CGDecl.cpp revision 207f4d8543529221932af82836016a2ef066c917
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Decl nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CGDebugInfo.h" 15#include "CodeGenFunction.h" 16#include "CodeGenModule.h" 17#include "CGBlocks.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CharUnits.h" 20#include "clang/AST/Decl.h" 21#include "clang/AST/DeclObjC.h" 22#include "clang/Basic/SourceManager.h" 23#include "clang/Basic/TargetInfo.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/GlobalVariable.h" 26#include "llvm/Intrinsics.h" 27#include "llvm/Target/TargetData.h" 28#include "llvm/Type.h" 29using namespace clang; 30using namespace CodeGen; 31 32 33void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TemplateTemplateParm: 56 case Decl::ObjCMethod: 57 case Decl::ObjCCategory: 58 case Decl::ObjCProtocol: 59 case Decl::ObjCInterface: 60 case Decl::ObjCCategoryImpl: 61 case Decl::ObjCImplementation: 62 case Decl::ObjCProperty: 63 case Decl::ObjCCompatibleAlias: 64 case Decl::AccessSpec: 65 case Decl::LinkageSpec: 66 case Decl::ObjCPropertyImpl: 67 case Decl::ObjCClass: 68 case Decl::ObjCForwardProtocol: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 assert(0 && "Declaration not should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 // None of these decls require codegen support. 86 return; 87 88 case Decl::Var: { 89 const VarDecl &VD = cast<VarDecl>(D); 90 assert(VD.isLocalVarDecl() && 91 "Should not see file-scope variables inside a function!"); 92 return EmitVarDecl(VD); 93 } 94 95 case Decl::Typedef: { // typedef int X; 96 const TypedefDecl &TD = cast<TypedefDecl>(D); 97 QualType Ty = TD.getUnderlyingType(); 98 99 if (Ty->isVariablyModifiedType()) 100 EmitVLASize(Ty); 101 } 102 } 103} 104 105/// EmitVarDecl - This method handles emission of any variable declaration 106/// inside a function, including static vars etc. 107void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 108 switch (D.getStorageClass()) { 109 case SC_None: 110 case SC_Auto: 111 case SC_Register: 112 return EmitAutoVarDecl(D); 113 case SC_Static: { 114 llvm::GlobalValue::LinkageTypes Linkage = 115 llvm::GlobalValue::InternalLinkage; 116 117 // If the function definition has some sort of weak linkage, its 118 // static variables should also be weak so that they get properly 119 // uniqued. We can't do this in C, though, because there's no 120 // standard way to agree on which variables are the same (i.e. 121 // there's no mangling). 122 if (getContext().getLangOptions().CPlusPlus) 123 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 124 Linkage = CurFn->getLinkage(); 125 126 return EmitStaticVarDecl(D, Linkage); 127 } 128 case SC_Extern: 129 case SC_PrivateExtern: 130 // Don't emit it now, allow it to be emitted lazily on its first use. 131 return; 132 } 133 134 assert(0 && "Unknown storage class"); 135} 136 137static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 138 const char *Separator) { 139 CodeGenModule &CGM = CGF.CGM; 140 if (CGF.getContext().getLangOptions().CPlusPlus) { 141 llvm::StringRef Name = CGM.getMangledName(&D); 142 return Name.str(); 143 } 144 145 std::string ContextName; 146 if (!CGF.CurFuncDecl) { 147 // Better be in a block declared in global scope. 148 const NamedDecl *ND = cast<NamedDecl>(&D); 149 const DeclContext *DC = ND->getDeclContext(); 150 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 151 MangleBuffer Name; 152 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 153 ContextName = Name.getString(); 154 } 155 else 156 assert(0 && "Unknown context for block static var decl"); 157 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 158 llvm::StringRef Name = CGM.getMangledName(FD); 159 ContextName = Name.str(); 160 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 161 ContextName = CGF.CurFn->getName(); 162 else 163 assert(0 && "Unknown context for static var decl"); 164 165 return ContextName + Separator + D.getNameAsString(); 166} 167 168llvm::GlobalVariable * 169CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 170 const char *Separator, 171 llvm::GlobalValue::LinkageTypes Linkage) { 172 QualType Ty = D.getType(); 173 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 174 175 std::string Name = GetStaticDeclName(*this, D, Separator); 176 177 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 178 llvm::GlobalVariable *GV = 179 new llvm::GlobalVariable(CGM.getModule(), LTy, 180 Ty.isConstant(getContext()), Linkage, 181 CGM.EmitNullConstant(D.getType()), Name, 0, 182 D.isThreadSpecified(), 183 CGM.getContext().getTargetAddressSpace(Ty)); 184 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 185 if (Linkage != llvm::GlobalValue::InternalLinkage) 186 GV->setVisibility(CurFn->getVisibility()); 187 return GV; 188} 189 190/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 191/// global variable that has already been created for it. If the initializer 192/// has a different type than GV does, this may free GV and return a different 193/// one. Otherwise it just returns GV. 194llvm::GlobalVariable * 195CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 196 llvm::GlobalVariable *GV) { 197 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 198 199 // If constant emission failed, then this should be a C++ static 200 // initializer. 201 if (!Init) { 202 if (!getContext().getLangOptions().CPlusPlus) 203 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 204 else if (Builder.GetInsertBlock()) { 205 // Since we have a static initializer, this global variable can't 206 // be constant. 207 GV->setConstant(false); 208 209 EmitCXXGuardedInit(D, GV); 210 } 211 return GV; 212 } 213 214 // The initializer may differ in type from the global. Rewrite 215 // the global to match the initializer. (We have to do this 216 // because some types, like unions, can't be completely represented 217 // in the LLVM type system.) 218 if (GV->getType()->getElementType() != Init->getType()) { 219 llvm::GlobalVariable *OldGV = GV; 220 221 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 222 OldGV->isConstant(), 223 OldGV->getLinkage(), Init, "", 224 /*InsertBefore*/ OldGV, 225 D.isThreadSpecified(), 226 CGM.getContext().getTargetAddressSpace(D.getType())); 227 GV->setVisibility(OldGV->getVisibility()); 228 229 // Steal the name of the old global 230 GV->takeName(OldGV); 231 232 // Replace all uses of the old global with the new global 233 llvm::Constant *NewPtrForOldDecl = 234 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 235 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 236 237 // Erase the old global, since it is no longer used. 238 OldGV->eraseFromParent(); 239 } 240 241 GV->setInitializer(Init); 242 return GV; 243} 244 245void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 246 llvm::GlobalValue::LinkageTypes Linkage) { 247 llvm::Value *&DMEntry = LocalDeclMap[&D]; 248 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 249 250 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 251 252 // Store into LocalDeclMap before generating initializer to handle 253 // circular references. 254 DMEntry = GV; 255 256 // We can't have a VLA here, but we can have a pointer to a VLA, 257 // even though that doesn't really make any sense. 258 // Make sure to evaluate VLA bounds now so that we have them for later. 259 if (D.getType()->isVariablyModifiedType()) 260 EmitVLASize(D.getType()); 261 262 // Local static block variables must be treated as globals as they may be 263 // referenced in their RHS initializer block-literal expresion. 264 CGM.setStaticLocalDeclAddress(&D, GV); 265 266 // If this value has an initializer, emit it. 267 if (D.getInit()) 268 GV = AddInitializerToStaticVarDecl(D, GV); 269 270 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 271 272 // FIXME: Merge attribute handling. 273 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 274 SourceManager &SM = CGM.getContext().getSourceManager(); 275 llvm::Constant *Ann = 276 CGM.EmitAnnotateAttr(GV, AA, 277 SM.getInstantiationLineNumber(D.getLocation())); 278 CGM.AddAnnotation(Ann); 279 } 280 281 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 282 GV->setSection(SA->getName()); 283 284 if (D.hasAttr<UsedAttr>()) 285 CGM.AddUsedGlobal(GV); 286 287 // We may have to cast the constant because of the initializer 288 // mismatch above. 289 // 290 // FIXME: It is really dangerous to store this in the map; if anyone 291 // RAUW's the GV uses of this constant will be invalid. 292 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 293 const llvm::Type *LPtrTy = 294 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 295 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 296 297 // Emit global variable debug descriptor for static vars. 298 CGDebugInfo *DI = getDebugInfo(); 299 if (DI) { 300 DI->setLocation(D.getLocation()); 301 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 302 } 303} 304 305unsigned CodeGenFunction::getByRefValueLLVMField(const ValueDecl *VD) const { 306 assert(ByRefValueInfo.count(VD) && "Did not find value!"); 307 308 return ByRefValueInfo.find(VD)->second.second; 309} 310 311llvm::Value *CodeGenFunction::BuildBlockByrefAddress(llvm::Value *BaseAddr, 312 const VarDecl *V) { 313 llvm::Value *Loc = Builder.CreateStructGEP(BaseAddr, 1, "forwarding"); 314 Loc = Builder.CreateLoad(Loc); 315 Loc = Builder.CreateStructGEP(Loc, getByRefValueLLVMField(V), 316 V->getNameAsString()); 317 return Loc; 318} 319 320/// BuildByRefType - This routine changes a __block variable declared as T x 321/// into: 322/// 323/// struct { 324/// void *__isa; 325/// void *__forwarding; 326/// int32_t __flags; 327/// int32_t __size; 328/// void *__copy_helper; // only if needed 329/// void *__destroy_helper; // only if needed 330/// char padding[X]; // only if needed 331/// T x; 332/// } x 333/// 334const llvm::Type *CodeGenFunction::BuildByRefType(const VarDecl *D) { 335 std::pair<const llvm::Type *, unsigned> &Info = ByRefValueInfo[D]; 336 if (Info.first) 337 return Info.first; 338 339 QualType Ty = D->getType(); 340 341 std::vector<const llvm::Type *> Types; 342 343 llvm::PATypeHolder ByRefTypeHolder = llvm::OpaqueType::get(getLLVMContext()); 344 345 // void *__isa; 346 Types.push_back(Int8PtrTy); 347 348 // void *__forwarding; 349 Types.push_back(llvm::PointerType::getUnqual(ByRefTypeHolder)); 350 351 // int32_t __flags; 352 Types.push_back(Int32Ty); 353 354 // int32_t __size; 355 Types.push_back(Int32Ty); 356 357 bool HasCopyAndDispose = getContext().BlockRequiresCopying(Ty); 358 if (HasCopyAndDispose) { 359 /// void *__copy_helper; 360 Types.push_back(Int8PtrTy); 361 362 /// void *__destroy_helper; 363 Types.push_back(Int8PtrTy); 364 } 365 366 bool Packed = false; 367 CharUnits Align = getContext().getDeclAlign(D); 368 if (Align > getContext().toCharUnitsFromBits(Target.getPointerAlign(0))) { 369 // We have to insert padding. 370 371 // The struct above has 2 32-bit integers. 372 unsigned CurrentOffsetInBytes = 4 * 2; 373 374 // And either 2 or 4 pointers. 375 CurrentOffsetInBytes += (HasCopyAndDispose ? 4 : 2) * 376 CGM.getTargetData().getTypeAllocSize(Int8PtrTy); 377 378 // Align the offset. 379 unsigned AlignedOffsetInBytes = 380 llvm::RoundUpToAlignment(CurrentOffsetInBytes, Align.getQuantity()); 381 382 unsigned NumPaddingBytes = AlignedOffsetInBytes - CurrentOffsetInBytes; 383 if (NumPaddingBytes > 0) { 384 const llvm::Type *Ty = llvm::Type::getInt8Ty(getLLVMContext()); 385 // FIXME: We need a sema error for alignment larger than the minimum of 386 // the maximal stack alignmint and the alignment of malloc on the system. 387 if (NumPaddingBytes > 1) 388 Ty = llvm::ArrayType::get(Ty, NumPaddingBytes); 389 390 Types.push_back(Ty); 391 392 // We want a packed struct. 393 Packed = true; 394 } 395 } 396 397 // T x; 398 Types.push_back(ConvertTypeForMem(Ty)); 399 400 const llvm::Type *T = llvm::StructType::get(getLLVMContext(), Types, Packed); 401 402 cast<llvm::OpaqueType>(ByRefTypeHolder.get())->refineAbstractTypeTo(T); 403 CGM.getModule().addTypeName("struct.__block_byref_" + D->getNameAsString(), 404 ByRefTypeHolder.get()); 405 406 Info.first = ByRefTypeHolder.get(); 407 408 Info.second = Types.size() - 1; 409 410 return Info.first; 411} 412 413namespace { 414 struct CallArrayDtor : EHScopeStack::Cleanup { 415 CallArrayDtor(const CXXDestructorDecl *Dtor, 416 const ConstantArrayType *Type, 417 llvm::Value *Loc) 418 : Dtor(Dtor), Type(Type), Loc(Loc) {} 419 420 const CXXDestructorDecl *Dtor; 421 const ConstantArrayType *Type; 422 llvm::Value *Loc; 423 424 void Emit(CodeGenFunction &CGF, bool IsForEH) { 425 QualType BaseElementTy = CGF.getContext().getBaseElementType(Type); 426 const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy); 427 BasePtr = llvm::PointerType::getUnqual(BasePtr); 428 llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr); 429 CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr); 430 } 431 }; 432 433 struct CallVarDtor : EHScopeStack::Cleanup { 434 CallVarDtor(const CXXDestructorDecl *Dtor, 435 llvm::Value *NRVOFlag, 436 llvm::Value *Loc) 437 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {} 438 439 const CXXDestructorDecl *Dtor; 440 llvm::Value *NRVOFlag; 441 llvm::Value *Loc; 442 443 void Emit(CodeGenFunction &CGF, bool IsForEH) { 444 // Along the exceptions path we always execute the dtor. 445 bool NRVO = !IsForEH && NRVOFlag; 446 447 llvm::BasicBlock *SkipDtorBB = 0; 448 if (NRVO) { 449 // If we exited via NRVO, we skip the destructor call. 450 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 451 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 452 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 453 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 454 CGF.EmitBlock(RunDtorBB); 455 } 456 457 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 458 /*ForVirtualBase=*/false, Loc); 459 460 if (NRVO) CGF.EmitBlock(SkipDtorBB); 461 } 462 }; 463} 464 465namespace { 466 struct CallStackRestore : EHScopeStack::Cleanup { 467 llvm::Value *Stack; 468 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 469 void Emit(CodeGenFunction &CGF, bool IsForEH) { 470 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 471 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 472 CGF.Builder.CreateCall(F, V); 473 } 474 }; 475 476 struct CallCleanupFunction : EHScopeStack::Cleanup { 477 llvm::Constant *CleanupFn; 478 const CGFunctionInfo &FnInfo; 479 const VarDecl &Var; 480 481 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 482 const VarDecl *Var) 483 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 484 485 void Emit(CodeGenFunction &CGF, bool IsForEH) { 486 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 487 SourceLocation()); 488 // Compute the address of the local variable, in case it's a byref 489 // or something. 490 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 491 492 // In some cases, the type of the function argument will be different from 493 // the type of the pointer. An example of this is 494 // void f(void* arg); 495 // __attribute__((cleanup(f))) void *g; 496 // 497 // To fix this we insert a bitcast here. 498 QualType ArgTy = FnInfo.arg_begin()->type; 499 llvm::Value *Arg = 500 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 501 502 CallArgList Args; 503 Args.push_back(std::make_pair(RValue::get(Arg), 504 CGF.getContext().getPointerType(Var.getType()))); 505 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 506 } 507 }; 508 509 struct CallBlockRelease : EHScopeStack::Cleanup { 510 llvm::Value *Addr; 511 CallBlockRelease(llvm::Value *Addr) : Addr(Addr) {} 512 513 void Emit(CodeGenFunction &CGF, bool IsForEH) { 514 CGF.BuildBlockRelease(Addr, BLOCK_FIELD_IS_BYREF); 515 } 516 }; 517} 518 519 520/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 521/// non-zero parts of the specified initializer with equal or fewer than 522/// NumStores scalar stores. 523static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 524 unsigned &NumStores) { 525 // Zero and Undef never requires any extra stores. 526 if (isa<llvm::ConstantAggregateZero>(Init) || 527 isa<llvm::ConstantPointerNull>(Init) || 528 isa<llvm::UndefValue>(Init)) 529 return true; 530 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 531 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 532 isa<llvm::ConstantExpr>(Init)) 533 return Init->isNullValue() || NumStores--; 534 535 // See if we can emit each element. 536 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 537 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 538 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 539 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 540 return false; 541 } 542 return true; 543 } 544 545 // Anything else is hard and scary. 546 return false; 547} 548 549/// emitStoresForInitAfterMemset - For inits that 550/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 551/// stores that would be required. 552static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 553 bool isVolatile, CGBuilderTy &Builder) { 554 // Zero doesn't require any stores. 555 if (isa<llvm::ConstantAggregateZero>(Init) || 556 isa<llvm::ConstantPointerNull>(Init) || 557 isa<llvm::UndefValue>(Init)) 558 return; 559 560 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 561 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 562 isa<llvm::ConstantExpr>(Init)) { 563 if (!Init->isNullValue()) 564 Builder.CreateStore(Init, Loc, isVolatile); 565 return; 566 } 567 568 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 569 "Unknown value type!"); 570 571 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 572 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 573 if (Elt->isNullValue()) continue; 574 575 // Otherwise, get a pointer to the element and emit it. 576 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 577 isVolatile, Builder); 578 } 579} 580 581 582/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 583/// plus some stores to initialize a local variable instead of using a memcpy 584/// from a constant global. It is beneficial to use memset if the global is all 585/// zeros, or mostly zeros and large. 586static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 587 uint64_t GlobalSize) { 588 // If a global is all zeros, always use a memset. 589 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 590 591 592 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 593 // do it if it will require 6 or fewer scalar stores. 594 // TODO: Should budget depends on the size? Avoiding a large global warrants 595 // plopping in more stores. 596 unsigned StoreBudget = 6; 597 uint64_t SizeLimit = 32; 598 599 return GlobalSize > SizeLimit && 600 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 601} 602 603 604/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 605/// variable declaration with auto, register, or no storage class specifier. 606/// These turn into simple stack objects, or GlobalValues depending on target. 607void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 608 AutoVarEmission emission = EmitAutoVarAlloca(D); 609 EmitAutoVarInit(emission); 610 EmitAutoVarCleanups(emission); 611} 612 613/// EmitAutoVarAlloca - Emit the alloca and debug information for a 614/// local variable. Does not emit initalization or destruction. 615CodeGenFunction::AutoVarEmission 616CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 617 QualType Ty = D.getType(); 618 619 AutoVarEmission emission(D); 620 621 bool isByRef = D.hasAttr<BlocksAttr>(); 622 emission.IsByRef = isByRef; 623 624 CharUnits alignment = getContext().getDeclAlign(&D); 625 emission.Alignment = alignment; 626 627 llvm::Value *DeclPtr; 628 if (Ty->isConstantSizeType()) { 629 if (!Target.useGlobalsForAutomaticVariables()) { 630 bool NRVO = getContext().getLangOptions().ElideConstructors && 631 D.isNRVOVariable(); 632 633 // If this value is a POD array or struct with a statically 634 // determinable constant initializer, there are optimizations we 635 // can do. 636 // TODO: we can potentially constant-evaluate non-POD structs and 637 // arrays as long as the initialization is trivial (e.g. if they 638 // have a non-trivial destructor, but not a non-trivial constructor). 639 if (D.getInit() && 640 (Ty->isArrayType() || Ty->isRecordType()) && Ty->isPODType() && 641 D.getInit()->isConstantInitializer(getContext(), false)) { 642 643 // If the variable's a const type, and it's neither an NRVO 644 // candidate nor a __block variable, emit it as a global instead. 645 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 646 !NRVO && !isByRef) { 647 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 648 649 emission.Address = 0; // signal this condition to later callbacks 650 assert(emission.wasEmittedAsGlobal()); 651 return emission; 652 } 653 654 // Otherwise, tell the initialization code that we're in this case. 655 emission.IsConstantAggregate = true; 656 } 657 658 // A normal fixed sized variable becomes an alloca in the entry block, 659 // unless it's an NRVO variable. 660 const llvm::Type *LTy = ConvertTypeForMem(Ty); 661 662 if (NRVO) { 663 // The named return value optimization: allocate this variable in the 664 // return slot, so that we can elide the copy when returning this 665 // variable (C++0x [class.copy]p34). 666 DeclPtr = ReturnValue; 667 668 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 669 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 670 // Create a flag that is used to indicate when the NRVO was applied 671 // to this variable. Set it to zero to indicate that NRVO was not 672 // applied. 673 llvm::Value *Zero = Builder.getFalse(); 674 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 675 EnsureInsertPoint(); 676 Builder.CreateStore(Zero, NRVOFlag); 677 678 // Record the NRVO flag for this variable. 679 NRVOFlags[&D] = NRVOFlag; 680 emission.NRVOFlag = NRVOFlag; 681 } 682 } 683 } else { 684 if (isByRef) 685 LTy = BuildByRefType(&D); 686 687 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 688 Alloc->setName(D.getNameAsString()); 689 690 CharUnits allocaAlignment = alignment; 691 if (isByRef) 692 allocaAlignment = std::max(allocaAlignment, 693 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 694 Alloc->setAlignment(allocaAlignment.getQuantity()); 695 DeclPtr = Alloc; 696 } 697 } else { 698 // Targets that don't support recursion emit locals as globals. 699 const char *Class = 700 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 701 DeclPtr = CreateStaticVarDecl(D, Class, 702 llvm::GlobalValue::InternalLinkage); 703 } 704 705 // FIXME: Can this happen? 706 if (Ty->isVariablyModifiedType()) 707 EmitVLASize(Ty); 708 } else { 709 EnsureInsertPoint(); 710 711 if (!DidCallStackSave) { 712 // Save the stack. 713 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 714 715 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 716 llvm::Value *V = Builder.CreateCall(F); 717 718 Builder.CreateStore(V, Stack); 719 720 DidCallStackSave = true; 721 722 // Push a cleanup block and restore the stack there. 723 // FIXME: in general circumstances, this should be an EH cleanup. 724 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 725 } 726 727 // Get the element type. 728 const llvm::Type *LElemTy = ConvertTypeForMem(Ty); 729 const llvm::Type *LElemPtrTy = 730 LElemTy->getPointerTo(CGM.getContext().getTargetAddressSpace(Ty)); 731 732 llvm::Value *VLASize = EmitVLASize(Ty); 733 734 // Allocate memory for the array. 735 llvm::AllocaInst *VLA = 736 Builder.CreateAlloca(llvm::Type::getInt8Ty(getLLVMContext()), VLASize, "vla"); 737 VLA->setAlignment(alignment.getQuantity()); 738 739 DeclPtr = Builder.CreateBitCast(VLA, LElemPtrTy, "tmp"); 740 } 741 742 llvm::Value *&DMEntry = LocalDeclMap[&D]; 743 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 744 DMEntry = DeclPtr; 745 emission.Address = DeclPtr; 746 747 // Emit debug info for local var declaration. 748 if (CGDebugInfo *DI = getDebugInfo()) { 749 assert(HaveInsertPoint() && "Unexpected unreachable point!"); 750 751 DI->setLocation(D.getLocation()); 752 if (Target.useGlobalsForAutomaticVariables()) { 753 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 754 } else 755 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 756 } 757 758 return emission; 759} 760 761/// Determines whether the given __block variable is potentially 762/// captured by the given expression. 763static bool isCapturedBy(const VarDecl &var, const Expr *e) { 764 // Skip the most common kinds of expressions that make 765 // hierarchy-walking expensive. 766 e = e->IgnoreParenCasts(); 767 768 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 769 const BlockDecl *block = be->getBlockDecl(); 770 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 771 e = block->capture_end(); i != e; ++i) { 772 if (i->getVariable() == &var) 773 return true; 774 } 775 776 // No need to walk into the subexpressions. 777 return false; 778 } 779 780 for (Stmt::const_child_range children = e->children(); children; ++children) 781 if (isCapturedBy(var, cast<Expr>(*children))) 782 return true; 783 784 return false; 785} 786 787void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 788 assert(emission.Variable && "emission was not valid!"); 789 790 // If this was emitted as a global constant, we're done. 791 if (emission.wasEmittedAsGlobal()) return; 792 793 const VarDecl &D = *emission.Variable; 794 QualType type = D.getType(); 795 796 // If this local has an initializer, emit it now. 797 const Expr *Init = D.getInit(); 798 799 // If we are at an unreachable point, we don't need to emit the initializer 800 // unless it contains a label. 801 if (!HaveInsertPoint()) { 802 if (!Init || !ContainsLabel(Init)) return; 803 EnsureInsertPoint(); 804 } 805 806 CharUnits alignment = emission.Alignment; 807 808 if (emission.IsByRef) { 809 llvm::Value *V; 810 811 BlockFieldFlags fieldFlags; 812 bool fieldNeedsCopyDispose = false; 813 814 if (type->isBlockPointerType()) { 815 fieldFlags |= BLOCK_FIELD_IS_BLOCK; 816 fieldNeedsCopyDispose = true; 817 } else if (getContext().isObjCNSObjectType(type) || 818 type->isObjCObjectPointerType()) { 819 fieldFlags |= BLOCK_FIELD_IS_OBJECT; 820 fieldNeedsCopyDispose = true; 821 } else if (getLangOptions().CPlusPlus) { 822 if (getContext().getBlockVarCopyInits(&D)) 823 fieldNeedsCopyDispose = true; 824 else if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) 825 fieldNeedsCopyDispose = !record->hasTrivialDestructor(); 826 } 827 828 llvm::Value *addr = emission.Address; 829 830 // FIXME: Someone double check this. 831 if (type.isObjCGCWeak()) 832 fieldFlags |= BLOCK_FIELD_IS_WEAK; 833 834 // Initialize the 'isa', which is just 0 or 1. 835 int isa = 0; 836 if (fieldFlags & BLOCK_FIELD_IS_WEAK) 837 isa = 1; 838 V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa"); 839 Builder.CreateStore(V, Builder.CreateStructGEP(addr, 0, "byref.isa")); 840 841 // Store the address of the variable into its own forwarding pointer. 842 Builder.CreateStore(addr, 843 Builder.CreateStructGEP(addr, 1, "byref.forwarding")); 844 845 // Blocks ABI: 846 // c) the flags field is set to either 0 if no helper functions are 847 // needed or BLOCK_HAS_COPY_DISPOSE if they are, 848 BlockFlags flags; 849 if (fieldNeedsCopyDispose) flags |= BLOCK_HAS_COPY_DISPOSE; 850 Builder.CreateStore(llvm::ConstantInt::get(IntTy, flags.getBitMask()), 851 Builder.CreateStructGEP(addr, 2, "byref.flags")); 852 853 const llvm::Type *V1; 854 V1 = cast<llvm::PointerType>(addr->getType())->getElementType(); 855 V = llvm::ConstantInt::get(IntTy, CGM.GetTargetTypeStoreSize(V1).getQuantity()); 856 Builder.CreateStore(V, Builder.CreateStructGEP(addr, 3, "byref.size")); 857 858 if (fieldNeedsCopyDispose) { 859 llvm::Value *copy_helper = Builder.CreateStructGEP(addr, 4); 860 Builder.CreateStore(CGM.BuildbyrefCopyHelper(addr->getType(), fieldFlags, 861 alignment.getQuantity(), &D), 862 copy_helper); 863 864 llvm::Value *destroy_helper = Builder.CreateStructGEP(addr, 5); 865 Builder.CreateStore(CGM.BuildbyrefDestroyHelper(addr->getType(), 866 fieldFlags, 867 alignment.getQuantity(), 868 &D), 869 destroy_helper); 870 } 871 } 872 873 if (!Init) return; 874 875 // Check whether this is a byref variable that's potentially 876 // captured and moved by its own initializer. If so, we'll need to 877 // emit the initializer first, then copy into the variable. 878 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 879 880 llvm::Value *Loc = 881 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 882 883 if (!emission.IsConstantAggregate) 884 return EmitExprAsInit(Init, &D, Loc, alignment, capturedByInit); 885 886 // If this is a simple aggregate initialization, we can optimize it 887 // in various ways. 888 assert(!capturedByInit && "constant init contains a capturing block?"); 889 890 bool isVolatile = type.isVolatileQualified(); 891 892 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 893 assert(constant != 0 && "Wasn't a simple constant init?"); 894 895 llvm::Value *SizeVal = 896 llvm::ConstantInt::get(IntPtrTy, 897 getContext().getTypeSizeInChars(type).getQuantity()); 898 899 const llvm::Type *BP = Int8PtrTy; 900 if (Loc->getType() != BP) 901 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 902 903 // If the initializer is all or mostly zeros, codegen with memset then do 904 // a few stores afterward. 905 if (shouldUseMemSetPlusStoresToInitialize(constant, 906 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 907 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 908 alignment.getQuantity(), isVolatile); 909 if (!constant->isNullValue()) { 910 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 911 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 912 } 913 } else { 914 // Otherwise, create a temporary global with the initializer then 915 // memcpy from the global to the alloca. 916 std::string Name = GetStaticDeclName(*this, D, "."); 917 llvm::GlobalVariable *GV = 918 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 919 llvm::GlobalValue::InternalLinkage, 920 constant, Name, 0, false, 0); 921 GV->setAlignment(alignment.getQuantity()); 922 923 llvm::Value *SrcPtr = GV; 924 if (SrcPtr->getType() != BP) 925 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 926 927 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 928 isVolatile); 929 } 930} 931 932/// Emit an expression as an initializer for a variable at the given 933/// location. The expression is not necessarily the normal 934/// initializer for the variable, and the address is not necessarily 935/// its normal location. 936/// 937/// \param init the initializing expression 938/// \param var the variable to act as if we're initializing 939/// \param loc the address to initialize; its type is a pointer 940/// to the LLVM mapping of the variable's type 941/// \param alignment the alignment of the address 942/// \param capturedByInit true if the variable is a __block variable 943/// whose address is potentially changed by the initializer 944void CodeGenFunction::EmitExprAsInit(const Expr *init, 945 const VarDecl *var, 946 llvm::Value *loc, 947 CharUnits alignment, 948 bool capturedByInit) { 949 QualType type = var->getType(); 950 bool isVolatile = type.isVolatileQualified(); 951 952 if (type->isReferenceType()) { 953 RValue RV = EmitReferenceBindingToExpr(init, var); 954 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 955 EmitStoreOfScalar(RV.getScalarVal(), loc, false, 956 alignment.getQuantity(), type); 957 } else if (!hasAggregateLLVMType(type)) { 958 llvm::Value *V = EmitScalarExpr(init); 959 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 960 EmitStoreOfScalar(V, loc, isVolatile, alignment.getQuantity(), type); 961 } else if (type->isAnyComplexType()) { 962 ComplexPairTy complex = EmitComplexExpr(init); 963 if (capturedByInit) loc = BuildBlockByrefAddress(loc, var); 964 StoreComplexToAddr(complex, loc, isVolatile); 965 } else { 966 // TODO: how can we delay here if D is captured by its initializer? 967 EmitAggExpr(init, AggValueSlot::forAddr(loc, isVolatile, true, false)); 968 } 969} 970 971void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 972 assert(emission.Variable && "emission was not valid!"); 973 974 // If this was emitted as a global constant, we're done. 975 if (emission.wasEmittedAsGlobal()) return; 976 977 const VarDecl &D = *emission.Variable; 978 979 // Handle C++ destruction of variables. 980 if (getLangOptions().CPlusPlus) { 981 QualType type = D.getType(); 982 QualType baseType = getContext().getBaseElementType(type); 983 if (const RecordType *RT = baseType->getAs<RecordType>()) { 984 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 985 if (!ClassDecl->hasTrivialDestructor()) { 986 // Note: We suppress the destructor call when the corresponding NRVO 987 // flag has been set. 988 989 // Note that for __block variables, we want to destroy the 990 // original stack object, not the possible forwarded object. 991 llvm::Value *Loc = emission.getObjectAddress(*this); 992 993 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 994 assert(D && "EmitLocalBlockVarDecl - destructor is nul"); 995 996 if (type != baseType) { 997 const ConstantArrayType *Array = 998 getContext().getAsConstantArrayType(type); 999 assert(Array && "types changed without array?"); 1000 EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup, 1001 D, Array, Loc); 1002 } else { 1003 EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup, 1004 D, emission.NRVOFlag, Loc); 1005 } 1006 } 1007 } 1008 } 1009 1010 // Handle the cleanup attribute. 1011 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1012 const FunctionDecl *FD = CA->getFunctionDecl(); 1013 1014 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1015 assert(F && "Could not find function!"); 1016 1017 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1018 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1019 } 1020 1021 // If this is a block variable, call _Block_object_destroy 1022 // (on the unforwarded address). 1023 if (emission.IsByRef && 1024 CGM.getLangOptions().getGCMode() != LangOptions::GCOnly) 1025 EHStack.pushCleanup<CallBlockRelease>(NormalAndEHCleanup, emission.Address); 1026} 1027 1028/// Emit an alloca (or GlobalValue depending on target) 1029/// for the specified parameter and set up LocalDeclMap. 1030void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1031 unsigned ArgNo) { 1032 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1033 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1034 "Invalid argument to EmitParmDecl"); 1035 1036 Arg->setName(D.getName()); 1037 1038 // Use better IR generation for certain implicit parameters. 1039 if (isa<ImplicitParamDecl>(D)) { 1040 // The only implicit argument a block has is its literal. 1041 if (BlockInfo) { 1042 LocalDeclMap[&D] = Arg; 1043 1044 if (CGDebugInfo *DI = getDebugInfo()) { 1045 DI->setLocation(D.getLocation()); 1046 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1047 } 1048 1049 return; 1050 } 1051 } 1052 1053 QualType Ty = D.getType(); 1054 1055 llvm::Value *DeclPtr; 1056 // If this is an aggregate or variable sized value, reuse the input pointer. 1057 if (!Ty->isConstantSizeType() || 1058 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1059 DeclPtr = Arg; 1060 } else { 1061 // Otherwise, create a temporary to hold the value. 1062 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 1063 1064 // Store the initial value into the alloca. 1065 EmitStoreOfScalar(Arg, DeclPtr, Ty.isVolatileQualified(), 1066 getContext().getDeclAlign(&D).getQuantity(), Ty, 1067 CGM.getTBAAInfo(Ty)); 1068 } 1069 1070 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1071 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1072 DMEntry = DeclPtr; 1073 1074 // Emit debug info for param declaration. 1075 if (CGDebugInfo *DI = getDebugInfo()) { 1076 DI->setLocation(D.getLocation()); 1077 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1078 } 1079} 1080