CGDecl.cpp revision 93cc515d3b99dca18d287d200e19355a2e9c02b2
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Decl nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGDebugInfo.h" 16#include "CGOpenCLRuntime.h" 17#include "CodeGenModule.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CharUnits.h" 20#include "clang/AST/Decl.h" 21#include "clang/AST/DeclObjC.h" 22#include "clang/Basic/SourceManager.h" 23#include "clang/Basic/TargetInfo.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/IR/DataLayout.h" 26#include "llvm/IR/GlobalVariable.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/Type.h" 29using namespace clang; 30using namespace CodeGen; 31 32 33void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::MSProperty: 49 case Decl::IndirectField: 50 case Decl::ObjCIvar: 51 case Decl::ObjCAtDefsField: 52 case Decl::ParmVar: 53 case Decl::ImplicitParam: 54 case Decl::ClassTemplate: 55 case Decl::FunctionTemplate: 56 case Decl::TypeAliasTemplate: 57 case Decl::TemplateTemplateParm: 58 case Decl::ObjCMethod: 59 case Decl::ObjCCategory: 60 case Decl::ObjCProtocol: 61 case Decl::ObjCInterface: 62 case Decl::ObjCCategoryImpl: 63 case Decl::ObjCImplementation: 64 case Decl::ObjCProperty: 65 case Decl::ObjCCompatibleAlias: 66 case Decl::AccessSpec: 67 case Decl::LinkageSpec: 68 case Decl::ObjCPropertyImpl: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 case Decl::Captured: 74 case Decl::ClassScopeFunctionSpecialization: 75 case Decl::UsingShadow: 76 llvm_unreachable("Declaration should not be in declstmts!"); 77 case Decl::Function: // void X(); 78 case Decl::Record: // struct/union/class X; 79 case Decl::Enum: // enum X; 80 case Decl::EnumConstant: // enum ? { X = ? } 81 case Decl::CXXRecord: // struct/union/class X; [C++] 82 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 83 case Decl::Label: // __label__ x; 84 case Decl::Import: 85 case Decl::OMPThreadPrivate: 86 case Decl::Empty: 87 // None of these decls require codegen support. 88 return; 89 90 case Decl::NamespaceAlias: 91 if (CGDebugInfo *DI = getDebugInfo()) 92 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 93 return; 94 case Decl::Using: // using X; [C++] 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitUsingDecl(cast<UsingDecl>(D)); 97 return; 98 case Decl::UsingDirective: // using namespace X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 101 return; 102 case Decl::Var: { 103 const VarDecl &VD = cast<VarDecl>(D); 104 assert(VD.isLocalVarDecl() && 105 "Should not see file-scope variables inside a function!"); 106 return EmitVarDecl(VD); 107 } 108 109 case Decl::Typedef: // typedef int X; 110 case Decl::TypeAlias: { // using X = int; [C++0x] 111 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 112 QualType Ty = TD.getUnderlyingType(); 113 114 if (Ty->isVariablyModifiedType()) 115 EmitVariablyModifiedType(Ty); 116 } 117 } 118} 119 120/// EmitVarDecl - This method handles emission of any variable declaration 121/// inside a function, including static vars etc. 122void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 123 if (D.isStaticLocal()) { 124 llvm::GlobalValue::LinkageTypes Linkage = 125 llvm::GlobalValue::InternalLinkage; 126 127 // If the function definition has some sort of weak linkage, its 128 // static variables should also be weak so that they get properly 129 // uniqued. 130 if (D.isExternallyVisible()) { 131 const Decl *D = CurCodeDecl; 132 while (true) { 133 if (isa<BlockDecl>(D)) { 134 // FIXME: Handle this case properly! (Should be similar to the 135 // way we handle lambdas in computeLVForDecl in Decl.cpp.) 136 break; 137 } else if (isa<CapturedDecl>(D)) { 138 D = cast<Decl>(cast<CapturedDecl>(D)->getParent()); 139 } else { 140 break; 141 } 142 } 143 // FIXME: Do we really only care about FunctionDecls here? 144 if (isa<FunctionDecl>(D)) { 145 llvm::GlobalValue::LinkageTypes ParentLinkage = 146 CGM.getFunctionLinkage(cast<FunctionDecl>(D)); 147 if (llvm::GlobalValue::isWeakForLinker(ParentLinkage)) 148 Linkage = ParentLinkage; 149 } 150 } 151 152 return EmitStaticVarDecl(D, Linkage); 153 } 154 155 if (D.hasExternalStorage()) 156 // Don't emit it now, allow it to be emitted lazily on its first use. 157 return; 158 159 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 160 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 161 162 assert(D.hasLocalStorage()); 163 return EmitAutoVarDecl(D); 164} 165 166static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 167 const char *Separator) { 168 CodeGenModule &CGM = CGF.CGM; 169 if (CGF.getLangOpts().CPlusPlus) { 170 StringRef Name = CGM.getMangledName(&D); 171 return Name.str(); 172 } 173 174 std::string ContextName; 175 if (!CGF.CurFuncDecl) { 176 // Better be in a block declared in global scope. 177 const NamedDecl *ND = cast<NamedDecl>(&D); 178 const DeclContext *DC = ND->getDeclContext(); 179 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 180 MangleBuffer Name; 181 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 182 ContextName = Name.getString(); 183 } 184 else 185 llvm_unreachable("Unknown context for block static var decl"); 186 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 187 StringRef Name = CGM.getMangledName(FD); 188 ContextName = Name.str(); 189 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 190 ContextName = CGF.CurFn->getName(); 191 else 192 llvm_unreachable("Unknown context for static var decl"); 193 194 return ContextName + Separator + D.getNameAsString(); 195} 196 197llvm::GlobalVariable * 198CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 199 const char *Separator, 200 llvm::GlobalValue::LinkageTypes Linkage) { 201 QualType Ty = D.getType(); 202 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 203 204 // Use the label if the variable is renamed with the asm-label extension. 205 std::string Name; 206 if (D.hasAttr<AsmLabelAttr>()) 207 Name = CGM.getMangledName(&D); 208 else 209 Name = GetStaticDeclName(*this, D, Separator); 210 211 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 212 unsigned AddrSpace = 213 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 214 llvm::GlobalVariable *GV = 215 new llvm::GlobalVariable(CGM.getModule(), LTy, 216 Ty.isConstant(getContext()), Linkage, 217 CGM.EmitNullConstant(D.getType()), Name, 0, 218 llvm::GlobalVariable::NotThreadLocal, 219 AddrSpace); 220 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 221 CGM.setGlobalVisibility(GV, &D); 222 223 if (D.getTLSKind()) 224 CGM.setTLSMode(GV, D); 225 226 return GV; 227} 228 229/// hasNontrivialDestruction - Determine whether a type's destruction is 230/// non-trivial. If so, and the variable uses static initialization, we must 231/// register its destructor to run on exit. 232static bool hasNontrivialDestruction(QualType T) { 233 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 234 return RD && !RD->hasTrivialDestructor(); 235} 236 237/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 238/// global variable that has already been created for it. If the initializer 239/// has a different type than GV does, this may free GV and return a different 240/// one. Otherwise it just returns GV. 241llvm::GlobalVariable * 242CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 243 llvm::GlobalVariable *GV) { 244 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 245 246 // If constant emission failed, then this should be a C++ static 247 // initializer. 248 if (!Init) { 249 if (!getLangOpts().CPlusPlus) 250 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 251 else if (Builder.GetInsertBlock()) { 252 // Since we have a static initializer, this global variable can't 253 // be constant. 254 GV->setConstant(false); 255 256 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 257 } 258 return GV; 259 } 260 261 // The initializer may differ in type from the global. Rewrite 262 // the global to match the initializer. (We have to do this 263 // because some types, like unions, can't be completely represented 264 // in the LLVM type system.) 265 if (GV->getType()->getElementType() != Init->getType()) { 266 llvm::GlobalVariable *OldGV = GV; 267 268 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 269 OldGV->isConstant(), 270 OldGV->getLinkage(), Init, "", 271 /*InsertBefore*/ OldGV, 272 OldGV->getThreadLocalMode(), 273 CGM.getContext().getTargetAddressSpace(D.getType())); 274 GV->setVisibility(OldGV->getVisibility()); 275 276 // Steal the name of the old global 277 GV->takeName(OldGV); 278 279 // Replace all uses of the old global with the new global 280 llvm::Constant *NewPtrForOldDecl = 281 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 282 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 283 284 // Erase the old global, since it is no longer used. 285 OldGV->eraseFromParent(); 286 } 287 288 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 289 GV->setInitializer(Init); 290 291 if (hasNontrivialDestruction(D.getType())) { 292 // We have a constant initializer, but a nontrivial destructor. We still 293 // need to perform a guarded "initialization" in order to register the 294 // destructor. 295 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 296 } 297 298 return GV; 299} 300 301void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 302 llvm::GlobalValue::LinkageTypes Linkage) { 303 llvm::Value *&DMEntry = LocalDeclMap[&D]; 304 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 305 306 // Check to see if we already have a global variable for this 307 // declaration. This can happen when double-emitting function 308 // bodies, e.g. with complete and base constructors. 309 llvm::Constant *addr = 310 CGM.getStaticLocalDeclAddress(&D); 311 312 llvm::GlobalVariable *var; 313 if (addr) { 314 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 315 } else { 316 addr = var = CreateStaticVarDecl(D, ".", Linkage); 317 } 318 319 // Store into LocalDeclMap before generating initializer to handle 320 // circular references. 321 DMEntry = addr; 322 CGM.setStaticLocalDeclAddress(&D, addr); 323 324 // We can't have a VLA here, but we can have a pointer to a VLA, 325 // even though that doesn't really make any sense. 326 // Make sure to evaluate VLA bounds now so that we have them for later. 327 if (D.getType()->isVariablyModifiedType()) 328 EmitVariablyModifiedType(D.getType()); 329 330 // Save the type in case adding the initializer forces a type change. 331 llvm::Type *expectedType = addr->getType(); 332 333 // If this value has an initializer, emit it. 334 if (D.getInit()) 335 var = AddInitializerToStaticVarDecl(D, var); 336 337 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 338 339 if (D.hasAttr<AnnotateAttr>()) 340 CGM.AddGlobalAnnotations(&D, var); 341 342 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 343 var->setSection(SA->getName()); 344 345 if (D.hasAttr<UsedAttr>()) 346 CGM.AddUsedGlobal(var); 347 348 // We may have to cast the constant because of the initializer 349 // mismatch above. 350 // 351 // FIXME: It is really dangerous to store this in the map; if anyone 352 // RAUW's the GV uses of this constant will be invalid. 353 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 354 DMEntry = castedAddr; 355 CGM.setStaticLocalDeclAddress(&D, castedAddr); 356 357 // Emit global variable debug descriptor for static vars. 358 CGDebugInfo *DI = getDebugInfo(); 359 if (DI && 360 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 361 DI->setLocation(D.getLocation()); 362 DI->EmitGlobalVariable(var, &D); 363 } 364} 365 366namespace { 367 struct DestroyObject : EHScopeStack::Cleanup { 368 DestroyObject(llvm::Value *addr, QualType type, 369 CodeGenFunction::Destroyer *destroyer, 370 bool useEHCleanupForArray) 371 : addr(addr), type(type), destroyer(destroyer), 372 useEHCleanupForArray(useEHCleanupForArray) {} 373 374 llvm::Value *addr; 375 QualType type; 376 CodeGenFunction::Destroyer *destroyer; 377 bool useEHCleanupForArray; 378 379 void Emit(CodeGenFunction &CGF, Flags flags) { 380 // Don't use an EH cleanup recursively from an EH cleanup. 381 bool useEHCleanupForArray = 382 flags.isForNormalCleanup() && this->useEHCleanupForArray; 383 384 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 385 } 386 }; 387 388 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 389 DestroyNRVOVariable(llvm::Value *addr, 390 const CXXDestructorDecl *Dtor, 391 llvm::Value *NRVOFlag) 392 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 393 394 const CXXDestructorDecl *Dtor; 395 llvm::Value *NRVOFlag; 396 llvm::Value *Loc; 397 398 void Emit(CodeGenFunction &CGF, Flags flags) { 399 // Along the exceptions path we always execute the dtor. 400 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 401 402 llvm::BasicBlock *SkipDtorBB = 0; 403 if (NRVO) { 404 // If we exited via NRVO, we skip the destructor call. 405 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 406 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 407 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 408 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 409 CGF.EmitBlock(RunDtorBB); 410 } 411 412 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 413 /*ForVirtualBase=*/false, 414 /*Delegating=*/false, 415 Loc); 416 417 if (NRVO) CGF.EmitBlock(SkipDtorBB); 418 } 419 }; 420 421 struct CallStackRestore : EHScopeStack::Cleanup { 422 llvm::Value *Stack; 423 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 424 void Emit(CodeGenFunction &CGF, Flags flags) { 425 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 426 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 427 CGF.Builder.CreateCall(F, V); 428 } 429 }; 430 431 struct ExtendGCLifetime : EHScopeStack::Cleanup { 432 const VarDecl &Var; 433 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 434 435 void Emit(CodeGenFunction &CGF, Flags flags) { 436 // Compute the address of the local variable, in case it's a 437 // byref or something. 438 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 439 Var.getType(), VK_LValue, SourceLocation()); 440 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 441 CGF.EmitExtendGCLifetime(value); 442 } 443 }; 444 445 struct CallCleanupFunction : EHScopeStack::Cleanup { 446 llvm::Constant *CleanupFn; 447 const CGFunctionInfo &FnInfo; 448 const VarDecl &Var; 449 450 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 451 const VarDecl *Var) 452 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 453 454 void Emit(CodeGenFunction &CGF, Flags flags) { 455 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 456 Var.getType(), VK_LValue, SourceLocation()); 457 // Compute the address of the local variable, in case it's a byref 458 // or something. 459 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 460 461 // In some cases, the type of the function argument will be different from 462 // the type of the pointer. An example of this is 463 // void f(void* arg); 464 // __attribute__((cleanup(f))) void *g; 465 // 466 // To fix this we insert a bitcast here. 467 QualType ArgTy = FnInfo.arg_begin()->type; 468 llvm::Value *Arg = 469 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 470 471 CallArgList Args; 472 Args.add(RValue::get(Arg), 473 CGF.getContext().getPointerType(Var.getType())); 474 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 475 } 476 }; 477 478 /// A cleanup to call @llvm.lifetime.end. 479 class CallLifetimeEnd : public EHScopeStack::Cleanup { 480 llvm::Value *Addr; 481 llvm::Value *Size; 482 public: 483 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 484 : Addr(addr), Size(size) {} 485 486 void Emit(CodeGenFunction &CGF, Flags flags) { 487 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 488 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 489 Size, castAddr) 490 ->setDoesNotThrow(); 491 } 492 }; 493} 494 495/// EmitAutoVarWithLifetime - Does the setup required for an automatic 496/// variable with lifetime. 497static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 498 llvm::Value *addr, 499 Qualifiers::ObjCLifetime lifetime) { 500 switch (lifetime) { 501 case Qualifiers::OCL_None: 502 llvm_unreachable("present but none"); 503 504 case Qualifiers::OCL_ExplicitNone: 505 // nothing to do 506 break; 507 508 case Qualifiers::OCL_Strong: { 509 CodeGenFunction::Destroyer *destroyer = 510 (var.hasAttr<ObjCPreciseLifetimeAttr>() 511 ? CodeGenFunction::destroyARCStrongPrecise 512 : CodeGenFunction::destroyARCStrongImprecise); 513 514 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 515 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 516 cleanupKind & EHCleanup); 517 break; 518 } 519 case Qualifiers::OCL_Autoreleasing: 520 // nothing to do 521 break; 522 523 case Qualifiers::OCL_Weak: 524 // __weak objects always get EH cleanups; otherwise, exceptions 525 // could cause really nasty crashes instead of mere leaks. 526 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 527 CodeGenFunction::destroyARCWeak, 528 /*useEHCleanup*/ true); 529 break; 530 } 531} 532 533static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 534 if (const Expr *e = dyn_cast<Expr>(s)) { 535 // Skip the most common kinds of expressions that make 536 // hierarchy-walking expensive. 537 s = e = e->IgnoreParenCasts(); 538 539 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 540 return (ref->getDecl() == &var); 541 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 542 const BlockDecl *block = be->getBlockDecl(); 543 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 544 e = block->capture_end(); i != e; ++i) { 545 if (i->getVariable() == &var) 546 return true; 547 } 548 } 549 } 550 551 for (Stmt::const_child_range children = s->children(); children; ++children) 552 // children might be null; as in missing decl or conditional of an if-stmt. 553 if ((*children) && isAccessedBy(var, *children)) 554 return true; 555 556 return false; 557} 558 559static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 560 if (!decl) return false; 561 if (!isa<VarDecl>(decl)) return false; 562 const VarDecl *var = cast<VarDecl>(decl); 563 return isAccessedBy(*var, e); 564} 565 566static void drillIntoBlockVariable(CodeGenFunction &CGF, 567 LValue &lvalue, 568 const VarDecl *var) { 569 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 570} 571 572void CodeGenFunction::EmitScalarInit(const Expr *init, 573 const ValueDecl *D, 574 LValue lvalue, 575 bool capturedByInit) { 576 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 577 if (!lifetime) { 578 llvm::Value *value = EmitScalarExpr(init); 579 if (capturedByInit) 580 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 581 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 582 return; 583 } 584 585 // If we're emitting a value with lifetime, we have to do the 586 // initialization *before* we leave the cleanup scopes. 587 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 588 enterFullExpression(ewc); 589 init = ewc->getSubExpr(); 590 } 591 CodeGenFunction::RunCleanupsScope Scope(*this); 592 593 // We have to maintain the illusion that the variable is 594 // zero-initialized. If the variable might be accessed in its 595 // initializer, zero-initialize before running the initializer, then 596 // actually perform the initialization with an assign. 597 bool accessedByInit = false; 598 if (lifetime != Qualifiers::OCL_ExplicitNone) 599 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 600 if (accessedByInit) { 601 LValue tempLV = lvalue; 602 // Drill down to the __block object if necessary. 603 if (capturedByInit) { 604 // We can use a simple GEP for this because it can't have been 605 // moved yet. 606 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 607 getByRefValueLLVMField(cast<VarDecl>(D)))); 608 } 609 610 llvm::PointerType *ty 611 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 612 ty = cast<llvm::PointerType>(ty->getElementType()); 613 614 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 615 616 // If __weak, we want to use a barrier under certain conditions. 617 if (lifetime == Qualifiers::OCL_Weak) 618 EmitARCInitWeak(tempLV.getAddress(), zero); 619 620 // Otherwise just do a simple store. 621 else 622 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 623 } 624 625 // Emit the initializer. 626 llvm::Value *value = 0; 627 628 switch (lifetime) { 629 case Qualifiers::OCL_None: 630 llvm_unreachable("present but none"); 631 632 case Qualifiers::OCL_ExplicitNone: 633 // nothing to do 634 value = EmitScalarExpr(init); 635 break; 636 637 case Qualifiers::OCL_Strong: { 638 value = EmitARCRetainScalarExpr(init); 639 break; 640 } 641 642 case Qualifiers::OCL_Weak: { 643 // No way to optimize a producing initializer into this. It's not 644 // worth optimizing for, because the value will immediately 645 // disappear in the common case. 646 value = EmitScalarExpr(init); 647 648 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 649 if (accessedByInit) 650 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 651 else 652 EmitARCInitWeak(lvalue.getAddress(), value); 653 return; 654 } 655 656 case Qualifiers::OCL_Autoreleasing: 657 value = EmitARCRetainAutoreleaseScalarExpr(init); 658 break; 659 } 660 661 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 662 663 // If the variable might have been accessed by its initializer, we 664 // might have to initialize with a barrier. We have to do this for 665 // both __weak and __strong, but __weak got filtered out above. 666 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 667 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 668 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 669 EmitARCRelease(oldValue, ARCImpreciseLifetime); 670 return; 671 } 672 673 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 674} 675 676/// EmitScalarInit - Initialize the given lvalue with the given object. 677void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 678 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 679 if (!lifetime) 680 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 681 682 switch (lifetime) { 683 case Qualifiers::OCL_None: 684 llvm_unreachable("present but none"); 685 686 case Qualifiers::OCL_ExplicitNone: 687 // nothing to do 688 break; 689 690 case Qualifiers::OCL_Strong: 691 init = EmitARCRetain(lvalue.getType(), init); 692 break; 693 694 case Qualifiers::OCL_Weak: 695 // Initialize and then skip the primitive store. 696 EmitARCInitWeak(lvalue.getAddress(), init); 697 return; 698 699 case Qualifiers::OCL_Autoreleasing: 700 init = EmitARCRetainAutorelease(lvalue.getType(), init); 701 break; 702 } 703 704 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 705} 706 707/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 708/// non-zero parts of the specified initializer with equal or fewer than 709/// NumStores scalar stores. 710static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 711 unsigned &NumStores) { 712 // Zero and Undef never requires any extra stores. 713 if (isa<llvm::ConstantAggregateZero>(Init) || 714 isa<llvm::ConstantPointerNull>(Init) || 715 isa<llvm::UndefValue>(Init)) 716 return true; 717 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 718 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 719 isa<llvm::ConstantExpr>(Init)) 720 return Init->isNullValue() || NumStores--; 721 722 // See if we can emit each element. 723 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 724 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 725 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 726 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 727 return false; 728 } 729 return true; 730 } 731 732 if (llvm::ConstantDataSequential *CDS = 733 dyn_cast<llvm::ConstantDataSequential>(Init)) { 734 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 735 llvm::Constant *Elt = CDS->getElementAsConstant(i); 736 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 737 return false; 738 } 739 return true; 740 } 741 742 // Anything else is hard and scary. 743 return false; 744} 745 746/// emitStoresForInitAfterMemset - For inits that 747/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 748/// stores that would be required. 749static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 750 bool isVolatile, CGBuilderTy &Builder) { 751 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 752 "called emitStoresForInitAfterMemset for zero or undef value."); 753 754 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 755 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 756 isa<llvm::ConstantExpr>(Init)) { 757 Builder.CreateStore(Init, Loc, isVolatile); 758 return; 759 } 760 761 if (llvm::ConstantDataSequential *CDS = 762 dyn_cast<llvm::ConstantDataSequential>(Init)) { 763 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 764 llvm::Constant *Elt = CDS->getElementAsConstant(i); 765 766 // If necessary, get a pointer to the element and emit it. 767 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 768 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 769 isVolatile, Builder); 770 } 771 return; 772 } 773 774 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 775 "Unknown value type!"); 776 777 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 778 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 779 780 // If necessary, get a pointer to the element and emit it. 781 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 782 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 783 isVolatile, Builder); 784 } 785} 786 787 788/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 789/// plus some stores to initialize a local variable instead of using a memcpy 790/// from a constant global. It is beneficial to use memset if the global is all 791/// zeros, or mostly zeros and large. 792static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 793 uint64_t GlobalSize) { 794 // If a global is all zeros, always use a memset. 795 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 796 797 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 798 // do it if it will require 6 or fewer scalar stores. 799 // TODO: Should budget depends on the size? Avoiding a large global warrants 800 // plopping in more stores. 801 unsigned StoreBudget = 6; 802 uint64_t SizeLimit = 32; 803 804 return GlobalSize > SizeLimit && 805 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 806} 807 808/// Should we use the LLVM lifetime intrinsics for the given local variable? 809static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 810 unsigned Size) { 811 // Always emit lifetime markers in -fsanitize=use-after-scope mode. 812 if (CGF.getLangOpts().Sanitize.UseAfterScope) 813 return true; 814 // For now, only in optimized builds. 815 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 816 return false; 817 818 // Limit the size of marked objects to 32 bytes. We don't want to increase 819 // compile time by marking tiny objects. 820 unsigned SizeThreshold = 32; 821 822 return Size > SizeThreshold; 823} 824 825 826/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 827/// variable declaration with auto, register, or no storage class specifier. 828/// These turn into simple stack objects, or GlobalValues depending on target. 829void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 830 AutoVarEmission emission = EmitAutoVarAlloca(D); 831 EmitAutoVarInit(emission); 832 EmitAutoVarCleanups(emission); 833} 834 835/// EmitAutoVarAlloca - Emit the alloca and debug information for a 836/// local variable. Does not emit initalization or destruction. 837CodeGenFunction::AutoVarEmission 838CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 839 QualType Ty = D.getType(); 840 841 AutoVarEmission emission(D); 842 843 bool isByRef = D.hasAttr<BlocksAttr>(); 844 emission.IsByRef = isByRef; 845 846 CharUnits alignment = getContext().getDeclAlign(&D); 847 emission.Alignment = alignment; 848 849 // If the type is variably-modified, emit all the VLA sizes for it. 850 if (Ty->isVariablyModifiedType()) 851 EmitVariablyModifiedType(Ty); 852 853 llvm::Value *DeclPtr; 854 if (Ty->isConstantSizeType()) { 855 bool NRVO = getLangOpts().ElideConstructors && 856 D.isNRVOVariable(); 857 858 // If this value is an array or struct with a statically determinable 859 // constant initializer, there are optimizations we can do. 860 // 861 // TODO: We should constant-evaluate the initializer of any variable, 862 // as long as it is initialized by a constant expression. Currently, 863 // isConstantInitializer produces wrong answers for structs with 864 // reference or bitfield members, and a few other cases, and checking 865 // for POD-ness protects us from some of these. 866 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 867 (D.isConstexpr() || 868 ((Ty.isPODType(getContext()) || 869 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 870 D.getInit()->isConstantInitializer(getContext(), false)))) { 871 872 // If the variable's a const type, and it's neither an NRVO 873 // candidate nor a __block variable and has no mutable members, 874 // emit it as a global instead. 875 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 876 CGM.isTypeConstant(Ty, true)) { 877 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 878 879 emission.Address = 0; // signal this condition to later callbacks 880 assert(emission.wasEmittedAsGlobal()); 881 return emission; 882 } 883 884 // Otherwise, tell the initialization code that we're in this case. 885 emission.IsConstantAggregate = true; 886 } 887 888 // A normal fixed sized variable becomes an alloca in the entry block, 889 // unless it's an NRVO variable. 890 llvm::Type *LTy = ConvertTypeForMem(Ty); 891 892 if (NRVO) { 893 // The named return value optimization: allocate this variable in the 894 // return slot, so that we can elide the copy when returning this 895 // variable (C++0x [class.copy]p34). 896 DeclPtr = ReturnValue; 897 898 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 899 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 900 // Create a flag that is used to indicate when the NRVO was applied 901 // to this variable. Set it to zero to indicate that NRVO was not 902 // applied. 903 llvm::Value *Zero = Builder.getFalse(); 904 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 905 EnsureInsertPoint(); 906 Builder.CreateStore(Zero, NRVOFlag); 907 908 // Record the NRVO flag for this variable. 909 NRVOFlags[&D] = NRVOFlag; 910 emission.NRVOFlag = NRVOFlag; 911 } 912 } 913 } else { 914 if (isByRef) 915 LTy = BuildByRefType(&D); 916 917 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 918 Alloc->setName(D.getName()); 919 920 CharUnits allocaAlignment = alignment; 921 if (isByRef) 922 allocaAlignment = std::max(allocaAlignment, 923 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 924 Alloc->setAlignment(allocaAlignment.getQuantity()); 925 DeclPtr = Alloc; 926 927 // Emit a lifetime intrinsic if meaningful. There's no point 928 // in doing this if we don't have a valid insertion point (?). 929 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 930 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 931 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 932 933 emission.SizeForLifetimeMarkers = sizeV; 934 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 935 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 936 ->setDoesNotThrow(); 937 } else { 938 assert(!emission.useLifetimeMarkers()); 939 } 940 } 941 } else { 942 EnsureInsertPoint(); 943 944 if (!DidCallStackSave) { 945 // Save the stack. 946 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 947 948 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 949 llvm::Value *V = Builder.CreateCall(F); 950 951 Builder.CreateStore(V, Stack); 952 953 DidCallStackSave = true; 954 955 // Push a cleanup block and restore the stack there. 956 // FIXME: in general circumstances, this should be an EH cleanup. 957 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 958 } 959 960 llvm::Value *elementCount; 961 QualType elementType; 962 llvm::tie(elementCount, elementType) = getVLASize(Ty); 963 964 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 965 966 // Allocate memory for the array. 967 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 968 vla->setAlignment(alignment.getQuantity()); 969 970 DeclPtr = vla; 971 } 972 973 llvm::Value *&DMEntry = LocalDeclMap[&D]; 974 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 975 DMEntry = DeclPtr; 976 emission.Address = DeclPtr; 977 978 // Emit debug info for local var declaration. 979 if (HaveInsertPoint()) 980 if (CGDebugInfo *DI = getDebugInfo()) { 981 if (CGM.getCodeGenOpts().getDebugInfo() 982 >= CodeGenOptions::LimitedDebugInfo) { 983 DI->setLocation(D.getLocation()); 984 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 985 } 986 } 987 988 if (D.hasAttr<AnnotateAttr>()) 989 EmitVarAnnotations(&D, emission.Address); 990 991 return emission; 992} 993 994/// Determines whether the given __block variable is potentially 995/// captured by the given expression. 996static bool isCapturedBy(const VarDecl &var, const Expr *e) { 997 // Skip the most common kinds of expressions that make 998 // hierarchy-walking expensive. 999 e = e->IgnoreParenCasts(); 1000 1001 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1002 const BlockDecl *block = be->getBlockDecl(); 1003 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 1004 e = block->capture_end(); i != e; ++i) { 1005 if (i->getVariable() == &var) 1006 return true; 1007 } 1008 1009 // No need to walk into the subexpressions. 1010 return false; 1011 } 1012 1013 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1014 const CompoundStmt *CS = SE->getSubStmt(); 1015 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 1016 BE = CS->body_end(); BI != BE; ++BI) 1017 if (Expr *E = dyn_cast<Expr>((*BI))) { 1018 if (isCapturedBy(var, E)) 1019 return true; 1020 } 1021 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 1022 // special case declarations 1023 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 1024 I != E; ++I) { 1025 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 1026 Expr *Init = VD->getInit(); 1027 if (Init && isCapturedBy(var, Init)) 1028 return true; 1029 } 1030 } 1031 } 1032 else 1033 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1034 // Later, provide code to poke into statements for capture analysis. 1035 return true; 1036 return false; 1037 } 1038 1039 for (Stmt::const_child_range children = e->children(); children; ++children) 1040 if (isCapturedBy(var, cast<Expr>(*children))) 1041 return true; 1042 1043 return false; 1044} 1045 1046/// \brief Determine whether the given initializer is trivial in the sense 1047/// that it requires no code to be generated. 1048static bool isTrivialInitializer(const Expr *Init) { 1049 if (!Init) 1050 return true; 1051 1052 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1053 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1054 if (Constructor->isTrivial() && 1055 Constructor->isDefaultConstructor() && 1056 !Construct->requiresZeroInitialization()) 1057 return true; 1058 1059 return false; 1060} 1061void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1062 assert(emission.Variable && "emission was not valid!"); 1063 1064 // If this was emitted as a global constant, we're done. 1065 if (emission.wasEmittedAsGlobal()) return; 1066 1067 const VarDecl &D = *emission.Variable; 1068 QualType type = D.getType(); 1069 1070 // If this local has an initializer, emit it now. 1071 const Expr *Init = D.getInit(); 1072 1073 // If we are at an unreachable point, we don't need to emit the initializer 1074 // unless it contains a label. 1075 if (!HaveInsertPoint()) { 1076 if (!Init || !ContainsLabel(Init)) return; 1077 EnsureInsertPoint(); 1078 } 1079 1080 // Initialize the structure of a __block variable. 1081 if (emission.IsByRef) 1082 emitByrefStructureInit(emission); 1083 1084 if (isTrivialInitializer(Init)) 1085 return; 1086 1087 CharUnits alignment = emission.Alignment; 1088 1089 // Check whether this is a byref variable that's potentially 1090 // captured and moved by its own initializer. If so, we'll need to 1091 // emit the initializer first, then copy into the variable. 1092 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1093 1094 llvm::Value *Loc = 1095 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1096 1097 llvm::Constant *constant = 0; 1098 if (emission.IsConstantAggregate || D.isConstexpr()) { 1099 assert(!capturedByInit && "constant init contains a capturing block?"); 1100 constant = CGM.EmitConstantInit(D, this); 1101 } 1102 1103 if (!constant) { 1104 LValue lv = MakeAddrLValue(Loc, type, alignment); 1105 lv.setNonGC(true); 1106 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1107 } 1108 1109 if (!emission.IsConstantAggregate) { 1110 // For simple scalar/complex initialization, store the value directly. 1111 LValue lv = MakeAddrLValue(Loc, type, alignment); 1112 lv.setNonGC(true); 1113 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1114 } 1115 1116 // If this is a simple aggregate initialization, we can optimize it 1117 // in various ways. 1118 bool isVolatile = type.isVolatileQualified(); 1119 1120 llvm::Value *SizeVal = 1121 llvm::ConstantInt::get(IntPtrTy, 1122 getContext().getTypeSizeInChars(type).getQuantity()); 1123 1124 llvm::Type *BP = Int8PtrTy; 1125 if (Loc->getType() != BP) 1126 Loc = Builder.CreateBitCast(Loc, BP); 1127 1128 // If the initializer is all or mostly zeros, codegen with memset then do 1129 // a few stores afterward. 1130 if (shouldUseMemSetPlusStoresToInitialize(constant, 1131 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1132 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1133 alignment.getQuantity(), isVolatile); 1134 // Zero and undef don't require a stores. 1135 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1136 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1137 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1138 } 1139 } else { 1140 // Otherwise, create a temporary global with the initializer then 1141 // memcpy from the global to the alloca. 1142 std::string Name = GetStaticDeclName(*this, D, "."); 1143 llvm::GlobalVariable *GV = 1144 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1145 llvm::GlobalValue::PrivateLinkage, 1146 constant, Name); 1147 GV->setAlignment(alignment.getQuantity()); 1148 GV->setUnnamedAddr(true); 1149 1150 llvm::Value *SrcPtr = GV; 1151 if (SrcPtr->getType() != BP) 1152 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1153 1154 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1155 isVolatile); 1156 } 1157} 1158 1159/// Emit an expression as an initializer for a variable at the given 1160/// location. The expression is not necessarily the normal 1161/// initializer for the variable, and the address is not necessarily 1162/// its normal location. 1163/// 1164/// \param init the initializing expression 1165/// \param var the variable to act as if we're initializing 1166/// \param loc the address to initialize; its type is a pointer 1167/// to the LLVM mapping of the variable's type 1168/// \param alignment the alignment of the address 1169/// \param capturedByInit true if the variable is a __block variable 1170/// whose address is potentially changed by the initializer 1171void CodeGenFunction::EmitExprAsInit(const Expr *init, 1172 const ValueDecl *D, 1173 LValue lvalue, 1174 bool capturedByInit) { 1175 QualType type = D->getType(); 1176 1177 if (type->isReferenceType()) { 1178 RValue rvalue = EmitReferenceBindingToExpr(init); 1179 if (capturedByInit) 1180 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1181 EmitStoreThroughLValue(rvalue, lvalue, true); 1182 return; 1183 } 1184 switch (getEvaluationKind(type)) { 1185 case TEK_Scalar: 1186 EmitScalarInit(init, D, lvalue, capturedByInit); 1187 return; 1188 case TEK_Complex: { 1189 ComplexPairTy complex = EmitComplexExpr(init); 1190 if (capturedByInit) 1191 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1192 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1193 return; 1194 } 1195 case TEK_Aggregate: 1196 if (type->isAtomicType()) { 1197 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1198 } else { 1199 // TODO: how can we delay here if D is captured by its initializer? 1200 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1201 AggValueSlot::IsDestructed, 1202 AggValueSlot::DoesNotNeedGCBarriers, 1203 AggValueSlot::IsNotAliased)); 1204 } 1205 return; 1206 } 1207 llvm_unreachable("bad evaluation kind"); 1208} 1209 1210/// Enter a destroy cleanup for the given local variable. 1211void CodeGenFunction::emitAutoVarTypeCleanup( 1212 const CodeGenFunction::AutoVarEmission &emission, 1213 QualType::DestructionKind dtorKind) { 1214 assert(dtorKind != QualType::DK_none); 1215 1216 // Note that for __block variables, we want to destroy the 1217 // original stack object, not the possibly forwarded object. 1218 llvm::Value *addr = emission.getObjectAddress(*this); 1219 1220 const VarDecl *var = emission.Variable; 1221 QualType type = var->getType(); 1222 1223 CleanupKind cleanupKind = NormalAndEHCleanup; 1224 CodeGenFunction::Destroyer *destroyer = 0; 1225 1226 switch (dtorKind) { 1227 case QualType::DK_none: 1228 llvm_unreachable("no cleanup for trivially-destructible variable"); 1229 1230 case QualType::DK_cxx_destructor: 1231 // If there's an NRVO flag on the emission, we need a different 1232 // cleanup. 1233 if (emission.NRVOFlag) { 1234 assert(!type->isArrayType()); 1235 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1236 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1237 emission.NRVOFlag); 1238 return; 1239 } 1240 break; 1241 1242 case QualType::DK_objc_strong_lifetime: 1243 // Suppress cleanups for pseudo-strong variables. 1244 if (var->isARCPseudoStrong()) return; 1245 1246 // Otherwise, consider whether to use an EH cleanup or not. 1247 cleanupKind = getARCCleanupKind(); 1248 1249 // Use the imprecise destroyer by default. 1250 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1251 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1252 break; 1253 1254 case QualType::DK_objc_weak_lifetime: 1255 break; 1256 } 1257 1258 // If we haven't chosen a more specific destroyer, use the default. 1259 if (!destroyer) destroyer = getDestroyer(dtorKind); 1260 1261 // Use an EH cleanup in array destructors iff the destructor itself 1262 // is being pushed as an EH cleanup. 1263 bool useEHCleanup = (cleanupKind & EHCleanup); 1264 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1265 useEHCleanup); 1266} 1267 1268void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1269 assert(emission.Variable && "emission was not valid!"); 1270 1271 // If this was emitted as a global constant, we're done. 1272 if (emission.wasEmittedAsGlobal()) return; 1273 1274 // If we don't have an insertion point, we're done. Sema prevents 1275 // us from jumping into any of these scopes anyway. 1276 if (!HaveInsertPoint()) return; 1277 1278 const VarDecl &D = *emission.Variable; 1279 1280 // Make sure we call @llvm.lifetime.end. This needs to happen 1281 // *last*, so the cleanup needs to be pushed *first*. 1282 if (emission.useLifetimeMarkers()) { 1283 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1284 emission.getAllocatedAddress(), 1285 emission.getSizeForLifetimeMarkers()); 1286 } 1287 1288 // Check the type for a cleanup. 1289 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1290 emitAutoVarTypeCleanup(emission, dtorKind); 1291 1292 // In GC mode, honor objc_precise_lifetime. 1293 if (getLangOpts().getGC() != LangOptions::NonGC && 1294 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1295 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1296 } 1297 1298 // Handle the cleanup attribute. 1299 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1300 const FunctionDecl *FD = CA->getFunctionDecl(); 1301 1302 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1303 assert(F && "Could not find function!"); 1304 1305 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1306 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1307 } 1308 1309 // If this is a block variable, call _Block_object_destroy 1310 // (on the unforwarded address). 1311 if (emission.IsByRef) 1312 enterByrefCleanup(emission); 1313} 1314 1315CodeGenFunction::Destroyer * 1316CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1317 switch (kind) { 1318 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1319 case QualType::DK_cxx_destructor: 1320 return destroyCXXObject; 1321 case QualType::DK_objc_strong_lifetime: 1322 return destroyARCStrongPrecise; 1323 case QualType::DK_objc_weak_lifetime: 1324 return destroyARCWeak; 1325 } 1326 llvm_unreachable("Unknown DestructionKind"); 1327} 1328 1329/// pushEHDestroy - Push the standard destructor for the given type as 1330/// an EH-only cleanup. 1331void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1332 llvm::Value *addr, QualType type) { 1333 assert(dtorKind && "cannot push destructor for trivial type"); 1334 assert(needsEHCleanup(dtorKind)); 1335 1336 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1337} 1338 1339/// pushDestroy - Push the standard destructor for the given type as 1340/// at least a normal cleanup. 1341void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1342 llvm::Value *addr, QualType type) { 1343 assert(dtorKind && "cannot push destructor for trivial type"); 1344 1345 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1346 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1347 cleanupKind & EHCleanup); 1348} 1349 1350void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1351 QualType type, Destroyer *destroyer, 1352 bool useEHCleanupForArray) { 1353 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1354 destroyer, useEHCleanupForArray); 1355} 1356 1357void CodeGenFunction::pushLifetimeExtendedDestroy( 1358 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1359 Destroyer *destroyer, bool useEHCleanupForArray) { 1360 assert(!isInConditionalBranch() && 1361 "performing lifetime extension from within conditional"); 1362 1363 // Push an EH-only cleanup for the object now. 1364 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1365 // around in case a temporary's destructor throws an exception. 1366 if (cleanupKind & EHCleanup) 1367 EHStack.pushCleanup<DestroyObject>( 1368 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1369 destroyer, useEHCleanupForArray); 1370 1371 // Remember that we need to push a full cleanup for the object at the 1372 // end of the full-expression. 1373 pushCleanupAfterFullExpr<DestroyObject>( 1374 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1375} 1376 1377/// emitDestroy - Immediately perform the destruction of the given 1378/// object. 1379/// 1380/// \param addr - the address of the object; a type* 1381/// \param type - the type of the object; if an array type, all 1382/// objects are destroyed in reverse order 1383/// \param destroyer - the function to call to destroy individual 1384/// elements 1385/// \param useEHCleanupForArray - whether an EH cleanup should be 1386/// used when destroying array elements, in case one of the 1387/// destructions throws an exception 1388void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1389 Destroyer *destroyer, 1390 bool useEHCleanupForArray) { 1391 const ArrayType *arrayType = getContext().getAsArrayType(type); 1392 if (!arrayType) 1393 return destroyer(*this, addr, type); 1394 1395 llvm::Value *begin = addr; 1396 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1397 1398 // Normally we have to check whether the array is zero-length. 1399 bool checkZeroLength = true; 1400 1401 // But if the array length is constant, we can suppress that. 1402 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1403 // ...and if it's constant zero, we can just skip the entire thing. 1404 if (constLength->isZero()) return; 1405 checkZeroLength = false; 1406 } 1407 1408 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1409 emitArrayDestroy(begin, end, type, destroyer, 1410 checkZeroLength, useEHCleanupForArray); 1411} 1412 1413/// emitArrayDestroy - Destroys all the elements of the given array, 1414/// beginning from last to first. The array cannot be zero-length. 1415/// 1416/// \param begin - a type* denoting the first element of the array 1417/// \param end - a type* denoting one past the end of the array 1418/// \param type - the element type of the array 1419/// \param destroyer - the function to call to destroy elements 1420/// \param useEHCleanup - whether to push an EH cleanup to destroy 1421/// the remaining elements in case the destruction of a single 1422/// element throws 1423void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1424 llvm::Value *end, 1425 QualType type, 1426 Destroyer *destroyer, 1427 bool checkZeroLength, 1428 bool useEHCleanup) { 1429 assert(!type->isArrayType()); 1430 1431 // The basic structure here is a do-while loop, because we don't 1432 // need to check for the zero-element case. 1433 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1434 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1435 1436 if (checkZeroLength) { 1437 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1438 "arraydestroy.isempty"); 1439 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1440 } 1441 1442 // Enter the loop body, making that address the current address. 1443 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1444 EmitBlock(bodyBB); 1445 llvm::PHINode *elementPast = 1446 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1447 elementPast->addIncoming(end, entryBB); 1448 1449 // Shift the address back by one element. 1450 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1451 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1452 "arraydestroy.element"); 1453 1454 if (useEHCleanup) 1455 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1456 1457 // Perform the actual destruction there. 1458 destroyer(*this, element, type); 1459 1460 if (useEHCleanup) 1461 PopCleanupBlock(); 1462 1463 // Check whether we've reached the end. 1464 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1465 Builder.CreateCondBr(done, doneBB, bodyBB); 1466 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1467 1468 // Done. 1469 EmitBlock(doneBB); 1470} 1471 1472/// Perform partial array destruction as if in an EH cleanup. Unlike 1473/// emitArrayDestroy, the element type here may still be an array type. 1474static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1475 llvm::Value *begin, llvm::Value *end, 1476 QualType type, 1477 CodeGenFunction::Destroyer *destroyer) { 1478 // If the element type is itself an array, drill down. 1479 unsigned arrayDepth = 0; 1480 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1481 // VLAs don't require a GEP index to walk into. 1482 if (!isa<VariableArrayType>(arrayType)) 1483 arrayDepth++; 1484 type = arrayType->getElementType(); 1485 } 1486 1487 if (arrayDepth) { 1488 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1489 1490 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1491 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1492 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1493 } 1494 1495 // Destroy the array. We don't ever need an EH cleanup because we 1496 // assume that we're in an EH cleanup ourselves, so a throwing 1497 // destructor causes an immediate terminate. 1498 CGF.emitArrayDestroy(begin, end, type, destroyer, 1499 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1500} 1501 1502namespace { 1503 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1504 /// array destroy where the end pointer is regularly determined and 1505 /// does not need to be loaded from a local. 1506 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1507 llvm::Value *ArrayBegin; 1508 llvm::Value *ArrayEnd; 1509 QualType ElementType; 1510 CodeGenFunction::Destroyer *Destroyer; 1511 public: 1512 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1513 QualType elementType, 1514 CodeGenFunction::Destroyer *destroyer) 1515 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1516 ElementType(elementType), Destroyer(destroyer) {} 1517 1518 void Emit(CodeGenFunction &CGF, Flags flags) { 1519 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1520 ElementType, Destroyer); 1521 } 1522 }; 1523 1524 /// IrregularPartialArrayDestroy - a cleanup which performs a 1525 /// partial array destroy where the end pointer is irregularly 1526 /// determined and must be loaded from a local. 1527 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1528 llvm::Value *ArrayBegin; 1529 llvm::Value *ArrayEndPointer; 1530 QualType ElementType; 1531 CodeGenFunction::Destroyer *Destroyer; 1532 public: 1533 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1534 llvm::Value *arrayEndPointer, 1535 QualType elementType, 1536 CodeGenFunction::Destroyer *destroyer) 1537 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1538 ElementType(elementType), Destroyer(destroyer) {} 1539 1540 void Emit(CodeGenFunction &CGF, Flags flags) { 1541 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1542 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1543 ElementType, Destroyer); 1544 } 1545 }; 1546} 1547 1548/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1549/// already-constructed elements of the given array. The cleanup 1550/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1551/// 1552/// \param elementType - the immediate element type of the array; 1553/// possibly still an array type 1554void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1555 llvm::Value *arrayEndPointer, 1556 QualType elementType, 1557 Destroyer *destroyer) { 1558 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1559 arrayBegin, arrayEndPointer, 1560 elementType, destroyer); 1561} 1562 1563/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1564/// already-constructed elements of the given array. The cleanup 1565/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1566/// 1567/// \param elementType - the immediate element type of the array; 1568/// possibly still an array type 1569void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1570 llvm::Value *arrayEnd, 1571 QualType elementType, 1572 Destroyer *destroyer) { 1573 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1574 arrayBegin, arrayEnd, 1575 elementType, destroyer); 1576} 1577 1578/// Lazily declare the @llvm.lifetime.start intrinsic. 1579llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1580 if (LifetimeStartFn) return LifetimeStartFn; 1581 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1582 llvm::Intrinsic::lifetime_start); 1583 return LifetimeStartFn; 1584} 1585 1586/// Lazily declare the @llvm.lifetime.end intrinsic. 1587llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1588 if (LifetimeEndFn) return LifetimeEndFn; 1589 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1590 llvm::Intrinsic::lifetime_end); 1591 return LifetimeEndFn; 1592} 1593 1594namespace { 1595 /// A cleanup to perform a release of an object at the end of a 1596 /// function. This is used to balance out the incoming +1 of a 1597 /// ns_consumed argument when we can't reasonably do that just by 1598 /// not doing the initial retain for a __block argument. 1599 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1600 ConsumeARCParameter(llvm::Value *param, 1601 ARCPreciseLifetime_t precise) 1602 : Param(param), Precise(precise) {} 1603 1604 llvm::Value *Param; 1605 ARCPreciseLifetime_t Precise; 1606 1607 void Emit(CodeGenFunction &CGF, Flags flags) { 1608 CGF.EmitARCRelease(Param, Precise); 1609 } 1610 }; 1611} 1612 1613/// Emit an alloca (or GlobalValue depending on target) 1614/// for the specified parameter and set up LocalDeclMap. 1615void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1616 unsigned ArgNo) { 1617 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1618 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1619 "Invalid argument to EmitParmDecl"); 1620 1621 Arg->setName(D.getName()); 1622 1623 QualType Ty = D.getType(); 1624 1625 // Use better IR generation for certain implicit parameters. 1626 if (isa<ImplicitParamDecl>(D)) { 1627 // The only implicit argument a block has is its literal. 1628 if (BlockInfo) { 1629 LocalDeclMap[&D] = Arg; 1630 llvm::Value *LocalAddr = 0; 1631 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1632 // Allocate a stack slot to let the debug info survive the RA. 1633 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1634 D.getName() + ".addr"); 1635 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1636 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1637 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1638 LocalAddr = Builder.CreateLoad(Alloc); 1639 } 1640 1641 if (CGDebugInfo *DI = getDebugInfo()) { 1642 if (CGM.getCodeGenOpts().getDebugInfo() 1643 >= CodeGenOptions::LimitedDebugInfo) { 1644 DI->setLocation(D.getLocation()); 1645 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1646 } 1647 } 1648 1649 return; 1650 } 1651 } 1652 1653 llvm::Value *DeclPtr; 1654 // If this is an aggregate or variable sized value, reuse the input pointer. 1655 if (!Ty->isConstantSizeType() || 1656 !CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1657 DeclPtr = Arg; 1658 } else { 1659 // Otherwise, create a temporary to hold the value. 1660 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1661 D.getName() + ".addr"); 1662 CharUnits Align = getContext().getDeclAlign(&D); 1663 Alloc->setAlignment(Align.getQuantity()); 1664 DeclPtr = Alloc; 1665 1666 bool doStore = true; 1667 1668 Qualifiers qs = Ty.getQualifiers(); 1669 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1670 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1671 // We honor __attribute__((ns_consumed)) for types with lifetime. 1672 // For __strong, it's handled by just skipping the initial retain; 1673 // otherwise we have to balance out the initial +1 with an extra 1674 // cleanup to do the release at the end of the function. 1675 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1676 1677 // 'self' is always formally __strong, but if this is not an 1678 // init method then we don't want to retain it. 1679 if (D.isARCPseudoStrong()) { 1680 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1681 assert(&D == method->getSelfDecl()); 1682 assert(lt == Qualifiers::OCL_Strong); 1683 assert(qs.hasConst()); 1684 assert(method->getMethodFamily() != OMF_init); 1685 (void) method; 1686 lt = Qualifiers::OCL_ExplicitNone; 1687 } 1688 1689 if (lt == Qualifiers::OCL_Strong) { 1690 if (!isConsumed) { 1691 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1692 // use objc_storeStrong(&dest, value) for retaining the 1693 // object. But first, store a null into 'dest' because 1694 // objc_storeStrong attempts to release its old value. 1695 llvm::Value * Null = CGM.EmitNullConstant(D.getType()); 1696 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1697 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1698 doStore = false; 1699 } 1700 else 1701 // Don't use objc_retainBlock for block pointers, because we 1702 // don't want to Block_copy something just because we got it 1703 // as a parameter. 1704 Arg = EmitARCRetainNonBlock(Arg); 1705 } 1706 } else { 1707 // Push the cleanup for a consumed parameter. 1708 if (isConsumed) { 1709 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1710 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1711 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1712 precise); 1713 } 1714 1715 if (lt == Qualifiers::OCL_Weak) { 1716 EmitARCInitWeak(DeclPtr, Arg); 1717 doStore = false; // The weak init is a store, no need to do two. 1718 } 1719 } 1720 1721 // Enter the cleanup scope. 1722 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1723 } 1724 1725 // Store the initial value into the alloca. 1726 if (doStore) 1727 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1728 } 1729 1730 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1731 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1732 DMEntry = DeclPtr; 1733 1734 // Emit debug info for param declaration. 1735 if (CGDebugInfo *DI = getDebugInfo()) { 1736 if (CGM.getCodeGenOpts().getDebugInfo() 1737 >= CodeGenOptions::LimitedDebugInfo) { 1738 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1739 } 1740 } 1741 1742 if (D.hasAttr<AnnotateAttr>()) 1743 EmitVarAnnotations(&D, DeclPtr); 1744} 1745