CGBuiltin.cpp revision ec9919549095390b5737c561544f8bd49fc894de
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Builtin calls as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TargetInfo.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "CGObjCRuntime.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/Basic/TargetBuiltins.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Target/TargetData.h"
25using namespace clang;
26using namespace CodeGen;
27using namespace llvm;
28
29static void EmitMemoryBarrier(CodeGenFunction &CGF,
30                              bool LoadLoad, bool LoadStore,
31                              bool StoreLoad, bool StoreStore,
32                              bool Device) {
33  Value *True = CGF.Builder.getTrue();
34  Value *False = CGF.Builder.getFalse();
35  Value *C[5] = { LoadLoad ? True : False,
36                  LoadStore ? True : False,
37                  StoreLoad ? True : False,
38                  StoreStore ? True : False,
39                  Device ? True : False };
40  CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::memory_barrier),
41                         C, C + 5);
42}
43
44/// Emit the conversions required to turn the given value into an
45/// integer of the given size.
46static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
47                        QualType T, const llvm::IntegerType *IntType) {
48  V = CGF.EmitToMemory(V, T);
49
50  if (V->getType()->isPointerTy())
51    return CGF.Builder.CreatePtrToInt(V, IntType);
52
53  assert(V->getType() == IntType);
54  return V;
55}
56
57static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
58                          QualType T, const llvm::Type *ResultType) {
59  V = CGF.EmitFromMemory(V, T);
60
61  if (ResultType->isPointerTy())
62    return CGF.Builder.CreateIntToPtr(V, ResultType);
63
64  assert(V->getType() == ResultType);
65  return V;
66}
67
68// The atomic builtins are also full memory barriers. This is a utility for
69// wrapping a call to the builtins with memory barriers.
70static Value *EmitCallWithBarrier(CodeGenFunction &CGF, Value *Fn,
71                                  Value **ArgBegin, Value **ArgEnd) {
72  // FIXME: We need a target hook for whether this applies to device memory or
73  // not.
74  bool Device = true;
75
76  // Create barriers both before and after the call.
77  EmitMemoryBarrier(CGF, true, true, true, true, Device);
78  Value *Result = CGF.Builder.CreateCall(Fn, ArgBegin, ArgEnd);
79  EmitMemoryBarrier(CGF, true, true, true, true, Device);
80  return Result;
81}
82
83/// Utility to insert an atomic instruction based on Instrinsic::ID
84/// and the expression node.
85static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
86                               Intrinsic::ID Id, const CallExpr *E) {
87  QualType T = E->getType();
88  assert(E->getArg(0)->getType()->isPointerType());
89  assert(CGF.getContext().hasSameUnqualifiedType(T,
90                                  E->getArg(0)->getType()->getPointeeType()));
91  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
92
93  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
94  unsigned AddrSpace =
95    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
96
97  const llvm::IntegerType *IntType =
98    llvm::IntegerType::get(CGF.getLLVMContext(),
99                           CGF.getContext().getTypeSize(T));
100  const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102  const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
103  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
104
105  llvm::Value *Args[2];
106  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
107  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
108  const llvm::Type *ValueType = Args[1]->getType();
109  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
110
111  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
112  Result = EmitFromInt(CGF, Result, T, ValueType);
113  return RValue::get(Result);
114}
115
116/// Utility to insert an atomic instruction based Instrinsic::ID and
117/// the expression node, where the return value is the result of the
118/// operation.
119static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
120                                   Intrinsic::ID Id, const CallExpr *E,
121                                   Instruction::BinaryOps Op) {
122  QualType T = E->getType();
123  assert(E->getArg(0)->getType()->isPointerType());
124  assert(CGF.getContext().hasSameUnqualifiedType(T,
125                                  E->getArg(0)->getType()->getPointeeType()));
126  assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
127
128  llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
129  unsigned AddrSpace =
130    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
131
132  const llvm::IntegerType *IntType =
133    llvm::IntegerType::get(CGF.getLLVMContext(),
134                           CGF.getContext().getTypeSize(T));
135  const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
136
137  const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
138  llvm::Value *AtomF = CGF.CGM.getIntrinsic(Id, IntrinsicTypes, 2);
139
140  llvm::Value *Args[2];
141  Args[1] = CGF.EmitScalarExpr(E->getArg(1));
142  const llvm::Type *ValueType = Args[1]->getType();
143  Args[1] = EmitToInt(CGF, Args[1], T, IntType);
144  Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
145
146  llvm::Value *Result = EmitCallWithBarrier(CGF, AtomF, Args, Args + 2);
147  Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
148  Result = EmitFromInt(CGF, Result, T, ValueType);
149  return RValue::get(Result);
150}
151
152/// EmitFAbs - Emit a call to fabs/fabsf/fabsl, depending on the type of ValTy,
153/// which must be a scalar floating point type.
154static Value *EmitFAbs(CodeGenFunction &CGF, Value *V, QualType ValTy) {
155  const BuiltinType *ValTyP = ValTy->getAs<BuiltinType>();
156  assert(ValTyP && "isn't scalar fp type!");
157
158  StringRef FnName;
159  switch (ValTyP->getKind()) {
160  default: assert(0 && "Isn't a scalar fp type!");
161  case BuiltinType::Float:      FnName = "fabsf"; break;
162  case BuiltinType::Double:     FnName = "fabs"; break;
163  case BuiltinType::LongDouble: FnName = "fabsl"; break;
164  }
165
166  // The prototype is something that takes and returns whatever V's type is.
167  std::vector<const llvm::Type*> Args;
168  Args.push_back(V->getType());
169  llvm::FunctionType *FT = llvm::FunctionType::get(V->getType(), Args, false);
170  llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(FT, FnName);
171
172  return CGF.Builder.CreateCall(Fn, V, "abs");
173}
174
175RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
176                                        unsigned BuiltinID, const CallExpr *E) {
177  // See if we can constant fold this builtin.  If so, don't emit it at all.
178  Expr::EvalResult Result;
179  if (E->Evaluate(Result, CGM.getContext())) {
180    // Short circuiting the __builtin_expect on its 1st argument
181    // must still IR-gen the 1st and 2nd argument's side-effect.
182    if (BuiltinID == Builtin::BI__builtin_expect) {
183      if (E->getArg(0)->HasSideEffects(getContext()))
184        (void)EmitScalarExpr(E->getArg(0));
185      if (E->getArg(1)->HasSideEffects(getContext()))
186        (void)EmitScalarExpr(E->getArg(1));
187    }
188
189    if (Result.Val.isInt())
190      return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
191                                                Result.Val.getInt()));
192    if (Result.Val.isFloat())
193      return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
194                                               Result.Val.getFloat()));
195  }
196
197  switch (BuiltinID) {
198  default: break;  // Handle intrinsics and libm functions below.
199  case Builtin::BI__builtin___CFStringMakeConstantString:
200  case Builtin::BI__builtin___NSStringMakeConstantString:
201    return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
202  case Builtin::BI__builtin_stdarg_start:
203  case Builtin::BI__builtin_va_start:
204  case Builtin::BI__builtin_va_end: {
205    Value *ArgValue = EmitVAListRef(E->getArg(0));
206    const llvm::Type *DestType = Int8PtrTy;
207    if (ArgValue->getType() != DestType)
208      ArgValue = Builder.CreateBitCast(ArgValue, DestType,
209                                       ArgValue->getName().data());
210
211    Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
212      Intrinsic::vaend : Intrinsic::vastart;
213    return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
214  }
215  case Builtin::BI__builtin_va_copy: {
216    Value *DstPtr = EmitVAListRef(E->getArg(0));
217    Value *SrcPtr = EmitVAListRef(E->getArg(1));
218
219    const llvm::Type *Type = Int8PtrTy;
220
221    DstPtr = Builder.CreateBitCast(DstPtr, Type);
222    SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
223    return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
224                                           DstPtr, SrcPtr));
225  }
226  case Builtin::BI__builtin_abs: {
227    Value *ArgValue = EmitScalarExpr(E->getArg(0));
228
229    Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
230    Value *CmpResult =
231    Builder.CreateICmpSGE(ArgValue,
232                          llvm::Constant::getNullValue(ArgValue->getType()),
233                                                            "abscond");
234    Value *Result =
235      Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
236
237    return RValue::get(Result);
238  }
239  case Builtin::BI__builtin_ctz:
240  case Builtin::BI__builtin_ctzl:
241  case Builtin::BI__builtin_ctzll: {
242    Value *ArgValue = EmitScalarExpr(E->getArg(0));
243
244    const llvm::Type *ArgType = ArgValue->getType();
245    Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
246
247    const llvm::Type *ResultType = ConvertType(E->getType());
248    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
249    if (Result->getType() != ResultType)
250      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
251                                     "cast");
252    return RValue::get(Result);
253  }
254  case Builtin::BI__builtin_clz:
255  case Builtin::BI__builtin_clzl:
256  case Builtin::BI__builtin_clzll: {
257    Value *ArgValue = EmitScalarExpr(E->getArg(0));
258
259    const llvm::Type *ArgType = ArgValue->getType();
260    Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
261
262    const llvm::Type *ResultType = ConvertType(E->getType());
263    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
264    if (Result->getType() != ResultType)
265      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
266                                     "cast");
267    return RValue::get(Result);
268  }
269  case Builtin::BI__builtin_ffs:
270  case Builtin::BI__builtin_ffsl:
271  case Builtin::BI__builtin_ffsll: {
272    // ffs(x) -> x ? cttz(x) + 1 : 0
273    Value *ArgValue = EmitScalarExpr(E->getArg(0));
274
275    const llvm::Type *ArgType = ArgValue->getType();
276    Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
277
278    const llvm::Type *ResultType = ConvertType(E->getType());
279    Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
280                                   llvm::ConstantInt::get(ArgType, 1), "tmp");
281    Value *Zero = llvm::Constant::getNullValue(ArgType);
282    Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
283    Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
284    if (Result->getType() != ResultType)
285      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
286                                     "cast");
287    return RValue::get(Result);
288  }
289  case Builtin::BI__builtin_parity:
290  case Builtin::BI__builtin_parityl:
291  case Builtin::BI__builtin_parityll: {
292    // parity(x) -> ctpop(x) & 1
293    Value *ArgValue = EmitScalarExpr(E->getArg(0));
294
295    const llvm::Type *ArgType = ArgValue->getType();
296    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
297
298    const llvm::Type *ResultType = ConvertType(E->getType());
299    Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
300    Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1),
301                                      "tmp");
302    if (Result->getType() != ResultType)
303      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
304                                     "cast");
305    return RValue::get(Result);
306  }
307  case Builtin::BI__builtin_popcount:
308  case Builtin::BI__builtin_popcountl:
309  case Builtin::BI__builtin_popcountll: {
310    Value *ArgValue = EmitScalarExpr(E->getArg(0));
311
312    const llvm::Type *ArgType = ArgValue->getType();
313    Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
314
315    const llvm::Type *ResultType = ConvertType(E->getType());
316    Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
317    if (Result->getType() != ResultType)
318      Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
319                                     "cast");
320    return RValue::get(Result);
321  }
322  case Builtin::BI__builtin_expect: {
323    // FIXME: pass expect through to LLVM
324    if (E->getArg(1)->HasSideEffects(getContext()))
325      (void)EmitScalarExpr(E->getArg(1));
326    return RValue::get(EmitScalarExpr(E->getArg(0)));
327  }
328  case Builtin::BI__builtin_bswap32:
329  case Builtin::BI__builtin_bswap64: {
330    Value *ArgValue = EmitScalarExpr(E->getArg(0));
331    const llvm::Type *ArgType = ArgValue->getType();
332    Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
333    return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
334  }
335  case Builtin::BI__builtin_object_size: {
336    // We pass this builtin onto the optimizer so that it can
337    // figure out the object size in more complex cases.
338    const llvm::Type *ResType[] = {
339      ConvertType(E->getType())
340    };
341
342    // LLVM only supports 0 and 2, make sure that we pass along that
343    // as a boolean.
344    Value *Ty = EmitScalarExpr(E->getArg(1));
345    ConstantInt *CI = dyn_cast<ConstantInt>(Ty);
346    assert(CI);
347    uint64_t val = CI->getZExtValue();
348    CI = ConstantInt::get(Builder.getInt1Ty(), (val & 0x2) >> 1);
349
350    Value *F = CGM.getIntrinsic(Intrinsic::objectsize, ResType, 1);
351    return RValue::get(Builder.CreateCall2(F,
352                                           EmitScalarExpr(E->getArg(0)),
353                                           CI));
354  }
355  case Builtin::BI__builtin_prefetch: {
356    Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
357    // FIXME: Technically these constants should of type 'int', yes?
358    RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
359      llvm::ConstantInt::get(Int32Ty, 0);
360    Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
361      llvm::ConstantInt::get(Int32Ty, 3);
362    Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
363    return RValue::get(Builder.CreateCall3(F, Address, RW, Locality));
364  }
365  case Builtin::BI__builtin_trap: {
366    Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
367    return RValue::get(Builder.CreateCall(F));
368  }
369  case Builtin::BI__builtin_unreachable: {
370    if (CatchUndefined)
371      EmitBranch(getTrapBB());
372    else
373      Builder.CreateUnreachable();
374
375    // We do need to preserve an insertion point.
376    EmitBlock(createBasicBlock("unreachable.cont"));
377
378    return RValue::get(0);
379  }
380
381  case Builtin::BI__builtin_powi:
382  case Builtin::BI__builtin_powif:
383  case Builtin::BI__builtin_powil: {
384    Value *Base = EmitScalarExpr(E->getArg(0));
385    Value *Exponent = EmitScalarExpr(E->getArg(1));
386    const llvm::Type *ArgType = Base->getType();
387    Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
388    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
389  }
390
391  case Builtin::BI__builtin_isgreater:
392  case Builtin::BI__builtin_isgreaterequal:
393  case Builtin::BI__builtin_isless:
394  case Builtin::BI__builtin_islessequal:
395  case Builtin::BI__builtin_islessgreater:
396  case Builtin::BI__builtin_isunordered: {
397    // Ordered comparisons: we know the arguments to these are matching scalar
398    // floating point values.
399    Value *LHS = EmitScalarExpr(E->getArg(0));
400    Value *RHS = EmitScalarExpr(E->getArg(1));
401
402    switch (BuiltinID) {
403    default: assert(0 && "Unknown ordered comparison");
404    case Builtin::BI__builtin_isgreater:
405      LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
406      break;
407    case Builtin::BI__builtin_isgreaterequal:
408      LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
409      break;
410    case Builtin::BI__builtin_isless:
411      LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
412      break;
413    case Builtin::BI__builtin_islessequal:
414      LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
415      break;
416    case Builtin::BI__builtin_islessgreater:
417      LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
418      break;
419    case Builtin::BI__builtin_isunordered:
420      LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
421      break;
422    }
423    // ZExt bool to int type.
424    return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
425                                          "tmp"));
426  }
427  case Builtin::BI__builtin_isnan: {
428    Value *V = EmitScalarExpr(E->getArg(0));
429    V = Builder.CreateFCmpUNO(V, V, "cmp");
430    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
431  }
432
433  case Builtin::BI__builtin_isinf: {
434    // isinf(x) --> fabs(x) == infinity
435    Value *V = EmitScalarExpr(E->getArg(0));
436    V = EmitFAbs(*this, V, E->getArg(0)->getType());
437
438    V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
439    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()), "tmp"));
440  }
441
442  // TODO: BI__builtin_isinf_sign
443  //   isinf_sign(x) -> isinf(x) ? (signbit(x) ? -1 : 1) : 0
444
445  case Builtin::BI__builtin_isnormal: {
446    // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
447    Value *V = EmitScalarExpr(E->getArg(0));
448    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
449
450    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
451    Value *IsLessThanInf =
452      Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
453    APFloat Smallest = APFloat::getSmallestNormalized(
454                   getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
455    Value *IsNormal =
456      Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
457                            "isnormal");
458    V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
459    V = Builder.CreateAnd(V, IsNormal, "and");
460    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
461  }
462
463  case Builtin::BI__builtin_isfinite: {
464    // isfinite(x) --> x == x && fabs(x) != infinity; }
465    Value *V = EmitScalarExpr(E->getArg(0));
466    Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
467
468    Value *Abs = EmitFAbs(*this, V, E->getArg(0)->getType());
469    Value *IsNotInf =
470      Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
471
472    V = Builder.CreateAnd(Eq, IsNotInf, "and");
473    return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
474  }
475
476  case Builtin::BI__builtin_fpclassify: {
477    Value *V = EmitScalarExpr(E->getArg(5));
478    const llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
479
480    // Create Result
481    BasicBlock *Begin = Builder.GetInsertBlock();
482    BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
483    Builder.SetInsertPoint(End);
484    PHINode *Result =
485      Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
486                        "fpclassify_result");
487
488    // if (V==0) return FP_ZERO
489    Builder.SetInsertPoint(Begin);
490    Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
491                                          "iszero");
492    Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
493    BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
494    Builder.CreateCondBr(IsZero, End, NotZero);
495    Result->addIncoming(ZeroLiteral, Begin);
496
497    // if (V != V) return FP_NAN
498    Builder.SetInsertPoint(NotZero);
499    Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
500    Value *NanLiteral = EmitScalarExpr(E->getArg(0));
501    BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
502    Builder.CreateCondBr(IsNan, End, NotNan);
503    Result->addIncoming(NanLiteral, NotZero);
504
505    // if (fabs(V) == infinity) return FP_INFINITY
506    Builder.SetInsertPoint(NotNan);
507    Value *VAbs = EmitFAbs(*this, V, E->getArg(5)->getType());
508    Value *IsInf =
509      Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
510                            "isinf");
511    Value *InfLiteral = EmitScalarExpr(E->getArg(1));
512    BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
513    Builder.CreateCondBr(IsInf, End, NotInf);
514    Result->addIncoming(InfLiteral, NotNan);
515
516    // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
517    Builder.SetInsertPoint(NotInf);
518    APFloat Smallest = APFloat::getSmallestNormalized(
519        getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
520    Value *IsNormal =
521      Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
522                            "isnormal");
523    Value *NormalResult =
524      Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
525                           EmitScalarExpr(E->getArg(3)));
526    Builder.CreateBr(End);
527    Result->addIncoming(NormalResult, NotInf);
528
529    // return Result
530    Builder.SetInsertPoint(End);
531    return RValue::get(Result);
532  }
533
534  case Builtin::BIalloca:
535  case Builtin::BI__builtin_alloca: {
536    Value *Size = EmitScalarExpr(E->getArg(0));
537    return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size, "tmp"));
538  }
539  case Builtin::BIbzero:
540  case Builtin::BI__builtin_bzero: {
541    Value *Address = EmitScalarExpr(E->getArg(0));
542    Value *SizeVal = EmitScalarExpr(E->getArg(1));
543    Builder.CreateMemSet(Address, Builder.getInt8(0), SizeVal, 1, false);
544    return RValue::get(Address);
545  }
546  case Builtin::BImemcpy:
547  case Builtin::BI__builtin_memcpy: {
548    Value *Address = EmitScalarExpr(E->getArg(0));
549    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
550    Value *SizeVal = EmitScalarExpr(E->getArg(2));
551    Builder.CreateMemCpy(Address, SrcAddr, SizeVal, 1, false);
552    return RValue::get(Address);
553  }
554
555  case Builtin::BI__builtin___memcpy_chk: {
556    // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
557    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
558        !E->getArg(3)->isEvaluatable(CGM.getContext()))
559      break;
560    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
561    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
562    if (Size.ugt(DstSize))
563      break;
564    Value *Dest = EmitScalarExpr(E->getArg(0));
565    Value *Src = EmitScalarExpr(E->getArg(1));
566    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
567    Builder.CreateMemCpy(Dest, Src, SizeVal, 1, false);
568    return RValue::get(Dest);
569  }
570
571  case Builtin::BI__builtin_objc_memmove_collectable: {
572    Value *Address = EmitScalarExpr(E->getArg(0));
573    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
574    Value *SizeVal = EmitScalarExpr(E->getArg(2));
575    CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
576                                                  Address, SrcAddr, SizeVal);
577    return RValue::get(Address);
578  }
579
580  case Builtin::BI__builtin___memmove_chk: {
581    // fold __builtin_memmove_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
582    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
583        !E->getArg(3)->isEvaluatable(CGM.getContext()))
584      break;
585    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
586    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
587    if (Size.ugt(DstSize))
588      break;
589    Value *Dest = EmitScalarExpr(E->getArg(0));
590    Value *Src = EmitScalarExpr(E->getArg(1));
591    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
592    Builder.CreateMemMove(Dest, Src, SizeVal, 1, false);
593    return RValue::get(Dest);
594  }
595
596  case Builtin::BImemmove:
597  case Builtin::BI__builtin_memmove: {
598    Value *Address = EmitScalarExpr(E->getArg(0));
599    Value *SrcAddr = EmitScalarExpr(E->getArg(1));
600    Value *SizeVal = EmitScalarExpr(E->getArg(2));
601    Builder.CreateMemMove(Address, SrcAddr, SizeVal, 1, false);
602    return RValue::get(Address);
603  }
604  case Builtin::BImemset:
605  case Builtin::BI__builtin_memset: {
606    Value *Address = EmitScalarExpr(E->getArg(0));
607    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
608                                         Builder.getInt8Ty());
609    Value *SizeVal = EmitScalarExpr(E->getArg(2));
610    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
611    return RValue::get(Address);
612  }
613  case Builtin::BI__builtin___memset_chk: {
614    // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
615    if (!E->getArg(2)->isEvaluatable(CGM.getContext()) ||
616        !E->getArg(3)->isEvaluatable(CGM.getContext()))
617      break;
618    llvm::APSInt Size = E->getArg(2)->EvaluateAsInt(CGM.getContext());
619    llvm::APSInt DstSize = E->getArg(3)->EvaluateAsInt(CGM.getContext());
620    if (Size.ugt(DstSize))
621      break;
622    Value *Address = EmitScalarExpr(E->getArg(0));
623    Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
624                                         Builder.getInt8Ty());
625    Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
626    Builder.CreateMemSet(Address, ByteVal, SizeVal, 1, false);
627
628    return RValue::get(Address);
629  }
630  case Builtin::BI__builtin_dwarf_cfa: {
631    // The offset in bytes from the first argument to the CFA.
632    //
633    // Why on earth is this in the frontend?  Is there any reason at
634    // all that the backend can't reasonably determine this while
635    // lowering llvm.eh.dwarf.cfa()?
636    //
637    // TODO: If there's a satisfactory reason, add a target hook for
638    // this instead of hard-coding 0, which is correct for most targets.
639    int32_t Offset = 0;
640
641    Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa, 0, 0);
642    return RValue::get(Builder.CreateCall(F,
643                                      llvm::ConstantInt::get(Int32Ty, Offset)));
644  }
645  case Builtin::BI__builtin_return_address: {
646    Value *Depth = EmitScalarExpr(E->getArg(0));
647    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
648    Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
649    return RValue::get(Builder.CreateCall(F, Depth));
650  }
651  case Builtin::BI__builtin_frame_address: {
652    Value *Depth = EmitScalarExpr(E->getArg(0));
653    Depth = Builder.CreateIntCast(Depth, Int32Ty, false, "tmp");
654    Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
655    return RValue::get(Builder.CreateCall(F, Depth));
656  }
657  case Builtin::BI__builtin_extract_return_addr: {
658    Value *Address = EmitScalarExpr(E->getArg(0));
659    Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
660    return RValue::get(Result);
661  }
662  case Builtin::BI__builtin_frob_return_addr: {
663    Value *Address = EmitScalarExpr(E->getArg(0));
664    Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
665    return RValue::get(Result);
666  }
667  case Builtin::BI__builtin_dwarf_sp_column: {
668    const llvm::IntegerType *Ty
669      = cast<llvm::IntegerType>(ConvertType(E->getType()));
670    int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
671    if (Column == -1) {
672      CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
673      return RValue::get(llvm::UndefValue::get(Ty));
674    }
675    return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
676  }
677  case Builtin::BI__builtin_init_dwarf_reg_size_table: {
678    Value *Address = EmitScalarExpr(E->getArg(0));
679    if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
680      CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
681    return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
682  }
683  case Builtin::BI__builtin_eh_return: {
684    Value *Int = EmitScalarExpr(E->getArg(0));
685    Value *Ptr = EmitScalarExpr(E->getArg(1));
686
687    const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
688    assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
689           "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
690    Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
691                                  ? Intrinsic::eh_return_i32
692                                  : Intrinsic::eh_return_i64,
693                                0, 0);
694    Builder.CreateCall2(F, Int, Ptr);
695    Builder.CreateUnreachable();
696
697    // We do need to preserve an insertion point.
698    EmitBlock(createBasicBlock("builtin_eh_return.cont"));
699
700    return RValue::get(0);
701  }
702  case Builtin::BI__builtin_unwind_init: {
703    Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init, 0, 0);
704    return RValue::get(Builder.CreateCall(F));
705  }
706  case Builtin::BI__builtin_extend_pointer: {
707    // Extends a pointer to the size of an _Unwind_Word, which is
708    // uint64_t on all platforms.  Generally this gets poked into a
709    // register and eventually used as an address, so if the
710    // addressing registers are wider than pointers and the platform
711    // doesn't implicitly ignore high-order bits when doing
712    // addressing, we need to make sure we zext / sext based on
713    // the platform's expectations.
714    //
715    // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
716
717    // Cast the pointer to intptr_t.
718    Value *Ptr = EmitScalarExpr(E->getArg(0));
719    Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
720
721    // If that's 64 bits, we're done.
722    if (IntPtrTy->getBitWidth() == 64)
723      return RValue::get(Result);
724
725    // Otherwise, ask the codegen data what to do.
726    if (getTargetHooks().extendPointerWithSExt())
727      return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
728    else
729      return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
730  }
731  case Builtin::BI__builtin_setjmp: {
732    // Buffer is a void**.
733    Value *Buf = EmitScalarExpr(E->getArg(0));
734
735    // Store the frame pointer to the setjmp buffer.
736    Value *FrameAddr =
737      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
738                         ConstantInt::get(Int32Ty, 0));
739    Builder.CreateStore(FrameAddr, Buf);
740
741    // Store the stack pointer to the setjmp buffer.
742    Value *StackAddr =
743      Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
744    Value *StackSaveSlot =
745      Builder.CreateGEP(Buf, ConstantInt::get(Int32Ty, 2));
746    Builder.CreateStore(StackAddr, StackSaveSlot);
747
748    // Call LLVM's EH setjmp, which is lightweight.
749    Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
750    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
751    return RValue::get(Builder.CreateCall(F, Buf));
752  }
753  case Builtin::BI__builtin_longjmp: {
754    Value *Buf = EmitScalarExpr(E->getArg(0));
755    Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
756
757    // Call LLVM's EH longjmp, which is lightweight.
758    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
759
760    // longjmp doesn't return; mark this as unreachable.
761    Builder.CreateUnreachable();
762
763    // We do need to preserve an insertion point.
764    EmitBlock(createBasicBlock("longjmp.cont"));
765
766    return RValue::get(0);
767  }
768  case Builtin::BI__sync_fetch_and_add:
769  case Builtin::BI__sync_fetch_and_sub:
770  case Builtin::BI__sync_fetch_and_or:
771  case Builtin::BI__sync_fetch_and_and:
772  case Builtin::BI__sync_fetch_and_xor:
773  case Builtin::BI__sync_add_and_fetch:
774  case Builtin::BI__sync_sub_and_fetch:
775  case Builtin::BI__sync_and_and_fetch:
776  case Builtin::BI__sync_or_and_fetch:
777  case Builtin::BI__sync_xor_and_fetch:
778  case Builtin::BI__sync_val_compare_and_swap:
779  case Builtin::BI__sync_bool_compare_and_swap:
780  case Builtin::BI__sync_lock_test_and_set:
781  case Builtin::BI__sync_lock_release:
782  case Builtin::BI__sync_swap:
783    assert(0 && "Shouldn't make it through sema");
784  case Builtin::BI__sync_fetch_and_add_1:
785  case Builtin::BI__sync_fetch_and_add_2:
786  case Builtin::BI__sync_fetch_and_add_4:
787  case Builtin::BI__sync_fetch_and_add_8:
788  case Builtin::BI__sync_fetch_and_add_16:
789    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
790  case Builtin::BI__sync_fetch_and_sub_1:
791  case Builtin::BI__sync_fetch_and_sub_2:
792  case Builtin::BI__sync_fetch_and_sub_4:
793  case Builtin::BI__sync_fetch_and_sub_8:
794  case Builtin::BI__sync_fetch_and_sub_16:
795    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
796  case Builtin::BI__sync_fetch_and_or_1:
797  case Builtin::BI__sync_fetch_and_or_2:
798  case Builtin::BI__sync_fetch_and_or_4:
799  case Builtin::BI__sync_fetch_and_or_8:
800  case Builtin::BI__sync_fetch_and_or_16:
801    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
802  case Builtin::BI__sync_fetch_and_and_1:
803  case Builtin::BI__sync_fetch_and_and_2:
804  case Builtin::BI__sync_fetch_and_and_4:
805  case Builtin::BI__sync_fetch_and_and_8:
806  case Builtin::BI__sync_fetch_and_and_16:
807    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
808  case Builtin::BI__sync_fetch_and_xor_1:
809  case Builtin::BI__sync_fetch_and_xor_2:
810  case Builtin::BI__sync_fetch_and_xor_4:
811  case Builtin::BI__sync_fetch_and_xor_8:
812  case Builtin::BI__sync_fetch_and_xor_16:
813    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
814
815  // Clang extensions: not overloaded yet.
816  case Builtin::BI__sync_fetch_and_min:
817    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
818  case Builtin::BI__sync_fetch_and_max:
819    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
820  case Builtin::BI__sync_fetch_and_umin:
821    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
822  case Builtin::BI__sync_fetch_and_umax:
823    return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
824
825  case Builtin::BI__sync_add_and_fetch_1:
826  case Builtin::BI__sync_add_and_fetch_2:
827  case Builtin::BI__sync_add_and_fetch_4:
828  case Builtin::BI__sync_add_and_fetch_8:
829  case Builtin::BI__sync_add_and_fetch_16:
830    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
831                                llvm::Instruction::Add);
832  case Builtin::BI__sync_sub_and_fetch_1:
833  case Builtin::BI__sync_sub_and_fetch_2:
834  case Builtin::BI__sync_sub_and_fetch_4:
835  case Builtin::BI__sync_sub_and_fetch_8:
836  case Builtin::BI__sync_sub_and_fetch_16:
837    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
838                                llvm::Instruction::Sub);
839  case Builtin::BI__sync_and_and_fetch_1:
840  case Builtin::BI__sync_and_and_fetch_2:
841  case Builtin::BI__sync_and_and_fetch_4:
842  case Builtin::BI__sync_and_and_fetch_8:
843  case Builtin::BI__sync_and_and_fetch_16:
844    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
845                                llvm::Instruction::And);
846  case Builtin::BI__sync_or_and_fetch_1:
847  case Builtin::BI__sync_or_and_fetch_2:
848  case Builtin::BI__sync_or_and_fetch_4:
849  case Builtin::BI__sync_or_and_fetch_8:
850  case Builtin::BI__sync_or_and_fetch_16:
851    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
852                                llvm::Instruction::Or);
853  case Builtin::BI__sync_xor_and_fetch_1:
854  case Builtin::BI__sync_xor_and_fetch_2:
855  case Builtin::BI__sync_xor_and_fetch_4:
856  case Builtin::BI__sync_xor_and_fetch_8:
857  case Builtin::BI__sync_xor_and_fetch_16:
858    return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
859                                llvm::Instruction::Xor);
860
861  case Builtin::BI__sync_val_compare_and_swap_1:
862  case Builtin::BI__sync_val_compare_and_swap_2:
863  case Builtin::BI__sync_val_compare_and_swap_4:
864  case Builtin::BI__sync_val_compare_and_swap_8:
865  case Builtin::BI__sync_val_compare_and_swap_16: {
866    QualType T = E->getType();
867    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
868    unsigned AddrSpace =
869      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
870
871    const llvm::IntegerType *IntType =
872      llvm::IntegerType::get(getLLVMContext(),
873                             getContext().getTypeSize(T));
874    const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
875    const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
876    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
877                                    IntrinsicTypes, 2);
878
879    Value *Args[3];
880    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
881    Args[1] = EmitScalarExpr(E->getArg(1));
882    const llvm::Type *ValueType = Args[1]->getType();
883    Args[1] = EmitToInt(*this, Args[1], T, IntType);
884    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
885
886    Value *Result = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
887    Result = EmitFromInt(*this, Result, T, ValueType);
888    return RValue::get(Result);
889  }
890
891  case Builtin::BI__sync_bool_compare_and_swap_1:
892  case Builtin::BI__sync_bool_compare_and_swap_2:
893  case Builtin::BI__sync_bool_compare_and_swap_4:
894  case Builtin::BI__sync_bool_compare_and_swap_8:
895  case Builtin::BI__sync_bool_compare_and_swap_16: {
896    QualType T = E->getArg(1)->getType();
897    llvm::Value *DestPtr = EmitScalarExpr(E->getArg(0));
898    unsigned AddrSpace =
899      cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
900
901    const llvm::IntegerType *IntType =
902      llvm::IntegerType::get(getLLVMContext(),
903                             getContext().getTypeSize(T));
904    const llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
905    const llvm::Type *IntrinsicTypes[2] = { IntType, IntPtrType };
906    Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap,
907                                    IntrinsicTypes, 2);
908
909    Value *Args[3];
910    Args[0] = Builder.CreateBitCast(DestPtr, IntPtrType);
911    Args[1] = EmitToInt(*this, EmitScalarExpr(E->getArg(1)), T, IntType);
912    Args[2] = EmitToInt(*this, EmitScalarExpr(E->getArg(2)), T, IntType);
913
914    Value *OldVal = Args[1];
915    Value *PrevVal = EmitCallWithBarrier(*this, AtomF, Args, Args + 3);
916    Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
917    // zext bool to int.
918    Result = Builder.CreateZExt(Result, ConvertType(E->getType()));
919    return RValue::get(Result);
920  }
921
922  case Builtin::BI__sync_swap_1:
923  case Builtin::BI__sync_swap_2:
924  case Builtin::BI__sync_swap_4:
925  case Builtin::BI__sync_swap_8:
926  case Builtin::BI__sync_swap_16:
927    return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
928
929  case Builtin::BI__sync_lock_test_and_set_1:
930  case Builtin::BI__sync_lock_test_and_set_2:
931  case Builtin::BI__sync_lock_test_and_set_4:
932  case Builtin::BI__sync_lock_test_and_set_8:
933  case Builtin::BI__sync_lock_test_and_set_16:
934    return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
935
936  case Builtin::BI__sync_lock_release_1:
937  case Builtin::BI__sync_lock_release_2:
938  case Builtin::BI__sync_lock_release_4:
939  case Builtin::BI__sync_lock_release_8:
940  case Builtin::BI__sync_lock_release_16: {
941    Value *Ptr = EmitScalarExpr(E->getArg(0));
942    const llvm::Type *ElTy =
943      cast<llvm::PointerType>(Ptr->getType())->getElementType();
944    llvm::StoreInst *Store =
945      Builder.CreateStore(llvm::Constant::getNullValue(ElTy), Ptr);
946    Store->setVolatile(true);
947    return RValue::get(0);
948  }
949
950  case Builtin::BI__sync_synchronize: {
951    // We assume like gcc appears to, that this only applies to cached memory.
952    EmitMemoryBarrier(*this, true, true, true, true, false);
953    return RValue::get(0);
954  }
955
956  case Builtin::BI__builtin_llvm_memory_barrier: {
957    Value *C[5] = {
958      EmitScalarExpr(E->getArg(0)),
959      EmitScalarExpr(E->getArg(1)),
960      EmitScalarExpr(E->getArg(2)),
961      EmitScalarExpr(E->getArg(3)),
962      EmitScalarExpr(E->getArg(4))
963    };
964    Builder.CreateCall(CGM.getIntrinsic(Intrinsic::memory_barrier), C, C + 5);
965    return RValue::get(0);
966  }
967
968    // Library functions with special handling.
969  case Builtin::BIsqrt:
970  case Builtin::BIsqrtf:
971  case Builtin::BIsqrtl: {
972    // TODO: there is currently no set of optimizer flags
973    // sufficient for us to rewrite sqrt to @llvm.sqrt.
974    // -fmath-errno=0 is not good enough; we need finiteness.
975    // We could probably precondition the call with an ult
976    // against 0, but is that worth the complexity?
977    break;
978  }
979
980  case Builtin::BIpow:
981  case Builtin::BIpowf:
982  case Builtin::BIpowl: {
983    // Rewrite sqrt to intrinsic if allowed.
984    if (!FD->hasAttr<ConstAttr>())
985      break;
986    Value *Base = EmitScalarExpr(E->getArg(0));
987    Value *Exponent = EmitScalarExpr(E->getArg(1));
988    const llvm::Type *ArgType = Base->getType();
989    Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
990    return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
991  }
992
993  case Builtin::BI__builtin_signbit:
994  case Builtin::BI__builtin_signbitf:
995  case Builtin::BI__builtin_signbitl: {
996    LLVMContext &C = CGM.getLLVMContext();
997
998    Value *Arg = EmitScalarExpr(E->getArg(0));
999    const llvm::Type *ArgTy = Arg->getType();
1000    if (ArgTy->isPPC_FP128Ty())
1001      break; // FIXME: I'm not sure what the right implementation is here.
1002    int ArgWidth = ArgTy->getPrimitiveSizeInBits();
1003    const llvm::Type *ArgIntTy = llvm::IntegerType::get(C, ArgWidth);
1004    Value *BCArg = Builder.CreateBitCast(Arg, ArgIntTy);
1005    Value *ZeroCmp = llvm::Constant::getNullValue(ArgIntTy);
1006    Value *Result = Builder.CreateICmpSLT(BCArg, ZeroCmp);
1007    return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
1008  }
1009  }
1010
1011  // If this is an alias for a libm function (e.g. __builtin_sin) turn it into
1012  // that function.
1013  if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
1014      getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1015    return EmitCall(E->getCallee()->getType(),
1016                    CGM.getBuiltinLibFunction(FD, BuiltinID),
1017                    ReturnValueSlot(), E->arg_begin(), E->arg_end(), FD);
1018
1019  // See if we have a target specific intrinsic.
1020  const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
1021  Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1022  if (const char *Prefix =
1023      llvm::Triple::getArchTypePrefix(Target.getTriple().getArch()))
1024    IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1025
1026  if (IntrinsicID != Intrinsic::not_intrinsic) {
1027    SmallVector<Value*, 16> Args;
1028
1029    // Find out if any arguments are required to be integer constant
1030    // expressions.
1031    unsigned ICEArguments = 0;
1032    ASTContext::GetBuiltinTypeError Error;
1033    getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1034    assert(Error == ASTContext::GE_None && "Should not codegen an error");
1035
1036    Function *F = CGM.getIntrinsic(IntrinsicID);
1037    const llvm::FunctionType *FTy = F->getFunctionType();
1038
1039    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
1040      Value *ArgValue;
1041      // If this is a normal argument, just emit it as a scalar.
1042      if ((ICEArguments & (1 << i)) == 0) {
1043        ArgValue = EmitScalarExpr(E->getArg(i));
1044      } else {
1045        // If this is required to be a constant, constant fold it so that we
1046        // know that the generated intrinsic gets a ConstantInt.
1047        llvm::APSInt Result;
1048        bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
1049        assert(IsConst && "Constant arg isn't actually constant?");
1050        (void)IsConst;
1051        ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
1052      }
1053
1054      // If the intrinsic arg type is different from the builtin arg type
1055      // we need to do a bit cast.
1056      const llvm::Type *PTy = FTy->getParamType(i);
1057      if (PTy != ArgValue->getType()) {
1058        assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
1059               "Must be able to losslessly bit cast to param");
1060        ArgValue = Builder.CreateBitCast(ArgValue, PTy);
1061      }
1062
1063      Args.push_back(ArgValue);
1064    }
1065
1066    Value *V = Builder.CreateCall(F, Args.data(), Args.data() + Args.size());
1067    QualType BuiltinRetType = E->getType();
1068
1069    const llvm::Type *RetTy = llvm::Type::getVoidTy(getLLVMContext());
1070    if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
1071
1072    if (RetTy != V->getType()) {
1073      assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
1074             "Must be able to losslessly bit cast result type");
1075      V = Builder.CreateBitCast(V, RetTy);
1076    }
1077
1078    return RValue::get(V);
1079  }
1080
1081  // See if we have a target specific builtin that needs to be lowered.
1082  if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
1083    return RValue::get(V);
1084
1085  ErrorUnsupported(E, "builtin function");
1086
1087  // Unknown builtin, for now just dump it out and return undef.
1088  if (hasAggregateLLVMType(E->getType()))
1089    return RValue::getAggregate(CreateMemTemp(E->getType()));
1090  return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1091}
1092
1093Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
1094                                              const CallExpr *E) {
1095  switch (Target.getTriple().getArch()) {
1096  case llvm::Triple::arm:
1097  case llvm::Triple::thumb:
1098    return EmitARMBuiltinExpr(BuiltinID, E);
1099  case llvm::Triple::x86:
1100  case llvm::Triple::x86_64:
1101    return EmitX86BuiltinExpr(BuiltinID, E);
1102  case llvm::Triple::ppc:
1103  case llvm::Triple::ppc64:
1104    return EmitPPCBuiltinExpr(BuiltinID, E);
1105  default:
1106    return 0;
1107  }
1108}
1109
1110static const llvm::VectorType *GetNeonType(LLVMContext &C, unsigned type,
1111                                           bool q) {
1112  switch (type) {
1113    default: break;
1114    case 0:
1115    case 5: return llvm::VectorType::get(llvm::Type::getInt8Ty(C), 8 << (int)q);
1116    case 6:
1117    case 7:
1118    case 1: return llvm::VectorType::get(llvm::Type::getInt16Ty(C),4 << (int)q);
1119    case 2: return llvm::VectorType::get(llvm::Type::getInt32Ty(C),2 << (int)q);
1120    case 3: return llvm::VectorType::get(llvm::Type::getInt64Ty(C),1 << (int)q);
1121    case 4: return llvm::VectorType::get(llvm::Type::getFloatTy(C),2 << (int)q);
1122  };
1123  return 0;
1124}
1125
1126Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
1127  unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
1128  SmallVector<Constant*, 16> Indices(nElts, C);
1129  Value* SV = llvm::ConstantVector::get(Indices);
1130  return Builder.CreateShuffleVector(V, V, SV, "lane");
1131}
1132
1133Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
1134                                     const char *name,
1135                                     unsigned shift, bool rightshift) {
1136  unsigned j = 0;
1137  for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
1138       ai != ae; ++ai, ++j)
1139    if (shift > 0 && shift == j)
1140      Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
1141    else
1142      Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
1143
1144  return Builder.CreateCall(F, Ops.begin(), Ops.end(), name);
1145}
1146
1147Value *CodeGenFunction::EmitNeonShiftVector(Value *V, const llvm::Type *Ty,
1148                                            bool neg) {
1149  ConstantInt *CI = cast<ConstantInt>(V);
1150  int SV = CI->getSExtValue();
1151
1152  const llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
1153  llvm::Constant *C = ConstantInt::get(VTy->getElementType(), neg ? -SV : SV);
1154  SmallVector<llvm::Constant*, 16> CV(VTy->getNumElements(), C);
1155  return llvm::ConstantVector::get(CV);
1156}
1157
1158/// GetPointeeAlignment - Given an expression with a pointer type, find the
1159/// alignment of the type referenced by the pointer.  Skip over implicit
1160/// casts.
1161static Value *GetPointeeAlignment(CodeGenFunction &CGF, const Expr *Addr) {
1162  unsigned Align = 1;
1163  // Check if the type is a pointer.  The implicit cast operand might not be.
1164  while (Addr->getType()->isPointerType()) {
1165    QualType PtTy = Addr->getType()->getPointeeType();
1166    unsigned NewA = CGF.getContext().getTypeAlignInChars(PtTy).getQuantity();
1167    if (NewA > Align)
1168      Align = NewA;
1169
1170    // If the address is an implicit cast, repeat with the cast operand.
1171    if (const ImplicitCastExpr *CastAddr = dyn_cast<ImplicitCastExpr>(Addr)) {
1172      Addr = CastAddr->getSubExpr();
1173      continue;
1174    }
1175    break;
1176  }
1177  return llvm::ConstantInt::get(CGF.Int32Ty, Align);
1178}
1179
1180Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
1181                                           const CallExpr *E) {
1182  if (BuiltinID == ARM::BI__clear_cache) {
1183    const FunctionDecl *FD = E->getDirectCallee();
1184    // Oddly people write this call without args on occasion and gcc accepts
1185    // it - it's also marked as varargs in the description file.
1186    llvm::SmallVector<Value*, 2> Ops;
1187    for (unsigned i = 0; i < E->getNumArgs(); i++)
1188      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1189    const llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
1190    const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
1191    llvm::StringRef Name = FD->getName();
1192    return Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
1193                              Ops.begin(), Ops.end());
1194  }
1195
1196  llvm::SmallVector<Value*, 4> Ops;
1197  for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++)
1198    Ops.push_back(EmitScalarExpr(E->getArg(i)));
1199
1200  llvm::APSInt Result;
1201  const Expr *Arg = E->getArg(E->getNumArgs()-1);
1202  if (!Arg->isIntegerConstantExpr(Result, getContext()))
1203    return 0;
1204
1205  if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
1206      BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
1207    // Determine the overloaded type of this builtin.
1208    const llvm::Type *Ty;
1209    if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
1210      Ty = llvm::Type::getFloatTy(getLLVMContext());
1211    else
1212      Ty = llvm::Type::getDoubleTy(getLLVMContext());
1213
1214    // Determine whether this is an unsigned conversion or not.
1215    bool usgn = Result.getZExtValue() == 1;
1216    unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
1217
1218    // Call the appropriate intrinsic.
1219    Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1220    return Builder.CreateCall(F, Ops.begin(), Ops.end(), "vcvtr");
1221  }
1222
1223  // Determine the type of this overloaded NEON intrinsic.
1224  unsigned type = Result.getZExtValue();
1225  bool usgn = type & 0x08;
1226  bool quad = type & 0x10;
1227  bool poly = (type & 0x7) == 5 || (type & 0x7) == 6;
1228  (void)poly;  // Only used in assert()s.
1229  bool rightShift = false;
1230
1231  const llvm::VectorType *VTy = GetNeonType(getLLVMContext(), type & 0x7, quad);
1232  const llvm::Type *Ty = VTy;
1233  if (!Ty)
1234    return 0;
1235
1236  unsigned Int;
1237  switch (BuiltinID) {
1238  default: return 0;
1239  case ARM::BI__builtin_neon_vabd_v:
1240  case ARM::BI__builtin_neon_vabdq_v:
1241    Int = usgn ? Intrinsic::arm_neon_vabdu : Intrinsic::arm_neon_vabds;
1242    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vabd");
1243  case ARM::BI__builtin_neon_vabs_v:
1244  case ARM::BI__builtin_neon_vabsq_v:
1245    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vabs, &Ty, 1),
1246                        Ops, "vabs");
1247  case ARM::BI__builtin_neon_vaddhn_v:
1248    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vaddhn, &Ty, 1),
1249                        Ops, "vaddhn");
1250  case ARM::BI__builtin_neon_vcale_v:
1251    std::swap(Ops[0], Ops[1]);
1252  case ARM::BI__builtin_neon_vcage_v: {
1253    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacged);
1254    return EmitNeonCall(F, Ops, "vcage");
1255  }
1256  case ARM::BI__builtin_neon_vcaleq_v:
1257    std::swap(Ops[0], Ops[1]);
1258  case ARM::BI__builtin_neon_vcageq_v: {
1259    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgeq);
1260    return EmitNeonCall(F, Ops, "vcage");
1261  }
1262  case ARM::BI__builtin_neon_vcalt_v:
1263    std::swap(Ops[0], Ops[1]);
1264  case ARM::BI__builtin_neon_vcagt_v: {
1265    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtd);
1266    return EmitNeonCall(F, Ops, "vcagt");
1267  }
1268  case ARM::BI__builtin_neon_vcaltq_v:
1269    std::swap(Ops[0], Ops[1]);
1270  case ARM::BI__builtin_neon_vcagtq_v: {
1271    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vacgtq);
1272    return EmitNeonCall(F, Ops, "vcagt");
1273  }
1274  case ARM::BI__builtin_neon_vcls_v:
1275  case ARM::BI__builtin_neon_vclsq_v: {
1276    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcls, &Ty, 1);
1277    return EmitNeonCall(F, Ops, "vcls");
1278  }
1279  case ARM::BI__builtin_neon_vclz_v:
1280  case ARM::BI__builtin_neon_vclzq_v: {
1281    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vclz, &Ty, 1);
1282    return EmitNeonCall(F, Ops, "vclz");
1283  }
1284  case ARM::BI__builtin_neon_vcnt_v:
1285  case ARM::BI__builtin_neon_vcntq_v: {
1286    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcnt, &Ty, 1);
1287    return EmitNeonCall(F, Ops, "vcnt");
1288  }
1289  case ARM::BI__builtin_neon_vcvt_f16_v: {
1290    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f16_v builtin");
1291    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvtfp2hf);
1292    return EmitNeonCall(F, Ops, "vcvt");
1293  }
1294  case ARM::BI__builtin_neon_vcvt_f32_f16: {
1295    assert((type & 0x7) == 7 && !quad && "unexpected vcvt_f32_f16 builtin");
1296    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vcvthf2fp);
1297    return EmitNeonCall(F, Ops, "vcvt");
1298  }
1299  case ARM::BI__builtin_neon_vcvt_f32_v:
1300  case ARM::BI__builtin_neon_vcvtq_f32_v: {
1301    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1302    Ty = GetNeonType(getLLVMContext(), 4, quad);
1303    return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
1304                : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
1305  }
1306  case ARM::BI__builtin_neon_vcvt_s32_v:
1307  case ARM::BI__builtin_neon_vcvt_u32_v:
1308  case ARM::BI__builtin_neon_vcvtq_s32_v:
1309  case ARM::BI__builtin_neon_vcvtq_u32_v: {
1310    Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(getLLVMContext(), 4, quad));
1311    return usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
1312                : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
1313  }
1314  case ARM::BI__builtin_neon_vcvt_n_f32_v:
1315  case ARM::BI__builtin_neon_vcvtq_n_f32_v: {
1316    const llvm::Type *Tys[2] = { GetNeonType(getLLVMContext(), 4, quad), Ty };
1317    Int = usgn ? Intrinsic::arm_neon_vcvtfxu2fp : Intrinsic::arm_neon_vcvtfxs2fp;
1318    Function *F = CGM.getIntrinsic(Int, Tys, 2);
1319    return EmitNeonCall(F, Ops, "vcvt_n");
1320  }
1321  case ARM::BI__builtin_neon_vcvt_n_s32_v:
1322  case ARM::BI__builtin_neon_vcvt_n_u32_v:
1323  case ARM::BI__builtin_neon_vcvtq_n_s32_v:
1324  case ARM::BI__builtin_neon_vcvtq_n_u32_v: {
1325    const llvm::Type *Tys[2] = { Ty, GetNeonType(getLLVMContext(), 4, quad) };
1326    Int = usgn ? Intrinsic::arm_neon_vcvtfp2fxu : Intrinsic::arm_neon_vcvtfp2fxs;
1327    Function *F = CGM.getIntrinsic(Int, Tys, 2);
1328    return EmitNeonCall(F, Ops, "vcvt_n");
1329  }
1330  case ARM::BI__builtin_neon_vext_v:
1331  case ARM::BI__builtin_neon_vextq_v: {
1332    int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
1333    SmallVector<Constant*, 16> Indices;
1334    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1335      Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
1336
1337    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1338    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1339    Value *SV = llvm::ConstantVector::get(Indices);
1340    return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
1341  }
1342  case ARM::BI__builtin_neon_vget_lane_i8:
1343  case ARM::BI__builtin_neon_vget_lane_i16:
1344  case ARM::BI__builtin_neon_vget_lane_i32:
1345  case ARM::BI__builtin_neon_vget_lane_i64:
1346  case ARM::BI__builtin_neon_vget_lane_f32:
1347  case ARM::BI__builtin_neon_vgetq_lane_i8:
1348  case ARM::BI__builtin_neon_vgetq_lane_i16:
1349  case ARM::BI__builtin_neon_vgetq_lane_i32:
1350  case ARM::BI__builtin_neon_vgetq_lane_i64:
1351  case ARM::BI__builtin_neon_vgetq_lane_f32:
1352    return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
1353                                        "vget_lane");
1354  case ARM::BI__builtin_neon_vhadd_v:
1355  case ARM::BI__builtin_neon_vhaddq_v:
1356    Int = usgn ? Intrinsic::arm_neon_vhaddu : Intrinsic::arm_neon_vhadds;
1357    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhadd");
1358  case ARM::BI__builtin_neon_vhsub_v:
1359  case ARM::BI__builtin_neon_vhsubq_v:
1360    Int = usgn ? Intrinsic::arm_neon_vhsubu : Intrinsic::arm_neon_vhsubs;
1361    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vhsub");
1362  case ARM::BI__builtin_neon_vld1_v:
1363  case ARM::BI__builtin_neon_vld1q_v:
1364    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1365    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vld1, &Ty, 1),
1366                        Ops, "vld1");
1367  case ARM::BI__builtin_neon_vld1_lane_v:
1368  case ARM::BI__builtin_neon_vld1q_lane_v:
1369    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1370    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1371    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1372    Ops[0] = Builder.CreateLoad(Ops[0]);
1373    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
1374  case ARM::BI__builtin_neon_vld1_dup_v:
1375  case ARM::BI__builtin_neon_vld1q_dup_v: {
1376    Value *V = UndefValue::get(Ty);
1377    Ty = llvm::PointerType::getUnqual(VTy->getElementType());
1378    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1379    Ops[0] = Builder.CreateLoad(Ops[0]);
1380    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1381    Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
1382    return EmitNeonSplat(Ops[0], CI);
1383  }
1384  case ARM::BI__builtin_neon_vld2_v:
1385  case ARM::BI__builtin_neon_vld2q_v: {
1386    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2, &Ty, 1);
1387    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1388    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld2");
1389    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1390    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1391    return Builder.CreateStore(Ops[1], Ops[0]);
1392  }
1393  case ARM::BI__builtin_neon_vld3_v:
1394  case ARM::BI__builtin_neon_vld3q_v: {
1395    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3, &Ty, 1);
1396    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1397    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld3");
1398    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1399    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1400    return Builder.CreateStore(Ops[1], Ops[0]);
1401  }
1402  case ARM::BI__builtin_neon_vld4_v:
1403  case ARM::BI__builtin_neon_vld4q_v: {
1404    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4, &Ty, 1);
1405    Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1406    Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld4");
1407    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1408    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1409    return Builder.CreateStore(Ops[1], Ops[0]);
1410  }
1411  case ARM::BI__builtin_neon_vld2_lane_v:
1412  case ARM::BI__builtin_neon_vld2q_lane_v: {
1413    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld2lane, &Ty, 1);
1414    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1415    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1416    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1417    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld2_lane");
1418    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1419    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1420    return Builder.CreateStore(Ops[1], Ops[0]);
1421  }
1422  case ARM::BI__builtin_neon_vld3_lane_v:
1423  case ARM::BI__builtin_neon_vld3q_lane_v: {
1424    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld3lane, &Ty, 1);
1425    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1426    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1427    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1428    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1429    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1430    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1431    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1432    return Builder.CreateStore(Ops[1], Ops[0]);
1433  }
1434  case ARM::BI__builtin_neon_vld4_lane_v:
1435  case ARM::BI__builtin_neon_vld4q_lane_v: {
1436    Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld4lane, &Ty, 1);
1437    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1438    Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
1439    Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
1440    Ops[5] = Builder.CreateBitCast(Ops[5], Ty);
1441    Ops.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1442    Ops[1] = Builder.CreateCall(F, Ops.begin() + 1, Ops.end(), "vld3_lane");
1443    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1444    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1445    return Builder.CreateStore(Ops[1], Ops[0]);
1446  }
1447  case ARM::BI__builtin_neon_vld2_dup_v:
1448  case ARM::BI__builtin_neon_vld3_dup_v:
1449  case ARM::BI__builtin_neon_vld4_dup_v: {
1450    // Handle 64-bit elements as a special-case.  There is no "dup" needed.
1451    if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
1452      switch (BuiltinID) {
1453      case ARM::BI__builtin_neon_vld2_dup_v:
1454        Int = Intrinsic::arm_neon_vld2;
1455        break;
1456      case ARM::BI__builtin_neon_vld3_dup_v:
1457        Int = Intrinsic::arm_neon_vld2;
1458        break;
1459      case ARM::BI__builtin_neon_vld4_dup_v:
1460        Int = Intrinsic::arm_neon_vld2;
1461        break;
1462      default: assert(0 && "unknown vld_dup intrinsic?");
1463      }
1464      Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1465      Value *Align = GetPointeeAlignment(*this, E->getArg(1));
1466      Ops[1] = Builder.CreateCall2(F, Ops[1], Align, "vld_dup");
1467      Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1468      Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1469      return Builder.CreateStore(Ops[1], Ops[0]);
1470    }
1471    switch (BuiltinID) {
1472    case ARM::BI__builtin_neon_vld2_dup_v:
1473      Int = Intrinsic::arm_neon_vld2lane;
1474      break;
1475    case ARM::BI__builtin_neon_vld3_dup_v:
1476      Int = Intrinsic::arm_neon_vld2lane;
1477      break;
1478    case ARM::BI__builtin_neon_vld4_dup_v:
1479      Int = Intrinsic::arm_neon_vld2lane;
1480      break;
1481    default: assert(0 && "unknown vld_dup intrinsic?");
1482    }
1483    Function *F = CGM.getIntrinsic(Int, &Ty, 1);
1484    const llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
1485
1486    SmallVector<Value*, 6> Args;
1487    Args.push_back(Ops[1]);
1488    Args.append(STy->getNumElements(), UndefValue::get(Ty));
1489
1490    llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
1491    Args.push_back(CI);
1492    Args.push_back(GetPointeeAlignment(*this, E->getArg(1)));
1493
1494    Ops[1] = Builder.CreateCall(F, Args.begin(), Args.end(), "vld_dup");
1495    // splat lane 0 to all elts in each vector of the result.
1496    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1497      Value *Val = Builder.CreateExtractValue(Ops[1], i);
1498      Value *Elt = Builder.CreateBitCast(Val, Ty);
1499      Elt = EmitNeonSplat(Elt, CI);
1500      Elt = Builder.CreateBitCast(Elt, Val->getType());
1501      Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
1502    }
1503    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1504    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1505    return Builder.CreateStore(Ops[1], Ops[0]);
1506  }
1507  case ARM::BI__builtin_neon_vmax_v:
1508  case ARM::BI__builtin_neon_vmaxq_v:
1509    Int = usgn ? Intrinsic::arm_neon_vmaxu : Intrinsic::arm_neon_vmaxs;
1510    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmax");
1511  case ARM::BI__builtin_neon_vmin_v:
1512  case ARM::BI__builtin_neon_vminq_v:
1513    Int = usgn ? Intrinsic::arm_neon_vminu : Intrinsic::arm_neon_vmins;
1514    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmin");
1515  case ARM::BI__builtin_neon_vmovl_v: {
1516    const llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
1517    Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
1518    if (usgn)
1519      return Builder.CreateZExt(Ops[0], Ty, "vmovl");
1520    return Builder.CreateSExt(Ops[0], Ty, "vmovl");
1521  }
1522  case ARM::BI__builtin_neon_vmovn_v: {
1523    const llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
1524    Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
1525    return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
1526  }
1527  case ARM::BI__builtin_neon_vmul_v:
1528  case ARM::BI__builtin_neon_vmulq_v:
1529    assert(poly && "vmul builtin only supported for polynomial types");
1530    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vmulp, &Ty, 1),
1531                        Ops, "vmul");
1532  case ARM::BI__builtin_neon_vmull_v:
1533    Int = usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
1534    Int = poly ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
1535    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vmull");
1536  case ARM::BI__builtin_neon_vpadal_v:
1537  case ARM::BI__builtin_neon_vpadalq_v: {
1538    Int = usgn ? Intrinsic::arm_neon_vpadalu : Intrinsic::arm_neon_vpadals;
1539    // The source operand type has twice as many elements of half the size.
1540    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1541    const llvm::Type *EltTy =
1542      llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1543    const llvm::Type *NarrowTy =
1544      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1545    const llvm::Type *Tys[2] = { Ty, NarrowTy };
1546    return EmitNeonCall(CGM.getIntrinsic(Int, Tys, 2), Ops, "vpadal");
1547  }
1548  case ARM::BI__builtin_neon_vpadd_v:
1549    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vpadd, &Ty, 1),
1550                        Ops, "vpadd");
1551  case ARM::BI__builtin_neon_vpaddl_v:
1552  case ARM::BI__builtin_neon_vpaddlq_v: {
1553    Int = usgn ? Intrinsic::arm_neon_vpaddlu : Intrinsic::arm_neon_vpaddls;
1554    // The source operand type has twice as many elements of half the size.
1555    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
1556    const llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
1557    const llvm::Type *NarrowTy =
1558      llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
1559    const llvm::Type *Tys[2] = { Ty, NarrowTy };
1560    return EmitNeonCall(CGM.getIntrinsic(Int, Tys, 2), Ops, "vpaddl");
1561  }
1562  case ARM::BI__builtin_neon_vpmax_v:
1563    Int = usgn ? Intrinsic::arm_neon_vpmaxu : Intrinsic::arm_neon_vpmaxs;
1564    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmax");
1565  case ARM::BI__builtin_neon_vpmin_v:
1566    Int = usgn ? Intrinsic::arm_neon_vpminu : Intrinsic::arm_neon_vpmins;
1567    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vpmin");
1568  case ARM::BI__builtin_neon_vqabs_v:
1569  case ARM::BI__builtin_neon_vqabsq_v:
1570    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqabs, &Ty, 1),
1571                        Ops, "vqabs");
1572  case ARM::BI__builtin_neon_vqadd_v:
1573  case ARM::BI__builtin_neon_vqaddq_v:
1574    Int = usgn ? Intrinsic::arm_neon_vqaddu : Intrinsic::arm_neon_vqadds;
1575    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqadd");
1576  case ARM::BI__builtin_neon_vqdmlal_v:
1577    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlal, &Ty, 1),
1578                        Ops, "vqdmlal");
1579  case ARM::BI__builtin_neon_vqdmlsl_v:
1580    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmlsl, &Ty, 1),
1581                        Ops, "vqdmlsl");
1582  case ARM::BI__builtin_neon_vqdmulh_v:
1583  case ARM::BI__builtin_neon_vqdmulhq_v:
1584    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmulh, &Ty, 1),
1585                        Ops, "vqdmulh");
1586  case ARM::BI__builtin_neon_vqdmull_v:
1587    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqdmull, &Ty, 1),
1588                        Ops, "vqdmull");
1589  case ARM::BI__builtin_neon_vqmovn_v:
1590    Int = usgn ? Intrinsic::arm_neon_vqmovnu : Intrinsic::arm_neon_vqmovns;
1591    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqmovn");
1592  case ARM::BI__builtin_neon_vqmovun_v:
1593    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqmovnsu, &Ty, 1),
1594                        Ops, "vqdmull");
1595  case ARM::BI__builtin_neon_vqneg_v:
1596  case ARM::BI__builtin_neon_vqnegq_v:
1597    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqneg, &Ty, 1),
1598                        Ops, "vqneg");
1599  case ARM::BI__builtin_neon_vqrdmulh_v:
1600  case ARM::BI__builtin_neon_vqrdmulhq_v:
1601    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrdmulh, &Ty, 1),
1602                        Ops, "vqrdmulh");
1603  case ARM::BI__builtin_neon_vqrshl_v:
1604  case ARM::BI__builtin_neon_vqrshlq_v:
1605    Int = usgn ? Intrinsic::arm_neon_vqrshiftu : Intrinsic::arm_neon_vqrshifts;
1606    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshl");
1607  case ARM::BI__builtin_neon_vqrshrn_n_v:
1608    Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
1609    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqrshrn_n",
1610                        1, true);
1611  case ARM::BI__builtin_neon_vqrshrun_n_v:
1612    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, &Ty, 1),
1613                        Ops, "vqrshrun_n", 1, true);
1614  case ARM::BI__builtin_neon_vqshl_v:
1615  case ARM::BI__builtin_neon_vqshlq_v:
1616    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1617    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl");
1618  case ARM::BI__builtin_neon_vqshl_n_v:
1619  case ARM::BI__builtin_neon_vqshlq_n_v:
1620    Int = usgn ? Intrinsic::arm_neon_vqshiftu : Intrinsic::arm_neon_vqshifts;
1621    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshl_n",
1622                        1, false);
1623  case ARM::BI__builtin_neon_vqshlu_n_v:
1624  case ARM::BI__builtin_neon_vqshluq_n_v:
1625    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftsu, &Ty, 1),
1626                        Ops, "vqshlu", 1, false);
1627  case ARM::BI__builtin_neon_vqshrn_n_v:
1628    Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
1629    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqshrn_n",
1630                        1, true);
1631  case ARM::BI__builtin_neon_vqshrun_n_v:
1632    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, &Ty, 1),
1633                        Ops, "vqshrun_n", 1, true);
1634  case ARM::BI__builtin_neon_vqsub_v:
1635  case ARM::BI__builtin_neon_vqsubq_v:
1636    Int = usgn ? Intrinsic::arm_neon_vqsubu : Intrinsic::arm_neon_vqsubs;
1637    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vqsub");
1638  case ARM::BI__builtin_neon_vraddhn_v:
1639    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vraddhn, &Ty, 1),
1640                        Ops, "vraddhn");
1641  case ARM::BI__builtin_neon_vrecpe_v:
1642  case ARM::BI__builtin_neon_vrecpeq_v:
1643    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, &Ty, 1),
1644                        Ops, "vrecpe");
1645  case ARM::BI__builtin_neon_vrecps_v:
1646  case ARM::BI__builtin_neon_vrecpsq_v:
1647    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecps, &Ty, 1),
1648                        Ops, "vrecps");
1649  case ARM::BI__builtin_neon_vrhadd_v:
1650  case ARM::BI__builtin_neon_vrhaddq_v:
1651    Int = usgn ? Intrinsic::arm_neon_vrhaddu : Intrinsic::arm_neon_vrhadds;
1652    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrhadd");
1653  case ARM::BI__builtin_neon_vrshl_v:
1654  case ARM::BI__builtin_neon_vrshlq_v:
1655    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1656    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshl");
1657  case ARM::BI__builtin_neon_vrshrn_n_v:
1658    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, &Ty, 1),
1659                        Ops, "vrshrn_n", 1, true);
1660  case ARM::BI__builtin_neon_vrshr_n_v:
1661  case ARM::BI__builtin_neon_vrshrq_n_v:
1662    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1663    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vrshr_n", 1, true);
1664  case ARM::BI__builtin_neon_vrsqrte_v:
1665  case ARM::BI__builtin_neon_vrsqrteq_v:
1666    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrte, &Ty, 1),
1667                        Ops, "vrsqrte");
1668  case ARM::BI__builtin_neon_vrsqrts_v:
1669  case ARM::BI__builtin_neon_vrsqrtsq_v:
1670    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsqrts, &Ty, 1),
1671                        Ops, "vrsqrts");
1672  case ARM::BI__builtin_neon_vrsra_n_v:
1673  case ARM::BI__builtin_neon_vrsraq_n_v:
1674    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1675    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1676    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
1677    Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
1678    Ops[1] = Builder.CreateCall2(CGM.getIntrinsic(Int, &Ty, 1), Ops[1], Ops[2]);
1679    return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
1680  case ARM::BI__builtin_neon_vrsubhn_v:
1681    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrsubhn, &Ty, 1),
1682                        Ops, "vrsubhn");
1683  case ARM::BI__builtin_neon_vset_lane_i8:
1684  case ARM::BI__builtin_neon_vset_lane_i16:
1685  case ARM::BI__builtin_neon_vset_lane_i32:
1686  case ARM::BI__builtin_neon_vset_lane_i64:
1687  case ARM::BI__builtin_neon_vset_lane_f32:
1688  case ARM::BI__builtin_neon_vsetq_lane_i8:
1689  case ARM::BI__builtin_neon_vsetq_lane_i16:
1690  case ARM::BI__builtin_neon_vsetq_lane_i32:
1691  case ARM::BI__builtin_neon_vsetq_lane_i64:
1692  case ARM::BI__builtin_neon_vsetq_lane_f32:
1693    Ops.push_back(EmitScalarExpr(E->getArg(2)));
1694    return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
1695  case ARM::BI__builtin_neon_vshl_v:
1696  case ARM::BI__builtin_neon_vshlq_v:
1697    Int = usgn ? Intrinsic::arm_neon_vshiftu : Intrinsic::arm_neon_vshifts;
1698    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshl");
1699  case ARM::BI__builtin_neon_vshll_n_v:
1700    Int = usgn ? Intrinsic::arm_neon_vshiftlu : Intrinsic::arm_neon_vshiftls;
1701    return EmitNeonCall(CGM.getIntrinsic(Int, &Ty, 1), Ops, "vshll", 1);
1702  case ARM::BI__builtin_neon_vshl_n_v:
1703  case ARM::BI__builtin_neon_vshlq_n_v:
1704    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1705    return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n");
1706  case ARM::BI__builtin_neon_vshrn_n_v:
1707    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftn, &Ty, 1),
1708                        Ops, "vshrn_n", 1, true);
1709  case ARM::BI__builtin_neon_vshr_n_v:
1710  case ARM::BI__builtin_neon_vshrq_n_v:
1711    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1712    Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
1713    if (usgn)
1714      return Builder.CreateLShr(Ops[0], Ops[1], "vshr_n");
1715    else
1716      return Builder.CreateAShr(Ops[0], Ops[1], "vshr_n");
1717  case ARM::BI__builtin_neon_vsri_n_v:
1718  case ARM::BI__builtin_neon_vsriq_n_v:
1719    rightShift = true;
1720  case ARM::BI__builtin_neon_vsli_n_v:
1721  case ARM::BI__builtin_neon_vsliq_n_v:
1722    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
1723    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, &Ty, 1),
1724                        Ops, "vsli_n");
1725  case ARM::BI__builtin_neon_vsra_n_v:
1726  case ARM::BI__builtin_neon_vsraq_n_v:
1727    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1728    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1729    Ops[2] = EmitNeonShiftVector(Ops[2], Ty, false);
1730    if (usgn)
1731      Ops[1] = Builder.CreateLShr(Ops[1], Ops[2], "vsra_n");
1732    else
1733      Ops[1] = Builder.CreateAShr(Ops[1], Ops[2], "vsra_n");
1734    return Builder.CreateAdd(Ops[0], Ops[1]);
1735  case ARM::BI__builtin_neon_vst1_v:
1736  case ARM::BI__builtin_neon_vst1q_v:
1737    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1738    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, &Ty, 1),
1739                        Ops, "");
1740  case ARM::BI__builtin_neon_vst1_lane_v:
1741  case ARM::BI__builtin_neon_vst1q_lane_v:
1742    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1743    Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
1744    Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
1745    return Builder.CreateStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty));
1746  case ARM::BI__builtin_neon_vst2_v:
1747  case ARM::BI__builtin_neon_vst2q_v:
1748    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1749    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2, &Ty, 1),
1750                        Ops, "");
1751  case ARM::BI__builtin_neon_vst2_lane_v:
1752  case ARM::BI__builtin_neon_vst2q_lane_v:
1753    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1754    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst2lane, &Ty, 1),
1755                        Ops, "");
1756  case ARM::BI__builtin_neon_vst3_v:
1757  case ARM::BI__builtin_neon_vst3q_v:
1758    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1759    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3, &Ty, 1),
1760                        Ops, "");
1761  case ARM::BI__builtin_neon_vst3_lane_v:
1762  case ARM::BI__builtin_neon_vst3q_lane_v:
1763    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1764    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst3lane, &Ty, 1),
1765                        Ops, "");
1766  case ARM::BI__builtin_neon_vst4_v:
1767  case ARM::BI__builtin_neon_vst4q_v:
1768    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1769    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4, &Ty, 1),
1770                        Ops, "");
1771  case ARM::BI__builtin_neon_vst4_lane_v:
1772  case ARM::BI__builtin_neon_vst4q_lane_v:
1773    Ops.push_back(GetPointeeAlignment(*this, E->getArg(0)));
1774    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst4lane, &Ty, 1),
1775                        Ops, "");
1776  case ARM::BI__builtin_neon_vsubhn_v:
1777    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vsubhn, &Ty, 1),
1778                        Ops, "vsubhn");
1779  case ARM::BI__builtin_neon_vtbl1_v:
1780    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
1781                        Ops, "vtbl1");
1782  case ARM::BI__builtin_neon_vtbl2_v:
1783    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
1784                        Ops, "vtbl2");
1785  case ARM::BI__builtin_neon_vtbl3_v:
1786    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
1787                        Ops, "vtbl3");
1788  case ARM::BI__builtin_neon_vtbl4_v:
1789    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
1790                        Ops, "vtbl4");
1791  case ARM::BI__builtin_neon_vtbx1_v:
1792    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
1793                        Ops, "vtbx1");
1794  case ARM::BI__builtin_neon_vtbx2_v:
1795    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
1796                        Ops, "vtbx2");
1797  case ARM::BI__builtin_neon_vtbx3_v:
1798    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
1799                        Ops, "vtbx3");
1800  case ARM::BI__builtin_neon_vtbx4_v:
1801    return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
1802                        Ops, "vtbx4");
1803  case ARM::BI__builtin_neon_vtst_v:
1804  case ARM::BI__builtin_neon_vtstq_v: {
1805    Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
1806    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1807    Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
1808    Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
1809                                ConstantAggregateZero::get(Ty));
1810    return Builder.CreateSExt(Ops[0], Ty, "vtst");
1811  }
1812  case ARM::BI__builtin_neon_vtrn_v:
1813  case ARM::BI__builtin_neon_vtrnq_v: {
1814    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1815    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1816    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1817    Value *SV = 0;
1818
1819    for (unsigned vi = 0; vi != 2; ++vi) {
1820      SmallVector<Constant*, 16> Indices;
1821      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1822        Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
1823        Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
1824      }
1825      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1826      SV = llvm::ConstantVector::get(Indices);
1827      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
1828      SV = Builder.CreateStore(SV, Addr);
1829    }
1830    return SV;
1831  }
1832  case ARM::BI__builtin_neon_vuzp_v:
1833  case ARM::BI__builtin_neon_vuzpq_v: {
1834    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1835    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1836    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1837    Value *SV = 0;
1838
1839    for (unsigned vi = 0; vi != 2; ++vi) {
1840      SmallVector<Constant*, 16> Indices;
1841      for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
1842        Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
1843
1844      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1845      SV = llvm::ConstantVector::get(Indices);
1846      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
1847      SV = Builder.CreateStore(SV, Addr);
1848    }
1849    return SV;
1850  }
1851  case ARM::BI__builtin_neon_vzip_v:
1852  case ARM::BI__builtin_neon_vzipq_v: {
1853    Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
1854    Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
1855    Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
1856    Value *SV = 0;
1857
1858    for (unsigned vi = 0; vi != 2; ++vi) {
1859      SmallVector<Constant*, 16> Indices;
1860      for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
1861        Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
1862        Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
1863      }
1864      Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ops[0], vi);
1865      SV = llvm::ConstantVector::get(Indices);
1866      SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
1867      SV = Builder.CreateStore(SV, Addr);
1868    }
1869    return SV;
1870  }
1871  }
1872}
1873
1874llvm::Value *CodeGenFunction::
1875BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops) {
1876  assert((Ops.size() & (Ops.size() - 1)) == 0 &&
1877         "Not a power-of-two sized vector!");
1878  bool AllConstants = true;
1879  for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
1880    AllConstants &= isa<Constant>(Ops[i]);
1881
1882  // If this is a constant vector, create a ConstantVector.
1883  if (AllConstants) {
1884    std::vector<llvm::Constant*> CstOps;
1885    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1886      CstOps.push_back(cast<Constant>(Ops[i]));
1887    return llvm::ConstantVector::get(CstOps);
1888  }
1889
1890  // Otherwise, insertelement the values to build the vector.
1891  Value *Result =
1892    llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
1893
1894  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1895    Result = Builder.CreateInsertElement(Result, Ops[i],
1896               llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), i));
1897
1898  return Result;
1899}
1900
1901Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
1902                                           const CallExpr *E) {
1903  llvm::SmallVector<Value*, 4> Ops;
1904
1905  // Find out if any arguments are required to be integer constant expressions.
1906  unsigned ICEArguments = 0;
1907  ASTContext::GetBuiltinTypeError Error;
1908  getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
1909  assert(Error == ASTContext::GE_None && "Should not codegen an error");
1910
1911  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
1912    // If this is a normal argument, just emit it as a scalar.
1913    if ((ICEArguments & (1 << i)) == 0) {
1914      Ops.push_back(EmitScalarExpr(E->getArg(i)));
1915      continue;
1916    }
1917
1918    // If this is required to be a constant, constant fold it so that we know
1919    // that the generated intrinsic gets a ConstantInt.
1920    llvm::APSInt Result;
1921    bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
1922    assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
1923    Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
1924  }
1925
1926  switch (BuiltinID) {
1927  default: return 0;
1928  case X86::BI__builtin_ia32_pslldi128:
1929  case X86::BI__builtin_ia32_psllqi128:
1930  case X86::BI__builtin_ia32_psllwi128:
1931  case X86::BI__builtin_ia32_psradi128:
1932  case X86::BI__builtin_ia32_psrawi128:
1933  case X86::BI__builtin_ia32_psrldi128:
1934  case X86::BI__builtin_ia32_psrlqi128:
1935  case X86::BI__builtin_ia32_psrlwi128: {
1936    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
1937    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
1938    llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1939    Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
1940                                         Ops[1], Zero, "insert");
1941    Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
1942    const char *name = 0;
1943    Intrinsic::ID ID = Intrinsic::not_intrinsic;
1944
1945    switch (BuiltinID) {
1946    default: assert(0 && "Unsupported shift intrinsic!");
1947    case X86::BI__builtin_ia32_pslldi128:
1948      name = "pslldi";
1949      ID = Intrinsic::x86_sse2_psll_d;
1950      break;
1951    case X86::BI__builtin_ia32_psllqi128:
1952      name = "psllqi";
1953      ID = Intrinsic::x86_sse2_psll_q;
1954      break;
1955    case X86::BI__builtin_ia32_psllwi128:
1956      name = "psllwi";
1957      ID = Intrinsic::x86_sse2_psll_w;
1958      break;
1959    case X86::BI__builtin_ia32_psradi128:
1960      name = "psradi";
1961      ID = Intrinsic::x86_sse2_psra_d;
1962      break;
1963    case X86::BI__builtin_ia32_psrawi128:
1964      name = "psrawi";
1965      ID = Intrinsic::x86_sse2_psra_w;
1966      break;
1967    case X86::BI__builtin_ia32_psrldi128:
1968      name = "psrldi";
1969      ID = Intrinsic::x86_sse2_psrl_d;
1970      break;
1971    case X86::BI__builtin_ia32_psrlqi128:
1972      name = "psrlqi";
1973      ID = Intrinsic::x86_sse2_psrl_q;
1974      break;
1975    case X86::BI__builtin_ia32_psrlwi128:
1976      name = "psrlwi";
1977      ID = Intrinsic::x86_sse2_psrl_w;
1978      break;
1979    }
1980    llvm::Function *F = CGM.getIntrinsic(ID);
1981    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
1982  }
1983  case X86::BI__builtin_ia32_vec_init_v8qi:
1984  case X86::BI__builtin_ia32_vec_init_v4hi:
1985  case X86::BI__builtin_ia32_vec_init_v2si:
1986    return Builder.CreateBitCast(BuildVector(Ops),
1987                                 llvm::Type::getX86_MMXTy(getLLVMContext()));
1988  case X86::BI__builtin_ia32_vec_ext_v2si:
1989    return Builder.CreateExtractElement(Ops[0],
1990                                  llvm::ConstantInt::get(Ops[1]->getType(), 0));
1991  case X86::BI__builtin_ia32_pslldi:
1992  case X86::BI__builtin_ia32_psllqi:
1993  case X86::BI__builtin_ia32_psllwi:
1994  case X86::BI__builtin_ia32_psradi:
1995  case X86::BI__builtin_ia32_psrawi:
1996  case X86::BI__builtin_ia32_psrldi:
1997  case X86::BI__builtin_ia32_psrlqi:
1998  case X86::BI__builtin_ia32_psrlwi: {
1999    Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty, "zext");
2000    const llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 1);
2001    Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
2002    const char *name = 0;
2003    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2004
2005    switch (BuiltinID) {
2006    default: assert(0 && "Unsupported shift intrinsic!");
2007    case X86::BI__builtin_ia32_pslldi:
2008      name = "pslldi";
2009      ID = Intrinsic::x86_mmx_psll_d;
2010      break;
2011    case X86::BI__builtin_ia32_psllqi:
2012      name = "psllqi";
2013      ID = Intrinsic::x86_mmx_psll_q;
2014      break;
2015    case X86::BI__builtin_ia32_psllwi:
2016      name = "psllwi";
2017      ID = Intrinsic::x86_mmx_psll_w;
2018      break;
2019    case X86::BI__builtin_ia32_psradi:
2020      name = "psradi";
2021      ID = Intrinsic::x86_mmx_psra_d;
2022      break;
2023    case X86::BI__builtin_ia32_psrawi:
2024      name = "psrawi";
2025      ID = Intrinsic::x86_mmx_psra_w;
2026      break;
2027    case X86::BI__builtin_ia32_psrldi:
2028      name = "psrldi";
2029      ID = Intrinsic::x86_mmx_psrl_d;
2030      break;
2031    case X86::BI__builtin_ia32_psrlqi:
2032      name = "psrlqi";
2033      ID = Intrinsic::x86_mmx_psrl_q;
2034      break;
2035    case X86::BI__builtin_ia32_psrlwi:
2036      name = "psrlwi";
2037      ID = Intrinsic::x86_mmx_psrl_w;
2038      break;
2039    }
2040    llvm::Function *F = CGM.getIntrinsic(ID);
2041    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
2042  }
2043  case X86::BI__builtin_ia32_cmpps: {
2044    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
2045    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpps");
2046  }
2047  case X86::BI__builtin_ia32_cmpss: {
2048    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
2049    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpss");
2050  }
2051  case X86::BI__builtin_ia32_ldmxcsr: {
2052    const llvm::Type *PtrTy = Int8PtrTy;
2053    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2054    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2055    Builder.CreateStore(Ops[0], Tmp);
2056    return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
2057                              Builder.CreateBitCast(Tmp, PtrTy));
2058  }
2059  case X86::BI__builtin_ia32_stmxcsr: {
2060    const llvm::Type *PtrTy = Int8PtrTy;
2061    Value *One = llvm::ConstantInt::get(Int32Ty, 1);
2062    Value *Tmp = Builder.CreateAlloca(Int32Ty, One, "tmp");
2063    One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
2064                             Builder.CreateBitCast(Tmp, PtrTy));
2065    return Builder.CreateLoad(Tmp, "stmxcsr");
2066  }
2067  case X86::BI__builtin_ia32_cmppd: {
2068    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
2069    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmppd");
2070  }
2071  case X86::BI__builtin_ia32_cmpsd: {
2072    llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
2073    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "cmpsd");
2074  }
2075  case X86::BI__builtin_ia32_storehps:
2076  case X86::BI__builtin_ia32_storelps: {
2077    llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
2078    llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2079
2080    // cast val v2i64
2081    Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
2082
2083    // extract (0, 1)
2084    unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
2085    llvm::Value *Idx = llvm::ConstantInt::get(Int32Ty, Index);
2086    Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
2087
2088    // cast pointer to i64 & store
2089    Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
2090    return Builder.CreateStore(Ops[1], Ops[0]);
2091  }
2092  case X86::BI__builtin_ia32_palignr: {
2093    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2094
2095    // If palignr is shifting the pair of input vectors less than 9 bytes,
2096    // emit a shuffle instruction.
2097    if (shiftVal <= 8) {
2098      llvm::SmallVector<llvm::Constant*, 8> Indices;
2099      for (unsigned i = 0; i != 8; ++i)
2100        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2101
2102      Value* SV = llvm::ConstantVector::get(Indices);
2103      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2104    }
2105
2106    // If palignr is shifting the pair of input vectors more than 8 but less
2107    // than 16 bytes, emit a logical right shift of the destination.
2108    if (shiftVal < 16) {
2109      // MMX has these as 1 x i64 vectors for some odd optimization reasons.
2110      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 1);
2111
2112      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2113      Ops[1] = llvm::ConstantInt::get(VecTy, (shiftVal-8) * 8);
2114
2115      // create i32 constant
2116      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_mmx_psrl_q);
2117      return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2118    }
2119
2120    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2121    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2122  }
2123  case X86::BI__builtin_ia32_palignr128: {
2124    unsigned shiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
2125
2126    // If palignr is shifting the pair of input vectors less than 17 bytes,
2127    // emit a shuffle instruction.
2128    if (shiftVal <= 16) {
2129      llvm::SmallVector<llvm::Constant*, 16> Indices;
2130      for (unsigned i = 0; i != 16; ++i)
2131        Indices.push_back(llvm::ConstantInt::get(Int32Ty, shiftVal + i));
2132
2133      Value* SV = llvm::ConstantVector::get(Indices);
2134      return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
2135    }
2136
2137    // If palignr is shifting the pair of input vectors more than 16 but less
2138    // than 32 bytes, emit a logical right shift of the destination.
2139    if (shiftVal < 32) {
2140      const llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
2141
2142      Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
2143      Ops[1] = llvm::ConstantInt::get(Int32Ty, (shiftVal-16) * 8);
2144
2145      // create i32 constant
2146      llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_sse2_psrl_dq);
2147      return Builder.CreateCall(F, &Ops[0], &Ops[0] + 2, "palignr");
2148    }
2149
2150    // If palignr is shifting the pair of vectors more than 32 bytes, emit zero.
2151    return llvm::Constant::getNullValue(ConvertType(E->getType()));
2152  }
2153  case X86::BI__builtin_ia32_loaddqu: {
2154    const llvm::Type *VecTy = ConvertType(E->getType());
2155    const llvm::Type *IntTy = llvm::IntegerType::get(getLLVMContext(), 128);
2156
2157    Value *BC = Builder.CreateBitCast(Ops[0],
2158                                      llvm::PointerType::getUnqual(IntTy),
2159                                      "cast");
2160    LoadInst *LI = Builder.CreateLoad(BC);
2161    LI->setAlignment(1); // Unaligned load.
2162    return Builder.CreateBitCast(LI, VecTy, "loadu.cast");
2163  }
2164  // 3DNow!
2165  case X86::BI__builtin_ia32_pavgusb:
2166  case X86::BI__builtin_ia32_pf2id:
2167  case X86::BI__builtin_ia32_pfacc:
2168  case X86::BI__builtin_ia32_pfadd:
2169  case X86::BI__builtin_ia32_pfcmpeq:
2170  case X86::BI__builtin_ia32_pfcmpge:
2171  case X86::BI__builtin_ia32_pfcmpgt:
2172  case X86::BI__builtin_ia32_pfmax:
2173  case X86::BI__builtin_ia32_pfmin:
2174  case X86::BI__builtin_ia32_pfmul:
2175  case X86::BI__builtin_ia32_pfrcp:
2176  case X86::BI__builtin_ia32_pfrcpit1:
2177  case X86::BI__builtin_ia32_pfrcpit2:
2178  case X86::BI__builtin_ia32_pfrsqrt:
2179  case X86::BI__builtin_ia32_pfrsqit1:
2180  case X86::BI__builtin_ia32_pfrsqrtit1:
2181  case X86::BI__builtin_ia32_pfsub:
2182  case X86::BI__builtin_ia32_pfsubr:
2183  case X86::BI__builtin_ia32_pi2fd:
2184  case X86::BI__builtin_ia32_pmulhrw:
2185  case X86::BI__builtin_ia32_pf2iw:
2186  case X86::BI__builtin_ia32_pfnacc:
2187  case X86::BI__builtin_ia32_pfpnacc:
2188  case X86::BI__builtin_ia32_pi2fw:
2189  case X86::BI__builtin_ia32_pswapdsf:
2190  case X86::BI__builtin_ia32_pswapdsi: {
2191    const char *name = 0;
2192    Intrinsic::ID ID = Intrinsic::not_intrinsic;
2193    switch(BuiltinID) {
2194    case X86::BI__builtin_ia32_pavgusb:
2195      name = "pavgusb";
2196      ID = Intrinsic::x86_3dnow_pavgusb;
2197      break;
2198    case X86::BI__builtin_ia32_pf2id:
2199      name = "pf2id";
2200      ID = Intrinsic::x86_3dnow_pf2id;
2201      break;
2202    case X86::BI__builtin_ia32_pfacc:
2203      name = "pfacc";
2204      ID = Intrinsic::x86_3dnow_pfacc;
2205      break;
2206    case X86::BI__builtin_ia32_pfadd:
2207      name = "pfadd";
2208      ID = Intrinsic::x86_3dnow_pfadd;
2209      break;
2210    case X86::BI__builtin_ia32_pfcmpeq:
2211      name = "pfcmpeq";
2212      ID = Intrinsic::x86_3dnow_pfcmpeq;
2213      break;
2214    case X86::BI__builtin_ia32_pfcmpge:
2215      name = "pfcmpge";
2216      ID = Intrinsic::x86_3dnow_pfcmpge;
2217      break;
2218    case X86::BI__builtin_ia32_pfcmpgt:
2219      name = "pfcmpgt";
2220      ID = Intrinsic::x86_3dnow_pfcmpgt;
2221      break;
2222    case X86::BI__builtin_ia32_pfmax:
2223      name = "pfmax";
2224      ID = Intrinsic::x86_3dnow_pfmax;
2225      break;
2226    case X86::BI__builtin_ia32_pfmin:
2227      name = "pfmin";
2228      ID = Intrinsic::x86_3dnow_pfmin;
2229      break;
2230    case X86::BI__builtin_ia32_pfmul:
2231      name = "pfmul";
2232      ID = Intrinsic::x86_3dnow_pfmul;
2233      break;
2234    case X86::BI__builtin_ia32_pfrcp:
2235      name = "pfrcp";
2236      ID = Intrinsic::x86_3dnow_pfrcp;
2237      break;
2238    case X86::BI__builtin_ia32_pfrcpit1:
2239      name = "pfrcpit1";
2240      ID = Intrinsic::x86_3dnow_pfrcpit1;
2241      break;
2242    case X86::BI__builtin_ia32_pfrcpit2:
2243      name = "pfrcpit2";
2244      ID = Intrinsic::x86_3dnow_pfrcpit2;
2245      break;
2246    case X86::BI__builtin_ia32_pfrsqrt:
2247      name = "pfrsqrt";
2248      ID = Intrinsic::x86_3dnow_pfrsqrt;
2249      break;
2250    case X86::BI__builtin_ia32_pfrsqit1:
2251    case X86::BI__builtin_ia32_pfrsqrtit1:
2252      name = "pfrsqit1";
2253      ID = Intrinsic::x86_3dnow_pfrsqit1;
2254      break;
2255    case X86::BI__builtin_ia32_pfsub:
2256      name = "pfsub";
2257      ID = Intrinsic::x86_3dnow_pfsub;
2258      break;
2259    case X86::BI__builtin_ia32_pfsubr:
2260      name = "pfsubr";
2261      ID = Intrinsic::x86_3dnow_pfsubr;
2262      break;
2263    case X86::BI__builtin_ia32_pi2fd:
2264      name = "pi2fd";
2265      ID = Intrinsic::x86_3dnow_pi2fd;
2266      break;
2267    case X86::BI__builtin_ia32_pmulhrw:
2268      name = "pmulhrw";
2269      ID = Intrinsic::x86_3dnow_pmulhrw;
2270      break;
2271    case X86::BI__builtin_ia32_pf2iw:
2272      name = "pf2iw";
2273      ID = Intrinsic::x86_3dnowa_pf2iw;
2274      break;
2275    case X86::BI__builtin_ia32_pfnacc:
2276      name = "pfnacc";
2277      ID = Intrinsic::x86_3dnowa_pfnacc;
2278      break;
2279    case X86::BI__builtin_ia32_pfpnacc:
2280      name = "pfpnacc";
2281      ID = Intrinsic::x86_3dnowa_pfpnacc;
2282      break;
2283    case X86::BI__builtin_ia32_pi2fw:
2284      name = "pi2fw";
2285      ID = Intrinsic::x86_3dnowa_pi2fw;
2286      break;
2287    case X86::BI__builtin_ia32_pswapdsf:
2288    case X86::BI__builtin_ia32_pswapdsi:
2289      name = "pswapd";
2290      ID = Intrinsic::x86_3dnowa_pswapd;
2291      break;
2292    }
2293    llvm::Function *F = CGM.getIntrinsic(ID);
2294    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
2295  }
2296  }
2297}
2298
2299Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
2300                                           const CallExpr *E) {
2301  llvm::SmallVector<Value*, 4> Ops;
2302
2303  for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
2304    Ops.push_back(EmitScalarExpr(E->getArg(i)));
2305
2306  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2307
2308  switch (BuiltinID) {
2309  default: return 0;
2310
2311  // vec_ld, vec_lvsl, vec_lvsr
2312  case PPC::BI__builtin_altivec_lvx:
2313  case PPC::BI__builtin_altivec_lvxl:
2314  case PPC::BI__builtin_altivec_lvebx:
2315  case PPC::BI__builtin_altivec_lvehx:
2316  case PPC::BI__builtin_altivec_lvewx:
2317  case PPC::BI__builtin_altivec_lvsl:
2318  case PPC::BI__builtin_altivec_lvsr:
2319  {
2320    Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
2321
2322    Ops[0] = Builder.CreateGEP(Ops[1], Ops[0], "tmp");
2323    Ops.pop_back();
2324
2325    switch (BuiltinID) {
2326    default: assert(0 && "Unsupported ld/lvsl/lvsr intrinsic!");
2327    case PPC::BI__builtin_altivec_lvx:
2328      ID = Intrinsic::ppc_altivec_lvx;
2329      break;
2330    case PPC::BI__builtin_altivec_lvxl:
2331      ID = Intrinsic::ppc_altivec_lvxl;
2332      break;
2333    case PPC::BI__builtin_altivec_lvebx:
2334      ID = Intrinsic::ppc_altivec_lvebx;
2335      break;
2336    case PPC::BI__builtin_altivec_lvehx:
2337      ID = Intrinsic::ppc_altivec_lvehx;
2338      break;
2339    case PPC::BI__builtin_altivec_lvewx:
2340      ID = Intrinsic::ppc_altivec_lvewx;
2341      break;
2342    case PPC::BI__builtin_altivec_lvsl:
2343      ID = Intrinsic::ppc_altivec_lvsl;
2344      break;
2345    case PPC::BI__builtin_altivec_lvsr:
2346      ID = Intrinsic::ppc_altivec_lvsr;
2347      break;
2348    }
2349    llvm::Function *F = CGM.getIntrinsic(ID);
2350    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2351  }
2352
2353  // vec_st
2354  case PPC::BI__builtin_altivec_stvx:
2355  case PPC::BI__builtin_altivec_stvxl:
2356  case PPC::BI__builtin_altivec_stvebx:
2357  case PPC::BI__builtin_altivec_stvehx:
2358  case PPC::BI__builtin_altivec_stvewx:
2359  {
2360    Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
2361    Ops[1] = Builder.CreateGEP(Ops[2], Ops[1], "tmp");
2362    Ops.pop_back();
2363
2364    switch (BuiltinID) {
2365    default: assert(0 && "Unsupported st intrinsic!");
2366    case PPC::BI__builtin_altivec_stvx:
2367      ID = Intrinsic::ppc_altivec_stvx;
2368      break;
2369    case PPC::BI__builtin_altivec_stvxl:
2370      ID = Intrinsic::ppc_altivec_stvxl;
2371      break;
2372    case PPC::BI__builtin_altivec_stvebx:
2373      ID = Intrinsic::ppc_altivec_stvebx;
2374      break;
2375    case PPC::BI__builtin_altivec_stvehx:
2376      ID = Intrinsic::ppc_altivec_stvehx;
2377      break;
2378    case PPC::BI__builtin_altivec_stvewx:
2379      ID = Intrinsic::ppc_altivec_stvewx;
2380      break;
2381    }
2382    llvm::Function *F = CGM.getIntrinsic(ID);
2383    return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), "");
2384  }
2385  }
2386  return 0;
2387}
2388