CGDecl.cpp revision bcc3e660a1fdc19722157ef3e2f133418856ca3d
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Decl nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Frontend/CodeGenOptions.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Type.h"
28using namespace clang;
29using namespace CodeGen;
30
31
32void CodeGenFunction::EmitDecl(const Decl &D) {
33  switch (D.getKind()) {
34  case Decl::TranslationUnit:
35  case Decl::Namespace:
36  case Decl::UnresolvedUsingTypename:
37  case Decl::ClassTemplateSpecialization:
38  case Decl::ClassTemplatePartialSpecialization:
39  case Decl::TemplateTypeParm:
40  case Decl::UnresolvedUsingValue:
41  case Decl::NonTypeTemplateParm:
42  case Decl::CXXMethod:
43  case Decl::CXXConstructor:
44  case Decl::CXXDestructor:
45  case Decl::CXXConversion:
46  case Decl::Field:
47  case Decl::IndirectField:
48  case Decl::ObjCIvar:
49  case Decl::ObjCAtDefsField:
50  case Decl::ParmVar:
51  case Decl::ImplicitParam:
52  case Decl::ClassTemplate:
53  case Decl::FunctionTemplate:
54  case Decl::TypeAliasTemplate:
55  case Decl::TemplateTemplateParm:
56  case Decl::ObjCMethod:
57  case Decl::ObjCCategory:
58  case Decl::ObjCProtocol:
59  case Decl::ObjCInterface:
60  case Decl::ObjCCategoryImpl:
61  case Decl::ObjCImplementation:
62  case Decl::ObjCProperty:
63  case Decl::ObjCCompatibleAlias:
64  case Decl::AccessSpec:
65  case Decl::LinkageSpec:
66  case Decl::ObjCPropertyImpl:
67  case Decl::ObjCClass:
68  case Decl::ObjCForwardProtocol:
69  case Decl::FileScopeAsm:
70  case Decl::Friend:
71  case Decl::FriendTemplate:
72  case Decl::Block:
73    assert(0 && "Declaration should not be in declstmts!");
74  case Decl::Function:  // void X();
75  case Decl::Record:    // struct/union/class X;
76  case Decl::Enum:      // enum X;
77  case Decl::EnumConstant: // enum ? { X = ? }
78  case Decl::CXXRecord: // struct/union/class X; [C++]
79  case Decl::Using:          // using X; [C++]
80  case Decl::UsingShadow:
81  case Decl::UsingDirective: // using namespace X; [C++]
82  case Decl::NamespaceAlias:
83  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84  case Decl::Label:        // __label__ x;
85    // None of these decls require codegen support.
86    return;
87
88  case Decl::Var: {
89    const VarDecl &VD = cast<VarDecl>(D);
90    assert(VD.isLocalVarDecl() &&
91           "Should not see file-scope variables inside a function!");
92    return EmitVarDecl(VD);
93  }
94
95  case Decl::Typedef:      // typedef int X;
96  case Decl::TypeAlias: {  // using X = int; [C++0x]
97    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
98    QualType Ty = TD.getUnderlyingType();
99
100    if (Ty->isVariablyModifiedType())
101      EmitVariablyModifiedType(Ty);
102  }
103  }
104}
105
106/// EmitVarDecl - This method handles emission of any variable declaration
107/// inside a function, including static vars etc.
108void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
109  switch (D.getStorageClass()) {
110  case SC_None:
111  case SC_Auto:
112  case SC_Register:
113    return EmitAutoVarDecl(D);
114  case SC_Static: {
115    llvm::GlobalValue::LinkageTypes Linkage =
116      llvm::GlobalValue::InternalLinkage;
117
118    // If the function definition has some sort of weak linkage, its
119    // static variables should also be weak so that they get properly
120    // uniqued.  We can't do this in C, though, because there's no
121    // standard way to agree on which variables are the same (i.e.
122    // there's no mangling).
123    if (getContext().getLangOptions().CPlusPlus)
124      if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
125        Linkage = CurFn->getLinkage();
126
127    return EmitStaticVarDecl(D, Linkage);
128  }
129  case SC_Extern:
130  case SC_PrivateExtern:
131    // Don't emit it now, allow it to be emitted lazily on its first use.
132    return;
133  }
134
135  assert(0 && "Unknown storage class");
136}
137
138static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
139                                     const char *Separator) {
140  CodeGenModule &CGM = CGF.CGM;
141  if (CGF.getContext().getLangOptions().CPlusPlus) {
142    llvm::StringRef Name = CGM.getMangledName(&D);
143    return Name.str();
144  }
145
146  std::string ContextName;
147  if (!CGF.CurFuncDecl) {
148    // Better be in a block declared in global scope.
149    const NamedDecl *ND = cast<NamedDecl>(&D);
150    const DeclContext *DC = ND->getDeclContext();
151    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
152      MangleBuffer Name;
153      CGM.getBlockMangledName(GlobalDecl(), Name, BD);
154      ContextName = Name.getString();
155    }
156    else
157      assert(0 && "Unknown context for block static var decl");
158  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
159    llvm::StringRef Name = CGM.getMangledName(FD);
160    ContextName = Name.str();
161  } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
162    ContextName = CGF.CurFn->getName();
163  else
164    assert(0 && "Unknown context for static var decl");
165
166  return ContextName + Separator + D.getNameAsString();
167}
168
169llvm::GlobalVariable *
170CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
171                                     const char *Separator,
172                                     llvm::GlobalValue::LinkageTypes Linkage) {
173  QualType Ty = D.getType();
174  assert(Ty->isConstantSizeType() && "VLAs can't be static");
175
176  std::string Name = GetStaticDeclName(*this, D, Separator);
177
178  const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
179  llvm::GlobalVariable *GV =
180    new llvm::GlobalVariable(CGM.getModule(), LTy,
181                             Ty.isConstant(getContext()), Linkage,
182                             CGM.EmitNullConstant(D.getType()), Name, 0,
183                             D.isThreadSpecified(),
184                             CGM.getContext().getTargetAddressSpace(Ty));
185  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
186  if (Linkage != llvm::GlobalValue::InternalLinkage)
187    GV->setVisibility(CurFn->getVisibility());
188  return GV;
189}
190
191/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
192/// global variable that has already been created for it.  If the initializer
193/// has a different type than GV does, this may free GV and return a different
194/// one.  Otherwise it just returns GV.
195llvm::GlobalVariable *
196CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
197                                               llvm::GlobalVariable *GV) {
198  llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this);
199
200  // If constant emission failed, then this should be a C++ static
201  // initializer.
202  if (!Init) {
203    if (!getContext().getLangOptions().CPlusPlus)
204      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
205    else if (Builder.GetInsertBlock()) {
206      // Since we have a static initializer, this global variable can't
207      // be constant.
208      GV->setConstant(false);
209
210      EmitCXXGuardedInit(D, GV);
211    }
212    return GV;
213  }
214
215  // The initializer may differ in type from the global. Rewrite
216  // the global to match the initializer.  (We have to do this
217  // because some types, like unions, can't be completely represented
218  // in the LLVM type system.)
219  if (GV->getType()->getElementType() != Init->getType()) {
220    llvm::GlobalVariable *OldGV = GV;
221
222    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
223                                  OldGV->isConstant(),
224                                  OldGV->getLinkage(), Init, "",
225                                  /*InsertBefore*/ OldGV,
226                                  D.isThreadSpecified(),
227                           CGM.getContext().getTargetAddressSpace(D.getType()));
228    GV->setVisibility(OldGV->getVisibility());
229
230    // Steal the name of the old global
231    GV->takeName(OldGV);
232
233    // Replace all uses of the old global with the new global
234    llvm::Constant *NewPtrForOldDecl =
235    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
236    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
237
238    // Erase the old global, since it is no longer used.
239    OldGV->eraseFromParent();
240  }
241
242  GV->setInitializer(Init);
243  return GV;
244}
245
246void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
247                                      llvm::GlobalValue::LinkageTypes Linkage) {
248  llvm::Value *&DMEntry = LocalDeclMap[&D];
249  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
250
251  llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage);
252
253  // Store into LocalDeclMap before generating initializer to handle
254  // circular references.
255  DMEntry = GV;
256
257  // We can't have a VLA here, but we can have a pointer to a VLA,
258  // even though that doesn't really make any sense.
259  // Make sure to evaluate VLA bounds now so that we have them for later.
260  if (D.getType()->isVariablyModifiedType())
261    EmitVariablyModifiedType(D.getType());
262
263  // Local static block variables must be treated as globals as they may be
264  // referenced in their RHS initializer block-literal expresion.
265  CGM.setStaticLocalDeclAddress(&D, GV);
266
267  // If this value has an initializer, emit it.
268  if (D.getInit())
269    GV = AddInitializerToStaticVarDecl(D, GV);
270
271  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
272
273  // FIXME: Merge attribute handling.
274  if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) {
275    SourceManager &SM = CGM.getContext().getSourceManager();
276    llvm::Constant *Ann =
277      CGM.EmitAnnotateAttr(GV, AA,
278                           SM.getInstantiationLineNumber(D.getLocation()));
279    CGM.AddAnnotation(Ann);
280  }
281
282  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
283    GV->setSection(SA->getName());
284
285  if (D.hasAttr<UsedAttr>())
286    CGM.AddUsedGlobal(GV);
287
288  // We may have to cast the constant because of the initializer
289  // mismatch above.
290  //
291  // FIXME: It is really dangerous to store this in the map; if anyone
292  // RAUW's the GV uses of this constant will be invalid.
293  const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType());
294  const llvm::Type *LPtrTy =
295    LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType()));
296  DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy);
297
298  // Emit global variable debug descriptor for static vars.
299  CGDebugInfo *DI = getDebugInfo();
300  if (DI) {
301    DI->setLocation(D.getLocation());
302    DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D);
303  }
304}
305
306namespace {
307  struct CallArrayDtor : EHScopeStack::Cleanup {
308    CallArrayDtor(const CXXDestructorDecl *Dtor,
309                  const ConstantArrayType *Type,
310                  llvm::Value *Loc)
311      : Dtor(Dtor), Type(Type), Loc(Loc) {}
312
313    const CXXDestructorDecl *Dtor;
314    const ConstantArrayType *Type;
315    llvm::Value *Loc;
316
317    void Emit(CodeGenFunction &CGF, bool IsForEH) {
318      QualType BaseElementTy = CGF.getContext().getBaseElementType(Type);
319      const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy);
320      BasePtr = llvm::PointerType::getUnqual(BasePtr);
321      llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr);
322      CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr);
323    }
324  };
325
326  struct CallVarDtor : EHScopeStack::Cleanup {
327    CallVarDtor(const CXXDestructorDecl *Dtor,
328                llvm::Value *NRVOFlag,
329                llvm::Value *Loc)
330      : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {}
331
332    const CXXDestructorDecl *Dtor;
333    llvm::Value *NRVOFlag;
334    llvm::Value *Loc;
335
336    void Emit(CodeGenFunction &CGF, bool IsForEH) {
337      // Along the exceptions path we always execute the dtor.
338      bool NRVO = !IsForEH && NRVOFlag;
339
340      llvm::BasicBlock *SkipDtorBB = 0;
341      if (NRVO) {
342        // If we exited via NRVO, we skip the destructor call.
343        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
344        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
345        llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
346        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
347        CGF.EmitBlock(RunDtorBB);
348      }
349
350      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
351                                /*ForVirtualBase=*/false, Loc);
352
353      if (NRVO) CGF.EmitBlock(SkipDtorBB);
354    }
355  };
356
357  struct CallStackRestore : EHScopeStack::Cleanup {
358    llvm::Value *Stack;
359    CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
360    void Emit(CodeGenFunction &CGF, bool IsForEH) {
361      llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp");
362      llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
363      CGF.Builder.CreateCall(F, V);
364    }
365  };
366
367  struct ExtendGCLifetime : EHScopeStack::Cleanup {
368    const VarDecl &Var;
369    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
370
371    void Emit(CodeGenFunction &CGF, bool forEH) {
372      // Compute the address of the local variable, in case it's a
373      // byref or something.
374      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
375                      SourceLocation());
376      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
377      CGF.EmitExtendGCLifetime(value);
378    }
379  };
380
381  struct CallCleanupFunction : EHScopeStack::Cleanup {
382    llvm::Constant *CleanupFn;
383    const CGFunctionInfo &FnInfo;
384    const VarDecl &Var;
385
386    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
387                        const VarDecl *Var)
388      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
389
390    void Emit(CodeGenFunction &CGF, bool IsForEH) {
391      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue,
392                      SourceLocation());
393      // Compute the address of the local variable, in case it's a byref
394      // or something.
395      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
396
397      // In some cases, the type of the function argument will be different from
398      // the type of the pointer. An example of this is
399      // void f(void* arg);
400      // __attribute__((cleanup(f))) void *g;
401      //
402      // To fix this we insert a bitcast here.
403      QualType ArgTy = FnInfo.arg_begin()->type;
404      llvm::Value *Arg =
405        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
406
407      CallArgList Args;
408      Args.add(RValue::get(Arg),
409               CGF.getContext().getPointerType(Var.getType()));
410      CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
411    }
412  };
413}
414
415/// EmitAutoVarWithLifetime - Does the setup required for an automatic
416/// variable with lifetime.
417static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
418                                    llvm::Value *addr,
419                                    Qualifiers::ObjCLifetime lifetime) {
420  switch (lifetime) {
421  case Qualifiers::OCL_None:
422    llvm_unreachable("present but none");
423
424  case Qualifiers::OCL_ExplicitNone:
425    // nothing to do
426    break;
427
428  case Qualifiers::OCL_Strong: {
429    CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(),
430                              var.getType(), addr,
431                              var.hasAttr<ObjCPreciseLifetimeAttr>());
432    break;
433  }
434  case Qualifiers::OCL_Autoreleasing:
435    // nothing to do
436    break;
437
438  case Qualifiers::OCL_Weak:
439    // __weak objects always get EH cleanups; otherwise, exceptions
440    // could cause really nasty crashes instead of mere leaks.
441    CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, var.getType(), addr);
442    break;
443  }
444}
445
446static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
447  if (const Expr *e = dyn_cast<Expr>(s)) {
448    // Skip the most common kinds of expressions that make
449    // hierarchy-walking expensive.
450    s = e = e->IgnoreParenCasts();
451
452    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
453      return (ref->getDecl() == &var);
454  }
455
456  for (Stmt::const_child_range children = s->children(); children; ++children)
457    // children might be null; as in missing decl or conditional of an if-stmt.
458    if ((*children) && isAccessedBy(var, *children))
459      return true;
460
461  return false;
462}
463
464static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
465  if (!decl) return false;
466  if (!isa<VarDecl>(decl)) return false;
467  const VarDecl *var = cast<VarDecl>(decl);
468  return isAccessedBy(*var, e);
469}
470
471static void drillIntoBlockVariable(CodeGenFunction &CGF,
472                                   LValue &lvalue,
473                                   const VarDecl *var) {
474  lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
475}
476
477void CodeGenFunction::EmitScalarInit(const Expr *init,
478                                     const ValueDecl *D,
479                                     LValue lvalue,
480                                     bool capturedByInit) {
481  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
482  if (!lifetime) {
483    llvm::Value *value = EmitScalarExpr(init);
484    if (capturedByInit)
485      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
486    EmitStoreThroughLValue(RValue::get(value), lvalue);
487    return;
488  }
489
490  // If we're emitting a value with lifetime, we have to do the
491  // initialization *before* we leave the cleanup scopes.
492  CodeGenFunction::RunCleanupsScope Scope(*this);
493  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init))
494    init = ewc->getSubExpr();
495
496  // We have to maintain the illusion that the variable is
497  // zero-initialized.  If the variable might be accessed in its
498  // initializer, zero-initialize before running the initializer, then
499  // actually perform the initialization with an assign.
500  bool accessedByInit = false;
501  if (lifetime != Qualifiers::OCL_ExplicitNone)
502    accessedByInit = isAccessedBy(D, init);
503  if (accessedByInit) {
504    LValue tempLV = lvalue;
505    // Drill down to the __block object if necessary.
506    if (capturedByInit) {
507      // We can use a simple GEP for this because it can't have been
508      // moved yet.
509      tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
510                                   getByRefValueLLVMField(cast<VarDecl>(D))));
511    }
512
513    const llvm::PointerType *ty
514      = cast<llvm::PointerType>(tempLV.getAddress()->getType());
515    ty = cast<llvm::PointerType>(ty->getElementType());
516
517    llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
518
519    // If __weak, we want to use a barrier under certain conditions.
520    if (lifetime == Qualifiers::OCL_Weak)
521      EmitARCInitWeak(tempLV.getAddress(), zero);
522
523    // Otherwise just do a simple store.
524    else
525      EmitStoreOfScalar(zero, tempLV);
526  }
527
528  // Emit the initializer.
529  llvm::Value *value = 0;
530
531  switch (lifetime) {
532  case Qualifiers::OCL_None:
533    llvm_unreachable("present but none");
534
535  case Qualifiers::OCL_ExplicitNone:
536    // nothing to do
537    value = EmitScalarExpr(init);
538    break;
539
540  case Qualifiers::OCL_Strong: {
541    value = EmitARCRetainScalarExpr(init);
542    break;
543  }
544
545  case Qualifiers::OCL_Weak: {
546    // No way to optimize a producing initializer into this.  It's not
547    // worth optimizing for, because the value will immediately
548    // disappear in the common case.
549    value = EmitScalarExpr(init);
550
551    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
552    if (accessedByInit)
553      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
554    else
555      EmitARCInitWeak(lvalue.getAddress(), value);
556    return;
557  }
558
559  case Qualifiers::OCL_Autoreleasing:
560    value = EmitARCRetainAutoreleaseScalarExpr(init);
561    break;
562  }
563
564  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
565
566  // If the variable might have been accessed by its initializer, we
567  // might have to initialize with a barrier.  We have to do this for
568  // both __weak and __strong, but __weak got filtered out above.
569  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
570    llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
571    EmitStoreOfScalar(value, lvalue);
572    EmitARCRelease(oldValue, /*precise*/ false);
573    return;
574  }
575
576  EmitStoreOfScalar(value, lvalue);
577}
578
579/// EmitScalarInit - Initialize the given lvalue with the given object.
580void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
581  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
582  if (!lifetime)
583    return EmitStoreThroughLValue(RValue::get(init), lvalue);
584
585  switch (lifetime) {
586  case Qualifiers::OCL_None:
587    llvm_unreachable("present but none");
588
589  case Qualifiers::OCL_ExplicitNone:
590    // nothing to do
591    break;
592
593  case Qualifiers::OCL_Strong:
594    init = EmitARCRetain(lvalue.getType(), init);
595    break;
596
597  case Qualifiers::OCL_Weak:
598    // Initialize and then skip the primitive store.
599    EmitARCInitWeak(lvalue.getAddress(), init);
600    return;
601
602  case Qualifiers::OCL_Autoreleasing:
603    init = EmitARCRetainAutorelease(lvalue.getType(), init);
604    break;
605  }
606
607  EmitStoreOfScalar(init, lvalue);
608}
609
610/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
611/// non-zero parts of the specified initializer with equal or fewer than
612/// NumStores scalar stores.
613static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
614                                                unsigned &NumStores) {
615  // Zero and Undef never requires any extra stores.
616  if (isa<llvm::ConstantAggregateZero>(Init) ||
617      isa<llvm::ConstantPointerNull>(Init) ||
618      isa<llvm::UndefValue>(Init))
619    return true;
620  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
621      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
622      isa<llvm::ConstantExpr>(Init))
623    return Init->isNullValue() || NumStores--;
624
625  // See if we can emit each element.
626  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
627    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
628      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
629      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
630        return false;
631    }
632    return true;
633  }
634
635  // Anything else is hard and scary.
636  return false;
637}
638
639/// emitStoresForInitAfterMemset - For inits that
640/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
641/// stores that would be required.
642static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
643                                         bool isVolatile, CGBuilderTy &Builder) {
644  // Zero doesn't require any stores.
645  if (isa<llvm::ConstantAggregateZero>(Init) ||
646      isa<llvm::ConstantPointerNull>(Init) ||
647      isa<llvm::UndefValue>(Init))
648    return;
649
650  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
651      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
652      isa<llvm::ConstantExpr>(Init)) {
653    if (!Init->isNullValue())
654      Builder.CreateStore(Init, Loc, isVolatile);
655    return;
656  }
657
658  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
659         "Unknown value type!");
660
661  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
662    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
663    if (Elt->isNullValue()) continue;
664
665    // Otherwise, get a pointer to the element and emit it.
666    emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
667                                 isVolatile, Builder);
668  }
669}
670
671
672/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
673/// plus some stores to initialize a local variable instead of using a memcpy
674/// from a constant global.  It is beneficial to use memset if the global is all
675/// zeros, or mostly zeros and large.
676static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
677                                                  uint64_t GlobalSize) {
678  // If a global is all zeros, always use a memset.
679  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
680
681
682  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
683  // do it if it will require 6 or fewer scalar stores.
684  // TODO: Should budget depends on the size?  Avoiding a large global warrants
685  // plopping in more stores.
686  unsigned StoreBudget = 6;
687  uint64_t SizeLimit = 32;
688
689  return GlobalSize > SizeLimit &&
690         canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
691}
692
693
694/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
695/// variable declaration with auto, register, or no storage class specifier.
696/// These turn into simple stack objects, or GlobalValues depending on target.
697void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
698  AutoVarEmission emission = EmitAutoVarAlloca(D);
699  EmitAutoVarInit(emission);
700  EmitAutoVarCleanups(emission);
701}
702
703/// EmitAutoVarAlloca - Emit the alloca and debug information for a
704/// local variable.  Does not emit initalization or destruction.
705CodeGenFunction::AutoVarEmission
706CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
707  QualType Ty = D.getType();
708
709  AutoVarEmission emission(D);
710
711  bool isByRef = D.hasAttr<BlocksAttr>();
712  emission.IsByRef = isByRef;
713
714  CharUnits alignment = getContext().getDeclAlign(&D);
715  emission.Alignment = alignment;
716
717  // If the type is variably-modified, emit all the VLA sizes for it.
718  if (Ty->isVariablyModifiedType())
719    EmitVariablyModifiedType(Ty);
720
721  llvm::Value *DeclPtr;
722  if (Ty->isConstantSizeType()) {
723    if (!Target.useGlobalsForAutomaticVariables()) {
724      bool NRVO = getContext().getLangOptions().ElideConstructors &&
725                  D.isNRVOVariable();
726
727      // If this value is a POD array or struct with a statically
728      // determinable constant initializer, there are optimizations we
729      // can do.
730      // TODO: we can potentially constant-evaluate non-POD structs and
731      // arrays as long as the initialization is trivial (e.g. if they
732      // have a non-trivial destructor, but not a non-trivial constructor).
733      if (D.getInit() &&
734          (Ty->isArrayType() || Ty->isRecordType()) &&
735          (Ty.isPODType(getContext()) ||
736           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
737          D.getInit()->isConstantInitializer(getContext(), false)) {
738
739        // If the variable's a const type, and it's neither an NRVO
740        // candidate nor a __block variable, emit it as a global instead.
741        if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() &&
742            !NRVO && !isByRef) {
743          EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
744
745          emission.Address = 0; // signal this condition to later callbacks
746          assert(emission.wasEmittedAsGlobal());
747          return emission;
748        }
749
750        // Otherwise, tell the initialization code that we're in this case.
751        emission.IsConstantAggregate = true;
752      }
753
754      // A normal fixed sized variable becomes an alloca in the entry block,
755      // unless it's an NRVO variable.
756      const llvm::Type *LTy = ConvertTypeForMem(Ty);
757
758      if (NRVO) {
759        // The named return value optimization: allocate this variable in the
760        // return slot, so that we can elide the copy when returning this
761        // variable (C++0x [class.copy]p34).
762        DeclPtr = ReturnValue;
763
764        if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
765          if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
766            // Create a flag that is used to indicate when the NRVO was applied
767            // to this variable. Set it to zero to indicate that NRVO was not
768            // applied.
769            llvm::Value *Zero = Builder.getFalse();
770            llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
771            EnsureInsertPoint();
772            Builder.CreateStore(Zero, NRVOFlag);
773
774            // Record the NRVO flag for this variable.
775            NRVOFlags[&D] = NRVOFlag;
776            emission.NRVOFlag = NRVOFlag;
777          }
778        }
779      } else {
780        if (isByRef)
781          LTy = BuildByRefType(&D);
782
783        llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
784        Alloc->setName(D.getNameAsString());
785
786        CharUnits allocaAlignment = alignment;
787        if (isByRef)
788          allocaAlignment = std::max(allocaAlignment,
789              getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
790        Alloc->setAlignment(allocaAlignment.getQuantity());
791        DeclPtr = Alloc;
792      }
793    } else {
794      // Targets that don't support recursion emit locals as globals.
795      const char *Class =
796        D.getStorageClass() == SC_Register ? ".reg." : ".auto.";
797      DeclPtr = CreateStaticVarDecl(D, Class,
798                                    llvm::GlobalValue::InternalLinkage);
799    }
800  } else {
801    EnsureInsertPoint();
802
803    if (!DidCallStackSave) {
804      // Save the stack.
805      llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
806
807      llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
808      llvm::Value *V = Builder.CreateCall(F);
809
810      Builder.CreateStore(V, Stack);
811
812      DidCallStackSave = true;
813
814      // Push a cleanup block and restore the stack there.
815      // FIXME: in general circumstances, this should be an EH cleanup.
816      EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
817    }
818
819    llvm::Value *elementCount;
820    QualType elementType;
821    llvm::tie(elementCount, elementType) = getVLASize(Ty);
822
823    const llvm::Type *llvmTy = ConvertTypeForMem(elementType);
824
825    // Allocate memory for the array.
826    llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
827    vla->setAlignment(alignment.getQuantity());
828
829    DeclPtr = vla;
830  }
831
832  llvm::Value *&DMEntry = LocalDeclMap[&D];
833  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
834  DMEntry = DeclPtr;
835  emission.Address = DeclPtr;
836
837  // Emit debug info for local var declaration.
838  if (HaveInsertPoint())
839    if (CGDebugInfo *DI = getDebugInfo()) {
840      DI->setLocation(D.getLocation());
841      if (Target.useGlobalsForAutomaticVariables()) {
842        DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D);
843      } else
844        DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
845    }
846
847  return emission;
848}
849
850/// Determines whether the given __block variable is potentially
851/// captured by the given expression.
852static bool isCapturedBy(const VarDecl &var, const Expr *e) {
853  // Skip the most common kinds of expressions that make
854  // hierarchy-walking expensive.
855  e = e->IgnoreParenCasts();
856
857  if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
858    const BlockDecl *block = be->getBlockDecl();
859    for (BlockDecl::capture_const_iterator i = block->capture_begin(),
860           e = block->capture_end(); i != e; ++i) {
861      if (i->getVariable() == &var)
862        return true;
863    }
864
865    // No need to walk into the subexpressions.
866    return false;
867  }
868
869  for (Stmt::const_child_range children = e->children(); children; ++children)
870    if (isCapturedBy(var, cast<Expr>(*children)))
871      return true;
872
873  return false;
874}
875
876/// \brief Determine whether the given initializer is trivial in the sense
877/// that it requires no code to be generated.
878static bool isTrivialInitializer(const Expr *Init) {
879  if (!Init)
880    return true;
881
882  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
883    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
884      if (Constructor->isTrivial() &&
885          Constructor->isDefaultConstructor() &&
886          !Construct->requiresZeroInitialization())
887        return true;
888
889  return false;
890}
891void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
892  assert(emission.Variable && "emission was not valid!");
893
894  // If this was emitted as a global constant, we're done.
895  if (emission.wasEmittedAsGlobal()) return;
896
897  const VarDecl &D = *emission.Variable;
898  QualType type = D.getType();
899
900  // If this local has an initializer, emit it now.
901  const Expr *Init = D.getInit();
902
903  // If we are at an unreachable point, we don't need to emit the initializer
904  // unless it contains a label.
905  if (!HaveInsertPoint()) {
906    if (!Init || !ContainsLabel(Init)) return;
907    EnsureInsertPoint();
908  }
909
910  // Initialize the structure of a __block variable.
911  if (emission.IsByRef)
912    emitByrefStructureInit(emission);
913
914  if (isTrivialInitializer(Init))
915    return;
916
917
918  CharUnits alignment = emission.Alignment;
919
920  // Check whether this is a byref variable that's potentially
921  // captured and moved by its own initializer.  If so, we'll need to
922  // emit the initializer first, then copy into the variable.
923  bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
924
925  llvm::Value *Loc =
926    capturedByInit ? emission.Address : emission.getObjectAddress(*this);
927
928  if (!emission.IsConstantAggregate) {
929    LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity());
930    lv.setNonGC(true);
931    return EmitExprAsInit(Init, &D, lv, capturedByInit);
932  }
933
934  // If this is a simple aggregate initialization, we can optimize it
935  // in various ways.
936  assert(!capturedByInit && "constant init contains a capturing block?");
937
938  bool isVolatile = type.isVolatileQualified();
939
940  llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this);
941  assert(constant != 0 && "Wasn't a simple constant init?");
942
943  llvm::Value *SizeVal =
944    llvm::ConstantInt::get(IntPtrTy,
945                           getContext().getTypeSizeInChars(type).getQuantity());
946
947  const llvm::Type *BP = Int8PtrTy;
948  if (Loc->getType() != BP)
949    Loc = Builder.CreateBitCast(Loc, BP, "tmp");
950
951  // If the initializer is all or mostly zeros, codegen with memset then do
952  // a few stores afterward.
953  if (shouldUseMemSetPlusStoresToInitialize(constant,
954                CGM.getTargetData().getTypeAllocSize(constant->getType()))) {
955    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
956                         alignment.getQuantity(), isVolatile);
957    if (!constant->isNullValue()) {
958      Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
959      emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
960    }
961  } else {
962    // Otherwise, create a temporary global with the initializer then
963    // memcpy from the global to the alloca.
964    std::string Name = GetStaticDeclName(*this, D, ".");
965    llvm::GlobalVariable *GV =
966      new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
967                               llvm::GlobalValue::InternalLinkage,
968                               constant, Name, 0, false, 0);
969    GV->setAlignment(alignment.getQuantity());
970    GV->setUnnamedAddr(true);
971
972    llvm::Value *SrcPtr = GV;
973    if (SrcPtr->getType() != BP)
974      SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
975
976    Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
977                         isVolatile);
978  }
979}
980
981/// Emit an expression as an initializer for a variable at the given
982/// location.  The expression is not necessarily the normal
983/// initializer for the variable, and the address is not necessarily
984/// its normal location.
985///
986/// \param init the initializing expression
987/// \param var the variable to act as if we're initializing
988/// \param loc the address to initialize; its type is a pointer
989///   to the LLVM mapping of the variable's type
990/// \param alignment the alignment of the address
991/// \param capturedByInit true if the variable is a __block variable
992///   whose address is potentially changed by the initializer
993void CodeGenFunction::EmitExprAsInit(const Expr *init,
994                                     const ValueDecl *D,
995                                     LValue lvalue,
996                                     bool capturedByInit) {
997  QualType type = D->getType();
998
999  if (type->isReferenceType()) {
1000    RValue rvalue = EmitReferenceBindingToExpr(init, D);
1001    if (capturedByInit)
1002      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1003    EmitStoreThroughLValue(rvalue, lvalue);
1004  } else if (!hasAggregateLLVMType(type)) {
1005    EmitScalarInit(init, D, lvalue, capturedByInit);
1006  } else if (type->isAnyComplexType()) {
1007    ComplexPairTy complex = EmitComplexExpr(init);
1008    if (capturedByInit)
1009      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1010    StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile());
1011  } else {
1012    // TODO: how can we delay here if D is captured by its initializer?
1013    EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false));
1014  }
1015}
1016
1017void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1018  assert(emission.Variable && "emission was not valid!");
1019
1020  // If this was emitted as a global constant, we're done.
1021  if (emission.wasEmittedAsGlobal()) return;
1022
1023  const VarDecl &D = *emission.Variable;
1024
1025  // Handle C++ or ARC destruction of variables.
1026  if (getLangOptions().CPlusPlus) {
1027    QualType type = D.getType();
1028    QualType baseType = getContext().getBaseElementType(type);
1029    if (const RecordType *RT = baseType->getAs<RecordType>()) {
1030      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1031      if (!ClassDecl->hasTrivialDestructor()) {
1032        // Note: We suppress the destructor call when the corresponding NRVO
1033        // flag has been set.
1034
1035        // Note that for __block variables, we want to destroy the
1036        // original stack object, not the possible forwarded object.
1037        llvm::Value *Loc = emission.getObjectAddress(*this);
1038
1039        const CXXDestructorDecl *D = ClassDecl->getDestructor();
1040        assert(D && "EmitLocalBlockVarDecl - destructor is nul");
1041
1042        if (type != baseType) {
1043          const ConstantArrayType *Array =
1044            getContext().getAsConstantArrayType(type);
1045          assert(Array && "types changed without array?");
1046          EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup,
1047                                             D, Array, Loc);
1048        } else {
1049          EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup,
1050                                           D, emission.NRVOFlag, Loc);
1051        }
1052      }
1053    }
1054  }
1055
1056  if (Qualifiers::ObjCLifetime lifetime
1057        = D.getType().getQualifiers().getObjCLifetime()) {
1058    if (!D.isARCPseudoStrong()) {
1059      llvm::Value *loc = emission.getObjectAddress(*this);
1060      EmitAutoVarWithLifetime(*this, D, loc, lifetime);
1061    }
1062  }
1063
1064  // In GC mode, honor objc_precise_lifetime.
1065  if (getLangOptions().getGCMode() != LangOptions::NonGC &&
1066      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1067    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1068  }
1069
1070  // Handle the cleanup attribute.
1071  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1072    const FunctionDecl *FD = CA->getFunctionDecl();
1073
1074    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1075    assert(F && "Could not find function!");
1076
1077    const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD);
1078    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1079  }
1080
1081  // If this is a block variable, call _Block_object_destroy
1082  // (on the unforwarded address).
1083  if (emission.IsByRef)
1084    enterByrefCleanup(emission);
1085}
1086
1087namespace {
1088  /// A cleanup to perform a release of an object at the end of a
1089  /// function.  This is used to balance out the incoming +1 of a
1090  /// ns_consumed argument when we can't reasonably do that just by
1091  /// not doing the initial retain for a __block argument.
1092  struct ConsumeARCParameter : EHScopeStack::Cleanup {
1093    ConsumeARCParameter(llvm::Value *param) : Param(param) {}
1094
1095    llvm::Value *Param;
1096
1097    void Emit(CodeGenFunction &CGF, bool IsForEH) {
1098      CGF.EmitARCRelease(Param, /*precise*/ false);
1099    }
1100  };
1101}
1102
1103/// Emit an alloca (or GlobalValue depending on target)
1104/// for the specified parameter and set up LocalDeclMap.
1105void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1106                                   unsigned ArgNo) {
1107  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1108  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1109         "Invalid argument to EmitParmDecl");
1110
1111  Arg->setName(D.getName());
1112
1113  // Use better IR generation for certain implicit parameters.
1114  if (isa<ImplicitParamDecl>(D)) {
1115    // The only implicit argument a block has is its literal.
1116    if (BlockInfo) {
1117      LocalDeclMap[&D] = Arg;
1118
1119      if (CGDebugInfo *DI = getDebugInfo()) {
1120        DI->setLocation(D.getLocation());
1121        DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder);
1122      }
1123
1124      return;
1125    }
1126  }
1127
1128  QualType Ty = D.getType();
1129
1130  llvm::Value *DeclPtr;
1131  // If this is an aggregate or variable sized value, reuse the input pointer.
1132  if (!Ty->isConstantSizeType() ||
1133      CodeGenFunction::hasAggregateLLVMType(Ty)) {
1134    DeclPtr = Arg;
1135  } else {
1136    // Otherwise, create a temporary to hold the value.
1137    DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr");
1138
1139    bool doStore = true;
1140
1141    Qualifiers qs = Ty.getQualifiers();
1142
1143    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1144      // We honor __attribute__((ns_consumed)) for types with lifetime.
1145      // For __strong, it's handled by just skipping the initial retain;
1146      // otherwise we have to balance out the initial +1 with an extra
1147      // cleanup to do the release at the end of the function.
1148      bool isConsumed = D.hasAttr<NSConsumedAttr>();
1149
1150      // 'self' is always formally __strong, but if this is not an
1151      // init method then we don't want to retain it.
1152      if (D.isARCPseudoStrong()) {
1153        const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1154        assert(&D == method->getSelfDecl());
1155        assert(lt == Qualifiers::OCL_Strong);
1156        assert(qs.hasConst());
1157        assert(method->getMethodFamily() != OMF_init);
1158        (void) method;
1159        lt = Qualifiers::OCL_ExplicitNone;
1160      }
1161
1162      if (lt == Qualifiers::OCL_Strong) {
1163        if (!isConsumed)
1164          // Don't use objc_retainBlock for block pointers, because we
1165          // don't want to Block_copy something just because we got it
1166          // as a parameter.
1167          Arg = EmitARCRetainNonBlock(Arg);
1168      } else {
1169        // Push the cleanup for a consumed parameter.
1170        if (isConsumed)
1171          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg);
1172
1173        if (lt == Qualifiers::OCL_Weak) {
1174          EmitARCInitWeak(DeclPtr, Arg);
1175          doStore = false; // The weak init is a store, no need to do two
1176        }
1177      }
1178
1179      // Enter the cleanup scope.
1180      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1181    }
1182
1183    // Store the initial value into the alloca.
1184    if (doStore) {
1185      LValue lv = MakeAddrLValue(DeclPtr, Ty,
1186                                 getContext().getDeclAlign(&D).getQuantity());
1187      EmitStoreOfScalar(Arg, lv);
1188    }
1189  }
1190
1191  llvm::Value *&DMEntry = LocalDeclMap[&D];
1192  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1193  DMEntry = DeclPtr;
1194
1195  // Emit debug info for param declaration.
1196  if (CGDebugInfo *DI = getDebugInfo())
1197    DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1198}
1199