CGBuiltin.cpp revision 5c22ad2ef6bf39da22d5190025e0ddfd4b568b2a
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TargetInfo.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "CGObjCRuntime.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/Basic/TargetBuiltins.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25
26using namespace clang;
27using namespace CodeGen;
28using namespace llvm;
29
30/// getBuiltinLibFunction - Given a builtin id for a function like
31/// "__builtin_fabsf", return a Function* for "fabsf".
32llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
33                                                  unsigned BuiltinID) {
34  assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
35
36  // Get the name, skip over the __builtin_ prefix (if necessary).
37  StringRef Name;
38  GlobalDecl D(FD);
39
40  // If the builtin has been declared explicitly with an assembler label,
41  // use the mangled name. This differs from the plain label on platforms
42  // that prefix labels.
43  if (FD->hasAttr<AsmLabelAttr>())
44    Name = getMangledName(D);
45  else
46    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
47
48  llvm::FunctionType *Ty =
49    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
50
51  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
52}
53
54/// Emit the conversions required to turn the given value into an
55/// integer of the given size.
56static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
57                        QualType T, llvm::IntegerType *IntType) {
58  V = CGF.EmitToMemory(V, T);
59
60  if (V->getType()->isPointerTy())
61    return CGF.Builder.CreatePtrToInt(V, IntType);
62
63  assert(V->getType() == IntType);
64  return V;
65}
66
67static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
68                          QualType T, llvm::Type *ResultType) {
69  V = CGF.EmitFromMemory(V, T);
70
71  if (ResultType->isPointerTy())
72    return CGF.Builder.CreateIntToPtr(V, ResultType);
73
74  assert(V->getType() == ResultType);
75  return V;
76}
77
78/// Utility to insert an atomic instruction based on Instrinsic::ID
79/// and the expression node.
80static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
81                               llvm::AtomicRMWInst::BinOp Kind,
82                               const CallExpr *E) {
83  QualType T = E->getType();
84  assert(E->getArg(0)->getType()->isPointerType());
85  assert(CGF.getContext().hasSameUnqualifiedType(T,
86                                  E->getArg(0)->getType()->getPointeeType()));
87  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
88
89  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
90  unsigned AddrSpace =
91    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
92
93  llvm::IntegerType *IntType =
94    llvm::IntegerType::get(CGF.getLLVMContext(),
95                           CGF.getContext().getTypeSize(T));
96  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
97
98  llvm::Value *Args[2];
99  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
100  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
101  llvm::Type *ValueType = Args[1]->getType();
102  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
103
104  llvm::Value *Result =
105      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
106                                  llvm::SequentiallyConsistent);
107  Result = EmitFromInt(CGF, Result, T, ValueType);
108  return RValue::get(Result);
109}
110
111/// Utility to insert an atomic instruction based Instrinsic::ID and
112/// the expression node, where the return value is the result of the
113/// operation.
114static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
115                                   llvm::AtomicRMWInst::BinOp Kind,
116                                   const CallExpr *E,
117                                   Instruction::BinaryOps Op) {
118  QualType T = E->getType();
119  assert(E->getArg(0)->getType()->isPointerType());
120  assert(CGF.getContext().hasSameUnqualifiedType(T,
121                                  E->getArg(0)->getType()->getPointeeType()));
122  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
123
124  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
125  unsigned AddrSpace =
126    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
127
128  llvm::IntegerType *IntType =
129    llvm::IntegerType::get(CGF.getLLVMContext(),
130                           CGF.getContext().getTypeSize(T));
131  llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
132
133  llvm::Value *Args[2];
134  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
135  llvm::Type *ValueType = Args[1]->getType();
136  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
137  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
138
139  llvm::Value *Result =
140      CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
141                                  llvm::SequentiallyConsistent);
142  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
143  Result = EmitFromInt(CGF, Result, T, ValueType);
144  return RValue::get(Result);
145}
146
147/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
148/// which must be a scalar floating point type.
149static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
150  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
151  assert(ValTyP && "isn't scalar fp type!");
152
153  StringRef FnName;
154  switch (ValTyP->getKind()) {
155  default: assert(0 && "Isn't a scalar fp type!");
156  case BuiltinType::Float:      FnName = "fabsf"; break;
157  case BuiltinType::Double:     FnName = "fabs"; break;
158  case BuiltinType::LongDouble: FnName = "fabsl"; break;
159  }
160
161  // The prototype is something that takes and returns whatever V's type is.
162  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), V->getType(),
163                                                   false);
164  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
165
166  return CGF.Builder.CreateCall(Fn, V, "abs");
167}
168
169static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
170                              const CallExpr *E, llvm::Value *calleeValue) {
171  return CGF.EmitCall(E->getCallee()->getType(), calleeValue,
172                      ReturnValueSlot(), E->arg_begin(), E->arg_end(), Fn);
173}
174
175RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176                                        unsigned BuiltinID, const CallExpr *E) {
177  // See if we can constant fold this builtin.  If so, don't emit it at all.
178  Expr::EvalResult Result;
179  if (E->Evaluate(Result, CGM.getContext()) &&
180      !Result.hasSideEffects()) {
181    if (Result.Val.isInt())
182      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
183                                                Result.Val.getInt()));
184    if (Result.Val.isFloat())
185      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
186                                               Result.Val.getFloat()));
187  }
188
189  switch (BuiltinID) {
190  default: break;  // Handle intrinsics and libm functions below.
191  case Builtin::BI__builtin___CFStringMakeConstantString:
192  case Builtin::BI__builtin___NSStringMakeConstantString:
193    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
194  case Builtin::BI__builtin_stdarg_start:
195  case Builtin::BI__builtin_va_start:
196  case Builtin::BI__builtin_va_end: {
197    Value *ArgValue = EmitVAListRef(E->getArg(0));
198    llvm::Type *DestType = Int8PtrTy;
199    if (ArgValue->getType() != DestType)
200      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
201                                       ArgValue->getName().data());
202
203    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
204      Intrinsic::vaend : Intrinsic::vastart;
205    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
206  }
207  case Builtin::BI__builtin_va_copy: {
208    Value *DstPtr = EmitVAListRef(E->getArg(0));
209    Value *SrcPtr = EmitVAListRef(E->getArg(1));
210
211    llvm::Type *Type = Int8PtrTy;
212
213    DstPtr = Builder.CreateBitCast(DstPtr, Type);
214    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
215    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
216                                           DstPtr, SrcPtr));
217  }
218  case Builtin::BI__builtin_abs: {
219    Value *ArgValue = EmitScalarExpr(E->getArg(0));
220
221    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
222    Value *CmpResult =
223    Builder.CreateICmpSGE(ArgValue,
224                          llvm::Constant::getNullValue(ArgValue->getType()),
225                                                            "abscond");
226    Value *Result =
227      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
228
229    return RValue::get(Result);
230  }
231  case Builtin::BI__builtin_ctz:
232  case Builtin::BI__builtin_ctzl:
233  case Builtin::BI__builtin_ctzll: {
234    Value *ArgValue = EmitScalarExpr(E->getArg(0));
235
236    llvm::Type *ArgType = ArgValue->getType();
237    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
238
239    llvm::Type *ResultType = ConvertType(E->getType());
240    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
241    if (Result->getType() != ResultType)
242      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
243                                     "cast");
244    return RValue::get(Result);
245  }
246  case Builtin::BI__builtin_clz:
247  case Builtin::BI__builtin_clzl:
248  case Builtin::BI__builtin_clzll: {
249    Value *ArgValue = EmitScalarExpr(E->getArg(0));
250
251    llvm::Type *ArgType = ArgValue->getType();
252    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
253
254    llvm::Type *ResultType = ConvertType(E->getType());
255    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
256    if (Result->getType() != ResultType)
257      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
258                                     "cast");
259    return RValue::get(Result);
260  }
261  case Builtin::BI__builtin_ffs:
262  case Builtin::BI__builtin_ffsl:
263  case Builtin::BI__builtin_ffsll: {
264    // ffs(x) -> x ? cttz(x) + 1 : 0
265    Value *ArgValue = EmitScalarExpr(E->getArg(0));
266
267    llvm::Type *ArgType = ArgValue->getType();
268    Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
269
270    llvm::Type *ResultType = ConvertType(E->getType());
271    Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
272                                   llvm::ConstantInt::get(ArgType, 1), "tmp");
273    Value *Zero = llvm::Constant::getNullValue(ArgType);
274    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
275    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
276    if (Result->getType() != ResultType)
277      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
278                                     "cast");
279    return RValue::get(Result);
280  }
281  case Builtin::BI__builtin_parity:
282  case Builtin::BI__builtin_parityl:
283  case Builtin::BI__builtin_parityll: {
284    // parity(x) -> ctpop(x) & 1
285    Value *ArgValue = EmitScalarExpr(E->getArg(0));
286
287    llvm::Type *ArgType = ArgValue->getType();
288    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
289
290    llvm::Type *ResultType = ConvertType(E->getType());
291    Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
292    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
293                                      "tmp");
294    if (Result->getType() != ResultType)
295      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
296                                     "cast");
297    return RValue::get(Result);
298  }
299  case Builtin::BI__builtin_popcount:
300  case Builtin::BI__builtin_popcountl:
301  case Builtin::BI__builtin_popcountll: {
302    Value *ArgValue = EmitScalarExpr(E->getArg(0));
303
304    llvm::Type *ArgType = ArgValue->getType();
305    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
306
307    llvm::Type *ResultType = ConvertType(E->getType());
308    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
309    if (Result->getType() != ResultType)
310      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
311                                     "cast");
312    return RValue::get(Result);
313  }
314  case Builtin::BI__builtin_expect: {
315    Value *ArgValue = EmitScalarExpr(E->getArg(0));
316    llvm::Type *ArgType = ArgValue->getType();
317
318    Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
319    Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
320
321    Value *Result = Builder.CreateCall2(FnExpect, ArgValue, ExpectedValue,
322                                        "expval");
323    return RValue::get(Result);
324  }
325  case Builtin::BI__builtin_bswap32:
326  case Builtin::BI__builtin_bswap64: {
327    Value *ArgValue = EmitScalarExpr(E->getArg(0));
328    llvm::Type *ArgType = ArgValue->getType();
329    Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
330    return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
331  }
332  case Builtin::BI__builtin_object_size: {
333    // We pass this builtin onto the optimizer so that it can
334    // figure out the object size in more complex cases.
335    llvm::Type *ResType = ConvertType(E->getType());
336
337    // LLVM only supports 0 and 2, make sure that we pass along that
338    // as a boolean.
339    Value *Ty = EmitScalarExpr(E->getArg(1));
340    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
341    assert(CI);
342    uint64_t val = CI->getZExtValue();
343    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
344
345    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType);
346    return RValue::get(Builder.CreateCall2(F,
347                                           EmitScalarExpr(E->getArg(0)),
348                                           CI));
349  }
350  case Builtin::BI__builtin_prefetch: {
351    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
352    // FIXME: Technically these constants should of type 'int', yes?
353    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
354      llvm::ConstantInt::get(Int32Ty, 0);
355    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
356      llvm::ConstantInt::get(Int32Ty, 3);
357    Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
358    Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
359    return RValue::get(Builder.CreateCall4(F, Address, RW, Locality, Data));
360  }
361  case Builtin::BI__builtin_trap: {
362    Value *F = CGM.getIntrinsic(Intrinsic::trap);
363    return RValue::get(Builder.CreateCall(F));
364  }
365  case Builtin::BI__builtin_unreachable: {
366    if (CatchUndefined)
367      EmitBranch(getTrapBB());
368    else
369      Builder.CreateUnreachable();
370
371    // We do need to preserve an insertion point.
372    EmitBlock(createBasicBlock("unreachable.cont"));
373
374    return RValue::get(0);
375  }
376
377  case Builtin::BI__builtin_powi:
378  case Builtin::BI__builtin_powif:
379  case Builtin::BI__builtin_powil: {
380    Value *Base = EmitScalarExpr(E->getArg(0));
381    Value *Exponent = EmitScalarExpr(E->getArg(1));
382    llvm::Type *ArgType = Base->getType();
383    Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
384    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
385  }
386
387  case Builtin::BI__builtin_isgreater:
388  case Builtin::BI__builtin_isgreaterequal:
389  case Builtin::BI__builtin_isless:
390  case Builtin::BI__builtin_islessequal:
391  case Builtin::BI__builtin_islessgreater:
392  case Builtin::BI__builtin_isunordered: {
393    // Ordered comparisons: we know the arguments to these are matching scalar
394    // floating point values.
395    Value *LHS = EmitScalarExpr(E->getArg(0));
396    Value *RHS = EmitScalarExpr(E->getArg(1));
397
398    switch (BuiltinID) {
399    default: assert(0 && "Unknown ordered comparison");
400    case Builtin::BI__builtin_isgreater:
401      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
402      break;
403    case Builtin::BI__builtin_isgreaterequal:
404      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
405      break;
406    case Builtin::BI__builtin_isless:
407      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
408      break;
409    case Builtin::BI__builtin_islessequal:
410      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
411      break;
412    case Builtin::BI__builtin_islessgreater:
413      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
414      break;
415    case Builtin::BI__builtin_isunordered:
416      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
417      break;
418    }
419    // ZExt bool to int type.
420    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
421                                          "tmp"));
422  }
423  case Builtin::BI__builtin_isnan: {
424    Value *V = EmitScalarExpr(E->getArg(0));
425    V = Builder.CreateFCmpUNO(V, V, "cmp");
426    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
427  }
428
429  case Builtin::BI__builtin_isinf: {
430    // isinf(x) --> fabs(x) == infinity
431    Value *V = EmitScalarExpr(E->getArg(0));
432    V = EmitFAbs(*this, V, E->getArg(0)->getType());
433
434    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
435    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
436  }
437
438  // TODO: BI__builtin_isinf_sign
439  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
440
441  case Builtin::BI__builtin_isnormal: {
442    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
443    Value *V = EmitScalarExpr(E->getArg(0));
444    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
445
446    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
447    Value *IsLessThanInf =
448      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
449    APFloat Smallest = APFloat::getSmallestNormalized(
450                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
451    Value *IsNormal =
452      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
453                            "isnormal");
454    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
455    V = Builder.CreateAnd(V, IsNormal, "and");
456    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
457  }
458
459  case Builtin::BI__builtin_isfinite: {
460    // isfinite(x) --> x == x && fabs(x) != infinity;
461    Value *V = EmitScalarExpr(E->getArg(0));
462    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
463
464    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
465    Value *IsNotInf =
466      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
467
468    V = Builder.CreateAnd(Eq, IsNotInf, "and");
469    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
470  }
471
472  case Builtin::BI__builtin_fpclassify: {
473    Value *V = EmitScalarExpr(E->getArg(5));
474    llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
475
476    // Create Result
477    BasicBlock *Begin = Builder.GetInsertBlock();
478    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
479    Builder.SetInsertPoint(End);
480    PHINode *Result =
481      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
482                        "fpclassify_result");
483
484    // if (V==0) return FP_ZERO
485    Builder.SetInsertPoint(Begin);
486    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
487                                          "iszero");
488    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
489    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
490    Builder.CreateCondBr(IsZero, End, NotZero);
491    Result->addIncoming(ZeroLiteral, Begin);
492
493    // if (V != V) return FP_NAN
494    Builder.SetInsertPoint(NotZero);
495    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
496    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
497    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
498    Builder.CreateCondBr(IsNan, End, NotNan);
499    Result->addIncoming(NanLiteral, NotZero);
500
501    // if (fabs(V) == infinity) return FP_INFINITY
502    Builder.SetInsertPoint(NotNan);
503    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
504    Value *IsInf =
505      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
506                            "isinf");
507    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
508    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
509    Builder.CreateCondBr(IsInf, End, NotInf);
510    Result->addIncoming(InfLiteral, NotNan);
511
512    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
513    Builder.SetInsertPoint(NotInf);
514    APFloat Smallest = APFloat::getSmallestNormalized(
515        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
516    Value *IsNormal =
517      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
518                            "isnormal");
519    Value *NormalResult =
520      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
521                           EmitScalarExpr(E->getArg(3)));
522    Builder.CreateBr(End);
523    Result->addIncoming(NormalResult, NotInf);
524
525    // return Result
526    Builder.SetInsertPoint(End);
527    return RValue::get(Result);
528  }
529
530  case Builtin::BIalloca:
531  case Builtin::BI__builtin_alloca: {
532    Value *Size = EmitScalarExpr(E->getArg(0));
533    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
534  }
535  case Builtin::BIbzero:
536  case Builtin::BI__builtin_bzero: {
537    Value *Address = EmitScalarExpr(E->getArg(0));
538    Value *SizeVal = EmitScalarExpr(E->getArg(1));
539    Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
540    return RValue::get(Address);
541  }
542  case Builtin::BImemcpy:
543  case Builtin::BI__builtin_memcpy: {
544    Value *Address = EmitScalarExpr(E->getArg(0));
545    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
546    Value *SizeVal = EmitScalarExpr(E->getArg(2));
547    Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
548    return RValue::get(Address);
549  }
550
551  case Builtin::BI__builtin___memcpy_chk: {
552    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
553    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
554        !E->getArg(3)->isEvaluatable(CGM.getContext()))
555      break;
556    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
557    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
558    if (Size.ugt(DstSize))
559      break;
560    Value *Dest = EmitScalarExpr(E->getArg(0));
561    Value *Src = EmitScalarExpr(E->getArg(1));
562    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
563    Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
564    return RValue::get(Dest);
565  }
566
567  case Builtin::BI__builtin_objc_memmove_collectable: {
568    Value *Address = EmitScalarExpr(E->getArg(0));
569    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
570    Value *SizeVal = EmitScalarExpr(E->getArg(2));
571    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
572                                                  Address, SrcAddr, SizeVal);
573    return RValue::get(Address);
574  }
575
576  case Builtin::BI__builtin___memmove_chk: {
577    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
578    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
579        !E->getArg(3)->isEvaluatable(CGM.getContext()))
580      break;
581    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
582    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
583    if (Size.ugt(DstSize))
584      break;
585    Value *Dest = EmitScalarExpr(E->getArg(0));
586    Value *Src = EmitScalarExpr(E->getArg(1));
587    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
588    Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
589    return RValue::get(Dest);
590  }
591
592  case Builtin::BImemmove:
593  case Builtin::BI__builtin_memmove: {
594    Value *Address = EmitScalarExpr(E->getArg(0));
595    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
596    Value *SizeVal = EmitScalarExpr(E->getArg(2));
597    Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
598    return RValue::get(Address);
599  }
600  case Builtin::BImemset:
601  case Builtin::BI__builtin_memset: {
602    Value *Address = EmitScalarExpr(E->getArg(0));
603    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
604                                         Builder.getInt8Ty());
605    Value *SizeVal = EmitScalarExpr(E->getArg(2));
606    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
607    return RValue::get(Address);
608  }
609  case Builtin::BI__builtin___memset_chk: {
610    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
611    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
612        !E->getArg(3)->isEvaluatable(CGM.getContext()))
613      break;
614    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
615    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
616    if (Size.ugt(DstSize))
617      break;
618    Value *Address = EmitScalarExpr(E->getArg(0));
619    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
620                                         Builder.getInt8Ty());
621    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
622    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
623
624    return RValue::get(Address);
625  }
626  case Builtin::BI__builtin_dwarf_cfa: {
627    // The offset in bytes from the first argument to the CFA.
628    //
629    // Why on earth is this in the frontend?  Is there any reason at
630    // all that the backend can't reasonably determine this while
631    // lowering llvm.eh.dwarf.cfa()?
632    //
633    // TODO: If there's a satisfactory reason, add a target hook for
634    // this instead of hard-coding 0, which is correct for most targets.
635    int32_t Offset = 0;
636
637    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
638    return RValue::get(Builder.CreateCall(F,
639                                      llvm::ConstantInt::get(Int32Ty, Offset)));
640  }
641  case Builtin::BI__builtin_return_address: {
642    Value *Depth = EmitScalarExpr(E->getArg(0));
643    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
644    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
645    return RValue::get(Builder.CreateCall(F, Depth));
646  }
647  case Builtin::BI__builtin_frame_address: {
648    Value *Depth = EmitScalarExpr(E->getArg(0));
649    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
650    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
651    return RValue::get(Builder.CreateCall(F, Depth));
652  }
653  case Builtin::BI__builtin_extract_return_addr: {
654    Value *Address = EmitScalarExpr(E->getArg(0));
655    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
656    return RValue::get(Result);
657  }
658  case Builtin::BI__builtin_frob_return_addr: {
659    Value *Address = EmitScalarExpr(E->getArg(0));
660    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
661    return RValue::get(Result);
662  }
663  case Builtin::BI__builtin_dwarf_sp_column: {
664    llvm::IntegerType *Ty
665      = cast<llvm::IntegerType>(ConvertType(E->getType()));
666    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
667    if (Column == -1) {
668      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
669      return RValue::get(llvm::UndefValue::get(Ty));
670    }
671    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
672  }
673  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
674    Value *Address = EmitScalarExpr(E->getArg(0));
675    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
676      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
677    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
678  }
679  case Builtin::BI__builtin_eh_return: {
680    Value *Int = EmitScalarExpr(E->getArg(0));
681    Value *Ptr = EmitScalarExpr(E->getArg(1));
682
683    llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
684    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
685           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
686    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
687                                  ? Intrinsic::eh_return_i32
688                                  : Intrinsic::eh_return_i64);
689    Builder.CreateCall2(F, Int, Ptr);
690    Builder.CreateUnreachable();
691
692    // We do need to preserve an insertion point.
693    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
694
695    return RValue::get(0);
696  }
697  case Builtin::BI__builtin_unwind_init: {
698    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
699    return RValue::get(Builder.CreateCall(F));
700  }
701  case Builtin::BI__builtin_extend_pointer: {
702    // Extends a pointer to the size of an _Unwind_Word, which is
703    // uint64_t on all platforms.  Generally this gets poked into a
704    // register and eventually used as an address, so if the
705    // addressing registers are wider than pointers and the platform
706    // doesn't implicitly ignore high-order bits when doing
707    // addressing, we need to make sure we zext / sext based on
708    // the platform's expectations.
709    //
710    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
711
712    // Cast the pointer to intptr_t.
713    Value *Ptr = EmitScalarExpr(E->getArg(0));
714    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
715
716    // If that's 64 bits, we're done.
717    if (IntPtrTy->getBitWidth() == 64)
718      return RValue::get(Result);
719
720    // Otherwise, ask the codegen data what to do.
721    if (getTargetHooks().extendPointerWithSExt())
722      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
723    else
724      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
725  }
726  case Builtin::BI__builtin_setjmp: {
727    // Buffer is a void**.
728    Value *Buf = EmitScalarExpr(E->getArg(0));
729
730    // Store the frame pointer to the setjmp buffer.
731    Value *FrameAddr =
732      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
733                         ConstantInt::get(Int32Ty, 0));
734    Builder.CreateStore(FrameAddr, Buf);
735
736    // Store the stack pointer to the setjmp buffer.
737    Value *StackAddr =
738      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
739    Value *StackSaveSlot =
740      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
741    Builder.CreateStore(StackAddr, StackSaveSlot);
742
743    // Call LLVM's EH setjmp, which is lightweight.
744    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
745    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
746    return RValue::get(Builder.CreateCall(F, Buf));
747  }
748  case Builtin::BI__builtin_longjmp: {
749    Value *Buf = EmitScalarExpr(E->getArg(0));
750    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
751
752    // Call LLVM's EH longjmp, which is lightweight.
753    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
754
755    // longjmp doesn't return; mark this as unreachable.
756    Builder.CreateUnreachable();
757
758    // We do need to preserve an insertion point.
759    EmitBlock(createBasicBlock("longjmp.cont"));
760
761    return RValue::get(0);
762  }
763  case Builtin::BI__sync_fetch_and_add:
764  case Builtin::BI__sync_fetch_and_sub:
765  case Builtin::BI__sync_fetch_and_or:
766  case Builtin::BI__sync_fetch_and_and:
767  case Builtin::BI__sync_fetch_and_xor:
768  case Builtin::BI__sync_add_and_fetch:
769  case Builtin::BI__sync_sub_and_fetch:
770  case Builtin::BI__sync_and_and_fetch:
771  case Builtin::BI__sync_or_and_fetch:
772  case Builtin::BI__sync_xor_and_fetch:
773  case Builtin::BI__sync_val_compare_and_swap:
774  case Builtin::BI__sync_bool_compare_and_swap:
775  case Builtin::BI__sync_lock_test_and_set:
776  case Builtin::BI__sync_lock_release:
777  case Builtin::BI__sync_swap:
778    assert(0 && "Shouldn't make it through sema");
779  case Builtin::BI__sync_fetch_and_add_1:
780  case Builtin::BI__sync_fetch_and_add_2:
781  case Builtin::BI__sync_fetch_and_add_4:
782  case Builtin::BI__sync_fetch_and_add_8:
783  case Builtin::BI__sync_fetch_and_add_16:
784    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
785  case Builtin::BI__sync_fetch_and_sub_1:
786  case Builtin::BI__sync_fetch_and_sub_2:
787  case Builtin::BI__sync_fetch_and_sub_4:
788  case Builtin::BI__sync_fetch_and_sub_8:
789  case Builtin::BI__sync_fetch_and_sub_16:
790    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
791  case Builtin::BI__sync_fetch_and_or_1:
792  case Builtin::BI__sync_fetch_and_or_2:
793  case Builtin::BI__sync_fetch_and_or_4:
794  case Builtin::BI__sync_fetch_and_or_8:
795  case Builtin::BI__sync_fetch_and_or_16:
796    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
797  case Builtin::BI__sync_fetch_and_and_1:
798  case Builtin::BI__sync_fetch_and_and_2:
799  case Builtin::BI__sync_fetch_and_and_4:
800  case Builtin::BI__sync_fetch_and_and_8:
801  case Builtin::BI__sync_fetch_and_and_16:
802    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
803  case Builtin::BI__sync_fetch_and_xor_1:
804  case Builtin::BI__sync_fetch_and_xor_2:
805  case Builtin::BI__sync_fetch_and_xor_4:
806  case Builtin::BI__sync_fetch_and_xor_8:
807  case Builtin::BI__sync_fetch_and_xor_16:
808    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
809
810  // Clang extensions: not overloaded yet.
811  case Builtin::BI__sync_fetch_and_min:
812    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
813  case Builtin::BI__sync_fetch_and_max:
814    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
815  case Builtin::BI__sync_fetch_and_umin:
816    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
817  case Builtin::BI__sync_fetch_and_umax:
818    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
819
820  case Builtin::BI__sync_add_and_fetch_1:
821  case Builtin::BI__sync_add_and_fetch_2:
822  case Builtin::BI__sync_add_and_fetch_4:
823  case Builtin::BI__sync_add_and_fetch_8:
824  case Builtin::BI__sync_add_and_fetch_16:
825    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
826                                llvm::Instruction::Add);
827  case Builtin::BI__sync_sub_and_fetch_1:
828  case Builtin::BI__sync_sub_and_fetch_2:
829  case Builtin::BI__sync_sub_and_fetch_4:
830  case Builtin::BI__sync_sub_and_fetch_8:
831  case Builtin::BI__sync_sub_and_fetch_16:
832    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
833                                llvm::Instruction::Sub);
834  case Builtin::BI__sync_and_and_fetch_1:
835  case Builtin::BI__sync_and_and_fetch_2:
836  case Builtin::BI__sync_and_and_fetch_4:
837  case Builtin::BI__sync_and_and_fetch_8:
838  case Builtin::BI__sync_and_and_fetch_16:
839    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
840                                llvm::Instruction::And);
841  case Builtin::BI__sync_or_and_fetch_1:
842  case Builtin::BI__sync_or_and_fetch_2:
843  case Builtin::BI__sync_or_and_fetch_4:
844  case Builtin::BI__sync_or_and_fetch_8:
845  case Builtin::BI__sync_or_and_fetch_16:
846    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
847                                llvm::Instruction::Or);
848  case Builtin::BI__sync_xor_and_fetch_1:
849  case Builtin::BI__sync_xor_and_fetch_2:
850  case Builtin::BI__sync_xor_and_fetch_4:
851  case Builtin::BI__sync_xor_and_fetch_8:
852  case Builtin::BI__sync_xor_and_fetch_16:
853    return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
854                                llvm::Instruction::Xor);
855
856  case Builtin::BI__sync_val_compare_and_swap_1:
857  case Builtin::BI__sync_val_compare_and_swap_2:
858  case Builtin::BI__sync_val_compare_and_swap_4:
859  case Builtin::BI__sync_val_compare_and_swap_8:
860  case Builtin::BI__sync_val_compare_and_swap_16: {
861    QualType T = E->getType();
862    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
863    unsigned AddrSpace =
864      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
865
866    llvm::IntegerType *IntType =
867      llvm::IntegerType::get(getLLVMContext(),
868                             getContext().getTypeSize(T));
869    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
870
871    Value *Args[3];
872    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
873    Args[1] = EmitScalarExpr(E->getArg(1));
874    llvm::Type *ValueType = Args[1]->getType();
875    Args[1] = EmitToInt(*this, Args[1], T, IntType);
876    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
877
878    Value *Result = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
879                                                llvm::SequentiallyConsistent);
880    Result = EmitFromInt(*this, Result, T, ValueType);
881    return RValue::get(Result);
882  }
883
884  case Builtin::BI__sync_bool_compare_and_swap_1:
885  case Builtin::BI__sync_bool_compare_and_swap_2:
886  case Builtin::BI__sync_bool_compare_and_swap_4:
887  case Builtin::BI__sync_bool_compare_and_swap_8:
888  case Builtin::BI__sync_bool_compare_and_swap_16: {
889    QualType T = E->getArg(1)->getType();
890    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
891    unsigned AddrSpace =
892      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
893
894    llvm::IntegerType *IntType =
895      llvm::IntegerType::get(getLLVMContext(),
896                             getContext().getTypeSize(T));
897    llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
898
899    Value *Args[3];
900    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
901    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
902    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
903
904    Value *OldVal = Args[1];
905    Value *PrevVal = Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
906                                                 llvm::SequentiallyConsistent);
907    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
908    // zext bool to int.
909    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
910    return RValue::get(Result);
911  }
912
913  case Builtin::BI__sync_swap_1:
914  case Builtin::BI__sync_swap_2:
915  case Builtin::BI__sync_swap_4:
916  case Builtin::BI__sync_swap_8:
917  case Builtin::BI__sync_swap_16:
918    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
919
920  case Builtin::BI__sync_lock_test_and_set_1:
921  case Builtin::BI__sync_lock_test_and_set_2:
922  case Builtin::BI__sync_lock_test_and_set_4:
923  case Builtin::BI__sync_lock_test_and_set_8:
924  case Builtin::BI__sync_lock_test_and_set_16:
925    return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
926
927  case Builtin::BI__sync_lock_release_1:
928  case Builtin::BI__sync_lock_release_2:
929  case Builtin::BI__sync_lock_release_4:
930  case Builtin::BI__sync_lock_release_8:
931  case Builtin::BI__sync_lock_release_16: {
932    Value *Ptr = EmitScalarExpr(E->getArg(0));
933    llvm::Type *ElLLVMTy =
934      cast<llvm::PointerType>(Ptr->getType())->getElementType();
935    llvm::StoreInst *Store =
936      Builder.CreateStore(llvm::Constant::getNullValue(ElLLVMTy), Ptr);
937    QualType ElTy = E->getArg(0)->getType()->getPointeeType();
938    CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
939    Store->setAlignment(StoreSize.getQuantity());
940    Store->setAtomic(llvm::Release);
941    return RValue::get(0);
942  }
943
944  case Builtin::BI__sync_synchronize: {
945    // We assume this is supposed to correspond to a C++0x-style
946    // sequentially-consistent fence (i.e. this is only usable for
947    // synchonization, not device I/O or anything like that). This intrinsic
948    // is really badly designed in the sense that in theory, there isn't
949    // any way to safely use it... but in practice, it mostly works
950    // to use it with non-atomic loads and stores to get acquire/release
951    // semantics.
952    Builder.CreateFence(llvm::SequentiallyConsistent);
953    return RValue::get(0);
954  }
955
956  case Builtin::BI__builtin_llvm_memory_barrier: {
957    Value *C[5] = {
958      EmitScalarExpr(E->getArg(0)),
959      EmitScalarExpr(E->getArg(1)),
960      EmitScalarExpr(E->getArg(2)),
961      EmitScalarExpr(E->getArg(3)),
962      EmitScalarExpr(E->getArg(4))
963    };
964    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C);
965    return RValue::get(0);
966  }
967
968    // Library functions with special handling.
969  case Builtin::BIsqrt:
970  case Builtin::BIsqrtf:
971  case Builtin::BIsqrtl: {
972    // TODO: there is currently no set of optimizer flags
973    // sufficient for us to rewrite sqrt to @llvm.sqrt.
974    // -fmath-errno=0 is not good enough; we need finiteness.
975    // We could probably precondition the call with an ult
976    // against 0, but is that worth the complexity?
977    break;
978  }
979
980  case Builtin::BIpow:
981  case Builtin::BIpowf:
982  case Builtin::BIpowl: {
983    // Rewrite sqrt to intrinsic if allowed.
984    if (!FD->hasAttr<ConstAttr>())
985      break;
986    Value *Base = EmitScalarExpr(E->getArg(0));
987    Value *Exponent = EmitScalarExpr(E->getArg(1));
988    llvm::Type *ArgType = Base->getType();
989    Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
990    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
991  }
992
993  case Builtin::BIfma:
994  case Builtin::BIfmaf:
995  case Builtin::BIfmal:
996  case Builtin::BI__builtin_fma:
997  case Builtin::BI__builtin_fmaf:
998  case Builtin::BI__builtin_fmal: {
999    // Rewrite fma to intrinsic.
1000    Value *FirstArg = EmitScalarExpr(E->getArg(0));
1001    llvm::Type *ArgType = FirstArg->getType();
1002    Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1003    return RValue::get(Builder.CreateCall3(F, FirstArg,
1004                                              EmitScalarExpr(E->getArg(1)),
1005                                              EmitScalarExpr(E->getArg(2)),
1006                                              "tmp"));
1007  }
1008
1009  case Builtin::BI__builtin_signbit:
1010  case Builtin::BI__builtin_signbitf:
1011  case Builtin::BI__builtin_signbitl: {
1012    LLVMContext &C = CGM.getLLVMContext();
1013
1014    Value *Arg = EmitScalarExpr(E->getArg(0));
1015    llvm::Type *ArgTy = Arg->getType();
1016    if (ArgTy->isPPC_FP128Ty())
1017      break; // FIXME: I'm not sure what the right implementation is here.
1018    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1019    llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1020    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1021    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1022    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1023    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1024  }
1025  case Builtin::BI__builtin_annotation: {
1026    llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1027    llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1028                                      AnnVal->getType());
1029
1030    // Get the annotation string, go through casts. Sema requires this to be a
1031    // non-wide string literal, potentially casted, so the cast<> is safe.
1032    const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1033    llvm::StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1034    return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1035  }
1036  }
1037
1038  // If this is an alias for a lib function (e.g. __builtin_sin), emit
1039  // the call using the normal call path, but using the unmangled
1040  // version of the function name.
1041  if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1042    return emitLibraryCall(*this, FD, E,
1043                           CGM.getBuiltinLibFunction(FD, BuiltinID));
1044
1045  // If this is a predefined lib function (e.g. malloc), emit the call
1046  // using exactly the normal call path.
1047  if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1048    return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1049
1050  // See if we have a target specific intrinsic.
1051  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1052  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1053  if (const char *Prefix =
1054      llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1055    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1056
1057  if (IntrinsicID != Intrinsic::not_intrinsic) {
1058    SmallVector<Value*, 16> Args;
1059
1060    // Find out if any arguments are required to be integer constant
1061    // expressions.
1062    unsigned ICEArguments = 0;
1063    ASTContext::GetBuiltinTypeError Error;
1064    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1065    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1066
1067    Function *F = CGM.getIntrinsic(IntrinsicID);
1068    llvm::FunctionType *FTy = F->getFunctionType();
1069
1070    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1071      Value *ArgValue;
1072      // If this is a normal argument, just emit it as a scalar.
1073      if ((ICEArguments & (1 << i)) == 0) {
1074        ArgValue = EmitScalarExpr(E->getArg(i));
1075      } else {
1076        // If this is required to be a constant, constant fold it so that we
1077        // know that the generated intrinsic gets a ConstantInt.
1078        llvm::APSInt Result;
1079        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1080        assert(IsConst && "Constant arg isn't actually constant?");
1081        (void)IsConst;
1082        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1083      }
1084
1085      // If the intrinsic arg type is different from the builtin arg type
1086      // we need to do a bit cast.
1087      llvm::Type *PTy = FTy->getParamType(i);
1088      if (PTy != ArgValue->getType()) {
1089        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1090               "Must be able to losslessly bit cast to param");
1091        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1092      }
1093
1094      Args.push_back(ArgValue);
1095    }
1096
1097    Value *V = Builder.CreateCall(F, Args);
1098    QualType BuiltinRetType = E->getType();
1099
1100    llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1101    if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1102
1103    if (RetTy != V->getType()) {
1104      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1105             "Must be able to losslessly bit cast result type");
1106      V = Builder.CreateBitCast(V, RetTy);
1107    }
1108
1109    return RValue::get(V);
1110  }
1111
1112  // See if we have a target specific builtin that needs to be lowered.
1113  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1114    return RValue::get(V);
1115
1116  ErrorUnsupported(E, "builtin function");
1117
1118  // Unknown builtin, for now just dump it out and return undef.
1119  if (hasAggregateLLVMType(E->getType()))
1120    return RValue::getAggregate(CreateMemTemp(E->getType()));
1121  return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1122}
1123
1124Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1125                                              const CallExpr *E) {
1126  switch (Target.getTriple().getArch()) {
1127  case llvm::Triple::arm:
1128  case llvm::Triple::thumb:
1129    return EmitARMBuiltinExpr(BuiltinID, E);
1130  case llvm::Triple::x86:
1131  case llvm::Triple::x86_64:
1132    return EmitX86BuiltinExpr(BuiltinID, E);
1133  case llvm::Triple::ppc:
1134  case llvm::Triple::ppc64:
1135    return EmitPPCBuiltinExpr(BuiltinID, E);
1136  default:
1137    return 0;
1138  }
1139}
1140
1141static llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
1142  switch (type) {
1143    default: break;
1144    case 0:
1145    case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1146    case 6:
1147    case 7:
1148    case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1149    case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1150    case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1151    case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1152  };
1153  return 0;
1154}
1155
1156Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1157  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1158  SmallVector<Constant*, 16> Indices(nElts, C);
1159  Value* SV = llvm::ConstantVector::get(Indices);
1160  return Builder.CreateShuffleVector(V, V, SV, "lane");
1161}
1162
1163Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1164                                     const char *name,
1165                                     unsigned shift, bool rightshift) {
1166  unsigned j = 0;
1167  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1168       ai != ae; ++ai, ++j)
1169    if (shift > 0 && shift == j)
1170      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1171    else
1172      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1173
1174  return Builder.CreateCall(F, Ops, name);
1175}
1176
1177Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
1178                                            bool neg) {
1179  ConstantInt *CI = cast<ConstantInt>(V);
1180  int SV = CI->getSExtValue();
1181
1182  llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1183  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1184  SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1185  return llvm::ConstantVector::get(CV);
1186}
1187
1188/// GetPointeeAlignment - Given an expression with a pointer type, find the
1189/// alignment of the type referenced by the pointer.  Skip over implicit
1190/// casts.
1191static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1192  unsigned Align = 1;
1193  // Check if the type is a pointer.  The implicit cast operand might not be.
1194  while (Addr->getType()->isPointerType()) {
1195    QualType PtTy = Addr->getType()->getPointeeType();
1196    unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1197    if (NewA > Align)
1198      Align = NewA;
1199
1200    // If the address is an implicit cast, repeat with the cast operand.
1201    if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1202      Addr = CastAddr->getSubExpr();
1203      continue;
1204    }
1205    break;
1206  }
1207  return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1208}
1209
1210Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1211                                           const CallExpr *E) {
1212  if (BuiltinID == ARM::BI__clear_cache) {
1213    const FunctionDecl *FD = E->getDirectCallee();
1214    // Oddly people write this call without args on occasion and gcc accepts
1215    // it - it's also marked as varargs in the description file.
1216    SmallVector<Value*, 2> Ops;
1217    for (unsigned i = 0; i < E->getNumArgs(); i++)
1218      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1219    llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1220    llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1221    StringRef Name = FD->getName();
1222    return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
1223  }
1224
1225  if (BuiltinID == ARM::BI__builtin_arm_ldrexd) {
1226    Function *F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
1227
1228    Value *LdPtr = EmitScalarExpr(E->getArg(0));
1229    Value *Val = Builder.CreateCall(F, LdPtr, "ldrexd");
1230
1231    Value *Val0 = Builder.CreateExtractValue(Val, 1);
1232    Value *Val1 = Builder.CreateExtractValue(Val, 0);
1233    Val0 = Builder.CreateZExt(Val0, Int64Ty);
1234    Val1 = Builder.CreateZExt(Val1, Int64Ty);
1235
1236    Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
1237    Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
1238    return Builder.CreateOr(Val, Val1);
1239  }
1240
1241  if (BuiltinID == ARM::BI__builtin_arm_strexd) {
1242    Function *F = CGM.getIntrinsic(Intrinsic::arm_strexd);
1243    llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, NULL);
1244
1245    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1246    Value *Tmp = Builder.CreateAlloca(Int64Ty, One, "tmp");
1247    Value *Val = EmitScalarExpr(E->getArg(0));
1248    Builder.CreateStore(Val, Tmp);
1249
1250    Value *LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
1251    Val = Builder.CreateLoad(LdPtr);
1252
1253    Value *Arg0 = Builder.CreateExtractValue(Val, 0);
1254    Value *Arg1 = Builder.CreateExtractValue(Val, 1);
1255    Value *StPtr = EmitScalarExpr(E->getArg(1));
1256    return Builder.CreateCall3(F, Arg0, Arg1, StPtr, "strexd");
1257  }
1258
1259  SmallVector<Value*, 4> Ops;
1260  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1261    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1262
1263  // vget_lane and vset_lane are not overloaded and do not have an extra
1264  // argument that specifies the vector type.
1265  switch (BuiltinID) {
1266  default: break;
1267  case ARM::BI__builtin_neon_vget_lane_i8:
1268  case ARM::BI__builtin_neon_vget_lane_i16:
1269  case ARM::BI__builtin_neon_vget_lane_i32:
1270  case ARM::BI__builtin_neon_vget_lane_i64:
1271  case ARM::BI__builtin_neon_vget_lane_f32:
1272  case ARM::BI__builtin_neon_vgetq_lane_i8:
1273  case ARM::BI__builtin_neon_vgetq_lane_i16:
1274  case ARM::BI__builtin_neon_vgetq_lane_i32:
1275  case ARM::BI__builtin_neon_vgetq_lane_i64:
1276  case ARM::BI__builtin_neon_vgetq_lane_f32:
1277    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1278                                        "vget_lane");
1279  case ARM::BI__builtin_neon_vset_lane_i8:
1280  case ARM::BI__builtin_neon_vset_lane_i16:
1281  case ARM::BI__builtin_neon_vset_lane_i32:
1282  case ARM::BI__builtin_neon_vset_lane_i64:
1283  case ARM::BI__builtin_neon_vset_lane_f32:
1284  case ARM::BI__builtin_neon_vsetq_lane_i8:
1285  case ARM::BI__builtin_neon_vsetq_lane_i16:
1286  case ARM::BI__builtin_neon_vsetq_lane_i32:
1287  case ARM::BI__builtin_neon_vsetq_lane_i64:
1288  case ARM::BI__builtin_neon_vsetq_lane_f32:
1289    Ops.push_back(EmitScalarExpr(E->getArg(2)));
1290    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1291  }
1292
1293  // Get the last argument, which specifies the vector type.
1294  llvm::APSInt Result;
1295  const Expr *Arg = E->getArg(E->getNumArgs()-1);
1296  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1297    return 0;
1298
1299  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1300      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1301    // Determine the overloaded type of this builtin.
1302    llvm::Type *Ty;
1303    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1304      Ty = llvm::Type::getFloatTy(getLLVMContext());
1305    else
1306      Ty = llvm::Type::getDoubleTy(getLLVMContext());
1307
1308    // Determine whether this is an unsigned conversion or not.
1309    bool usgn = Result.getZExtValue() == 1;
1310    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1311
1312    // Call the appropriate intrinsic.
1313    Function *F = CGM.getIntrinsic(Int, Ty);
1314    return Builder.CreateCall(F, Ops, "vcvtr");
1315  }
1316
1317  // Determine the type of this overloaded NEON intrinsic.
1318  unsigned type = Result.getZExtValue();
1319  bool usgn = type & 0x08;
1320  bool quad = type & 0x10;
1321  bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1322  (void)poly;  // Only used in assert()s.
1323  bool rightShift = false;
1324
1325  llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1326  llvm::Type *Ty = VTy;
1327  if (!Ty)
1328    return 0;
1329
1330  unsigned Int;
1331  switch (BuiltinID) {
1332  default: return 0;
1333  case ARM::BI__builtin_neon_vabd_v:
1334  case ARM::BI__builtin_neon_vabdq_v:
1335    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1336    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
1337  case ARM::BI__builtin_neon_vabs_v:
1338  case ARM::BI__builtin_neon_vabsq_v:
1339    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, Ty),
1340                        Ops, "vabs");
1341  case ARM::BI__builtin_neon_vaddhn_v:
1342    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, Ty),
1343                        Ops, "vaddhn");
1344  case ARM::BI__builtin_neon_vcale_v:
1345    std::swap(Ops[0], Ops[1]);
1346  case ARM::BI__builtin_neon_vcage_v: {
1347    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1348    return EmitNeonCall(F, Ops, "vcage");
1349  }
1350  case ARM::BI__builtin_neon_vcaleq_v:
1351    std::swap(Ops[0], Ops[1]);
1352  case ARM::BI__builtin_neon_vcageq_v: {
1353    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1354    return EmitNeonCall(F, Ops, "vcage");
1355  }
1356  case ARM::BI__builtin_neon_vcalt_v:
1357    std::swap(Ops[0], Ops[1]);
1358  case ARM::BI__builtin_neon_vcagt_v: {
1359    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1360    return EmitNeonCall(F, Ops, "vcagt");
1361  }
1362  case ARM::BI__builtin_neon_vcaltq_v:
1363    std::swap(Ops[0], Ops[1]);
1364  case ARM::BI__builtin_neon_vcagtq_v: {
1365    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1366    return EmitNeonCall(F, Ops, "vcagt");
1367  }
1368  case ARM::BI__builtin_neon_vcls_v:
1369  case ARM::BI__builtin_neon_vclsq_v: {
1370    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, Ty);
1371    return EmitNeonCall(F, Ops, "vcls");
1372  }
1373  case ARM::BI__builtin_neon_vclz_v:
1374  case ARM::BI__builtin_neon_vclzq_v: {
1375    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, Ty);
1376    return EmitNeonCall(F, Ops, "vclz");
1377  }
1378  case ARM::BI__builtin_neon_vcnt_v:
1379  case ARM::BI__builtin_neon_vcntq_v: {
1380    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, Ty);
1381    return EmitNeonCall(F, Ops, "vcnt");
1382  }
1383  case ARM::BI__builtin_neon_vcvt_f16_v: {
1384    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1385    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1386    return EmitNeonCall(F, Ops, "vcvt");
1387  }
1388  case ARM::BI__builtin_neon_vcvt_f32_f16: {
1389    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1390    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1391    return EmitNeonCall(F, Ops, "vcvt");
1392  }
1393  case ARM::BI__builtin_neon_vcvt_f32_v:
1394  case ARM::BI__builtin_neon_vcvtq_f32_v: {
1395    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1396    Ty = GetNeonType(getLLVMContext(), 4, quad);
1397    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1398                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1399  }
1400  case ARM::BI__builtin_neon_vcvt_s32_v:
1401  case ARM::BI__builtin_neon_vcvt_u32_v:
1402  case ARM::BI__builtin_neon_vcvtq_s32_v:
1403  case ARM::BI__builtin_neon_vcvtq_u32_v: {
1404    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1405    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1406                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1407  }
1408  case ARM::BI__builtin_neon_vcvt_n_f32_v:
1409  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1410    llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1411    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1412    Function *F = CGM.getIntrinsic(Int, Tys);
1413    return EmitNeonCall(F, Ops, "vcvt_n");
1414  }
1415  case ARM::BI__builtin_neon_vcvt_n_s32_v:
1416  case ARM::BI__builtin_neon_vcvt_n_u32_v:
1417  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1418  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1419    llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1420    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1421    Function *F = CGM.getIntrinsic(Int, Tys);
1422    return EmitNeonCall(F, Ops, "vcvt_n");
1423  }
1424  case ARM::BI__builtin_neon_vext_v:
1425  case ARM::BI__builtin_neon_vextq_v: {
1426    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1427    SmallVector<Constant*, 16> Indices;
1428    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1429      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1430
1431    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1432    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1433    Value *SV = llvm::ConstantVector::get(Indices);
1434    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1435  }
1436  case ARM::BI__builtin_neon_vhadd_v:
1437  case ARM::BI__builtin_neon_vhaddq_v:
1438    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1439    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhadd");
1440  case ARM::BI__builtin_neon_vhsub_v:
1441  case ARM::BI__builtin_neon_vhsubq_v:
1442    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1443    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vhsub");
1444  case ARM::BI__builtin_neon_vld1_v:
1445  case ARM::BI__builtin_neon_vld1q_v:
1446    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1447    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Ty),
1448                        Ops, "vld1");
1449  case ARM::BI__builtin_neon_vld1_lane_v:
1450  case ARM::BI__builtin_neon_vld1q_lane_v:
1451    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1452    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1453    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1454    Ops[0] = Builder.CreateLoad(Ops[0]);
1455    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1456  case ARM::BI__builtin_neon_vld1_dup_v:
1457  case ARM::BI__builtin_neon_vld1q_dup_v: {
1458    Value *V = UndefValue::get(Ty);
1459    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1460    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1461    Ops[0] = Builder.CreateLoad(Ops[0]);
1462    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1463    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1464    return EmitNeonSplat(Ops[0], CI);
1465  }
1466  case ARM::BI__builtin_neon_vld2_v:
1467  case ARM::BI__builtin_neon_vld2q_v: {
1468    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, Ty);
1469    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1470    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1471    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1472    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1473    return Builder.CreateStore(Ops[1], Ops[0]);
1474  }
1475  case ARM::BI__builtin_neon_vld3_v:
1476  case ARM::BI__builtin_neon_vld3q_v: {
1477    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, Ty);
1478    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1479    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1480    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1481    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1482    return Builder.CreateStore(Ops[1], Ops[0]);
1483  }
1484  case ARM::BI__builtin_neon_vld4_v:
1485  case ARM::BI__builtin_neon_vld4q_v: {
1486    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, Ty);
1487    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1488    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1489    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1490    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1491    return Builder.CreateStore(Ops[1], Ops[0]);
1492  }
1493  case ARM::BI__builtin_neon_vld2_lane_v:
1494  case ARM::BI__builtin_neon_vld2q_lane_v: {
1495    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, Ty);
1496    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1497    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1498    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1499    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
1500    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1501    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1502    return Builder.CreateStore(Ops[1], Ops[0]);
1503  }
1504  case ARM::BI__builtin_neon_vld3_lane_v:
1505  case ARM::BI__builtin_neon_vld3q_lane_v: {
1506    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, Ty);
1507    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1508    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1509    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1510    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1511    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
1512    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1513    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1514    return Builder.CreateStore(Ops[1], Ops[0]);
1515  }
1516  case ARM::BI__builtin_neon_vld4_lane_v:
1517  case ARM::BI__builtin_neon_vld4q_lane_v: {
1518    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, Ty);
1519    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1520    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1521    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1522    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1523    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1524    Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
1525    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1526    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1527    return Builder.CreateStore(Ops[1], Ops[0]);
1528  }
1529  case ARM::BI__builtin_neon_vld2_dup_v:
1530  case ARM::BI__builtin_neon_vld3_dup_v:
1531  case ARM::BI__builtin_neon_vld4_dup_v: {
1532    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
1533    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1534      switch (BuiltinID) {
1535      case ARM::BI__builtin_neon_vld2_dup_v:
1536        Int = Intrinsic::arm_neon_vld2;
1537        break;
1538      case ARM::BI__builtin_neon_vld3_dup_v:
1539        Int = Intrinsic::arm_neon_vld2;
1540        break;
1541      case ARM::BI__builtin_neon_vld4_dup_v:
1542        Int = Intrinsic::arm_neon_vld2;
1543        break;
1544      default: assert(0 && "unknown vld_dup intrinsic?");
1545      }
1546      Function *F = CGM.getIntrinsic(Int, Ty);
1547      Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1548      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1549      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1550      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1551      return Builder.CreateStore(Ops[1], Ops[0]);
1552    }
1553    switch (BuiltinID) {
1554    case ARM::BI__builtin_neon_vld2_dup_v:
1555      Int = Intrinsic::arm_neon_vld2lane;
1556      break;
1557    case ARM::BI__builtin_neon_vld3_dup_v:
1558      Int = Intrinsic::arm_neon_vld2lane;
1559      break;
1560    case ARM::BI__builtin_neon_vld4_dup_v:
1561      Int = Intrinsic::arm_neon_vld2lane;
1562      break;
1563    default: assert(0 && "unknown vld_dup intrinsic?");
1564    }
1565    Function *F = CGM.getIntrinsic(Int, Ty);
1566    llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1567
1568    SmallVector<Value*, 6> Args;
1569    Args.push_back(Ops[1]);
1570    Args.append(STy->getNumElements(), UndefValue::get(Ty));
1571
1572    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1573    Args.push_back(CI);
1574    Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1575
1576    Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
1577    // splat lane 0 to all elts in each vector of the result.
1578    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1579      Value *Val = Builder.CreateExtractValue(Ops[1], i);
1580      Value *Elt = Builder.CreateBitCast(Val, Ty);
1581      Elt = EmitNeonSplat(Elt, CI);
1582      Elt = Builder.CreateBitCast(Elt, Val->getType());
1583      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1584    }
1585    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1586    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1587    return Builder.CreateStore(Ops[1], Ops[0]);
1588  }
1589  case ARM::BI__builtin_neon_vmax_v:
1590  case ARM::BI__builtin_neon_vmaxq_v:
1591    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1592    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
1593  case ARM::BI__builtin_neon_vmin_v:
1594  case ARM::BI__builtin_neon_vminq_v:
1595    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1596    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
1597  case ARM::BI__builtin_neon_vmovl_v: {
1598    llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1599    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1600    if (usgn)
1601      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1602    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1603  }
1604  case ARM::BI__builtin_neon_vmovn_v: {
1605    llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1606    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1607    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1608  }
1609  case ARM::BI__builtin_neon_vmul_v:
1610  case ARM::BI__builtin_neon_vmulq_v:
1611    assert(poly && "vmul builtin only supported for polynomial types");
1612    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, Ty),
1613                        Ops, "vmul");
1614  case ARM::BI__builtin_neon_vmull_v:
1615    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1616    Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1617    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
1618  case ARM::BI__builtin_neon_vpadal_v:
1619  case ARM::BI__builtin_neon_vpadalq_v: {
1620    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1621    // The source operand type has twice as many elements of half the size.
1622    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1623    llvm::Type *EltTy =
1624      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1625    llvm::Type *NarrowTy =
1626      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1627    llvm::Type *Tys[2] = { Ty, NarrowTy };
1628    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpadal");
1629  }
1630  case ARM::BI__builtin_neon_vpadd_v:
1631    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, Ty),
1632                        Ops, "vpadd");
1633  case ARM::BI__builtin_neon_vpaddl_v:
1634  case ARM::BI__builtin_neon_vpaddlq_v: {
1635    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1636    // The source operand type has twice as many elements of half the size.
1637    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1638    llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1639    llvm::Type *NarrowTy =
1640      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1641    llvm::Type *Tys[2] = { Ty, NarrowTy };
1642    return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
1643  }
1644  case ARM::BI__builtin_neon_vpmax_v:
1645    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1646    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
1647  case ARM::BI__builtin_neon_vpmin_v:
1648    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1649    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
1650  case ARM::BI__builtin_neon_vqabs_v:
1651  case ARM::BI__builtin_neon_vqabsq_v:
1652    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, Ty),
1653                        Ops, "vqabs");
1654  case ARM::BI__builtin_neon_vqadd_v:
1655  case ARM::BI__builtin_neon_vqaddq_v:
1656    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1657    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqadd");
1658  case ARM::BI__builtin_neon_vqdmlal_v:
1659    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, Ty),
1660                        Ops, "vqdmlal");
1661  case ARM::BI__builtin_neon_vqdmlsl_v:
1662    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, Ty),
1663                        Ops, "vqdmlsl");
1664  case ARM::BI__builtin_neon_vqdmulh_v:
1665  case ARM::BI__builtin_neon_vqdmulhq_v:
1666    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, Ty),
1667                        Ops, "vqdmulh");
1668  case ARM::BI__builtin_neon_vqdmull_v:
1669    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, Ty),
1670                        Ops, "vqdmull");
1671  case ARM::BI__builtin_neon_vqmovn_v:
1672    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1673    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqmovn");
1674  case ARM::BI__builtin_neon_vqmovun_v:
1675    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, Ty),
1676                        Ops, "vqdmull");
1677  case ARM::BI__builtin_neon_vqneg_v:
1678  case ARM::BI__builtin_neon_vqnegq_v:
1679    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, Ty),
1680                        Ops, "vqneg");
1681  case ARM::BI__builtin_neon_vqrdmulh_v:
1682  case ARM::BI__builtin_neon_vqrdmulhq_v:
1683    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, Ty),
1684                        Ops, "vqrdmulh");
1685  case ARM::BI__builtin_neon_vqrshl_v:
1686  case ARM::BI__builtin_neon_vqrshlq_v:
1687    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1688    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshl");
1689  case ARM::BI__builtin_neon_vqrshrn_n_v:
1690    Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1691    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
1692                        1, true);
1693  case ARM::BI__builtin_neon_vqrshrun_n_v:
1694    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
1695                        Ops, "vqrshrun_n", 1, true);
1696  case ARM::BI__builtin_neon_vqshl_v:
1697  case ARM::BI__builtin_neon_vqshlq_v:
1698    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1699    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl");
1700  case ARM::BI__builtin_neon_vqshl_n_v:
1701  case ARM::BI__builtin_neon_vqshlq_n_v:
1702    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1703    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
1704                        1, false);
1705  case ARM::BI__builtin_neon_vqshlu_n_v:
1706  case ARM::BI__builtin_neon_vqshluq_n_v:
1707    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, Ty),
1708                        Ops, "vqshlu", 1, false);
1709  case ARM::BI__builtin_neon_vqshrn_n_v:
1710    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1711    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
1712                        1, true);
1713  case ARM::BI__builtin_neon_vqshrun_n_v:
1714    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
1715                        Ops, "vqshrun_n", 1, true);
1716  case ARM::BI__builtin_neon_vqsub_v:
1717  case ARM::BI__builtin_neon_vqsubq_v:
1718    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1719    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqsub");
1720  case ARM::BI__builtin_neon_vraddhn_v:
1721    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, Ty),
1722                        Ops, "vraddhn");
1723  case ARM::BI__builtin_neon_vrecpe_v:
1724  case ARM::BI__builtin_neon_vrecpeq_v:
1725    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
1726                        Ops, "vrecpe");
1727  case ARM::BI__builtin_neon_vrecps_v:
1728  case ARM::BI__builtin_neon_vrecpsq_v:
1729    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, Ty),
1730                        Ops, "vrecps");
1731  case ARM::BI__builtin_neon_vrhadd_v:
1732  case ARM::BI__builtin_neon_vrhaddq_v:
1733    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1734    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrhadd");
1735  case ARM::BI__builtin_neon_vrshl_v:
1736  case ARM::BI__builtin_neon_vrshlq_v:
1737    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1738    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshl");
1739  case ARM::BI__builtin_neon_vrshrn_n_v:
1740    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
1741                        Ops, "vrshrn_n", 1, true);
1742  case ARM::BI__builtin_neon_vrshr_n_v:
1743  case ARM::BI__builtin_neon_vrshrq_n_v:
1744    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1745    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true);
1746  case ARM::BI__builtin_neon_vrsqrte_v:
1747  case ARM::BI__builtin_neon_vrsqrteq_v:
1748    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, Ty),
1749                        Ops, "vrsqrte");
1750  case ARM::BI__builtin_neon_vrsqrts_v:
1751  case ARM::BI__builtin_neon_vrsqrtsq_v:
1752    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, Ty),
1753                        Ops, "vrsqrts");
1754  case ARM::BI__builtin_neon_vrsra_n_v:
1755  case ARM::BI__builtin_neon_vrsraq_n_v:
1756    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1757    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1758    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1759    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1760    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, Ty), Ops[1], Ops[2]);
1761    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1762  case ARM::BI__builtin_neon_vrsubhn_v:
1763    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, Ty),
1764                        Ops, "vrsubhn");
1765  case ARM::BI__builtin_neon_vshl_v:
1766  case ARM::BI__builtin_neon_vshlq_v:
1767    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1768    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshl");
1769  case ARM::BI__builtin_neon_vshll_n_v:
1770    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1771    return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vshll", 1);
1772  case ARM::BI__builtin_neon_vshl_n_v:
1773  case ARM::BI__builtin_neon_vshlq_n_v:
1774    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1775    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1776  case ARM::BI__builtin_neon_vshrn_n_v:
1777    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, Ty),
1778                        Ops, "vshrn_n", 1, true);
1779  case ARM::BI__builtin_neon_vshr_n_v:
1780  case ARM::BI__builtin_neon_vshrq_n_v:
1781    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1782    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1783    if (usgn)
1784      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1785    else
1786      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1787  case ARM::BI__builtin_neon_vsri_n_v:
1788  case ARM::BI__builtin_neon_vsriq_n_v:
1789    rightShift = true;
1790  case ARM::BI__builtin_neon_vsli_n_v:
1791  case ARM::BI__builtin_neon_vsliq_n_v:
1792    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1793    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
1794                        Ops, "vsli_n");
1795  case ARM::BI__builtin_neon_vsra_n_v:
1796  case ARM::BI__builtin_neon_vsraq_n_v:
1797    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1798    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1799    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1800    if (usgn)
1801      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1802    else
1803      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1804    return Builder.CreateAdd(Ops[0], Ops[1]);
1805  case ARM::BI__builtin_neon_vst1_v:
1806  case ARM::BI__builtin_neon_vst1q_v:
1807    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1808    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Ty),
1809                        Ops, "");
1810  case ARM::BI__builtin_neon_vst1_lane_v:
1811  case ARM::BI__builtin_neon_vst1q_lane_v:
1812    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1813    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1814    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1815    return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1816  case ARM::BI__builtin_neon_vst2_v:
1817  case ARM::BI__builtin_neon_vst2q_v:
1818    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1819    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, Ty),
1820                        Ops, "");
1821  case ARM::BI__builtin_neon_vst2_lane_v:
1822  case ARM::BI__builtin_neon_vst2q_lane_v:
1823    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1824    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, Ty),
1825                        Ops, "");
1826  case ARM::BI__builtin_neon_vst3_v:
1827  case ARM::BI__builtin_neon_vst3q_v:
1828    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1829    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, Ty),
1830                        Ops, "");
1831  case ARM::BI__builtin_neon_vst3_lane_v:
1832  case ARM::BI__builtin_neon_vst3q_lane_v:
1833    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1834    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, Ty),
1835                        Ops, "");
1836  case ARM::BI__builtin_neon_vst4_v:
1837  case ARM::BI__builtin_neon_vst4q_v:
1838    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1839    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, Ty),
1840                        Ops, "");
1841  case ARM::BI__builtin_neon_vst4_lane_v:
1842  case ARM::BI__builtin_neon_vst4q_lane_v:
1843    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1844    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, Ty),
1845                        Ops, "");
1846  case ARM::BI__builtin_neon_vsubhn_v:
1847    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, Ty),
1848                        Ops, "vsubhn");
1849  case ARM::BI__builtin_neon_vtbl1_v:
1850    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1851                        Ops, "vtbl1");
1852  case ARM::BI__builtin_neon_vtbl2_v:
1853    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1854                        Ops, "vtbl2");
1855  case ARM::BI__builtin_neon_vtbl3_v:
1856    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1857                        Ops, "vtbl3");
1858  case ARM::BI__builtin_neon_vtbl4_v:
1859    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1860                        Ops, "vtbl4");
1861  case ARM::BI__builtin_neon_vtbx1_v:
1862    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1863                        Ops, "vtbx1");
1864  case ARM::BI__builtin_neon_vtbx2_v:
1865    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1866                        Ops, "vtbx2");
1867  case ARM::BI__builtin_neon_vtbx3_v:
1868    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1869                        Ops, "vtbx3");
1870  case ARM::BI__builtin_neon_vtbx4_v:
1871    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1872                        Ops, "vtbx4");
1873  case ARM::BI__builtin_neon_vtst_v:
1874  case ARM::BI__builtin_neon_vtstq_v: {
1875    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1876    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1877    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1878    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1879                                ConstantAggregateZero::get(Ty));
1880    return Builder.CreateSExt(Ops[0], Ty, "vtst");
1881  }
1882  case ARM::BI__builtin_neon_vtrn_v:
1883  case ARM::BI__builtin_neon_vtrnq_v: {
1884    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1885    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1886    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1887    Value *SV = 0;
1888
1889    for (unsigned vi = 0; vi != 2; ++vi) {
1890      SmallVector<Constant*, 16> Indices;
1891      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1892        Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1893        Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1894      }
1895      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1896      SV = llvm::ConstantVector::get(Indices);
1897      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1898      SV = Builder.CreateStore(SV, Addr);
1899    }
1900    return SV;
1901  }
1902  case ARM::BI__builtin_neon_vuzp_v:
1903  case ARM::BI__builtin_neon_vuzpq_v: {
1904    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1905    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1906    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1907    Value *SV = 0;
1908
1909    for (unsigned vi = 0; vi != 2; ++vi) {
1910      SmallVector<Constant*, 16> Indices;
1911      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1912        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1913
1914      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1915      SV = llvm::ConstantVector::get(Indices);
1916      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1917      SV = Builder.CreateStore(SV, Addr);
1918    }
1919    return SV;
1920  }
1921  case ARM::BI__builtin_neon_vzip_v:
1922  case ARM::BI__builtin_neon_vzipq_v: {
1923    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1924    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1925    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1926    Value *SV = 0;
1927
1928    for (unsigned vi = 0; vi != 2; ++vi) {
1929      SmallVector<Constant*, 16> Indices;
1930      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1931        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1932        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1933      }
1934      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1935      SV = llvm::ConstantVector::get(Indices);
1936      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1937      SV = Builder.CreateStore(SV, Addr);
1938    }
1939    return SV;
1940  }
1941  }
1942}
1943
1944llvm::Value *CodeGenFunction::
1945BuildVector(const SmallVectorImpl<llvm::Value*> &Ops) {
1946  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1947         "Not a power-of-two sized vector!");
1948  bool AllConstants = true;
1949  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1950    AllConstants &= isa<Constant>(Ops[i]);
1951
1952  // If this is a constant vector, create a ConstantVector.
1953  if (AllConstants) {
1954    std::vector<llvm::Constant*> CstOps;
1955    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1956      CstOps.push_back(cast<Constant>(Ops[i]));
1957    return llvm::ConstantVector::get(CstOps);
1958  }
1959
1960  // Otherwise, insertelement the values to build the vector.
1961  Value *Result =
1962    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1963
1964  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1965    Result = Builder.CreateInsertElement(Result, Ops[i],
1966               llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1967
1968  return Result;
1969}
1970
1971Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1972                                           const CallExpr *E) {
1973  SmallVector<Value*, 4> Ops;
1974
1975  // Find out if any arguments are required to be integer constant expressions.
1976  unsigned ICEArguments = 0;
1977  ASTContext::GetBuiltinTypeError Error;
1978  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1979  assert(Error == ASTContext::GE_None && "Should not codegen an error");
1980
1981  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1982    // If this is a normal argument, just emit it as a scalar.
1983    if ((ICEArguments & (1 << i)) == 0) {
1984      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1985      continue;
1986    }
1987
1988    // If this is required to be a constant, constant fold it so that we know
1989    // that the generated intrinsic gets a ConstantInt.
1990    llvm::APSInt Result;
1991    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1992    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1993    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1994  }
1995
1996  switch (BuiltinID) {
1997  default: return 0;
1998  case X86::BI__builtin_ia32_pslldi128:
1999  case X86::BI__builtin_ia32_psllqi128:
2000  case X86::BI__builtin_ia32_psllwi128:
2001  case X86::BI__builtin_ia32_psradi128:
2002  case X86::BI__builtin_ia32_psrawi128:
2003  case X86::BI__builtin_ia32_psrldi128:
2004  case X86::BI__builtin_ia32_psrlqi128:
2005  case X86::BI__builtin_ia32_psrlwi128: {
2006    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2007    llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
2008    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2009    Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
2010                                         Ops[1], Zero, "insert");
2011    Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
2012    const char *name = 0;
2013    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2014
2015    switch (BuiltinID) {
2016    default: assert(0 && "Unsupported shift intrinsic!");
2017    case X86::BI__builtin_ia32_pslldi128:
2018      name = "pslldi";
2019      ID = Intrinsic::x86_sse2_psll_d;
2020      break;
2021    case X86::BI__builtin_ia32_psllqi128:
2022      name = "psllqi";
2023      ID = Intrinsic::x86_sse2_psll_q;
2024      break;
2025    case X86::BI__builtin_ia32_psllwi128:
2026      name = "psllwi";
2027      ID = Intrinsic::x86_sse2_psll_w;
2028      break;
2029    case X86::BI__builtin_ia32_psradi128:
2030      name = "psradi";
2031      ID = Intrinsic::x86_sse2_psra_d;
2032      break;
2033    case X86::BI__builtin_ia32_psrawi128:
2034      name = "psrawi";
2035      ID = Intrinsic::x86_sse2_psra_w;
2036      break;
2037    case X86::BI__builtin_ia32_psrldi128:
2038      name = "psrldi";
2039      ID = Intrinsic::x86_sse2_psrl_d;
2040      break;
2041    case X86::BI__builtin_ia32_psrlqi128:
2042      name = "psrlqi";
2043      ID = Intrinsic::x86_sse2_psrl_q;
2044      break;
2045    case X86::BI__builtin_ia32_psrlwi128:
2046      name = "psrlwi";
2047      ID = Intrinsic::x86_sse2_psrl_w;
2048      break;
2049    }
2050    llvm::Function *F = CGM.getIntrinsic(ID);
2051    return Builder.CreateCall(F, Ops, name);
2052  }
2053  case X86::BI__builtin_ia32_vec_init_v8qi:
2054  case X86::BI__builtin_ia32_vec_init_v4hi:
2055  case X86::BI__builtin_ia32_vec_init_v2si:
2056    return Builder.CreateBitCast(BuildVector(Ops),
2057                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
2058  case X86::BI__builtin_ia32_vec_ext_v2si:
2059    return Builder.CreateExtractElement(Ops[0],
2060                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
2061  case X86::BI__builtin_ia32_pslldi:
2062  case X86::BI__builtin_ia32_psllqi:
2063  case X86::BI__builtin_ia32_psllwi:
2064  case X86::BI__builtin_ia32_psradi:
2065  case X86::BI__builtin_ia32_psrawi:
2066  case X86::BI__builtin_ia32_psrldi:
2067  case X86::BI__builtin_ia32_psrlqi:
2068  case X86::BI__builtin_ia32_psrlwi: {
2069    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2070    llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2071    Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2072    const char *name = 0;
2073    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2074
2075    switch (BuiltinID) {
2076    default: assert(0 && "Unsupported shift intrinsic!");
2077    case X86::BI__builtin_ia32_pslldi:
2078      name = "pslldi";
2079      ID = Intrinsic::x86_mmx_psll_d;
2080      break;
2081    case X86::BI__builtin_ia32_psllqi:
2082      name = "psllqi";
2083      ID = Intrinsic::x86_mmx_psll_q;
2084      break;
2085    case X86::BI__builtin_ia32_psllwi:
2086      name = "psllwi";
2087      ID = Intrinsic::x86_mmx_psll_w;
2088      break;
2089    case X86::BI__builtin_ia32_psradi:
2090      name = "psradi";
2091      ID = Intrinsic::x86_mmx_psra_d;
2092      break;
2093    case X86::BI__builtin_ia32_psrawi:
2094      name = "psrawi";
2095      ID = Intrinsic::x86_mmx_psra_w;
2096      break;
2097    case X86::BI__builtin_ia32_psrldi:
2098      name = "psrldi";
2099      ID = Intrinsic::x86_mmx_psrl_d;
2100      break;
2101    case X86::BI__builtin_ia32_psrlqi:
2102      name = "psrlqi";
2103      ID = Intrinsic::x86_mmx_psrl_q;
2104      break;
2105    case X86::BI__builtin_ia32_psrlwi:
2106      name = "psrlwi";
2107      ID = Intrinsic::x86_mmx_psrl_w;
2108      break;
2109    }
2110    llvm::Function *F = CGM.getIntrinsic(ID);
2111    return Builder.CreateCall(F, Ops, name);
2112  }
2113  case X86::BI__builtin_ia32_cmpps: {
2114    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2115    return Builder.CreateCall(F, Ops, "cmpps");
2116  }
2117  case X86::BI__builtin_ia32_cmpss: {
2118    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2119    return Builder.CreateCall(F, Ops, "cmpss");
2120  }
2121  case X86::BI__builtin_ia32_ldmxcsr: {
2122    llvm::Type *PtrTy = Int8PtrTy;
2123    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2124    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2125    Builder.CreateStore(Ops[0], Tmp);
2126    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2127                              Builder.CreateBitCast(Tmp, PtrTy));
2128  }
2129  case X86::BI__builtin_ia32_stmxcsr: {
2130    llvm::Type *PtrTy = Int8PtrTy;
2131    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2132    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2133    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2134                       Builder.CreateBitCast(Tmp, PtrTy));
2135    return Builder.CreateLoad(Tmp, "stmxcsr");
2136  }
2137  case X86::BI__builtin_ia32_cmppd: {
2138    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2139    return Builder.CreateCall(F, Ops, "cmppd");
2140  }
2141  case X86::BI__builtin_ia32_cmpsd: {
2142    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2143    return Builder.CreateCall(F, Ops, "cmpsd");
2144  }
2145  case X86::BI__builtin_ia32_storehps:
2146  case X86::BI__builtin_ia32_storelps: {
2147    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2148    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2149
2150    // cast val v2i64
2151    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2152
2153    // extract (0, 1)
2154    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2155    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2156    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2157
2158    // cast pointer to i64 & store
2159    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2160    return Builder.CreateStore(Ops[1], Ops[0]);
2161  }
2162  case X86::BI__builtin_ia32_palignr: {
2163    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2164
2165    // If palignr is shifting the pair of input vectors less than 9 bytes,
2166    // emit a shuffle instruction.
2167    if (shiftVal <= 8) {
2168      SmallVector<llvm::Constant*, 8> Indices;
2169      for (unsigned i = 0; i != 8; ++i)
2170        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2171
2172      Value* SV = llvm::ConstantVector::get(Indices);
2173      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2174    }
2175
2176    // If palignr is shifting the pair of input vectors more than 8 but less
2177    // than 16 bytes, emit a logical right shift of the destination.
2178    if (shiftVal < 16) {
2179      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2180      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2181
2182      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2183      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2184
2185      // create i32 constant
2186      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2187      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2188    }
2189
2190    // If palignr is shifting the pair of vectors more than 16 bytes, emit zero.
2191    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2192  }
2193  case X86::BI__builtin_ia32_palignr128: {
2194    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2195
2196    // If palignr is shifting the pair of input vectors less than 17 bytes,
2197    // emit a shuffle instruction.
2198    if (shiftVal <= 16) {
2199      SmallVector<llvm::Constant*, 16> Indices;
2200      for (unsigned i = 0; i != 16; ++i)
2201        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2202
2203      Value* SV = llvm::ConstantVector::get(Indices);
2204      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2205    }
2206
2207    // If palignr is shifting the pair of input vectors more than 16 but less
2208    // than 32 bytes, emit a logical right shift of the destination.
2209    if (shiftVal < 32) {
2210      llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2211
2212      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2213      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2214
2215      // create i32 constant
2216      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2217      return Builder.CreateCall(F, makeArrayRef(&Ops[0], 2), "palignr");
2218    }
2219
2220    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2221    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2222  }
2223  case X86::BI__builtin_ia32_movntps:
2224  case X86::BI__builtin_ia32_movntpd:
2225  case X86::BI__builtin_ia32_movntdq:
2226  case X86::BI__builtin_ia32_movnti: {
2227    llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(),
2228                                           Builder.getInt32(1));
2229
2230    // Convert the type of the pointer to a pointer to the stored type.
2231    Value *BC = Builder.CreateBitCast(Ops[0],
2232                                llvm::PointerType::getUnqual(Ops[1]->getType()),
2233                                      "cast");
2234    StoreInst *SI = Builder.CreateStore(Ops[1], BC);
2235    SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
2236    SI->setAlignment(16);
2237    return SI;
2238  }
2239  // 3DNow!
2240  case X86::BI__builtin_ia32_pavgusb:
2241  case X86::BI__builtin_ia32_pf2id:
2242  case X86::BI__builtin_ia32_pfacc:
2243  case X86::BI__builtin_ia32_pfadd:
2244  case X86::BI__builtin_ia32_pfcmpeq:
2245  case X86::BI__builtin_ia32_pfcmpge:
2246  case X86::BI__builtin_ia32_pfcmpgt:
2247  case X86::BI__builtin_ia32_pfmax:
2248  case X86::BI__builtin_ia32_pfmin:
2249  case X86::BI__builtin_ia32_pfmul:
2250  case X86::BI__builtin_ia32_pfrcp:
2251  case X86::BI__builtin_ia32_pfrcpit1:
2252  case X86::BI__builtin_ia32_pfrcpit2:
2253  case X86::BI__builtin_ia32_pfrsqrt:
2254  case X86::BI__builtin_ia32_pfrsqit1:
2255  case X86::BI__builtin_ia32_pfrsqrtit1:
2256  case X86::BI__builtin_ia32_pfsub:
2257  case X86::BI__builtin_ia32_pfsubr:
2258  case X86::BI__builtin_ia32_pi2fd:
2259  case X86::BI__builtin_ia32_pmulhrw:
2260  case X86::BI__builtin_ia32_pf2iw:
2261  case X86::BI__builtin_ia32_pfnacc:
2262  case X86::BI__builtin_ia32_pfpnacc:
2263  case X86::BI__builtin_ia32_pi2fw:
2264  case X86::BI__builtin_ia32_pswapdsf:
2265  case X86::BI__builtin_ia32_pswapdsi: {
2266    const char *name = 0;
2267    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2268    switch(BuiltinID) {
2269    case X86::BI__builtin_ia32_pavgusb:
2270      name = "pavgusb";
2271      ID = Intrinsic::x86_3dnow_pavgusb;
2272      break;
2273    case X86::BI__builtin_ia32_pf2id:
2274      name = "pf2id";
2275      ID = Intrinsic::x86_3dnow_pf2id;
2276      break;
2277    case X86::BI__builtin_ia32_pfacc:
2278      name = "pfacc";
2279      ID = Intrinsic::x86_3dnow_pfacc;
2280      break;
2281    case X86::BI__builtin_ia32_pfadd:
2282      name = "pfadd";
2283      ID = Intrinsic::x86_3dnow_pfadd;
2284      break;
2285    case X86::BI__builtin_ia32_pfcmpeq:
2286      name = "pfcmpeq";
2287      ID = Intrinsic::x86_3dnow_pfcmpeq;
2288      break;
2289    case X86::BI__builtin_ia32_pfcmpge:
2290      name = "pfcmpge";
2291      ID = Intrinsic::x86_3dnow_pfcmpge;
2292      break;
2293    case X86::BI__builtin_ia32_pfcmpgt:
2294      name = "pfcmpgt";
2295      ID = Intrinsic::x86_3dnow_pfcmpgt;
2296      break;
2297    case X86::BI__builtin_ia32_pfmax:
2298      name = "pfmax";
2299      ID = Intrinsic::x86_3dnow_pfmax;
2300      break;
2301    case X86::BI__builtin_ia32_pfmin:
2302      name = "pfmin";
2303      ID = Intrinsic::x86_3dnow_pfmin;
2304      break;
2305    case X86::BI__builtin_ia32_pfmul:
2306      name = "pfmul";
2307      ID = Intrinsic::x86_3dnow_pfmul;
2308      break;
2309    case X86::BI__builtin_ia32_pfrcp:
2310      name = "pfrcp";
2311      ID = Intrinsic::x86_3dnow_pfrcp;
2312      break;
2313    case X86::BI__builtin_ia32_pfrcpit1:
2314      name = "pfrcpit1";
2315      ID = Intrinsic::x86_3dnow_pfrcpit1;
2316      break;
2317    case X86::BI__builtin_ia32_pfrcpit2:
2318      name = "pfrcpit2";
2319      ID = Intrinsic::x86_3dnow_pfrcpit2;
2320      break;
2321    case X86::BI__builtin_ia32_pfrsqrt:
2322      name = "pfrsqrt";
2323      ID = Intrinsic::x86_3dnow_pfrsqrt;
2324      break;
2325    case X86::BI__builtin_ia32_pfrsqit1:
2326    case X86::BI__builtin_ia32_pfrsqrtit1:
2327      name = "pfrsqit1";
2328      ID = Intrinsic::x86_3dnow_pfrsqit1;
2329      break;
2330    case X86::BI__builtin_ia32_pfsub:
2331      name = "pfsub";
2332      ID = Intrinsic::x86_3dnow_pfsub;
2333      break;
2334    case X86::BI__builtin_ia32_pfsubr:
2335      name = "pfsubr";
2336      ID = Intrinsic::x86_3dnow_pfsubr;
2337      break;
2338    case X86::BI__builtin_ia32_pi2fd:
2339      name = "pi2fd";
2340      ID = Intrinsic::x86_3dnow_pi2fd;
2341      break;
2342    case X86::BI__builtin_ia32_pmulhrw:
2343      name = "pmulhrw";
2344      ID = Intrinsic::x86_3dnow_pmulhrw;
2345      break;
2346    case X86::BI__builtin_ia32_pf2iw:
2347      name = "pf2iw";
2348      ID = Intrinsic::x86_3dnowa_pf2iw;
2349      break;
2350    case X86::BI__builtin_ia32_pfnacc:
2351      name = "pfnacc";
2352      ID = Intrinsic::x86_3dnowa_pfnacc;
2353      break;
2354    case X86::BI__builtin_ia32_pfpnacc:
2355      name = "pfpnacc";
2356      ID = Intrinsic::x86_3dnowa_pfpnacc;
2357      break;
2358    case X86::BI__builtin_ia32_pi2fw:
2359      name = "pi2fw";
2360      ID = Intrinsic::x86_3dnowa_pi2fw;
2361      break;
2362    case X86::BI__builtin_ia32_pswapdsf:
2363    case X86::BI__builtin_ia32_pswapdsi:
2364      name = "pswapd";
2365      ID = Intrinsic::x86_3dnowa_pswapd;
2366      break;
2367    }
2368    llvm::Function *F = CGM.getIntrinsic(ID);
2369    return Builder.CreateCall(F, Ops, name);
2370  }
2371  }
2372}
2373
2374Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2375                                           const CallExpr *E) {
2376  SmallVector<Value*, 4> Ops;
2377
2378  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2379    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2380
2381  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2382
2383  switch (BuiltinID) {
2384  default: return 0;
2385
2386  // vec_ld, vec_lvsl, vec_lvsr
2387  case PPC::BI__builtin_altivec_lvx:
2388  case PPC::BI__builtin_altivec_lvxl:
2389  case PPC::BI__builtin_altivec_lvebx:
2390  case PPC::BI__builtin_altivec_lvehx:
2391  case PPC::BI__builtin_altivec_lvewx:
2392  case PPC::BI__builtin_altivec_lvsl:
2393  case PPC::BI__builtin_altivec_lvsr:
2394  {
2395    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2396
2397    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2398    Ops.pop_back();
2399
2400    switch (BuiltinID) {
2401    default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2402    case PPC::BI__builtin_altivec_lvx:
2403      ID = Intrinsic::ppc_altivec_lvx;
2404      break;
2405    case PPC::BI__builtin_altivec_lvxl:
2406      ID = Intrinsic::ppc_altivec_lvxl;
2407      break;
2408    case PPC::BI__builtin_altivec_lvebx:
2409      ID = Intrinsic::ppc_altivec_lvebx;
2410      break;
2411    case PPC::BI__builtin_altivec_lvehx:
2412      ID = Intrinsic::ppc_altivec_lvehx;
2413      break;
2414    case PPC::BI__builtin_altivec_lvewx:
2415      ID = Intrinsic::ppc_altivec_lvewx;
2416      break;
2417    case PPC::BI__builtin_altivec_lvsl:
2418      ID = Intrinsic::ppc_altivec_lvsl;
2419      break;
2420    case PPC::BI__builtin_altivec_lvsr:
2421      ID = Intrinsic::ppc_altivec_lvsr;
2422      break;
2423    }
2424    llvm::Function *F = CGM.getIntrinsic(ID);
2425    return Builder.CreateCall(F, Ops, "");
2426  }
2427
2428  // vec_st
2429  case PPC::BI__builtin_altivec_stvx:
2430  case PPC::BI__builtin_altivec_stvxl:
2431  case PPC::BI__builtin_altivec_stvebx:
2432  case PPC::BI__builtin_altivec_stvehx:
2433  case PPC::BI__builtin_altivec_stvewx:
2434  {
2435    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2436    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2437    Ops.pop_back();
2438
2439    switch (BuiltinID) {
2440    default: assert(0 && "Unsupported st intrinsic!");
2441    case PPC::BI__builtin_altivec_stvx:
2442      ID = Intrinsic::ppc_altivec_stvx;
2443      break;
2444    case PPC::BI__builtin_altivec_stvxl:
2445      ID = Intrinsic::ppc_altivec_stvxl;
2446      break;
2447    case PPC::BI__builtin_altivec_stvebx:
2448      ID = Intrinsic::ppc_altivec_stvebx;
2449      break;
2450    case PPC::BI__builtin_altivec_stvehx:
2451      ID = Intrinsic::ppc_altivec_stvehx;
2452      break;
2453    case PPC::BI__builtin_altivec_stvewx:
2454      ID = Intrinsic::ppc_altivec_stvewx;
2455      break;
2456    }
2457    llvm::Function *F = CGM.getIntrinsic(ID);
2458    return Builder.CreateCall(F, Ops, "");
2459  }
2460  }
2461  return 0;
2462}
2463