CGDecl.cpp revision 651f13cea278ec967336033dd032faef0e9fc2ec
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Decl nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CGOpenCLRuntime.h"
17#include "CodeGenModule.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/Type.h"
30using namespace clang;
31using namespace CodeGen;
32
33
34void CodeGenFunction::EmitDecl(const Decl &D) {
35  switch (D.getKind()) {
36  case Decl::TranslationUnit:
37  case Decl::Namespace:
38  case Decl::UnresolvedUsingTypename:
39  case Decl::ClassTemplateSpecialization:
40  case Decl::ClassTemplatePartialSpecialization:
41  case Decl::VarTemplateSpecialization:
42  case Decl::VarTemplatePartialSpecialization:
43  case Decl::TemplateTypeParm:
44  case Decl::UnresolvedUsingValue:
45  case Decl::NonTypeTemplateParm:
46  case Decl::CXXMethod:
47  case Decl::CXXConstructor:
48  case Decl::CXXDestructor:
49  case Decl::CXXConversion:
50  case Decl::Field:
51  case Decl::MSProperty:
52  case Decl::IndirectField:
53  case Decl::ObjCIvar:
54  case Decl::ObjCAtDefsField:
55  case Decl::ParmVar:
56  case Decl::ImplicitParam:
57  case Decl::ClassTemplate:
58  case Decl::VarTemplate:
59  case Decl::FunctionTemplate:
60  case Decl::TypeAliasTemplate:
61  case Decl::TemplateTemplateParm:
62  case Decl::ObjCMethod:
63  case Decl::ObjCCategory:
64  case Decl::ObjCProtocol:
65  case Decl::ObjCInterface:
66  case Decl::ObjCCategoryImpl:
67  case Decl::ObjCImplementation:
68  case Decl::ObjCProperty:
69  case Decl::ObjCCompatibleAlias:
70  case Decl::AccessSpec:
71  case Decl::LinkageSpec:
72  case Decl::ObjCPropertyImpl:
73  case Decl::FileScopeAsm:
74  case Decl::Friend:
75  case Decl::FriendTemplate:
76  case Decl::Block:
77  case Decl::Captured:
78  case Decl::ClassScopeFunctionSpecialization:
79  case Decl::UsingShadow:
80    llvm_unreachable("Declaration should not be in declstmts!");
81  case Decl::Function:  // void X();
82  case Decl::Record:    // struct/union/class X;
83  case Decl::Enum:      // enum X;
84  case Decl::EnumConstant: // enum ? { X = ? }
85  case Decl::CXXRecord: // struct/union/class X; [C++]
86  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87  case Decl::Label:        // __label__ x;
88  case Decl::Import:
89  case Decl::OMPThreadPrivate:
90  case Decl::Empty:
91    // None of these decls require codegen support.
92    return;
93
94  case Decl::NamespaceAlias:
95    if (CGDebugInfo *DI = getDebugInfo())
96        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97    return;
98  case Decl::Using:          // using X; [C++]
99    if (CGDebugInfo *DI = getDebugInfo())
100        DI->EmitUsingDecl(cast<UsingDecl>(D));
101    return;
102  case Decl::UsingDirective: // using namespace X; [C++]
103    if (CGDebugInfo *DI = getDebugInfo())
104      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105    return;
106  case Decl::Var: {
107    const VarDecl &VD = cast<VarDecl>(D);
108    assert(VD.isLocalVarDecl() &&
109           "Should not see file-scope variables inside a function!");
110    return EmitVarDecl(VD);
111  }
112
113  case Decl::Typedef:      // typedef int X;
114  case Decl::TypeAlias: {  // using X = int; [C++0x]
115    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116    QualType Ty = TD.getUnderlyingType();
117
118    if (Ty->isVariablyModifiedType())
119      EmitVariablyModifiedType(Ty);
120  }
121  }
122}
123
124/// EmitVarDecl - This method handles emission of any variable declaration
125/// inside a function, including static vars etc.
126void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127  if (D.isStaticLocal()) {
128    llvm::GlobalValue::LinkageTypes Linkage =
129      llvm::GlobalValue::InternalLinkage;
130
131    // If the variable is externally visible, it must have weak linkage so it
132    // can be uniqued.
133    if (D.isExternallyVisible()) {
134      Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
135
136      // FIXME: We need to force the emission/use of a guard variable for
137      // some variables even if we can constant-evaluate them because
138      // we can't guarantee every translation unit will constant-evaluate them.
139    }
140
141    return EmitStaticVarDecl(D, Linkage);
142  }
143
144  if (D.hasExternalStorage())
145    // Don't emit it now, allow it to be emitted lazily on its first use.
146    return;
147
148  if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
149    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
150
151  assert(D.hasLocalStorage());
152  return EmitAutoVarDecl(D);
153}
154
155static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
156                                     const char *Separator) {
157  CodeGenModule &CGM = CGF.CGM;
158  if (CGF.getLangOpts().CPlusPlus) {
159    StringRef Name = CGM.getMangledName(&D);
160    return Name.str();
161  }
162
163  std::string ContextName;
164  if (!CGF.CurFuncDecl) {
165    // Better be in a block declared in global scope.
166    const NamedDecl *ND = cast<NamedDecl>(&D);
167    const DeclContext *DC = ND->getDeclContext();
168    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
169      MangleBuffer Name;
170      CGM.getBlockMangledName(GlobalDecl(), Name, BD);
171      ContextName = Name.getString();
172    }
173    else
174      llvm_unreachable("Unknown context for block static var decl");
175  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
176    StringRef Name = CGM.getMangledName(FD);
177    ContextName = Name.str();
178  } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
179    ContextName = CGF.CurFn->getName();
180  else
181    llvm_unreachable("Unknown context for static var decl");
182
183  return ContextName + Separator + D.getNameAsString();
184}
185
186llvm::Constant *
187CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
188                                     const char *Separator,
189                                     llvm::GlobalValue::LinkageTypes Linkage) {
190  QualType Ty = D.getType();
191  assert(Ty->isConstantSizeType() && "VLAs can't be static");
192
193  // Use the label if the variable is renamed with the asm-label extension.
194  std::string Name;
195  if (D.hasAttr<AsmLabelAttr>())
196    Name = CGM.getMangledName(&D);
197  else
198    Name = GetStaticDeclName(*this, D, Separator);
199
200  llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
201  unsigned AddrSpace =
202   CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
203  llvm::GlobalVariable *GV =
204    new llvm::GlobalVariable(CGM.getModule(), LTy,
205                             Ty.isConstant(getContext()), Linkage,
206                             CGM.EmitNullConstant(D.getType()), Name, 0,
207                             llvm::GlobalVariable::NotThreadLocal,
208                             AddrSpace);
209  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
210  CGM.setGlobalVisibility(GV, &D);
211
212  if (D.getTLSKind())
213    CGM.setTLSMode(GV, D);
214
215  // Make sure the result is of the correct type.
216  unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty);
217  if (AddrSpace != ExpectedAddrSpace) {
218    llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
219    return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
220  }
221
222  return GV;
223}
224
225/// hasNontrivialDestruction - Determine whether a type's destruction is
226/// non-trivial. If so, and the variable uses static initialization, we must
227/// register its destructor to run on exit.
228static bool hasNontrivialDestruction(QualType T) {
229  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
230  return RD && !RD->hasTrivialDestructor();
231}
232
233/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
234/// global variable that has already been created for it.  If the initializer
235/// has a different type than GV does, this may free GV and return a different
236/// one.  Otherwise it just returns GV.
237llvm::GlobalVariable *
238CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
239                                               llvm::GlobalVariable *GV) {
240  llvm::Constant *Init = CGM.EmitConstantInit(D, this);
241
242  // If constant emission failed, then this should be a C++ static
243  // initializer.
244  if (!Init) {
245    if (!getLangOpts().CPlusPlus)
246      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
247    else if (Builder.GetInsertBlock()) {
248      // Since we have a static initializer, this global variable can't
249      // be constant.
250      GV->setConstant(false);
251
252      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
253    }
254    return GV;
255  }
256
257  // The initializer may differ in type from the global. Rewrite
258  // the global to match the initializer.  (We have to do this
259  // because some types, like unions, can't be completely represented
260  // in the LLVM type system.)
261  if (GV->getType()->getElementType() != Init->getType()) {
262    llvm::GlobalVariable *OldGV = GV;
263
264    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
265                                  OldGV->isConstant(),
266                                  OldGV->getLinkage(), Init, "",
267                                  /*InsertBefore*/ OldGV,
268                                  OldGV->getThreadLocalMode(),
269                           CGM.getContext().getTargetAddressSpace(D.getType()));
270    GV->setVisibility(OldGV->getVisibility());
271
272    // Steal the name of the old global
273    GV->takeName(OldGV);
274
275    // Replace all uses of the old global with the new global
276    llvm::Constant *NewPtrForOldDecl =
277    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
278    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
279
280    // Erase the old global, since it is no longer used.
281    OldGV->eraseFromParent();
282  }
283
284  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
285  GV->setInitializer(Init);
286
287  if (hasNontrivialDestruction(D.getType())) {
288    // We have a constant initializer, but a nontrivial destructor. We still
289    // need to perform a guarded "initialization" in order to register the
290    // destructor.
291    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
292  }
293
294  return GV;
295}
296
297void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
298                                      llvm::GlobalValue::LinkageTypes Linkage) {
299  llvm::Value *&DMEntry = LocalDeclMap[&D];
300  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
301
302  // Check to see if we already have a global variable for this
303  // declaration.  This can happen when double-emitting function
304  // bodies, e.g. with complete and base constructors.
305  llvm::Constant *addr =
306    CGM.getStaticLocalDeclAddress(&D);
307
308  if (!addr)
309    addr = CreateStaticVarDecl(D, ".", Linkage);
310
311  // Store into LocalDeclMap before generating initializer to handle
312  // circular references.
313  DMEntry = addr;
314  CGM.setStaticLocalDeclAddress(&D, addr);
315
316  // We can't have a VLA here, but we can have a pointer to a VLA,
317  // even though that doesn't really make any sense.
318  // Make sure to evaluate VLA bounds now so that we have them for later.
319  if (D.getType()->isVariablyModifiedType())
320    EmitVariablyModifiedType(D.getType());
321
322  // Save the type in case adding the initializer forces a type change.
323  llvm::Type *expectedType = addr->getType();
324
325  llvm::GlobalVariable *var =
326    cast<llvm::GlobalVariable>(addr->stripPointerCasts());
327  // If this value has an initializer, emit it.
328  if (D.getInit())
329    var = AddInitializerToStaticVarDecl(D, var);
330
331  var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
332
333  if (D.hasAttr<AnnotateAttr>())
334    CGM.AddGlobalAnnotations(&D, var);
335
336  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
337    var->setSection(SA->getName());
338
339  if (D.hasAttr<UsedAttr>())
340    CGM.addUsedGlobal(var);
341
342  // We may have to cast the constant because of the initializer
343  // mismatch above.
344  //
345  // FIXME: It is really dangerous to store this in the map; if anyone
346  // RAUW's the GV uses of this constant will be invalid.
347  llvm::Constant *castedAddr =
348    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
349  DMEntry = castedAddr;
350  CGM.setStaticLocalDeclAddress(&D, castedAddr);
351
352  // Emit global variable debug descriptor for static vars.
353  CGDebugInfo *DI = getDebugInfo();
354  if (DI &&
355      CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
356    DI->setLocation(D.getLocation());
357    DI->EmitGlobalVariable(var, &D);
358  }
359}
360
361namespace {
362  struct DestroyObject : EHScopeStack::Cleanup {
363    DestroyObject(llvm::Value *addr, QualType type,
364                  CodeGenFunction::Destroyer *destroyer,
365                  bool useEHCleanupForArray)
366      : addr(addr), type(type), destroyer(destroyer),
367        useEHCleanupForArray(useEHCleanupForArray) {}
368
369    llvm::Value *addr;
370    QualType type;
371    CodeGenFunction::Destroyer *destroyer;
372    bool useEHCleanupForArray;
373
374    void Emit(CodeGenFunction &CGF, Flags flags) override {
375      // Don't use an EH cleanup recursively from an EH cleanup.
376      bool useEHCleanupForArray =
377        flags.isForNormalCleanup() && this->useEHCleanupForArray;
378
379      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
380    }
381  };
382
383  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
384    DestroyNRVOVariable(llvm::Value *addr,
385                        const CXXDestructorDecl *Dtor,
386                        llvm::Value *NRVOFlag)
387      : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
388
389    const CXXDestructorDecl *Dtor;
390    llvm::Value *NRVOFlag;
391    llvm::Value *Loc;
392
393    void Emit(CodeGenFunction &CGF, Flags flags) override {
394      // Along the exceptions path we always execute the dtor.
395      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
396
397      llvm::BasicBlock *SkipDtorBB = 0;
398      if (NRVO) {
399        // If we exited via NRVO, we skip the destructor call.
400        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
401        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
402        llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
403        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
404        CGF.EmitBlock(RunDtorBB);
405      }
406
407      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
408                                /*ForVirtualBase=*/false,
409                                /*Delegating=*/false,
410                                Loc);
411
412      if (NRVO) CGF.EmitBlock(SkipDtorBB);
413    }
414  };
415
416  struct CallStackRestore : EHScopeStack::Cleanup {
417    llvm::Value *Stack;
418    CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
419    void Emit(CodeGenFunction &CGF, Flags flags) override {
420      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
421      llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
422      CGF.Builder.CreateCall(F, V);
423    }
424  };
425
426  struct ExtendGCLifetime : EHScopeStack::Cleanup {
427    const VarDecl &Var;
428    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
429
430    void Emit(CodeGenFunction &CGF, Flags flags) override {
431      // Compute the address of the local variable, in case it's a
432      // byref or something.
433      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
434                      Var.getType(), VK_LValue, SourceLocation());
435      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
436                                                SourceLocation());
437      CGF.EmitExtendGCLifetime(value);
438    }
439  };
440
441  struct CallCleanupFunction : EHScopeStack::Cleanup {
442    llvm::Constant *CleanupFn;
443    const CGFunctionInfo &FnInfo;
444    const VarDecl &Var;
445
446    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
447                        const VarDecl *Var)
448      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
449
450    void Emit(CodeGenFunction &CGF, Flags flags) override {
451      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
452                      Var.getType(), VK_LValue, SourceLocation());
453      // Compute the address of the local variable, in case it's a byref
454      // or something.
455      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
456
457      // In some cases, the type of the function argument will be different from
458      // the type of the pointer. An example of this is
459      // void f(void* arg);
460      // __attribute__((cleanup(f))) void *g;
461      //
462      // To fix this we insert a bitcast here.
463      QualType ArgTy = FnInfo.arg_begin()->type;
464      llvm::Value *Arg =
465        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
466
467      CallArgList Args;
468      Args.add(RValue::get(Arg),
469               CGF.getContext().getPointerType(Var.getType()));
470      CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
471    }
472  };
473
474  /// A cleanup to call @llvm.lifetime.end.
475  class CallLifetimeEnd : public EHScopeStack::Cleanup {
476    llvm::Value *Addr;
477    llvm::Value *Size;
478  public:
479    CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
480      : Addr(addr), Size(size) {}
481
482    void Emit(CodeGenFunction &CGF, Flags flags) override {
483      llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
484      CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
485                              Size, castAddr)
486        ->setDoesNotThrow();
487    }
488  };
489}
490
491/// EmitAutoVarWithLifetime - Does the setup required for an automatic
492/// variable with lifetime.
493static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
494                                    llvm::Value *addr,
495                                    Qualifiers::ObjCLifetime lifetime) {
496  switch (lifetime) {
497  case Qualifiers::OCL_None:
498    llvm_unreachable("present but none");
499
500  case Qualifiers::OCL_ExplicitNone:
501    // nothing to do
502    break;
503
504  case Qualifiers::OCL_Strong: {
505    CodeGenFunction::Destroyer *destroyer =
506      (var.hasAttr<ObjCPreciseLifetimeAttr>()
507       ? CodeGenFunction::destroyARCStrongPrecise
508       : CodeGenFunction::destroyARCStrongImprecise);
509
510    CleanupKind cleanupKind = CGF.getARCCleanupKind();
511    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
512                    cleanupKind & EHCleanup);
513    break;
514  }
515  case Qualifiers::OCL_Autoreleasing:
516    // nothing to do
517    break;
518
519  case Qualifiers::OCL_Weak:
520    // __weak objects always get EH cleanups; otherwise, exceptions
521    // could cause really nasty crashes instead of mere leaks.
522    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
523                    CodeGenFunction::destroyARCWeak,
524                    /*useEHCleanup*/ true);
525    break;
526  }
527}
528
529static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
530  if (const Expr *e = dyn_cast<Expr>(s)) {
531    // Skip the most common kinds of expressions that make
532    // hierarchy-walking expensive.
533    s = e = e->IgnoreParenCasts();
534
535    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
536      return (ref->getDecl() == &var);
537    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
538      const BlockDecl *block = be->getBlockDecl();
539      for (const auto &I : block->captures()) {
540        if (I.getVariable() == &var)
541          return true;
542      }
543    }
544  }
545
546  for (Stmt::const_child_range children = s->children(); children; ++children)
547    // children might be null; as in missing decl or conditional of an if-stmt.
548    if ((*children) && isAccessedBy(var, *children))
549      return true;
550
551  return false;
552}
553
554static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
555  if (!decl) return false;
556  if (!isa<VarDecl>(decl)) return false;
557  const VarDecl *var = cast<VarDecl>(decl);
558  return isAccessedBy(*var, e);
559}
560
561static void drillIntoBlockVariable(CodeGenFunction &CGF,
562                                   LValue &lvalue,
563                                   const VarDecl *var) {
564  lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
565}
566
567void CodeGenFunction::EmitScalarInit(const Expr *init,
568                                     const ValueDecl *D,
569                                     LValue lvalue,
570                                     bool capturedByInit) {
571  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
572  if (!lifetime) {
573    llvm::Value *value = EmitScalarExpr(init);
574    if (capturedByInit)
575      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
576    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
577    return;
578  }
579
580  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
581    init = DIE->getExpr();
582
583  // If we're emitting a value with lifetime, we have to do the
584  // initialization *before* we leave the cleanup scopes.
585  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
586    enterFullExpression(ewc);
587    init = ewc->getSubExpr();
588  }
589  CodeGenFunction::RunCleanupsScope Scope(*this);
590
591  // We have to maintain the illusion that the variable is
592  // zero-initialized.  If the variable might be accessed in its
593  // initializer, zero-initialize before running the initializer, then
594  // actually perform the initialization with an assign.
595  bool accessedByInit = false;
596  if (lifetime != Qualifiers::OCL_ExplicitNone)
597    accessedByInit = (capturedByInit || isAccessedBy(D, init));
598  if (accessedByInit) {
599    LValue tempLV = lvalue;
600    // Drill down to the __block object if necessary.
601    if (capturedByInit) {
602      // We can use a simple GEP for this because it can't have been
603      // moved yet.
604      tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
605                                   getByRefValueLLVMField(cast<VarDecl>(D))));
606    }
607
608    llvm::PointerType *ty
609      = cast<llvm::PointerType>(tempLV.getAddress()->getType());
610    ty = cast<llvm::PointerType>(ty->getElementType());
611
612    llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
613
614    // If __weak, we want to use a barrier under certain conditions.
615    if (lifetime == Qualifiers::OCL_Weak)
616      EmitARCInitWeak(tempLV.getAddress(), zero);
617
618    // Otherwise just do a simple store.
619    else
620      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
621  }
622
623  // Emit the initializer.
624  llvm::Value *value = 0;
625
626  switch (lifetime) {
627  case Qualifiers::OCL_None:
628    llvm_unreachable("present but none");
629
630  case Qualifiers::OCL_ExplicitNone:
631    // nothing to do
632    value = EmitScalarExpr(init);
633    break;
634
635  case Qualifiers::OCL_Strong: {
636    value = EmitARCRetainScalarExpr(init);
637    break;
638  }
639
640  case Qualifiers::OCL_Weak: {
641    // No way to optimize a producing initializer into this.  It's not
642    // worth optimizing for, because the value will immediately
643    // disappear in the common case.
644    value = EmitScalarExpr(init);
645
646    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
647    if (accessedByInit)
648      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
649    else
650      EmitARCInitWeak(lvalue.getAddress(), value);
651    return;
652  }
653
654  case Qualifiers::OCL_Autoreleasing:
655    value = EmitARCRetainAutoreleaseScalarExpr(init);
656    break;
657  }
658
659  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
660
661  // If the variable might have been accessed by its initializer, we
662  // might have to initialize with a barrier.  We have to do this for
663  // both __weak and __strong, but __weak got filtered out above.
664  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
665    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
666    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
667    EmitARCRelease(oldValue, ARCImpreciseLifetime);
668    return;
669  }
670
671  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
672}
673
674/// EmitScalarInit - Initialize the given lvalue with the given object.
675void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
676  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
677  if (!lifetime)
678    return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
679
680  switch (lifetime) {
681  case Qualifiers::OCL_None:
682    llvm_unreachable("present but none");
683
684  case Qualifiers::OCL_ExplicitNone:
685    // nothing to do
686    break;
687
688  case Qualifiers::OCL_Strong:
689    init = EmitARCRetain(lvalue.getType(), init);
690    break;
691
692  case Qualifiers::OCL_Weak:
693    // Initialize and then skip the primitive store.
694    EmitARCInitWeak(lvalue.getAddress(), init);
695    return;
696
697  case Qualifiers::OCL_Autoreleasing:
698    init = EmitARCRetainAutorelease(lvalue.getType(), init);
699    break;
700  }
701
702  EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
703}
704
705/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
706/// non-zero parts of the specified initializer with equal or fewer than
707/// NumStores scalar stores.
708static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
709                                                unsigned &NumStores) {
710  // Zero and Undef never requires any extra stores.
711  if (isa<llvm::ConstantAggregateZero>(Init) ||
712      isa<llvm::ConstantPointerNull>(Init) ||
713      isa<llvm::UndefValue>(Init))
714    return true;
715  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
716      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
717      isa<llvm::ConstantExpr>(Init))
718    return Init->isNullValue() || NumStores--;
719
720  // See if we can emit each element.
721  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
722    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
723      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
724      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
725        return false;
726    }
727    return true;
728  }
729
730  if (llvm::ConstantDataSequential *CDS =
731        dyn_cast<llvm::ConstantDataSequential>(Init)) {
732    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
733      llvm::Constant *Elt = CDS->getElementAsConstant(i);
734      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
735        return false;
736    }
737    return true;
738  }
739
740  // Anything else is hard and scary.
741  return false;
742}
743
744/// emitStoresForInitAfterMemset - For inits that
745/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
746/// stores that would be required.
747static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
748                                         bool isVolatile, CGBuilderTy &Builder) {
749  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
750         "called emitStoresForInitAfterMemset for zero or undef value.");
751
752  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
753      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
754      isa<llvm::ConstantExpr>(Init)) {
755    Builder.CreateStore(Init, Loc, isVolatile);
756    return;
757  }
758
759  if (llvm::ConstantDataSequential *CDS =
760        dyn_cast<llvm::ConstantDataSequential>(Init)) {
761    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
762      llvm::Constant *Elt = CDS->getElementAsConstant(i);
763
764      // If necessary, get a pointer to the element and emit it.
765      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
766        emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
767                                     isVolatile, Builder);
768    }
769    return;
770  }
771
772  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
773         "Unknown value type!");
774
775  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
776    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
777
778    // If necessary, get a pointer to the element and emit it.
779    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
780      emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
781                                   isVolatile, Builder);
782  }
783}
784
785
786/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
787/// plus some stores to initialize a local variable instead of using a memcpy
788/// from a constant global.  It is beneficial to use memset if the global is all
789/// zeros, or mostly zeros and large.
790static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
791                                                  uint64_t GlobalSize) {
792  // If a global is all zeros, always use a memset.
793  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
794
795  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
796  // do it if it will require 6 or fewer scalar stores.
797  // TODO: Should budget depends on the size?  Avoiding a large global warrants
798  // plopping in more stores.
799  unsigned StoreBudget = 6;
800  uint64_t SizeLimit = 32;
801
802  return GlobalSize > SizeLimit &&
803         canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
804}
805
806/// Should we use the LLVM lifetime intrinsics for the given local variable?
807static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
808                                     unsigned Size) {
809  // Always emit lifetime markers in -fsanitize=use-after-scope mode.
810  if (CGF.getLangOpts().Sanitize.UseAfterScope)
811    return true;
812  // For now, only in optimized builds.
813  if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
814    return false;
815
816  // Limit the size of marked objects to 32 bytes. We don't want to increase
817  // compile time by marking tiny objects.
818  unsigned SizeThreshold = 32;
819
820  return Size > SizeThreshold;
821}
822
823
824/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
825/// variable declaration with auto, register, or no storage class specifier.
826/// These turn into simple stack objects, or GlobalValues depending on target.
827void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
828  AutoVarEmission emission = EmitAutoVarAlloca(D);
829  EmitAutoVarInit(emission);
830  EmitAutoVarCleanups(emission);
831}
832
833/// EmitAutoVarAlloca - Emit the alloca and debug information for a
834/// local variable.  Does not emit initialization or destruction.
835CodeGenFunction::AutoVarEmission
836CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
837  QualType Ty = D.getType();
838
839  AutoVarEmission emission(D);
840
841  bool isByRef = D.hasAttr<BlocksAttr>();
842  emission.IsByRef = isByRef;
843
844  CharUnits alignment = getContext().getDeclAlign(&D);
845  emission.Alignment = alignment;
846
847  // If the type is variably-modified, emit all the VLA sizes for it.
848  if (Ty->isVariablyModifiedType())
849    EmitVariablyModifiedType(Ty);
850
851  llvm::Value *DeclPtr;
852  if (Ty->isConstantSizeType()) {
853    bool NRVO = getLangOpts().ElideConstructors &&
854      D.isNRVOVariable();
855
856    // If this value is an array or struct with a statically determinable
857    // constant initializer, there are optimizations we can do.
858    //
859    // TODO: We should constant-evaluate the initializer of any variable,
860    // as long as it is initialized by a constant expression. Currently,
861    // isConstantInitializer produces wrong answers for structs with
862    // reference or bitfield members, and a few other cases, and checking
863    // for POD-ness protects us from some of these.
864    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
865        (D.isConstexpr() ||
866         ((Ty.isPODType(getContext()) ||
867           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
868          D.getInit()->isConstantInitializer(getContext(), false)))) {
869
870      // If the variable's a const type, and it's neither an NRVO
871      // candidate nor a __block variable and has no mutable members,
872      // emit it as a global instead.
873      if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
874          CGM.isTypeConstant(Ty, true)) {
875        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
876
877        emission.Address = 0; // signal this condition to later callbacks
878        assert(emission.wasEmittedAsGlobal());
879        return emission;
880      }
881
882      // Otherwise, tell the initialization code that we're in this case.
883      emission.IsConstantAggregate = true;
884    }
885
886    // A normal fixed sized variable becomes an alloca in the entry block,
887    // unless it's an NRVO variable.
888    llvm::Type *LTy = ConvertTypeForMem(Ty);
889
890    if (NRVO) {
891      // The named return value optimization: allocate this variable in the
892      // return slot, so that we can elide the copy when returning this
893      // variable (C++0x [class.copy]p34).
894      DeclPtr = ReturnValue;
895
896      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
897        if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
898          // Create a flag that is used to indicate when the NRVO was applied
899          // to this variable. Set it to zero to indicate that NRVO was not
900          // applied.
901          llvm::Value *Zero = Builder.getFalse();
902          llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
903          EnsureInsertPoint();
904          Builder.CreateStore(Zero, NRVOFlag);
905
906          // Record the NRVO flag for this variable.
907          NRVOFlags[&D] = NRVOFlag;
908          emission.NRVOFlag = NRVOFlag;
909        }
910      }
911    } else {
912      if (isByRef)
913        LTy = BuildByRefType(&D);
914
915      llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
916      Alloc->setName(D.getName());
917
918      CharUnits allocaAlignment = alignment;
919      if (isByRef)
920        allocaAlignment = std::max(allocaAlignment,
921            getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
922      Alloc->setAlignment(allocaAlignment.getQuantity());
923      DeclPtr = Alloc;
924
925      // Emit a lifetime intrinsic if meaningful.  There's no point
926      // in doing this if we don't have a valid insertion point (?).
927      uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
928      if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
929        llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
930
931        emission.SizeForLifetimeMarkers = sizeV;
932        llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
933        Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
934          ->setDoesNotThrow();
935      } else {
936        assert(!emission.useLifetimeMarkers());
937      }
938    }
939  } else {
940    EnsureInsertPoint();
941
942    if (!DidCallStackSave) {
943      // Save the stack.
944      llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
945
946      llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
947      llvm::Value *V = Builder.CreateCall(F);
948
949      Builder.CreateStore(V, Stack);
950
951      DidCallStackSave = true;
952
953      // Push a cleanup block and restore the stack there.
954      // FIXME: in general circumstances, this should be an EH cleanup.
955      pushStackRestore(NormalCleanup, Stack);
956    }
957
958    llvm::Value *elementCount;
959    QualType elementType;
960    std::tie(elementCount, elementType) = getVLASize(Ty);
961
962    llvm::Type *llvmTy = ConvertTypeForMem(elementType);
963
964    // Allocate memory for the array.
965    llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
966    vla->setAlignment(alignment.getQuantity());
967
968    DeclPtr = vla;
969  }
970
971  llvm::Value *&DMEntry = LocalDeclMap[&D];
972  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
973  DMEntry = DeclPtr;
974  emission.Address = DeclPtr;
975
976  // Emit debug info for local var declaration.
977  if (HaveInsertPoint())
978    if (CGDebugInfo *DI = getDebugInfo()) {
979      if (CGM.getCodeGenOpts().getDebugInfo()
980            >= CodeGenOptions::LimitedDebugInfo) {
981        DI->setLocation(D.getLocation());
982        DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
983      }
984    }
985
986  if (D.hasAttr<AnnotateAttr>())
987      EmitVarAnnotations(&D, emission.Address);
988
989  return emission;
990}
991
992/// Determines whether the given __block variable is potentially
993/// captured by the given expression.
994static bool isCapturedBy(const VarDecl &var, const Expr *e) {
995  // Skip the most common kinds of expressions that make
996  // hierarchy-walking expensive.
997  e = e->IgnoreParenCasts();
998
999  if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1000    const BlockDecl *block = be->getBlockDecl();
1001    for (const auto &I : block->captures()) {
1002      if (I.getVariable() == &var)
1003        return true;
1004    }
1005
1006    // No need to walk into the subexpressions.
1007    return false;
1008  }
1009
1010  if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1011    const CompoundStmt *CS = SE->getSubStmt();
1012    for (const auto *BI : CS->body())
1013      if (const auto *E = dyn_cast<Expr>(BI)) {
1014        if (isCapturedBy(var, E))
1015            return true;
1016      }
1017      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1018          // special case declarations
1019          for (const auto *I : DS->decls()) {
1020              if (const auto *VD = dyn_cast<VarDecl>((I))) {
1021                const Expr *Init = VD->getInit();
1022                if (Init && isCapturedBy(var, Init))
1023                  return true;
1024              }
1025          }
1026      }
1027      else
1028        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1029        // Later, provide code to poke into statements for capture analysis.
1030        return true;
1031    return false;
1032  }
1033
1034  for (Stmt::const_child_range children = e->children(); children; ++children)
1035    if (isCapturedBy(var, cast<Expr>(*children)))
1036      return true;
1037
1038  return false;
1039}
1040
1041/// \brief Determine whether the given initializer is trivial in the sense
1042/// that it requires no code to be generated.
1043static bool isTrivialInitializer(const Expr *Init) {
1044  if (!Init)
1045    return true;
1046
1047  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1048    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1049      if (Constructor->isTrivial() &&
1050          Constructor->isDefaultConstructor() &&
1051          !Construct->requiresZeroInitialization())
1052        return true;
1053
1054  return false;
1055}
1056void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1057  assert(emission.Variable && "emission was not valid!");
1058
1059  // If this was emitted as a global constant, we're done.
1060  if (emission.wasEmittedAsGlobal()) return;
1061
1062  const VarDecl &D = *emission.Variable;
1063  QualType type = D.getType();
1064
1065  // If this local has an initializer, emit it now.
1066  const Expr *Init = D.getInit();
1067
1068  // If we are at an unreachable point, we don't need to emit the initializer
1069  // unless it contains a label.
1070  if (!HaveInsertPoint()) {
1071    if (!Init || !ContainsLabel(Init)) return;
1072    EnsureInsertPoint();
1073  }
1074
1075  // Initialize the structure of a __block variable.
1076  if (emission.IsByRef)
1077    emitByrefStructureInit(emission);
1078
1079  if (isTrivialInitializer(Init))
1080    return;
1081
1082  CharUnits alignment = emission.Alignment;
1083
1084  // Check whether this is a byref variable that's potentially
1085  // captured and moved by its own initializer.  If so, we'll need to
1086  // emit the initializer first, then copy into the variable.
1087  bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1088
1089  llvm::Value *Loc =
1090    capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1091
1092  llvm::Constant *constant = 0;
1093  if (emission.IsConstantAggregate || D.isConstexpr()) {
1094    assert(!capturedByInit && "constant init contains a capturing block?");
1095    constant = CGM.EmitConstantInit(D, this);
1096  }
1097
1098  if (!constant) {
1099    LValue lv = MakeAddrLValue(Loc, type, alignment);
1100    lv.setNonGC(true);
1101    return EmitExprAsInit(Init, &D, lv, capturedByInit);
1102  }
1103
1104  if (!emission.IsConstantAggregate) {
1105    // For simple scalar/complex initialization, store the value directly.
1106    LValue lv = MakeAddrLValue(Loc, type, alignment);
1107    lv.setNonGC(true);
1108    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1109  }
1110
1111  // If this is a simple aggregate initialization, we can optimize it
1112  // in various ways.
1113  bool isVolatile = type.isVolatileQualified();
1114
1115  llvm::Value *SizeVal =
1116    llvm::ConstantInt::get(IntPtrTy,
1117                           getContext().getTypeSizeInChars(type).getQuantity());
1118
1119  llvm::Type *BP = Int8PtrTy;
1120  if (Loc->getType() != BP)
1121    Loc = Builder.CreateBitCast(Loc, BP);
1122
1123  // If the initializer is all or mostly zeros, codegen with memset then do
1124  // a few stores afterward.
1125  if (shouldUseMemSetPlusStoresToInitialize(constant,
1126                CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1127    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1128                         alignment.getQuantity(), isVolatile);
1129    // Zero and undef don't require a stores.
1130    if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1131      Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1132      emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1133    }
1134  } else {
1135    // Otherwise, create a temporary global with the initializer then
1136    // memcpy from the global to the alloca.
1137    std::string Name = GetStaticDeclName(*this, D, ".");
1138    llvm::GlobalVariable *GV =
1139      new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1140                               llvm::GlobalValue::PrivateLinkage,
1141                               constant, Name);
1142    GV->setAlignment(alignment.getQuantity());
1143    GV->setUnnamedAddr(true);
1144
1145    llvm::Value *SrcPtr = GV;
1146    if (SrcPtr->getType() != BP)
1147      SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1148
1149    Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1150                         isVolatile);
1151  }
1152}
1153
1154/// Emit an expression as an initializer for a variable at the given
1155/// location.  The expression is not necessarily the normal
1156/// initializer for the variable, and the address is not necessarily
1157/// its normal location.
1158///
1159/// \param init the initializing expression
1160/// \param var the variable to act as if we're initializing
1161/// \param loc the address to initialize; its type is a pointer
1162///   to the LLVM mapping of the variable's type
1163/// \param alignment the alignment of the address
1164/// \param capturedByInit true if the variable is a __block variable
1165///   whose address is potentially changed by the initializer
1166void CodeGenFunction::EmitExprAsInit(const Expr *init,
1167                                     const ValueDecl *D,
1168                                     LValue lvalue,
1169                                     bool capturedByInit) {
1170  QualType type = D->getType();
1171
1172  if (type->isReferenceType()) {
1173    RValue rvalue = EmitReferenceBindingToExpr(init);
1174    if (capturedByInit)
1175      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1176    EmitStoreThroughLValue(rvalue, lvalue, true);
1177    return;
1178  }
1179  switch (getEvaluationKind(type)) {
1180  case TEK_Scalar:
1181    EmitScalarInit(init, D, lvalue, capturedByInit);
1182    return;
1183  case TEK_Complex: {
1184    ComplexPairTy complex = EmitComplexExpr(init);
1185    if (capturedByInit)
1186      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1187    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1188    return;
1189  }
1190  case TEK_Aggregate:
1191    if (type->isAtomicType()) {
1192      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1193    } else {
1194      // TODO: how can we delay here if D is captured by its initializer?
1195      EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1196                                              AggValueSlot::IsDestructed,
1197                                         AggValueSlot::DoesNotNeedGCBarriers,
1198                                              AggValueSlot::IsNotAliased));
1199    }
1200    return;
1201  }
1202  llvm_unreachable("bad evaluation kind");
1203}
1204
1205/// Enter a destroy cleanup for the given local variable.
1206void CodeGenFunction::emitAutoVarTypeCleanup(
1207                            const CodeGenFunction::AutoVarEmission &emission,
1208                            QualType::DestructionKind dtorKind) {
1209  assert(dtorKind != QualType::DK_none);
1210
1211  // Note that for __block variables, we want to destroy the
1212  // original stack object, not the possibly forwarded object.
1213  llvm::Value *addr = emission.getObjectAddress(*this);
1214
1215  const VarDecl *var = emission.Variable;
1216  QualType type = var->getType();
1217
1218  CleanupKind cleanupKind = NormalAndEHCleanup;
1219  CodeGenFunction::Destroyer *destroyer = 0;
1220
1221  switch (dtorKind) {
1222  case QualType::DK_none:
1223    llvm_unreachable("no cleanup for trivially-destructible variable");
1224
1225  case QualType::DK_cxx_destructor:
1226    // If there's an NRVO flag on the emission, we need a different
1227    // cleanup.
1228    if (emission.NRVOFlag) {
1229      assert(!type->isArrayType());
1230      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1231      EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1232                                               emission.NRVOFlag);
1233      return;
1234    }
1235    break;
1236
1237  case QualType::DK_objc_strong_lifetime:
1238    // Suppress cleanups for pseudo-strong variables.
1239    if (var->isARCPseudoStrong()) return;
1240
1241    // Otherwise, consider whether to use an EH cleanup or not.
1242    cleanupKind = getARCCleanupKind();
1243
1244    // Use the imprecise destroyer by default.
1245    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1246      destroyer = CodeGenFunction::destroyARCStrongImprecise;
1247    break;
1248
1249  case QualType::DK_objc_weak_lifetime:
1250    break;
1251  }
1252
1253  // If we haven't chosen a more specific destroyer, use the default.
1254  if (!destroyer) destroyer = getDestroyer(dtorKind);
1255
1256  // Use an EH cleanup in array destructors iff the destructor itself
1257  // is being pushed as an EH cleanup.
1258  bool useEHCleanup = (cleanupKind & EHCleanup);
1259  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1260                                     useEHCleanup);
1261}
1262
1263void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1264  assert(emission.Variable && "emission was not valid!");
1265
1266  // If this was emitted as a global constant, we're done.
1267  if (emission.wasEmittedAsGlobal()) return;
1268
1269  // If we don't have an insertion point, we're done.  Sema prevents
1270  // us from jumping into any of these scopes anyway.
1271  if (!HaveInsertPoint()) return;
1272
1273  const VarDecl &D = *emission.Variable;
1274
1275  // Make sure we call @llvm.lifetime.end.  This needs to happen
1276  // *last*, so the cleanup needs to be pushed *first*.
1277  if (emission.useLifetimeMarkers()) {
1278    EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1279                                         emission.getAllocatedAddress(),
1280                                         emission.getSizeForLifetimeMarkers());
1281  }
1282
1283  // Check the type for a cleanup.
1284  if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1285    emitAutoVarTypeCleanup(emission, dtorKind);
1286
1287  // In GC mode, honor objc_precise_lifetime.
1288  if (getLangOpts().getGC() != LangOptions::NonGC &&
1289      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1290    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1291  }
1292
1293  // Handle the cleanup attribute.
1294  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1295    const FunctionDecl *FD = CA->getFunctionDecl();
1296
1297    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1298    assert(F && "Could not find function!");
1299
1300    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1301    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1302  }
1303
1304  // If this is a block variable, call _Block_object_destroy
1305  // (on the unforwarded address).
1306  if (emission.IsByRef)
1307    enterByrefCleanup(emission);
1308}
1309
1310CodeGenFunction::Destroyer *
1311CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1312  switch (kind) {
1313  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1314  case QualType::DK_cxx_destructor:
1315    return destroyCXXObject;
1316  case QualType::DK_objc_strong_lifetime:
1317    return destroyARCStrongPrecise;
1318  case QualType::DK_objc_weak_lifetime:
1319    return destroyARCWeak;
1320  }
1321  llvm_unreachable("Unknown DestructionKind");
1322}
1323
1324/// pushEHDestroy - Push the standard destructor for the given type as
1325/// an EH-only cleanup.
1326void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1327                                  llvm::Value *addr, QualType type) {
1328  assert(dtorKind && "cannot push destructor for trivial type");
1329  assert(needsEHCleanup(dtorKind));
1330
1331  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1332}
1333
1334/// pushDestroy - Push the standard destructor for the given type as
1335/// at least a normal cleanup.
1336void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1337                                  llvm::Value *addr, QualType type) {
1338  assert(dtorKind && "cannot push destructor for trivial type");
1339
1340  CleanupKind cleanupKind = getCleanupKind(dtorKind);
1341  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1342              cleanupKind & EHCleanup);
1343}
1344
1345void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1346                                  QualType type, Destroyer *destroyer,
1347                                  bool useEHCleanupForArray) {
1348  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1349                                     destroyer, useEHCleanupForArray);
1350}
1351
1352void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1353  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1354}
1355
1356void CodeGenFunction::pushLifetimeExtendedDestroy(
1357    CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1358    Destroyer *destroyer, bool useEHCleanupForArray) {
1359  assert(!isInConditionalBranch() &&
1360         "performing lifetime extension from within conditional");
1361
1362  // Push an EH-only cleanup for the object now.
1363  // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1364  // around in case a temporary's destructor throws an exception.
1365  if (cleanupKind & EHCleanup)
1366    EHStack.pushCleanup<DestroyObject>(
1367        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1368        destroyer, useEHCleanupForArray);
1369
1370  // Remember that we need to push a full cleanup for the object at the
1371  // end of the full-expression.
1372  pushCleanupAfterFullExpr<DestroyObject>(
1373      cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1374}
1375
1376/// emitDestroy - Immediately perform the destruction of the given
1377/// object.
1378///
1379/// \param addr - the address of the object; a type*
1380/// \param type - the type of the object; if an array type, all
1381///   objects are destroyed in reverse order
1382/// \param destroyer - the function to call to destroy individual
1383///   elements
1384/// \param useEHCleanupForArray - whether an EH cleanup should be
1385///   used when destroying array elements, in case one of the
1386///   destructions throws an exception
1387void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1388                                  Destroyer *destroyer,
1389                                  bool useEHCleanupForArray) {
1390  const ArrayType *arrayType = getContext().getAsArrayType(type);
1391  if (!arrayType)
1392    return destroyer(*this, addr, type);
1393
1394  llvm::Value *begin = addr;
1395  llvm::Value *length = emitArrayLength(arrayType, type, begin);
1396
1397  // Normally we have to check whether the array is zero-length.
1398  bool checkZeroLength = true;
1399
1400  // But if the array length is constant, we can suppress that.
1401  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1402    // ...and if it's constant zero, we can just skip the entire thing.
1403    if (constLength->isZero()) return;
1404    checkZeroLength = false;
1405  }
1406
1407  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1408  emitArrayDestroy(begin, end, type, destroyer,
1409                   checkZeroLength, useEHCleanupForArray);
1410}
1411
1412/// emitArrayDestroy - Destroys all the elements of the given array,
1413/// beginning from last to first.  The array cannot be zero-length.
1414///
1415/// \param begin - a type* denoting the first element of the array
1416/// \param end - a type* denoting one past the end of the array
1417/// \param type - the element type of the array
1418/// \param destroyer - the function to call to destroy elements
1419/// \param useEHCleanup - whether to push an EH cleanup to destroy
1420///   the remaining elements in case the destruction of a single
1421///   element throws
1422void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1423                                       llvm::Value *end,
1424                                       QualType type,
1425                                       Destroyer *destroyer,
1426                                       bool checkZeroLength,
1427                                       bool useEHCleanup) {
1428  assert(!type->isArrayType());
1429
1430  // The basic structure here is a do-while loop, because we don't
1431  // need to check for the zero-element case.
1432  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1433  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1434
1435  if (checkZeroLength) {
1436    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1437                                                "arraydestroy.isempty");
1438    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1439  }
1440
1441  // Enter the loop body, making that address the current address.
1442  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1443  EmitBlock(bodyBB);
1444  llvm::PHINode *elementPast =
1445    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1446  elementPast->addIncoming(end, entryBB);
1447
1448  // Shift the address back by one element.
1449  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1450  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1451                                                   "arraydestroy.element");
1452
1453  if (useEHCleanup)
1454    pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1455
1456  // Perform the actual destruction there.
1457  destroyer(*this, element, type);
1458
1459  if (useEHCleanup)
1460    PopCleanupBlock();
1461
1462  // Check whether we've reached the end.
1463  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1464  Builder.CreateCondBr(done, doneBB, bodyBB);
1465  elementPast->addIncoming(element, Builder.GetInsertBlock());
1466
1467  // Done.
1468  EmitBlock(doneBB);
1469}
1470
1471/// Perform partial array destruction as if in an EH cleanup.  Unlike
1472/// emitArrayDestroy, the element type here may still be an array type.
1473static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1474                                    llvm::Value *begin, llvm::Value *end,
1475                                    QualType type,
1476                                    CodeGenFunction::Destroyer *destroyer) {
1477  // If the element type is itself an array, drill down.
1478  unsigned arrayDepth = 0;
1479  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1480    // VLAs don't require a GEP index to walk into.
1481    if (!isa<VariableArrayType>(arrayType))
1482      arrayDepth++;
1483    type = arrayType->getElementType();
1484  }
1485
1486  if (arrayDepth) {
1487    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1488
1489    SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1490    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1491    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1492  }
1493
1494  // Destroy the array.  We don't ever need an EH cleanup because we
1495  // assume that we're in an EH cleanup ourselves, so a throwing
1496  // destructor causes an immediate terminate.
1497  CGF.emitArrayDestroy(begin, end, type, destroyer,
1498                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1499}
1500
1501namespace {
1502  /// RegularPartialArrayDestroy - a cleanup which performs a partial
1503  /// array destroy where the end pointer is regularly determined and
1504  /// does not need to be loaded from a local.
1505  class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1506    llvm::Value *ArrayBegin;
1507    llvm::Value *ArrayEnd;
1508    QualType ElementType;
1509    CodeGenFunction::Destroyer *Destroyer;
1510  public:
1511    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1512                               QualType elementType,
1513                               CodeGenFunction::Destroyer *destroyer)
1514      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1515        ElementType(elementType), Destroyer(destroyer) {}
1516
1517    void Emit(CodeGenFunction &CGF, Flags flags) override {
1518      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1519                              ElementType, Destroyer);
1520    }
1521  };
1522
1523  /// IrregularPartialArrayDestroy - a cleanup which performs a
1524  /// partial array destroy where the end pointer is irregularly
1525  /// determined and must be loaded from a local.
1526  class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1527    llvm::Value *ArrayBegin;
1528    llvm::Value *ArrayEndPointer;
1529    QualType ElementType;
1530    CodeGenFunction::Destroyer *Destroyer;
1531  public:
1532    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1533                                 llvm::Value *arrayEndPointer,
1534                                 QualType elementType,
1535                                 CodeGenFunction::Destroyer *destroyer)
1536      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1537        ElementType(elementType), Destroyer(destroyer) {}
1538
1539    void Emit(CodeGenFunction &CGF, Flags flags) override {
1540      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1541      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1542                              ElementType, Destroyer);
1543    }
1544  };
1545}
1546
1547/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1548/// already-constructed elements of the given array.  The cleanup
1549/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1550///
1551/// \param elementType - the immediate element type of the array;
1552///   possibly still an array type
1553void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1554                                                 llvm::Value *arrayEndPointer,
1555                                                       QualType elementType,
1556                                                       Destroyer *destroyer) {
1557  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1558                                                    arrayBegin, arrayEndPointer,
1559                                                    elementType, destroyer);
1560}
1561
1562/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1563/// already-constructed elements of the given array.  The cleanup
1564/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1565///
1566/// \param elementType - the immediate element type of the array;
1567///   possibly still an array type
1568void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1569                                                     llvm::Value *arrayEnd,
1570                                                     QualType elementType,
1571                                                     Destroyer *destroyer) {
1572  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1573                                                  arrayBegin, arrayEnd,
1574                                                  elementType, destroyer);
1575}
1576
1577/// Lazily declare the @llvm.lifetime.start intrinsic.
1578llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1579  if (LifetimeStartFn) return LifetimeStartFn;
1580  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1581                                            llvm::Intrinsic::lifetime_start);
1582  return LifetimeStartFn;
1583}
1584
1585/// Lazily declare the @llvm.lifetime.end intrinsic.
1586llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1587  if (LifetimeEndFn) return LifetimeEndFn;
1588  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1589                                              llvm::Intrinsic::lifetime_end);
1590  return LifetimeEndFn;
1591}
1592
1593namespace {
1594  /// A cleanup to perform a release of an object at the end of a
1595  /// function.  This is used to balance out the incoming +1 of a
1596  /// ns_consumed argument when we can't reasonably do that just by
1597  /// not doing the initial retain for a __block argument.
1598  struct ConsumeARCParameter : EHScopeStack::Cleanup {
1599    ConsumeARCParameter(llvm::Value *param,
1600                        ARCPreciseLifetime_t precise)
1601      : Param(param), Precise(precise) {}
1602
1603    llvm::Value *Param;
1604    ARCPreciseLifetime_t Precise;
1605
1606    void Emit(CodeGenFunction &CGF, Flags flags) override {
1607      CGF.EmitARCRelease(Param, Precise);
1608    }
1609  };
1610}
1611
1612/// Emit an alloca (or GlobalValue depending on target)
1613/// for the specified parameter and set up LocalDeclMap.
1614void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1615                                   bool ArgIsPointer, unsigned ArgNo) {
1616  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1617  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1618         "Invalid argument to EmitParmDecl");
1619
1620  Arg->setName(D.getName());
1621
1622  QualType Ty = D.getType();
1623
1624  // Use better IR generation for certain implicit parameters.
1625  if (isa<ImplicitParamDecl>(D)) {
1626    // The only implicit argument a block has is its literal.
1627    if (BlockInfo) {
1628      LocalDeclMap[&D] = Arg;
1629      llvm::Value *LocalAddr = 0;
1630      if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1631        // Allocate a stack slot to let the debug info survive the RA.
1632        llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1633                                                   D.getName() + ".addr");
1634        Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1635        LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1636        EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1637        LocalAddr = Builder.CreateLoad(Alloc);
1638      }
1639
1640      if (CGDebugInfo *DI = getDebugInfo()) {
1641        if (CGM.getCodeGenOpts().getDebugInfo()
1642              >= CodeGenOptions::LimitedDebugInfo) {
1643          DI->setLocation(D.getLocation());
1644          DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1645        }
1646      }
1647
1648      return;
1649    }
1650  }
1651
1652  llvm::Value *DeclPtr;
1653  bool DoStore = false;
1654  bool IsScalar = hasScalarEvaluationKind(Ty);
1655  CharUnits Align = getContext().getDeclAlign(&D);
1656  // If we already have a pointer to the argument, reuse the input pointer.
1657  if (ArgIsPointer) {
1658    // If we have a prettier pointer type at this point, bitcast to that.
1659    unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1660    llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1661    DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1662                                                                   D.getName());
1663    // Push a destructor cleanup for this parameter if the ABI requires it.
1664    if (!IsScalar &&
1665        getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1666      const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1667      if (RD && RD->hasNonTrivialDestructor())
1668        pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1669    }
1670  } else {
1671    // Otherwise, create a temporary to hold the value.
1672    llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1673                                               D.getName() + ".addr");
1674    Alloc->setAlignment(Align.getQuantity());
1675    DeclPtr = Alloc;
1676    DoStore = true;
1677  }
1678
1679  LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1680  if (IsScalar) {
1681    Qualifiers qs = Ty.getQualifiers();
1682    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1683      // We honor __attribute__((ns_consumed)) for types with lifetime.
1684      // For __strong, it's handled by just skipping the initial retain;
1685      // otherwise we have to balance out the initial +1 with an extra
1686      // cleanup to do the release at the end of the function.
1687      bool isConsumed = D.hasAttr<NSConsumedAttr>();
1688
1689      // 'self' is always formally __strong, but if this is not an
1690      // init method then we don't want to retain it.
1691      if (D.isARCPseudoStrong()) {
1692        const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1693        assert(&D == method->getSelfDecl());
1694        assert(lt == Qualifiers::OCL_Strong);
1695        assert(qs.hasConst());
1696        assert(method->getMethodFamily() != OMF_init);
1697        (void) method;
1698        lt = Qualifiers::OCL_ExplicitNone;
1699      }
1700
1701      if (lt == Qualifiers::OCL_Strong) {
1702        if (!isConsumed) {
1703          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1704            // use objc_storeStrong(&dest, value) for retaining the
1705            // object. But first, store a null into 'dest' because
1706            // objc_storeStrong attempts to release its old value.
1707            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1708            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1709            EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1710            DoStore = false;
1711          }
1712          else
1713          // Don't use objc_retainBlock for block pointers, because we
1714          // don't want to Block_copy something just because we got it
1715          // as a parameter.
1716            Arg = EmitARCRetainNonBlock(Arg);
1717        }
1718      } else {
1719        // Push the cleanup for a consumed parameter.
1720        if (isConsumed) {
1721          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1722                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
1723          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1724                                                   precise);
1725        }
1726
1727        if (lt == Qualifiers::OCL_Weak) {
1728          EmitARCInitWeak(DeclPtr, Arg);
1729          DoStore = false; // The weak init is a store, no need to do two.
1730        }
1731      }
1732
1733      // Enter the cleanup scope.
1734      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1735    }
1736  }
1737
1738  // Store the initial value into the alloca.
1739  if (DoStore)
1740    EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1741
1742  llvm::Value *&DMEntry = LocalDeclMap[&D];
1743  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1744  DMEntry = DeclPtr;
1745
1746  // Emit debug info for param declaration.
1747  if (CGDebugInfo *DI = getDebugInfo()) {
1748    if (CGM.getCodeGenOpts().getDebugInfo()
1749          >= CodeGenOptions::LimitedDebugInfo) {
1750      DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1751    }
1752  }
1753
1754  if (D.hasAttr<AnnotateAttr>())
1755      EmitVarAnnotations(&D, DeclPtr);
1756}
1757