CGDecl.cpp revision 9610d77508bdca13e0475783ff404428611c9683
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Decl nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGDebugInfo.h" 16#include "CGOpenCLRuntime.h" 17#include "CodeGenModule.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CharUnits.h" 20#include "clang/AST/Decl.h" 21#include "clang/AST/DeclObjC.h" 22#include "clang/Basic/SourceManager.h" 23#include "clang/Basic/TargetInfo.h" 24#include "clang/Frontend/CodeGenOptions.h" 25#include "llvm/IR/DataLayout.h" 26#include "llvm/IR/GlobalVariable.h" 27#include "llvm/IR/Intrinsics.h" 28#include "llvm/IR/Type.h" 29using namespace clang; 30using namespace CodeGen; 31 32 33void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::MSProperty: 49 case Decl::IndirectField: 50 case Decl::ObjCIvar: 51 case Decl::ObjCAtDefsField: 52 case Decl::ParmVar: 53 case Decl::ImplicitParam: 54 case Decl::ClassTemplate: 55 case Decl::FunctionTemplate: 56 case Decl::TypeAliasTemplate: 57 case Decl::TemplateTemplateParm: 58 case Decl::ObjCMethod: 59 case Decl::ObjCCategory: 60 case Decl::ObjCProtocol: 61 case Decl::ObjCInterface: 62 case Decl::ObjCCategoryImpl: 63 case Decl::ObjCImplementation: 64 case Decl::ObjCProperty: 65 case Decl::ObjCCompatibleAlias: 66 case Decl::AccessSpec: 67 case Decl::LinkageSpec: 68 case Decl::ObjCPropertyImpl: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 case Decl::Captured: 74 case Decl::ClassScopeFunctionSpecialization: 75 case Decl::UsingShadow: 76 llvm_unreachable("Declaration should not be in declstmts!"); 77 case Decl::Function: // void X(); 78 case Decl::Record: // struct/union/class X; 79 case Decl::Enum: // enum X; 80 case Decl::EnumConstant: // enum ? { X = ? } 81 case Decl::CXXRecord: // struct/union/class X; [C++] 82 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 83 case Decl::Label: // __label__ x; 84 case Decl::Import: 85 case Decl::OMPThreadPrivate: 86 case Decl::Empty: 87 // None of these decls require codegen support. 88 return; 89 90 case Decl::NamespaceAlias: 91 if (CGDebugInfo *DI = getDebugInfo()) 92 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 93 return; 94 case Decl::Using: // using X; [C++] 95 if (CGDebugInfo *DI = getDebugInfo()) 96 DI->EmitUsingDecl(cast<UsingDecl>(D)); 97 return; 98 case Decl::UsingDirective: // using namespace X; [C++] 99 if (CGDebugInfo *DI = getDebugInfo()) 100 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 101 return; 102 case Decl::Var: { 103 const VarDecl &VD = cast<VarDecl>(D); 104 assert(VD.isLocalVarDecl() && 105 "Should not see file-scope variables inside a function!"); 106 return EmitVarDecl(VD); 107 } 108 109 case Decl::Typedef: // typedef int X; 110 case Decl::TypeAlias: { // using X = int; [C++0x] 111 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 112 QualType Ty = TD.getUnderlyingType(); 113 114 if (Ty->isVariablyModifiedType()) 115 EmitVariablyModifiedType(Ty); 116 } 117 } 118} 119 120/// EmitVarDecl - This method handles emission of any variable declaration 121/// inside a function, including static vars etc. 122void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 123 if (D.isStaticLocal()) { 124 llvm::GlobalValue::LinkageTypes Linkage = 125 llvm::GlobalValue::InternalLinkage; 126 127 // If the function definition has some sort of weak linkage, its 128 // static variables should also be weak so that they get properly 129 // uniqued. 130 if (D.isExternallyVisible()) { 131 const Decl *D = CurCodeDecl; 132 while (true) { 133 if (isa<BlockDecl>(D)) { 134 // FIXME: Handle this case properly! (Should be similar to the 135 // way we handle lambdas in computeLVForDecl in Decl.cpp.) 136 break; 137 } else if (isa<CapturedDecl>(D)) { 138 D = cast<Decl>(cast<CapturedDecl>(D)->getParent()); 139 } else { 140 break; 141 } 142 } 143 // FIXME: Do we really only care about FunctionDecls here? 144 if (isa<FunctionDecl>(D)) { 145 llvm::GlobalValue::LinkageTypes ParentLinkage = 146 CGM.getFunctionLinkage(cast<FunctionDecl>(D)); 147 if (llvm::GlobalValue::isWeakForLinker(ParentLinkage)) 148 Linkage = ParentLinkage; 149 } 150 } 151 152 return EmitStaticVarDecl(D, Linkage); 153 } 154 155 if (D.hasExternalStorage()) 156 // Don't emit it now, allow it to be emitted lazily on its first use. 157 return; 158 159 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal) 160 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 161 162 assert(D.hasLocalStorage()); 163 return EmitAutoVarDecl(D); 164} 165 166static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 167 const char *Separator) { 168 CodeGenModule &CGM = CGF.CGM; 169 if (CGF.getLangOpts().CPlusPlus) { 170 StringRef Name = CGM.getMangledName(&D); 171 return Name.str(); 172 } 173 174 std::string ContextName; 175 if (!CGF.CurFuncDecl) { 176 // Better be in a block declared in global scope. 177 const NamedDecl *ND = cast<NamedDecl>(&D); 178 const DeclContext *DC = ND->getDeclContext(); 179 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 180 MangleBuffer Name; 181 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 182 ContextName = Name.getString(); 183 } 184 else 185 llvm_unreachable("Unknown context for block static var decl"); 186 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 187 StringRef Name = CGM.getMangledName(FD); 188 ContextName = Name.str(); 189 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 190 ContextName = CGF.CurFn->getName(); 191 else 192 llvm_unreachable("Unknown context for static var decl"); 193 194 return ContextName + Separator + D.getNameAsString(); 195} 196 197llvm::GlobalVariable * 198CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 199 const char *Separator, 200 llvm::GlobalValue::LinkageTypes Linkage) { 201 QualType Ty = D.getType(); 202 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 203 204 // Use the label if the variable is renamed with the asm-label extension. 205 std::string Name; 206 if (D.hasAttr<AsmLabelAttr>()) 207 Name = CGM.getMangledName(&D); 208 else 209 Name = GetStaticDeclName(*this, D, Separator); 210 211 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 212 unsigned AddrSpace = 213 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 214 llvm::GlobalVariable *GV = 215 new llvm::GlobalVariable(CGM.getModule(), LTy, 216 Ty.isConstant(getContext()), Linkage, 217 CGM.EmitNullConstant(D.getType()), Name, 0, 218 llvm::GlobalVariable::NotThreadLocal, 219 AddrSpace); 220 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 221 if (Linkage != llvm::GlobalValue::InternalLinkage) 222 GV->setVisibility(CurFn->getVisibility()); 223 224 if (D.getTLSKind()) 225 CGM.setTLSMode(GV, D); 226 227 return GV; 228} 229 230/// hasNontrivialDestruction - Determine whether a type's destruction is 231/// non-trivial. If so, and the variable uses static initialization, we must 232/// register its destructor to run on exit. 233static bool hasNontrivialDestruction(QualType T) { 234 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 235 return RD && !RD->hasTrivialDestructor(); 236} 237 238/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 239/// global variable that has already been created for it. If the initializer 240/// has a different type than GV does, this may free GV and return a different 241/// one. Otherwise it just returns GV. 242llvm::GlobalVariable * 243CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 244 llvm::GlobalVariable *GV) { 245 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 246 247 // If constant emission failed, then this should be a C++ static 248 // initializer. 249 if (!Init) { 250 if (!getLangOpts().CPlusPlus) 251 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 252 else if (Builder.GetInsertBlock()) { 253 // Since we have a static initializer, this global variable can't 254 // be constant. 255 GV->setConstant(false); 256 257 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 258 } 259 return GV; 260 } 261 262 // The initializer may differ in type from the global. Rewrite 263 // the global to match the initializer. (We have to do this 264 // because some types, like unions, can't be completely represented 265 // in the LLVM type system.) 266 if (GV->getType()->getElementType() != Init->getType()) { 267 llvm::GlobalVariable *OldGV = GV; 268 269 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 270 OldGV->isConstant(), 271 OldGV->getLinkage(), Init, "", 272 /*InsertBefore*/ OldGV, 273 OldGV->getThreadLocalMode(), 274 CGM.getContext().getTargetAddressSpace(D.getType())); 275 GV->setVisibility(OldGV->getVisibility()); 276 277 // Steal the name of the old global 278 GV->takeName(OldGV); 279 280 // Replace all uses of the old global with the new global 281 llvm::Constant *NewPtrForOldDecl = 282 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 283 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 284 285 // Erase the old global, since it is no longer used. 286 OldGV->eraseFromParent(); 287 } 288 289 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 290 GV->setInitializer(Init); 291 292 if (hasNontrivialDestruction(D.getType())) { 293 // We have a constant initializer, but a nontrivial destructor. We still 294 // need to perform a guarded "initialization" in order to register the 295 // destructor. 296 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 297 } 298 299 return GV; 300} 301 302void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 303 llvm::GlobalValue::LinkageTypes Linkage) { 304 llvm::Value *&DMEntry = LocalDeclMap[&D]; 305 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 306 307 // Check to see if we already have a global variable for this 308 // declaration. This can happen when double-emitting function 309 // bodies, e.g. with complete and base constructors. 310 llvm::Constant *addr = 311 CGM.getStaticLocalDeclAddress(&D); 312 313 llvm::GlobalVariable *var; 314 if (addr) { 315 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 316 } else { 317 addr = var = CreateStaticVarDecl(D, ".", Linkage); 318 } 319 320 // Store into LocalDeclMap before generating initializer to handle 321 // circular references. 322 DMEntry = addr; 323 CGM.setStaticLocalDeclAddress(&D, addr); 324 325 // We can't have a VLA here, but we can have a pointer to a VLA, 326 // even though that doesn't really make any sense. 327 // Make sure to evaluate VLA bounds now so that we have them for later. 328 if (D.getType()->isVariablyModifiedType()) 329 EmitVariablyModifiedType(D.getType()); 330 331 // Save the type in case adding the initializer forces a type change. 332 llvm::Type *expectedType = addr->getType(); 333 334 // If this value has an initializer, emit it. 335 if (D.getInit()) 336 var = AddInitializerToStaticVarDecl(D, var); 337 338 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 339 340 if (D.hasAttr<AnnotateAttr>()) 341 CGM.AddGlobalAnnotations(&D, var); 342 343 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 344 var->setSection(SA->getName()); 345 346 if (D.hasAttr<UsedAttr>()) 347 CGM.AddUsedGlobal(var); 348 349 // We may have to cast the constant because of the initializer 350 // mismatch above. 351 // 352 // FIXME: It is really dangerous to store this in the map; if anyone 353 // RAUW's the GV uses of this constant will be invalid. 354 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 355 DMEntry = castedAddr; 356 CGM.setStaticLocalDeclAddress(&D, castedAddr); 357 358 // Emit global variable debug descriptor for static vars. 359 CGDebugInfo *DI = getDebugInfo(); 360 if (DI && 361 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 362 DI->setLocation(D.getLocation()); 363 DI->EmitGlobalVariable(var, &D); 364 } 365} 366 367namespace { 368 struct DestroyObject : EHScopeStack::Cleanup { 369 DestroyObject(llvm::Value *addr, QualType type, 370 CodeGenFunction::Destroyer *destroyer, 371 bool useEHCleanupForArray) 372 : addr(addr), type(type), destroyer(destroyer), 373 useEHCleanupForArray(useEHCleanupForArray) {} 374 375 llvm::Value *addr; 376 QualType type; 377 CodeGenFunction::Destroyer *destroyer; 378 bool useEHCleanupForArray; 379 380 void Emit(CodeGenFunction &CGF, Flags flags) { 381 // Don't use an EH cleanup recursively from an EH cleanup. 382 bool useEHCleanupForArray = 383 flags.isForNormalCleanup() && this->useEHCleanupForArray; 384 385 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 386 } 387 }; 388 389 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 390 DestroyNRVOVariable(llvm::Value *addr, 391 const CXXDestructorDecl *Dtor, 392 llvm::Value *NRVOFlag) 393 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 394 395 const CXXDestructorDecl *Dtor; 396 llvm::Value *NRVOFlag; 397 llvm::Value *Loc; 398 399 void Emit(CodeGenFunction &CGF, Flags flags) { 400 // Along the exceptions path we always execute the dtor. 401 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 402 403 llvm::BasicBlock *SkipDtorBB = 0; 404 if (NRVO) { 405 // If we exited via NRVO, we skip the destructor call. 406 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 407 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 408 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 409 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 410 CGF.EmitBlock(RunDtorBB); 411 } 412 413 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 414 /*ForVirtualBase=*/false, 415 /*Delegating=*/false, 416 Loc); 417 418 if (NRVO) CGF.EmitBlock(SkipDtorBB); 419 } 420 }; 421 422 struct CallStackRestore : EHScopeStack::Cleanup { 423 llvm::Value *Stack; 424 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 425 void Emit(CodeGenFunction &CGF, Flags flags) { 426 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 427 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 428 CGF.Builder.CreateCall(F, V); 429 } 430 }; 431 432 struct ExtendGCLifetime : EHScopeStack::Cleanup { 433 const VarDecl &Var; 434 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 435 436 void Emit(CodeGenFunction &CGF, Flags flags) { 437 // Compute the address of the local variable, in case it's a 438 // byref or something. 439 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 440 Var.getType(), VK_LValue, SourceLocation()); 441 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 442 CGF.EmitExtendGCLifetime(value); 443 } 444 }; 445 446 struct CallCleanupFunction : EHScopeStack::Cleanup { 447 llvm::Constant *CleanupFn; 448 const CGFunctionInfo &FnInfo; 449 const VarDecl &Var; 450 451 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 452 const VarDecl *Var) 453 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 454 455 void Emit(CodeGenFunction &CGF, Flags flags) { 456 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 457 Var.getType(), VK_LValue, SourceLocation()); 458 // Compute the address of the local variable, in case it's a byref 459 // or something. 460 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 461 462 // In some cases, the type of the function argument will be different from 463 // the type of the pointer. An example of this is 464 // void f(void* arg); 465 // __attribute__((cleanup(f))) void *g; 466 // 467 // To fix this we insert a bitcast here. 468 QualType ArgTy = FnInfo.arg_begin()->type; 469 llvm::Value *Arg = 470 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 471 472 CallArgList Args; 473 Args.add(RValue::get(Arg), 474 CGF.getContext().getPointerType(Var.getType())); 475 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 476 } 477 }; 478 479 /// A cleanup to call @llvm.lifetime.end. 480 class CallLifetimeEnd : public EHScopeStack::Cleanup { 481 llvm::Value *Addr; 482 llvm::Value *Size; 483 public: 484 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size) 485 : Addr(addr), Size(size) {} 486 487 void Emit(CodeGenFunction &CGF, Flags flags) { 488 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy); 489 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(), 490 Size, castAddr) 491 ->setDoesNotThrow(); 492 } 493 }; 494} 495 496/// EmitAutoVarWithLifetime - Does the setup required for an automatic 497/// variable with lifetime. 498static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 499 llvm::Value *addr, 500 Qualifiers::ObjCLifetime lifetime) { 501 switch (lifetime) { 502 case Qualifiers::OCL_None: 503 llvm_unreachable("present but none"); 504 505 case Qualifiers::OCL_ExplicitNone: 506 // nothing to do 507 break; 508 509 case Qualifiers::OCL_Strong: { 510 CodeGenFunction::Destroyer *destroyer = 511 (var.hasAttr<ObjCPreciseLifetimeAttr>() 512 ? CodeGenFunction::destroyARCStrongPrecise 513 : CodeGenFunction::destroyARCStrongImprecise); 514 515 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 516 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 517 cleanupKind & EHCleanup); 518 break; 519 } 520 case Qualifiers::OCL_Autoreleasing: 521 // nothing to do 522 break; 523 524 case Qualifiers::OCL_Weak: 525 // __weak objects always get EH cleanups; otherwise, exceptions 526 // could cause really nasty crashes instead of mere leaks. 527 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 528 CodeGenFunction::destroyARCWeak, 529 /*useEHCleanup*/ true); 530 break; 531 } 532} 533 534static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 535 if (const Expr *e = dyn_cast<Expr>(s)) { 536 // Skip the most common kinds of expressions that make 537 // hierarchy-walking expensive. 538 s = e = e->IgnoreParenCasts(); 539 540 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 541 return (ref->getDecl() == &var); 542 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 543 const BlockDecl *block = be->getBlockDecl(); 544 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 545 e = block->capture_end(); i != e; ++i) { 546 if (i->getVariable() == &var) 547 return true; 548 } 549 } 550 } 551 552 for (Stmt::const_child_range children = s->children(); children; ++children) 553 // children might be null; as in missing decl or conditional of an if-stmt. 554 if ((*children) && isAccessedBy(var, *children)) 555 return true; 556 557 return false; 558} 559 560static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 561 if (!decl) return false; 562 if (!isa<VarDecl>(decl)) return false; 563 const VarDecl *var = cast<VarDecl>(decl); 564 return isAccessedBy(*var, e); 565} 566 567static void drillIntoBlockVariable(CodeGenFunction &CGF, 568 LValue &lvalue, 569 const VarDecl *var) { 570 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 571} 572 573void CodeGenFunction::EmitScalarInit(const Expr *init, 574 const ValueDecl *D, 575 LValue lvalue, 576 bool capturedByInit) { 577 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 578 if (!lifetime) { 579 llvm::Value *value = EmitScalarExpr(init); 580 if (capturedByInit) 581 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 582 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 583 return; 584 } 585 586 // If we're emitting a value with lifetime, we have to do the 587 // initialization *before* we leave the cleanup scopes. 588 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 589 enterFullExpression(ewc); 590 init = ewc->getSubExpr(); 591 } 592 CodeGenFunction::RunCleanupsScope Scope(*this); 593 594 // We have to maintain the illusion that the variable is 595 // zero-initialized. If the variable might be accessed in its 596 // initializer, zero-initialize before running the initializer, then 597 // actually perform the initialization with an assign. 598 bool accessedByInit = false; 599 if (lifetime != Qualifiers::OCL_ExplicitNone) 600 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 601 if (accessedByInit) { 602 LValue tempLV = lvalue; 603 // Drill down to the __block object if necessary. 604 if (capturedByInit) { 605 // We can use a simple GEP for this because it can't have been 606 // moved yet. 607 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 608 getByRefValueLLVMField(cast<VarDecl>(D)))); 609 } 610 611 llvm::PointerType *ty 612 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 613 ty = cast<llvm::PointerType>(ty->getElementType()); 614 615 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 616 617 // If __weak, we want to use a barrier under certain conditions. 618 if (lifetime == Qualifiers::OCL_Weak) 619 EmitARCInitWeak(tempLV.getAddress(), zero); 620 621 // Otherwise just do a simple store. 622 else 623 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 624 } 625 626 // Emit the initializer. 627 llvm::Value *value = 0; 628 629 switch (lifetime) { 630 case Qualifiers::OCL_None: 631 llvm_unreachable("present but none"); 632 633 case Qualifiers::OCL_ExplicitNone: 634 // nothing to do 635 value = EmitScalarExpr(init); 636 break; 637 638 case Qualifiers::OCL_Strong: { 639 value = EmitARCRetainScalarExpr(init); 640 break; 641 } 642 643 case Qualifiers::OCL_Weak: { 644 // No way to optimize a producing initializer into this. It's not 645 // worth optimizing for, because the value will immediately 646 // disappear in the common case. 647 value = EmitScalarExpr(init); 648 649 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 650 if (accessedByInit) 651 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 652 else 653 EmitARCInitWeak(lvalue.getAddress(), value); 654 return; 655 } 656 657 case Qualifiers::OCL_Autoreleasing: 658 value = EmitARCRetainAutoreleaseScalarExpr(init); 659 break; 660 } 661 662 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 663 664 // If the variable might have been accessed by its initializer, we 665 // might have to initialize with a barrier. We have to do this for 666 // both __weak and __strong, but __weak got filtered out above. 667 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 668 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 669 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 670 EmitARCRelease(oldValue, ARCImpreciseLifetime); 671 return; 672 } 673 674 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 675} 676 677/// EmitScalarInit - Initialize the given lvalue with the given object. 678void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 679 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 680 if (!lifetime) 681 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 682 683 switch (lifetime) { 684 case Qualifiers::OCL_None: 685 llvm_unreachable("present but none"); 686 687 case Qualifiers::OCL_ExplicitNone: 688 // nothing to do 689 break; 690 691 case Qualifiers::OCL_Strong: 692 init = EmitARCRetain(lvalue.getType(), init); 693 break; 694 695 case Qualifiers::OCL_Weak: 696 // Initialize and then skip the primitive store. 697 EmitARCInitWeak(lvalue.getAddress(), init); 698 return; 699 700 case Qualifiers::OCL_Autoreleasing: 701 init = EmitARCRetainAutorelease(lvalue.getType(), init); 702 break; 703 } 704 705 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 706} 707 708/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 709/// non-zero parts of the specified initializer with equal or fewer than 710/// NumStores scalar stores. 711static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 712 unsigned &NumStores) { 713 // Zero and Undef never requires any extra stores. 714 if (isa<llvm::ConstantAggregateZero>(Init) || 715 isa<llvm::ConstantPointerNull>(Init) || 716 isa<llvm::UndefValue>(Init)) 717 return true; 718 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 719 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 720 isa<llvm::ConstantExpr>(Init)) 721 return Init->isNullValue() || NumStores--; 722 723 // See if we can emit each element. 724 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 725 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 726 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 727 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 728 return false; 729 } 730 return true; 731 } 732 733 if (llvm::ConstantDataSequential *CDS = 734 dyn_cast<llvm::ConstantDataSequential>(Init)) { 735 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 736 llvm::Constant *Elt = CDS->getElementAsConstant(i); 737 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 738 return false; 739 } 740 return true; 741 } 742 743 // Anything else is hard and scary. 744 return false; 745} 746 747/// emitStoresForInitAfterMemset - For inits that 748/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 749/// stores that would be required. 750static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 751 bool isVolatile, CGBuilderTy &Builder) { 752 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 753 "called emitStoresForInitAfterMemset for zero or undef value."); 754 755 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 756 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 757 isa<llvm::ConstantExpr>(Init)) { 758 Builder.CreateStore(Init, Loc, isVolatile); 759 return; 760 } 761 762 if (llvm::ConstantDataSequential *CDS = 763 dyn_cast<llvm::ConstantDataSequential>(Init)) { 764 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 765 llvm::Constant *Elt = CDS->getElementAsConstant(i); 766 767 // If necessary, get a pointer to the element and emit it. 768 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 769 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 770 isVolatile, Builder); 771 } 772 return; 773 } 774 775 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 776 "Unknown value type!"); 777 778 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 779 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 780 781 // If necessary, get a pointer to the element and emit it. 782 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 783 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 784 isVolatile, Builder); 785 } 786} 787 788 789/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 790/// plus some stores to initialize a local variable instead of using a memcpy 791/// from a constant global. It is beneficial to use memset if the global is all 792/// zeros, or mostly zeros and large. 793static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 794 uint64_t GlobalSize) { 795 // If a global is all zeros, always use a memset. 796 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 797 798 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 799 // do it if it will require 6 or fewer scalar stores. 800 // TODO: Should budget depends on the size? Avoiding a large global warrants 801 // plopping in more stores. 802 unsigned StoreBudget = 6; 803 uint64_t SizeLimit = 32; 804 805 return GlobalSize > SizeLimit && 806 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 807} 808 809/// Should we use the LLVM lifetime intrinsics for the given local variable? 810static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D, 811 unsigned Size) { 812 // Always emit lifetime markers in -fsanitize=use-after-scope mode. 813 if (CGF.getLangOpts().Sanitize.UseAfterScope) 814 return true; 815 // For now, only in optimized builds. 816 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) 817 return false; 818 819 // Limit the size of marked objects to 32 bytes. We don't want to increase 820 // compile time by marking tiny objects. 821 unsigned SizeThreshold = 32; 822 823 return Size > SizeThreshold; 824} 825 826 827/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 828/// variable declaration with auto, register, or no storage class specifier. 829/// These turn into simple stack objects, or GlobalValues depending on target. 830void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 831 AutoVarEmission emission = EmitAutoVarAlloca(D); 832 EmitAutoVarInit(emission); 833 EmitAutoVarCleanups(emission); 834} 835 836/// EmitAutoVarAlloca - Emit the alloca and debug information for a 837/// local variable. Does not emit initalization or destruction. 838CodeGenFunction::AutoVarEmission 839CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 840 QualType Ty = D.getType(); 841 842 AutoVarEmission emission(D); 843 844 bool isByRef = D.hasAttr<BlocksAttr>(); 845 emission.IsByRef = isByRef; 846 847 CharUnits alignment = getContext().getDeclAlign(&D); 848 emission.Alignment = alignment; 849 850 // If the type is variably-modified, emit all the VLA sizes for it. 851 if (Ty->isVariablyModifiedType()) 852 EmitVariablyModifiedType(Ty); 853 854 llvm::Value *DeclPtr; 855 if (Ty->isConstantSizeType()) { 856 bool NRVO = getLangOpts().ElideConstructors && 857 D.isNRVOVariable(); 858 859 // If this value is an array or struct with a statically determinable 860 // constant initializer, there are optimizations we can do. 861 // 862 // TODO: We should constant-evaluate the initializer of any variable, 863 // as long as it is initialized by a constant expression. Currently, 864 // isConstantInitializer produces wrong answers for structs with 865 // reference or bitfield members, and a few other cases, and checking 866 // for POD-ness protects us from some of these. 867 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 868 (D.isConstexpr() || 869 ((Ty.isPODType(getContext()) || 870 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 871 D.getInit()->isConstantInitializer(getContext(), false)))) { 872 873 // If the variable's a const type, and it's neither an NRVO 874 // candidate nor a __block variable and has no mutable members, 875 // emit it as a global instead. 876 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 877 CGM.isTypeConstant(Ty, true)) { 878 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 879 880 emission.Address = 0; // signal this condition to later callbacks 881 assert(emission.wasEmittedAsGlobal()); 882 return emission; 883 } 884 885 // Otherwise, tell the initialization code that we're in this case. 886 emission.IsConstantAggregate = true; 887 } 888 889 // A normal fixed sized variable becomes an alloca in the entry block, 890 // unless it's an NRVO variable. 891 llvm::Type *LTy = ConvertTypeForMem(Ty); 892 893 if (NRVO) { 894 // The named return value optimization: allocate this variable in the 895 // return slot, so that we can elide the copy when returning this 896 // variable (C++0x [class.copy]p34). 897 DeclPtr = ReturnValue; 898 899 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 900 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 901 // Create a flag that is used to indicate when the NRVO was applied 902 // to this variable. Set it to zero to indicate that NRVO was not 903 // applied. 904 llvm::Value *Zero = Builder.getFalse(); 905 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 906 EnsureInsertPoint(); 907 Builder.CreateStore(Zero, NRVOFlag); 908 909 // Record the NRVO flag for this variable. 910 NRVOFlags[&D] = NRVOFlag; 911 emission.NRVOFlag = NRVOFlag; 912 } 913 } 914 } else { 915 if (isByRef) 916 LTy = BuildByRefType(&D); 917 918 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 919 Alloc->setName(D.getName()); 920 921 CharUnits allocaAlignment = alignment; 922 if (isByRef) 923 allocaAlignment = std::max(allocaAlignment, 924 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0))); 925 Alloc->setAlignment(allocaAlignment.getQuantity()); 926 DeclPtr = Alloc; 927 928 // Emit a lifetime intrinsic if meaningful. There's no point 929 // in doing this if we don't have a valid insertion point (?). 930 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy); 931 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) { 932 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size); 933 934 emission.SizeForLifetimeMarkers = sizeV; 935 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy); 936 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr) 937 ->setDoesNotThrow(); 938 } else { 939 assert(!emission.useLifetimeMarkers()); 940 } 941 } 942 } else { 943 EnsureInsertPoint(); 944 945 if (!DidCallStackSave) { 946 // Save the stack. 947 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 948 949 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 950 llvm::Value *V = Builder.CreateCall(F); 951 952 Builder.CreateStore(V, Stack); 953 954 DidCallStackSave = true; 955 956 // Push a cleanup block and restore the stack there. 957 // FIXME: in general circumstances, this should be an EH cleanup. 958 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 959 } 960 961 llvm::Value *elementCount; 962 QualType elementType; 963 llvm::tie(elementCount, elementType) = getVLASize(Ty); 964 965 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 966 967 // Allocate memory for the array. 968 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 969 vla->setAlignment(alignment.getQuantity()); 970 971 DeclPtr = vla; 972 } 973 974 llvm::Value *&DMEntry = LocalDeclMap[&D]; 975 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 976 DMEntry = DeclPtr; 977 emission.Address = DeclPtr; 978 979 // Emit debug info for local var declaration. 980 if (HaveInsertPoint()) 981 if (CGDebugInfo *DI = getDebugInfo()) { 982 if (CGM.getCodeGenOpts().getDebugInfo() 983 >= CodeGenOptions::LimitedDebugInfo) { 984 DI->setLocation(D.getLocation()); 985 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 986 } 987 } 988 989 if (D.hasAttr<AnnotateAttr>()) 990 EmitVarAnnotations(&D, emission.Address); 991 992 return emission; 993} 994 995/// Determines whether the given __block variable is potentially 996/// captured by the given expression. 997static bool isCapturedBy(const VarDecl &var, const Expr *e) { 998 // Skip the most common kinds of expressions that make 999 // hierarchy-walking expensive. 1000 e = e->IgnoreParenCasts(); 1001 1002 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 1003 const BlockDecl *block = be->getBlockDecl(); 1004 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 1005 e = block->capture_end(); i != e; ++i) { 1006 if (i->getVariable() == &var) 1007 return true; 1008 } 1009 1010 // No need to walk into the subexpressions. 1011 return false; 1012 } 1013 1014 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 1015 const CompoundStmt *CS = SE->getSubStmt(); 1016 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 1017 BE = CS->body_end(); BI != BE; ++BI) 1018 if (Expr *E = dyn_cast<Expr>((*BI))) { 1019 if (isCapturedBy(var, E)) 1020 return true; 1021 } 1022 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 1023 // special case declarations 1024 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 1025 I != E; ++I) { 1026 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 1027 Expr *Init = VD->getInit(); 1028 if (Init && isCapturedBy(var, Init)) 1029 return true; 1030 } 1031 } 1032 } 1033 else 1034 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1035 // Later, provide code to poke into statements for capture analysis. 1036 return true; 1037 return false; 1038 } 1039 1040 for (Stmt::const_child_range children = e->children(); children; ++children) 1041 if (isCapturedBy(var, cast<Expr>(*children))) 1042 return true; 1043 1044 return false; 1045} 1046 1047/// \brief Determine whether the given initializer is trivial in the sense 1048/// that it requires no code to be generated. 1049static bool isTrivialInitializer(const Expr *Init) { 1050 if (!Init) 1051 return true; 1052 1053 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1054 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1055 if (Constructor->isTrivial() && 1056 Constructor->isDefaultConstructor() && 1057 !Construct->requiresZeroInitialization()) 1058 return true; 1059 1060 return false; 1061} 1062void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1063 assert(emission.Variable && "emission was not valid!"); 1064 1065 // If this was emitted as a global constant, we're done. 1066 if (emission.wasEmittedAsGlobal()) return; 1067 1068 const VarDecl &D = *emission.Variable; 1069 QualType type = D.getType(); 1070 1071 // If this local has an initializer, emit it now. 1072 const Expr *Init = D.getInit(); 1073 1074 // If we are at an unreachable point, we don't need to emit the initializer 1075 // unless it contains a label. 1076 if (!HaveInsertPoint()) { 1077 if (!Init || !ContainsLabel(Init)) return; 1078 EnsureInsertPoint(); 1079 } 1080 1081 // Initialize the structure of a __block variable. 1082 if (emission.IsByRef) 1083 emitByrefStructureInit(emission); 1084 1085 if (isTrivialInitializer(Init)) 1086 return; 1087 1088 CharUnits alignment = emission.Alignment; 1089 1090 // Check whether this is a byref variable that's potentially 1091 // captured and moved by its own initializer. If so, we'll need to 1092 // emit the initializer first, then copy into the variable. 1093 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1094 1095 llvm::Value *Loc = 1096 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1097 1098 llvm::Constant *constant = 0; 1099 if (emission.IsConstantAggregate || D.isConstexpr()) { 1100 assert(!capturedByInit && "constant init contains a capturing block?"); 1101 constant = CGM.EmitConstantInit(D, this); 1102 } 1103 1104 if (!constant) { 1105 LValue lv = MakeAddrLValue(Loc, type, alignment); 1106 lv.setNonGC(true); 1107 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1108 } 1109 1110 if (!emission.IsConstantAggregate) { 1111 // For simple scalar/complex initialization, store the value directly. 1112 LValue lv = MakeAddrLValue(Loc, type, alignment); 1113 lv.setNonGC(true); 1114 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1115 } 1116 1117 // If this is a simple aggregate initialization, we can optimize it 1118 // in various ways. 1119 bool isVolatile = type.isVolatileQualified(); 1120 1121 llvm::Value *SizeVal = 1122 llvm::ConstantInt::get(IntPtrTy, 1123 getContext().getTypeSizeInChars(type).getQuantity()); 1124 1125 llvm::Type *BP = Int8PtrTy; 1126 if (Loc->getType() != BP) 1127 Loc = Builder.CreateBitCast(Loc, BP); 1128 1129 // If the initializer is all or mostly zeros, codegen with memset then do 1130 // a few stores afterward. 1131 if (shouldUseMemSetPlusStoresToInitialize(constant, 1132 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1133 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1134 alignment.getQuantity(), isVolatile); 1135 // Zero and undef don't require a stores. 1136 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1137 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1138 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1139 } 1140 } else { 1141 // Otherwise, create a temporary global with the initializer then 1142 // memcpy from the global to the alloca. 1143 std::string Name = GetStaticDeclName(*this, D, "."); 1144 llvm::GlobalVariable *GV = 1145 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1146 llvm::GlobalValue::PrivateLinkage, 1147 constant, Name); 1148 GV->setAlignment(alignment.getQuantity()); 1149 GV->setUnnamedAddr(true); 1150 1151 llvm::Value *SrcPtr = GV; 1152 if (SrcPtr->getType() != BP) 1153 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1154 1155 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1156 isVolatile); 1157 } 1158} 1159 1160/// Emit an expression as an initializer for a variable at the given 1161/// location. The expression is not necessarily the normal 1162/// initializer for the variable, and the address is not necessarily 1163/// its normal location. 1164/// 1165/// \param init the initializing expression 1166/// \param var the variable to act as if we're initializing 1167/// \param loc the address to initialize; its type is a pointer 1168/// to the LLVM mapping of the variable's type 1169/// \param alignment the alignment of the address 1170/// \param capturedByInit true if the variable is a __block variable 1171/// whose address is potentially changed by the initializer 1172void CodeGenFunction::EmitExprAsInit(const Expr *init, 1173 const ValueDecl *D, 1174 LValue lvalue, 1175 bool capturedByInit) { 1176 QualType type = D->getType(); 1177 1178 if (type->isReferenceType()) { 1179 RValue rvalue = EmitReferenceBindingToExpr(init); 1180 if (capturedByInit) 1181 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1182 EmitStoreThroughLValue(rvalue, lvalue, true); 1183 return; 1184 } 1185 switch (getEvaluationKind(type)) { 1186 case TEK_Scalar: 1187 EmitScalarInit(init, D, lvalue, capturedByInit); 1188 return; 1189 case TEK_Complex: { 1190 ComplexPairTy complex = EmitComplexExpr(init); 1191 if (capturedByInit) 1192 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1193 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1194 return; 1195 } 1196 case TEK_Aggregate: 1197 if (type->isAtomicType()) { 1198 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1199 } else { 1200 // TODO: how can we delay here if D is captured by its initializer? 1201 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1202 AggValueSlot::IsDestructed, 1203 AggValueSlot::DoesNotNeedGCBarriers, 1204 AggValueSlot::IsNotAliased)); 1205 } 1206 return; 1207 } 1208 llvm_unreachable("bad evaluation kind"); 1209} 1210 1211/// Enter a destroy cleanup for the given local variable. 1212void CodeGenFunction::emitAutoVarTypeCleanup( 1213 const CodeGenFunction::AutoVarEmission &emission, 1214 QualType::DestructionKind dtorKind) { 1215 assert(dtorKind != QualType::DK_none); 1216 1217 // Note that for __block variables, we want to destroy the 1218 // original stack object, not the possibly forwarded object. 1219 llvm::Value *addr = emission.getObjectAddress(*this); 1220 1221 const VarDecl *var = emission.Variable; 1222 QualType type = var->getType(); 1223 1224 CleanupKind cleanupKind = NormalAndEHCleanup; 1225 CodeGenFunction::Destroyer *destroyer = 0; 1226 1227 switch (dtorKind) { 1228 case QualType::DK_none: 1229 llvm_unreachable("no cleanup for trivially-destructible variable"); 1230 1231 case QualType::DK_cxx_destructor: 1232 // If there's an NRVO flag on the emission, we need a different 1233 // cleanup. 1234 if (emission.NRVOFlag) { 1235 assert(!type->isArrayType()); 1236 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1237 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1238 emission.NRVOFlag); 1239 return; 1240 } 1241 break; 1242 1243 case QualType::DK_objc_strong_lifetime: 1244 // Suppress cleanups for pseudo-strong variables. 1245 if (var->isARCPseudoStrong()) return; 1246 1247 // Otherwise, consider whether to use an EH cleanup or not. 1248 cleanupKind = getARCCleanupKind(); 1249 1250 // Use the imprecise destroyer by default. 1251 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1252 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1253 break; 1254 1255 case QualType::DK_objc_weak_lifetime: 1256 break; 1257 } 1258 1259 // If we haven't chosen a more specific destroyer, use the default. 1260 if (!destroyer) destroyer = getDestroyer(dtorKind); 1261 1262 // Use an EH cleanup in array destructors iff the destructor itself 1263 // is being pushed as an EH cleanup. 1264 bool useEHCleanup = (cleanupKind & EHCleanup); 1265 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1266 useEHCleanup); 1267} 1268 1269void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1270 assert(emission.Variable && "emission was not valid!"); 1271 1272 // If this was emitted as a global constant, we're done. 1273 if (emission.wasEmittedAsGlobal()) return; 1274 1275 // If we don't have an insertion point, we're done. Sema prevents 1276 // us from jumping into any of these scopes anyway. 1277 if (!HaveInsertPoint()) return; 1278 1279 const VarDecl &D = *emission.Variable; 1280 1281 // Make sure we call @llvm.lifetime.end. This needs to happen 1282 // *last*, so the cleanup needs to be pushed *first*. 1283 if (emission.useLifetimeMarkers()) { 1284 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup, 1285 emission.getAllocatedAddress(), 1286 emission.getSizeForLifetimeMarkers()); 1287 } 1288 1289 // Check the type for a cleanup. 1290 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1291 emitAutoVarTypeCleanup(emission, dtorKind); 1292 1293 // In GC mode, honor objc_precise_lifetime. 1294 if (getLangOpts().getGC() != LangOptions::NonGC && 1295 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1296 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1297 } 1298 1299 // Handle the cleanup attribute. 1300 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1301 const FunctionDecl *FD = CA->getFunctionDecl(); 1302 1303 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1304 assert(F && "Could not find function!"); 1305 1306 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1307 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1308 } 1309 1310 // If this is a block variable, call _Block_object_destroy 1311 // (on the unforwarded address). 1312 if (emission.IsByRef) 1313 enterByrefCleanup(emission); 1314} 1315 1316CodeGenFunction::Destroyer * 1317CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1318 switch (kind) { 1319 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1320 case QualType::DK_cxx_destructor: 1321 return destroyCXXObject; 1322 case QualType::DK_objc_strong_lifetime: 1323 return destroyARCStrongPrecise; 1324 case QualType::DK_objc_weak_lifetime: 1325 return destroyARCWeak; 1326 } 1327 llvm_unreachable("Unknown DestructionKind"); 1328} 1329 1330/// pushEHDestroy - Push the standard destructor for the given type as 1331/// an EH-only cleanup. 1332void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1333 llvm::Value *addr, QualType type) { 1334 assert(dtorKind && "cannot push destructor for trivial type"); 1335 assert(needsEHCleanup(dtorKind)); 1336 1337 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1338} 1339 1340/// pushDestroy - Push the standard destructor for the given type as 1341/// at least a normal cleanup. 1342void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1343 llvm::Value *addr, QualType type) { 1344 assert(dtorKind && "cannot push destructor for trivial type"); 1345 1346 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1347 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1348 cleanupKind & EHCleanup); 1349} 1350 1351void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1352 QualType type, Destroyer *destroyer, 1353 bool useEHCleanupForArray) { 1354 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1355 destroyer, useEHCleanupForArray); 1356} 1357 1358void CodeGenFunction::pushLifetimeExtendedDestroy( 1359 CleanupKind cleanupKind, llvm::Value *addr, QualType type, 1360 Destroyer *destroyer, bool useEHCleanupForArray) { 1361 assert(!isInConditionalBranch() && 1362 "performing lifetime extension from within conditional"); 1363 1364 // Push an EH-only cleanup for the object now. 1365 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 1366 // around in case a temporary's destructor throws an exception. 1367 if (cleanupKind & EHCleanup) 1368 EHStack.pushCleanup<DestroyObject>( 1369 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 1370 destroyer, useEHCleanupForArray); 1371 1372 // Remember that we need to push a full cleanup for the object at the 1373 // end of the full-expression. 1374 pushCleanupAfterFullExpr<DestroyObject>( 1375 cleanupKind, addr, type, destroyer, useEHCleanupForArray); 1376} 1377 1378/// emitDestroy - Immediately perform the destruction of the given 1379/// object. 1380/// 1381/// \param addr - the address of the object; a type* 1382/// \param type - the type of the object; if an array type, all 1383/// objects are destroyed in reverse order 1384/// \param destroyer - the function to call to destroy individual 1385/// elements 1386/// \param useEHCleanupForArray - whether an EH cleanup should be 1387/// used when destroying array elements, in case one of the 1388/// destructions throws an exception 1389void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1390 Destroyer *destroyer, 1391 bool useEHCleanupForArray) { 1392 const ArrayType *arrayType = getContext().getAsArrayType(type); 1393 if (!arrayType) 1394 return destroyer(*this, addr, type); 1395 1396 llvm::Value *begin = addr; 1397 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1398 1399 // Normally we have to check whether the array is zero-length. 1400 bool checkZeroLength = true; 1401 1402 // But if the array length is constant, we can suppress that. 1403 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1404 // ...and if it's constant zero, we can just skip the entire thing. 1405 if (constLength->isZero()) return; 1406 checkZeroLength = false; 1407 } 1408 1409 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1410 emitArrayDestroy(begin, end, type, destroyer, 1411 checkZeroLength, useEHCleanupForArray); 1412} 1413 1414/// emitArrayDestroy - Destroys all the elements of the given array, 1415/// beginning from last to first. The array cannot be zero-length. 1416/// 1417/// \param begin - a type* denoting the first element of the array 1418/// \param end - a type* denoting one past the end of the array 1419/// \param type - the element type of the array 1420/// \param destroyer - the function to call to destroy elements 1421/// \param useEHCleanup - whether to push an EH cleanup to destroy 1422/// the remaining elements in case the destruction of a single 1423/// element throws 1424void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1425 llvm::Value *end, 1426 QualType type, 1427 Destroyer *destroyer, 1428 bool checkZeroLength, 1429 bool useEHCleanup) { 1430 assert(!type->isArrayType()); 1431 1432 // The basic structure here is a do-while loop, because we don't 1433 // need to check for the zero-element case. 1434 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1435 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1436 1437 if (checkZeroLength) { 1438 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1439 "arraydestroy.isempty"); 1440 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1441 } 1442 1443 // Enter the loop body, making that address the current address. 1444 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1445 EmitBlock(bodyBB); 1446 llvm::PHINode *elementPast = 1447 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1448 elementPast->addIncoming(end, entryBB); 1449 1450 // Shift the address back by one element. 1451 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1452 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1453 "arraydestroy.element"); 1454 1455 if (useEHCleanup) 1456 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1457 1458 // Perform the actual destruction there. 1459 destroyer(*this, element, type); 1460 1461 if (useEHCleanup) 1462 PopCleanupBlock(); 1463 1464 // Check whether we've reached the end. 1465 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1466 Builder.CreateCondBr(done, doneBB, bodyBB); 1467 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1468 1469 // Done. 1470 EmitBlock(doneBB); 1471} 1472 1473/// Perform partial array destruction as if in an EH cleanup. Unlike 1474/// emitArrayDestroy, the element type here may still be an array type. 1475static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1476 llvm::Value *begin, llvm::Value *end, 1477 QualType type, 1478 CodeGenFunction::Destroyer *destroyer) { 1479 // If the element type is itself an array, drill down. 1480 unsigned arrayDepth = 0; 1481 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1482 // VLAs don't require a GEP index to walk into. 1483 if (!isa<VariableArrayType>(arrayType)) 1484 arrayDepth++; 1485 type = arrayType->getElementType(); 1486 } 1487 1488 if (arrayDepth) { 1489 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1490 1491 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1492 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1493 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1494 } 1495 1496 // Destroy the array. We don't ever need an EH cleanup because we 1497 // assume that we're in an EH cleanup ourselves, so a throwing 1498 // destructor causes an immediate terminate. 1499 CGF.emitArrayDestroy(begin, end, type, destroyer, 1500 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1501} 1502 1503namespace { 1504 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1505 /// array destroy where the end pointer is regularly determined and 1506 /// does not need to be loaded from a local. 1507 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1508 llvm::Value *ArrayBegin; 1509 llvm::Value *ArrayEnd; 1510 QualType ElementType; 1511 CodeGenFunction::Destroyer *Destroyer; 1512 public: 1513 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1514 QualType elementType, 1515 CodeGenFunction::Destroyer *destroyer) 1516 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1517 ElementType(elementType), Destroyer(destroyer) {} 1518 1519 void Emit(CodeGenFunction &CGF, Flags flags) { 1520 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1521 ElementType, Destroyer); 1522 } 1523 }; 1524 1525 /// IrregularPartialArrayDestroy - a cleanup which performs a 1526 /// partial array destroy where the end pointer is irregularly 1527 /// determined and must be loaded from a local. 1528 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1529 llvm::Value *ArrayBegin; 1530 llvm::Value *ArrayEndPointer; 1531 QualType ElementType; 1532 CodeGenFunction::Destroyer *Destroyer; 1533 public: 1534 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1535 llvm::Value *arrayEndPointer, 1536 QualType elementType, 1537 CodeGenFunction::Destroyer *destroyer) 1538 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1539 ElementType(elementType), Destroyer(destroyer) {} 1540 1541 void Emit(CodeGenFunction &CGF, Flags flags) { 1542 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1543 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1544 ElementType, Destroyer); 1545 } 1546 }; 1547} 1548 1549/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1550/// already-constructed elements of the given array. The cleanup 1551/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1552/// 1553/// \param elementType - the immediate element type of the array; 1554/// possibly still an array type 1555void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1556 llvm::Value *arrayEndPointer, 1557 QualType elementType, 1558 Destroyer *destroyer) { 1559 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1560 arrayBegin, arrayEndPointer, 1561 elementType, destroyer); 1562} 1563 1564/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1565/// already-constructed elements of the given array. The cleanup 1566/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1567/// 1568/// \param elementType - the immediate element type of the array; 1569/// possibly still an array type 1570void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1571 llvm::Value *arrayEnd, 1572 QualType elementType, 1573 Destroyer *destroyer) { 1574 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1575 arrayBegin, arrayEnd, 1576 elementType, destroyer); 1577} 1578 1579/// Lazily declare the @llvm.lifetime.start intrinsic. 1580llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { 1581 if (LifetimeStartFn) return LifetimeStartFn; 1582 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 1583 llvm::Intrinsic::lifetime_start); 1584 return LifetimeStartFn; 1585} 1586 1587/// Lazily declare the @llvm.lifetime.end intrinsic. 1588llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { 1589 if (LifetimeEndFn) return LifetimeEndFn; 1590 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 1591 llvm::Intrinsic::lifetime_end); 1592 return LifetimeEndFn; 1593} 1594 1595namespace { 1596 /// A cleanup to perform a release of an object at the end of a 1597 /// function. This is used to balance out the incoming +1 of a 1598 /// ns_consumed argument when we can't reasonably do that just by 1599 /// not doing the initial retain for a __block argument. 1600 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1601 ConsumeARCParameter(llvm::Value *param, 1602 ARCPreciseLifetime_t precise) 1603 : Param(param), Precise(precise) {} 1604 1605 llvm::Value *Param; 1606 ARCPreciseLifetime_t Precise; 1607 1608 void Emit(CodeGenFunction &CGF, Flags flags) { 1609 CGF.EmitARCRelease(Param, Precise); 1610 } 1611 }; 1612} 1613 1614/// Emit an alloca (or GlobalValue depending on target) 1615/// for the specified parameter and set up LocalDeclMap. 1616void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1617 unsigned ArgNo) { 1618 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1619 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1620 "Invalid argument to EmitParmDecl"); 1621 1622 Arg->setName(D.getName()); 1623 1624 QualType Ty = D.getType(); 1625 1626 // Use better IR generation for certain implicit parameters. 1627 if (isa<ImplicitParamDecl>(D)) { 1628 // The only implicit argument a block has is its literal. 1629 if (BlockInfo) { 1630 LocalDeclMap[&D] = Arg; 1631 llvm::Value *LocalAddr = 0; 1632 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1633 // Allocate a stack slot to let the debug info survive the RA. 1634 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1635 D.getName() + ".addr"); 1636 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1637 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1638 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1639 LocalAddr = Builder.CreateLoad(Alloc); 1640 } 1641 1642 if (CGDebugInfo *DI = getDebugInfo()) { 1643 if (CGM.getCodeGenOpts().getDebugInfo() 1644 >= CodeGenOptions::LimitedDebugInfo) { 1645 DI->setLocation(D.getLocation()); 1646 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1647 } 1648 } 1649 1650 return; 1651 } 1652 } 1653 1654 llvm::Value *DeclPtr; 1655 // If this is an aggregate or variable sized value, reuse the input pointer. 1656 if (!Ty->isConstantSizeType() || 1657 !CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1658 DeclPtr = Arg; 1659 } else { 1660 // Otherwise, create a temporary to hold the value. 1661 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1662 D.getName() + ".addr"); 1663 CharUnits Align = getContext().getDeclAlign(&D); 1664 Alloc->setAlignment(Align.getQuantity()); 1665 DeclPtr = Alloc; 1666 1667 bool doStore = true; 1668 1669 Qualifiers qs = Ty.getQualifiers(); 1670 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1671 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1672 // We honor __attribute__((ns_consumed)) for types with lifetime. 1673 // For __strong, it's handled by just skipping the initial retain; 1674 // otherwise we have to balance out the initial +1 with an extra 1675 // cleanup to do the release at the end of the function. 1676 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1677 1678 // 'self' is always formally __strong, but if this is not an 1679 // init method then we don't want to retain it. 1680 if (D.isARCPseudoStrong()) { 1681 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1682 assert(&D == method->getSelfDecl()); 1683 assert(lt == Qualifiers::OCL_Strong); 1684 assert(qs.hasConst()); 1685 assert(method->getMethodFamily() != OMF_init); 1686 (void) method; 1687 lt = Qualifiers::OCL_ExplicitNone; 1688 } 1689 1690 if (lt == Qualifiers::OCL_Strong) { 1691 if (!isConsumed) { 1692 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1693 // use objc_storeStrong(&dest, value) for retaining the 1694 // object. But first, store a null into 'dest' because 1695 // objc_storeStrong attempts to release its old value. 1696 llvm::Value * Null = CGM.EmitNullConstant(D.getType()); 1697 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1698 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1699 doStore = false; 1700 } 1701 else 1702 // Don't use objc_retainBlock for block pointers, because we 1703 // don't want to Block_copy something just because we got it 1704 // as a parameter. 1705 Arg = EmitARCRetainNonBlock(Arg); 1706 } 1707 } else { 1708 // Push the cleanup for a consumed parameter. 1709 if (isConsumed) { 1710 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1711 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1712 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1713 precise); 1714 } 1715 1716 if (lt == Qualifiers::OCL_Weak) { 1717 EmitARCInitWeak(DeclPtr, Arg); 1718 doStore = false; // The weak init is a store, no need to do two. 1719 } 1720 } 1721 1722 // Enter the cleanup scope. 1723 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1724 } 1725 1726 // Store the initial value into the alloca. 1727 if (doStore) 1728 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1729 } 1730 1731 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1732 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1733 DMEntry = DeclPtr; 1734 1735 // Emit debug info for param declaration. 1736 if (CGDebugInfo *DI = getDebugInfo()) { 1737 if (CGM.getCodeGenOpts().getDebugInfo() 1738 >= CodeGenOptions::LimitedDebugInfo) { 1739 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1740 } 1741 } 1742 1743 if (D.hasAttr<AnnotateAttr>()) 1744 EmitVarAnnotations(&D, DeclPtr); 1745} 1746