v, E);
2003  case AArch64::BI__builtin_neon_vcale_v:
2004    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcale_v, E);
2005  case AArch64::BI__builtin_neon_vcaleq_v:
2006    std::swap(Ops[0], Ops[1]);
2007  case AArch64::BI__builtin_neon_vcageq_v: {
2008    Function *F;
2009    if (VTy->getElementType()->isIntegerTy(64))
2010      F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgeq);
2011    else
2012      F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
2013    return EmitNeonCall(F, Ops, "vcage");
2014  }
2015  case AArch64::BI__builtin_neon_vcalt_v:
2016    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcalt_v, E);
2017  case AArch64::BI__builtin_neon_vcagt_v:
2018    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcagt_v, E);
2019  case AArch64::BI__builtin_neon_vcaltq_v:
2020    std::swap(Ops[0], Ops[1]);
2021  case AArch64::BI__builtin_neon_vcagtq_v: {
2022    Function *F;
2023    if (VTy->getElementType()->isIntegerTy(64))
2024      F = CGM.getIntrinsic(Intrinsic::aarch64_neon_vacgtq);
2025    else
2026      F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
2027    return EmitNeonCall(F, Ops, "vcagt");
2028  }
2029  case AArch64::BI__builtin_neon_vtst_v:
2030    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtst_v, E);
2031  case AArch64::BI__builtin_neon_vtstq_v:
2032    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vtstq_v, E);
2033  case AArch64::BI__builtin_neon_vhadd_v:
2034    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhadd_v, E);
2035  case AArch64::BI__builtin_neon_vhaddq_v:
2036    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhaddq_v, E);
2037  case AArch64::BI__builtin_neon_vhsub_v:
2038    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsub_v, E);
2039  case AArch64::BI__builtin_neon_vhsubq_v:
2040    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vhsubq_v, E);
2041  case AArch64::BI__builtin_neon_vrhadd_v:
2042    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhadd_v, E);
2043  case AArch64::BI__builtin_neon_vrhaddq_v:
2044    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrhaddq_v, E);
2045  case AArch64::BI__builtin_neon_vqadd_v:
2046    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqadd_v, E);
2047  case AArch64::BI__builtin_neon_vqaddq_v:
2048    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqaddq_v, E);
2049  case AArch64::BI__builtin_neon_vqsub_v:
2050    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsub_v, E);
2051  case AArch64::BI__builtin_neon_vqsubq_v:
2052    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqsubq_v, E);
2053  case AArch64::BI__builtin_neon_vshl_v:
2054    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_v, E);
2055  case AArch64::BI__builtin_neon_vshlq_v:
2056    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_v, E);
2057  case AArch64::BI__builtin_neon_vqshl_v:
2058    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_v, E);
2059  case AArch64::BI__builtin_neon_vqshlq_v:
2060    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_v, E);
2061  case AArch64::BI__builtin_neon_vrshl_v:
2062    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshl_v, E);
2063  case AArch64::BI__builtin_neon_vrshlq_v:
2064    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrshlq_v, E);
2065  case AArch64::BI__builtin_neon_vqrshl_v:
2066    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshl_v, E);
2067  case AArch64::BI__builtin_neon_vqrshlq_v:
2068    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrshlq_v, E);
2069  case AArch64::BI__builtin_neon_vaddhn_v:
2070    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vaddhn_v, E);
2071  case AArch64::BI__builtin_neon_vraddhn_v:
2072    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vraddhn_v, E);
2073  case AArch64::BI__builtin_neon_vsubhn_v:
2074    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsubhn_v, E);
2075  case AArch64::BI__builtin_neon_vrsubhn_v:
2076    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vrsubhn_v, E);
2077  case AArch64::BI__builtin_neon_vmull_v:
2078    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmull_v, E);
2079  case AArch64::BI__builtin_neon_vqdmull_v:
2080    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmull_v, E);
2081  case AArch64::BI__builtin_neon_vqdmlal_v:
2082    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlal_v, E);
2083  case AArch64::BI__builtin_neon_vqdmlsl_v:
2084    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmlsl_v, E);
2085  case AArch64::BI__builtin_neon_vmax_v:
2086    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmax_v, E);
2087  case AArch64::BI__builtin_neon_vmaxq_v:
2088    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmaxq_v, E);
2089  case AArch64::BI__builtin_neon_vmin_v:
2090    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmin_v, E);
2091  case AArch64::BI__builtin_neon_vminq_v:
2092    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vminq_v, E);
2093  case AArch64::BI__builtin_neon_vpmax_v:
2094    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmax_v, E);
2095  case AArch64::BI__builtin_neon_vpmin_v:
2096    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpmin_v, E);
2097  case AArch64::BI__builtin_neon_vpadd_v:
2098    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vpadd_v, E);
2099  case AArch64::BI__builtin_neon_vqdmulh_v:
2100    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulh_v, E);
2101  case AArch64::BI__builtin_neon_vqdmulhq_v:
2102    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqdmulhq_v, E);
2103  case AArch64::BI__builtin_neon_vqrdmulh_v:
2104    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulh_v, E);
2105  case AArch64::BI__builtin_neon_vqrdmulhq_v:
2106    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqrdmulhq_v, E);
2107
2108  // Shift by immediate
2109  case AArch64::BI__builtin_neon_vshr_n_v:
2110    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshr_n_v, E);
2111  case AArch64::BI__builtin_neon_vshrq_n_v:
2112    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshrq_n_v, E);
2113  case AArch64::BI__builtin_neon_vrshr_n_v:
2114  case AArch64::BI__builtin_neon_vrshrq_n_v:
2115    Int = usgn ? Intrinsic::aarch64_neon_vurshr
2116               : Intrinsic::aarch64_neon_vsrshr;
2117    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n");
2118  case AArch64::BI__builtin_neon_vsra_n_v:
2119    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsra_n_v, E);
2120  case AArch64::BI__builtin_neon_vsraq_n_v:
2121    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vsraq_n_v, E);
2122  case AArch64::BI__builtin_neon_vrsra_n_v:
2123  case AArch64::BI__builtin_neon_vrsraq_n_v: {
2124    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2125    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2126    Int = usgn ? Intrinsic::aarch64_neon_vurshr
2127               : Intrinsic::aarch64_neon_vsrshr;
2128    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
2129    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
2130  }
2131  case AArch64::BI__builtin_neon_vshl_n_v:
2132    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshl_n_v, E);
2133  case AArch64::BI__builtin_neon_vshlq_n_v:
2134    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vshlq_n_v, E);
2135  case AArch64::BI__builtin_neon_vqshl_n_v:
2136    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshl_n_v, E);
2137  case AArch64::BI__builtin_neon_vqshlq_n_v:
2138    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vqshlq_n_v, E);
2139  case AArch64::BI__builtin_neon_vqshlu_n_v:
2140  case AArch64::BI__builtin_neon_vqshluq_n_v:
2141    Int = Intrinsic::aarch64_neon_vsqshlu;
2142    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n");
2143  case AArch64::BI__builtin_neon_vsri_n_v:
2144  case AArch64::BI__builtin_neon_vsriq_n_v:
2145    Int = Intrinsic::aarch64_neon_vsri;
2146    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsri_n");
2147  case AArch64::BI__builtin_neon_vsli_n_v:
2148  case AArch64::BI__builtin_neon_vsliq_n_v:
2149    Int = Intrinsic::aarch64_neon_vsli;
2150    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsli_n");
2151  case AArch64::BI__builtin_neon_vshll_n_v: {
2152    llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
2153    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2154    if (usgn)
2155      Ops[0] = Builder.CreateZExt(Ops[0], VTy);
2156    else
2157      Ops[0] = Builder.CreateSExt(Ops[0], VTy);
2158    Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
2159    return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
2160  }
2161  case AArch64::BI__builtin_neon_vshrn_n_v: {
2162    llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2163    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2164    Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
2165    if (usgn)
2166      Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
2167    else
2168      Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
2169    return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
2170  }
2171  case AArch64::BI__builtin_neon_vqshrun_n_v:
2172    Int = Intrinsic::aarch64_neon_vsqshrun;
2173    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
2174  case AArch64::BI__builtin_neon_vrshrn_n_v:
2175    Int = Intrinsic::aarch64_neon_vrshrn;
2176    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
2177  case AArch64::BI__builtin_neon_vqrshrun_n_v:
2178    Int = Intrinsic::aarch64_neon_vsqrshrun;
2179    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
2180  case AArch64::BI__builtin_neon_vqshrn_n_v:
2181    Int = usgn ? Intrinsic::aarch64_neon_vuqshrn
2182               : Intrinsic::aarch64_neon_vsqshrn;
2183    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
2184  case AArch64::BI__builtin_neon_vqrshrn_n_v:
2185    Int = usgn ? Intrinsic::aarch64_neon_vuqrshrn
2186               : Intrinsic::aarch64_neon_vsqrshrn;
2187    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
2188
2189  // Convert
2190  case AArch64::BI__builtin_neon_vmovl_v:
2191    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vmovl_v, E);
2192  case AArch64::BI__builtin_neon_vcvt_n_f32_v:
2193    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_f32_v, E);
2194  case AArch64::BI__builtin_neon_vcvtq_n_f32_v:
2195    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_f32_v, E);
2196  case AArch64::BI__builtin_neon_vcvtq_n_f64_v: {
2197    llvm::Type *FloatTy =
2198        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
2199    llvm::Type *Tys[2] = { FloatTy, Ty };
2200    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
2201               : Intrinsic::arm_neon_vcvtfxs2fp;
2202    Function *F = CGM.getIntrinsic(Int, Tys);
2203    return EmitNeonCall(F, Ops, "vcvt_n");
2204  }
2205  case AArch64::BI__builtin_neon_vcvt_n_s32_v:
2206    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_s32_v, E);
2207  case AArch64::BI__builtin_neon_vcvtq_n_s32_v:
2208    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_s32_v, E);
2209  case AArch64::BI__builtin_neon_vcvt_n_u32_v:
2210    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvt_n_u32_v, E);
2211  case AArch64::BI__builtin_neon_vcvtq_n_u32_v:
2212    return EmitARMBuiltinExpr(ARM::BI__builtin_neon_vcvtq_n_u32_v, E);
2213  case AArch64::BI__builtin_neon_vcvtq_n_s64_v:
2214  case AArch64::BI__builtin_neon_vcvtq_n_u64_v: {
2215    llvm::Type *FloatTy =
2216        GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
2217    llvm::Type *Tys[2] = { Ty, FloatTy };
2218    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
2219               : Intrinsic::arm_neon_vcvtfp2fxs;
2220    Function *F = CGM.getIntrinsic(Int, Tys);
2221    return EmitNeonCall(F, Ops, "vcvt_n");
2222  }
2223
2224  // AArch64-only builtins
2225  case AArch64::BI__builtin_neon_vfms_v:
2226  case AArch64::BI__builtin_neon_vfmsq_v: {
2227    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2228    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2229    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2230    Ops[1] = Builder.CreateFNeg(Ops[1]);
2231    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2232
2233    // LLVM's fma intrinsic puts the accumulator in the last position, but the
2234    // AArch64 intrinsic has it first.
2235    return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
2236  }
2237  case AArch64::BI__builtin_neon_vmaxnm_v:
2238  case AArch64::BI__builtin_neon_vmaxnmq_v: {
2239    Int = Intrinsic::aarch64_neon_vmaxnm;
2240    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
2241  }
2242  case AArch64::BI__builtin_neon_vminnm_v:
2243  case AArch64::BI__builtin_neon_vminnmq_v: {
2244    Int = Intrinsic::aarch64_neon_vminnm;
2245    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
2246  }
2247  case AArch64::BI__builtin_neon_vpmaxnm_v:
2248  case AArch64::BI__builtin_neon_vpmaxnmq_v: {
2249    Int = Intrinsic::aarch64_neon_vpmaxnm;
2250    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
2251  }
2252  case AArch64::BI__builtin_neon_vpminnm_v:
2253  case AArch64::BI__builtin_neon_vpminnmq_v: {
2254    Int = Intrinsic::aarch64_neon_vpminnm;
2255    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
2256  }
2257  case AArch64::BI__builtin_neon_vpmaxq_v: {
2258    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
2259    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
2260  }
2261  case AArch64::BI__builtin_neon_vpminq_v: {
2262    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
2263    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
2264  }
2265  case AArch64::BI__builtin_neon_vpaddq_v: {
2266    Int = Intrinsic::arm_neon_vpadd;
2267    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpadd");
2268  }
2269  case AArch64::BI__builtin_neon_vmulx_v:
2270  case AArch64::BI__builtin_neon_vmulxq_v: {
2271    Int = Intrinsic::aarch64_neon_vmulx;
2272    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
2273  }
2274  }
2275}
2276
2277Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
2278                                           const CallExpr *E) {
2279  if (BuiltinID == ARM::BI__clear_cache) {
2280    assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
2281    const FunctionDecl *FD = E->getDirectCallee();
2282    SmallVector<Value*, 2> Ops;
2283    for (unsigned i = 0; i < 2; i++)
2284      Ops.push_back(EmitScalarExpr(E->getArg(i)));
2285    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
2286    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
2287    StringRef Name = FD->getName();
2288    return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
2289  }
2290
2291  if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
2292      (BuiltinID == ARM::BI__builtin_arm_ldrex &&
2293       getContext().getTypeSize(E->getType()) == 64)) {
2294    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
2295
2296    Value *LdPtr = EmitScalarExpr(E->getArg(0));
2297    Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
2298                                    "ldrexd");
2299
2300    Value *Val0 = Builder.CreateExtractValue(Val, 1);
2301    Value *Val1 = Builder.CreateExtractValue(Val, 0);
2302    Val0 = Builder.CreateZExt(Val0, Int64Ty);
2303    Val1 = Builder.CreateZExt(Val1, Int64Ty);
2304
2305    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
2306    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
2307    Val = Builder.CreateOr(Val, Val1);
2308    return Builder.CreateBitCast(Val, ConvertType(E->getType()));
2309  }
2310
2311  if (BuiltinID == ARM::BI__builtin_arm_ldrex) {
2312    Value *LoadAddr = EmitScalarExpr(E->getArg(0));
2313
2314    QualType Ty = E->getType();
2315    llvm::Type *RealResTy = ConvertType(Ty);
2316    llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
2317                                                  getContext().getTypeSize(Ty));
2318    LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
2319
2320    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrex, LoadAddr->getType());
2321    Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
2322
2323    if (RealResTy->isPointerTy())
2324      return Builder.CreateIntToPtr(Val, RealResTy);
2325    else {
2326      Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
2327      return Builder.CreateBitCast(Val, RealResTy);
2328    }
2329  }
2330
2331  if (BuiltinID == ARM::BI__builtin_arm_strexd ||
2332      (BuiltinID == ARM::BI__builtin_arm_strex &&
2333       getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
2334    Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
2335    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
2336
2337    Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
2338    Value *Val = EmitScalarExpr(E->getArg(0));
2339    Builder.CreateStore(Val, Tmp);
2340
2341    Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
2342    Val = Builder.CreateLoad(LdPtr);
2343
2344    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
2345    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
2346    Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
2347    return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
2348  }
2349
2350  if (BuiltinID == ARM::BI__builtin_arm_strex) {
2351    Value *StoreVal = EmitScalarExpr(E->getArg(0));
2352    Value *StoreAddr = EmitScalarExpr(E->getArg(1));
2353
2354    QualType Ty = E->getArg(0)->getType();
2355    llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
2356                                                 getContext().getTypeSize(Ty));
2357    StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
2358
2359    if (StoreVal->getType()->isPointerTy())
2360      StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
2361    else {
2362      StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
2363      StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
2364    }
2365
2366    Function *F = CGM.getIntrinsic(Intrinsic::arm_strex, StoreAddr->getType());
2367    return Builder.CreateCall2(F, StoreVal, StoreAddr, "strex");
2368  }
2369
2370  if (BuiltinID == ARM::BI__builtin_arm_clrex) {
2371    Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
2372    return Builder.CreateCall(F);
2373  }
2374
2375  // CRC32
2376  Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
2377  switch (BuiltinID) {
2378  case ARM::BI__builtin_arm_crc32b:
2379    CRCIntrinsicID = Intrinsic::arm_crc32b; break;
2380  case ARM::BI__builtin_arm_crc32cb:
2381    CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
2382  case ARM::BI__builtin_arm_crc32h:
2383    CRCIntrinsicID = Intrinsic::arm_crc32h; break;
2384  case ARM::BI__builtin_arm_crc32ch:
2385    CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
2386  case ARM::BI__builtin_arm_crc32w:
2387  case ARM::BI__builtin_arm_crc32d:
2388    CRCIntrinsicID = Intrinsic::arm_crc32w; break;
2389  case ARM::BI__builtin_arm_crc32cw:
2390  case ARM::BI__builtin_arm_crc32cd:
2391    CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
2392  }
2393
2394  if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
2395    Value *Arg0 = EmitScalarExpr(E->getArg(0));
2396    Value *Arg1 = EmitScalarExpr(E->getArg(1));
2397
2398    // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
2399    // intrinsics, hence we need different codegen for these cases.
2400    if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
2401        BuiltinID == ARM::BI__builtin_arm_crc32cd) {
2402      Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
2403      Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
2404      Value *Arg1b = Builder.CreateLShr(Arg1, C1);
2405      Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
2406
2407      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
2408      Value *Res = Builder.CreateCall2(F, Arg0, Arg1a);
2409      return Builder.CreateCall2(F, Res, Arg1b);
2410    } else {
2411      Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
2412
2413      Function *F = CGM.getIntrinsic(CRCIntrinsicID);
2414      return Builder.CreateCall2(F, Arg0, Arg1);
2415    }
2416  }
2417
2418  SmallVector<Value*, 4> Ops;
2419  llvm::Value *Align = 0;
2420  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
2421    if (i == 0) {
2422      switch (BuiltinID) {
2423      case ARM::BI__builtin_neon_vld1_v:
2424      case ARM::BI__builtin_neon_vld1q_v:
2425      case ARM::BI__builtin_neon_vld1q_lane_v:
2426      case ARM::BI__builtin_neon_vld1_lane_v:
2427      case ARM::BI__builtin_neon_vld1_dup_v:
2428      case ARM::BI__builtin_neon_vld1q_dup_v:
2429      case ARM::BI__builtin_neon_vst1_v:
2430      case ARM::BI__builtin_neon_vst1q_v:
2431      case ARM::BI__builtin_neon_vst1q_lane_v:
2432      case ARM::BI__builtin_neon_vst1_lane_v:
2433      case ARM::BI__builtin_neon_vst2_v:
2434      case ARM::BI__builtin_neon_vst2q_v:
2435      case ARM::BI__builtin_neon_vst2_lane_v:
2436      case ARM::BI__builtin_neon_vst2q_lane_v:
2437      case ARM::BI__builtin_neon_vst3_v:
2438      case ARM::BI__builtin_neon_vst3q_v:
2439      case ARM::BI__builtin_neon_vst3_lane_v:
2440      case ARM::BI__builtin_neon_vst3q_lane_v:
2441      case ARM::BI__builtin_neon_vst4_v:
2442      case ARM::BI__builtin_neon_vst4q_v:
2443      case ARM::BI__builtin_neon_vst4_lane_v:
2444      case ARM::BI__builtin_neon_vst4q_lane_v:
2445        // Get the alignment for the argument in addition to the value;
2446        // we'll use it later.
2447        std::pair<llvm::Value*, unsigned> Src =
2448            EmitPointerWithAlignment(E->getArg(0));
2449        Ops.push_back(Src.first);
2450        Align = Builder.getInt32(Src.second);
2451        continue;
2452      }
2453    }
2454    if (i == 1) {
2455      switch (BuiltinID) {
2456      case ARM::BI__builtin_neon_vld2_v:
2457      case ARM::BI__builtin_neon_vld2q_v:
2458      case ARM::BI__builtin_neon_vld3_v:
2459      case ARM::BI__builtin_neon_vld3q_v:
2460      case ARM::BI__builtin_neon_vld4_v:
2461      case ARM::BI__builtin_neon_vld4q_v:
2462      case ARM::BI__builtin_neon_vld2_lane_v:
2463      case ARM::BI__builtin_neon_vld2q_lane_v:
2464      case ARM::BI__builtin_neon_vld3_lane_v:
2465      case ARM::BI__builtin_neon_vld3q_lane_v:
2466      case ARM::BI__builtin_neon_vld4_lane_v:
2467      case ARM::BI__builtin_neon_vld4q_lane_v:
2468      case ARM::BI__builtin_neon_vld2_dup_v:
2469      case ARM::BI__builtin_neon_vld3_dup_v:
2470      case ARM::BI__builtin_neon_vld4_dup_v:
2471        // Get the alignment for the argument in addition to the value;
2472        // we'll use it later.
2473        std::pair<llvm::Value*, unsigned> Src =
2474            EmitPointerWithAlignment(E->getArg(1));
2475        Ops.push_back(Src.first);
2476        Align = Builder.getInt32(Src.second);
2477        continue;
2478      }
2479    }
2480    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2481  }
2482
2483  // vget_lane and vset_lane are not overloaded and do not have an extra
2484  // argument that specifies the vector type.
2485  switch (BuiltinID) {
2486  default: break;
2487  case ARM::BI__builtin_neon_vget_lane_i8:
2488  case ARM::BI__builtin_neon_vget_lane_i16:
2489  case ARM::BI__builtin_neon_vget_lane_i32:
2490  case ARM::BI__builtin_neon_vget_lane_i64:
2491  case ARM::BI__builtin_neon_vget_lane_f32:
2492  case ARM::BI__builtin_neon_vgetq_lane_i8:
2493  case ARM::BI__builtin_neon_vgetq_lane_i16:
2494  case ARM::BI__builtin_neon_vgetq_lane_i32:
2495  case ARM::BI__builtin_neon_vgetq_lane_i64:
2496  case ARM::BI__builtin_neon_vgetq_lane_f32:
2497    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
2498                                        "vget_lane");
2499  case ARM::BI__builtin_neon_vset_lane_i8:
2500  case ARM::BI__builtin_neon_vset_lane_i16:
2501  case ARM::BI__builtin_neon_vset_lane_i32:
2502  case ARM::BI__builtin_neon_vset_lane_i64:
2503  case ARM::BI__builtin_neon_vset_lane_f32:
2504  case ARM::BI__builtin_neon_vsetq_lane_i8:
2505  case ARM::BI__builtin_neon_vsetq_lane_i16:
2506  case ARM::BI__builtin_neon_vsetq_lane_i32:
2507  case ARM::BI__builtin_neon_vsetq_lane_i64:
2508  case ARM::BI__builtin_neon_vsetq_lane_f32:
2509    Ops.push_back(EmitScalarExpr(E->getArg(2)));
2510    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
2511  }
2512
2513  // Get the last argument, which specifies the vector type.
2514  llvm::APSInt Result;
2515  const Expr *Arg = E->getArg(E->getNumArgs()-1);
2516  if (!Arg->isIntegerConstantExpr(Result, getContext()))
2517    return 0;
2518
2519  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
2520      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
2521    // Determine the overloaded type of this builtin.
2522    llvm::Type *Ty;
2523    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
2524      Ty = FloatTy;
2525    else
2526      Ty = DoubleTy;
2527
2528    // Determine whether this is an unsigned conversion or not.
2529    bool usgn = Result.getZExtValue() == 1;
2530    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
2531
2532    // Call the appropriate intrinsic.
2533    Function *F = CGM.getIntrinsic(Int, Ty);
2534    return Builder.CreateCall(F, Ops, "vcvtr");
2535  }
2536
2537  // Determine the type of this overloaded NEON intrinsic.
2538  NeonTypeFlags Type(Result.getZExtValue());
2539  bool usgn = Type.isUnsigned();
2540  bool quad = Type.isQuad();
2541  bool rightShift = false;
2542
2543  llvm::VectorType *VTy = GetNeonType(this, Type);
2544  llvm::Type *Ty = VTy;
2545  if (!Ty)
2546    return 0;
2547
2548  unsigned Int;
2549  switch (BuiltinID) {
2550  default: return 0;
2551  case ARM::BI__builtin_neon_vbsl_v:
2552  case ARM::BI__builtin_neon_vbslq_v:
2553    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vbsl, Ty),
2554                        Ops, "vbsl");
2555  case ARM::BI__builtin_neon_vabd_v:
2556  case ARM::BI__builtin_neon_vabdq_v:
2557    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
2558    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
2559  case ARM::BI__builtin_neon_vabs_v:
2560  case ARM::BI__builtin_neon_vabsq_v:
2561    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
2562                        Ops, "vabs");
2563  case ARM::BI__builtin_neon_vaddhn_v: {
2564    llvm::VectorType *SrcTy =
2565        llvm::VectorType::getExtendedElementVectorType(VTy);
2566
2567    // %sum = add <4 x i32> %lhs, %rhs
2568    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2569    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
2570    Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
2571
2572    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
2573    Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
2574                                       SrcTy->getScalarSizeInBits() / 2);
2575    ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
2576    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
2577
2578    // %res = trunc <4 x i32> %high to <4 x i16>
2579    return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
2580  }
2581  case ARM::BI__builtin_neon_vcale_v:
2582    std::swap(Ops[0], Ops[1]);
2583  case ARM::BI__builtin_neon_vcage_v: {
2584    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
2585    return EmitNeonCall(F, Ops, "vcage");
2586  }
2587  case ARM::BI__builtin_neon_vcaleq_v:
2588    std::swap(Ops[0], Ops[1]);
2589  case ARM::BI__builtin_neon_vcageq_v: {
2590    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
2591    return EmitNeonCall(F, Ops, "vcage");
2592  }
2593  case ARM::BI__builtin_neon_vcalt_v:
2594    std::swap(Ops[0], Ops[1]);
2595  case ARM::BI__builtin_neon_vcagt_v: {
2596    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
2597    return EmitNeonCall(F, Ops, "vcagt");
2598  }
2599  case ARM::BI__builtin_neon_vcaltq_v:
2600    std::swap(Ops[0], Ops[1]);
2601  case ARM::BI__builtin_neon_vcagtq_v: {
2602    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
2603    return EmitNeonCall(F, Ops, "vcagt");
2604  }
2605  case ARM::BI__builtin_neon_vcls_v:
2606  case ARM::BI__builtin_neon_vclsq_v: {
2607    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
2608    return EmitNeonCall(F, Ops, "vcls");
2609  }
2610  case ARM::BI__builtin_neon_vclz_v:
2611  case ARM::BI__builtin_neon_vclzq_v: {
2612    // Generate target-independent intrinsic; also need to add second argument
2613    // for whether or not clz of zero is undefined; on ARM it isn't.
2614    Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ty);
2615    Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
2616    return EmitNeonCall(F, Ops, "vclz");
2617  }
2618  case ARM::BI__builtin_neon_vcnt_v:
2619  case ARM::BI__builtin_neon_vcntq_v: {
2620    // generate target-independent intrinsic
2621    Function *F = CGM.getIntrinsic(Intrinsic::ctpop, Ty);
2622    return EmitNeonCall(F, Ops, "vctpop");
2623  }
2624  case ARM::BI__builtin_neon_vcvt_f16_v: {
2625    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
2626           "unexpected vcvt_f16_v builtin");
2627    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
2628    return EmitNeonCall(F, Ops, "vcvt");
2629  }
2630  case ARM::BI__builtin_neon_vcvt_f32_f16: {
2631    assert(Type.getEltType() == NeonTypeFlags::Float16 && !quad &&
2632           "unexpected vcvt_f32_f16 builtin");
2633    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
2634    return EmitNeonCall(F, Ops, "vcvt");
2635  }
2636  case ARM::BI__builtin_neon_vcvt_f32_v:
2637  case ARM::BI__builtin_neon_vcvtq_f32_v:
2638    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2639    Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
2640    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
2641                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
2642  case ARM::BI__builtin_neon_vcvt_s32_v:
2643  case ARM::BI__builtin_neon_vcvt_u32_v:
2644  case ARM::BI__builtin_neon_vcvtq_s32_v:
2645  case ARM::BI__builtin_neon_vcvtq_u32_v: {
2646    llvm::Type *FloatTy =
2647      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
2648    Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
2649    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
2650                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
2651  }
2652  case ARM::BI__builtin_neon_vcvt_n_f32_v:
2653  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
2654    llvm::Type *FloatTy =
2655      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
2656    llvm::Type *Tys[2] = { FloatTy, Ty };
2657    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp
2658               : Intrinsic::arm_neon_vcvtfxs2fp;
2659    Function *F = CGM.getIntrinsic(Int, Tys);
2660    return EmitNeonCall(F, Ops, "vcvt_n");
2661  }
2662  case ARM::BI__builtin_neon_vcvt_n_s32_v:
2663  case ARM::BI__builtin_neon_vcvt_n_u32_v:
2664  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
2665  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
2666    llvm::Type *FloatTy =
2667      GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, quad));
2668    llvm::Type *Tys[2] = { Ty, FloatTy };
2669    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu
2670               : Intrinsic::arm_neon_vcvtfp2fxs;
2671    Function *F = CGM.getIntrinsic(Int, Tys);
2672    return EmitNeonCall(F, Ops, "vcvt_n");
2673  }
2674  case ARM::BI__builtin_neon_vext_v:
2675  case ARM::BI__builtin_neon_vextq_v: {
2676    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
2677    SmallVector<Constant*, 16> Indices;
2678    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
2679      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
2680
2681    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2682    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2683    Value *SV = llvm::ConstantVector::get(Indices);
2684    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
2685  }
2686  case ARM::BI__builtin_neon_vhadd_v:
2687  case ARM::BI__builtin_neon_vhaddq_v:
2688    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
2689    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
2690  case ARM::BI__builtin_neon_vhsub_v:
2691  case ARM::BI__builtin_neon_vhsubq_v:
2692    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
2693    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
2694  case ARM::BI__builtin_neon_vld1_v:
2695  case ARM::BI__builtin_neon_vld1q_v:
2696    Ops.push_back(Align);
2697    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
2698                        Ops, "vld1");
2699  case ARM::BI__builtin_neon_vld1q_lane_v:
2700    // Handle 64-bit integer elements as a special case.  Use shuffles of
2701    // one-element vectors to avoid poor code for i64 in the backend.
2702    if (VTy->getElementType()->isIntegerTy(64)) {
2703      // Extract the other lane.
2704      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2705      int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
2706      Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
2707      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
2708      // Load the value as a one-element vector.
2709      Ty = llvm::VectorType::get(VTy->getElementType(), 1);
2710      Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty);
2711      Value *Ld = Builder.CreateCall2(F, Ops[0], Align);
2712      // Combine them.
2713      SmallVector<Constant*, 2> Indices;
2714      Indices.push_back(ConstantInt::get(Int32Ty, 1-Lane));
2715      Indices.push_back(ConstantInt::get(Int32Ty, Lane));
2716      SV = llvm::ConstantVector::get(Indices);
2717      return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
2718    }
2719    // fall through
2720  case ARM::BI__builtin_neon_vld1_lane_v: {
2721    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2722    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
2723    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2724    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
2725    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2726    return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
2727  }
2728  case ARM::BI__builtin_neon_vld1_dup_v:
2729  case ARM::BI__builtin_neon_vld1q_dup_v: {
2730    Value *V = UndefValue::get(Ty);
2731    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
2732    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2733    LoadInst *Ld = Builder.CreateLoad(Ops[0]);
2734    Ld->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
2735    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
2736    Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
2737    return EmitNeonSplat(Ops[0], CI);
2738  }
2739  case ARM::BI__builtin_neon_vld2_v:
2740  case ARM::BI__builtin_neon_vld2q_v: {
2741    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
2742    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
2743    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2744    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2745    return Builder.CreateStore(Ops[1], Ops[0]);
2746  }
2747  case ARM::BI__builtin_neon_vld3_v:
2748  case ARM::BI__builtin_neon_vld3q_v: {
2749    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
2750    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
2751    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2752    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2753    return Builder.CreateStore(Ops[1], Ops[0]);
2754  }
2755  case ARM::BI__builtin_neon_vld4_v:
2756  case ARM::BI__builtin_neon_vld4q_v: {
2757    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
2758    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
2759    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2760    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2761    return Builder.CreateStore(Ops[1], Ops[0]);
2762  }
2763  case ARM::BI__builtin_neon_vld2_lane_v:
2764  case ARM::BI__builtin_neon_vld2q_lane_v: {
2765    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
2766    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2767    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2768    Ops.push_back(Align);
2769    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
2770    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2771    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2772    return Builder.CreateStore(Ops[1], Ops[0]);
2773  }
2774  case ARM::BI__builtin_neon_vld3_lane_v:
2775  case ARM::BI__builtin_neon_vld3q_lane_v: {
2776    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
2777    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2778    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2779    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2780    Ops.push_back(Align);
2781    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2782    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2783    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2784    return Builder.CreateStore(Ops[1], Ops[0]);
2785  }
2786  case ARM::BI__builtin_neon_vld4_lane_v:
2787  case ARM::BI__builtin_neon_vld4q_lane_v: {
2788    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
2789    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2790    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
2791    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
2792    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
2793    Ops.push_back(Align);
2794    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
2795    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2796    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2797    return Builder.CreateStore(Ops[1], Ops[0]);
2798  }
2799  case ARM::BI__builtin_neon_vld2_dup_v:
2800  case ARM::BI__builtin_neon_vld3_dup_v:
2801  case ARM::BI__builtin_neon_vld4_dup_v: {
2802    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
2803    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
2804      switch (BuiltinID) {
2805      case ARM::BI__builtin_neon_vld2_dup_v:
2806        Int = Intrinsic::arm_neon_vld2;
2807        break;
2808      case ARM::BI__builtin_neon_vld3_dup_v:
2809        Int = Intrinsic::arm_neon_vld3;
2810        break;
2811      case ARM::BI__builtin_neon_vld4_dup_v:
2812        Int = Intrinsic::arm_neon_vld4;
2813        break;
2814      default: llvm_unreachable("unknown vld_dup intrinsic?");
2815      }
2816      Function *F = CGM.getIntrinsic(Int, Ty);
2817      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
2818      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2819      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2820      return Builder.CreateStore(Ops[1], Ops[0]);
2821    }
2822    switch (BuiltinID) {
2823    case ARM::BI__builtin_neon_vld2_dup_v:
2824      Int = Intrinsic::arm_neon_vld2lane;
2825      break;
2826    case ARM::BI__builtin_neon_vld3_dup_v:
2827      Int = Intrinsic::arm_neon_vld3lane;
2828      break;
2829    case ARM::BI__builtin_neon_vld4_dup_v:
2830      Int = Intrinsic::arm_neon_vld4lane;
2831      break;
2832    default: llvm_unreachable("unknown vld_dup intrinsic?");
2833    }
2834    Function *F = CGM.getIntrinsic(Int, Ty);
2835    llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
2836
2837    SmallVector<Value*, 6> Args;
2838    Args.push_back(Ops[1]);
2839    Args.append(STy->getNumElements(), UndefValue::get(Ty));
2840
2841    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
2842    Args.push_back(CI);
2843    Args.push_back(Align);
2844
2845    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
2846    // splat lane 0 to all elts in each vector of the result.
2847    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2848      Value *Val = Builder.CreateExtractValue(Ops[1], i);
2849      Value *Elt = Builder.CreateBitCast(Val, Ty);
2850      Elt = EmitNeonSplat(Elt, CI);
2851      Elt = Builder.CreateBitCast(Elt, Val->getType());
2852      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
2853    }
2854    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
2855    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2856    return Builder.CreateStore(Ops[1], Ops[0]);
2857  }
2858  case ARM::BI__builtin_neon_vmax_v:
2859  case ARM::BI__builtin_neon_vmaxq_v:
2860    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
2861    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
2862  case ARM::BI__builtin_neon_vmin_v:
2863  case ARM::BI__builtin_neon_vminq_v:
2864    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
2865    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
2866  case ARM::BI__builtin_neon_vmovl_v: {
2867    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
2868    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
2869    if (usgn)
2870      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
2871    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
2872  }
2873  case ARM::BI__builtin_neon_vmovn_v: {
2874    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
2875    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
2876    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
2877  }
2878  case ARM::BI__builtin_neon_vmul_v:
2879  case ARM::BI__builtin_neon_vmulq_v:
2880    assert(Type.isPoly() && "vmul builtin only supported for polynomial types");
2881    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
2882                        Ops, "vmul");
2883  case ARM::BI__builtin_neon_vmull_v:
2884    // FIXME: the integer vmull operations could be emitted in terms of pure
2885    // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
2886    // hoisting the exts outside loops. Until global ISel comes along that can
2887    // see through such movement this leads to bad CodeGen. So we need an
2888    // intrinsic for now.
2889    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
2890    Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
2891    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
2892  case ARM::BI__builtin_neon_vfma_v:
2893  case ARM::BI__builtin_neon_vfmaq_v: {
2894    Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
2895    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
2896    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
2897    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
2898
2899    // NEON intrinsic puts accumulator first, unlike the LLVM fma.
2900    return Builder.CreateCall3(F, Ops[1], Ops[2], Ops[0]);
2901  }
2902  case ARM::BI__builtin_neon_vpadal_v:
2903  case ARM::BI__builtin_neon_vpadalq_v: {
2904    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
2905    // The source operand type has twice as many elements of half the size.
2906    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2907    llvm::Type *EltTy =
2908      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2909    llvm::Type *NarrowTy =
2910      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2911    llvm::Type *Tys[2] = { Ty, NarrowTy };
2912    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
2913  }
2914  case ARM::BI__builtin_neon_vpadd_v:
2915    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
2916                        Ops, "vpadd");
2917  case ARM::BI__builtin_neon_vpaddl_v:
2918  case ARM::BI__builtin_neon_vpaddlq_v: {
2919    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
2920    // The source operand type has twice as many elements of half the size.
2921    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
2922    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
2923    llvm::Type *NarrowTy =
2924      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
2925    llvm::Type *Tys[2] = { Ty, NarrowTy };
2926    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
2927  }
2928  case ARM::BI__builtin_neon_vpmax_v:
2929    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
2930    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
2931  case ARM::BI__builtin_neon_vpmin_v:
2932    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
2933    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
2934  case ARM::BI__builtin_neon_vqabs_v:
2935  case ARM::BI__builtin_neon_vqabsq_v:
2936    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
2937                        Ops, "vqabs");
2938  case ARM::BI__builtin_neon_vqadd_v:
2939  case ARM::BI__builtin_neon_vqaddq_v:
2940    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
2941    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
2942  case ARM::BI__builtin_neon_vqdmlal_v: {
2943    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
2944    Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
2945                              MulOps, "vqdmlal");
2946
2947    SmallVector<Value *, 2> AddOps;
2948    AddOps.push_back(Ops[0]);
2949    AddOps.push_back(Mul);
2950    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqadds, Ty),
2951                        AddOps, "vqdmlal");
2952  }
2953  case ARM::BI__builtin_neon_vqdmlsl_v: {
2954    SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
2955    Value *Mul = EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
2956                              MulOps, "vqdmlsl");
2957
2958    SmallVector<Value *, 2> SubOps;
2959    SubOps.push_back(Ops[0]);
2960    SubOps.push_back(Mul);
2961    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqsubs, Ty),
2962                        SubOps, "vqdmlsl");
2963  }
2964  case ARM::BI__builtin_neon_vqdmulh_v:
2965  case ARM::BI__builtin_neon_vqdmulhq_v:
2966    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
2967                        Ops, "vqdmulh");
2968  case ARM::BI__builtin_neon_vqdmull_v:
2969    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
2970                        Ops, "vqdmull");
2971  case ARM::BI__builtin_neon_vqmovn_v:
2972    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
2973    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
2974  case ARM::BI__builtin_neon_vqmovun_v:
2975    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
2976                        Ops, "vqdmull");
2977  case ARM::BI__builtin_neon_vqneg_v:
2978  case ARM::BI__builtin_neon_vqnegq_v:
2979    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
2980                        Ops, "vqneg");
2981  case ARM::BI__builtin_neon_vqrdmulh_v:
2982  case ARM::BI__builtin_neon_vqrdmulhq_v:
2983    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
2984                        Ops, "vqrdmulh");
2985  case ARM::BI__builtin_neon_vqrshl_v:
2986  case ARM::BI__builtin_neon_vqrshlq_v:
2987    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
2988    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
2989  case ARM::BI__builtin_neon_vqrshrn_n_v:
2990    Int =
2991      usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
2992    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
2993                        1, true);
2994  case ARM::BI__builtin_neon_vqrshrun_n_v:
2995    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
2996                        Ops, "vqrshrun_n", 1, true);
2997  case ARM::BI__builtin_neon_vqshl_v:
2998  case ARM::BI__builtin_neon_vqshlq_v:
2999    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
3000    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
3001  case ARM::BI__builtin_neon_vqshl_n_v:
3002  case ARM::BI__builtin_neon_vqshlq_n_v:
3003    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
3004    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
3005                        1, false);
3006  case ARM::BI__builtin_neon_vqshlu_n_v:
3007  case ARM::BI__builtin_neon_vqshluq_n_v:
3008    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
3009                        Ops, "vqshlu", 1, false);
3010  case ARM::BI__builtin_neon_vqshrn_n_v:
3011    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
3012    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
3013                        1, true);
3014  case ARM::BI__builtin_neon_vqshrun_n_v:
3015    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
3016                        Ops, "vqshrun_n", 1, true);
3017  case ARM::BI__builtin_neon_vqsub_v:
3018  case ARM::BI__builtin_neon_vqsubq_v:
3019    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
3020    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
3021  case ARM::BI__builtin_neon_vraddhn_v:
3022    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
3023                        Ops, "vraddhn");
3024  case ARM::BI__builtin_neon_vrecpe_v:
3025  case ARM::BI__builtin_neon_vrecpeq_v:
3026    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
3027                        Ops, "vrecpe");
3028  case ARM::BI__builtin_neon_vrecps_v:
3029  case ARM::BI__builtin_neon_vrecpsq_v:
3030    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
3031                        Ops, "vrecps");
3032  case ARM::BI__builtin_neon_vrhadd_v:
3033  case ARM::BI__builtin_neon_vrhaddq_v:
3034    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
3035    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
3036  case ARM::BI__builtin_neon_vrshl_v:
3037  case ARM::BI__builtin_neon_vrshlq_v:
3038    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
3039    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
3040  case ARM::BI__builtin_neon_vrshrn_n_v:
3041    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
3042                        Ops, "vrshrn_n", 1, true);
3043  case ARM::BI__builtin_neon_vrshr_n_v:
3044  case ARM::BI__builtin_neon_vrshrq_n_v:
3045    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
3046    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
3047  case ARM::BI__builtin_neon_vrsqrte_v:
3048  case ARM::BI__builtin_neon_vrsqrteq_v:
3049    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
3050                        Ops, "vrsqrte");
3051  case ARM::BI__builtin_neon_vrsqrts_v:
3052  case ARM::BI__builtin_neon_vrsqrtsq_v:
3053    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
3054                        Ops, "vrsqrts");
3055  case ARM::BI__builtin_neon_vrsra_n_v:
3056  case ARM::BI__builtin_neon_vrsraq_n_v:
3057    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3058    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3059    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
3060    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
3061    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
3062    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
3063  case ARM::BI__builtin_neon_vrsubhn_v:
3064    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
3065                        Ops, "vrsubhn");
3066  case ARM::BI__builtin_neon_vshl_v:
3067  case ARM::BI__builtin_neon_vshlq_v:
3068    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
3069    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
3070  case ARM::BI__builtin_neon_vshll_n_v:
3071    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
3072    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
3073  case ARM::BI__builtin_neon_vshl_n_v:
3074  case ARM::BI__builtin_neon_vshlq_n_v:
3075    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
3076    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
3077                             "vshl_n");
3078  case ARM::BI__builtin_neon_vshrn_n_v:
3079    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
3080                        Ops, "vshrn_n", 1, true);
3081  case ARM::BI__builtin_neon_vshr_n_v:
3082  case ARM::BI__builtin_neon_vshrq_n_v:
3083    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3084    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
3085    if (usgn)
3086      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
3087    else
3088      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
3089  case ARM::BI__builtin_neon_vsri_n_v:
3090  case ARM::BI__builtin_neon_vsriq_n_v:
3091    rightShift = true;
3092  case ARM::BI__builtin_neon_vsli_n_v:
3093  case ARM::BI__builtin_neon_vsliq_n_v:
3094    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
3095    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
3096                        Ops, "vsli_n");
3097  case ARM::BI__builtin_neon_vsra_n_v:
3098  case ARM::BI__builtin_neon_vsraq_n_v:
3099    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3100    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3101    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
3102    if (usgn)
3103      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
3104    else
3105      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
3106    return Builder.CreateAdd(Ops[0], Ops[1]);
3107  case ARM::BI__builtin_neon_vst1_v:
3108  case ARM::BI__builtin_neon_vst1q_v:
3109    Ops.push_back(Align);
3110    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
3111                        Ops, "");
3112  case ARM::BI__builtin_neon_vst1q_lane_v:
3113    // Handle 64-bit integer elements as a special case.  Use a shuffle to get
3114    // a one-element vector and avoid poor code for i64 in the backend.
3115    if (VTy->getElementType()->isIntegerTy(64)) {
3116      Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3117      Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
3118      Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3119      Ops[2] = Align;
3120      return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
3121                                                 Ops[1]->getType()), Ops);
3122    }
3123    // fall through
3124  case ARM::BI__builtin_neon_vst1_lane_v: {
3125    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3126    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
3127    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3128    StoreInst *St = Builder.CreateStore(Ops[1],
3129                                        Builder.CreateBitCast(Ops[0], Ty));
3130    St->setAlignment(cast<ConstantInt>(Align)->getZExtValue());
3131    return St;
3132  }
3133  case ARM::BI__builtin_neon_vst2_v:
3134  case ARM::BI__builtin_neon_vst2q_v:
3135    Ops.push_back(Align);
3136    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
3137                        Ops, "");
3138  case ARM::BI__builtin_neon_vst2_lane_v:
3139  case ARM::BI__builtin_neon_vst2q_lane_v:
3140    Ops.push_back(Align);
3141    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
3142                        Ops, "");
3143  case ARM::BI__builtin_neon_vst3_v:
3144  case ARM::BI__builtin_neon_vst3q_v:
3145    Ops.push_back(Align);
3146    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
3147                        Ops, "");
3148  case ARM::BI__builtin_neon_vst3_lane_v:
3149  case ARM::BI__builtin_neon_vst3q_lane_v:
3150    Ops.push_back(Align);
3151    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
3152                        Ops, "");
3153  case ARM::BI__builtin_neon_vst4_v:
3154  case ARM::BI__builtin_neon_vst4q_v:
3155    Ops.push_back(Align);
3156    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
3157                        Ops, "");
3158  case ARM::BI__builtin_neon_vst4_lane_v:
3159  case ARM::BI__builtin_neon_vst4q_lane_v:
3160    Ops.push_back(Align);
3161    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
3162                        Ops, "");
3163  case ARM::BI__builtin_neon_vsubhn_v: {
3164    llvm::VectorType *SrcTy =
3165        llvm::VectorType::getExtendedElementVectorType(VTy);
3166
3167    // %sum = add <4 x i32> %lhs, %rhs
3168    Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3169    Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
3170    Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
3171
3172    // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
3173    Constant *ShiftAmt = ConstantInt::get(SrcTy->getElementType(),
3174                                       SrcTy->getScalarSizeInBits() / 2);
3175    ShiftAmt = ConstantVector::getSplat(VTy->getNumElements(), ShiftAmt);
3176    Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
3177
3178    // %res = trunc <4 x i32> %high to <4 x i16>
3179    return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
3180  }
3181  case ARM::BI__builtin_neon_vtbl1_v:
3182    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
3183                        Ops, "vtbl1");
3184  case ARM::BI__builtin_neon_vtbl2_v:
3185    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
3186                        Ops, "vtbl2");
3187  case ARM::BI__builtin_neon_vtbl3_v:
3188    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
3189                        Ops, "vtbl3");
3190  case ARM::BI__builtin_neon_vtbl4_v:
3191    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
3192                        Ops, "vtbl4");
3193  case ARM::BI__builtin_neon_vtbx1_v:
3194    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
3195                        Ops, "vtbx1");
3196  case ARM::BI__builtin_neon_vtbx2_v:
3197    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
3198                        Ops, "vtbx2");
3199  case ARM::BI__builtin_neon_vtbx3_v:
3200    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
3201                        Ops, "vtbx3");
3202  case ARM::BI__builtin_neon_vtbx4_v:
3203    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
3204                        Ops, "vtbx4");
3205  case ARM::BI__builtin_neon_vtst_v:
3206  case ARM::BI__builtin_neon_vtstq_v: {
3207    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3208    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3209    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
3210    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
3211                                ConstantAggregateZero::get(Ty));
3212    return Builder.CreateSExt(Ops[0], Ty, "vtst");
3213  }
3214  case ARM::BI__builtin_neon_vtrn_v:
3215  case ARM::BI__builtin_neon_vtrnq_v: {
3216    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3217    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3218    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3219    Value *SV = 0;
3220
3221    for (unsigned vi = 0; vi != 2; ++vi) {
3222      SmallVector<Constant*, 16> Indices;
3223      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3224        Indices.push_back(Builder.getInt32(i+vi));
3225        Indices.push_back(Builder.getInt32(i+e+vi));
3226      }
3227      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3228      SV = llvm::ConstantVector::get(Indices);
3229      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
3230      SV = Builder.CreateStore(SV, Addr);
3231    }
3232    return SV;
3233  }
3234  case ARM::BI__builtin_neon_vuzp_v:
3235  case ARM::BI__builtin_neon_vuzpq_v: {
3236    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3237    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3238    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3239    Value *SV = 0;
3240
3241    for (unsigned vi = 0; vi != 2; ++vi) {
3242      SmallVector<Constant*, 16> Indices;
3243      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
3244        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
3245
3246      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3247      SV = llvm::ConstantVector::get(Indices);
3248      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
3249      SV = Builder.CreateStore(SV, Addr);
3250    }
3251    return SV;
3252  }
3253  case ARM::BI__builtin_neon_vzip_v:
3254  case ARM::BI__builtin_neon_vzipq_v: {
3255    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3256    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3257    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3258    Value *SV = 0;
3259
3260    for (unsigned vi = 0; vi != 2; ++vi) {
3261      SmallVector<Constant*, 16> Indices;
3262      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3263        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
3264        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
3265      }
3266      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
3267      SV = llvm::ConstantVector::get(Indices);
3268      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
3269      SV = Builder.CreateStore(SV, Addr);
3270    }
3271    return SV;
3272  }
3273  }
3274}
3275
3276llvm::Value *CodeGenFunction::
3277BuildVector(ArrayRef<llvm::Value*> Ops) {
3278  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
3279         "Not a power-of-two sized vector!");
3280  bool AllConstants = true;
3281  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
3282    AllConstants &= isa<Constant>(Ops[i]);
3283
3284  // If this is a constant vector, create a ConstantVector.
3285  if (AllConstants) {
3286    SmallVector<llvm::Constant*, 16> CstOps;
3287    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3288      CstOps.push_back(cast<Constant>(Ops[i]));
3289    return llvm::ConstantVector::get(CstOps);
3290  }
3291
3292  // Otherwise, insertelement the values to build the vector.
3293  Value *Result =
3294    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
3295
3296  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3297    Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
3298
3299  return Result;
3300}
3301
3302Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
3303                                           const CallExpr *E) {
3304  SmallVector<Value*, 4> Ops;
3305
3306  // Find out if any arguments are required to be integer constant expressions.
3307  unsigned ICEArguments = 0;
3308  ASTContext::GetBuiltinTypeError Error;
3309  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3310  assert(Error == ASTContext::GE_None && "Should not codegen an error");
3311
3312  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
3313    // If this is a normal argument, just emit it as a scalar.
3314    if ((ICEArguments & (1 << i)) == 0) {
3315      Ops.push_back(EmitScalarExpr(E->getArg(i)));
3316      continue;
3317    }
3318
3319    // If this is required to be a constant, constant fold it so that we know
3320    // that the generated intrinsic gets a ConstantInt.
3321    llvm::APSInt Result;
3322    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
3323    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
3324    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
3325  }
3326
3327  switch (BuiltinID) {
3328  default: return 0;
3329  case X86::BI__builtin_ia32_vec_init_v8qi:
3330  case X86::BI__builtin_ia32_vec_init_v4hi:
3331  case X86::BI__builtin_ia32_vec_init_v2si:
3332    return Builder.CreateBitCast(BuildVector(Ops),
3333                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
3334  case X86::BI__builtin_ia32_vec_ext_v2si:
3335    return Builder.CreateExtractElement(Ops[0],
3336                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
3337  case X86::BI__builtin_ia32_ldmxcsr: {
3338    Value *Tmp = CreateMemTemp(E->getArg(0)->getType());
3339    Builder.CreateStore(Ops[0], Tmp);
3340    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
3341                              Builder.CreateBitCast(Tmp, Int8PtrTy));
3342  }
3343  case X86::BI__builtin_ia32_stmxcsr: {
3344    Value *Tmp = CreateMemTemp(E->getType());
3345    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
3346                       Builder.CreateBitCast(Tmp, Int8PtrTy));
3347    return Builder.CreateLoad(Tmp, "stmxcsr");
3348  }
3349  case X86::BI__builtin_ia32_storehps:
3350  case X86::BI__builtin_ia32_storelps: {
3351    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
3352    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
3353
3354    // cast val v2i64
3355    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
3356
3357    // extract (0, 1)
3358    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
3359    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
3360    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
3361
3362    // cast pointer to i64 & store
3363    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
3364    return Builder.CreateStore(Ops[1], Ops[0]);
3365  }
3366  case X86::BI__builtin_ia32_palignr: {
3367    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
3368
3369    // If palignr is shifting the pair of input vectors less than 9 bytes,
3370    // emit a shuffle instruction.
3371    if (shiftVal <= 8) {
3372      SmallVector<llvm::Constant*, 8> Indices;
3373      for (unsigned i = 0; i != 8; ++i)
3374        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
3375
3376      Value* SV = llvm::ConstantVector::get(Indices);
3377      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
3378    }
3379
3380    // If palignr is shifting the pair of input vectors more than 8 but less
3381    // than 16 bytes, emit a logical right shift of the destination.
3382    if (shiftVal < 16) {
3383      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
3384      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
3385
3386      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
3387      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
3388
3389      // create i32 constant
3390      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
3391      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
3392    }
3393
3394    // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
3395    return llvm::Constant::getNullValue(ConvertType(E->getType()));
3396  }
3397  case X86::BI__builtin_ia32_palignr128: {
3398    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
3399
3400    // If palignr is shifting the pair of input vectors less than 17 bytes,
3401    // emit a shuffle instruction.
3402    if (shiftVal <= 16) {
3403      SmallVector<llvm::Constant*, 16> Indices;
3404      for (unsigned i = 0; i != 16; ++i)
3405        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
3406
3407      Value* SV = llvm::ConstantVector::get(Indices);
3408      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
3409    }
3410
3411    // If palignr is shifting the pair of input vectors more than 16 but less
3412    // than 32 bytes, emit a logical right shift of the destination.
3413    if (shiftVal < 32) {
3414      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
3415
3416      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
3417      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
3418
3419      // create i32 constant
3420      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
3421      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
3422    }
3423
3424    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
3425    return llvm::Constant::getNullValue(ConvertType(E->getType()));
3426  }
3427  case X86::BI__builtin_ia32_palignr256: {
3428    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
3429
3430    // If palignr is shifting the pair of input vectors less than 17 bytes,
3431    // emit a shuffle instruction.
3432    if (shiftVal <= 16) {
3433      SmallVector<llvm::Constant*, 32> Indices;
3434      // 256-bit palignr operates on 128-bit lanes so we need to handle that
3435      for (unsigned l = 0; l != 2; ++l) {
3436        unsigned LaneStart = l * 16;
3437        unsigned LaneEnd = (l+1) * 16;
3438        for (unsigned i = 0; i != 16; ++i) {
3439          unsigned Idx = shiftVal + i + LaneStart;
3440          if (Idx >= LaneEnd) Idx += 16; // end of lane, switch operand
3441          Indices.push_back(llvm::ConstantInt::get(Int32Ty, Idx));
3442        }
3443      }
3444
3445      Value* SV = llvm::ConstantVector::get(Indices);
3446      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
3447    }
3448
3449    // If palignr is shifting the pair of input vectors more than 16 but less
3450    // than 32 bytes, emit a logical right shift of the destination.
3451    if (shiftVal < 32) {
3452      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 4);
3453
3454      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
3455      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
3456
3457      // create i32 constant
3458      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_avx2_psrl_dq);
3459      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
3460    }
3461
3462    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
3463    return llvm::Constant::getNullValue(ConvertType(E->getType()));
3464  }
3465  case X86::BI__builtin_ia32_movntps:
3466  case X86::BI__builtin_ia32_movntps256:
3467  case X86::BI__builtin_ia32_movntpd:
3468  case X86::BI__builtin_ia32_movntpd256:
3469  case X86::BI__builtin_ia32_movntdq:
3470  case X86::BI__builtin_ia32_movntdq256:
3471  case X86::BI__builtin_ia32_movnti:
3472  case X86::BI__builtin_ia32_movnti64: {
3473    llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
3474                                           Builder.getInt32(1));
3475
3476    // Convert the type of the pointer to a pointer to the stored type.
3477    Value *BC = Builder.CreateBitCast(Ops[0],
3478                                llvm::PointerType::getUnqual(Ops[1]->getType()),
3479                                      "cast");
3480    StoreInst *SI = Builder.CreateStore(Ops[1], BC);
3481    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
3482
3483    // If the operand is an integer, we can't assume alignment. Otherwise,
3484    // assume natural alignment.
3485    QualType ArgTy = E->getArg(1)->getType();
3486    unsigned Align;
3487    if (ArgTy->isIntegerType())
3488      Align = 1;
3489    else
3490      Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
3491    SI->setAlignment(Align);
3492    return SI;
3493  }
3494  // 3DNow!
3495  case X86::BI__builtin_ia32_pswapdsf:
3496  case X86::BI__builtin_ia32_pswapdsi: {
3497    const char *name = 0;
3498    Intrinsic::ID ID = Intrinsic::not_intrinsic;
3499    switch(BuiltinID) {
3500    default: llvm_unreachable("Unsupported intrinsic!");
3501    case X86::BI__builtin_ia32_pswapdsf:
3502    case X86::BI__builtin_ia32_pswapdsi:
3503      name = "pswapd";
3504      ID = Intrinsic::x86_3dnowa_pswapd;
3505      break;
3506    }
3507    llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
3508    Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
3509    llvm::Function *F = CGM.getIntrinsic(ID);
3510    return Builder.CreateCall(F, Ops, name);
3511  }
3512  case X86::BI__builtin_ia32_rdrand16_step:
3513  case X86::BI__builtin_ia32_rdrand32_step:
3514  case X86::BI__builtin_ia32_rdrand64_step:
3515  case X86::BI__builtin_ia32_rdseed16_step:
3516  case X86::BI__builtin_ia32_rdseed32_step:
3517  case X86::BI__builtin_ia32_rdseed64_step: {
3518    Intrinsic::ID ID;
3519    switch (BuiltinID) {
3520    default: llvm_unreachable("Unsupported intrinsic!");
3521    case X86::BI__builtin_ia32_rdrand16_step:
3522      ID = Intrinsic::x86_rdrand_16;
3523      break;
3524    case X86::BI__builtin_ia32_rdrand32_step:
3525      ID = Intrinsic::x86_rdrand_32;
3526      break;
3527    case X86::BI__builtin_ia32_rdrand64_step:
3528      ID = Intrinsic::x86_rdrand_64;
3529      break;
3530    case X86::BI__builtin_ia32_rdseed16_step:
3531      ID = Intrinsic::x86_rdseed_16;
3532      break;
3533    case X86::BI__builtin_ia32_rdseed32_step:
3534      ID = Intrinsic::x86_rdseed_32;
3535      break;
3536    case X86::BI__builtin_ia32_rdseed64_step:
3537      ID = Intrinsic::x86_rdseed_64;
3538      break;
3539    }
3540
3541    Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
3542    Builder.CreateStore(Builder.CreateExtractValue(Call, 0), Ops[0]);
3543    return Builder.CreateExtractValue(Call, 1);
3544  }
3545  // AVX2 broadcast
3546  case X86::BI__builtin_ia32_vbroadcastsi256: {
3547    Value *VecTmp = CreateMemTemp(E->getArg(0)->getType());
3548    Builder.CreateStore(Ops[0], VecTmp);
3549    Value *F = CGM.getIntrinsic(Intrinsic::x86_avx2_vbroadcasti128);
3550    return Builder.CreateCall(F, Builder.CreateBitCast(VecTmp, Int8PtrTy));
3551  }
3552  }
3553}
3554
3555
3556Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
3557                                           const CallExpr *E) {
3558  SmallVector<Value*, 4> Ops;
3559
3560  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
3561    Ops.push_back(EmitScalarExpr(E->getArg(i)));
3562
3563  Intrinsic::ID ID = Intrinsic::not_intrinsic;
3564
3565  switch (BuiltinID) {
3566  default: return 0;
3567
3568  // vec_ld, vec_lvsl, vec_lvsr
3569  case PPC::BI__builtin_altivec_lvx:
3570  case PPC::BI__builtin_altivec_lvxl:
3571  case PPC::BI__builtin_altivec_lvebx:
3572  case PPC::BI__builtin_altivec_lvehx:
3573  case PPC::BI__builtin_altivec_lvewx:
3574  case PPC::BI__builtin_altivec_lvsl:
3575  case PPC::BI__builtin_altivec_lvsr:
3576  {
3577    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
3578
3579    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
3580    Ops.pop_back();
3581
3582    switch (BuiltinID) {
3583    default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
3584    case PPC::BI__builtin_altivec_lvx:
3585      ID = Intrinsic::ppc_altivec_lvx;
3586      break;
3587    case PPC::BI__builtin_altivec_lvxl:
3588      ID = Intrinsic::ppc_altivec_lvxl;
3589      break;
3590    case PPC::BI__builtin_altivec_lvebx:
3591      ID = Intrinsic::ppc_altivec_lvebx;
3592      break;
3593    case PPC::BI__builtin_altivec_lvehx:
3594      ID = Intrinsic::ppc_altivec_lvehx;
3595      break;
3596    case PPC::BI__builtin_altivec_lvewx:
3597      ID = Intrinsic::ppc_altivec_lvewx;
3598      break;
3599    case PPC::BI__builtin_altivec_lvsl:
3600      ID = Intrinsic::ppc_altivec_lvsl;
3601      break;
3602    case PPC::BI__builtin_altivec_lvsr:
3603      ID = Intrinsic::ppc_altivec_lvsr;
3604      break;
3605    }
3606    llvm::Function *F = CGM.getIntrinsic(ID);
3607    return Builder.CreateCall(F, Ops, "");
3608  }
3609
3610  // vec_st
3611  case PPC::BI__builtin_altivec_stvx:
3612  case PPC::BI__builtin_altivec_stvxl:
3613  case PPC::BI__builtin_altivec_stvebx:
3614  case PPC::BI__builtin_altivec_stvehx:
3615  case PPC::BI__builtin_altivec_stvewx:
3616  {
3617    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
3618    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
3619    Ops.pop_back();
3620
3621    switch (BuiltinID) {
3622    default: llvm_unreachable("Unsupported st intrinsic!");
3623    case PPC::BI__builtin_altivec_stvx:
3624      ID = Intrinsic::ppc_altivec_stvx;
3625      break;
3626    case PPC::BI__builtin_altivec_stvxl:
3627      ID = Intrinsic::ppc_altivec_stvxl;
3628      break;
3629    case PPC::BI__builtin_altivec_stvebx:
3630      ID = Intrinsic::ppc_altivec_stvebx;
3631      break;
3632    case PPC::BI__builtin_altivec_stvehx:
3633      ID = Intrinsic::ppc_altivec_stvehx;
3634      break;
3635    case PPC::BI__builtin_altivec_stvewx:
3636      ID = Intrinsic::ppc_altivec_stvewx;
3637      break;
3638    }
3639    llvm::Function *F = CGM.getIntrinsic(ID);
3640    return Builder.CreateCall(F, Ops, "");
3641  }
3642  }
3643}
3644