CGBuiltin.cpp revision a4cc79994b2f12663143dc31ceaf198e703fb914
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TargetInfo.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "CGObjCRuntime.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/Basic/TargetBuiltins.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27using namespace llvm;
28
29static void EmitMemoryBarrier(CodeGenFunction &CGF,
30                              bool LoadLoad, bool LoadStore,
31                              bool StoreLoad, bool StoreStore,
32                              bool Device) {
33  Value *True = llvm::ConstantInt::getTrue(CGF.getLLVMContext());
34  Value *False = llvm::ConstantInt::getFalse(CGF.getLLVMContext());
35  Value *C[5] = { LoadLoad ? True : False,
36                  LoadStore ? True : False,
37                  StoreLoad ? True : False,
38                  StoreStore ? True : False,
39                  Device ? True : False };
40  CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier),
41                         C, C + 5);
42}
43
44/// Emit the conversions required to turn the given value into an
45/// integer of the given size.
46static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47                        QualType T, const llvm::IntegerType *IntType) {
48  V = CGF.EmitToMemory(V, T);
49
50  if (V->getType()->isPointerTy())
51    return CGF.Builder.CreatePtrToInt(V, IntType);
52
53  assert(V->getType() == IntType);
54  return V;
55}
56
57static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58                          QualType T, const llvm::Type *ResultType) {
59  V = CGF.EmitFromMemory(V, T);
60
61  if (ResultType->isPointerTy())
62    return CGF.Builder.CreateIntToPtr(V, ResultType);
63
64  assert(V->getType() == ResultType);
65  return V;
66}
67
68// The atomic builtins are also full memory barriers. This is a utility for
69// wrapping a call to the builtins with memory barriers.
70static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71                                  Value **ArgBegin, Value **ArgEnd) {
72  // FIXME: We need a target hook for whether this applies to device memory or
73  // not.
74  bool Device = true;
75
76  // Create barriers both before and after the call.
77  EmitMemoryBarrier(CGF, true, true, true, true, Device);
78  Value *Result = CGF.Builder.CreateCall(Fn, ArgBegin, ArgEnd);
79  EmitMemoryBarrier(CGF, true, true, true, true, Device);
80  return Result;
81}
82
83/// Utility to insert an atomic instruction based on Instrinsic::ID
84/// and the expression node.
85static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86                               Intrinsic::ID Id, const CallExpr *E) {
87  QualType T = E->getType();
88  assert(E->getArg(0)->getType()->isPointerType());
89  assert(CGF.getContext().hasSameUnqualifiedType(T,
90                                  E->getArg(0)->getType()->getPointeeType()));
91  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
92
93  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94  unsigned AddrSpace =
95    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
96
97  const llvm::IntegerType *IntType =
98    llvm::IntegerType::get(CGF.getLLVMContext(),
99                           CGF.getContext().getTypeSize(T));
100  const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102  const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
104
105  llvm::Value *Args[2];
106  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108  const llvm::Type *ValueType = Args[1]->getType();
109  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
110
111  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
112  Result = EmitFromInt(CGF, Result, T, ValueType);
113  return RValue::get(Result);
114}
115
116/// Utility to insert an atomic instruction based Instrinsic::ID and
117/// the expression node, where the return value is the result of the
118/// operation.
119static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120                                   Intrinsic::ID Id, const CallExpr *E,
121                                   Instruction::BinaryOps Op) {
122  QualType T = E->getType();
123  assert(E->getArg(0)->getType()->isPointerType());
124  assert(CGF.getContext().hasSameUnqualifiedType(T,
125                                  E->getArg(0)->getType()->getPointeeType()));
126  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
127
128  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129  unsigned AddrSpace =
130    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
131
132  const llvm::IntegerType *IntType =
133    llvm::IntegerType::get(CGF.getLLVMContext(),
134                           CGF.getContext().getTypeSize(T));
135  const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
136
137  const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
139
140  llvm::Value *Args[2];
141  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142  const llvm::Type *ValueType = Args[1]->getType();
143  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
145
146  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
147  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148  Result = EmitFromInt(CGF, Result, T, ValueType);
149  return RValue::get(Result);
150}
151
152/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153/// which must be a scalar floating point type.
154static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156  assert(ValTyP && "isn't scalar fp type!");
157
158  StringRef FnName;
159  switch (ValTyP->getKind()) {
160  default: assert(0 && "Isn't a scalar fp type!");
161  case BuiltinType::Float:      FnName = "fabsf"; break;
162  case BuiltinType::Double:     FnName = "fabs"; break;
163  case BuiltinType::LongDouble: FnName = "fabsl"; break;
164  }
165
166  // The prototype is something that takes and returns whatever V's type is.
167  std::vector<const llvm::Type*> Args;
168  Args.push_back(V->getType());
169  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), Args, false);
170  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171
172  return CGF.Builder.CreateCall(Fn, V, "abs");
173}
174
175RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176                                        unsigned BuiltinID, const CallExpr *E) {
177  // See if we can constant fold this builtin.  If so, don't emit it at all.
178  Expr::EvalResult Result;
179  if (E->Evaluate(Result, CGM.getContext())) {
180    if (Result.Val.isInt())
181      return RValue::get(llvm::ConstantInt::get(VMContext,
182                                                Result.Val.getInt()));
183    if (Result.Val.isFloat())
184      return RValue::get(ConstantFP::get(VMContext, Result.Val.getFloat()));
185  }
186
187  switch (BuiltinID) {
188  default: break;  // Handle intrinsics and libm functions below.
189  case Builtin::BI__builtin___CFStringMakeConstantString:
190  case Builtin::BI__builtin___NSStringMakeConstantString:
191    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
192  case Builtin::BI__builtin_stdarg_start:
193  case Builtin::BI__builtin_va_start:
194  case Builtin::BI__builtin_va_end: {
195    Value *ArgValue = EmitVAListRef(E->getArg(0));
196    const llvm::Type *DestType = llvm::Type::getInt8PtrTy(VMContext);
197    if (ArgValue->getType() != DestType)
198      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
199                                       ArgValue->getName().data());
200
201    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
202      Intrinsic::vaend : Intrinsic::vastart;
203    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
204  }
205  case Builtin::BI__builtin_va_copy: {
206    Value *DstPtr = EmitVAListRef(E->getArg(0));
207    Value *SrcPtr = EmitVAListRef(E->getArg(1));
208
209    const llvm::Type *Type = llvm::Type::getInt8PtrTy(VMContext);
210
211    DstPtr = Builder.CreateBitCast(DstPtr, Type);
212    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
213    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
214                                           DstPtr, SrcPtr));
215  }
216  case Builtin::BI__builtin_abs: {
217    Value *ArgValue = EmitScalarExpr(E->getArg(0));
218
219    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
220    Value *CmpResult =
221    Builder.CreateICmpSGE(ArgValue,
222                          llvm::Constant::getNullValue(ArgValue->getType()),
223                                                            "abscond");
224    Value *Result =
225      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
226
227    return RValue::get(Result);
228  }
229  case Builtin::BI__builtin_ctz:
230  case Builtin::BI__builtin_ctzl:
231  case Builtin::BI__builtin_ctzll: {
232    Value *ArgValue = EmitScalarExpr(E->getArg(0));
233
234    const llvm::Type *ArgType = ArgValue->getType();
235    Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
236
237    const llvm::Type *ResultType = ConvertType(E->getType());
238    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
239    if (Result->getType() != ResultType)
240      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
241                                     "cast");
242    return RValue::get(Result);
243  }
244  case Builtin::BI__builtin_clz:
245  case Builtin::BI__builtin_clzl:
246  case Builtin::BI__builtin_clzll: {
247    Value *ArgValue = EmitScalarExpr(E->getArg(0));
248
249    const llvm::Type *ArgType = ArgValue->getType();
250    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
251
252    const llvm::Type *ResultType = ConvertType(E->getType());
253    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
254    if (Result->getType() != ResultType)
255      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
256                                     "cast");
257    return RValue::get(Result);
258  }
259  case Builtin::BI__builtin_ffs:
260  case Builtin::BI__builtin_ffsl:
261  case Builtin::BI__builtin_ffsll: {
262    // ffs(x) -> x ? cttz(x) + 1 : 0
263    Value *ArgValue = EmitScalarExpr(E->getArg(0));
264
265    const llvm::Type *ArgType = ArgValue->getType();
266    Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
267
268    const llvm::Type *ResultType = ConvertType(E->getType());
269    Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
270                                   llvm::ConstantInt::get(ArgType, 1), "tmp");
271    Value *Zero = llvm::Constant::getNullValue(ArgType);
272    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
273    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
274    if (Result->getType() != ResultType)
275      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
276                                     "cast");
277    return RValue::get(Result);
278  }
279  case Builtin::BI__builtin_parity:
280  case Builtin::BI__builtin_parityl:
281  case Builtin::BI__builtin_parityll: {
282    // parity(x) -> ctpop(x) & 1
283    Value *ArgValue = EmitScalarExpr(E->getArg(0));
284
285    const llvm::Type *ArgType = ArgValue->getType();
286    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
287
288    const llvm::Type *ResultType = ConvertType(E->getType());
289    Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
290    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
291                                      "tmp");
292    if (Result->getType() != ResultType)
293      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
294                                     "cast");
295    return RValue::get(Result);
296  }
297  case Builtin::BI__builtin_popcount:
298  case Builtin::BI__builtin_popcountl:
299  case Builtin::BI__builtin_popcountll: {
300    Value *ArgValue = EmitScalarExpr(E->getArg(0));
301
302    const llvm::Type *ArgType = ArgValue->getType();
303    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
304
305    const llvm::Type *ResultType = ConvertType(E->getType());
306    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
307    if (Result->getType() != ResultType)
308      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
309                                     "cast");
310    return RValue::get(Result);
311  }
312  case Builtin::BI__builtin_expect: {
313    // FIXME: pass expect through to LLVM
314    if (E->getArg(1)->HasSideEffects(getContext()))
315      (void)EmitScalarExpr(E->getArg(1));
316    return RValue::get(EmitScalarExpr(E->getArg(0)));
317  }
318  case Builtin::BI__builtin_bswap32:
319  case Builtin::BI__builtin_bswap64: {
320    Value *ArgValue = EmitScalarExpr(E->getArg(0));
321    const llvm::Type *ArgType = ArgValue->getType();
322    Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
323    return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
324  }
325  case Builtin::BI__builtin_object_size: {
326    // We pass this builtin onto the optimizer so that it can
327    // figure out the object size in more complex cases.
328    const llvm::Type *ResType[] = {
329      ConvertType(E->getType())
330    };
331
332    // LLVM only supports 0 and 2, make sure that we pass along that
333    // as a boolean.
334    Value *Ty = EmitScalarExpr(E->getArg(1));
335    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
336    assert(CI);
337    uint64_t val = CI->getZExtValue();
338    CI = ConstantInt::get(llvm::Type::getInt1Ty(VMContext), (val & 0x2) >> 1);
339
340    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1);
341    return RValue::get(Builder.CreateCall2(F,
342                                           EmitScalarExpr(E->getArg(0)),
343                                           CI));
344  }
345  case Builtin::BI__builtin_prefetch: {
346    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
347    // FIXME: Technically these constants should of type 'int', yes?
348    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
349      llvm::ConstantInt::get(Int32Ty, 0);
350    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
351      llvm::ConstantInt::get(Int32Ty, 3);
352    Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
353    return RValue::get(Builder.CreateCall3(F, Address, RW, Locality));
354  }
355  case Builtin::BI__builtin_trap: {
356    Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
357    return RValue::get(Builder.CreateCall(F));
358  }
359  case Builtin::BI__builtin_unreachable: {
360    if (CatchUndefined && HaveInsertPoint())
361      EmitBranch(getTrapBB());
362    Value *V = Builder.CreateUnreachable();
363    Builder.ClearInsertionPoint();
364    return RValue::get(V);
365  }
366
367  case Builtin::BI__builtin_powi:
368  case Builtin::BI__builtin_powif:
369  case Builtin::BI__builtin_powil: {
370    Value *Base = EmitScalarExpr(E->getArg(0));
371    Value *Exponent = EmitScalarExpr(E->getArg(1));
372    const llvm::Type *ArgType = Base->getType();
373    Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
374    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
375  }
376
377  case Builtin::BI__builtin_isgreater:
378  case Builtin::BI__builtin_isgreaterequal:
379  case Builtin::BI__builtin_isless:
380  case Builtin::BI__builtin_islessequal:
381  case Builtin::BI__builtin_islessgreater:
382  case Builtin::BI__builtin_isunordered: {
383    // Ordered comparisons: we know the arguments to these are matching scalar
384    // floating point values.
385    Value *LHS = EmitScalarExpr(E->getArg(0));
386    Value *RHS = EmitScalarExpr(E->getArg(1));
387
388    switch (BuiltinID) {
389    default: assert(0 && "Unknown ordered comparison");
390    case Builtin::BI__builtin_isgreater:
391      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
392      break;
393    case Builtin::BI__builtin_isgreaterequal:
394      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
395      break;
396    case Builtin::BI__builtin_isless:
397      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
398      break;
399    case Builtin::BI__builtin_islessequal:
400      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
401      break;
402    case Builtin::BI__builtin_islessgreater:
403      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
404      break;
405    case Builtin::BI__builtin_isunordered:
406      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
407      break;
408    }
409    // ZExt bool to int type.
410    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
411                                          "tmp"));
412  }
413  case Builtin::BI__builtin_isnan: {
414    Value *V = EmitScalarExpr(E->getArg(0));
415    V = Builder.CreateFCmpUNO(V, V, "cmp");
416    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
417  }
418
419  case Builtin::BI__builtin_isinf: {
420    // isinf(x) --> fabs(x) == infinity
421    Value *V = EmitScalarExpr(E->getArg(0));
422    V = EmitFAbs(*this, V, E->getArg(0)->getType());
423
424    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
425    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
426  }
427
428  // TODO: BI__builtin_isinf_sign
429  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
430
431  case Builtin::BI__builtin_isnormal: {
432    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
433    Value *V = EmitScalarExpr(E->getArg(0));
434    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
435
436    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
437    Value *IsLessThanInf =
438      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
439    APFloat Smallest = APFloat::getSmallestNormalized(
440                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
441    Value *IsNormal =
442      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
443                            "isnormal");
444    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
445    V = Builder.CreateAnd(V, IsNormal, "and");
446    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
447  }
448
449  case Builtin::BI__builtin_isfinite: {
450    // isfinite(x) --> x == x && fabs(x) != infinity; }
451    Value *V = EmitScalarExpr(E->getArg(0));
452    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
453
454    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
455    Value *IsNotInf =
456      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
457
458    V = Builder.CreateAnd(Eq, IsNotInf, "and");
459    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
460  }
461
462  case Builtin::BI__builtin_fpclassify: {
463    Value *V = EmitScalarExpr(E->getArg(5));
464    const llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
465
466    // Create Result
467    BasicBlock *Begin = Builder.GetInsertBlock();
468    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
469    Builder.SetInsertPoint(End);
470    PHINode *Result =
471      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()),
472                        "fpclassify_result");
473
474    // if (V==0) return FP_ZERO
475    Builder.SetInsertPoint(Begin);
476    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
477                                          "iszero");
478    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
479    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
480    Builder.CreateCondBr(IsZero, End, NotZero);
481    Result->addIncoming(ZeroLiteral, Begin);
482
483    // if (V != V) return FP_NAN
484    Builder.SetInsertPoint(NotZero);
485    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
486    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
487    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
488    Builder.CreateCondBr(IsNan, End, NotNan);
489    Result->addIncoming(NanLiteral, NotZero);
490
491    // if (fabs(V) == infinity) return FP_INFINITY
492    Builder.SetInsertPoint(NotNan);
493    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
494    Value *IsInf =
495      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
496                            "isinf");
497    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
498    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
499    Builder.CreateCondBr(IsInf, End, NotInf);
500    Result->addIncoming(InfLiteral, NotNan);
501
502    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
503    Builder.SetInsertPoint(NotInf);
504    APFloat Smallest = APFloat::getSmallestNormalized(
505        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
506    Value *IsNormal =
507      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
508                            "isnormal");
509    Value *NormalResult =
510      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
511                           EmitScalarExpr(E->getArg(3)));
512    Builder.CreateBr(End);
513    Result->addIncoming(NormalResult, NotInf);
514
515    // return Result
516    Builder.SetInsertPoint(End);
517    return RValue::get(Result);
518  }
519
520  case Builtin::BIalloca:
521  case Builtin::BI__builtin_alloca: {
522    Value *Size = EmitScalarExpr(E->getArg(0));
523    return RValue::get(Builder.CreateAlloca(llvm::Type::getInt8Ty(VMContext), Size, "tmp"));
524  }
525  case Builtin::BIbzero:
526  case Builtin::BI__builtin_bzero: {
527    Value *Address = EmitScalarExpr(E->getArg(0));
528    Value *SizeVal = EmitScalarExpr(E->getArg(1));
529    Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()),
530                   Address,
531                   llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), 0),
532                   SizeVal,
533                   llvm::ConstantInt::get(Int32Ty, 1),
534                   llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
535    return RValue::get(Address);
536  }
537  case Builtin::BImemcpy:
538  case Builtin::BI__builtin_memcpy: {
539    Value *Address = EmitScalarExpr(E->getArg(0));
540    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
541    Value *SizeVal = EmitScalarExpr(E->getArg(2));
542    Builder.CreateCall5(CGM.getMemCpyFn(Address->getType(), SrcAddr->getType(),
543                                        SizeVal->getType()),
544                  Address, SrcAddr, SizeVal,
545                  llvm::ConstantInt::get(Int32Ty, 1),
546                  llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
547    return RValue::get(Address);
548  }
549
550  case Builtin::BI__builtin_objc_memmove_collectable: {
551    Value *Address = EmitScalarExpr(E->getArg(0));
552    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
553    Value *SizeVal = EmitScalarExpr(E->getArg(2));
554    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
555                                                  Address, SrcAddr, SizeVal);
556    return RValue::get(Address);
557  }
558
559  case Builtin::BImemmove:
560  case Builtin::BI__builtin_memmove: {
561    Value *Address = EmitScalarExpr(E->getArg(0));
562    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
563    Value *SizeVal = EmitScalarExpr(E->getArg(2));
564    Builder.CreateCall5(CGM.getMemMoveFn(Address->getType(), SrcAddr->getType(),
565                                         SizeVal->getType()),
566                  Address, SrcAddr, SizeVal,
567                  llvm::ConstantInt::get(Int32Ty, 1),
568                  llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
569    return RValue::get(Address);
570  }
571  case Builtin::BImemset:
572  case Builtin::BI__builtin_memset: {
573    Value *Address = EmitScalarExpr(E->getArg(0));
574    Value *SizeVal = EmitScalarExpr(E->getArg(2));
575    Builder.CreateCall5(CGM.getMemSetFn(Address->getType(), SizeVal->getType()),
576                  Address,
577                  Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
578                                      llvm::Type::getInt8Ty(VMContext)),
579                  SizeVal,
580                  llvm::ConstantInt::get(Int32Ty, 1),
581                  llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), 0));
582    return RValue::get(Address);
583  }
584  case Builtin::BI__builtin_dwarf_cfa: {
585    // The offset in bytes from the first argument to the CFA.
586    //
587    // Why on earth is this in the frontend?  Is there any reason at
588    // all that the backend can't reasonably determine this while
589    // lowering llvm.eh.dwarf.cfa()?
590    //
591    // TODO: If there's a satisfactory reason, add a target hook for
592    // this instead of hard-coding 0, which is correct for most targets.
593    int32_t Offset = 0;
594
595    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0);
596    return RValue::get(Builder.CreateCall(F,
597                                      llvm::ConstantInt::get(Int32Ty, Offset)));
598  }
599  case Builtin::BI__builtin_return_address: {
600    Value *Depth = EmitScalarExpr(E->getArg(0));
601    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
602    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
603    return RValue::get(Builder.CreateCall(F, Depth));
604  }
605  case Builtin::BI__builtin_frame_address: {
606    Value *Depth = EmitScalarExpr(E->getArg(0));
607    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
608    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
609    return RValue::get(Builder.CreateCall(F, Depth));
610  }
611  case Builtin::BI__builtin_extract_return_addr: {
612    Value *Address = EmitScalarExpr(E->getArg(0));
613    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
614    return RValue::get(Result);
615  }
616  case Builtin::BI__builtin_frob_return_addr: {
617    Value *Address = EmitScalarExpr(E->getArg(0));
618    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
619    return RValue::get(Result);
620  }
621  case Builtin::BI__builtin_dwarf_sp_column: {
622    const llvm::IntegerType *Ty
623      = cast<llvm::IntegerType>(ConvertType(E->getType()));
624    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
625    if (Column == -1) {
626      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
627      return RValue::get(llvm::UndefValue::get(Ty));
628    }
629    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
630  }
631  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
632    Value *Address = EmitScalarExpr(E->getArg(0));
633    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
634      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
635    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
636  }
637  case Builtin::BI__builtin_eh_return: {
638    Value *Int = EmitScalarExpr(E->getArg(0));
639    Value *Ptr = EmitScalarExpr(E->getArg(1));
640
641    const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
642    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
643           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
644    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
645                                  ? Intrinsic::eh_return_i32
646                                  : Intrinsic::eh_return_i64,
647                                0, 0);
648    Builder.CreateCall2(F, Int, Ptr);
649    Value *V = Builder.CreateUnreachable();
650    Builder.ClearInsertionPoint();
651    return RValue::get(V);
652  }
653  case Builtin::BI__builtin_unwind_init: {
654    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0);
655    return RValue::get(Builder.CreateCall(F));
656  }
657  case Builtin::BI__builtin_extend_pointer: {
658    // Extends a pointer to the size of an _Unwind_Word, which is
659    // uint64_t on all platforms.  Generally this gets poked into a
660    // register and eventually used as an address, so if the
661    // addressing registers are wider than pointers and the platform
662    // doesn't implicitly ignore high-order bits when doing
663    // addressing, we need to make sure we zext / sext based on
664    // the platform's expectations.
665    //
666    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
667
668    LLVMContext &C = CGM.getLLVMContext();
669
670    // Cast the pointer to intptr_t.
671    Value *Ptr = EmitScalarExpr(E->getArg(0));
672    const llvm::IntegerType *IntPtrTy = CGM.getTargetData().getIntPtrType(C);
673    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
674
675    // If that's 64 bits, we're done.
676    if (IntPtrTy->getBitWidth() == 64)
677      return RValue::get(Result);
678
679    // Otherwise, ask the codegen data what to do.
680    if (getTargetHooks().extendPointerWithSExt())
681      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
682    else
683      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
684  }
685  case Builtin::BI__builtin_setjmp: {
686    // Buffer is a void**.
687    Value *Buf = EmitScalarExpr(E->getArg(0));
688
689    // Store the frame pointer to the setjmp buffer.
690    Value *FrameAddr =
691      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
692                         ConstantInt::get(Int32Ty, 0));
693    Builder.CreateStore(FrameAddr, Buf);
694
695    // Store the stack pointer to the setjmp buffer.
696    Value *StackAddr =
697      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
698    Value *StackSaveSlot =
699      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
700    Builder.CreateStore(StackAddr, StackSaveSlot);
701
702    // Call LLVM's EH setjmp, which is lightweight.
703    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
704    Buf = Builder.CreateBitCast(Buf, llvm::Type::getInt8PtrTy(VMContext));
705    return RValue::get(Builder.CreateCall(F, Buf));
706  }
707  case Builtin::BI__builtin_longjmp: {
708    Value *Buf = EmitScalarExpr(E->getArg(0));
709    Buf = Builder.CreateBitCast(Buf, llvm::Type::getInt8PtrTy(VMContext));
710
711    // Call LLVM's EH longjmp, which is lightweight.
712    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
713
714    // longjmp doesn't return; mark this as unreachable
715    Value *V = Builder.CreateUnreachable();
716    Builder.ClearInsertionPoint();
717    return RValue::get(V);
718  }
719  case Builtin::BI__sync_fetch_and_add:
720  case Builtin::BI__sync_fetch_and_sub:
721  case Builtin::BI__sync_fetch_and_or:
722  case Builtin::BI__sync_fetch_and_and:
723  case Builtin::BI__sync_fetch_and_xor:
724  case Builtin::BI__sync_add_and_fetch:
725  case Builtin::BI__sync_sub_and_fetch:
726  case Builtin::BI__sync_and_and_fetch:
727  case Builtin::BI__sync_or_and_fetch:
728  case Builtin::BI__sync_xor_and_fetch:
729  case Builtin::BI__sync_val_compare_and_swap:
730  case Builtin::BI__sync_bool_compare_and_swap:
731  case Builtin::BI__sync_lock_test_and_set:
732  case Builtin::BI__sync_lock_release:
733    assert(0 && "Shouldn't make it through sema");
734  case Builtin::BI__sync_fetch_and_add_1:
735  case Builtin::BI__sync_fetch_and_add_2:
736  case Builtin::BI__sync_fetch_and_add_4:
737  case Builtin::BI__sync_fetch_and_add_8:
738  case Builtin::BI__sync_fetch_and_add_16:
739    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
740  case Builtin::BI__sync_fetch_and_sub_1:
741  case Builtin::BI__sync_fetch_and_sub_2:
742  case Builtin::BI__sync_fetch_and_sub_4:
743  case Builtin::BI__sync_fetch_and_sub_8:
744  case Builtin::BI__sync_fetch_and_sub_16:
745    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
746  case Builtin::BI__sync_fetch_and_or_1:
747  case Builtin::BI__sync_fetch_and_or_2:
748  case Builtin::BI__sync_fetch_and_or_4:
749  case Builtin::BI__sync_fetch_and_or_8:
750  case Builtin::BI__sync_fetch_and_or_16:
751    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
752  case Builtin::BI__sync_fetch_and_and_1:
753  case Builtin::BI__sync_fetch_and_and_2:
754  case Builtin::BI__sync_fetch_and_and_4:
755  case Builtin::BI__sync_fetch_and_and_8:
756  case Builtin::BI__sync_fetch_and_and_16:
757    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
758  case Builtin::BI__sync_fetch_and_xor_1:
759  case Builtin::BI__sync_fetch_and_xor_2:
760  case Builtin::BI__sync_fetch_and_xor_4:
761  case Builtin::BI__sync_fetch_and_xor_8:
762  case Builtin::BI__sync_fetch_and_xor_16:
763    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
764
765  // Clang extensions: not overloaded yet.
766  case Builtin::BI__sync_fetch_and_min:
767    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
768  case Builtin::BI__sync_fetch_and_max:
769    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
770  case Builtin::BI__sync_fetch_and_umin:
771    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
772  case Builtin::BI__sync_fetch_and_umax:
773    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
774
775  case Builtin::BI__sync_add_and_fetch_1:
776  case Builtin::BI__sync_add_and_fetch_2:
777  case Builtin::BI__sync_add_and_fetch_4:
778  case Builtin::BI__sync_add_and_fetch_8:
779  case Builtin::BI__sync_add_and_fetch_16:
780    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
781                                llvm::Instruction::Add);
782  case Builtin::BI__sync_sub_and_fetch_1:
783  case Builtin::BI__sync_sub_and_fetch_2:
784  case Builtin::BI__sync_sub_and_fetch_4:
785  case Builtin::BI__sync_sub_and_fetch_8:
786  case Builtin::BI__sync_sub_and_fetch_16:
787    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
788                                llvm::Instruction::Sub);
789  case Builtin::BI__sync_and_and_fetch_1:
790  case Builtin::BI__sync_and_and_fetch_2:
791  case Builtin::BI__sync_and_and_fetch_4:
792  case Builtin::BI__sync_and_and_fetch_8:
793  case Builtin::BI__sync_and_and_fetch_16:
794    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
795                                llvm::Instruction::And);
796  case Builtin::BI__sync_or_and_fetch_1:
797  case Builtin::BI__sync_or_and_fetch_2:
798  case Builtin::BI__sync_or_and_fetch_4:
799  case Builtin::BI__sync_or_and_fetch_8:
800  case Builtin::BI__sync_or_and_fetch_16:
801    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
802                                llvm::Instruction::Or);
803  case Builtin::BI__sync_xor_and_fetch_1:
804  case Builtin::BI__sync_xor_and_fetch_2:
805  case Builtin::BI__sync_xor_and_fetch_4:
806  case Builtin::BI__sync_xor_and_fetch_8:
807  case Builtin::BI__sync_xor_and_fetch_16:
808    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
809                                llvm::Instruction::Xor);
810
811  case Builtin::BI__sync_val_compare_and_swap_1:
812  case Builtin::BI__sync_val_compare_and_swap_2:
813  case Builtin::BI__sync_val_compare_and_swap_4:
814  case Builtin::BI__sync_val_compare_and_swap_8:
815  case Builtin::BI__sync_val_compare_and_swap_16: {
816    QualType T = E->getType();
817    llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
818    unsigned AddrSpace =
819      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
820
821    const llvm::IntegerType *IntType =
822      llvm::IntegerType::get(CGF.getLLVMContext(),
823                             CGF.getContext().getTypeSize(T));
824    const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
825    const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
826    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
827                                    IntrinsicTypes, 2);
828
829    Value *Args[3];
830    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
831    Args[1] = CGF.EmitScalarExpr(E->getArg(1));
832    const llvm::Type *ValueType = Args[1]->getType();
833    Args[1] = EmitToInt(CGF, Args[1], T, IntType);
834    Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
835
836    Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 3);
837    Result = EmitFromInt(CGF, Result, T, ValueType);
838    return RValue::get(Result);
839  }
840
841  case Builtin::BI__sync_bool_compare_and_swap_1:
842  case Builtin::BI__sync_bool_compare_and_swap_2:
843  case Builtin::BI__sync_bool_compare_and_swap_4:
844  case Builtin::BI__sync_bool_compare_and_swap_8:
845  case Builtin::BI__sync_bool_compare_and_swap_16: {
846    QualType T = E->getArg(1)->getType();
847    llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
848    unsigned AddrSpace =
849      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
850
851    const llvm::IntegerType *IntType =
852      llvm::IntegerType::get(CGF.getLLVMContext(),
853                             CGF.getContext().getTypeSize(T));
854    const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
855    const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
856    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
857                                    IntrinsicTypes, 2);
858
859    Value *Args[3];
860    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
861    Args[1] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(1)), T, IntType);
862    Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
863
864    Value *OldVal = Args[1];
865    Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
866    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
867    // zext bool to int.
868    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
869    return RValue::get(Result);
870  }
871
872  case Builtin::BI__sync_lock_test_and_set_1:
873  case Builtin::BI__sync_lock_test_and_set_2:
874  case Builtin::BI__sync_lock_test_and_set_4:
875  case Builtin::BI__sync_lock_test_and_set_8:
876  case Builtin::BI__sync_lock_test_and_set_16:
877    return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
878
879  case Builtin::BI__sync_lock_release_1:
880  case Builtin::BI__sync_lock_release_2:
881  case Builtin::BI__sync_lock_release_4:
882  case Builtin::BI__sync_lock_release_8:
883  case Builtin::BI__sync_lock_release_16: {
884    Value *Ptr = EmitScalarExpr(E->getArg(0));
885    const llvm::Type *ElTy =
886      cast<llvm::PointerType>(Ptr->getType())->getElementType();
887    llvm::StoreInst *Store =
888      Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
889    Store->setVolatile(true);
890    return RValue::get(0);
891  }
892
893  case Builtin::BI__sync_synchronize: {
894    // We assume like gcc appears to, that this only applies to cached memory.
895    EmitMemoryBarrier(*this, true, true, true, true, false);
896    return RValue::get(0);
897  }
898
899  case Builtin::BI__builtin_llvm_memory_barrier: {
900    Value *C[5] = {
901      EmitScalarExpr(E->getArg(0)),
902      EmitScalarExpr(E->getArg(1)),
903      EmitScalarExpr(E->getArg(2)),
904      EmitScalarExpr(E->getArg(3)),
905      EmitScalarExpr(E->getArg(4))
906    };
907    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
908    return RValue::get(0);
909  }
910
911    // Library functions with special handling.
912  case Builtin::BIsqrt:
913  case Builtin::BIsqrtf:
914  case Builtin::BIsqrtl: {
915    // TODO: there is currently no set of optimizer flags
916    // sufficient for us to rewrite sqrt to @llvm.sqrt.
917    // -fmath-errno=0 is not good enough; we need finiteness.
918    // We could probably precondition the call with an ult
919    // against 0, but is that worth the complexity?
920    break;
921  }
922
923  case Builtin::BIpow:
924  case Builtin::BIpowf:
925  case Builtin::BIpowl: {
926    // Rewrite sqrt to intrinsic if allowed.
927    if (!FD->hasAttr<ConstAttr>())
928      break;
929    Value *Base = EmitScalarExpr(E->getArg(0));
930    Value *Exponent = EmitScalarExpr(E->getArg(1));
931    const llvm::Type *ArgType = Base->getType();
932    Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
933    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
934  }
935
936  case Builtin::BI__builtin_signbit:
937  case Builtin::BI__builtin_signbitf:
938  case Builtin::BI__builtin_signbitl: {
939    LLVMContext &C = CGM.getLLVMContext();
940
941    Value *Arg = EmitScalarExpr(E->getArg(0));
942    const llvm::Type *ArgTy = Arg->getType();
943    if (ArgTy->isPPC_FP128Ty())
944      break; // FIXME: I'm not sure what the right implementation is here.
945    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
946    const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
947    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
948    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
949    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
950    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
951  }
952  }
953
954  // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
955  // that function.
956  if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
957      getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
958    return EmitCall(E->getCallee()->getType(),
959                    CGM.getBuiltinLibFunction(FD, BuiltinID),
960                    ReturnValueSlot(),
961                    E->arg_begin(), E->arg_end());
962
963  // See if we have a target specific intrinsic.
964  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
965  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
966  if (const char *Prefix =
967      llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
968    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
969
970  if (IntrinsicID != Intrinsic::not_intrinsic) {
971    SmallVector<Value*, 16> Args;
972
973    // Find out if any arguments are required to be integer constant
974    // expressions.
975    unsigned ICEArguments = 0;
976    ASTContext::GetBuiltinTypeError Error;
977    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
978    assert(Error == ASTContext::GE_None && "Should not codegen an error");
979
980    Function *F = CGM.getIntrinsic(IntrinsicID);
981    const llvm::FunctionType *FTy = F->getFunctionType();
982
983    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
984      Value *ArgValue;
985      // If this is a normal argument, just emit it as a scalar.
986      if ((ICEArguments & (1 << i)) == 0) {
987        ArgValue = EmitScalarExpr(E->getArg(i));
988      } else {
989        // If this is required to be a constant, constant fold it so that we
990        // know that the generated intrinsic gets a ConstantInt.
991        llvm::APSInt Result;
992        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
993        assert(IsConst && "Constant arg isn't actually constant?");
994        (void)IsConst;
995        ArgValue = llvm::ConstantInt::get(VMContext, Result);
996      }
997
998      // If the intrinsic arg type is different from the builtin arg type
999      // we need to do a bit cast.
1000      const llvm::Type *PTy = FTy->getParamType(i);
1001      if (PTy != ArgValue->getType()) {
1002        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1003               "Must be able to losslessly bit cast to param");
1004        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1005      }
1006
1007      Args.push_back(ArgValue);
1008    }
1009
1010    Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size());
1011    QualType BuiltinRetType = E->getType();
1012
1013    const llvm::Type *RetTy = llvm::Type::getVoidTy(VMContext);
1014    if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1015
1016    if (RetTy != V->getType()) {
1017      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1018             "Must be able to losslessly bit cast result type");
1019      V = Builder.CreateBitCast(V, RetTy);
1020    }
1021
1022    return RValue::get(V);
1023  }
1024
1025  // See if we have a target specific builtin that needs to be lowered.
1026  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1027    return RValue::get(V);
1028
1029  ErrorUnsupported(E, "builtin function");
1030
1031  // Unknown builtin, for now just dump it out and return undef.
1032  if (hasAggregateLLVMType(E->getType()))
1033    return RValue::getAggregate(CreateMemTemp(E->getType()));
1034  return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1035}
1036
1037Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1038                                              const CallExpr *E) {
1039  switch (Target.getTriple().getArch()) {
1040  case llvm::Triple::arm:
1041  case llvm::Triple::thumb:
1042    return EmitARMBuiltinExpr(BuiltinID, E);
1043  case llvm::Triple::x86:
1044  case llvm::Triple::x86_64:
1045    return EmitX86BuiltinExpr(BuiltinID, E);
1046  case llvm::Triple::ppc:
1047  case llvm::Triple::ppc64:
1048    return EmitPPCBuiltinExpr(BuiltinID, E);
1049  default:
1050    return 0;
1051  }
1052}
1053
1054const llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type, bool q) {
1055  switch (type) {
1056    default: break;
1057    case 0:
1058    case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1059    case 6:
1060    case 7:
1061    case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1062    case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1063    case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1064    case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1065  };
1066  return 0;
1067}
1068
1069Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1070  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1071  SmallVector<Constant*, 16> Indices(nElts, C);
1072  Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
1073  return Builder.CreateShuffleVector(V, V, SV, "lane");
1074}
1075
1076Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1077                                     const char *name, bool splat,
1078                                     unsigned shift, bool rightshift) {
1079  unsigned j = 0;
1080  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1081       ai != ae; ++ai, ++j)
1082    if (shift > 0 && shift == j)
1083      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1084    else
1085      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1086
1087  if (splat) {
1088    Ops[j-1] = EmitNeonSplat(Ops[j-1], cast<Constant>(Ops[j]));
1089    Ops.resize(j);
1090  }
1091  return Builder.CreateCall(F, Ops.begin(), Ops.end(), name);
1092}
1093
1094Value *CodeGenFunction::EmitNeonShiftVector(Value *V, const llvm::Type *Ty,
1095                                            bool neg) {
1096  ConstantInt *CI = cast<ConstantInt>(V);
1097  int SV = CI->getSExtValue();
1098
1099  const llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1100  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1101  SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1102  return llvm::ConstantVector::get(CV.begin(), CV.size());
1103}
1104
1105/// GetPointeeAlignment - Given an expression with a pointer type, find the
1106/// alignment of the type referenced by the pointer.  Skip over implicit
1107/// casts.
1108static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1109  unsigned Align = 1;
1110  // Check if the type is a pointer.  The implicit cast operand might not be.
1111  while (Addr->getType()->isPointerType()) {
1112    QualType PtTy = Addr->getType()->getPointeeType();
1113    unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1114    if (NewA > Align)
1115      Align = NewA;
1116
1117    // If the address is an implicit cast, repeat with the cast operand.
1118    if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1119      Addr = CastAddr->getSubExpr();
1120      continue;
1121    }
1122    break;
1123  }
1124  return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1125}
1126
1127Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1128                                           const CallExpr *E) {
1129  if (BuiltinID == ARM::BI__clear_cache) {
1130    const FunctionDecl *FD = E->getDirectCallee();
1131    Value *a = EmitScalarExpr(E->getArg(0));
1132    Value *b = EmitScalarExpr(E->getArg(1));
1133    const llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1134    const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1135    llvm::StringRef Name = FD->getName();
1136    return Builder.CreateCall2(CGM.CreateRuntimeFunction(FTy, Name),
1137                               a, b);
1138  }
1139
1140  llvm::SmallVector<Value*, 4> Ops;
1141  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1142    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1143
1144  llvm::APSInt Result;
1145  const Expr *Arg = E->getArg(E->getNumArgs()-1);
1146  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1147    return 0;
1148
1149  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1150      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1151    // Determine the overloaded type of this builtin.
1152    const llvm::Type *Ty;
1153    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1154      Ty = llvm::Type::getFloatTy(VMContext);
1155    else
1156      Ty = llvm::Type::getDoubleTy(VMContext);
1157
1158    // Determine whether this is an unsigned conversion or not.
1159    bool usgn = Result.getZExtValue() == 1;
1160    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1161
1162    // Call the appropriate intrinsic.
1163    Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1164    return Builder.CreateCall(F, Ops.begin(), Ops.end(), "vcvtr");
1165  }
1166
1167  // Determine the type of this overloaded NEON intrinsic.
1168  unsigned type = Result.getZExtValue();
1169  bool usgn = type & 0x08;
1170  bool quad = type & 0x10;
1171  bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1172  (void)poly;  // Only used in assert()s.
1173  bool splat = false;
1174  bool rightShift = false;
1175
1176  const llvm::VectorType *VTy = GetNeonType(VMContext, type & 0x7, quad);
1177  const llvm::Type *Ty = VTy;
1178  if (!Ty)
1179    return 0;
1180
1181  unsigned Int;
1182  switch (BuiltinID) {
1183  default: return 0;
1184  case ARM::BI__builtin_neon_vabd_v:
1185  case ARM::BI__builtin_neon_vabdq_v:
1186    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1187    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vabd");
1188  case ARM::BI__builtin_neon_vabs_v:
1189  case ARM::BI__builtin_neon_vabsq_v:
1190    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, &Ty, 1),
1191                        Ops, "vabs");
1192  case ARM::BI__builtin_neon_vaddhn_v:
1193    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, &Ty, 1),
1194                        Ops, "vaddhn");
1195  case ARM::BI__builtin_neon_vcale_v:
1196    std::swap(Ops[0], Ops[1]);
1197  case ARM::BI__builtin_neon_vcage_v: {
1198    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged, &Ty, 1);
1199    return EmitNeonCall(F, Ops, "vcage");
1200  }
1201  case ARM::BI__builtin_neon_vcaleq_v:
1202    std::swap(Ops[0], Ops[1]);
1203  case ARM::BI__builtin_neon_vcageq_v: {
1204    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq, &Ty, 1);
1205    return EmitNeonCall(F, Ops, "vcage");
1206  }
1207  case ARM::BI__builtin_neon_vcalt_v:
1208    std::swap(Ops[0], Ops[1]);
1209  case ARM::BI__builtin_neon_vcagt_v: {
1210    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd, &Ty, 1);
1211    return EmitNeonCall(F, Ops, "vcagt");
1212  }
1213  case ARM::BI__builtin_neon_vcaltq_v:
1214    std::swap(Ops[0], Ops[1]);
1215  case ARM::BI__builtin_neon_vcagtq_v: {
1216    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq, &Ty, 1);
1217    return EmitNeonCall(F, Ops, "vcagt");
1218  }
1219  case ARM::BI__builtin_neon_vcls_v:
1220  case ARM::BI__builtin_neon_vclsq_v: {
1221    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, &Ty, 1);
1222    return EmitNeonCall(F, Ops, "vcls");
1223  }
1224  case ARM::BI__builtin_neon_vclz_v:
1225  case ARM::BI__builtin_neon_vclzq_v: {
1226    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, &Ty, 1);
1227    return EmitNeonCall(F, Ops, "vclz");
1228  }
1229  case ARM::BI__builtin_neon_vcnt_v:
1230  case ARM::BI__builtin_neon_vcntq_v: {
1231    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, &Ty, 1);
1232    return EmitNeonCall(F, Ops, "vcnt");
1233  }
1234  // FIXME: intrinsics for f16<->f32 convert missing from ARM target.
1235  case ARM::BI__builtin_neon_vcvt_f32_v:
1236  case ARM::BI__builtin_neon_vcvtq_f32_v: {
1237    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1238    Ty = GetNeonType(VMContext, 4, quad);
1239    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1240                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1241  }
1242  case ARM::BI__builtin_neon_vcvt_s32_v:
1243  case ARM::BI__builtin_neon_vcvt_u32_v:
1244  case ARM::BI__builtin_neon_vcvtq_s32_v:
1245  case ARM::BI__builtin_neon_vcvtq_u32_v: {
1246    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(VMContext, 4, quad));
1247    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1248                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1249  }
1250  case ARM::BI__builtin_neon_vcvt_n_f32_v:
1251  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1252    const llvm::Type *Tys[2] = { GetNeonType(VMContext, 4, quad), Ty };
1253    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1254    Function *F = CGM.getIntrinsic(Int, Tys, 2);
1255    return EmitNeonCall(F, Ops, "vcvt_n");
1256  }
1257  case ARM::BI__builtin_neon_vcvt_n_s32_v:
1258  case ARM::BI__builtin_neon_vcvt_n_u32_v:
1259  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1260  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1261    const llvm::Type *Tys[2] = { Ty, GetNeonType(VMContext, 4, quad) };
1262    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1263    Function *F = CGM.getIntrinsic(Int, Tys, 2);
1264    return EmitNeonCall(F, Ops, "vcvt_n");
1265  }
1266  case ARM::BI__builtin_neon_vext_v:
1267  case ARM::BI__builtin_neon_vextq_v: {
1268    ConstantInt *C = dyn_cast<ConstantInt>(Ops[2]);
1269    int CV = C->getSExtValue();
1270    SmallVector<Constant*, 16> Indices;
1271    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1272      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1273
1274    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1275    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1276    Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
1277    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1278  }
1279  case ARM::BI__builtin_neon_vget_lane_i8:
1280  case ARM::BI__builtin_neon_vget_lane_i16:
1281  case ARM::BI__builtin_neon_vget_lane_i32:
1282  case ARM::BI__builtin_neon_vget_lane_i64:
1283  case ARM::BI__builtin_neon_vget_lane_f32:
1284  case ARM::BI__builtin_neon_vgetq_lane_i8:
1285  case ARM::BI__builtin_neon_vgetq_lane_i16:
1286  case ARM::BI__builtin_neon_vgetq_lane_i32:
1287  case ARM::BI__builtin_neon_vgetq_lane_i64:
1288  case ARM::BI__builtin_neon_vgetq_lane_f32:
1289    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1290                                        "vget_lane");
1291  case ARM::BI__builtin_neon_vhadd_v:
1292  case ARM::BI__builtin_neon_vhaddq_v:
1293    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1294    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhadd");
1295  case ARM::BI__builtin_neon_vhsub_v:
1296  case ARM::BI__builtin_neon_vhsubq_v:
1297    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1298    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhsub");
1299  case ARM::BI__builtin_neon_vld1_v:
1300  case ARM::BI__builtin_neon_vld1q_v:
1301    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1302    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, &Ty, 1),
1303                        Ops, "vld1");
1304  case ARM::BI__builtin_neon_vld1_lane_v:
1305  case ARM::BI__builtin_neon_vld1q_lane_v:
1306    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1307    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1308    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1309    Ops[0] = Builder.CreateLoad(Ops[0]);
1310    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1311  case ARM::BI__builtin_neon_vld1_dup_v:
1312  case ARM::BI__builtin_neon_vld1q_dup_v: {
1313    Value *V = UndefValue::get(Ty);
1314    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1315    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1316    Ops[0] = Builder.CreateLoad(Ops[0]);
1317    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1318    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1319    return EmitNeonSplat(Ops[0], CI);
1320  }
1321  case ARM::BI__builtin_neon_vld2_v:
1322  case ARM::BI__builtin_neon_vld2q_v: {
1323    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, &Ty, 1);
1324    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1325    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1326    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1327    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1328    return Builder.CreateStore(Ops[1], Ops[0]);
1329  }
1330  case ARM::BI__builtin_neon_vld3_v:
1331  case ARM::BI__builtin_neon_vld3q_v: {
1332    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, &Ty, 1);
1333    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1334    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1335    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1336    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1337    return Builder.CreateStore(Ops[1], Ops[0]);
1338  }
1339  case ARM::BI__builtin_neon_vld4_v:
1340  case ARM::BI__builtin_neon_vld4q_v: {
1341    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, &Ty, 1);
1342    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1343    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1344    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1345    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1346    return Builder.CreateStore(Ops[1], Ops[0]);
1347  }
1348  case ARM::BI__builtin_neon_vld2_lane_v:
1349  case ARM::BI__builtin_neon_vld2q_lane_v: {
1350    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, &Ty, 1);
1351    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1352    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1353    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1354    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld2_lane");
1355    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1356    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1357    return Builder.CreateStore(Ops[1], Ops[0]);
1358  }
1359  case ARM::BI__builtin_neon_vld3_lane_v:
1360  case ARM::BI__builtin_neon_vld3q_lane_v: {
1361    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, &Ty, 1);
1362    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1363    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1364    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1365    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1366    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1367    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1368    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1369    return Builder.CreateStore(Ops[1], Ops[0]);
1370  }
1371  case ARM::BI__builtin_neon_vld4_lane_v:
1372  case ARM::BI__builtin_neon_vld4q_lane_v: {
1373    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, &Ty, 1);
1374    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1375    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1376    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1377    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1378    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1379    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1380    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1381    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1382    return Builder.CreateStore(Ops[1], Ops[0]);
1383  }
1384  case ARM::BI__builtin_neon_vld2_dup_v:
1385  case ARM::BI__builtin_neon_vld3_dup_v:
1386  case ARM::BI__builtin_neon_vld4_dup_v: {
1387    switch (BuiltinID) {
1388    case ARM::BI__builtin_neon_vld2_dup_v:
1389      Int = Intrinsic::arm_neon_vld2lane;
1390      break;
1391    case ARM::BI__builtin_neon_vld3_dup_v:
1392      Int = Intrinsic::arm_neon_vld2lane;
1393      break;
1394    case ARM::BI__builtin_neon_vld4_dup_v:
1395      Int = Intrinsic::arm_neon_vld2lane;
1396      break;
1397    default: assert(0 && "unknown vld_dup intrinsic?");
1398    }
1399    Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1400    const llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1401
1402    SmallVector<Value*, 6> Args;
1403    Args.push_back(Ops[1]);
1404    Args.append(STy->getNumElements(), UndefValue::get(Ty));
1405
1406    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1407    Args.push_back(CI);
1408    Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1409
1410    Ops[1] = Builder.CreateCall(F, Args.begin(), Args.end(), "vld_dup");
1411    // splat lane 0 to all elts in each vector of the result.
1412    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1413      Value *Val = Builder.CreateExtractValue(Ops[1], i);
1414      Value *Elt = Builder.CreateBitCast(Val, Ty);
1415      Elt = EmitNeonSplat(Elt, CI);
1416      Elt = Builder.CreateBitCast(Elt, Val->getType());
1417      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1418    }
1419    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1420    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1421    return Builder.CreateStore(Ops[1], Ops[0]);
1422  }
1423  case ARM::BI__builtin_neon_vmax_v:
1424  case ARM::BI__builtin_neon_vmaxq_v:
1425    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1426    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmax");
1427  case ARM::BI__builtin_neon_vmin_v:
1428  case ARM::BI__builtin_neon_vminq_v:
1429    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1430    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmin");
1431  case ARM::BI__builtin_neon_vmovl_v: {
1432    const llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1433    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1434    if (usgn)
1435      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1436    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1437  }
1438  case ARM::BI__builtin_neon_vmovn_v: {
1439    const llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1440    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1441    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1442  }
1443  case ARM::BI__builtin_neon_vmul_v:
1444    assert(poly && "vmul builtin only supported for polynomial types");
1445    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, &Ty, 1),
1446                        Ops, "vmul");
1447  case ARM::BI__builtin_neon_vmull_v:
1448    assert(poly && "vmull builtin only supported for polynomial types");
1449    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmullp, &Ty, 1),
1450                        Ops, "vmull");
1451  case ARM::BI__builtin_neon_vpadal_v:
1452  case ARM::BI__builtin_neon_vpadalq_v:
1453    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1454    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpadal");
1455  case ARM::BI__builtin_neon_vpadd_v:
1456    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, &Ty, 1),
1457                        Ops, "vpadd");
1458  case ARM::BI__builtin_neon_vpaddl_v:
1459  case ARM::BI__builtin_neon_vpaddlq_v:
1460    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1461    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpaddl");
1462  case ARM::BI__builtin_neon_vpmax_v:
1463    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1464    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmax");
1465  case ARM::BI__builtin_neon_vpmin_v:
1466    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1467    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmin");
1468  case ARM::BI__builtin_neon_vqabs_v:
1469  case ARM::BI__builtin_neon_vqabsq_v:
1470    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, &Ty, 1),
1471                        Ops, "vqabs");
1472  case ARM::BI__builtin_neon_vqadd_v:
1473  case ARM::BI__builtin_neon_vqaddq_v:
1474    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1475    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqadd");
1476  case ARM::BI__builtin_neon_vqdmlal_lane_v:
1477    splat = true;
1478  case ARM::BI__builtin_neon_vqdmlal_v:
1479    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, &Ty, 1),
1480                        Ops, "vqdmlal", splat);
1481  case ARM::BI__builtin_neon_vqdmlsl_lane_v:
1482    splat = true;
1483  case ARM::BI__builtin_neon_vqdmlsl_v:
1484    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, &Ty, 1),
1485                        Ops, "vqdmlsl", splat);
1486  case ARM::BI__builtin_neon_vqdmulh_lane_v:
1487  case ARM::BI__builtin_neon_vqdmulhq_lane_v:
1488    splat = true;
1489  case ARM::BI__builtin_neon_vqdmulh_v:
1490  case ARM::BI__builtin_neon_vqdmulhq_v:
1491    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, &Ty, 1),
1492                        Ops, "vqdmulh", splat);
1493  case ARM::BI__builtin_neon_vqdmull_lane_v:
1494    splat = true;
1495  case ARM::BI__builtin_neon_vqdmull_v:
1496    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, &Ty, 1),
1497                        Ops, "vqdmull", splat);
1498  case ARM::BI__builtin_neon_vqmovn_v:
1499    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1500    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqmovn");
1501  case ARM::BI__builtin_neon_vqmovun_v:
1502    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, &Ty, 1),
1503                        Ops, "vqdmull");
1504  case ARM::BI__builtin_neon_vqneg_v:
1505    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, &Ty, 1),
1506                        Ops, "vqneg");
1507  case ARM::BI__builtin_neon_vqrdmulh_lane_v:
1508  case ARM::BI__builtin_neon_vqrdmulhq_lane_v:
1509    splat = true;
1510  case ARM::BI__builtin_neon_vqrdmulh_v:
1511  case ARM::BI__builtin_neon_vqrdmulhq_v:
1512    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, &Ty, 1),
1513                        Ops, "vqrdmulh", splat);
1514  case ARM::BI__builtin_neon_vqrshl_v:
1515  case ARM::BI__builtin_neon_vqrshlq_v:
1516    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1517    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshl");
1518  case ARM::BI__builtin_neon_vqrshrn_n_v:
1519    Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1520    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshrn_n", false,
1521                        1, true);
1522  case ARM::BI__builtin_neon_vqrshrun_n_v:
1523    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, &Ty, 1),
1524                        Ops, "vqrshrun_n", false, 1, true);
1525  case ARM::BI__builtin_neon_vqshl_v:
1526  case ARM::BI__builtin_neon_vqshlq_v:
1527    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1528    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl");
1529  case ARM::BI__builtin_neon_vqshl_n_v:
1530  case ARM::BI__builtin_neon_vqshlq_n_v:
1531    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1532    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl_n", false,
1533                        1, false);
1534  case ARM::BI__builtin_neon_vqshlu_n_v:
1535  case ARM::BI__builtin_neon_vqshluq_n_v:
1536    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, &Ty, 1),
1537                        Ops, "vqshlu", false, 1, false);
1538  case ARM::BI__builtin_neon_vqshrn_n_v:
1539    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1540    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshrn_n", false,
1541                        1, true);
1542  case ARM::BI__builtin_neon_vqshrun_n_v:
1543    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, &Ty, 1),
1544                        Ops, "vqshrun_n", false, 1, true);
1545  case ARM::BI__builtin_neon_vqsub_v:
1546  case ARM::BI__builtin_neon_vqsubq_v:
1547    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1548    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqsub");
1549  case ARM::BI__builtin_neon_vraddhn_v:
1550    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, &Ty, 1),
1551                        Ops, "vraddhn");
1552  case ARM::BI__builtin_neon_vrecpe_v:
1553  case ARM::BI__builtin_neon_vrecpeq_v:
1554    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, &Ty, 1),
1555                        Ops, "vrecpe");
1556  case ARM::BI__builtin_neon_vrecps_v:
1557  case ARM::BI__builtin_neon_vrecpsq_v:
1558    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, &Ty, 1),
1559                        Ops, "vrecps");
1560  case ARM::BI__builtin_neon_vrhadd_v:
1561  case ARM::BI__builtin_neon_vrhaddq_v:
1562    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1563    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrhadd");
1564  case ARM::BI__builtin_neon_vrshl_v:
1565  case ARM::BI__builtin_neon_vrshlq_v:
1566    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1567    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshl");
1568  case ARM::BI__builtin_neon_vrshrn_n_v:
1569    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, &Ty, 1),
1570                        Ops, "vrshrn_n", false, 1, true);
1571  case ARM::BI__builtin_neon_vrshr_n_v:
1572  case ARM::BI__builtin_neon_vrshrq_n_v:
1573    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1574    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshr_n", false,
1575                        1, true);
1576  case ARM::BI__builtin_neon_vrsqrte_v:
1577  case ARM::BI__builtin_neon_vrsqrteq_v:
1578    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, &Ty, 1),
1579                        Ops, "vrsqrte");
1580  case ARM::BI__builtin_neon_vrsqrts_v:
1581  case ARM::BI__builtin_neon_vrsqrtsq_v:
1582    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, &Ty, 1),
1583                        Ops, "vrsqrts");
1584  case ARM::BI__builtin_neon_vrsra_n_v:
1585  case ARM::BI__builtin_neon_vrsraq_n_v:
1586    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1587    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1588    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1589    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1590    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, &Ty, 1), Ops[1], Ops[2]);
1591    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1592  case ARM::BI__builtin_neon_vrsubhn_v:
1593    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, &Ty, 1),
1594                        Ops, "vrsubhn");
1595  case ARM::BI__builtin_neon_vset_lane_i8:
1596  case ARM::BI__builtin_neon_vset_lane_i16:
1597  case ARM::BI__builtin_neon_vset_lane_i32:
1598  case ARM::BI__builtin_neon_vset_lane_i64:
1599  case ARM::BI__builtin_neon_vset_lane_f32:
1600  case ARM::BI__builtin_neon_vsetq_lane_i8:
1601  case ARM::BI__builtin_neon_vsetq_lane_i16:
1602  case ARM::BI__builtin_neon_vsetq_lane_i32:
1603  case ARM::BI__builtin_neon_vsetq_lane_i64:
1604  case ARM::BI__builtin_neon_vsetq_lane_f32:
1605    Ops.push_back(EmitScalarExpr(E->getArg(2)));
1606    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1607  case ARM::BI__builtin_neon_vshl_v:
1608  case ARM::BI__builtin_neon_vshlq_v:
1609    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1610    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshl");
1611  case ARM::BI__builtin_neon_vshll_n_v:
1612    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1613    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshll", false, 1);
1614  case ARM::BI__builtin_neon_vshl_n_v:
1615  case ARM::BI__builtin_neon_vshlq_n_v:
1616    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1617    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1618  case ARM::BI__builtin_neon_vshrn_n_v:
1619    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, &Ty, 1),
1620                        Ops, "vshrn_n", false, 1, true);
1621  case ARM::BI__builtin_neon_vshr_n_v:
1622  case ARM::BI__builtin_neon_vshrq_n_v:
1623    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1624    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1625    if (usgn)
1626      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1627    else
1628      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1629  case ARM::BI__builtin_neon_vsri_n_v:
1630  case ARM::BI__builtin_neon_vsriq_n_v:
1631    rightShift = true;
1632  case ARM::BI__builtin_neon_vsli_n_v:
1633  case ARM::BI__builtin_neon_vsliq_n_v:
1634    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1635    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, &Ty, 1),
1636                        Ops, "vsli_n");
1637  case ARM::BI__builtin_neon_vsra_n_v:
1638  case ARM::BI__builtin_neon_vsraq_n_v:
1639    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1640    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1641    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1642    if (usgn)
1643      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1644    else
1645      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1646    return Builder.CreateAdd(Ops[0], Ops[1]);
1647  case ARM::BI__builtin_neon_vst1_v:
1648  case ARM::BI__builtin_neon_vst1q_v:
1649    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1650    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, &Ty, 1),
1651                        Ops, "");
1652  case ARM::BI__builtin_neon_vst1_lane_v:
1653  case ARM::BI__builtin_neon_vst1q_lane_v:
1654    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1655    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1656    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1657    return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1658  case ARM::BI__builtin_neon_vst2_v:
1659  case ARM::BI__builtin_neon_vst2q_v:
1660    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1661    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, &Ty, 1),
1662                        Ops, "");
1663  case ARM::BI__builtin_neon_vst2_lane_v:
1664  case ARM::BI__builtin_neon_vst2q_lane_v:
1665    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1666    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, &Ty, 1),
1667                        Ops, "");
1668  case ARM::BI__builtin_neon_vst3_v:
1669  case ARM::BI__builtin_neon_vst3q_v:
1670    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1671    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, &Ty, 1),
1672                        Ops, "");
1673  case ARM::BI__builtin_neon_vst3_lane_v:
1674  case ARM::BI__builtin_neon_vst3q_lane_v:
1675    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1676    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, &Ty, 1),
1677                        Ops, "");
1678  case ARM::BI__builtin_neon_vst4_v:
1679  case ARM::BI__builtin_neon_vst4q_v:
1680    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1681    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, &Ty, 1),
1682                        Ops, "");
1683  case ARM::BI__builtin_neon_vst4_lane_v:
1684  case ARM::BI__builtin_neon_vst4q_lane_v:
1685    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1686    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, &Ty, 1),
1687                        Ops, "");
1688  case ARM::BI__builtin_neon_vsubhn_v:
1689    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, &Ty, 1),
1690                        Ops, "vsubhn");
1691  case ARM::BI__builtin_neon_vtbl1_v:
1692    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1693                        Ops, "vtbl1");
1694  case ARM::BI__builtin_neon_vtbl2_v:
1695    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1696                        Ops, "vtbl2");
1697  case ARM::BI__builtin_neon_vtbl3_v:
1698    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1699                        Ops, "vtbl3");
1700  case ARM::BI__builtin_neon_vtbl4_v:
1701    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1702                        Ops, "vtbl4");
1703  case ARM::BI__builtin_neon_vtbx1_v:
1704    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1705                        Ops, "vtbx1");
1706  case ARM::BI__builtin_neon_vtbx2_v:
1707    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1708                        Ops, "vtbx2");
1709  case ARM::BI__builtin_neon_vtbx3_v:
1710    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1711                        Ops, "vtbx3");
1712  case ARM::BI__builtin_neon_vtbx4_v:
1713    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1714                        Ops, "vtbx4");
1715  case ARM::BI__builtin_neon_vtst_v:
1716  case ARM::BI__builtin_neon_vtstq_v: {
1717    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1718    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1719    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1720    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1721                                ConstantAggregateZero::get(Ty));
1722    return Builder.CreateSExt(Ops[0], Ty, "vtst");
1723  }
1724  case ARM::BI__builtin_neon_vtrn_v:
1725  case ARM::BI__builtin_neon_vtrnq_v: {
1726    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1727    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1728    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1729    Value *SV;
1730
1731    for (unsigned vi = 0; vi != 2; ++vi) {
1732      SmallVector<Constant*, 16> Indices;
1733      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1734        Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1735        Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1736      }
1737      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1738      SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
1739      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1740      SV = Builder.CreateStore(SV, Addr);
1741    }
1742    return SV;
1743  }
1744  case ARM::BI__builtin_neon_vuzp_v:
1745  case ARM::BI__builtin_neon_vuzpq_v: {
1746    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1747    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1748    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1749    Value *SV;
1750
1751    for (unsigned vi = 0; vi != 2; ++vi) {
1752      SmallVector<Constant*, 16> Indices;
1753      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1754        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1755
1756      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1757      SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
1758      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1759      SV = Builder.CreateStore(SV, Addr);
1760    }
1761    return SV;
1762  }
1763  case ARM::BI__builtin_neon_vzip_v:
1764  case ARM::BI__builtin_neon_vzipq_v: {
1765    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1766    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1767    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1768    Value *SV;
1769
1770    for (unsigned vi = 0; vi != 2; ++vi) {
1771      SmallVector<Constant*, 16> Indices;
1772      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1773        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1774        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1775      }
1776      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1777      SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
1778      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1779      SV = Builder.CreateStore(SV, Addr);
1780    }
1781    return SV;
1782  }
1783  }
1784}
1785
1786llvm::Value *CodeGenFunction::
1787BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1788  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1789         "Not a power-of-two sized vector!");
1790  bool AllConstants = true;
1791  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1792    AllConstants &= isa<Constant>(Ops[i]);
1793
1794  // If this is a constant vector, create a ConstantVector.
1795  if (AllConstants) {
1796    std::vector<llvm::Constant*> CstOps;
1797    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1798      CstOps.push_back(cast<Constant>(Ops[i]));
1799    return llvm::ConstantVector::get(CstOps);
1800  }
1801
1802  // Otherwise, insertelement the values to build the vector.
1803  Value *Result =
1804    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1805
1806  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1807    Result = Builder.CreateInsertElement(Result, Ops[i],
1808               llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), i));
1809
1810  return Result;
1811}
1812
1813Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1814                                           const CallExpr *E) {
1815  llvm::SmallVector<Value*, 4> Ops;
1816
1817  // Find out if any arguments are required to be integer constant expressions.
1818  unsigned ICEArguments = 0;
1819  ASTContext::GetBuiltinTypeError Error;
1820  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1821  assert(Error == ASTContext::GE_None && "Should not codegen an error");
1822
1823  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1824    // If this is a normal argument, just emit it as a scalar.
1825    if ((ICEArguments & (1 << i)) == 0) {
1826      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1827      continue;
1828    }
1829
1830    // If this is required to be a constant, constant fold it so that we know
1831    // that the generated intrinsic gets a ConstantInt.
1832    llvm::APSInt Result;
1833    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1834    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1835    Ops.push_back(llvm::ConstantInt::get(VMContext, Result));
1836  }
1837
1838  switch (BuiltinID) {
1839  default: return 0;
1840  case X86::BI__builtin_ia32_pslldi128:
1841  case X86::BI__builtin_ia32_psllqi128:
1842  case X86::BI__builtin_ia32_psllwi128:
1843  case X86::BI__builtin_ia32_psradi128:
1844  case X86::BI__builtin_ia32_psrawi128:
1845  case X86::BI__builtin_ia32_psrldi128:
1846  case X86::BI__builtin_ia32_psrlqi128:
1847  case X86::BI__builtin_ia32_psrlwi128: {
1848    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1849    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1850    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1851    Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1852                                         Ops[1], Zero, "insert");
1853    Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1854    const char *name = 0;
1855    Intrinsic::ID ID = Intrinsic::not_intrinsic;
1856
1857    switch (BuiltinID) {
1858    default: assert(0 && "Unsupported shift intrinsic!");
1859    case X86::BI__builtin_ia32_pslldi128:
1860      name = "pslldi";
1861      ID = Intrinsic::x86_sse2_psll_d;
1862      break;
1863    case X86::BI__builtin_ia32_psllqi128:
1864      name = "psllqi";
1865      ID = Intrinsic::x86_sse2_psll_q;
1866      break;
1867    case X86::BI__builtin_ia32_psllwi128:
1868      name = "psllwi";
1869      ID = Intrinsic::x86_sse2_psll_w;
1870      break;
1871    case X86::BI__builtin_ia32_psradi128:
1872      name = "psradi";
1873      ID = Intrinsic::x86_sse2_psra_d;
1874      break;
1875    case X86::BI__builtin_ia32_psrawi128:
1876      name = "psrawi";
1877      ID = Intrinsic::x86_sse2_psra_w;
1878      break;
1879    case X86::BI__builtin_ia32_psrldi128:
1880      name = "psrldi";
1881      ID = Intrinsic::x86_sse2_psrl_d;
1882      break;
1883    case X86::BI__builtin_ia32_psrlqi128:
1884      name = "psrlqi";
1885      ID = Intrinsic::x86_sse2_psrl_q;
1886      break;
1887    case X86::BI__builtin_ia32_psrlwi128:
1888      name = "psrlwi";
1889      ID = Intrinsic::x86_sse2_psrl_w;
1890      break;
1891    }
1892    llvm::Function *F = CGM.getIntrinsic(ID);
1893    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
1894  }
1895  case X86::BI__builtin_ia32_vec_init_v8qi:
1896  case X86::BI__builtin_ia32_vec_init_v4hi:
1897  case X86::BI__builtin_ia32_vec_init_v2si:
1898    return Builder.CreateBitCast(BuildVector(Ops),
1899                                 llvm::Type::getX86_MMXTy(VMContext));
1900  case X86::BI__builtin_ia32_vec_ext_v2si:
1901    return Builder.CreateExtractElement(Ops[0],
1902                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
1903  case X86::BI__builtin_ia32_pslldi:
1904  case X86::BI__builtin_ia32_psllqi:
1905  case X86::BI__builtin_ia32_psllwi:
1906  case X86::BI__builtin_ia32_psradi:
1907  case X86::BI__builtin_ia32_psrawi:
1908  case X86::BI__builtin_ia32_psrldi:
1909  case X86::BI__builtin_ia32_psrlqi:
1910  case X86::BI__builtin_ia32_psrlwi: {
1911    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1912    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
1913    Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
1914    const char *name = 0;
1915    Intrinsic::ID ID = Intrinsic::not_intrinsic;
1916
1917    switch (BuiltinID) {
1918    default: assert(0 && "Unsupported shift intrinsic!");
1919    case X86::BI__builtin_ia32_pslldi:
1920      name = "pslldi";
1921      ID = Intrinsic::x86_mmx_psll_d;
1922      break;
1923    case X86::BI__builtin_ia32_psllqi:
1924      name = "psllqi";
1925      ID = Intrinsic::x86_mmx_psll_q;
1926      break;
1927    case X86::BI__builtin_ia32_psllwi:
1928      name = "psllwi";
1929      ID = Intrinsic::x86_mmx_psll_w;
1930      break;
1931    case X86::BI__builtin_ia32_psradi:
1932      name = "psradi";
1933      ID = Intrinsic::x86_mmx_psra_d;
1934      break;
1935    case X86::BI__builtin_ia32_psrawi:
1936      name = "psrawi";
1937      ID = Intrinsic::x86_mmx_psra_w;
1938      break;
1939    case X86::BI__builtin_ia32_psrldi:
1940      name = "psrldi";
1941      ID = Intrinsic::x86_mmx_psrl_d;
1942      break;
1943    case X86::BI__builtin_ia32_psrlqi:
1944      name = "psrlqi";
1945      ID = Intrinsic::x86_mmx_psrl_q;
1946      break;
1947    case X86::BI__builtin_ia32_psrlwi:
1948      name = "psrlwi";
1949      ID = Intrinsic::x86_mmx_psrl_w;
1950      break;
1951    }
1952    llvm::Function *F = CGM.getIntrinsic(ID);
1953    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
1954  }
1955  case X86::BI__builtin_ia32_cmpps: {
1956    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
1957    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps");
1958  }
1959  case X86::BI__builtin_ia32_cmpss: {
1960    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
1961    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss");
1962  }
1963  case X86::BI__builtin_ia32_ldmxcsr: {
1964    const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
1965    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1966    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
1967    Builder.CreateStore(Ops[0], Tmp);
1968    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
1969                              Builder.CreateBitCast(Tmp, PtrTy));
1970  }
1971  case X86::BI__builtin_ia32_stmxcsr: {
1972    const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
1973    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
1974    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
1975    One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
1976                             Builder.CreateBitCast(Tmp, PtrTy));
1977    return Builder.CreateLoad(Tmp, "stmxcsr");
1978  }
1979  case X86::BI__builtin_ia32_cmppd: {
1980    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
1981    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd");
1982  }
1983  case X86::BI__builtin_ia32_cmpsd: {
1984    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
1985    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd");
1986  }
1987  case X86::BI__builtin_ia32_storehps:
1988  case X86::BI__builtin_ia32_storelps: {
1989    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
1990    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
1991
1992    // cast val v2i64
1993    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
1994
1995    // extract (0, 1)
1996    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
1997    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
1998    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
1999
2000    // cast pointer to i64 & store
2001    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2002    return Builder.CreateStore(Ops[1], Ops[0]);
2003  }
2004  case X86::BI__builtin_ia32_palignr: {
2005    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2006
2007    // If palignr is shifting the pair of input vectors less than 9 bytes,
2008    // emit a shuffle instruction.
2009    if (shiftVal <= 8) {
2010      llvm::SmallVector<llvm::Constant*, 8> Indices;
2011      for (unsigned i = 0; i != 8; ++i)
2012        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2013
2014      Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
2015      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2016    }
2017
2018    // If palignr is shifting the pair of input vectors more than 8 but less
2019    // than 16 bytes, emit a logical right shift of the destination.
2020    if (shiftVal < 16) {
2021      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2022      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2023
2024      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2025      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2026
2027      // create i32 constant
2028      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2029      return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2030    }
2031
2032    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2033    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2034  }
2035  case X86::BI__builtin_ia32_palignr128: {
2036    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2037
2038    // If palignr is shifting the pair of input vectors less than 17 bytes,
2039    // emit a shuffle instruction.
2040    if (shiftVal <= 16) {
2041      llvm::SmallVector<llvm::Constant*, 16> Indices;
2042      for (unsigned i = 0; i != 16; ++i)
2043        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2044
2045      Value* SV = llvm::ConstantVector::get(Indices.begin(), Indices.size());
2046      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2047    }
2048
2049    // If palignr is shifting the pair of input vectors more than 16 but less
2050    // than 32 bytes, emit a logical right shift of the destination.
2051    if (shiftVal < 32) {
2052      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2053
2054      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2055      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2056
2057      // create i32 constant
2058      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2059      return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2060    }
2061
2062    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2063    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2064  }
2065  }
2066}
2067
2068Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2069                                           const CallExpr *E) {
2070  llvm::SmallVector<Value*, 4> Ops;
2071
2072  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2073    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2074
2075  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2076
2077  switch (BuiltinID) {
2078  default: return 0;
2079
2080  // vec_ld, vec_lvsl, vec_lvsr
2081  case PPC::BI__builtin_altivec_lvx:
2082  case PPC::BI__builtin_altivec_lvxl:
2083  case PPC::BI__builtin_altivec_lvebx:
2084  case PPC::BI__builtin_altivec_lvehx:
2085  case PPC::BI__builtin_altivec_lvewx:
2086  case PPC::BI__builtin_altivec_lvsl:
2087  case PPC::BI__builtin_altivec_lvsr:
2088  {
2089    Ops[1] = Builder.CreateBitCast(Ops[1], llvm::Type::getInt8PtrTy(VMContext));
2090
2091    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2092    Ops.pop_back();
2093
2094    switch (BuiltinID) {
2095    default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2096    case PPC::BI__builtin_altivec_lvx:
2097      ID = Intrinsic::ppc_altivec_lvx;
2098      break;
2099    case PPC::BI__builtin_altivec_lvxl:
2100      ID = Intrinsic::ppc_altivec_lvxl;
2101      break;
2102    case PPC::BI__builtin_altivec_lvebx:
2103      ID = Intrinsic::ppc_altivec_lvebx;
2104      break;
2105    case PPC::BI__builtin_altivec_lvehx:
2106      ID = Intrinsic::ppc_altivec_lvehx;
2107      break;
2108    case PPC::BI__builtin_altivec_lvewx:
2109      ID = Intrinsic::ppc_altivec_lvewx;
2110      break;
2111    case PPC::BI__builtin_altivec_lvsl:
2112      ID = Intrinsic::ppc_altivec_lvsl;
2113      break;
2114    case PPC::BI__builtin_altivec_lvsr:
2115      ID = Intrinsic::ppc_altivec_lvsr;
2116      break;
2117    }
2118    llvm::Function *F = CGM.getIntrinsic(ID);
2119    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2120  }
2121
2122  // vec_st
2123  case PPC::BI__builtin_altivec_stvx:
2124  case PPC::BI__builtin_altivec_stvxl:
2125  case PPC::BI__builtin_altivec_stvebx:
2126  case PPC::BI__builtin_altivec_stvehx:
2127  case PPC::BI__builtin_altivec_stvewx:
2128  {
2129    Ops[2] = Builder.CreateBitCast(Ops[2], llvm::Type::getInt8PtrTy(VMContext));
2130    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2131    Ops.pop_back();
2132
2133    switch (BuiltinID) {
2134    default: assert(0 && "Unsupported st intrinsic!");
2135    case PPC::BI__builtin_altivec_stvx:
2136      ID = Intrinsic::ppc_altivec_stvx;
2137      break;
2138    case PPC::BI__builtin_altivec_stvxl:
2139      ID = Intrinsic::ppc_altivec_stvxl;
2140      break;
2141    case PPC::BI__builtin_altivec_stvebx:
2142      ID = Intrinsic::ppc_altivec_stvebx;
2143      break;
2144    case PPC::BI__builtin_altivec_stvehx:
2145      ID = Intrinsic::ppc_altivec_stvehx;
2146      break;
2147    case PPC::BI__builtin_altivec_stvewx:
2148      ID = Intrinsic::ppc_altivec_stvewx;
2149      break;
2150    }
2151    llvm::Function *F = CGM.getIntrinsic(ID);
2152    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2153  }
2154  }
2155  return 0;
2156}
2157