CGDecl.cpp revision bcc3e660a1fdc19722157ef3e2f133418856ca3d
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Decl nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CGDebugInfo.h" 15#include "CodeGenFunction.h" 16#include "CodeGenModule.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/CharUnits.h" 19#include "clang/AST/Decl.h" 20#include "clang/AST/DeclObjC.h" 21#include "clang/Basic/SourceManager.h" 22#include "clang/Basic/TargetInfo.h" 23#include "clang/Frontend/CodeGenOptions.h" 24#include "llvm/GlobalVariable.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/Target/TargetData.h" 27#include "llvm/Type.h" 28using namespace clang; 29using namespace CodeGen; 30 31 32void CodeGenFunction::EmitDecl(const Decl &D) { 33 switch (D.getKind()) { 34 case Decl::TranslationUnit: 35 case Decl::Namespace: 36 case Decl::UnresolvedUsingTypename: 37 case Decl::ClassTemplateSpecialization: 38 case Decl::ClassTemplatePartialSpecialization: 39 case Decl::TemplateTypeParm: 40 case Decl::UnresolvedUsingValue: 41 case Decl::NonTypeTemplateParm: 42 case Decl::CXXMethod: 43 case Decl::CXXConstructor: 44 case Decl::CXXDestructor: 45 case Decl::CXXConversion: 46 case Decl::Field: 47 case Decl::IndirectField: 48 case Decl::ObjCIvar: 49 case Decl::ObjCAtDefsField: 50 case Decl::ParmVar: 51 case Decl::ImplicitParam: 52 case Decl::ClassTemplate: 53 case Decl::FunctionTemplate: 54 case Decl::TypeAliasTemplate: 55 case Decl::TemplateTemplateParm: 56 case Decl::ObjCMethod: 57 case Decl::ObjCCategory: 58 case Decl::ObjCProtocol: 59 case Decl::ObjCInterface: 60 case Decl::ObjCCategoryImpl: 61 case Decl::ObjCImplementation: 62 case Decl::ObjCProperty: 63 case Decl::ObjCCompatibleAlias: 64 case Decl::AccessSpec: 65 case Decl::LinkageSpec: 66 case Decl::ObjCPropertyImpl: 67 case Decl::ObjCClass: 68 case Decl::ObjCForwardProtocol: 69 case Decl::FileScopeAsm: 70 case Decl::Friend: 71 case Decl::FriendTemplate: 72 case Decl::Block: 73 assert(0 && "Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 // None of these decls require codegen support. 86 return; 87 88 case Decl::Var: { 89 const VarDecl &VD = cast<VarDecl>(D); 90 assert(VD.isLocalVarDecl() && 91 "Should not see file-scope variables inside a function!"); 92 return EmitVarDecl(VD); 93 } 94 95 case Decl::Typedef: // typedef int X; 96 case Decl::TypeAlias: { // using X = int; [C++0x] 97 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 98 QualType Ty = TD.getUnderlyingType(); 99 100 if (Ty->isVariablyModifiedType()) 101 EmitVariablyModifiedType(Ty); 102 } 103 } 104} 105 106/// EmitVarDecl - This method handles emission of any variable declaration 107/// inside a function, including static vars etc. 108void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 109 switch (D.getStorageClass()) { 110 case SC_None: 111 case SC_Auto: 112 case SC_Register: 113 return EmitAutoVarDecl(D); 114 case SC_Static: { 115 llvm::GlobalValue::LinkageTypes Linkage = 116 llvm::GlobalValue::InternalLinkage; 117 118 // If the function definition has some sort of weak linkage, its 119 // static variables should also be weak so that they get properly 120 // uniqued. We can't do this in C, though, because there's no 121 // standard way to agree on which variables are the same (i.e. 122 // there's no mangling). 123 if (getContext().getLangOptions().CPlusPlus) 124 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 125 Linkage = CurFn->getLinkage(); 126 127 return EmitStaticVarDecl(D, Linkage); 128 } 129 case SC_Extern: 130 case SC_PrivateExtern: 131 // Don't emit it now, allow it to be emitted lazily on its first use. 132 return; 133 } 134 135 assert(0 && "Unknown storage class"); 136} 137 138static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 139 const char *Separator) { 140 CodeGenModule &CGM = CGF.CGM; 141 if (CGF.getContext().getLangOptions().CPlusPlus) { 142 llvm::StringRef Name = CGM.getMangledName(&D); 143 return Name.str(); 144 } 145 146 std::string ContextName; 147 if (!CGF.CurFuncDecl) { 148 // Better be in a block declared in global scope. 149 const NamedDecl *ND = cast<NamedDecl>(&D); 150 const DeclContext *DC = ND->getDeclContext(); 151 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 152 MangleBuffer Name; 153 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 154 ContextName = Name.getString(); 155 } 156 else 157 assert(0 && "Unknown context for block static var decl"); 158 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 159 llvm::StringRef Name = CGM.getMangledName(FD); 160 ContextName = Name.str(); 161 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 162 ContextName = CGF.CurFn->getName(); 163 else 164 assert(0 && "Unknown context for static var decl"); 165 166 return ContextName + Separator + D.getNameAsString(); 167} 168 169llvm::GlobalVariable * 170CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 171 const char *Separator, 172 llvm::GlobalValue::LinkageTypes Linkage) { 173 QualType Ty = D.getType(); 174 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 175 176 std::string Name = GetStaticDeclName(*this, D, Separator); 177 178 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 179 llvm::GlobalVariable *GV = 180 new llvm::GlobalVariable(CGM.getModule(), LTy, 181 Ty.isConstant(getContext()), Linkage, 182 CGM.EmitNullConstant(D.getType()), Name, 0, 183 D.isThreadSpecified(), 184 CGM.getContext().getTargetAddressSpace(Ty)); 185 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 186 if (Linkage != llvm::GlobalValue::InternalLinkage) 187 GV->setVisibility(CurFn->getVisibility()); 188 return GV; 189} 190 191/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 192/// global variable that has already been created for it. If the initializer 193/// has a different type than GV does, this may free GV and return a different 194/// one. Otherwise it just returns GV. 195llvm::GlobalVariable * 196CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 197 llvm::GlobalVariable *GV) { 198 llvm::Constant *Init = CGM.EmitConstantExpr(D.getInit(), D.getType(), this); 199 200 // If constant emission failed, then this should be a C++ static 201 // initializer. 202 if (!Init) { 203 if (!getContext().getLangOptions().CPlusPlus) 204 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 205 else if (Builder.GetInsertBlock()) { 206 // Since we have a static initializer, this global variable can't 207 // be constant. 208 GV->setConstant(false); 209 210 EmitCXXGuardedInit(D, GV); 211 } 212 return GV; 213 } 214 215 // The initializer may differ in type from the global. Rewrite 216 // the global to match the initializer. (We have to do this 217 // because some types, like unions, can't be completely represented 218 // in the LLVM type system.) 219 if (GV->getType()->getElementType() != Init->getType()) { 220 llvm::GlobalVariable *OldGV = GV; 221 222 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 223 OldGV->isConstant(), 224 OldGV->getLinkage(), Init, "", 225 /*InsertBefore*/ OldGV, 226 D.isThreadSpecified(), 227 CGM.getContext().getTargetAddressSpace(D.getType())); 228 GV->setVisibility(OldGV->getVisibility()); 229 230 // Steal the name of the old global 231 GV->takeName(OldGV); 232 233 // Replace all uses of the old global with the new global 234 llvm::Constant *NewPtrForOldDecl = 235 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 236 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 237 238 // Erase the old global, since it is no longer used. 239 OldGV->eraseFromParent(); 240 } 241 242 GV->setInitializer(Init); 243 return GV; 244} 245 246void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 247 llvm::GlobalValue::LinkageTypes Linkage) { 248 llvm::Value *&DMEntry = LocalDeclMap[&D]; 249 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 250 251 llvm::GlobalVariable *GV = CreateStaticVarDecl(D, ".", Linkage); 252 253 // Store into LocalDeclMap before generating initializer to handle 254 // circular references. 255 DMEntry = GV; 256 257 // We can't have a VLA here, but we can have a pointer to a VLA, 258 // even though that doesn't really make any sense. 259 // Make sure to evaluate VLA bounds now so that we have them for later. 260 if (D.getType()->isVariablyModifiedType()) 261 EmitVariablyModifiedType(D.getType()); 262 263 // Local static block variables must be treated as globals as they may be 264 // referenced in their RHS initializer block-literal expresion. 265 CGM.setStaticLocalDeclAddress(&D, GV); 266 267 // If this value has an initializer, emit it. 268 if (D.getInit()) 269 GV = AddInitializerToStaticVarDecl(D, GV); 270 271 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 272 273 // FIXME: Merge attribute handling. 274 if (const AnnotateAttr *AA = D.getAttr<AnnotateAttr>()) { 275 SourceManager &SM = CGM.getContext().getSourceManager(); 276 llvm::Constant *Ann = 277 CGM.EmitAnnotateAttr(GV, AA, 278 SM.getInstantiationLineNumber(D.getLocation())); 279 CGM.AddAnnotation(Ann); 280 } 281 282 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 283 GV->setSection(SA->getName()); 284 285 if (D.hasAttr<UsedAttr>()) 286 CGM.AddUsedGlobal(GV); 287 288 // We may have to cast the constant because of the initializer 289 // mismatch above. 290 // 291 // FIXME: It is really dangerous to store this in the map; if anyone 292 // RAUW's the GV uses of this constant will be invalid. 293 const llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(D.getType()); 294 const llvm::Type *LPtrTy = 295 LTy->getPointerTo(CGM.getContext().getTargetAddressSpace(D.getType())); 296 DMEntry = llvm::ConstantExpr::getBitCast(GV, LPtrTy); 297 298 // Emit global variable debug descriptor for static vars. 299 CGDebugInfo *DI = getDebugInfo(); 300 if (DI) { 301 DI->setLocation(D.getLocation()); 302 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(GV), &D); 303 } 304} 305 306namespace { 307 struct CallArrayDtor : EHScopeStack::Cleanup { 308 CallArrayDtor(const CXXDestructorDecl *Dtor, 309 const ConstantArrayType *Type, 310 llvm::Value *Loc) 311 : Dtor(Dtor), Type(Type), Loc(Loc) {} 312 313 const CXXDestructorDecl *Dtor; 314 const ConstantArrayType *Type; 315 llvm::Value *Loc; 316 317 void Emit(CodeGenFunction &CGF, bool IsForEH) { 318 QualType BaseElementTy = CGF.getContext().getBaseElementType(Type); 319 const llvm::Type *BasePtr = CGF.ConvertType(BaseElementTy); 320 BasePtr = llvm::PointerType::getUnqual(BasePtr); 321 llvm::Value *BaseAddrPtr = CGF.Builder.CreateBitCast(Loc, BasePtr); 322 CGF.EmitCXXAggrDestructorCall(Dtor, Type, BaseAddrPtr); 323 } 324 }; 325 326 struct CallVarDtor : EHScopeStack::Cleanup { 327 CallVarDtor(const CXXDestructorDecl *Dtor, 328 llvm::Value *NRVOFlag, 329 llvm::Value *Loc) 330 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(Loc) {} 331 332 const CXXDestructorDecl *Dtor; 333 llvm::Value *NRVOFlag; 334 llvm::Value *Loc; 335 336 void Emit(CodeGenFunction &CGF, bool IsForEH) { 337 // Along the exceptions path we always execute the dtor. 338 bool NRVO = !IsForEH && NRVOFlag; 339 340 llvm::BasicBlock *SkipDtorBB = 0; 341 if (NRVO) { 342 // If we exited via NRVO, we skip the destructor call. 343 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 344 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 345 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 346 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 347 CGF.EmitBlock(RunDtorBB); 348 } 349 350 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 351 /*ForVirtualBase=*/false, Loc); 352 353 if (NRVO) CGF.EmitBlock(SkipDtorBB); 354 } 355 }; 356 357 struct CallStackRestore : EHScopeStack::Cleanup { 358 llvm::Value *Stack; 359 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 360 void Emit(CodeGenFunction &CGF, bool IsForEH) { 361 llvm::Value *V = CGF.Builder.CreateLoad(Stack, "tmp"); 362 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 363 CGF.Builder.CreateCall(F, V); 364 } 365 }; 366 367 struct ExtendGCLifetime : EHScopeStack::Cleanup { 368 const VarDecl &Var; 369 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 370 371 void Emit(CodeGenFunction &CGF, bool forEH) { 372 // Compute the address of the local variable, in case it's a 373 // byref or something. 374 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 375 SourceLocation()); 376 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 377 CGF.EmitExtendGCLifetime(value); 378 } 379 }; 380 381 struct CallCleanupFunction : EHScopeStack::Cleanup { 382 llvm::Constant *CleanupFn; 383 const CGFunctionInfo &FnInfo; 384 const VarDecl &Var; 385 386 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 387 const VarDecl *Var) 388 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 389 390 void Emit(CodeGenFunction &CGF, bool IsForEH) { 391 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), Var.getType(), VK_LValue, 392 SourceLocation()); 393 // Compute the address of the local variable, in case it's a byref 394 // or something. 395 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 396 397 // In some cases, the type of the function argument will be different from 398 // the type of the pointer. An example of this is 399 // void f(void* arg); 400 // __attribute__((cleanup(f))) void *g; 401 // 402 // To fix this we insert a bitcast here. 403 QualType ArgTy = FnInfo.arg_begin()->type; 404 llvm::Value *Arg = 405 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 406 407 CallArgList Args; 408 Args.add(RValue::get(Arg), 409 CGF.getContext().getPointerType(Var.getType())); 410 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 411 } 412 }; 413} 414 415/// EmitAutoVarWithLifetime - Does the setup required for an automatic 416/// variable with lifetime. 417static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 418 llvm::Value *addr, 419 Qualifiers::ObjCLifetime lifetime) { 420 switch (lifetime) { 421 case Qualifiers::OCL_None: 422 llvm_unreachable("present but none"); 423 424 case Qualifiers::OCL_ExplicitNone: 425 // nothing to do 426 break; 427 428 case Qualifiers::OCL_Strong: { 429 CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(), 430 var.getType(), addr, 431 var.hasAttr<ObjCPreciseLifetimeAttr>()); 432 break; 433 } 434 case Qualifiers::OCL_Autoreleasing: 435 // nothing to do 436 break; 437 438 case Qualifiers::OCL_Weak: 439 // __weak objects always get EH cleanups; otherwise, exceptions 440 // could cause really nasty crashes instead of mere leaks. 441 CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, var.getType(), addr); 442 break; 443 } 444} 445 446static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 447 if (const Expr *e = dyn_cast<Expr>(s)) { 448 // Skip the most common kinds of expressions that make 449 // hierarchy-walking expensive. 450 s = e = e->IgnoreParenCasts(); 451 452 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 453 return (ref->getDecl() == &var); 454 } 455 456 for (Stmt::const_child_range children = s->children(); children; ++children) 457 // children might be null; as in missing decl or conditional of an if-stmt. 458 if ((*children) && isAccessedBy(var, *children)) 459 return true; 460 461 return false; 462} 463 464static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 465 if (!decl) return false; 466 if (!isa<VarDecl>(decl)) return false; 467 const VarDecl *var = cast<VarDecl>(decl); 468 return isAccessedBy(*var, e); 469} 470 471static void drillIntoBlockVariable(CodeGenFunction &CGF, 472 LValue &lvalue, 473 const VarDecl *var) { 474 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 475} 476 477void CodeGenFunction::EmitScalarInit(const Expr *init, 478 const ValueDecl *D, 479 LValue lvalue, 480 bool capturedByInit) { 481 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 482 if (!lifetime) { 483 llvm::Value *value = EmitScalarExpr(init); 484 if (capturedByInit) 485 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 486 EmitStoreThroughLValue(RValue::get(value), lvalue); 487 return; 488 } 489 490 // If we're emitting a value with lifetime, we have to do the 491 // initialization *before* we leave the cleanup scopes. 492 CodeGenFunction::RunCleanupsScope Scope(*this); 493 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) 494 init = ewc->getSubExpr(); 495 496 // We have to maintain the illusion that the variable is 497 // zero-initialized. If the variable might be accessed in its 498 // initializer, zero-initialize before running the initializer, then 499 // actually perform the initialization with an assign. 500 bool accessedByInit = false; 501 if (lifetime != Qualifiers::OCL_ExplicitNone) 502 accessedByInit = isAccessedBy(D, init); 503 if (accessedByInit) { 504 LValue tempLV = lvalue; 505 // Drill down to the __block object if necessary. 506 if (capturedByInit) { 507 // We can use a simple GEP for this because it can't have been 508 // moved yet. 509 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 510 getByRefValueLLVMField(cast<VarDecl>(D)))); 511 } 512 513 const llvm::PointerType *ty 514 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 515 ty = cast<llvm::PointerType>(ty->getElementType()); 516 517 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 518 519 // If __weak, we want to use a barrier under certain conditions. 520 if (lifetime == Qualifiers::OCL_Weak) 521 EmitARCInitWeak(tempLV.getAddress(), zero); 522 523 // Otherwise just do a simple store. 524 else 525 EmitStoreOfScalar(zero, tempLV); 526 } 527 528 // Emit the initializer. 529 llvm::Value *value = 0; 530 531 switch (lifetime) { 532 case Qualifiers::OCL_None: 533 llvm_unreachable("present but none"); 534 535 case Qualifiers::OCL_ExplicitNone: 536 // nothing to do 537 value = EmitScalarExpr(init); 538 break; 539 540 case Qualifiers::OCL_Strong: { 541 value = EmitARCRetainScalarExpr(init); 542 break; 543 } 544 545 case Qualifiers::OCL_Weak: { 546 // No way to optimize a producing initializer into this. It's not 547 // worth optimizing for, because the value will immediately 548 // disappear in the common case. 549 value = EmitScalarExpr(init); 550 551 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 552 if (accessedByInit) 553 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 554 else 555 EmitARCInitWeak(lvalue.getAddress(), value); 556 return; 557 } 558 559 case Qualifiers::OCL_Autoreleasing: 560 value = EmitARCRetainAutoreleaseScalarExpr(init); 561 break; 562 } 563 564 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 565 566 // If the variable might have been accessed by its initializer, we 567 // might have to initialize with a barrier. We have to do this for 568 // both __weak and __strong, but __weak got filtered out above. 569 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 570 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 571 EmitStoreOfScalar(value, lvalue); 572 EmitARCRelease(oldValue, /*precise*/ false); 573 return; 574 } 575 576 EmitStoreOfScalar(value, lvalue); 577} 578 579/// EmitScalarInit - Initialize the given lvalue with the given object. 580void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 581 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 582 if (!lifetime) 583 return EmitStoreThroughLValue(RValue::get(init), lvalue); 584 585 switch (lifetime) { 586 case Qualifiers::OCL_None: 587 llvm_unreachable("present but none"); 588 589 case Qualifiers::OCL_ExplicitNone: 590 // nothing to do 591 break; 592 593 case Qualifiers::OCL_Strong: 594 init = EmitARCRetain(lvalue.getType(), init); 595 break; 596 597 case Qualifiers::OCL_Weak: 598 // Initialize and then skip the primitive store. 599 EmitARCInitWeak(lvalue.getAddress(), init); 600 return; 601 602 case Qualifiers::OCL_Autoreleasing: 603 init = EmitARCRetainAutorelease(lvalue.getType(), init); 604 break; 605 } 606 607 EmitStoreOfScalar(init, lvalue); 608} 609 610/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 611/// non-zero parts of the specified initializer with equal or fewer than 612/// NumStores scalar stores. 613static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 614 unsigned &NumStores) { 615 // Zero and Undef never requires any extra stores. 616 if (isa<llvm::ConstantAggregateZero>(Init) || 617 isa<llvm::ConstantPointerNull>(Init) || 618 isa<llvm::UndefValue>(Init)) 619 return true; 620 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 621 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 622 isa<llvm::ConstantExpr>(Init)) 623 return Init->isNullValue() || NumStores--; 624 625 // See if we can emit each element. 626 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 627 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 628 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 629 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 630 return false; 631 } 632 return true; 633 } 634 635 // Anything else is hard and scary. 636 return false; 637} 638 639/// emitStoresForInitAfterMemset - For inits that 640/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 641/// stores that would be required. 642static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 643 bool isVolatile, CGBuilderTy &Builder) { 644 // Zero doesn't require any stores. 645 if (isa<llvm::ConstantAggregateZero>(Init) || 646 isa<llvm::ConstantPointerNull>(Init) || 647 isa<llvm::UndefValue>(Init)) 648 return; 649 650 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 651 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 652 isa<llvm::ConstantExpr>(Init)) { 653 if (!Init->isNullValue()) 654 Builder.CreateStore(Init, Loc, isVolatile); 655 return; 656 } 657 658 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 659 "Unknown value type!"); 660 661 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 662 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 663 if (Elt->isNullValue()) continue; 664 665 // Otherwise, get a pointer to the element and emit it. 666 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 667 isVolatile, Builder); 668 } 669} 670 671 672/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 673/// plus some stores to initialize a local variable instead of using a memcpy 674/// from a constant global. It is beneficial to use memset if the global is all 675/// zeros, or mostly zeros and large. 676static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 677 uint64_t GlobalSize) { 678 // If a global is all zeros, always use a memset. 679 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 680 681 682 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 683 // do it if it will require 6 or fewer scalar stores. 684 // TODO: Should budget depends on the size? Avoiding a large global warrants 685 // plopping in more stores. 686 unsigned StoreBudget = 6; 687 uint64_t SizeLimit = 32; 688 689 return GlobalSize > SizeLimit && 690 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 691} 692 693 694/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 695/// variable declaration with auto, register, or no storage class specifier. 696/// These turn into simple stack objects, or GlobalValues depending on target. 697void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 698 AutoVarEmission emission = EmitAutoVarAlloca(D); 699 EmitAutoVarInit(emission); 700 EmitAutoVarCleanups(emission); 701} 702 703/// EmitAutoVarAlloca - Emit the alloca and debug information for a 704/// local variable. Does not emit initalization or destruction. 705CodeGenFunction::AutoVarEmission 706CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 707 QualType Ty = D.getType(); 708 709 AutoVarEmission emission(D); 710 711 bool isByRef = D.hasAttr<BlocksAttr>(); 712 emission.IsByRef = isByRef; 713 714 CharUnits alignment = getContext().getDeclAlign(&D); 715 emission.Alignment = alignment; 716 717 // If the type is variably-modified, emit all the VLA sizes for it. 718 if (Ty->isVariablyModifiedType()) 719 EmitVariablyModifiedType(Ty); 720 721 llvm::Value *DeclPtr; 722 if (Ty->isConstantSizeType()) { 723 if (!Target.useGlobalsForAutomaticVariables()) { 724 bool NRVO = getContext().getLangOptions().ElideConstructors && 725 D.isNRVOVariable(); 726 727 // If this value is a POD array or struct with a statically 728 // determinable constant initializer, there are optimizations we 729 // can do. 730 // TODO: we can potentially constant-evaluate non-POD structs and 731 // arrays as long as the initialization is trivial (e.g. if they 732 // have a non-trivial destructor, but not a non-trivial constructor). 733 if (D.getInit() && 734 (Ty->isArrayType() || Ty->isRecordType()) && 735 (Ty.isPODType(getContext()) || 736 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 737 D.getInit()->isConstantInitializer(getContext(), false)) { 738 739 // If the variable's a const type, and it's neither an NRVO 740 // candidate nor a __block variable, emit it as a global instead. 741 if (CGM.getCodeGenOpts().MergeAllConstants && Ty.isConstQualified() && 742 !NRVO && !isByRef) { 743 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 744 745 emission.Address = 0; // signal this condition to later callbacks 746 assert(emission.wasEmittedAsGlobal()); 747 return emission; 748 } 749 750 // Otherwise, tell the initialization code that we're in this case. 751 emission.IsConstantAggregate = true; 752 } 753 754 // A normal fixed sized variable becomes an alloca in the entry block, 755 // unless it's an NRVO variable. 756 const llvm::Type *LTy = ConvertTypeForMem(Ty); 757 758 if (NRVO) { 759 // The named return value optimization: allocate this variable in the 760 // return slot, so that we can elide the copy when returning this 761 // variable (C++0x [class.copy]p34). 762 DeclPtr = ReturnValue; 763 764 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 765 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 766 // Create a flag that is used to indicate when the NRVO was applied 767 // to this variable. Set it to zero to indicate that NRVO was not 768 // applied. 769 llvm::Value *Zero = Builder.getFalse(); 770 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 771 EnsureInsertPoint(); 772 Builder.CreateStore(Zero, NRVOFlag); 773 774 // Record the NRVO flag for this variable. 775 NRVOFlags[&D] = NRVOFlag; 776 emission.NRVOFlag = NRVOFlag; 777 } 778 } 779 } else { 780 if (isByRef) 781 LTy = BuildByRefType(&D); 782 783 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 784 Alloc->setName(D.getNameAsString()); 785 786 CharUnits allocaAlignment = alignment; 787 if (isByRef) 788 allocaAlignment = std::max(allocaAlignment, 789 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 790 Alloc->setAlignment(allocaAlignment.getQuantity()); 791 DeclPtr = Alloc; 792 } 793 } else { 794 // Targets that don't support recursion emit locals as globals. 795 const char *Class = 796 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 797 DeclPtr = CreateStaticVarDecl(D, Class, 798 llvm::GlobalValue::InternalLinkage); 799 } 800 } else { 801 EnsureInsertPoint(); 802 803 if (!DidCallStackSave) { 804 // Save the stack. 805 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 806 807 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 808 llvm::Value *V = Builder.CreateCall(F); 809 810 Builder.CreateStore(V, Stack); 811 812 DidCallStackSave = true; 813 814 // Push a cleanup block and restore the stack there. 815 // FIXME: in general circumstances, this should be an EH cleanup. 816 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 817 } 818 819 llvm::Value *elementCount; 820 QualType elementType; 821 llvm::tie(elementCount, elementType) = getVLASize(Ty); 822 823 const llvm::Type *llvmTy = ConvertTypeForMem(elementType); 824 825 // Allocate memory for the array. 826 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 827 vla->setAlignment(alignment.getQuantity()); 828 829 DeclPtr = vla; 830 } 831 832 llvm::Value *&DMEntry = LocalDeclMap[&D]; 833 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 834 DMEntry = DeclPtr; 835 emission.Address = DeclPtr; 836 837 // Emit debug info for local var declaration. 838 if (HaveInsertPoint()) 839 if (CGDebugInfo *DI = getDebugInfo()) { 840 DI->setLocation(D.getLocation()); 841 if (Target.useGlobalsForAutomaticVariables()) { 842 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), &D); 843 } else 844 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 845 } 846 847 return emission; 848} 849 850/// Determines whether the given __block variable is potentially 851/// captured by the given expression. 852static bool isCapturedBy(const VarDecl &var, const Expr *e) { 853 // Skip the most common kinds of expressions that make 854 // hierarchy-walking expensive. 855 e = e->IgnoreParenCasts(); 856 857 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 858 const BlockDecl *block = be->getBlockDecl(); 859 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 860 e = block->capture_end(); i != e; ++i) { 861 if (i->getVariable() == &var) 862 return true; 863 } 864 865 // No need to walk into the subexpressions. 866 return false; 867 } 868 869 for (Stmt::const_child_range children = e->children(); children; ++children) 870 if (isCapturedBy(var, cast<Expr>(*children))) 871 return true; 872 873 return false; 874} 875 876/// \brief Determine whether the given initializer is trivial in the sense 877/// that it requires no code to be generated. 878static bool isTrivialInitializer(const Expr *Init) { 879 if (!Init) 880 return true; 881 882 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 883 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 884 if (Constructor->isTrivial() && 885 Constructor->isDefaultConstructor() && 886 !Construct->requiresZeroInitialization()) 887 return true; 888 889 return false; 890} 891void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 892 assert(emission.Variable && "emission was not valid!"); 893 894 // If this was emitted as a global constant, we're done. 895 if (emission.wasEmittedAsGlobal()) return; 896 897 const VarDecl &D = *emission.Variable; 898 QualType type = D.getType(); 899 900 // If this local has an initializer, emit it now. 901 const Expr *Init = D.getInit(); 902 903 // If we are at an unreachable point, we don't need to emit the initializer 904 // unless it contains a label. 905 if (!HaveInsertPoint()) { 906 if (!Init || !ContainsLabel(Init)) return; 907 EnsureInsertPoint(); 908 } 909 910 // Initialize the structure of a __block variable. 911 if (emission.IsByRef) 912 emitByrefStructureInit(emission); 913 914 if (isTrivialInitializer(Init)) 915 return; 916 917 918 CharUnits alignment = emission.Alignment; 919 920 // Check whether this is a byref variable that's potentially 921 // captured and moved by its own initializer. If so, we'll need to 922 // emit the initializer first, then copy into the variable. 923 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 924 925 llvm::Value *Loc = 926 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 927 928 if (!emission.IsConstantAggregate) { 929 LValue lv = MakeAddrLValue(Loc, type, alignment.getQuantity()); 930 lv.setNonGC(true); 931 return EmitExprAsInit(Init, &D, lv, capturedByInit); 932 } 933 934 // If this is a simple aggregate initialization, we can optimize it 935 // in various ways. 936 assert(!capturedByInit && "constant init contains a capturing block?"); 937 938 bool isVolatile = type.isVolatileQualified(); 939 940 llvm::Constant *constant = CGM.EmitConstantExpr(D.getInit(), type, this); 941 assert(constant != 0 && "Wasn't a simple constant init?"); 942 943 llvm::Value *SizeVal = 944 llvm::ConstantInt::get(IntPtrTy, 945 getContext().getTypeSizeInChars(type).getQuantity()); 946 947 const llvm::Type *BP = Int8PtrTy; 948 if (Loc->getType() != BP) 949 Loc = Builder.CreateBitCast(Loc, BP, "tmp"); 950 951 // If the initializer is all or mostly zeros, codegen with memset then do 952 // a few stores afterward. 953 if (shouldUseMemSetPlusStoresToInitialize(constant, 954 CGM.getTargetData().getTypeAllocSize(constant->getType()))) { 955 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 956 alignment.getQuantity(), isVolatile); 957 if (!constant->isNullValue()) { 958 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 959 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 960 } 961 } else { 962 // Otherwise, create a temporary global with the initializer then 963 // memcpy from the global to the alloca. 964 std::string Name = GetStaticDeclName(*this, D, "."); 965 llvm::GlobalVariable *GV = 966 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 967 llvm::GlobalValue::InternalLinkage, 968 constant, Name, 0, false, 0); 969 GV->setAlignment(alignment.getQuantity()); 970 GV->setUnnamedAddr(true); 971 972 llvm::Value *SrcPtr = GV; 973 if (SrcPtr->getType() != BP) 974 SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp"); 975 976 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 977 isVolatile); 978 } 979} 980 981/// Emit an expression as an initializer for a variable at the given 982/// location. The expression is not necessarily the normal 983/// initializer for the variable, and the address is not necessarily 984/// its normal location. 985/// 986/// \param init the initializing expression 987/// \param var the variable to act as if we're initializing 988/// \param loc the address to initialize; its type is a pointer 989/// to the LLVM mapping of the variable's type 990/// \param alignment the alignment of the address 991/// \param capturedByInit true if the variable is a __block variable 992/// whose address is potentially changed by the initializer 993void CodeGenFunction::EmitExprAsInit(const Expr *init, 994 const ValueDecl *D, 995 LValue lvalue, 996 bool capturedByInit) { 997 QualType type = D->getType(); 998 999 if (type->isReferenceType()) { 1000 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1001 if (capturedByInit) 1002 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1003 EmitStoreThroughLValue(rvalue, lvalue); 1004 } else if (!hasAggregateLLVMType(type)) { 1005 EmitScalarInit(init, D, lvalue, capturedByInit); 1006 } else if (type->isAnyComplexType()) { 1007 ComplexPairTy complex = EmitComplexExpr(init); 1008 if (capturedByInit) 1009 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1010 StoreComplexToAddr(complex, lvalue.getAddress(), lvalue.isVolatile()); 1011 } else { 1012 // TODO: how can we delay here if D is captured by its initializer? 1013 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, true, false)); 1014 } 1015} 1016 1017void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1018 assert(emission.Variable && "emission was not valid!"); 1019 1020 // If this was emitted as a global constant, we're done. 1021 if (emission.wasEmittedAsGlobal()) return; 1022 1023 const VarDecl &D = *emission.Variable; 1024 1025 // Handle C++ or ARC destruction of variables. 1026 if (getLangOptions().CPlusPlus) { 1027 QualType type = D.getType(); 1028 QualType baseType = getContext().getBaseElementType(type); 1029 if (const RecordType *RT = baseType->getAs<RecordType>()) { 1030 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1031 if (!ClassDecl->hasTrivialDestructor()) { 1032 // Note: We suppress the destructor call when the corresponding NRVO 1033 // flag has been set. 1034 1035 // Note that for __block variables, we want to destroy the 1036 // original stack object, not the possible forwarded object. 1037 llvm::Value *Loc = emission.getObjectAddress(*this); 1038 1039 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 1040 assert(D && "EmitLocalBlockVarDecl - destructor is nul"); 1041 1042 if (type != baseType) { 1043 const ConstantArrayType *Array = 1044 getContext().getAsConstantArrayType(type); 1045 assert(Array && "types changed without array?"); 1046 EHStack.pushCleanup<CallArrayDtor>(NormalAndEHCleanup, 1047 D, Array, Loc); 1048 } else { 1049 EHStack.pushCleanup<CallVarDtor>(NormalAndEHCleanup, 1050 D, emission.NRVOFlag, Loc); 1051 } 1052 } 1053 } 1054 } 1055 1056 if (Qualifiers::ObjCLifetime lifetime 1057 = D.getType().getQualifiers().getObjCLifetime()) { 1058 if (!D.isARCPseudoStrong()) { 1059 llvm::Value *loc = emission.getObjectAddress(*this); 1060 EmitAutoVarWithLifetime(*this, D, loc, lifetime); 1061 } 1062 } 1063 1064 // In GC mode, honor objc_precise_lifetime. 1065 if (getLangOptions().getGCMode() != LangOptions::NonGC && 1066 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1067 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1068 } 1069 1070 // Handle the cleanup attribute. 1071 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1072 const FunctionDecl *FD = CA->getFunctionDecl(); 1073 1074 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1075 assert(F && "Could not find function!"); 1076 1077 const CGFunctionInfo &Info = CGM.getTypes().getFunctionInfo(FD); 1078 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1079 } 1080 1081 // If this is a block variable, call _Block_object_destroy 1082 // (on the unforwarded address). 1083 if (emission.IsByRef) 1084 enterByrefCleanup(emission); 1085} 1086 1087namespace { 1088 /// A cleanup to perform a release of an object at the end of a 1089 /// function. This is used to balance out the incoming +1 of a 1090 /// ns_consumed argument when we can't reasonably do that just by 1091 /// not doing the initial retain for a __block argument. 1092 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1093 ConsumeARCParameter(llvm::Value *param) : Param(param) {} 1094 1095 llvm::Value *Param; 1096 1097 void Emit(CodeGenFunction &CGF, bool IsForEH) { 1098 CGF.EmitARCRelease(Param, /*precise*/ false); 1099 } 1100 }; 1101} 1102 1103/// Emit an alloca (or GlobalValue depending on target) 1104/// for the specified parameter and set up LocalDeclMap. 1105void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1106 unsigned ArgNo) { 1107 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1108 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1109 "Invalid argument to EmitParmDecl"); 1110 1111 Arg->setName(D.getName()); 1112 1113 // Use better IR generation for certain implicit parameters. 1114 if (isa<ImplicitParamDecl>(D)) { 1115 // The only implicit argument a block has is its literal. 1116 if (BlockInfo) { 1117 LocalDeclMap[&D] = Arg; 1118 1119 if (CGDebugInfo *DI = getDebugInfo()) { 1120 DI->setLocation(D.getLocation()); 1121 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, Builder); 1122 } 1123 1124 return; 1125 } 1126 } 1127 1128 QualType Ty = D.getType(); 1129 1130 llvm::Value *DeclPtr; 1131 // If this is an aggregate or variable sized value, reuse the input pointer. 1132 if (!Ty->isConstantSizeType() || 1133 CodeGenFunction::hasAggregateLLVMType(Ty)) { 1134 DeclPtr = Arg; 1135 } else { 1136 // Otherwise, create a temporary to hold the value. 1137 DeclPtr = CreateMemTemp(Ty, D.getName() + ".addr"); 1138 1139 bool doStore = true; 1140 1141 Qualifiers qs = Ty.getQualifiers(); 1142 1143 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1144 // We honor __attribute__((ns_consumed)) for types with lifetime. 1145 // For __strong, it's handled by just skipping the initial retain; 1146 // otherwise we have to balance out the initial +1 with an extra 1147 // cleanup to do the release at the end of the function. 1148 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1149 1150 // 'self' is always formally __strong, but if this is not an 1151 // init method then we don't want to retain it. 1152 if (D.isARCPseudoStrong()) { 1153 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1154 assert(&D == method->getSelfDecl()); 1155 assert(lt == Qualifiers::OCL_Strong); 1156 assert(qs.hasConst()); 1157 assert(method->getMethodFamily() != OMF_init); 1158 (void) method; 1159 lt = Qualifiers::OCL_ExplicitNone; 1160 } 1161 1162 if (lt == Qualifiers::OCL_Strong) { 1163 if (!isConsumed) 1164 // Don't use objc_retainBlock for block pointers, because we 1165 // don't want to Block_copy something just because we got it 1166 // as a parameter. 1167 Arg = EmitARCRetainNonBlock(Arg); 1168 } else { 1169 // Push the cleanup for a consumed parameter. 1170 if (isConsumed) 1171 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg); 1172 1173 if (lt == Qualifiers::OCL_Weak) { 1174 EmitARCInitWeak(DeclPtr, Arg); 1175 doStore = false; // The weak init is a store, no need to do two 1176 } 1177 } 1178 1179 // Enter the cleanup scope. 1180 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1181 } 1182 1183 // Store the initial value into the alloca. 1184 if (doStore) { 1185 LValue lv = MakeAddrLValue(DeclPtr, Ty, 1186 getContext().getDeclAlign(&D).getQuantity()); 1187 EmitStoreOfScalar(Arg, lv); 1188 } 1189 } 1190 1191 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1192 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1193 DMEntry = DeclPtr; 1194 1195 // Emit debug info for param declaration. 1196 if (CGDebugInfo *DI = getDebugInfo()) 1197 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1198} 1199