SemaDeclCXX.cpp revision 621ba4f0dba0accdf67fb38e98bbe14db22ddf8e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376/// MergeCXXFunctionDecl - Merge two declarations of the same C++
377/// function, once we already know that they have the same
378/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379/// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678/// \brief Get diagnostic %select index for tag kind for
679/// record diagnostic message.
680/// WARNING: Indexes apply to particular diagnostics only!
681///
682/// \returns diagnostic %select index.
683static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
684  switch (Tag) {
685  case TTK_Struct: return 0;
686  case TTK_Interface: return 1;
687  case TTK_Class:  return 2;
688  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
689  }
690}
691
692// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
693// the requirements of a constexpr function definition or a constexpr
694// constructor definition. If so, return true. If not, produce appropriate
695// diagnostics and return false.
696//
697// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
698bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
699  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
700  if (MD && MD->isInstance()) {
701    // C++11 [dcl.constexpr]p4:
702    //  The definition of a constexpr constructor shall satisfy the following
703    //  constraints:
704    //  - the class shall not have any virtual base classes;
705    const CXXRecordDecl *RD = MD->getParent();
706    if (RD->getNumVBases()) {
707      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
708        << isa<CXXConstructorDecl>(NewFD)
709        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
710      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
711             E = RD->vbases_end(); I != E; ++I)
712        Diag(I->getLocStart(),
713             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
714      return false;
715    }
716  }
717
718  if (!isa<CXXConstructorDecl>(NewFD)) {
719    // C++11 [dcl.constexpr]p3:
720    //  The definition of a constexpr function shall satisfy the following
721    //  constraints:
722    // - it shall not be virtual;
723    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
724    if (Method && Method->isVirtual()) {
725      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
726
727      // If it's not obvious why this function is virtual, find an overridden
728      // function which uses the 'virtual' keyword.
729      const CXXMethodDecl *WrittenVirtual = Method;
730      while (!WrittenVirtual->isVirtualAsWritten())
731        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
732      if (WrittenVirtual != Method)
733        Diag(WrittenVirtual->getLocation(),
734             diag::note_overridden_virtual_function);
735      return false;
736    }
737
738    // - its return type shall be a literal type;
739    QualType RT = NewFD->getResultType();
740    if (!RT->isDependentType() &&
741        RequireLiteralType(NewFD->getLocation(), RT,
742                           diag::err_constexpr_non_literal_return))
743      return false;
744  }
745
746  // - each of its parameter types shall be a literal type;
747  if (!CheckConstexprParameterTypes(*this, NewFD))
748    return false;
749
750  return true;
751}
752
753/// Check the given declaration statement is legal within a constexpr function
754/// body. C++0x [dcl.constexpr]p3,p4.
755///
756/// \return true if the body is OK, false if we have diagnosed a problem.
757static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
758                                   DeclStmt *DS) {
759  // C++0x [dcl.constexpr]p3 and p4:
760  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
761  //  contain only
762  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
763         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
764    switch ((*DclIt)->getKind()) {
765    case Decl::StaticAssert:
766    case Decl::Using:
767    case Decl::UsingShadow:
768    case Decl::UsingDirective:
769    case Decl::UnresolvedUsingTypename:
770      //   - static_assert-declarations
771      //   - using-declarations,
772      //   - using-directives,
773      continue;
774
775    case Decl::Typedef:
776    case Decl::TypeAlias: {
777      //   - typedef declarations and alias-declarations that do not define
778      //     classes or enumerations,
779      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
780      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
781        // Don't allow variably-modified types in constexpr functions.
782        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
783        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
784          << TL.getSourceRange() << TL.getType()
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789    }
790
791    case Decl::Enum:
792    case Decl::CXXRecord:
793      // As an extension, we allow the declaration (but not the definition) of
794      // classes and enumerations in all declarations, not just in typedef and
795      // alias declarations.
796      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
797        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
798          << isa<CXXConstructorDecl>(Dcl);
799        return false;
800      }
801      continue;
802
803    case Decl::Var:
804      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
805        << isa<CXXConstructorDecl>(Dcl);
806      return false;
807
808    default:
809      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
810        << isa<CXXConstructorDecl>(Dcl);
811      return false;
812    }
813  }
814
815  return true;
816}
817
818/// Check that the given field is initialized within a constexpr constructor.
819///
820/// \param Dcl The constexpr constructor being checked.
821/// \param Field The field being checked. This may be a member of an anonymous
822///        struct or union nested within the class being checked.
823/// \param Inits All declarations, including anonymous struct/union members and
824///        indirect members, for which any initialization was provided.
825/// \param Diagnosed Set to true if an error is produced.
826static void CheckConstexprCtorInitializer(Sema &SemaRef,
827                                          const FunctionDecl *Dcl,
828                                          FieldDecl *Field,
829                                          llvm::SmallSet<Decl*, 16> &Inits,
830                                          bool &Diagnosed) {
831  if (Field->isUnnamedBitfield())
832    return;
833
834  if (Field->isAnonymousStructOrUnion() &&
835      Field->getType()->getAsCXXRecordDecl()->isEmpty())
836    return;
837
838  if (!Inits.count(Field)) {
839    if (!Diagnosed) {
840      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
841      Diagnosed = true;
842    }
843    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
844  } else if (Field->isAnonymousStructOrUnion()) {
845    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
846    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
847         I != E; ++I)
848      // If an anonymous union contains an anonymous struct of which any member
849      // is initialized, all members must be initialized.
850      if (!RD->isUnion() || Inits.count(*I))
851        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
852  }
853}
854
855/// Check the body for the given constexpr function declaration only contains
856/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
857///
858/// \return true if the body is OK, false if we have diagnosed a problem.
859bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
860  if (isa<CXXTryStmt>(Body)) {
861    // C++11 [dcl.constexpr]p3:
862    //  The definition of a constexpr function shall satisfy the following
863    //  constraints: [...]
864    // - its function-body shall be = delete, = default, or a
865    //   compound-statement
866    //
867    // C++11 [dcl.constexpr]p4:
868    //  In the definition of a constexpr constructor, [...]
869    // - its function-body shall not be a function-try-block;
870    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
871      << isa<CXXConstructorDecl>(Dcl);
872    return false;
873  }
874
875  // - its function-body shall be [...] a compound-statement that contains only
876  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
877
878  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
879  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
880         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
881    switch ((*BodyIt)->getStmtClass()) {
882    case Stmt::NullStmtClass:
883      //   - null statements,
884      continue;
885
886    case Stmt::DeclStmtClass:
887      //   - static_assert-declarations
888      //   - using-declarations,
889      //   - using-directives,
890      //   - typedef declarations and alias-declarations that do not define
891      //     classes or enumerations,
892      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
893        return false;
894      continue;
895
896    case Stmt::ReturnStmtClass:
897      //   - and exactly one return statement;
898      if (isa<CXXConstructorDecl>(Dcl))
899        break;
900
901      ReturnStmts.push_back((*BodyIt)->getLocStart());
902      continue;
903
904    default:
905      break;
906    }
907
908    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  if (const CXXConstructorDecl *Constructor
914        = dyn_cast<CXXConstructorDecl>(Dcl)) {
915    const CXXRecordDecl *RD = Constructor->getParent();
916    // DR1359:
917    // - every non-variant non-static data member and base class sub-object
918    //   shall be initialized;
919    // - if the class is a non-empty union, or for each non-empty anonymous
920    //   union member of a non-union class, exactly one non-static data member
921    //   shall be initialized;
922    if (RD->isUnion()) {
923      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
924        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
925        return false;
926      }
927    } else if (!Constructor->isDependentContext() &&
928               !Constructor->isDelegatingConstructor()) {
929      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
930
931      // Skip detailed checking if we have enough initializers, and we would
932      // allow at most one initializer per member.
933      bool AnyAnonStructUnionMembers = false;
934      unsigned Fields = 0;
935      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936           E = RD->field_end(); I != E; ++I, ++Fields) {
937        if (I->isAnonymousStructOrUnion()) {
938          AnyAnonStructUnionMembers = true;
939          break;
940        }
941      }
942      if (AnyAnonStructUnionMembers ||
943          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
944        // Check initialization of non-static data members. Base classes are
945        // always initialized so do not need to be checked. Dependent bases
946        // might not have initializers in the member initializer list.
947        llvm::SmallSet<Decl*, 16> Inits;
948        for (CXXConstructorDecl::init_const_iterator
949               I = Constructor->init_begin(), E = Constructor->init_end();
950             I != E; ++I) {
951          if (FieldDecl *FD = (*I)->getMember())
952            Inits.insert(FD);
953          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
954            Inits.insert(ID->chain_begin(), ID->chain_end());
955        }
956
957        bool Diagnosed = false;
958        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
959             E = RD->field_end(); I != E; ++I)
960          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
961        if (Diagnosed)
962          return false;
963      }
964    }
965  } else {
966    if (ReturnStmts.empty()) {
967      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
968      return false;
969    }
970    if (ReturnStmts.size() > 1) {
971      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
972      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
973        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
974      return false;
975    }
976  }
977
978  // C++11 [dcl.constexpr]p5:
979  //   if no function argument values exist such that the function invocation
980  //   substitution would produce a constant expression, the program is
981  //   ill-formed; no diagnostic required.
982  // C++11 [dcl.constexpr]p3:
983  //   - every constructor call and implicit conversion used in initializing the
984  //     return value shall be one of those allowed in a constant expression.
985  // C++11 [dcl.constexpr]p4:
986  //   - every constructor involved in initializing non-static data members and
987  //     base class sub-objects shall be a constexpr constructor.
988  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
989  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
990    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
991      << isa<CXXConstructorDecl>(Dcl);
992    for (size_t I = 0, N = Diags.size(); I != N; ++I)
993      Diag(Diags[I].first, Diags[I].second);
994    return false;
995  }
996
997  return true;
998}
999
1000/// isCurrentClassName - Determine whether the identifier II is the
1001/// name of the class type currently being defined. In the case of
1002/// nested classes, this will only return true if II is the name of
1003/// the innermost class.
1004bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1005                              const CXXScopeSpec *SS) {
1006  assert(getLangOpts().CPlusPlus && "No class names in C!");
1007
1008  CXXRecordDecl *CurDecl;
1009  if (SS && SS->isSet() && !SS->isInvalid()) {
1010    DeclContext *DC = computeDeclContext(*SS, true);
1011    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1012  } else
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1014
1015  if (CurDecl && CurDecl->getIdentifier())
1016    return &II == CurDecl->getIdentifier();
1017  else
1018    return false;
1019}
1020
1021/// \brief Determine whether the given class is a base class of the given
1022/// class, including looking at dependent bases.
1023static bool findCircularInheritance(const CXXRecordDecl *Class,
1024                                    const CXXRecordDecl *Current) {
1025  SmallVector<const CXXRecordDecl*, 8> Queue;
1026
1027  Class = Class->getCanonicalDecl();
1028  while (true) {
1029    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1030                                                  E = Current->bases_end();
1031         I != E; ++I) {
1032      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1033      if (!Base)
1034        continue;
1035
1036      Base = Base->getDefinition();
1037      if (!Base)
1038        continue;
1039
1040      if (Base->getCanonicalDecl() == Class)
1041        return true;
1042
1043      Queue.push_back(Base);
1044    }
1045
1046    if (Queue.empty())
1047      return false;
1048
1049    Current = Queue.back();
1050    Queue.pop_back();
1051  }
1052
1053  return false;
1054}
1055
1056/// \brief Check the validity of a C++ base class specifier.
1057///
1058/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1059/// and returns NULL otherwise.
1060CXXBaseSpecifier *
1061Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1062                         SourceRange SpecifierRange,
1063                         bool Virtual, AccessSpecifier Access,
1064                         TypeSourceInfo *TInfo,
1065                         SourceLocation EllipsisLoc) {
1066  QualType BaseType = TInfo->getType();
1067
1068  // C++ [class.union]p1:
1069  //   A union shall not have base classes.
1070  if (Class->isUnion()) {
1071    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1072      << SpecifierRange;
1073    return 0;
1074  }
1075
1076  if (EllipsisLoc.isValid() &&
1077      !TInfo->getType()->containsUnexpandedParameterPack()) {
1078    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1079      << TInfo->getTypeLoc().getSourceRange();
1080    EllipsisLoc = SourceLocation();
1081  }
1082
1083  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1084
1085  if (BaseType->isDependentType()) {
1086    // Make sure that we don't have circular inheritance among our dependent
1087    // bases. For non-dependent bases, the check for completeness below handles
1088    // this.
1089    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1090      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1091          ((BaseDecl = BaseDecl->getDefinition()) &&
1092           findCircularInheritance(Class, BaseDecl))) {
1093        Diag(BaseLoc, diag::err_circular_inheritance)
1094          << BaseType << Context.getTypeDeclType(Class);
1095
1096        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1097          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1098            << BaseType;
1099
1100        return 0;
1101      }
1102    }
1103
1104    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1105                                          Class->getTagKind() == TTK_Class,
1106                                          Access, TInfo, EllipsisLoc);
1107  }
1108
1109  // Base specifiers must be record types.
1110  if (!BaseType->isRecordType()) {
1111    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1112    return 0;
1113  }
1114
1115  // C++ [class.union]p1:
1116  //   A union shall not be used as a base class.
1117  if (BaseType->isUnionType()) {
1118    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1119    return 0;
1120  }
1121
1122  // C++ [class.derived]p2:
1123  //   The class-name in a base-specifier shall not be an incompletely
1124  //   defined class.
1125  if (RequireCompleteType(BaseLoc, BaseType,
1126                          diag::err_incomplete_base_class, SpecifierRange)) {
1127    Class->setInvalidDecl();
1128    return 0;
1129  }
1130
1131  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1132  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1133  assert(BaseDecl && "Record type has no declaration");
1134  BaseDecl = BaseDecl->getDefinition();
1135  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1136  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1137  assert(CXXBaseDecl && "Base type is not a C++ type");
1138
1139  // C++ [class]p3:
1140  //   If a class is marked final and it appears as a base-type-specifier in
1141  //   base-clause, the program is ill-formed.
1142  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1143    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1144      << CXXBaseDecl->getDeclName();
1145    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1146      << CXXBaseDecl->getDeclName();
1147    return 0;
1148  }
1149
1150  if (BaseDecl->isInvalidDecl())
1151    Class->setInvalidDecl();
1152
1153  // Create the base specifier.
1154  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1155                                        Class->getTagKind() == TTK_Class,
1156                                        Access, TInfo, EllipsisLoc);
1157}
1158
1159/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1160/// one entry in the base class list of a class specifier, for
1161/// example:
1162///    class foo : public bar, virtual private baz {
1163/// 'public bar' and 'virtual private baz' are each base-specifiers.
1164BaseResult
1165Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1166                         bool Virtual, AccessSpecifier Access,
1167                         ParsedType basetype, SourceLocation BaseLoc,
1168                         SourceLocation EllipsisLoc) {
1169  if (!classdecl)
1170    return true;
1171
1172  AdjustDeclIfTemplate(classdecl);
1173  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1174  if (!Class)
1175    return true;
1176
1177  TypeSourceInfo *TInfo = 0;
1178  GetTypeFromParser(basetype, &TInfo);
1179
1180  if (EllipsisLoc.isInvalid() &&
1181      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1182                                      UPPC_BaseType))
1183    return true;
1184
1185  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1186                                                      Virtual, Access, TInfo,
1187                                                      EllipsisLoc))
1188    return BaseSpec;
1189  else
1190    Class->setInvalidDecl();
1191
1192  return true;
1193}
1194
1195/// \brief Performs the actual work of attaching the given base class
1196/// specifiers to a C++ class.
1197bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1198                                unsigned NumBases) {
1199 if (NumBases == 0)
1200    return false;
1201
1202  // Used to keep track of which base types we have already seen, so
1203  // that we can properly diagnose redundant direct base types. Note
1204  // that the key is always the unqualified canonical type of the base
1205  // class.
1206  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1207
1208  // Copy non-redundant base specifiers into permanent storage.
1209  unsigned NumGoodBases = 0;
1210  bool Invalid = false;
1211  for (unsigned idx = 0; idx < NumBases; ++idx) {
1212    QualType NewBaseType
1213      = Context.getCanonicalType(Bases[idx]->getType());
1214    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1215
1216    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1217    if (KnownBase) {
1218      // C++ [class.mi]p3:
1219      //   A class shall not be specified as a direct base class of a
1220      //   derived class more than once.
1221      Diag(Bases[idx]->getLocStart(),
1222           diag::err_duplicate_base_class)
1223        << KnownBase->getType()
1224        << Bases[idx]->getSourceRange();
1225
1226      // Delete the duplicate base class specifier; we're going to
1227      // overwrite its pointer later.
1228      Context.Deallocate(Bases[idx]);
1229
1230      Invalid = true;
1231    } else {
1232      // Okay, add this new base class.
1233      KnownBase = Bases[idx];
1234      Bases[NumGoodBases++] = Bases[idx];
1235      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1236        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1237        if (Class->isInterface() &&
1238              (!RD->isInterface() ||
1239               KnownBase->getAccessSpecifier() != AS_public)) {
1240          // The Microsoft extension __interface does not permit bases that
1241          // are not themselves public interfaces.
1242          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1243            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1244            << RD->getSourceRange();
1245          Invalid = true;
1246        }
1247        if (RD->hasAttr<WeakAttr>())
1248          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1249      }
1250    }
1251  }
1252
1253  // Attach the remaining base class specifiers to the derived class.
1254  Class->setBases(Bases, NumGoodBases);
1255
1256  // Delete the remaining (good) base class specifiers, since their
1257  // data has been copied into the CXXRecordDecl.
1258  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1259    Context.Deallocate(Bases[idx]);
1260
1261  return Invalid;
1262}
1263
1264/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1265/// class, after checking whether there are any duplicate base
1266/// classes.
1267void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1268                               unsigned NumBases) {
1269  if (!ClassDecl || !Bases || !NumBases)
1270    return;
1271
1272  AdjustDeclIfTemplate(ClassDecl);
1273  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1274                       (CXXBaseSpecifier**)(Bases), NumBases);
1275}
1276
1277static CXXRecordDecl *GetClassForType(QualType T) {
1278  if (const RecordType *RT = T->getAs<RecordType>())
1279    return cast<CXXRecordDecl>(RT->getDecl());
1280  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1281    return ICT->getDecl();
1282  else
1283    return 0;
1284}
1285
1286/// \brief Determine whether the type \p Derived is a C++ class that is
1287/// derived from the type \p Base.
1288bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1289  if (!getLangOpts().CPlusPlus)
1290    return false;
1291
1292  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1293  if (!DerivedRD)
1294    return false;
1295
1296  CXXRecordDecl *BaseRD = GetClassForType(Base);
1297  if (!BaseRD)
1298    return false;
1299
1300  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1301  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1302}
1303
1304/// \brief Determine whether the type \p Derived is a C++ class that is
1305/// derived from the type \p Base.
1306bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1307  if (!getLangOpts().CPlusPlus)
1308    return false;
1309
1310  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1311  if (!DerivedRD)
1312    return false;
1313
1314  CXXRecordDecl *BaseRD = GetClassForType(Base);
1315  if (!BaseRD)
1316    return false;
1317
1318  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1319}
1320
1321void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1322                              CXXCastPath &BasePathArray) {
1323  assert(BasePathArray.empty() && "Base path array must be empty!");
1324  assert(Paths.isRecordingPaths() && "Must record paths!");
1325
1326  const CXXBasePath &Path = Paths.front();
1327
1328  // We first go backward and check if we have a virtual base.
1329  // FIXME: It would be better if CXXBasePath had the base specifier for
1330  // the nearest virtual base.
1331  unsigned Start = 0;
1332  for (unsigned I = Path.size(); I != 0; --I) {
1333    if (Path[I - 1].Base->isVirtual()) {
1334      Start = I - 1;
1335      break;
1336    }
1337  }
1338
1339  // Now add all bases.
1340  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1341    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1342}
1343
1344/// \brief Determine whether the given base path includes a virtual
1345/// base class.
1346bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1347  for (CXXCastPath::const_iterator B = BasePath.begin(),
1348                                BEnd = BasePath.end();
1349       B != BEnd; ++B)
1350    if ((*B)->isVirtual())
1351      return true;
1352
1353  return false;
1354}
1355
1356/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1357/// conversion (where Derived and Base are class types) is
1358/// well-formed, meaning that the conversion is unambiguous (and
1359/// that all of the base classes are accessible). Returns true
1360/// and emits a diagnostic if the code is ill-formed, returns false
1361/// otherwise. Loc is the location where this routine should point to
1362/// if there is an error, and Range is the source range to highlight
1363/// if there is an error.
1364bool
1365Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1366                                   unsigned InaccessibleBaseID,
1367                                   unsigned AmbigiousBaseConvID,
1368                                   SourceLocation Loc, SourceRange Range,
1369                                   DeclarationName Name,
1370                                   CXXCastPath *BasePath) {
1371  // First, determine whether the path from Derived to Base is
1372  // ambiguous. This is slightly more expensive than checking whether
1373  // the Derived to Base conversion exists, because here we need to
1374  // explore multiple paths to determine if there is an ambiguity.
1375  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1376                     /*DetectVirtual=*/false);
1377  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1378  assert(DerivationOkay &&
1379         "Can only be used with a derived-to-base conversion");
1380  (void)DerivationOkay;
1381
1382  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1383    if (InaccessibleBaseID) {
1384      // Check that the base class can be accessed.
1385      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1386                                   InaccessibleBaseID)) {
1387        case AR_inaccessible:
1388          return true;
1389        case AR_accessible:
1390        case AR_dependent:
1391        case AR_delayed:
1392          break;
1393      }
1394    }
1395
1396    // Build a base path if necessary.
1397    if (BasePath)
1398      BuildBasePathArray(Paths, *BasePath);
1399    return false;
1400  }
1401
1402  // We know that the derived-to-base conversion is ambiguous, and
1403  // we're going to produce a diagnostic. Perform the derived-to-base
1404  // search just one more time to compute all of the possible paths so
1405  // that we can print them out. This is more expensive than any of
1406  // the previous derived-to-base checks we've done, but at this point
1407  // performance isn't as much of an issue.
1408  Paths.clear();
1409  Paths.setRecordingPaths(true);
1410  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1411  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1412  (void)StillOkay;
1413
1414  // Build up a textual representation of the ambiguous paths, e.g.,
1415  // D -> B -> A, that will be used to illustrate the ambiguous
1416  // conversions in the diagnostic. We only print one of the paths
1417  // to each base class subobject.
1418  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1419
1420  Diag(Loc, AmbigiousBaseConvID)
1421  << Derived << Base << PathDisplayStr << Range << Name;
1422  return true;
1423}
1424
1425bool
1426Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1427                                   SourceLocation Loc, SourceRange Range,
1428                                   CXXCastPath *BasePath,
1429                                   bool IgnoreAccess) {
1430  return CheckDerivedToBaseConversion(Derived, Base,
1431                                      IgnoreAccess ? 0
1432                                       : diag::err_upcast_to_inaccessible_base,
1433                                      diag::err_ambiguous_derived_to_base_conv,
1434                                      Loc, Range, DeclarationName(),
1435                                      BasePath);
1436}
1437
1438
1439/// @brief Builds a string representing ambiguous paths from a
1440/// specific derived class to different subobjects of the same base
1441/// class.
1442///
1443/// This function builds a string that can be used in error messages
1444/// to show the different paths that one can take through the
1445/// inheritance hierarchy to go from the derived class to different
1446/// subobjects of a base class. The result looks something like this:
1447/// @code
1448/// struct D -> struct B -> struct A
1449/// struct D -> struct C -> struct A
1450/// @endcode
1451std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1452  std::string PathDisplayStr;
1453  std::set<unsigned> DisplayedPaths;
1454  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1455       Path != Paths.end(); ++Path) {
1456    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1457      // We haven't displayed a path to this particular base
1458      // class subobject yet.
1459      PathDisplayStr += "\n    ";
1460      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1461      for (CXXBasePath::const_iterator Element = Path->begin();
1462           Element != Path->end(); ++Element)
1463        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1464    }
1465  }
1466
1467  return PathDisplayStr;
1468}
1469
1470//===----------------------------------------------------------------------===//
1471// C++ class member Handling
1472//===----------------------------------------------------------------------===//
1473
1474/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1475bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1476                                SourceLocation ASLoc,
1477                                SourceLocation ColonLoc,
1478                                AttributeList *Attrs) {
1479  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1480  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1481                                                  ASLoc, ColonLoc);
1482  CurContext->addHiddenDecl(ASDecl);
1483  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1484}
1485
1486/// CheckOverrideControl - Check C++11 override control semantics.
1487void Sema::CheckOverrideControl(Decl *D) {
1488  if (D->isInvalidDecl())
1489    return;
1490
1491  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1492
1493  // Do we know which functions this declaration might be overriding?
1494  bool OverridesAreKnown = !MD ||
1495      (!MD->getParent()->hasAnyDependentBases() &&
1496       !MD->getType()->isDependentType());
1497
1498  if (!MD || !MD->isVirtual()) {
1499    if (OverridesAreKnown) {
1500      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1501        Diag(OA->getLocation(),
1502             diag::override_keyword_only_allowed_on_virtual_member_functions)
1503          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1504        D->dropAttr<OverrideAttr>();
1505      }
1506      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1507        Diag(FA->getLocation(),
1508             diag::override_keyword_only_allowed_on_virtual_member_functions)
1509          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1510        D->dropAttr<FinalAttr>();
1511      }
1512    }
1513    return;
1514  }
1515
1516  if (!OverridesAreKnown)
1517    return;
1518
1519  // C++11 [class.virtual]p5:
1520  //   If a virtual function is marked with the virt-specifier override and
1521  //   does not override a member function of a base class, the program is
1522  //   ill-formed.
1523  bool HasOverriddenMethods =
1524    MD->begin_overridden_methods() != MD->end_overridden_methods();
1525  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1526    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1527      << MD->getDeclName();
1528}
1529
1530/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1531/// function overrides a virtual member function marked 'final', according to
1532/// C++11 [class.virtual]p4.
1533bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1534                                                  const CXXMethodDecl *Old) {
1535  if (!Old->hasAttr<FinalAttr>())
1536    return false;
1537
1538  Diag(New->getLocation(), diag::err_final_function_overridden)
1539    << New->getDeclName();
1540  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1541  return true;
1542}
1543
1544static bool InitializationHasSideEffects(const FieldDecl &FD) {
1545  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1546  // FIXME: Destruction of ObjC lifetime types has side-effects.
1547  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1548    return !RD->isCompleteDefinition() ||
1549           !RD->hasTrivialDefaultConstructor() ||
1550           !RD->hasTrivialDestructor();
1551  return false;
1552}
1553
1554/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1555/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1556/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1557/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1558/// present (but parsing it has been deferred).
1559Decl *
1560Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1561                               MultiTemplateParamsArg TemplateParameterLists,
1562                               Expr *BW, const VirtSpecifiers &VS,
1563                               InClassInitStyle InitStyle) {
1564  const DeclSpec &DS = D.getDeclSpec();
1565  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1566  DeclarationName Name = NameInfo.getName();
1567  SourceLocation Loc = NameInfo.getLoc();
1568
1569  // For anonymous bitfields, the location should point to the type.
1570  if (Loc.isInvalid())
1571    Loc = D.getLocStart();
1572
1573  Expr *BitWidth = static_cast<Expr*>(BW);
1574
1575  assert(isa<CXXRecordDecl>(CurContext));
1576  assert(!DS.isFriendSpecified());
1577
1578  bool isFunc = D.isDeclarationOfFunction();
1579
1580  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1581    // The Microsoft extension __interface only permits public member functions
1582    // and prohibits constructors, destructors, operators, non-public member
1583    // functions, static methods and data members.
1584    unsigned InvalidDecl;
1585    bool ShowDeclName = true;
1586    if (!isFunc)
1587      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1588    else if (AS != AS_public)
1589      InvalidDecl = 2;
1590    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1591      InvalidDecl = 3;
1592    else switch (Name.getNameKind()) {
1593      case DeclarationName::CXXConstructorName:
1594        InvalidDecl = 4;
1595        ShowDeclName = false;
1596        break;
1597
1598      case DeclarationName::CXXDestructorName:
1599        InvalidDecl = 5;
1600        ShowDeclName = false;
1601        break;
1602
1603      case DeclarationName::CXXOperatorName:
1604      case DeclarationName::CXXConversionFunctionName:
1605        InvalidDecl = 6;
1606        break;
1607
1608      default:
1609        InvalidDecl = 0;
1610        break;
1611    }
1612
1613    if (InvalidDecl) {
1614      if (ShowDeclName)
1615        Diag(Loc, diag::err_invalid_member_in_interface)
1616          << (InvalidDecl-1) << Name;
1617      else
1618        Diag(Loc, diag::err_invalid_member_in_interface)
1619          << (InvalidDecl-1) << "";
1620      return 0;
1621    }
1622  }
1623
1624  // C++ 9.2p6: A member shall not be declared to have automatic storage
1625  // duration (auto, register) or with the extern storage-class-specifier.
1626  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1627  // data members and cannot be applied to names declared const or static,
1628  // and cannot be applied to reference members.
1629  switch (DS.getStorageClassSpec()) {
1630    case DeclSpec::SCS_unspecified:
1631    case DeclSpec::SCS_typedef:
1632    case DeclSpec::SCS_static:
1633      // FALL THROUGH.
1634      break;
1635    case DeclSpec::SCS_mutable:
1636      if (isFunc) {
1637        if (DS.getStorageClassSpecLoc().isValid())
1638          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1639        else
1640          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1641
1642        // FIXME: It would be nicer if the keyword was ignored only for this
1643        // declarator. Otherwise we could get follow-up errors.
1644        D.getMutableDeclSpec().ClearStorageClassSpecs();
1645      }
1646      break;
1647    default:
1648      if (DS.getStorageClassSpecLoc().isValid())
1649        Diag(DS.getStorageClassSpecLoc(),
1650             diag::err_storageclass_invalid_for_member);
1651      else
1652        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1653      D.getMutableDeclSpec().ClearStorageClassSpecs();
1654  }
1655
1656  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1657                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1658                      !isFunc);
1659
1660  Decl *Member;
1661  if (isInstField) {
1662    CXXScopeSpec &SS = D.getCXXScopeSpec();
1663
1664    // Data members must have identifiers for names.
1665    if (!Name.isIdentifier()) {
1666      Diag(Loc, diag::err_bad_variable_name)
1667        << Name;
1668      return 0;
1669    }
1670
1671    IdentifierInfo *II = Name.getAsIdentifierInfo();
1672
1673    // Member field could not be with "template" keyword.
1674    // So TemplateParameterLists should be empty in this case.
1675    if (TemplateParameterLists.size()) {
1676      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1677      if (TemplateParams->size()) {
1678        // There is no such thing as a member field template.
1679        Diag(D.getIdentifierLoc(), diag::err_template_member)
1680            << II
1681            << SourceRange(TemplateParams->getTemplateLoc(),
1682                TemplateParams->getRAngleLoc());
1683      } else {
1684        // There is an extraneous 'template<>' for this member.
1685        Diag(TemplateParams->getTemplateLoc(),
1686            diag::err_template_member_noparams)
1687            << II
1688            << SourceRange(TemplateParams->getTemplateLoc(),
1689                TemplateParams->getRAngleLoc());
1690      }
1691      return 0;
1692    }
1693
1694    if (SS.isSet() && !SS.isInvalid()) {
1695      // The user provided a superfluous scope specifier inside a class
1696      // definition:
1697      //
1698      // class X {
1699      //   int X::member;
1700      // };
1701      if (DeclContext *DC = computeDeclContext(SS, false))
1702        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1703      else
1704        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1705          << Name << SS.getRange();
1706
1707      SS.clear();
1708    }
1709
1710    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1711                         InitStyle, AS);
1712    assert(Member && "HandleField never returns null");
1713  } else {
1714    assert(InitStyle == ICIS_NoInit);
1715
1716    Member = HandleDeclarator(S, D, TemplateParameterLists);
1717    if (!Member) {
1718      return 0;
1719    }
1720
1721    // Non-instance-fields can't have a bitfield.
1722    if (BitWidth) {
1723      if (Member->isInvalidDecl()) {
1724        // don't emit another diagnostic.
1725      } else if (isa<VarDecl>(Member)) {
1726        // C++ 9.6p3: A bit-field shall not be a static member.
1727        // "static member 'A' cannot be a bit-field"
1728        Diag(Loc, diag::err_static_not_bitfield)
1729          << Name << BitWidth->getSourceRange();
1730      } else if (isa<TypedefDecl>(Member)) {
1731        // "typedef member 'x' cannot be a bit-field"
1732        Diag(Loc, diag::err_typedef_not_bitfield)
1733          << Name << BitWidth->getSourceRange();
1734      } else {
1735        // A function typedef ("typedef int f(); f a;").
1736        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1737        Diag(Loc, diag::err_not_integral_type_bitfield)
1738          << Name << cast<ValueDecl>(Member)->getType()
1739          << BitWidth->getSourceRange();
1740      }
1741
1742      BitWidth = 0;
1743      Member->setInvalidDecl();
1744    }
1745
1746    Member->setAccess(AS);
1747
1748    // If we have declared a member function template, set the access of the
1749    // templated declaration as well.
1750    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1751      FunTmpl->getTemplatedDecl()->setAccess(AS);
1752  }
1753
1754  if (VS.isOverrideSpecified())
1755    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1756  if (VS.isFinalSpecified())
1757    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1758
1759  if (VS.getLastLocation().isValid()) {
1760    // Update the end location of a method that has a virt-specifiers.
1761    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1762      MD->setRangeEnd(VS.getLastLocation());
1763  }
1764
1765  CheckOverrideControl(Member);
1766
1767  assert((Name || isInstField) && "No identifier for non-field ?");
1768
1769  if (isInstField) {
1770    FieldDecl *FD = cast<FieldDecl>(Member);
1771    FieldCollector->Add(FD);
1772
1773    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1774                                 FD->getLocation())
1775          != DiagnosticsEngine::Ignored) {
1776      // Remember all explicit private FieldDecls that have a name, no side
1777      // effects and are not part of a dependent type declaration.
1778      if (!FD->isImplicit() && FD->getDeclName() &&
1779          FD->getAccess() == AS_private &&
1780          !FD->hasAttr<UnusedAttr>() &&
1781          !FD->getParent()->isDependentContext() &&
1782          !InitializationHasSideEffects(*FD))
1783        UnusedPrivateFields.insert(FD);
1784    }
1785  }
1786
1787  return Member;
1788}
1789
1790namespace {
1791  class UninitializedFieldVisitor
1792      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1793    Sema &S;
1794    ValueDecl *VD;
1795  public:
1796    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1797    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1798                                                        S(S) {
1799      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1800        this->VD = IFD->getAnonField();
1801      else
1802        this->VD = VD;
1803    }
1804
1805    void HandleExpr(Expr *E) {
1806      if (!E) return;
1807
1808      // Expressions like x(x) sometimes lack the surrounding expressions
1809      // but need to be checked anyways.
1810      HandleValue(E);
1811      Visit(E);
1812    }
1813
1814    void HandleValue(Expr *E) {
1815      E = E->IgnoreParens();
1816
1817      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1818        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1819          return;
1820
1821        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1822        // or union.
1823        MemberExpr *FieldME = ME;
1824
1825        Expr *Base = E;
1826        while (isa<MemberExpr>(Base)) {
1827          ME = cast<MemberExpr>(Base);
1828
1829          if (isa<VarDecl>(ME->getMemberDecl()))
1830            return;
1831
1832          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1833            if (!FD->isAnonymousStructOrUnion())
1834              FieldME = ME;
1835
1836          Base = ME->getBase();
1837        }
1838
1839        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1840          unsigned diag = VD->getType()->isReferenceType()
1841              ? diag::warn_reference_field_is_uninit
1842              : diag::warn_field_is_uninit;
1843          S.Diag(FieldME->getExprLoc(), diag) << VD;
1844        }
1845        return;
1846      }
1847
1848      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1849        HandleValue(CO->getTrueExpr());
1850        HandleValue(CO->getFalseExpr());
1851        return;
1852      }
1853
1854      if (BinaryConditionalOperator *BCO =
1855              dyn_cast<BinaryConditionalOperator>(E)) {
1856        HandleValue(BCO->getCommon());
1857        HandleValue(BCO->getFalseExpr());
1858        return;
1859      }
1860
1861      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1862        switch (BO->getOpcode()) {
1863        default:
1864          return;
1865        case(BO_PtrMemD):
1866        case(BO_PtrMemI):
1867          HandleValue(BO->getLHS());
1868          return;
1869        case(BO_Comma):
1870          HandleValue(BO->getRHS());
1871          return;
1872        }
1873      }
1874    }
1875
1876    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1877      if (E->getCastKind() == CK_LValueToRValue)
1878        HandleValue(E->getSubExpr());
1879
1880      Inherited::VisitImplicitCastExpr(E);
1881    }
1882
1883    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1884      Expr *Callee = E->getCallee();
1885      if (isa<MemberExpr>(Callee))
1886        HandleValue(Callee);
1887
1888      Inherited::VisitCXXMemberCallExpr(E);
1889    }
1890  };
1891  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1892                                                       ValueDecl *VD) {
1893    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1894  }
1895} // namespace
1896
1897/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1898/// in-class initializer for a non-static C++ class member, and after
1899/// instantiating an in-class initializer in a class template. Such actions
1900/// are deferred until the class is complete.
1901void
1902Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1903                                       Expr *InitExpr) {
1904  FieldDecl *FD = cast<FieldDecl>(D);
1905  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1906         "must set init style when field is created");
1907
1908  if (!InitExpr) {
1909    FD->setInvalidDecl();
1910    FD->removeInClassInitializer();
1911    return;
1912  }
1913
1914  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1915    FD->setInvalidDecl();
1916    FD->removeInClassInitializer();
1917    return;
1918  }
1919
1920  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1921      != DiagnosticsEngine::Ignored) {
1922    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1923  }
1924
1925  ExprResult Init = InitExpr;
1926  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent() &&
1927      !FD->getDeclContext()->isDependentContext()) {
1928    // Note: We don't type-check when we're in a dependent context, because
1929    // the initialization-substitution code does not properly handle direct
1930    // list initialization. We have the same hackaround for ctor-initializers.
1931    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1932      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1933        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1934    }
1935    Expr **Inits = &InitExpr;
1936    unsigned NumInits = 1;
1937    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1938    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1939        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1940        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1941    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1942    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1943    if (Init.isInvalid()) {
1944      FD->setInvalidDecl();
1945      return;
1946    }
1947
1948    CheckImplicitConversions(Init.get(), InitLoc);
1949  }
1950
1951  // C++0x [class.base.init]p7:
1952  //   The initialization of each base and member constitutes a
1953  //   full-expression.
1954  Init = MaybeCreateExprWithCleanups(Init);
1955  if (Init.isInvalid()) {
1956    FD->setInvalidDecl();
1957    return;
1958  }
1959
1960  InitExpr = Init.release();
1961
1962  FD->setInClassInitializer(InitExpr);
1963}
1964
1965/// \brief Find the direct and/or virtual base specifiers that
1966/// correspond to the given base type, for use in base initialization
1967/// within a constructor.
1968static bool FindBaseInitializer(Sema &SemaRef,
1969                                CXXRecordDecl *ClassDecl,
1970                                QualType BaseType,
1971                                const CXXBaseSpecifier *&DirectBaseSpec,
1972                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1973  // First, check for a direct base class.
1974  DirectBaseSpec = 0;
1975  for (CXXRecordDecl::base_class_const_iterator Base
1976         = ClassDecl->bases_begin();
1977       Base != ClassDecl->bases_end(); ++Base) {
1978    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1979      // We found a direct base of this type. That's what we're
1980      // initializing.
1981      DirectBaseSpec = &*Base;
1982      break;
1983    }
1984  }
1985
1986  // Check for a virtual base class.
1987  // FIXME: We might be able to short-circuit this if we know in advance that
1988  // there are no virtual bases.
1989  VirtualBaseSpec = 0;
1990  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1991    // We haven't found a base yet; search the class hierarchy for a
1992    // virtual base class.
1993    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1994                       /*DetectVirtual=*/false);
1995    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1996                              BaseType, Paths)) {
1997      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1998           Path != Paths.end(); ++Path) {
1999        if (Path->back().Base->isVirtual()) {
2000          VirtualBaseSpec = Path->back().Base;
2001          break;
2002        }
2003      }
2004    }
2005  }
2006
2007  return DirectBaseSpec || VirtualBaseSpec;
2008}
2009
2010/// \brief Handle a C++ member initializer using braced-init-list syntax.
2011MemInitResult
2012Sema::ActOnMemInitializer(Decl *ConstructorD,
2013                          Scope *S,
2014                          CXXScopeSpec &SS,
2015                          IdentifierInfo *MemberOrBase,
2016                          ParsedType TemplateTypeTy,
2017                          const DeclSpec &DS,
2018                          SourceLocation IdLoc,
2019                          Expr *InitList,
2020                          SourceLocation EllipsisLoc) {
2021  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2022                             DS, IdLoc, InitList,
2023                             EllipsisLoc);
2024}
2025
2026/// \brief Handle a C++ member initializer using parentheses syntax.
2027MemInitResult
2028Sema::ActOnMemInitializer(Decl *ConstructorD,
2029                          Scope *S,
2030                          CXXScopeSpec &SS,
2031                          IdentifierInfo *MemberOrBase,
2032                          ParsedType TemplateTypeTy,
2033                          const DeclSpec &DS,
2034                          SourceLocation IdLoc,
2035                          SourceLocation LParenLoc,
2036                          Expr **Args, unsigned NumArgs,
2037                          SourceLocation RParenLoc,
2038                          SourceLocation EllipsisLoc) {
2039  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2040                                           llvm::makeArrayRef(Args, NumArgs),
2041                                           RParenLoc);
2042  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2043                             DS, IdLoc, List, EllipsisLoc);
2044}
2045
2046namespace {
2047
2048// Callback to only accept typo corrections that can be a valid C++ member
2049// intializer: either a non-static field member or a base class.
2050class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2051 public:
2052  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2053      : ClassDecl(ClassDecl) {}
2054
2055  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2056    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2057      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2058        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2059      else
2060        return isa<TypeDecl>(ND);
2061    }
2062    return false;
2063  }
2064
2065 private:
2066  CXXRecordDecl *ClassDecl;
2067};
2068
2069}
2070
2071/// \brief Handle a C++ member initializer.
2072MemInitResult
2073Sema::BuildMemInitializer(Decl *ConstructorD,
2074                          Scope *S,
2075                          CXXScopeSpec &SS,
2076                          IdentifierInfo *MemberOrBase,
2077                          ParsedType TemplateTypeTy,
2078                          const DeclSpec &DS,
2079                          SourceLocation IdLoc,
2080                          Expr *Init,
2081                          SourceLocation EllipsisLoc) {
2082  if (!ConstructorD)
2083    return true;
2084
2085  AdjustDeclIfTemplate(ConstructorD);
2086
2087  CXXConstructorDecl *Constructor
2088    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2089  if (!Constructor) {
2090    // The user wrote a constructor initializer on a function that is
2091    // not a C++ constructor. Ignore the error for now, because we may
2092    // have more member initializers coming; we'll diagnose it just
2093    // once in ActOnMemInitializers.
2094    return true;
2095  }
2096
2097  CXXRecordDecl *ClassDecl = Constructor->getParent();
2098
2099  // C++ [class.base.init]p2:
2100  //   Names in a mem-initializer-id are looked up in the scope of the
2101  //   constructor's class and, if not found in that scope, are looked
2102  //   up in the scope containing the constructor's definition.
2103  //   [Note: if the constructor's class contains a member with the
2104  //   same name as a direct or virtual base class of the class, a
2105  //   mem-initializer-id naming the member or base class and composed
2106  //   of a single identifier refers to the class member. A
2107  //   mem-initializer-id for the hidden base class may be specified
2108  //   using a qualified name. ]
2109  if (!SS.getScopeRep() && !TemplateTypeTy) {
2110    // Look for a member, first.
2111    DeclContext::lookup_result Result
2112      = ClassDecl->lookup(MemberOrBase);
2113    if (Result.first != Result.second) {
2114      ValueDecl *Member;
2115      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
2116          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
2117        if (EllipsisLoc.isValid())
2118          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2119            << MemberOrBase
2120            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2121
2122        return BuildMemberInitializer(Member, Init, IdLoc);
2123      }
2124    }
2125  }
2126  // It didn't name a member, so see if it names a class.
2127  QualType BaseType;
2128  TypeSourceInfo *TInfo = 0;
2129
2130  if (TemplateTypeTy) {
2131    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2132  } else if (DS.getTypeSpecType() == TST_decltype) {
2133    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2134  } else {
2135    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2136    LookupParsedName(R, S, &SS);
2137
2138    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2139    if (!TyD) {
2140      if (R.isAmbiguous()) return true;
2141
2142      // We don't want access-control diagnostics here.
2143      R.suppressDiagnostics();
2144
2145      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2146        bool NotUnknownSpecialization = false;
2147        DeclContext *DC = computeDeclContext(SS, false);
2148        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2149          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2150
2151        if (!NotUnknownSpecialization) {
2152          // When the scope specifier can refer to a member of an unknown
2153          // specialization, we take it as a type name.
2154          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2155                                       SS.getWithLocInContext(Context),
2156                                       *MemberOrBase, IdLoc);
2157          if (BaseType.isNull())
2158            return true;
2159
2160          R.clear();
2161          R.setLookupName(MemberOrBase);
2162        }
2163      }
2164
2165      // If no results were found, try to correct typos.
2166      TypoCorrection Corr;
2167      MemInitializerValidatorCCC Validator(ClassDecl);
2168      if (R.empty() && BaseType.isNull() &&
2169          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2170                              Validator, ClassDecl))) {
2171        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2172        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2173        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2174          // We have found a non-static data member with a similar
2175          // name to what was typed; complain and initialize that
2176          // member.
2177          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2178            << MemberOrBase << true << CorrectedQuotedStr
2179            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2180          Diag(Member->getLocation(), diag::note_previous_decl)
2181            << CorrectedQuotedStr;
2182
2183          return BuildMemberInitializer(Member, Init, IdLoc);
2184        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2185          const CXXBaseSpecifier *DirectBaseSpec;
2186          const CXXBaseSpecifier *VirtualBaseSpec;
2187          if (FindBaseInitializer(*this, ClassDecl,
2188                                  Context.getTypeDeclType(Type),
2189                                  DirectBaseSpec, VirtualBaseSpec)) {
2190            // We have found a direct or virtual base class with a
2191            // similar name to what was typed; complain and initialize
2192            // that base class.
2193            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2194              << MemberOrBase << false << CorrectedQuotedStr
2195              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2196
2197            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2198                                                             : VirtualBaseSpec;
2199            Diag(BaseSpec->getLocStart(),
2200                 diag::note_base_class_specified_here)
2201              << BaseSpec->getType()
2202              << BaseSpec->getSourceRange();
2203
2204            TyD = Type;
2205          }
2206        }
2207      }
2208
2209      if (!TyD && BaseType.isNull()) {
2210        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2211          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2212        return true;
2213      }
2214    }
2215
2216    if (BaseType.isNull()) {
2217      BaseType = Context.getTypeDeclType(TyD);
2218      if (SS.isSet()) {
2219        NestedNameSpecifier *Qualifier =
2220          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2221
2222        // FIXME: preserve source range information
2223        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2224      }
2225    }
2226  }
2227
2228  if (!TInfo)
2229    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2230
2231  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2232}
2233
2234/// Checks a member initializer expression for cases where reference (or
2235/// pointer) members are bound to by-value parameters (or their addresses).
2236static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2237                                               Expr *Init,
2238                                               SourceLocation IdLoc) {
2239  QualType MemberTy = Member->getType();
2240
2241  // We only handle pointers and references currently.
2242  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2243  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2244    return;
2245
2246  const bool IsPointer = MemberTy->isPointerType();
2247  if (IsPointer) {
2248    if (const UnaryOperator *Op
2249          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2250      // The only case we're worried about with pointers requires taking the
2251      // address.
2252      if (Op->getOpcode() != UO_AddrOf)
2253        return;
2254
2255      Init = Op->getSubExpr();
2256    } else {
2257      // We only handle address-of expression initializers for pointers.
2258      return;
2259    }
2260  }
2261
2262  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2263    // Taking the address of a temporary will be diagnosed as a hard error.
2264    if (IsPointer)
2265      return;
2266
2267    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2268      << Member << Init->getSourceRange();
2269  } else if (const DeclRefExpr *DRE
2270               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2271    // We only warn when referring to a non-reference parameter declaration.
2272    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2273    if (!Parameter || Parameter->getType()->isReferenceType())
2274      return;
2275
2276    S.Diag(Init->getExprLoc(),
2277           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2278                     : diag::warn_bind_ref_member_to_parameter)
2279      << Member << Parameter << Init->getSourceRange();
2280  } else {
2281    // Other initializers are fine.
2282    return;
2283  }
2284
2285  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2286    << (unsigned)IsPointer;
2287}
2288
2289MemInitResult
2290Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2291                             SourceLocation IdLoc) {
2292  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2293  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2294  assert((DirectMember || IndirectMember) &&
2295         "Member must be a FieldDecl or IndirectFieldDecl");
2296
2297  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2298    return true;
2299
2300  if (Member->isInvalidDecl())
2301    return true;
2302
2303  // Diagnose value-uses of fields to initialize themselves, e.g.
2304  //   foo(foo)
2305  // where foo is not also a parameter to the constructor.
2306  // TODO: implement -Wuninitialized and fold this into that framework.
2307  Expr **Args;
2308  unsigned NumArgs;
2309  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2310    Args = ParenList->getExprs();
2311    NumArgs = ParenList->getNumExprs();
2312  } else {
2313    InitListExpr *InitList = cast<InitListExpr>(Init);
2314    Args = InitList->getInits();
2315    NumArgs = InitList->getNumInits();
2316  }
2317
2318  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2319        != DiagnosticsEngine::Ignored)
2320    for (unsigned i = 0; i < NumArgs; ++i)
2321      // FIXME: Warn about the case when other fields are used before being
2322      // initialized. For example, let this field be the i'th field. When
2323      // initializing the i'th field, throw a warning if any of the >= i'th
2324      // fields are used, as they are not yet initialized.
2325      // Right now we are only handling the case where the i'th field uses
2326      // itself in its initializer.
2327      // Also need to take into account that some fields may be initialized by
2328      // in-class initializers, see C++11 [class.base.init]p9.
2329      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2330
2331  SourceRange InitRange = Init->getSourceRange();
2332
2333  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2334    // Can't check initialization for a member of dependent type or when
2335    // any of the arguments are type-dependent expressions.
2336    DiscardCleanupsInEvaluationContext();
2337  } else {
2338    bool InitList = false;
2339    if (isa<InitListExpr>(Init)) {
2340      InitList = true;
2341      Args = &Init;
2342      NumArgs = 1;
2343
2344      if (isStdInitializerList(Member->getType(), 0)) {
2345        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2346            << /*at end of ctor*/1 << InitRange;
2347      }
2348    }
2349
2350    // Initialize the member.
2351    InitializedEntity MemberEntity =
2352      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2353                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2354    InitializationKind Kind =
2355      InitList ? InitializationKind::CreateDirectList(IdLoc)
2356               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2357                                                  InitRange.getEnd());
2358
2359    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2360    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2361                                            MultiExprArg(Args, NumArgs),
2362                                            0);
2363    if (MemberInit.isInvalid())
2364      return true;
2365
2366    CheckImplicitConversions(MemberInit.get(),
2367                             InitRange.getBegin());
2368
2369    // C++0x [class.base.init]p7:
2370    //   The initialization of each base and member constitutes a
2371    //   full-expression.
2372    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2373    if (MemberInit.isInvalid())
2374      return true;
2375
2376    // If we are in a dependent context, template instantiation will
2377    // perform this type-checking again. Just save the arguments that we
2378    // received.
2379    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2380    // of the information that we have about the member
2381    // initializer. However, deconstructing the ASTs is a dicey process,
2382    // and this approach is far more likely to get the corner cases right.
2383    if (CurContext->isDependentContext()) {
2384      // The existing Init will do fine.
2385    } else {
2386      Init = MemberInit.get();
2387      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2388    }
2389  }
2390
2391  if (DirectMember) {
2392    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2393                                            InitRange.getBegin(), Init,
2394                                            InitRange.getEnd());
2395  } else {
2396    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2397                                            InitRange.getBegin(), Init,
2398                                            InitRange.getEnd());
2399  }
2400}
2401
2402MemInitResult
2403Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2404                                 CXXRecordDecl *ClassDecl) {
2405  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2406  if (!LangOpts.CPlusPlus0x)
2407    return Diag(NameLoc, diag::err_delegating_ctor)
2408      << TInfo->getTypeLoc().getLocalSourceRange();
2409  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2410
2411  bool InitList = true;
2412  Expr **Args = &Init;
2413  unsigned NumArgs = 1;
2414  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2415    InitList = false;
2416    Args = ParenList->getExprs();
2417    NumArgs = ParenList->getNumExprs();
2418  }
2419
2420  SourceRange InitRange = Init->getSourceRange();
2421  // Initialize the object.
2422  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2423                                     QualType(ClassDecl->getTypeForDecl(), 0));
2424  InitializationKind Kind =
2425    InitList ? InitializationKind::CreateDirectList(NameLoc)
2426             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2427                                                InitRange.getEnd());
2428  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2429  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2430                                              MultiExprArg(Args, NumArgs),
2431                                              0);
2432  if (DelegationInit.isInvalid())
2433    return true;
2434
2435  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2436         "Delegating constructor with no target?");
2437
2438  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2439
2440  // C++0x [class.base.init]p7:
2441  //   The initialization of each base and member constitutes a
2442  //   full-expression.
2443  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2444  if (DelegationInit.isInvalid())
2445    return true;
2446
2447  // If we are in a dependent context, template instantiation will
2448  // perform this type-checking again. Just save the arguments that we
2449  // received in a ParenListExpr.
2450  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2451  // of the information that we have about the base
2452  // initializer. However, deconstructing the ASTs is a dicey process,
2453  // and this approach is far more likely to get the corner cases right.
2454  if (CurContext->isDependentContext())
2455    DelegationInit = Owned(Init);
2456
2457  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2458                                          DelegationInit.takeAs<Expr>(),
2459                                          InitRange.getEnd());
2460}
2461
2462MemInitResult
2463Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2464                           Expr *Init, CXXRecordDecl *ClassDecl,
2465                           SourceLocation EllipsisLoc) {
2466  SourceLocation BaseLoc
2467    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2468
2469  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2470    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2471             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2472
2473  // C++ [class.base.init]p2:
2474  //   [...] Unless the mem-initializer-id names a nonstatic data
2475  //   member of the constructor's class or a direct or virtual base
2476  //   of that class, the mem-initializer is ill-formed. A
2477  //   mem-initializer-list can initialize a base class using any
2478  //   name that denotes that base class type.
2479  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2480
2481  SourceRange InitRange = Init->getSourceRange();
2482  if (EllipsisLoc.isValid()) {
2483    // This is a pack expansion.
2484    if (!BaseType->containsUnexpandedParameterPack())  {
2485      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2486        << SourceRange(BaseLoc, InitRange.getEnd());
2487
2488      EllipsisLoc = SourceLocation();
2489    }
2490  } else {
2491    // Check for any unexpanded parameter packs.
2492    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2493      return true;
2494
2495    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2496      return true;
2497  }
2498
2499  // Check for direct and virtual base classes.
2500  const CXXBaseSpecifier *DirectBaseSpec = 0;
2501  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2502  if (!Dependent) {
2503    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2504                                       BaseType))
2505      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2506
2507    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2508                        VirtualBaseSpec);
2509
2510    // C++ [base.class.init]p2:
2511    // Unless the mem-initializer-id names a nonstatic data member of the
2512    // constructor's class or a direct or virtual base of that class, the
2513    // mem-initializer is ill-formed.
2514    if (!DirectBaseSpec && !VirtualBaseSpec) {
2515      // If the class has any dependent bases, then it's possible that
2516      // one of those types will resolve to the same type as
2517      // BaseType. Therefore, just treat this as a dependent base
2518      // class initialization.  FIXME: Should we try to check the
2519      // initialization anyway? It seems odd.
2520      if (ClassDecl->hasAnyDependentBases())
2521        Dependent = true;
2522      else
2523        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2524          << BaseType << Context.getTypeDeclType(ClassDecl)
2525          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2526    }
2527  }
2528
2529  if (Dependent) {
2530    DiscardCleanupsInEvaluationContext();
2531
2532    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2533                                            /*IsVirtual=*/false,
2534                                            InitRange.getBegin(), Init,
2535                                            InitRange.getEnd(), EllipsisLoc);
2536  }
2537
2538  // C++ [base.class.init]p2:
2539  //   If a mem-initializer-id is ambiguous because it designates both
2540  //   a direct non-virtual base class and an inherited virtual base
2541  //   class, the mem-initializer is ill-formed.
2542  if (DirectBaseSpec && VirtualBaseSpec)
2543    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2544      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2545
2546  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2547  if (!BaseSpec)
2548    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2549
2550  // Initialize the base.
2551  bool InitList = true;
2552  Expr **Args = &Init;
2553  unsigned NumArgs = 1;
2554  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2555    InitList = false;
2556    Args = ParenList->getExprs();
2557    NumArgs = ParenList->getNumExprs();
2558  }
2559
2560  InitializedEntity BaseEntity =
2561    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2562  InitializationKind Kind =
2563    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2564             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2565                                                InitRange.getEnd());
2566  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2567  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2568                                        MultiExprArg(Args, NumArgs), 0);
2569  if (BaseInit.isInvalid())
2570    return true;
2571
2572  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2573
2574  // C++0x [class.base.init]p7:
2575  //   The initialization of each base and member constitutes a
2576  //   full-expression.
2577  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2578  if (BaseInit.isInvalid())
2579    return true;
2580
2581  // If we are in a dependent context, template instantiation will
2582  // perform this type-checking again. Just save the arguments that we
2583  // received in a ParenListExpr.
2584  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2585  // of the information that we have about the base
2586  // initializer. However, deconstructing the ASTs is a dicey process,
2587  // and this approach is far more likely to get the corner cases right.
2588  if (CurContext->isDependentContext())
2589    BaseInit = Owned(Init);
2590
2591  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2592                                          BaseSpec->isVirtual(),
2593                                          InitRange.getBegin(),
2594                                          BaseInit.takeAs<Expr>(),
2595                                          InitRange.getEnd(), EllipsisLoc);
2596}
2597
2598// Create a static_cast\<T&&>(expr).
2599static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2600  QualType ExprType = E->getType();
2601  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2602  SourceLocation ExprLoc = E->getLocStart();
2603  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2604      TargetType, ExprLoc);
2605
2606  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2607                                   SourceRange(ExprLoc, ExprLoc),
2608                                   E->getSourceRange()).take();
2609}
2610
2611/// ImplicitInitializerKind - How an implicit base or member initializer should
2612/// initialize its base or member.
2613enum ImplicitInitializerKind {
2614  IIK_Default,
2615  IIK_Copy,
2616  IIK_Move
2617};
2618
2619static bool
2620BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2621                             ImplicitInitializerKind ImplicitInitKind,
2622                             CXXBaseSpecifier *BaseSpec,
2623                             bool IsInheritedVirtualBase,
2624                             CXXCtorInitializer *&CXXBaseInit) {
2625  InitializedEntity InitEntity
2626    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2627                                        IsInheritedVirtualBase);
2628
2629  ExprResult BaseInit;
2630
2631  switch (ImplicitInitKind) {
2632  case IIK_Default: {
2633    InitializationKind InitKind
2634      = InitializationKind::CreateDefault(Constructor->getLocation());
2635    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2636    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2637    break;
2638  }
2639
2640  case IIK_Move:
2641  case IIK_Copy: {
2642    bool Moving = ImplicitInitKind == IIK_Move;
2643    ParmVarDecl *Param = Constructor->getParamDecl(0);
2644    QualType ParamType = Param->getType().getNonReferenceType();
2645
2646    Expr *CopyCtorArg =
2647      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2648                          SourceLocation(), Param, false,
2649                          Constructor->getLocation(), ParamType,
2650                          VK_LValue, 0);
2651
2652    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2653
2654    // Cast to the base class to avoid ambiguities.
2655    QualType ArgTy =
2656      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2657                                       ParamType.getQualifiers());
2658
2659    if (Moving) {
2660      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2661    }
2662
2663    CXXCastPath BasePath;
2664    BasePath.push_back(BaseSpec);
2665    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2666                                            CK_UncheckedDerivedToBase,
2667                                            Moving ? VK_XValue : VK_LValue,
2668                                            &BasePath).take();
2669
2670    InitializationKind InitKind
2671      = InitializationKind::CreateDirect(Constructor->getLocation(),
2672                                         SourceLocation(), SourceLocation());
2673    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2674                                   &CopyCtorArg, 1);
2675    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2676                               MultiExprArg(&CopyCtorArg, 1));
2677    break;
2678  }
2679  }
2680
2681  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2682  if (BaseInit.isInvalid())
2683    return true;
2684
2685  CXXBaseInit =
2686    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2687               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2688                                                        SourceLocation()),
2689                                             BaseSpec->isVirtual(),
2690                                             SourceLocation(),
2691                                             BaseInit.takeAs<Expr>(),
2692                                             SourceLocation(),
2693                                             SourceLocation());
2694
2695  return false;
2696}
2697
2698static bool RefersToRValueRef(Expr *MemRef) {
2699  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2700  return Referenced->getType()->isRValueReferenceType();
2701}
2702
2703static bool
2704BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2705                               ImplicitInitializerKind ImplicitInitKind,
2706                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2707                               CXXCtorInitializer *&CXXMemberInit) {
2708  if (Field->isInvalidDecl())
2709    return true;
2710
2711  SourceLocation Loc = Constructor->getLocation();
2712
2713  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2714    bool Moving = ImplicitInitKind == IIK_Move;
2715    ParmVarDecl *Param = Constructor->getParamDecl(0);
2716    QualType ParamType = Param->getType().getNonReferenceType();
2717
2718    // Suppress copying zero-width bitfields.
2719    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2720      return false;
2721
2722    Expr *MemberExprBase =
2723      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2724                          SourceLocation(), Param, false,
2725                          Loc, ParamType, VK_LValue, 0);
2726
2727    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2728
2729    if (Moving) {
2730      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2731    }
2732
2733    // Build a reference to this field within the parameter.
2734    CXXScopeSpec SS;
2735    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2736                              Sema::LookupMemberName);
2737    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2738                                  : cast<ValueDecl>(Field), AS_public);
2739    MemberLookup.resolveKind();
2740    ExprResult CtorArg
2741      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2742                                         ParamType, Loc,
2743                                         /*IsArrow=*/false,
2744                                         SS,
2745                                         /*TemplateKWLoc=*/SourceLocation(),
2746                                         /*FirstQualifierInScope=*/0,
2747                                         MemberLookup,
2748                                         /*TemplateArgs=*/0);
2749    if (CtorArg.isInvalid())
2750      return true;
2751
2752    // C++11 [class.copy]p15:
2753    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2754    //     with static_cast<T&&>(x.m);
2755    if (RefersToRValueRef(CtorArg.get())) {
2756      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2757    }
2758
2759    // When the field we are copying is an array, create index variables for
2760    // each dimension of the array. We use these index variables to subscript
2761    // the source array, and other clients (e.g., CodeGen) will perform the
2762    // necessary iteration with these index variables.
2763    SmallVector<VarDecl *, 4> IndexVariables;
2764    QualType BaseType = Field->getType();
2765    QualType SizeType = SemaRef.Context.getSizeType();
2766    bool InitializingArray = false;
2767    while (const ConstantArrayType *Array
2768                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2769      InitializingArray = true;
2770      // Create the iteration variable for this array index.
2771      IdentifierInfo *IterationVarName = 0;
2772      {
2773        SmallString<8> Str;
2774        llvm::raw_svector_ostream OS(Str);
2775        OS << "__i" << IndexVariables.size();
2776        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2777      }
2778      VarDecl *IterationVar
2779        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2780                          IterationVarName, SizeType,
2781                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2782                          SC_None, SC_None);
2783      IndexVariables.push_back(IterationVar);
2784
2785      // Create a reference to the iteration variable.
2786      ExprResult IterationVarRef
2787        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2788      assert(!IterationVarRef.isInvalid() &&
2789             "Reference to invented variable cannot fail!");
2790      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2791      assert(!IterationVarRef.isInvalid() &&
2792             "Conversion of invented variable cannot fail!");
2793
2794      // Subscript the array with this iteration variable.
2795      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2796                                                        IterationVarRef.take(),
2797                                                        Loc);
2798      if (CtorArg.isInvalid())
2799        return true;
2800
2801      BaseType = Array->getElementType();
2802    }
2803
2804    // The array subscript expression is an lvalue, which is wrong for moving.
2805    if (Moving && InitializingArray)
2806      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2807
2808    // Construct the entity that we will be initializing. For an array, this
2809    // will be first element in the array, which may require several levels
2810    // of array-subscript entities.
2811    SmallVector<InitializedEntity, 4> Entities;
2812    Entities.reserve(1 + IndexVariables.size());
2813    if (Indirect)
2814      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2815    else
2816      Entities.push_back(InitializedEntity::InitializeMember(Field));
2817    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2818      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2819                                                              0,
2820                                                              Entities.back()));
2821
2822    // Direct-initialize to use the copy constructor.
2823    InitializationKind InitKind =
2824      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2825
2826    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2827    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2828                                   &CtorArgE, 1);
2829
2830    ExprResult MemberInit
2831      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2832                        MultiExprArg(&CtorArgE, 1));
2833    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2834    if (MemberInit.isInvalid())
2835      return true;
2836
2837    if (Indirect) {
2838      assert(IndexVariables.size() == 0 &&
2839             "Indirect field improperly initialized");
2840      CXXMemberInit
2841        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2842                                                   Loc, Loc,
2843                                                   MemberInit.takeAs<Expr>(),
2844                                                   Loc);
2845    } else
2846      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2847                                                 Loc, MemberInit.takeAs<Expr>(),
2848                                                 Loc,
2849                                                 IndexVariables.data(),
2850                                                 IndexVariables.size());
2851    return false;
2852  }
2853
2854  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2855
2856  QualType FieldBaseElementType =
2857    SemaRef.Context.getBaseElementType(Field->getType());
2858
2859  if (FieldBaseElementType->isRecordType()) {
2860    InitializedEntity InitEntity
2861      = Indirect? InitializedEntity::InitializeMember(Indirect)
2862                : InitializedEntity::InitializeMember(Field);
2863    InitializationKind InitKind =
2864      InitializationKind::CreateDefault(Loc);
2865
2866    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2867    ExprResult MemberInit =
2868      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2869
2870    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2871    if (MemberInit.isInvalid())
2872      return true;
2873
2874    if (Indirect)
2875      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2876                                                               Indirect, Loc,
2877                                                               Loc,
2878                                                               MemberInit.get(),
2879                                                               Loc);
2880    else
2881      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2882                                                               Field, Loc, Loc,
2883                                                               MemberInit.get(),
2884                                                               Loc);
2885    return false;
2886  }
2887
2888  if (!Field->getParent()->isUnion()) {
2889    if (FieldBaseElementType->isReferenceType()) {
2890      SemaRef.Diag(Constructor->getLocation(),
2891                   diag::err_uninitialized_member_in_ctor)
2892      << (int)Constructor->isImplicit()
2893      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2894      << 0 << Field->getDeclName();
2895      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2896      return true;
2897    }
2898
2899    if (FieldBaseElementType.isConstQualified()) {
2900      SemaRef.Diag(Constructor->getLocation(),
2901                   diag::err_uninitialized_member_in_ctor)
2902      << (int)Constructor->isImplicit()
2903      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2904      << 1 << Field->getDeclName();
2905      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2906      return true;
2907    }
2908  }
2909
2910  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2911      FieldBaseElementType->isObjCRetainableType() &&
2912      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2913      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2914    // ARC:
2915    //   Default-initialize Objective-C pointers to NULL.
2916    CXXMemberInit
2917      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2918                                                 Loc, Loc,
2919                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2920                                                 Loc);
2921    return false;
2922  }
2923
2924  // Nothing to initialize.
2925  CXXMemberInit = 0;
2926  return false;
2927}
2928
2929namespace {
2930struct BaseAndFieldInfo {
2931  Sema &S;
2932  CXXConstructorDecl *Ctor;
2933  bool AnyErrorsInInits;
2934  ImplicitInitializerKind IIK;
2935  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2936  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2937
2938  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2939    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2940    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2941    if (Generated && Ctor->isCopyConstructor())
2942      IIK = IIK_Copy;
2943    else if (Generated && Ctor->isMoveConstructor())
2944      IIK = IIK_Move;
2945    else
2946      IIK = IIK_Default;
2947  }
2948
2949  bool isImplicitCopyOrMove() const {
2950    switch (IIK) {
2951    case IIK_Copy:
2952    case IIK_Move:
2953      return true;
2954
2955    case IIK_Default:
2956      return false;
2957    }
2958
2959    llvm_unreachable("Invalid ImplicitInitializerKind!");
2960  }
2961
2962  bool addFieldInitializer(CXXCtorInitializer *Init) {
2963    AllToInit.push_back(Init);
2964
2965    // Check whether this initializer makes the field "used".
2966    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2967      S.UnusedPrivateFields.remove(Init->getAnyMember());
2968
2969    return false;
2970  }
2971};
2972}
2973
2974/// \brief Determine whether the given indirect field declaration is somewhere
2975/// within an anonymous union.
2976static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2977  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2978                                      CEnd = F->chain_end();
2979       C != CEnd; ++C)
2980    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2981      if (Record->isUnion())
2982        return true;
2983
2984  return false;
2985}
2986
2987/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2988/// array type.
2989static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2990  if (T->isIncompleteArrayType())
2991    return true;
2992
2993  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2994    if (!ArrayT->getSize())
2995      return true;
2996
2997    T = ArrayT->getElementType();
2998  }
2999
3000  return false;
3001}
3002
3003static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3004                                    FieldDecl *Field,
3005                                    IndirectFieldDecl *Indirect = 0) {
3006
3007  // Overwhelmingly common case: we have a direct initializer for this field.
3008  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3009    return Info.addFieldInitializer(Init);
3010
3011  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3012  // has a brace-or-equal-initializer, the entity is initialized as specified
3013  // in [dcl.init].
3014  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3015    CXXCtorInitializer *Init;
3016    if (Indirect)
3017      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3018                                                      SourceLocation(),
3019                                                      SourceLocation(), 0,
3020                                                      SourceLocation());
3021    else
3022      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3023                                                      SourceLocation(),
3024                                                      SourceLocation(), 0,
3025                                                      SourceLocation());
3026    return Info.addFieldInitializer(Init);
3027  }
3028
3029  // Don't build an implicit initializer for union members if none was
3030  // explicitly specified.
3031  if (Field->getParent()->isUnion() ||
3032      (Indirect && isWithinAnonymousUnion(Indirect)))
3033    return false;
3034
3035  // Don't initialize incomplete or zero-length arrays.
3036  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3037    return false;
3038
3039  // Don't try to build an implicit initializer if there were semantic
3040  // errors in any of the initializers (and therefore we might be
3041  // missing some that the user actually wrote).
3042  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3043    return false;
3044
3045  CXXCtorInitializer *Init = 0;
3046  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3047                                     Indirect, Init))
3048    return true;
3049
3050  if (!Init)
3051    return false;
3052
3053  return Info.addFieldInitializer(Init);
3054}
3055
3056bool
3057Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3058                               CXXCtorInitializer *Initializer) {
3059  assert(Initializer->isDelegatingInitializer());
3060  Constructor->setNumCtorInitializers(1);
3061  CXXCtorInitializer **initializer =
3062    new (Context) CXXCtorInitializer*[1];
3063  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3064  Constructor->setCtorInitializers(initializer);
3065
3066  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3067    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3068    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3069  }
3070
3071  DelegatingCtorDecls.push_back(Constructor);
3072
3073  return false;
3074}
3075
3076bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
3077                               CXXCtorInitializer **Initializers,
3078                               unsigned NumInitializers,
3079                               bool AnyErrors) {
3080  if (Constructor->isDependentContext()) {
3081    // Just store the initializers as written, they will be checked during
3082    // instantiation.
3083    if (NumInitializers > 0) {
3084      Constructor->setNumCtorInitializers(NumInitializers);
3085      CXXCtorInitializer **baseOrMemberInitializers =
3086        new (Context) CXXCtorInitializer*[NumInitializers];
3087      memcpy(baseOrMemberInitializers, Initializers,
3088             NumInitializers * sizeof(CXXCtorInitializer*));
3089      Constructor->setCtorInitializers(baseOrMemberInitializers);
3090    }
3091
3092    // Let template instantiation know whether we had errors.
3093    if (AnyErrors)
3094      Constructor->setInvalidDecl();
3095
3096    return false;
3097  }
3098
3099  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3100
3101  // We need to build the initializer AST according to order of construction
3102  // and not what user specified in the Initializers list.
3103  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3104  if (!ClassDecl)
3105    return true;
3106
3107  bool HadError = false;
3108
3109  for (unsigned i = 0; i < NumInitializers; i++) {
3110    CXXCtorInitializer *Member = Initializers[i];
3111
3112    if (Member->isBaseInitializer())
3113      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3114    else
3115      Info.AllBaseFields[Member->getAnyMember()] = Member;
3116  }
3117
3118  // Keep track of the direct virtual bases.
3119  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3120  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3121       E = ClassDecl->bases_end(); I != E; ++I) {
3122    if (I->isVirtual())
3123      DirectVBases.insert(I);
3124  }
3125
3126  // Push virtual bases before others.
3127  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3128       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3129
3130    if (CXXCtorInitializer *Value
3131        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3132      Info.AllToInit.push_back(Value);
3133    } else if (!AnyErrors) {
3134      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3135      CXXCtorInitializer *CXXBaseInit;
3136      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3137                                       VBase, IsInheritedVirtualBase,
3138                                       CXXBaseInit)) {
3139        HadError = true;
3140        continue;
3141      }
3142
3143      Info.AllToInit.push_back(CXXBaseInit);
3144    }
3145  }
3146
3147  // Non-virtual bases.
3148  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3149       E = ClassDecl->bases_end(); Base != E; ++Base) {
3150    // Virtuals are in the virtual base list and already constructed.
3151    if (Base->isVirtual())
3152      continue;
3153
3154    if (CXXCtorInitializer *Value
3155          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3156      Info.AllToInit.push_back(Value);
3157    } else if (!AnyErrors) {
3158      CXXCtorInitializer *CXXBaseInit;
3159      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3160                                       Base, /*IsInheritedVirtualBase=*/false,
3161                                       CXXBaseInit)) {
3162        HadError = true;
3163        continue;
3164      }
3165
3166      Info.AllToInit.push_back(CXXBaseInit);
3167    }
3168  }
3169
3170  // Fields.
3171  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3172                               MemEnd = ClassDecl->decls_end();
3173       Mem != MemEnd; ++Mem) {
3174    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3175      // C++ [class.bit]p2:
3176      //   A declaration for a bit-field that omits the identifier declares an
3177      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3178      //   initialized.
3179      if (F->isUnnamedBitfield())
3180        continue;
3181
3182      // If we're not generating the implicit copy/move constructor, then we'll
3183      // handle anonymous struct/union fields based on their individual
3184      // indirect fields.
3185      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3186        continue;
3187
3188      if (CollectFieldInitializer(*this, Info, F))
3189        HadError = true;
3190      continue;
3191    }
3192
3193    // Beyond this point, we only consider default initialization.
3194    if (Info.IIK != IIK_Default)
3195      continue;
3196
3197    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3198      if (F->getType()->isIncompleteArrayType()) {
3199        assert(ClassDecl->hasFlexibleArrayMember() &&
3200               "Incomplete array type is not valid");
3201        continue;
3202      }
3203
3204      // Initialize each field of an anonymous struct individually.
3205      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3206        HadError = true;
3207
3208      continue;
3209    }
3210  }
3211
3212  NumInitializers = Info.AllToInit.size();
3213  if (NumInitializers > 0) {
3214    Constructor->setNumCtorInitializers(NumInitializers);
3215    CXXCtorInitializer **baseOrMemberInitializers =
3216      new (Context) CXXCtorInitializer*[NumInitializers];
3217    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3218           NumInitializers * sizeof(CXXCtorInitializer*));
3219    Constructor->setCtorInitializers(baseOrMemberInitializers);
3220
3221    // Constructors implicitly reference the base and member
3222    // destructors.
3223    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3224                                           Constructor->getParent());
3225  }
3226
3227  return HadError;
3228}
3229
3230static void *GetKeyForTopLevelField(FieldDecl *Field) {
3231  // For anonymous unions, use the class declaration as the key.
3232  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3233    if (RT->getDecl()->isAnonymousStructOrUnion())
3234      return static_cast<void *>(RT->getDecl());
3235  }
3236  return static_cast<void *>(Field);
3237}
3238
3239static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3240  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3241}
3242
3243static void *GetKeyForMember(ASTContext &Context,
3244                             CXXCtorInitializer *Member) {
3245  if (!Member->isAnyMemberInitializer())
3246    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3247
3248  // For fields injected into the class via declaration of an anonymous union,
3249  // use its anonymous union class declaration as the unique key.
3250  FieldDecl *Field = Member->getAnyMember();
3251
3252  // If the field is a member of an anonymous struct or union, our key
3253  // is the anonymous record decl that's a direct child of the class.
3254  RecordDecl *RD = Field->getParent();
3255  if (RD->isAnonymousStructOrUnion()) {
3256    while (true) {
3257      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3258      if (Parent->isAnonymousStructOrUnion())
3259        RD = Parent;
3260      else
3261        break;
3262    }
3263
3264    return static_cast<void *>(RD);
3265  }
3266
3267  return static_cast<void *>(Field);
3268}
3269
3270static void
3271DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3272                                  const CXXConstructorDecl *Constructor,
3273                                  CXXCtorInitializer **Inits,
3274                                  unsigned NumInits) {
3275  if (Constructor->getDeclContext()->isDependentContext())
3276    return;
3277
3278  // Don't check initializers order unless the warning is enabled at the
3279  // location of at least one initializer.
3280  bool ShouldCheckOrder = false;
3281  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3282    CXXCtorInitializer *Init = Inits[InitIndex];
3283    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3284                                         Init->getSourceLocation())
3285          != DiagnosticsEngine::Ignored) {
3286      ShouldCheckOrder = true;
3287      break;
3288    }
3289  }
3290  if (!ShouldCheckOrder)
3291    return;
3292
3293  // Build the list of bases and members in the order that they'll
3294  // actually be initialized.  The explicit initializers should be in
3295  // this same order but may be missing things.
3296  SmallVector<const void*, 32> IdealInitKeys;
3297
3298  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3299
3300  // 1. Virtual bases.
3301  for (CXXRecordDecl::base_class_const_iterator VBase =
3302       ClassDecl->vbases_begin(),
3303       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3304    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3305
3306  // 2. Non-virtual bases.
3307  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3308       E = ClassDecl->bases_end(); Base != E; ++Base) {
3309    if (Base->isVirtual())
3310      continue;
3311    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3312  }
3313
3314  // 3. Direct fields.
3315  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3316       E = ClassDecl->field_end(); Field != E; ++Field) {
3317    if (Field->isUnnamedBitfield())
3318      continue;
3319
3320    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3321  }
3322
3323  unsigned NumIdealInits = IdealInitKeys.size();
3324  unsigned IdealIndex = 0;
3325
3326  CXXCtorInitializer *PrevInit = 0;
3327  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3328    CXXCtorInitializer *Init = Inits[InitIndex];
3329    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3330
3331    // Scan forward to try to find this initializer in the idealized
3332    // initializers list.
3333    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3334      if (InitKey == IdealInitKeys[IdealIndex])
3335        break;
3336
3337    // If we didn't find this initializer, it must be because we
3338    // scanned past it on a previous iteration.  That can only
3339    // happen if we're out of order;  emit a warning.
3340    if (IdealIndex == NumIdealInits && PrevInit) {
3341      Sema::SemaDiagnosticBuilder D =
3342        SemaRef.Diag(PrevInit->getSourceLocation(),
3343                     diag::warn_initializer_out_of_order);
3344
3345      if (PrevInit->isAnyMemberInitializer())
3346        D << 0 << PrevInit->getAnyMember()->getDeclName();
3347      else
3348        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3349
3350      if (Init->isAnyMemberInitializer())
3351        D << 0 << Init->getAnyMember()->getDeclName();
3352      else
3353        D << 1 << Init->getTypeSourceInfo()->getType();
3354
3355      // Move back to the initializer's location in the ideal list.
3356      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3357        if (InitKey == IdealInitKeys[IdealIndex])
3358          break;
3359
3360      assert(IdealIndex != NumIdealInits &&
3361             "initializer not found in initializer list");
3362    }
3363
3364    PrevInit = Init;
3365  }
3366}
3367
3368namespace {
3369bool CheckRedundantInit(Sema &S,
3370                        CXXCtorInitializer *Init,
3371                        CXXCtorInitializer *&PrevInit) {
3372  if (!PrevInit) {
3373    PrevInit = Init;
3374    return false;
3375  }
3376
3377  if (FieldDecl *Field = Init->getMember())
3378    S.Diag(Init->getSourceLocation(),
3379           diag::err_multiple_mem_initialization)
3380      << Field->getDeclName()
3381      << Init->getSourceRange();
3382  else {
3383    const Type *BaseClass = Init->getBaseClass();
3384    assert(BaseClass && "neither field nor base");
3385    S.Diag(Init->getSourceLocation(),
3386           diag::err_multiple_base_initialization)
3387      << QualType(BaseClass, 0)
3388      << Init->getSourceRange();
3389  }
3390  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3391    << 0 << PrevInit->getSourceRange();
3392
3393  return true;
3394}
3395
3396typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3397typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3398
3399bool CheckRedundantUnionInit(Sema &S,
3400                             CXXCtorInitializer *Init,
3401                             RedundantUnionMap &Unions) {
3402  FieldDecl *Field = Init->getAnyMember();
3403  RecordDecl *Parent = Field->getParent();
3404  NamedDecl *Child = Field;
3405
3406  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3407    if (Parent->isUnion()) {
3408      UnionEntry &En = Unions[Parent];
3409      if (En.first && En.first != Child) {
3410        S.Diag(Init->getSourceLocation(),
3411               diag::err_multiple_mem_union_initialization)
3412          << Field->getDeclName()
3413          << Init->getSourceRange();
3414        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3415          << 0 << En.second->getSourceRange();
3416        return true;
3417      }
3418      if (!En.first) {
3419        En.first = Child;
3420        En.second = Init;
3421      }
3422      if (!Parent->isAnonymousStructOrUnion())
3423        return false;
3424    }
3425
3426    Child = Parent;
3427    Parent = cast<RecordDecl>(Parent->getDeclContext());
3428  }
3429
3430  return false;
3431}
3432}
3433
3434/// ActOnMemInitializers - Handle the member initializers for a constructor.
3435void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3436                                SourceLocation ColonLoc,
3437                                CXXCtorInitializer **meminits,
3438                                unsigned NumMemInits,
3439                                bool AnyErrors) {
3440  if (!ConstructorDecl)
3441    return;
3442
3443  AdjustDeclIfTemplate(ConstructorDecl);
3444
3445  CXXConstructorDecl *Constructor
3446    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3447
3448  if (!Constructor) {
3449    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3450    return;
3451  }
3452
3453  CXXCtorInitializer **MemInits =
3454    reinterpret_cast<CXXCtorInitializer **>(meminits);
3455
3456  // Mapping for the duplicate initializers check.
3457  // For member initializers, this is keyed with a FieldDecl*.
3458  // For base initializers, this is keyed with a Type*.
3459  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3460
3461  // Mapping for the inconsistent anonymous-union initializers check.
3462  RedundantUnionMap MemberUnions;
3463
3464  bool HadError = false;
3465  for (unsigned i = 0; i < NumMemInits; i++) {
3466    CXXCtorInitializer *Init = MemInits[i];
3467
3468    // Set the source order index.
3469    Init->setSourceOrder(i);
3470
3471    if (Init->isAnyMemberInitializer()) {
3472      FieldDecl *Field = Init->getAnyMember();
3473      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3474          CheckRedundantUnionInit(*this, Init, MemberUnions))
3475        HadError = true;
3476    } else if (Init->isBaseInitializer()) {
3477      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3478      if (CheckRedundantInit(*this, Init, Members[Key]))
3479        HadError = true;
3480    } else {
3481      assert(Init->isDelegatingInitializer());
3482      // This must be the only initializer
3483      if (NumMemInits != 1) {
3484        Diag(Init->getSourceLocation(),
3485             diag::err_delegating_initializer_alone)
3486          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3487        // We will treat this as being the only initializer.
3488      }
3489      SetDelegatingInitializer(Constructor, MemInits[i]);
3490      // Return immediately as the initializer is set.
3491      return;
3492    }
3493  }
3494
3495  if (HadError)
3496    return;
3497
3498  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3499
3500  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3501}
3502
3503void
3504Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3505                                             CXXRecordDecl *ClassDecl) {
3506  // Ignore dependent contexts. Also ignore unions, since their members never
3507  // have destructors implicitly called.
3508  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3509    return;
3510
3511  // FIXME: all the access-control diagnostics are positioned on the
3512  // field/base declaration.  That's probably good; that said, the
3513  // user might reasonably want to know why the destructor is being
3514  // emitted, and we currently don't say.
3515
3516  // Non-static data members.
3517  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3518       E = ClassDecl->field_end(); I != E; ++I) {
3519    FieldDecl *Field = *I;
3520    if (Field->isInvalidDecl())
3521      continue;
3522
3523    // Don't destroy incomplete or zero-length arrays.
3524    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3525      continue;
3526
3527    QualType FieldType = Context.getBaseElementType(Field->getType());
3528
3529    const RecordType* RT = FieldType->getAs<RecordType>();
3530    if (!RT)
3531      continue;
3532
3533    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3534    if (FieldClassDecl->isInvalidDecl())
3535      continue;
3536    if (FieldClassDecl->hasIrrelevantDestructor())
3537      continue;
3538    // The destructor for an implicit anonymous union member is never invoked.
3539    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3540      continue;
3541
3542    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3543    assert(Dtor && "No dtor found for FieldClassDecl!");
3544    CheckDestructorAccess(Field->getLocation(), Dtor,
3545                          PDiag(diag::err_access_dtor_field)
3546                            << Field->getDeclName()
3547                            << FieldType);
3548
3549    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3550    DiagnoseUseOfDecl(Dtor, Location);
3551  }
3552
3553  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3554
3555  // Bases.
3556  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3557       E = ClassDecl->bases_end(); Base != E; ++Base) {
3558    // Bases are always records in a well-formed non-dependent class.
3559    const RecordType *RT = Base->getType()->getAs<RecordType>();
3560
3561    // Remember direct virtual bases.
3562    if (Base->isVirtual())
3563      DirectVirtualBases.insert(RT);
3564
3565    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3566    // If our base class is invalid, we probably can't get its dtor anyway.
3567    if (BaseClassDecl->isInvalidDecl())
3568      continue;
3569    if (BaseClassDecl->hasIrrelevantDestructor())
3570      continue;
3571
3572    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3573    assert(Dtor && "No dtor found for BaseClassDecl!");
3574
3575    // FIXME: caret should be on the start of the class name
3576    CheckDestructorAccess(Base->getLocStart(), Dtor,
3577                          PDiag(diag::err_access_dtor_base)
3578                            << Base->getType()
3579                            << Base->getSourceRange(),
3580                          Context.getTypeDeclType(ClassDecl));
3581
3582    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3583    DiagnoseUseOfDecl(Dtor, Location);
3584  }
3585
3586  // Virtual bases.
3587  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3588       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3589
3590    // Bases are always records in a well-formed non-dependent class.
3591    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3592
3593    // Ignore direct virtual bases.
3594    if (DirectVirtualBases.count(RT))
3595      continue;
3596
3597    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3598    // If our base class is invalid, we probably can't get its dtor anyway.
3599    if (BaseClassDecl->isInvalidDecl())
3600      continue;
3601    if (BaseClassDecl->hasIrrelevantDestructor())
3602      continue;
3603
3604    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3605    assert(Dtor && "No dtor found for BaseClassDecl!");
3606    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3607                          PDiag(diag::err_access_dtor_vbase)
3608                            << VBase->getType(),
3609                          Context.getTypeDeclType(ClassDecl));
3610
3611    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3612    DiagnoseUseOfDecl(Dtor, Location);
3613  }
3614}
3615
3616void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3617  if (!CDtorDecl)
3618    return;
3619
3620  if (CXXConstructorDecl *Constructor
3621      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3622    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3623}
3624
3625bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3626                                  unsigned DiagID, AbstractDiagSelID SelID) {
3627  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3628    unsigned DiagID;
3629    AbstractDiagSelID SelID;
3630
3631  public:
3632    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3633      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3634
3635    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3636      if (Suppressed) return;
3637      if (SelID == -1)
3638        S.Diag(Loc, DiagID) << T;
3639      else
3640        S.Diag(Loc, DiagID) << SelID << T;
3641    }
3642  } Diagnoser(DiagID, SelID);
3643
3644  return RequireNonAbstractType(Loc, T, Diagnoser);
3645}
3646
3647bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3648                                  TypeDiagnoser &Diagnoser) {
3649  if (!getLangOpts().CPlusPlus)
3650    return false;
3651
3652  if (const ArrayType *AT = Context.getAsArrayType(T))
3653    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3654
3655  if (const PointerType *PT = T->getAs<PointerType>()) {
3656    // Find the innermost pointer type.
3657    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3658      PT = T;
3659
3660    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3661      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3662  }
3663
3664  const RecordType *RT = T->getAs<RecordType>();
3665  if (!RT)
3666    return false;
3667
3668  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3669
3670  // We can't answer whether something is abstract until it has a
3671  // definition.  If it's currently being defined, we'll walk back
3672  // over all the declarations when we have a full definition.
3673  const CXXRecordDecl *Def = RD->getDefinition();
3674  if (!Def || Def->isBeingDefined())
3675    return false;
3676
3677  if (!RD->isAbstract())
3678    return false;
3679
3680  Diagnoser.diagnose(*this, Loc, T);
3681  DiagnoseAbstractType(RD);
3682
3683  return true;
3684}
3685
3686void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3687  // Check if we've already emitted the list of pure virtual functions
3688  // for this class.
3689  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3690    return;
3691
3692  CXXFinalOverriderMap FinalOverriders;
3693  RD->getFinalOverriders(FinalOverriders);
3694
3695  // Keep a set of seen pure methods so we won't diagnose the same method
3696  // more than once.
3697  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3698
3699  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3700                                   MEnd = FinalOverriders.end();
3701       M != MEnd;
3702       ++M) {
3703    for (OverridingMethods::iterator SO = M->second.begin(),
3704                                  SOEnd = M->second.end();
3705         SO != SOEnd; ++SO) {
3706      // C++ [class.abstract]p4:
3707      //   A class is abstract if it contains or inherits at least one
3708      //   pure virtual function for which the final overrider is pure
3709      //   virtual.
3710
3711      //
3712      if (SO->second.size() != 1)
3713        continue;
3714
3715      if (!SO->second.front().Method->isPure())
3716        continue;
3717
3718      if (!SeenPureMethods.insert(SO->second.front().Method))
3719        continue;
3720
3721      Diag(SO->second.front().Method->getLocation(),
3722           diag::note_pure_virtual_function)
3723        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3724    }
3725  }
3726
3727  if (!PureVirtualClassDiagSet)
3728    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3729  PureVirtualClassDiagSet->insert(RD);
3730}
3731
3732namespace {
3733struct AbstractUsageInfo {
3734  Sema &S;
3735  CXXRecordDecl *Record;
3736  CanQualType AbstractType;
3737  bool Invalid;
3738
3739  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3740    : S(S), Record(Record),
3741      AbstractType(S.Context.getCanonicalType(
3742                   S.Context.getTypeDeclType(Record))),
3743      Invalid(false) {}
3744
3745  void DiagnoseAbstractType() {
3746    if (Invalid) return;
3747    S.DiagnoseAbstractType(Record);
3748    Invalid = true;
3749  }
3750
3751  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3752};
3753
3754struct CheckAbstractUsage {
3755  AbstractUsageInfo &Info;
3756  const NamedDecl *Ctx;
3757
3758  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3759    : Info(Info), Ctx(Ctx) {}
3760
3761  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3762    switch (TL.getTypeLocClass()) {
3763#define ABSTRACT_TYPELOC(CLASS, PARENT)
3764#define TYPELOC(CLASS, PARENT) \
3765    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3766#include "clang/AST/TypeLocNodes.def"
3767    }
3768  }
3769
3770  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3771    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3772    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3773      if (!TL.getArg(I))
3774        continue;
3775
3776      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3777      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3778    }
3779  }
3780
3781  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3782    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3783  }
3784
3785  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3786    // Visit the type parameters from a permissive context.
3787    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3788      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3789      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3790        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3791          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3792      // TODO: other template argument types?
3793    }
3794  }
3795
3796  // Visit pointee types from a permissive context.
3797#define CheckPolymorphic(Type) \
3798  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3799    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3800  }
3801  CheckPolymorphic(PointerTypeLoc)
3802  CheckPolymorphic(ReferenceTypeLoc)
3803  CheckPolymorphic(MemberPointerTypeLoc)
3804  CheckPolymorphic(BlockPointerTypeLoc)
3805  CheckPolymorphic(AtomicTypeLoc)
3806
3807  /// Handle all the types we haven't given a more specific
3808  /// implementation for above.
3809  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3810    // Every other kind of type that we haven't called out already
3811    // that has an inner type is either (1) sugar or (2) contains that
3812    // inner type in some way as a subobject.
3813    if (TypeLoc Next = TL.getNextTypeLoc())
3814      return Visit(Next, Sel);
3815
3816    // If there's no inner type and we're in a permissive context,
3817    // don't diagnose.
3818    if (Sel == Sema::AbstractNone) return;
3819
3820    // Check whether the type matches the abstract type.
3821    QualType T = TL.getType();
3822    if (T->isArrayType()) {
3823      Sel = Sema::AbstractArrayType;
3824      T = Info.S.Context.getBaseElementType(T);
3825    }
3826    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3827    if (CT != Info.AbstractType) return;
3828
3829    // It matched; do some magic.
3830    if (Sel == Sema::AbstractArrayType) {
3831      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3832        << T << TL.getSourceRange();
3833    } else {
3834      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3835        << Sel << T << TL.getSourceRange();
3836    }
3837    Info.DiagnoseAbstractType();
3838  }
3839};
3840
3841void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3842                                  Sema::AbstractDiagSelID Sel) {
3843  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3844}
3845
3846}
3847
3848/// Check for invalid uses of an abstract type in a method declaration.
3849static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3850                                    CXXMethodDecl *MD) {
3851  // No need to do the check on definitions, which require that
3852  // the return/param types be complete.
3853  if (MD->doesThisDeclarationHaveABody())
3854    return;
3855
3856  // For safety's sake, just ignore it if we don't have type source
3857  // information.  This should never happen for non-implicit methods,
3858  // but...
3859  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3860    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3861}
3862
3863/// Check for invalid uses of an abstract type within a class definition.
3864static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3865                                    CXXRecordDecl *RD) {
3866  for (CXXRecordDecl::decl_iterator
3867         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3868    Decl *D = *I;
3869    if (D->isImplicit()) continue;
3870
3871    // Methods and method templates.
3872    if (isa<CXXMethodDecl>(D)) {
3873      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3874    } else if (isa<FunctionTemplateDecl>(D)) {
3875      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3876      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3877
3878    // Fields and static variables.
3879    } else if (isa<FieldDecl>(D)) {
3880      FieldDecl *FD = cast<FieldDecl>(D);
3881      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3882        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3883    } else if (isa<VarDecl>(D)) {
3884      VarDecl *VD = cast<VarDecl>(D);
3885      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3886        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3887
3888    // Nested classes and class templates.
3889    } else if (isa<CXXRecordDecl>(D)) {
3890      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3891    } else if (isa<ClassTemplateDecl>(D)) {
3892      CheckAbstractClassUsage(Info,
3893                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3894    }
3895  }
3896}
3897
3898/// \brief Perform semantic checks on a class definition that has been
3899/// completing, introducing implicitly-declared members, checking for
3900/// abstract types, etc.
3901void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3902  if (!Record)
3903    return;
3904
3905  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3906    AbstractUsageInfo Info(*this, Record);
3907    CheckAbstractClassUsage(Info, Record);
3908  }
3909
3910  // If this is not an aggregate type and has no user-declared constructor,
3911  // complain about any non-static data members of reference or const scalar
3912  // type, since they will never get initializers.
3913  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3914      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3915      !Record->isLambda()) {
3916    bool Complained = false;
3917    for (RecordDecl::field_iterator F = Record->field_begin(),
3918                                 FEnd = Record->field_end();
3919         F != FEnd; ++F) {
3920      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3921        continue;
3922
3923      if (F->getType()->isReferenceType() ||
3924          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3925        if (!Complained) {
3926          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3927            << Record->getTagKind() << Record;
3928          Complained = true;
3929        }
3930
3931        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3932          << F->getType()->isReferenceType()
3933          << F->getDeclName();
3934      }
3935    }
3936  }
3937
3938  if (Record->isDynamicClass() && !Record->isDependentType())
3939    DynamicClasses.push_back(Record);
3940
3941  if (Record->getIdentifier()) {
3942    // C++ [class.mem]p13:
3943    //   If T is the name of a class, then each of the following shall have a
3944    //   name different from T:
3945    //     - every member of every anonymous union that is a member of class T.
3946    //
3947    // C++ [class.mem]p14:
3948    //   In addition, if class T has a user-declared constructor (12.1), every
3949    //   non-static data member of class T shall have a name different from T.
3950    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3951         R.first != R.second; ++R.first) {
3952      NamedDecl *D = *R.first;
3953      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3954          isa<IndirectFieldDecl>(D)) {
3955        Diag(D->getLocation(), diag::err_member_name_of_class)
3956          << D->getDeclName();
3957        break;
3958      }
3959    }
3960  }
3961
3962  // Warn if the class has virtual methods but non-virtual public destructor.
3963  if (Record->isPolymorphic() && !Record->isDependentType()) {
3964    CXXDestructorDecl *dtor = Record->getDestructor();
3965    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3966      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3967           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3968  }
3969
3970  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
3971    Diag(Record->getLocation(), diag::warn_abstract_final_class);
3972    DiagnoseAbstractType(Record);
3973  }
3974
3975  // See if a method overloads virtual methods in a base
3976  /// class without overriding any.
3977  if (!Record->isDependentType()) {
3978    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3979                                     MEnd = Record->method_end();
3980         M != MEnd; ++M) {
3981      if (!M->isStatic())
3982        DiagnoseHiddenVirtualMethods(Record, *M);
3983    }
3984  }
3985
3986  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3987  // function that is not a constructor declares that member function to be
3988  // const. [...] The class of which that function is a member shall be
3989  // a literal type.
3990  //
3991  // If the class has virtual bases, any constexpr members will already have
3992  // been diagnosed by the checks performed on the member declaration, so
3993  // suppress this (less useful) diagnostic.
3994  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3995      !Record->isLiteral() && !Record->getNumVBases()) {
3996    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3997                                     MEnd = Record->method_end();
3998         M != MEnd; ++M) {
3999      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4000        switch (Record->getTemplateSpecializationKind()) {
4001        case TSK_ImplicitInstantiation:
4002        case TSK_ExplicitInstantiationDeclaration:
4003        case TSK_ExplicitInstantiationDefinition:
4004          // If a template instantiates to a non-literal type, but its members
4005          // instantiate to constexpr functions, the template is technically
4006          // ill-formed, but we allow it for sanity.
4007          continue;
4008
4009        case TSK_Undeclared:
4010        case TSK_ExplicitSpecialization:
4011          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4012                             diag::err_constexpr_method_non_literal);
4013          break;
4014        }
4015
4016        // Only produce one error per class.
4017        break;
4018      }
4019    }
4020  }
4021
4022  // Declare inherited constructors. We do this eagerly here because:
4023  // - The standard requires an eager diagnostic for conflicting inherited
4024  //   constructors from different classes.
4025  // - The lazy declaration of the other implicit constructors is so as to not
4026  //   waste space and performance on classes that are not meant to be
4027  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4028  //   have inherited constructors.
4029  DeclareInheritedConstructors(Record);
4030}
4031
4032void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
4033  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
4034                                      ME = Record->method_end();
4035       MI != ME; ++MI)
4036    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
4037      CheckExplicitlyDefaultedSpecialMember(*MI);
4038}
4039
4040/// Is the special member function which would be selected to perform the
4041/// specified operation on the specified class type a constexpr constructor?
4042static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4043                                     Sema::CXXSpecialMember CSM,
4044                                     bool ConstArg) {
4045  Sema::SpecialMemberOverloadResult *SMOR =
4046      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4047                            false, false, false, false);
4048  if (!SMOR || !SMOR->getMethod())
4049    // A constructor we wouldn't select can't be "involved in initializing"
4050    // anything.
4051    return true;
4052  return SMOR->getMethod()->isConstexpr();
4053}
4054
4055/// Determine whether the specified special member function would be constexpr
4056/// if it were implicitly defined.
4057static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4058                                              Sema::CXXSpecialMember CSM,
4059                                              bool ConstArg) {
4060  if (!S.getLangOpts().CPlusPlus0x)
4061    return false;
4062
4063  // C++11 [dcl.constexpr]p4:
4064  // In the definition of a constexpr constructor [...]
4065  switch (CSM) {
4066  case Sema::CXXDefaultConstructor:
4067    // Since default constructor lookup is essentially trivial (and cannot
4068    // involve, for instance, template instantiation), we compute whether a
4069    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4070    //
4071    // This is important for performance; we need to know whether the default
4072    // constructor is constexpr to determine whether the type is a literal type.
4073    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4074
4075  case Sema::CXXCopyConstructor:
4076  case Sema::CXXMoveConstructor:
4077    // For copy or move constructors, we need to perform overload resolution.
4078    break;
4079
4080  case Sema::CXXCopyAssignment:
4081  case Sema::CXXMoveAssignment:
4082  case Sema::CXXDestructor:
4083  case Sema::CXXInvalid:
4084    return false;
4085  }
4086
4087  //   -- if the class is a non-empty union, or for each non-empty anonymous
4088  //      union member of a non-union class, exactly one non-static data member
4089  //      shall be initialized; [DR1359]
4090  //
4091  // If we squint, this is guaranteed, since exactly one non-static data member
4092  // will be initialized (if the constructor isn't deleted), we just don't know
4093  // which one.
4094  if (ClassDecl->isUnion())
4095    return true;
4096
4097  //   -- the class shall not have any virtual base classes;
4098  if (ClassDecl->getNumVBases())
4099    return false;
4100
4101  //   -- every constructor involved in initializing [...] base class
4102  //      sub-objects shall be a constexpr constructor;
4103  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4104                                       BEnd = ClassDecl->bases_end();
4105       B != BEnd; ++B) {
4106    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4107    if (!BaseType) continue;
4108
4109    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4110    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4111      return false;
4112  }
4113
4114  //   -- every constructor involved in initializing non-static data members
4115  //      [...] shall be a constexpr constructor;
4116  //   -- every non-static data member and base class sub-object shall be
4117  //      initialized
4118  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4119                               FEnd = ClassDecl->field_end();
4120       F != FEnd; ++F) {
4121    if (F->isInvalidDecl())
4122      continue;
4123    if (const RecordType *RecordTy =
4124            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4125      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4126      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4127        return false;
4128    }
4129  }
4130
4131  // All OK, it's constexpr!
4132  return true;
4133}
4134
4135static Sema::ImplicitExceptionSpecification
4136computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4137  switch (S.getSpecialMember(MD)) {
4138  case Sema::CXXDefaultConstructor:
4139    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4140  case Sema::CXXCopyConstructor:
4141    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4142  case Sema::CXXCopyAssignment:
4143    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4144  case Sema::CXXMoveConstructor:
4145    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4146  case Sema::CXXMoveAssignment:
4147    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4148  case Sema::CXXDestructor:
4149    return S.ComputeDefaultedDtorExceptionSpec(MD);
4150  case Sema::CXXInvalid:
4151    break;
4152  }
4153  llvm_unreachable("only special members have implicit exception specs");
4154}
4155
4156static void
4157updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4158                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4159  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4160  ExceptSpec.getEPI(EPI);
4161  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4162    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4163                              FPT->getNumArgs(), EPI));
4164  FD->setType(QualType(NewFPT, 0));
4165}
4166
4167void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4168  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4169  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4170    return;
4171
4172  // Evaluate the exception specification.
4173  ImplicitExceptionSpecification ExceptSpec =
4174      computeImplicitExceptionSpec(*this, Loc, MD);
4175
4176  // Update the type of the special member to use it.
4177  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4178
4179  // A user-provided destructor can be defined outside the class. When that
4180  // happens, be sure to update the exception specification on both
4181  // declarations.
4182  const FunctionProtoType *CanonicalFPT =
4183    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4184  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4185    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4186                        CanonicalFPT, ExceptSpec);
4187}
4188
4189static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4190static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4191
4192void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4193  CXXRecordDecl *RD = MD->getParent();
4194  CXXSpecialMember CSM = getSpecialMember(MD);
4195
4196  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4197         "not an explicitly-defaulted special member");
4198
4199  // Whether this was the first-declared instance of the constructor.
4200  // This affects whether we implicitly add an exception spec and constexpr.
4201  bool First = MD == MD->getCanonicalDecl();
4202
4203  bool HadError = false;
4204
4205  // C++11 [dcl.fct.def.default]p1:
4206  //   A function that is explicitly defaulted shall
4207  //     -- be a special member function (checked elsewhere),
4208  //     -- have the same type (except for ref-qualifiers, and except that a
4209  //        copy operation can take a non-const reference) as an implicit
4210  //        declaration, and
4211  //     -- not have default arguments.
4212  unsigned ExpectedParams = 1;
4213  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4214    ExpectedParams = 0;
4215  if (MD->getNumParams() != ExpectedParams) {
4216    // This also checks for default arguments: a copy or move constructor with a
4217    // default argument is classified as a default constructor, and assignment
4218    // operations and destructors can't have default arguments.
4219    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4220      << CSM << MD->getSourceRange();
4221    HadError = true;
4222  }
4223
4224  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4225
4226  // Compute argument constness, constexpr, and triviality.
4227  bool CanHaveConstParam = false;
4228  bool Trivial = false;
4229  switch (CSM) {
4230  case CXXDefaultConstructor:
4231    Trivial = RD->hasTrivialDefaultConstructor();
4232    break;
4233  case CXXCopyConstructor:
4234    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4235    Trivial = RD->hasTrivialCopyConstructor();
4236    break;
4237  case CXXCopyAssignment:
4238    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4239    Trivial = RD->hasTrivialCopyAssignment();
4240    break;
4241  case CXXMoveConstructor:
4242    Trivial = RD->hasTrivialMoveConstructor();
4243    break;
4244  case CXXMoveAssignment:
4245    Trivial = RD->hasTrivialMoveAssignment();
4246    break;
4247  case CXXDestructor:
4248    Trivial = RD->hasTrivialDestructor();
4249    break;
4250  case CXXInvalid:
4251    llvm_unreachable("non-special member explicitly defaulted!");
4252  }
4253
4254  QualType ReturnType = Context.VoidTy;
4255  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4256    // Check for return type matching.
4257    ReturnType = Type->getResultType();
4258    QualType ExpectedReturnType =
4259        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4260    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4261      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4262        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4263      HadError = true;
4264    }
4265
4266    // A defaulted special member cannot have cv-qualifiers.
4267    if (Type->getTypeQuals()) {
4268      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4269        << (CSM == CXXMoveAssignment);
4270      HadError = true;
4271    }
4272  }
4273
4274  // Check for parameter type matching.
4275  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4276  bool HasConstParam = false;
4277  if (ExpectedParams && ArgType->isReferenceType()) {
4278    // Argument must be reference to possibly-const T.
4279    QualType ReferentType = ArgType->getPointeeType();
4280    HasConstParam = ReferentType.isConstQualified();
4281
4282    if (ReferentType.isVolatileQualified()) {
4283      Diag(MD->getLocation(),
4284           diag::err_defaulted_special_member_volatile_param) << CSM;
4285      HadError = true;
4286    }
4287
4288    if (HasConstParam && !CanHaveConstParam) {
4289      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4290        Diag(MD->getLocation(),
4291             diag::err_defaulted_special_member_copy_const_param)
4292          << (CSM == CXXCopyAssignment);
4293        // FIXME: Explain why this special member can't be const.
4294      } else {
4295        Diag(MD->getLocation(),
4296             diag::err_defaulted_special_member_move_const_param)
4297          << (CSM == CXXMoveAssignment);
4298      }
4299      HadError = true;
4300    }
4301
4302    // If a function is explicitly defaulted on its first declaration, it shall
4303    // have the same parameter type as if it had been implicitly declared.
4304    // (Presumably this is to prevent it from being trivial?)
4305    if (!HasConstParam && CanHaveConstParam && First)
4306      Diag(MD->getLocation(),
4307           diag::err_defaulted_special_member_copy_non_const_param)
4308        << (CSM == CXXCopyAssignment);
4309  } else if (ExpectedParams) {
4310    // A copy assignment operator can take its argument by value, but a
4311    // defaulted one cannot.
4312    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4313    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4314    HadError = true;
4315  }
4316
4317  // Rebuild the type with the implicit exception specification added, if we
4318  // are going to need it.
4319  const FunctionProtoType *ImplicitType = 0;
4320  if (First || Type->hasExceptionSpec()) {
4321    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4322    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4323    ImplicitType = cast<FunctionProtoType>(
4324      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4325  }
4326
4327  // C++11 [dcl.fct.def.default]p2:
4328  //   An explicitly-defaulted function may be declared constexpr only if it
4329  //   would have been implicitly declared as constexpr,
4330  // Do not apply this rule to members of class templates, since core issue 1358
4331  // makes such functions always instantiate to constexpr functions. For
4332  // non-constructors, this is checked elsewhere.
4333  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4334                                                     HasConstParam);
4335  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4336      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4337    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4338    // FIXME: Explain why the constructor can't be constexpr.
4339    HadError = true;
4340  }
4341  //   and may have an explicit exception-specification only if it is compatible
4342  //   with the exception-specification on the implicit declaration.
4343  if (Type->hasExceptionSpec() &&
4344      CheckEquivalentExceptionSpec(
4345        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4346        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4347    HadError = true;
4348
4349  //   If a function is explicitly defaulted on its first declaration,
4350  if (First) {
4351    //  -- it is implicitly considered to be constexpr if the implicit
4352    //     definition would be,
4353    MD->setConstexpr(Constexpr);
4354
4355    //  -- it is implicitly considered to have the same exception-specification
4356    //     as if it had been implicitly declared,
4357    MD->setType(QualType(ImplicitType, 0));
4358
4359    // Such a function is also trivial if the implicitly-declared function
4360    // would have been.
4361    MD->setTrivial(Trivial);
4362  }
4363
4364  if (ShouldDeleteSpecialMember(MD, CSM)) {
4365    if (First) {
4366      MD->setDeletedAsWritten();
4367    } else {
4368      // C++11 [dcl.fct.def.default]p4:
4369      //   [For a] user-provided explicitly-defaulted function [...] if such a
4370      //   function is implicitly defined as deleted, the program is ill-formed.
4371      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4372      HadError = true;
4373    }
4374  }
4375
4376  if (HadError)
4377    MD->setInvalidDecl();
4378}
4379
4380namespace {
4381struct SpecialMemberDeletionInfo {
4382  Sema &S;
4383  CXXMethodDecl *MD;
4384  Sema::CXXSpecialMember CSM;
4385  bool Diagnose;
4386
4387  // Properties of the special member, computed for convenience.
4388  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4389  SourceLocation Loc;
4390
4391  bool AllFieldsAreConst;
4392
4393  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4394                            Sema::CXXSpecialMember CSM, bool Diagnose)
4395    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4396      IsConstructor(false), IsAssignment(false), IsMove(false),
4397      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4398      AllFieldsAreConst(true) {
4399    switch (CSM) {
4400      case Sema::CXXDefaultConstructor:
4401      case Sema::CXXCopyConstructor:
4402        IsConstructor = true;
4403        break;
4404      case Sema::CXXMoveConstructor:
4405        IsConstructor = true;
4406        IsMove = true;
4407        break;
4408      case Sema::CXXCopyAssignment:
4409        IsAssignment = true;
4410        break;
4411      case Sema::CXXMoveAssignment:
4412        IsAssignment = true;
4413        IsMove = true;
4414        break;
4415      case Sema::CXXDestructor:
4416        break;
4417      case Sema::CXXInvalid:
4418        llvm_unreachable("invalid special member kind");
4419    }
4420
4421    if (MD->getNumParams()) {
4422      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4423      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4424    }
4425  }
4426
4427  bool inUnion() const { return MD->getParent()->isUnion(); }
4428
4429  /// Look up the corresponding special member in the given class.
4430  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4431                                              unsigned Quals) {
4432    unsigned TQ = MD->getTypeQualifiers();
4433    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4434    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4435      Quals = 0;
4436    return S.LookupSpecialMember(Class, CSM,
4437                                 ConstArg || (Quals & Qualifiers::Const),
4438                                 VolatileArg || (Quals & Qualifiers::Volatile),
4439                                 MD->getRefQualifier() == RQ_RValue,
4440                                 TQ & Qualifiers::Const,
4441                                 TQ & Qualifiers::Volatile);
4442  }
4443
4444  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4445
4446  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4447  bool shouldDeleteForField(FieldDecl *FD);
4448  bool shouldDeleteForAllConstMembers();
4449
4450  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4451                                     unsigned Quals);
4452  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4453                                    Sema::SpecialMemberOverloadResult *SMOR,
4454                                    bool IsDtorCallInCtor);
4455
4456  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4457};
4458}
4459
4460/// Is the given special member inaccessible when used on the given
4461/// sub-object.
4462bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4463                                             CXXMethodDecl *target) {
4464  /// If we're operating on a base class, the object type is the
4465  /// type of this special member.
4466  QualType objectTy;
4467  AccessSpecifier access = target->getAccess();
4468  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4469    objectTy = S.Context.getTypeDeclType(MD->getParent());
4470    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4471
4472  // If we're operating on a field, the object type is the type of the field.
4473  } else {
4474    objectTy = S.Context.getTypeDeclType(target->getParent());
4475  }
4476
4477  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4478}
4479
4480/// Check whether we should delete a special member due to the implicit
4481/// definition containing a call to a special member of a subobject.
4482bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4483    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4484    bool IsDtorCallInCtor) {
4485  CXXMethodDecl *Decl = SMOR->getMethod();
4486  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4487
4488  int DiagKind = -1;
4489
4490  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4491    DiagKind = !Decl ? 0 : 1;
4492  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4493    DiagKind = 2;
4494  else if (!isAccessible(Subobj, Decl))
4495    DiagKind = 3;
4496  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4497           !Decl->isTrivial()) {
4498    // A member of a union must have a trivial corresponding special member.
4499    // As a weird special case, a destructor call from a union's constructor
4500    // must be accessible and non-deleted, but need not be trivial. Such a
4501    // destructor is never actually called, but is semantically checked as
4502    // if it were.
4503    DiagKind = 4;
4504  }
4505
4506  if (DiagKind == -1)
4507    return false;
4508
4509  if (Diagnose) {
4510    if (Field) {
4511      S.Diag(Field->getLocation(),
4512             diag::note_deleted_special_member_class_subobject)
4513        << CSM << MD->getParent() << /*IsField*/true
4514        << Field << DiagKind << IsDtorCallInCtor;
4515    } else {
4516      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4517      S.Diag(Base->getLocStart(),
4518             diag::note_deleted_special_member_class_subobject)
4519        << CSM << MD->getParent() << /*IsField*/false
4520        << Base->getType() << DiagKind << IsDtorCallInCtor;
4521    }
4522
4523    if (DiagKind == 1)
4524      S.NoteDeletedFunction(Decl);
4525    // FIXME: Explain inaccessibility if DiagKind == 3.
4526  }
4527
4528  return true;
4529}
4530
4531/// Check whether we should delete a special member function due to having a
4532/// direct or virtual base class or non-static data member of class type M.
4533bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4534    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4535  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4536
4537  // C++11 [class.ctor]p5:
4538  // -- any direct or virtual base class, or non-static data member with no
4539  //    brace-or-equal-initializer, has class type M (or array thereof) and
4540  //    either M has no default constructor or overload resolution as applied
4541  //    to M's default constructor results in an ambiguity or in a function
4542  //    that is deleted or inaccessible
4543  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4544  // -- a direct or virtual base class B that cannot be copied/moved because
4545  //    overload resolution, as applied to B's corresponding special member,
4546  //    results in an ambiguity or a function that is deleted or inaccessible
4547  //    from the defaulted special member
4548  // C++11 [class.dtor]p5:
4549  // -- any direct or virtual base class [...] has a type with a destructor
4550  //    that is deleted or inaccessible
4551  if (!(CSM == Sema::CXXDefaultConstructor &&
4552        Field && Field->hasInClassInitializer()) &&
4553      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4554    return true;
4555
4556  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4557  // -- any direct or virtual base class or non-static data member has a
4558  //    type with a destructor that is deleted or inaccessible
4559  if (IsConstructor) {
4560    Sema::SpecialMemberOverloadResult *SMOR =
4561        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4562                              false, false, false, false, false);
4563    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4564      return true;
4565  }
4566
4567  return false;
4568}
4569
4570/// Check whether we should delete a special member function due to the class
4571/// having a particular direct or virtual base class.
4572bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4573  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4574  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4575}
4576
4577/// Check whether we should delete a special member function due to the class
4578/// having a particular non-static data member.
4579bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4580  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4581  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4582
4583  if (CSM == Sema::CXXDefaultConstructor) {
4584    // For a default constructor, all references must be initialized in-class
4585    // and, if a union, it must have a non-const member.
4586    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4587      if (Diagnose)
4588        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4589          << MD->getParent() << FD << FieldType << /*Reference*/0;
4590      return true;
4591    }
4592    // C++11 [class.ctor]p5: any non-variant non-static data member of
4593    // const-qualified type (or array thereof) with no
4594    // brace-or-equal-initializer does not have a user-provided default
4595    // constructor.
4596    if (!inUnion() && FieldType.isConstQualified() &&
4597        !FD->hasInClassInitializer() &&
4598        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4599      if (Diagnose)
4600        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4601          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4602      return true;
4603    }
4604
4605    if (inUnion() && !FieldType.isConstQualified())
4606      AllFieldsAreConst = false;
4607  } else if (CSM == Sema::CXXCopyConstructor) {
4608    // For a copy constructor, data members must not be of rvalue reference
4609    // type.
4610    if (FieldType->isRValueReferenceType()) {
4611      if (Diagnose)
4612        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4613          << MD->getParent() << FD << FieldType;
4614      return true;
4615    }
4616  } else if (IsAssignment) {
4617    // For an assignment operator, data members must not be of reference type.
4618    if (FieldType->isReferenceType()) {
4619      if (Diagnose)
4620        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4621          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4622      return true;
4623    }
4624    if (!FieldRecord && FieldType.isConstQualified()) {
4625      // C++11 [class.copy]p23:
4626      // -- a non-static data member of const non-class type (or array thereof)
4627      if (Diagnose)
4628        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4629          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4630      return true;
4631    }
4632  }
4633
4634  if (FieldRecord) {
4635    // Some additional restrictions exist on the variant members.
4636    if (!inUnion() && FieldRecord->isUnion() &&
4637        FieldRecord->isAnonymousStructOrUnion()) {
4638      bool AllVariantFieldsAreConst = true;
4639
4640      // FIXME: Handle anonymous unions declared within anonymous unions.
4641      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4642                                         UE = FieldRecord->field_end();
4643           UI != UE; ++UI) {
4644        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4645
4646        if (!UnionFieldType.isConstQualified())
4647          AllVariantFieldsAreConst = false;
4648
4649        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4650        if (UnionFieldRecord &&
4651            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4652                                          UnionFieldType.getCVRQualifiers()))
4653          return true;
4654      }
4655
4656      // At least one member in each anonymous union must be non-const
4657      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4658          FieldRecord->field_begin() != FieldRecord->field_end()) {
4659        if (Diagnose)
4660          S.Diag(FieldRecord->getLocation(),
4661                 diag::note_deleted_default_ctor_all_const)
4662            << MD->getParent() << /*anonymous union*/1;
4663        return true;
4664      }
4665
4666      // Don't check the implicit member of the anonymous union type.
4667      // This is technically non-conformant, but sanity demands it.
4668      return false;
4669    }
4670
4671    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4672                                      FieldType.getCVRQualifiers()))
4673      return true;
4674  }
4675
4676  return false;
4677}
4678
4679/// C++11 [class.ctor] p5:
4680///   A defaulted default constructor for a class X is defined as deleted if
4681/// X is a union and all of its variant members are of const-qualified type.
4682bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4683  // This is a silly definition, because it gives an empty union a deleted
4684  // default constructor. Don't do that.
4685  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4686      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4687    if (Diagnose)
4688      S.Diag(MD->getParent()->getLocation(),
4689             diag::note_deleted_default_ctor_all_const)
4690        << MD->getParent() << /*not anonymous union*/0;
4691    return true;
4692  }
4693  return false;
4694}
4695
4696/// Determine whether a defaulted special member function should be defined as
4697/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4698/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4699bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4700                                     bool Diagnose) {
4701  if (MD->isInvalidDecl())
4702    return false;
4703  CXXRecordDecl *RD = MD->getParent();
4704  assert(!RD->isDependentType() && "do deletion after instantiation");
4705  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4706    return false;
4707
4708  // C++11 [expr.lambda.prim]p19:
4709  //   The closure type associated with a lambda-expression has a
4710  //   deleted (8.4.3) default constructor and a deleted copy
4711  //   assignment operator.
4712  if (RD->isLambda() &&
4713      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4714    if (Diagnose)
4715      Diag(RD->getLocation(), diag::note_lambda_decl);
4716    return true;
4717  }
4718
4719  // For an anonymous struct or union, the copy and assignment special members
4720  // will never be used, so skip the check. For an anonymous union declared at
4721  // namespace scope, the constructor and destructor are used.
4722  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4723      RD->isAnonymousStructOrUnion())
4724    return false;
4725
4726  // C++11 [class.copy]p7, p18:
4727  //   If the class definition declares a move constructor or move assignment
4728  //   operator, an implicitly declared copy constructor or copy assignment
4729  //   operator is defined as deleted.
4730  if (MD->isImplicit() &&
4731      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4732    CXXMethodDecl *UserDeclaredMove = 0;
4733
4734    // In Microsoft mode, a user-declared move only causes the deletion of the
4735    // corresponding copy operation, not both copy operations.
4736    if (RD->hasUserDeclaredMoveConstructor() &&
4737        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4738      if (!Diagnose) return true;
4739      UserDeclaredMove = RD->getMoveConstructor();
4740      assert(UserDeclaredMove);
4741    } else if (RD->hasUserDeclaredMoveAssignment() &&
4742               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4743      if (!Diagnose) return true;
4744      UserDeclaredMove = RD->getMoveAssignmentOperator();
4745      assert(UserDeclaredMove);
4746    }
4747
4748    if (UserDeclaredMove) {
4749      Diag(UserDeclaredMove->getLocation(),
4750           diag::note_deleted_copy_user_declared_move)
4751        << (CSM == CXXCopyAssignment) << RD
4752        << UserDeclaredMove->isMoveAssignmentOperator();
4753      return true;
4754    }
4755  }
4756
4757  // Do access control from the special member function
4758  ContextRAII MethodContext(*this, MD);
4759
4760  // C++11 [class.dtor]p5:
4761  // -- for a virtual destructor, lookup of the non-array deallocation function
4762  //    results in an ambiguity or in a function that is deleted or inaccessible
4763  if (CSM == CXXDestructor && MD->isVirtual()) {
4764    FunctionDecl *OperatorDelete = 0;
4765    DeclarationName Name =
4766      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4767    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4768                                 OperatorDelete, false)) {
4769      if (Diagnose)
4770        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4771      return true;
4772    }
4773  }
4774
4775  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4776
4777  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4778                                          BE = RD->bases_end(); BI != BE; ++BI)
4779    if (!BI->isVirtual() &&
4780        SMI.shouldDeleteForBase(BI))
4781      return true;
4782
4783  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4784                                          BE = RD->vbases_end(); BI != BE; ++BI)
4785    if (SMI.shouldDeleteForBase(BI))
4786      return true;
4787
4788  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4789                                     FE = RD->field_end(); FI != FE; ++FI)
4790    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4791        SMI.shouldDeleteForField(*FI))
4792      return true;
4793
4794  if (SMI.shouldDeleteForAllConstMembers())
4795    return true;
4796
4797  return false;
4798}
4799
4800/// \brief Data used with FindHiddenVirtualMethod
4801namespace {
4802  struct FindHiddenVirtualMethodData {
4803    Sema *S;
4804    CXXMethodDecl *Method;
4805    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4806    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4807  };
4808}
4809
4810/// \brief Check whether any most overriden method from MD in Methods
4811static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
4812                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4813  if (MD->size_overridden_methods() == 0)
4814    return Methods.count(MD->getCanonicalDecl());
4815  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4816                                      E = MD->end_overridden_methods();
4817       I != E; ++I)
4818    if (CheckMostOverridenMethods(*I, Methods))
4819      return true;
4820  return false;
4821}
4822
4823/// \brief Member lookup function that determines whether a given C++
4824/// method overloads virtual methods in a base class without overriding any,
4825/// to be used with CXXRecordDecl::lookupInBases().
4826static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4827                                    CXXBasePath &Path,
4828                                    void *UserData) {
4829  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4830
4831  FindHiddenVirtualMethodData &Data
4832    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4833
4834  DeclarationName Name = Data.Method->getDeclName();
4835  assert(Name.getNameKind() == DeclarationName::Identifier);
4836
4837  bool foundSameNameMethod = false;
4838  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4839  for (Path.Decls = BaseRecord->lookup(Name);
4840       Path.Decls.first != Path.Decls.second;
4841       ++Path.Decls.first) {
4842    NamedDecl *D = *Path.Decls.first;
4843    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4844      MD = MD->getCanonicalDecl();
4845      foundSameNameMethod = true;
4846      // Interested only in hidden virtual methods.
4847      if (!MD->isVirtual())
4848        continue;
4849      // If the method we are checking overrides a method from its base
4850      // don't warn about the other overloaded methods.
4851      if (!Data.S->IsOverload(Data.Method, MD, false))
4852        return true;
4853      // Collect the overload only if its hidden.
4854      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
4855        overloadedMethods.push_back(MD);
4856    }
4857  }
4858
4859  if (foundSameNameMethod)
4860    Data.OverloadedMethods.append(overloadedMethods.begin(),
4861                                   overloadedMethods.end());
4862  return foundSameNameMethod;
4863}
4864
4865/// \brief Add the most overriden methods from MD to Methods
4866static void AddMostOverridenMethods(const CXXMethodDecl *MD,
4867                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4868  if (MD->size_overridden_methods() == 0)
4869    Methods.insert(MD->getCanonicalDecl());
4870  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4871                                      E = MD->end_overridden_methods();
4872       I != E; ++I)
4873    AddMostOverridenMethods(*I, Methods);
4874}
4875
4876/// \brief See if a method overloads virtual methods in a base class without
4877/// overriding any.
4878void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4879  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4880                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4881    return;
4882  if (!MD->getDeclName().isIdentifier())
4883    return;
4884
4885  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4886                     /*bool RecordPaths=*/false,
4887                     /*bool DetectVirtual=*/false);
4888  FindHiddenVirtualMethodData Data;
4889  Data.Method = MD;
4890  Data.S = this;
4891
4892  // Keep the base methods that were overriden or introduced in the subclass
4893  // by 'using' in a set. A base method not in this set is hidden.
4894  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4895       res.first != res.second; ++res.first) {
4896    NamedDecl *ND = *res.first;
4897    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4898      ND = shad->getTargetDecl();
4899    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
4900      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
4901  }
4902
4903  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4904      !Data.OverloadedMethods.empty()) {
4905    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4906      << MD << (Data.OverloadedMethods.size() > 1);
4907
4908    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4909      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4910      Diag(overloadedMD->getLocation(),
4911           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4912    }
4913  }
4914}
4915
4916void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4917                                             Decl *TagDecl,
4918                                             SourceLocation LBrac,
4919                                             SourceLocation RBrac,
4920                                             AttributeList *AttrList) {
4921  if (!TagDecl)
4922    return;
4923
4924  AdjustDeclIfTemplate(TagDecl);
4925
4926  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4927    if (l->getKind() != AttributeList::AT_Visibility)
4928      continue;
4929    l->setInvalid();
4930    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4931      l->getName();
4932  }
4933
4934  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4935              // strict aliasing violation!
4936              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4937              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4938
4939  CheckCompletedCXXClass(
4940                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4941}
4942
4943/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4944/// special functions, such as the default constructor, copy
4945/// constructor, or destructor, to the given C++ class (C++
4946/// [special]p1).  This routine can only be executed just before the
4947/// definition of the class is complete.
4948void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4949  if (!ClassDecl->hasUserDeclaredConstructor())
4950    ++ASTContext::NumImplicitDefaultConstructors;
4951
4952  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4953    ++ASTContext::NumImplicitCopyConstructors;
4954
4955  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4956    ++ASTContext::NumImplicitMoveConstructors;
4957
4958  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4959    ++ASTContext::NumImplicitCopyAssignmentOperators;
4960
4961    // If we have a dynamic class, then the copy assignment operator may be
4962    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4963    // it shows up in the right place in the vtable and that we diagnose
4964    // problems with the implicit exception specification.
4965    if (ClassDecl->isDynamicClass())
4966      DeclareImplicitCopyAssignment(ClassDecl);
4967  }
4968
4969  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4970    ++ASTContext::NumImplicitMoveAssignmentOperators;
4971
4972    // Likewise for the move assignment operator.
4973    if (ClassDecl->isDynamicClass())
4974      DeclareImplicitMoveAssignment(ClassDecl);
4975  }
4976
4977  if (!ClassDecl->hasUserDeclaredDestructor()) {
4978    ++ASTContext::NumImplicitDestructors;
4979
4980    // If we have a dynamic class, then the destructor may be virtual, so we
4981    // have to declare the destructor immediately. This ensures that, e.g., it
4982    // shows up in the right place in the vtable and that we diagnose problems
4983    // with the implicit exception specification.
4984    if (ClassDecl->isDynamicClass())
4985      DeclareImplicitDestructor(ClassDecl);
4986  }
4987}
4988
4989void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4990  if (!D)
4991    return;
4992
4993  int NumParamList = D->getNumTemplateParameterLists();
4994  for (int i = 0; i < NumParamList; i++) {
4995    TemplateParameterList* Params = D->getTemplateParameterList(i);
4996    for (TemplateParameterList::iterator Param = Params->begin(),
4997                                      ParamEnd = Params->end();
4998          Param != ParamEnd; ++Param) {
4999      NamedDecl *Named = cast<NamedDecl>(*Param);
5000      if (Named->getDeclName()) {
5001        S->AddDecl(Named);
5002        IdResolver.AddDecl(Named);
5003      }
5004    }
5005  }
5006}
5007
5008void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5009  if (!D)
5010    return;
5011
5012  TemplateParameterList *Params = 0;
5013  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5014    Params = Template->getTemplateParameters();
5015  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5016           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5017    Params = PartialSpec->getTemplateParameters();
5018  else
5019    return;
5020
5021  for (TemplateParameterList::iterator Param = Params->begin(),
5022                                    ParamEnd = Params->end();
5023       Param != ParamEnd; ++Param) {
5024    NamedDecl *Named = cast<NamedDecl>(*Param);
5025    if (Named->getDeclName()) {
5026      S->AddDecl(Named);
5027      IdResolver.AddDecl(Named);
5028    }
5029  }
5030}
5031
5032void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5033  if (!RecordD) return;
5034  AdjustDeclIfTemplate(RecordD);
5035  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5036  PushDeclContext(S, Record);
5037}
5038
5039void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5040  if (!RecordD) return;
5041  PopDeclContext();
5042}
5043
5044/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5045/// parsing a top-level (non-nested) C++ class, and we are now
5046/// parsing those parts of the given Method declaration that could
5047/// not be parsed earlier (C++ [class.mem]p2), such as default
5048/// arguments. This action should enter the scope of the given
5049/// Method declaration as if we had just parsed the qualified method
5050/// name. However, it should not bring the parameters into scope;
5051/// that will be performed by ActOnDelayedCXXMethodParameter.
5052void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5053}
5054
5055/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5056/// C++ method declaration. We're (re-)introducing the given
5057/// function parameter into scope for use in parsing later parts of
5058/// the method declaration. For example, we could see an
5059/// ActOnParamDefaultArgument event for this parameter.
5060void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5061  if (!ParamD)
5062    return;
5063
5064  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5065
5066  // If this parameter has an unparsed default argument, clear it out
5067  // to make way for the parsed default argument.
5068  if (Param->hasUnparsedDefaultArg())
5069    Param->setDefaultArg(0);
5070
5071  S->AddDecl(Param);
5072  if (Param->getDeclName())
5073    IdResolver.AddDecl(Param);
5074}
5075
5076/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5077/// processing the delayed method declaration for Method. The method
5078/// declaration is now considered finished. There may be a separate
5079/// ActOnStartOfFunctionDef action later (not necessarily
5080/// immediately!) for this method, if it was also defined inside the
5081/// class body.
5082void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5083  if (!MethodD)
5084    return;
5085
5086  AdjustDeclIfTemplate(MethodD);
5087
5088  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5089
5090  // Now that we have our default arguments, check the constructor
5091  // again. It could produce additional diagnostics or affect whether
5092  // the class has implicitly-declared destructors, among other
5093  // things.
5094  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5095    CheckConstructor(Constructor);
5096
5097  // Check the default arguments, which we may have added.
5098  if (!Method->isInvalidDecl())
5099    CheckCXXDefaultArguments(Method);
5100}
5101
5102/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5103/// the well-formedness of the constructor declarator @p D with type @p
5104/// R. If there are any errors in the declarator, this routine will
5105/// emit diagnostics and set the invalid bit to true.  In any case, the type
5106/// will be updated to reflect a well-formed type for the constructor and
5107/// returned.
5108QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5109                                          StorageClass &SC) {
5110  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5111
5112  // C++ [class.ctor]p3:
5113  //   A constructor shall not be virtual (10.3) or static (9.4). A
5114  //   constructor can be invoked for a const, volatile or const
5115  //   volatile object. A constructor shall not be declared const,
5116  //   volatile, or const volatile (9.3.2).
5117  if (isVirtual) {
5118    if (!D.isInvalidType())
5119      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5120        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5121        << SourceRange(D.getIdentifierLoc());
5122    D.setInvalidType();
5123  }
5124  if (SC == SC_Static) {
5125    if (!D.isInvalidType())
5126      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5127        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5128        << SourceRange(D.getIdentifierLoc());
5129    D.setInvalidType();
5130    SC = SC_None;
5131  }
5132
5133  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5134  if (FTI.TypeQuals != 0) {
5135    if (FTI.TypeQuals & Qualifiers::Const)
5136      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5137        << "const" << SourceRange(D.getIdentifierLoc());
5138    if (FTI.TypeQuals & Qualifiers::Volatile)
5139      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5140        << "volatile" << SourceRange(D.getIdentifierLoc());
5141    if (FTI.TypeQuals & Qualifiers::Restrict)
5142      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5143        << "restrict" << SourceRange(D.getIdentifierLoc());
5144    D.setInvalidType();
5145  }
5146
5147  // C++0x [class.ctor]p4:
5148  //   A constructor shall not be declared with a ref-qualifier.
5149  if (FTI.hasRefQualifier()) {
5150    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5151      << FTI.RefQualifierIsLValueRef
5152      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5153    D.setInvalidType();
5154  }
5155
5156  // Rebuild the function type "R" without any type qualifiers (in
5157  // case any of the errors above fired) and with "void" as the
5158  // return type, since constructors don't have return types.
5159  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5160  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5161    return R;
5162
5163  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5164  EPI.TypeQuals = 0;
5165  EPI.RefQualifier = RQ_None;
5166
5167  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5168                                 Proto->getNumArgs(), EPI);
5169}
5170
5171/// CheckConstructor - Checks a fully-formed constructor for
5172/// well-formedness, issuing any diagnostics required. Returns true if
5173/// the constructor declarator is invalid.
5174void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5175  CXXRecordDecl *ClassDecl
5176    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5177  if (!ClassDecl)
5178    return Constructor->setInvalidDecl();
5179
5180  // C++ [class.copy]p3:
5181  //   A declaration of a constructor for a class X is ill-formed if
5182  //   its first parameter is of type (optionally cv-qualified) X and
5183  //   either there are no other parameters or else all other
5184  //   parameters have default arguments.
5185  if (!Constructor->isInvalidDecl() &&
5186      ((Constructor->getNumParams() == 1) ||
5187       (Constructor->getNumParams() > 1 &&
5188        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5189      Constructor->getTemplateSpecializationKind()
5190                                              != TSK_ImplicitInstantiation) {
5191    QualType ParamType = Constructor->getParamDecl(0)->getType();
5192    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5193    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5194      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5195      const char *ConstRef
5196        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5197                                                        : " const &";
5198      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5199        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5200
5201      // FIXME: Rather that making the constructor invalid, we should endeavor
5202      // to fix the type.
5203      Constructor->setInvalidDecl();
5204    }
5205  }
5206}
5207
5208/// CheckDestructor - Checks a fully-formed destructor definition for
5209/// well-formedness, issuing any diagnostics required.  Returns true
5210/// on error.
5211bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5212  CXXRecordDecl *RD = Destructor->getParent();
5213
5214  if (Destructor->isVirtual()) {
5215    SourceLocation Loc;
5216
5217    if (!Destructor->isImplicit())
5218      Loc = Destructor->getLocation();
5219    else
5220      Loc = RD->getLocation();
5221
5222    // If we have a virtual destructor, look up the deallocation function
5223    FunctionDecl *OperatorDelete = 0;
5224    DeclarationName Name =
5225    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5226    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5227      return true;
5228
5229    MarkFunctionReferenced(Loc, OperatorDelete);
5230
5231    Destructor->setOperatorDelete(OperatorDelete);
5232  }
5233
5234  return false;
5235}
5236
5237static inline bool
5238FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5239  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5240          FTI.ArgInfo[0].Param &&
5241          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5242}
5243
5244/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5245/// the well-formednes of the destructor declarator @p D with type @p
5246/// R. If there are any errors in the declarator, this routine will
5247/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5248/// will be updated to reflect a well-formed type for the destructor and
5249/// returned.
5250QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5251                                         StorageClass& SC) {
5252  // C++ [class.dtor]p1:
5253  //   [...] A typedef-name that names a class is a class-name
5254  //   (7.1.3); however, a typedef-name that names a class shall not
5255  //   be used as the identifier in the declarator for a destructor
5256  //   declaration.
5257  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5258  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5259    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5260      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5261  else if (const TemplateSpecializationType *TST =
5262             DeclaratorType->getAs<TemplateSpecializationType>())
5263    if (TST->isTypeAlias())
5264      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5265        << DeclaratorType << 1;
5266
5267  // C++ [class.dtor]p2:
5268  //   A destructor is used to destroy objects of its class type. A
5269  //   destructor takes no parameters, and no return type can be
5270  //   specified for it (not even void). The address of a destructor
5271  //   shall not be taken. A destructor shall not be static. A
5272  //   destructor can be invoked for a const, volatile or const
5273  //   volatile object. A destructor shall not be declared const,
5274  //   volatile or const volatile (9.3.2).
5275  if (SC == SC_Static) {
5276    if (!D.isInvalidType())
5277      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5278        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5279        << SourceRange(D.getIdentifierLoc())
5280        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5281
5282    SC = SC_None;
5283  }
5284  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5285    // Destructors don't have return types, but the parser will
5286    // happily parse something like:
5287    //
5288    //   class X {
5289    //     float ~X();
5290    //   };
5291    //
5292    // The return type will be eliminated later.
5293    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5294      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5295      << SourceRange(D.getIdentifierLoc());
5296  }
5297
5298  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5299  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5300    if (FTI.TypeQuals & Qualifiers::Const)
5301      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5302        << "const" << SourceRange(D.getIdentifierLoc());
5303    if (FTI.TypeQuals & Qualifiers::Volatile)
5304      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5305        << "volatile" << SourceRange(D.getIdentifierLoc());
5306    if (FTI.TypeQuals & Qualifiers::Restrict)
5307      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5308        << "restrict" << SourceRange(D.getIdentifierLoc());
5309    D.setInvalidType();
5310  }
5311
5312  // C++0x [class.dtor]p2:
5313  //   A destructor shall not be declared with a ref-qualifier.
5314  if (FTI.hasRefQualifier()) {
5315    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5316      << FTI.RefQualifierIsLValueRef
5317      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5318    D.setInvalidType();
5319  }
5320
5321  // Make sure we don't have any parameters.
5322  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5323    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5324
5325    // Delete the parameters.
5326    FTI.freeArgs();
5327    D.setInvalidType();
5328  }
5329
5330  // Make sure the destructor isn't variadic.
5331  if (FTI.isVariadic) {
5332    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5333    D.setInvalidType();
5334  }
5335
5336  // Rebuild the function type "R" without any type qualifiers or
5337  // parameters (in case any of the errors above fired) and with
5338  // "void" as the return type, since destructors don't have return
5339  // types.
5340  if (!D.isInvalidType())
5341    return R;
5342
5343  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5344  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5345  EPI.Variadic = false;
5346  EPI.TypeQuals = 0;
5347  EPI.RefQualifier = RQ_None;
5348  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5349}
5350
5351/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5352/// well-formednes of the conversion function declarator @p D with
5353/// type @p R. If there are any errors in the declarator, this routine
5354/// will emit diagnostics and return true. Otherwise, it will return
5355/// false. Either way, the type @p R will be updated to reflect a
5356/// well-formed type for the conversion operator.
5357void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5358                                     StorageClass& SC) {
5359  // C++ [class.conv.fct]p1:
5360  //   Neither parameter types nor return type can be specified. The
5361  //   type of a conversion function (8.3.5) is "function taking no
5362  //   parameter returning conversion-type-id."
5363  if (SC == SC_Static) {
5364    if (!D.isInvalidType())
5365      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5366        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5367        << SourceRange(D.getIdentifierLoc());
5368    D.setInvalidType();
5369    SC = SC_None;
5370  }
5371
5372  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5373
5374  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5375    // Conversion functions don't have return types, but the parser will
5376    // happily parse something like:
5377    //
5378    //   class X {
5379    //     float operator bool();
5380    //   };
5381    //
5382    // The return type will be changed later anyway.
5383    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5384      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5385      << SourceRange(D.getIdentifierLoc());
5386    D.setInvalidType();
5387  }
5388
5389  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5390
5391  // Make sure we don't have any parameters.
5392  if (Proto->getNumArgs() > 0) {
5393    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5394
5395    // Delete the parameters.
5396    D.getFunctionTypeInfo().freeArgs();
5397    D.setInvalidType();
5398  } else if (Proto->isVariadic()) {
5399    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5400    D.setInvalidType();
5401  }
5402
5403  // Diagnose "&operator bool()" and other such nonsense.  This
5404  // is actually a gcc extension which we don't support.
5405  if (Proto->getResultType() != ConvType) {
5406    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5407      << Proto->getResultType();
5408    D.setInvalidType();
5409    ConvType = Proto->getResultType();
5410  }
5411
5412  // C++ [class.conv.fct]p4:
5413  //   The conversion-type-id shall not represent a function type nor
5414  //   an array type.
5415  if (ConvType->isArrayType()) {
5416    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5417    ConvType = Context.getPointerType(ConvType);
5418    D.setInvalidType();
5419  } else if (ConvType->isFunctionType()) {
5420    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5421    ConvType = Context.getPointerType(ConvType);
5422    D.setInvalidType();
5423  }
5424
5425  // Rebuild the function type "R" without any parameters (in case any
5426  // of the errors above fired) and with the conversion type as the
5427  // return type.
5428  if (D.isInvalidType())
5429    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5430
5431  // C++0x explicit conversion operators.
5432  if (D.getDeclSpec().isExplicitSpecified())
5433    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5434         getLangOpts().CPlusPlus0x ?
5435           diag::warn_cxx98_compat_explicit_conversion_functions :
5436           diag::ext_explicit_conversion_functions)
5437      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5438}
5439
5440/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5441/// the declaration of the given C++ conversion function. This routine
5442/// is responsible for recording the conversion function in the C++
5443/// class, if possible.
5444Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5445  assert(Conversion && "Expected to receive a conversion function declaration");
5446
5447  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5448
5449  // Make sure we aren't redeclaring the conversion function.
5450  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5451
5452  // C++ [class.conv.fct]p1:
5453  //   [...] A conversion function is never used to convert a
5454  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5455  //   same object type (or a reference to it), to a (possibly
5456  //   cv-qualified) base class of that type (or a reference to it),
5457  //   or to (possibly cv-qualified) void.
5458  // FIXME: Suppress this warning if the conversion function ends up being a
5459  // virtual function that overrides a virtual function in a base class.
5460  QualType ClassType
5461    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5462  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5463    ConvType = ConvTypeRef->getPointeeType();
5464  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5465      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5466    /* Suppress diagnostics for instantiations. */;
5467  else if (ConvType->isRecordType()) {
5468    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5469    if (ConvType == ClassType)
5470      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5471        << ClassType;
5472    else if (IsDerivedFrom(ClassType, ConvType))
5473      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5474        <<  ClassType << ConvType;
5475  } else if (ConvType->isVoidType()) {
5476    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5477      << ClassType << ConvType;
5478  }
5479
5480  if (FunctionTemplateDecl *ConversionTemplate
5481                                = Conversion->getDescribedFunctionTemplate())
5482    return ConversionTemplate;
5483
5484  return Conversion;
5485}
5486
5487//===----------------------------------------------------------------------===//
5488// Namespace Handling
5489//===----------------------------------------------------------------------===//
5490
5491/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
5492/// reopened.
5493static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
5494                                            SourceLocation Loc,
5495                                            IdentifierInfo *II, bool *IsInline,
5496                                            NamespaceDecl *PrevNS) {
5497  assert(*IsInline != PrevNS->isInline());
5498
5499  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
5500  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
5501  // inline namespaces, with the intention of bringing names into namespace std.
5502  //
5503  // We support this just well enough to get that case working; this is not
5504  // sufficient to support reopening namespaces as inline in general.
5505  if (*IsInline && II && II->getName().startswith("__atomic") &&
5506      S.getSourceManager().isInSystemHeader(Loc)) {
5507    // Mark all prior declarations of the namespace as inline.
5508    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
5509         NS = NS->getPreviousDecl())
5510      NS->setInline(*IsInline);
5511    // Patch up the lookup table for the containing namespace. This isn't really
5512    // correct, but it's good enough for this particular case.
5513    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
5514                                    E = PrevNS->decls_end(); I != E; ++I)
5515      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
5516        PrevNS->getParent()->makeDeclVisibleInContext(ND);
5517    return;
5518  }
5519
5520  if (PrevNS->isInline())
5521    // The user probably just forgot the 'inline', so suggest that it
5522    // be added back.
5523    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5524      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
5525  else
5526    S.Diag(Loc, diag::err_inline_namespace_mismatch)
5527      << IsInline;
5528
5529  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
5530  *IsInline = PrevNS->isInline();
5531}
5532
5533/// ActOnStartNamespaceDef - This is called at the start of a namespace
5534/// definition.
5535Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5536                                   SourceLocation InlineLoc,
5537                                   SourceLocation NamespaceLoc,
5538                                   SourceLocation IdentLoc,
5539                                   IdentifierInfo *II,
5540                                   SourceLocation LBrace,
5541                                   AttributeList *AttrList) {
5542  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5543  // For anonymous namespace, take the location of the left brace.
5544  SourceLocation Loc = II ? IdentLoc : LBrace;
5545  bool IsInline = InlineLoc.isValid();
5546  bool IsInvalid = false;
5547  bool IsStd = false;
5548  bool AddToKnown = false;
5549  Scope *DeclRegionScope = NamespcScope->getParent();
5550
5551  NamespaceDecl *PrevNS = 0;
5552  if (II) {
5553    // C++ [namespace.def]p2:
5554    //   The identifier in an original-namespace-definition shall not
5555    //   have been previously defined in the declarative region in
5556    //   which the original-namespace-definition appears. The
5557    //   identifier in an original-namespace-definition is the name of
5558    //   the namespace. Subsequently in that declarative region, it is
5559    //   treated as an original-namespace-name.
5560    //
5561    // Since namespace names are unique in their scope, and we don't
5562    // look through using directives, just look for any ordinary names.
5563
5564    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5565    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5566    Decl::IDNS_Namespace;
5567    NamedDecl *PrevDecl = 0;
5568    for (DeclContext::lookup_result R
5569         = CurContext->getRedeclContext()->lookup(II);
5570         R.first != R.second; ++R.first) {
5571      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5572        PrevDecl = *R.first;
5573        break;
5574      }
5575    }
5576
5577    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5578
5579    if (PrevNS) {
5580      // This is an extended namespace definition.
5581      if (IsInline != PrevNS->isInline())
5582        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
5583                                        &IsInline, PrevNS);
5584    } else if (PrevDecl) {
5585      // This is an invalid name redefinition.
5586      Diag(Loc, diag::err_redefinition_different_kind)
5587        << II;
5588      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5589      IsInvalid = true;
5590      // Continue on to push Namespc as current DeclContext and return it.
5591    } else if (II->isStr("std") &&
5592               CurContext->getRedeclContext()->isTranslationUnit()) {
5593      // This is the first "real" definition of the namespace "std", so update
5594      // our cache of the "std" namespace to point at this definition.
5595      PrevNS = getStdNamespace();
5596      IsStd = true;
5597      AddToKnown = !IsInline;
5598    } else {
5599      // We've seen this namespace for the first time.
5600      AddToKnown = !IsInline;
5601    }
5602  } else {
5603    // Anonymous namespaces.
5604
5605    // Determine whether the parent already has an anonymous namespace.
5606    DeclContext *Parent = CurContext->getRedeclContext();
5607    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5608      PrevNS = TU->getAnonymousNamespace();
5609    } else {
5610      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5611      PrevNS = ND->getAnonymousNamespace();
5612    }
5613
5614    if (PrevNS && IsInline != PrevNS->isInline())
5615      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
5616                                      &IsInline, PrevNS);
5617  }
5618
5619  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5620                                                 StartLoc, Loc, II, PrevNS);
5621  if (IsInvalid)
5622    Namespc->setInvalidDecl();
5623
5624  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5625
5626  // FIXME: Should we be merging attributes?
5627  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5628    PushNamespaceVisibilityAttr(Attr, Loc);
5629
5630  if (IsStd)
5631    StdNamespace = Namespc;
5632  if (AddToKnown)
5633    KnownNamespaces[Namespc] = false;
5634
5635  if (II) {
5636    PushOnScopeChains(Namespc, DeclRegionScope);
5637  } else {
5638    // Link the anonymous namespace into its parent.
5639    DeclContext *Parent = CurContext->getRedeclContext();
5640    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5641      TU->setAnonymousNamespace(Namespc);
5642    } else {
5643      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5644    }
5645
5646    CurContext->addDecl(Namespc);
5647
5648    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5649    //   behaves as if it were replaced by
5650    //     namespace unique { /* empty body */ }
5651    //     using namespace unique;
5652    //     namespace unique { namespace-body }
5653    //   where all occurrences of 'unique' in a translation unit are
5654    //   replaced by the same identifier and this identifier differs
5655    //   from all other identifiers in the entire program.
5656
5657    // We just create the namespace with an empty name and then add an
5658    // implicit using declaration, just like the standard suggests.
5659    //
5660    // CodeGen enforces the "universally unique" aspect by giving all
5661    // declarations semantically contained within an anonymous
5662    // namespace internal linkage.
5663
5664    if (!PrevNS) {
5665      UsingDirectiveDecl* UD
5666        = UsingDirectiveDecl::Create(Context, Parent,
5667                                     /* 'using' */ LBrace,
5668                                     /* 'namespace' */ SourceLocation(),
5669                                     /* qualifier */ NestedNameSpecifierLoc(),
5670                                     /* identifier */ SourceLocation(),
5671                                     Namespc,
5672                                     /* Ancestor */ Parent);
5673      UD->setImplicit();
5674      Parent->addDecl(UD);
5675    }
5676  }
5677
5678  ActOnDocumentableDecl(Namespc);
5679
5680  // Although we could have an invalid decl (i.e. the namespace name is a
5681  // redefinition), push it as current DeclContext and try to continue parsing.
5682  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5683  // for the namespace has the declarations that showed up in that particular
5684  // namespace definition.
5685  PushDeclContext(NamespcScope, Namespc);
5686  return Namespc;
5687}
5688
5689/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5690/// is a namespace alias, returns the namespace it points to.
5691static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5692  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5693    return AD->getNamespace();
5694  return dyn_cast_or_null<NamespaceDecl>(D);
5695}
5696
5697/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5698/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5699void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5700  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5701  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5702  Namespc->setRBraceLoc(RBrace);
5703  PopDeclContext();
5704  if (Namespc->hasAttr<VisibilityAttr>())
5705    PopPragmaVisibility(true, RBrace);
5706}
5707
5708CXXRecordDecl *Sema::getStdBadAlloc() const {
5709  return cast_or_null<CXXRecordDecl>(
5710                                  StdBadAlloc.get(Context.getExternalSource()));
5711}
5712
5713NamespaceDecl *Sema::getStdNamespace() const {
5714  return cast_or_null<NamespaceDecl>(
5715                                 StdNamespace.get(Context.getExternalSource()));
5716}
5717
5718/// \brief Retrieve the special "std" namespace, which may require us to
5719/// implicitly define the namespace.
5720NamespaceDecl *Sema::getOrCreateStdNamespace() {
5721  if (!StdNamespace) {
5722    // The "std" namespace has not yet been defined, so build one implicitly.
5723    StdNamespace = NamespaceDecl::Create(Context,
5724                                         Context.getTranslationUnitDecl(),
5725                                         /*Inline=*/false,
5726                                         SourceLocation(), SourceLocation(),
5727                                         &PP.getIdentifierTable().get("std"),
5728                                         /*PrevDecl=*/0);
5729    getStdNamespace()->setImplicit(true);
5730  }
5731
5732  return getStdNamespace();
5733}
5734
5735bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5736  assert(getLangOpts().CPlusPlus &&
5737         "Looking for std::initializer_list outside of C++.");
5738
5739  // We're looking for implicit instantiations of
5740  // template <typename E> class std::initializer_list.
5741
5742  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5743    return false;
5744
5745  ClassTemplateDecl *Template = 0;
5746  const TemplateArgument *Arguments = 0;
5747
5748  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5749
5750    ClassTemplateSpecializationDecl *Specialization =
5751        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5752    if (!Specialization)
5753      return false;
5754
5755    Template = Specialization->getSpecializedTemplate();
5756    Arguments = Specialization->getTemplateArgs().data();
5757  } else if (const TemplateSpecializationType *TST =
5758                 Ty->getAs<TemplateSpecializationType>()) {
5759    Template = dyn_cast_or_null<ClassTemplateDecl>(
5760        TST->getTemplateName().getAsTemplateDecl());
5761    Arguments = TST->getArgs();
5762  }
5763  if (!Template)
5764    return false;
5765
5766  if (!StdInitializerList) {
5767    // Haven't recognized std::initializer_list yet, maybe this is it.
5768    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5769    if (TemplateClass->getIdentifier() !=
5770            &PP.getIdentifierTable().get("initializer_list") ||
5771        !getStdNamespace()->InEnclosingNamespaceSetOf(
5772            TemplateClass->getDeclContext()))
5773      return false;
5774    // This is a template called std::initializer_list, but is it the right
5775    // template?
5776    TemplateParameterList *Params = Template->getTemplateParameters();
5777    if (Params->getMinRequiredArguments() != 1)
5778      return false;
5779    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5780      return false;
5781
5782    // It's the right template.
5783    StdInitializerList = Template;
5784  }
5785
5786  if (Template != StdInitializerList)
5787    return false;
5788
5789  // This is an instance of std::initializer_list. Find the argument type.
5790  if (Element)
5791    *Element = Arguments[0].getAsType();
5792  return true;
5793}
5794
5795static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5796  NamespaceDecl *Std = S.getStdNamespace();
5797  if (!Std) {
5798    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5799    return 0;
5800  }
5801
5802  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5803                      Loc, Sema::LookupOrdinaryName);
5804  if (!S.LookupQualifiedName(Result, Std)) {
5805    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5806    return 0;
5807  }
5808  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5809  if (!Template) {
5810    Result.suppressDiagnostics();
5811    // We found something weird. Complain about the first thing we found.
5812    NamedDecl *Found = *Result.begin();
5813    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5814    return 0;
5815  }
5816
5817  // We found some template called std::initializer_list. Now verify that it's
5818  // correct.
5819  TemplateParameterList *Params = Template->getTemplateParameters();
5820  if (Params->getMinRequiredArguments() != 1 ||
5821      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5822    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5823    return 0;
5824  }
5825
5826  return Template;
5827}
5828
5829QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5830  if (!StdInitializerList) {
5831    StdInitializerList = LookupStdInitializerList(*this, Loc);
5832    if (!StdInitializerList)
5833      return QualType();
5834  }
5835
5836  TemplateArgumentListInfo Args(Loc, Loc);
5837  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5838                                       Context.getTrivialTypeSourceInfo(Element,
5839                                                                        Loc)));
5840  return Context.getCanonicalType(
5841      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5842}
5843
5844bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5845  // C++ [dcl.init.list]p2:
5846  //   A constructor is an initializer-list constructor if its first parameter
5847  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5848  //   std::initializer_list<E> for some type E, and either there are no other
5849  //   parameters or else all other parameters have default arguments.
5850  if (Ctor->getNumParams() < 1 ||
5851      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5852    return false;
5853
5854  QualType ArgType = Ctor->getParamDecl(0)->getType();
5855  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5856    ArgType = RT->getPointeeType().getUnqualifiedType();
5857
5858  return isStdInitializerList(ArgType, 0);
5859}
5860
5861/// \brief Determine whether a using statement is in a context where it will be
5862/// apply in all contexts.
5863static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5864  switch (CurContext->getDeclKind()) {
5865    case Decl::TranslationUnit:
5866      return true;
5867    case Decl::LinkageSpec:
5868      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5869    default:
5870      return false;
5871  }
5872}
5873
5874namespace {
5875
5876// Callback to only accept typo corrections that are namespaces.
5877class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5878 public:
5879  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5880    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5881      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5882    }
5883    return false;
5884  }
5885};
5886
5887}
5888
5889static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5890                                       CXXScopeSpec &SS,
5891                                       SourceLocation IdentLoc,
5892                                       IdentifierInfo *Ident) {
5893  NamespaceValidatorCCC Validator;
5894  R.clear();
5895  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5896                                               R.getLookupKind(), Sc, &SS,
5897                                               Validator)) {
5898    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5899    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5900    if (DeclContext *DC = S.computeDeclContext(SS, false))
5901      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5902        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5903        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
5904                                        CorrectedStr);
5905    else
5906      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5907        << Ident << CorrectedQuotedStr
5908        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5909
5910    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5911         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5912
5913    R.addDecl(Corrected.getCorrectionDecl());
5914    return true;
5915  }
5916  return false;
5917}
5918
5919Decl *Sema::ActOnUsingDirective(Scope *S,
5920                                          SourceLocation UsingLoc,
5921                                          SourceLocation NamespcLoc,
5922                                          CXXScopeSpec &SS,
5923                                          SourceLocation IdentLoc,
5924                                          IdentifierInfo *NamespcName,
5925                                          AttributeList *AttrList) {
5926  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5927  assert(NamespcName && "Invalid NamespcName.");
5928  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5929
5930  // This can only happen along a recovery path.
5931  while (S->getFlags() & Scope::TemplateParamScope)
5932    S = S->getParent();
5933  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5934
5935  UsingDirectiveDecl *UDir = 0;
5936  NestedNameSpecifier *Qualifier = 0;
5937  if (SS.isSet())
5938    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5939
5940  // Lookup namespace name.
5941  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5942  LookupParsedName(R, S, &SS);
5943  if (R.isAmbiguous())
5944    return 0;
5945
5946  if (R.empty()) {
5947    R.clear();
5948    // Allow "using namespace std;" or "using namespace ::std;" even if
5949    // "std" hasn't been defined yet, for GCC compatibility.
5950    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5951        NamespcName->isStr("std")) {
5952      Diag(IdentLoc, diag::ext_using_undefined_std);
5953      R.addDecl(getOrCreateStdNamespace());
5954      R.resolveKind();
5955    }
5956    // Otherwise, attempt typo correction.
5957    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5958  }
5959
5960  if (!R.empty()) {
5961    NamedDecl *Named = R.getFoundDecl();
5962    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5963        && "expected namespace decl");
5964    // C++ [namespace.udir]p1:
5965    //   A using-directive specifies that the names in the nominated
5966    //   namespace can be used in the scope in which the
5967    //   using-directive appears after the using-directive. During
5968    //   unqualified name lookup (3.4.1), the names appear as if they
5969    //   were declared in the nearest enclosing namespace which
5970    //   contains both the using-directive and the nominated
5971    //   namespace. [Note: in this context, "contains" means "contains
5972    //   directly or indirectly". ]
5973
5974    // Find enclosing context containing both using-directive and
5975    // nominated namespace.
5976    NamespaceDecl *NS = getNamespaceDecl(Named);
5977    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5978    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5979      CommonAncestor = CommonAncestor->getParent();
5980
5981    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5982                                      SS.getWithLocInContext(Context),
5983                                      IdentLoc, Named, CommonAncestor);
5984
5985    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5986        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5987      Diag(IdentLoc, diag::warn_using_directive_in_header);
5988    }
5989
5990    PushUsingDirective(S, UDir);
5991  } else {
5992    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5993  }
5994
5995  // FIXME: We ignore attributes for now.
5996  return UDir;
5997}
5998
5999void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6000  // If the scope has an associated entity and the using directive is at
6001  // namespace or translation unit scope, add the UsingDirectiveDecl into
6002  // its lookup structure so qualified name lookup can find it.
6003  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6004  if (Ctx && !Ctx->isFunctionOrMethod())
6005    Ctx->addDecl(UDir);
6006  else
6007    // Otherwise, it is at block sope. The using-directives will affect lookup
6008    // only to the end of the scope.
6009    S->PushUsingDirective(UDir);
6010}
6011
6012
6013Decl *Sema::ActOnUsingDeclaration(Scope *S,
6014                                  AccessSpecifier AS,
6015                                  bool HasUsingKeyword,
6016                                  SourceLocation UsingLoc,
6017                                  CXXScopeSpec &SS,
6018                                  UnqualifiedId &Name,
6019                                  AttributeList *AttrList,
6020                                  bool IsTypeName,
6021                                  SourceLocation TypenameLoc) {
6022  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6023
6024  switch (Name.getKind()) {
6025  case UnqualifiedId::IK_ImplicitSelfParam:
6026  case UnqualifiedId::IK_Identifier:
6027  case UnqualifiedId::IK_OperatorFunctionId:
6028  case UnqualifiedId::IK_LiteralOperatorId:
6029  case UnqualifiedId::IK_ConversionFunctionId:
6030    break;
6031
6032  case UnqualifiedId::IK_ConstructorName:
6033  case UnqualifiedId::IK_ConstructorTemplateId:
6034    // C++11 inheriting constructors.
6035    Diag(Name.getLocStart(),
6036         getLangOpts().CPlusPlus0x ?
6037           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
6038           //        instead once inheriting constructors work.
6039           diag::err_using_decl_constructor_unsupported :
6040           diag::err_using_decl_constructor)
6041      << SS.getRange();
6042
6043    if (getLangOpts().CPlusPlus0x) break;
6044
6045    return 0;
6046
6047  case UnqualifiedId::IK_DestructorName:
6048    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6049      << SS.getRange();
6050    return 0;
6051
6052  case UnqualifiedId::IK_TemplateId:
6053    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6054      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6055    return 0;
6056  }
6057
6058  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6059  DeclarationName TargetName = TargetNameInfo.getName();
6060  if (!TargetName)
6061    return 0;
6062
6063  // Warn about using declarations.
6064  // TODO: store that the declaration was written without 'using' and
6065  // talk about access decls instead of using decls in the
6066  // diagnostics.
6067  if (!HasUsingKeyword) {
6068    UsingLoc = Name.getLocStart();
6069
6070    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6071      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6072  }
6073
6074  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6075      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6076    return 0;
6077
6078  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6079                                        TargetNameInfo, AttrList,
6080                                        /* IsInstantiation */ false,
6081                                        IsTypeName, TypenameLoc);
6082  if (UD)
6083    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6084
6085  return UD;
6086}
6087
6088/// \brief Determine whether a using declaration considers the given
6089/// declarations as "equivalent", e.g., if they are redeclarations of
6090/// the same entity or are both typedefs of the same type.
6091static bool
6092IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6093                         bool &SuppressRedeclaration) {
6094  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6095    SuppressRedeclaration = false;
6096    return true;
6097  }
6098
6099  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6100    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6101      SuppressRedeclaration = true;
6102      return Context.hasSameType(TD1->getUnderlyingType(),
6103                                 TD2->getUnderlyingType());
6104    }
6105
6106  return false;
6107}
6108
6109
6110/// Determines whether to create a using shadow decl for a particular
6111/// decl, given the set of decls existing prior to this using lookup.
6112bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6113                                const LookupResult &Previous) {
6114  // Diagnose finding a decl which is not from a base class of the
6115  // current class.  We do this now because there are cases where this
6116  // function will silently decide not to build a shadow decl, which
6117  // will pre-empt further diagnostics.
6118  //
6119  // We don't need to do this in C++0x because we do the check once on
6120  // the qualifier.
6121  //
6122  // FIXME: diagnose the following if we care enough:
6123  //   struct A { int foo; };
6124  //   struct B : A { using A::foo; };
6125  //   template <class T> struct C : A {};
6126  //   template <class T> struct D : C<T> { using B::foo; } // <---
6127  // This is invalid (during instantiation) in C++03 because B::foo
6128  // resolves to the using decl in B, which is not a base class of D<T>.
6129  // We can't diagnose it immediately because C<T> is an unknown
6130  // specialization.  The UsingShadowDecl in D<T> then points directly
6131  // to A::foo, which will look well-formed when we instantiate.
6132  // The right solution is to not collapse the shadow-decl chain.
6133  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6134    DeclContext *OrigDC = Orig->getDeclContext();
6135
6136    // Handle enums and anonymous structs.
6137    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6138    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6139    while (OrigRec->isAnonymousStructOrUnion())
6140      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6141
6142    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6143      if (OrigDC == CurContext) {
6144        Diag(Using->getLocation(),
6145             diag::err_using_decl_nested_name_specifier_is_current_class)
6146          << Using->getQualifierLoc().getSourceRange();
6147        Diag(Orig->getLocation(), diag::note_using_decl_target);
6148        return true;
6149      }
6150
6151      Diag(Using->getQualifierLoc().getBeginLoc(),
6152           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6153        << Using->getQualifier()
6154        << cast<CXXRecordDecl>(CurContext)
6155        << Using->getQualifierLoc().getSourceRange();
6156      Diag(Orig->getLocation(), diag::note_using_decl_target);
6157      return true;
6158    }
6159  }
6160
6161  if (Previous.empty()) return false;
6162
6163  NamedDecl *Target = Orig;
6164  if (isa<UsingShadowDecl>(Target))
6165    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6166
6167  // If the target happens to be one of the previous declarations, we
6168  // don't have a conflict.
6169  //
6170  // FIXME: but we might be increasing its access, in which case we
6171  // should redeclare it.
6172  NamedDecl *NonTag = 0, *Tag = 0;
6173  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6174         I != E; ++I) {
6175    NamedDecl *D = (*I)->getUnderlyingDecl();
6176    bool Result;
6177    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6178      return Result;
6179
6180    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6181  }
6182
6183  if (Target->isFunctionOrFunctionTemplate()) {
6184    FunctionDecl *FD;
6185    if (isa<FunctionTemplateDecl>(Target))
6186      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6187    else
6188      FD = cast<FunctionDecl>(Target);
6189
6190    NamedDecl *OldDecl = 0;
6191    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6192    case Ovl_Overload:
6193      return false;
6194
6195    case Ovl_NonFunction:
6196      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6197      break;
6198
6199    // We found a decl with the exact signature.
6200    case Ovl_Match:
6201      // If we're in a record, we want to hide the target, so we
6202      // return true (without a diagnostic) to tell the caller not to
6203      // build a shadow decl.
6204      if (CurContext->isRecord())
6205        return true;
6206
6207      // If we're not in a record, this is an error.
6208      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6209      break;
6210    }
6211
6212    Diag(Target->getLocation(), diag::note_using_decl_target);
6213    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6214    return true;
6215  }
6216
6217  // Target is not a function.
6218
6219  if (isa<TagDecl>(Target)) {
6220    // No conflict between a tag and a non-tag.
6221    if (!Tag) return false;
6222
6223    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6224    Diag(Target->getLocation(), diag::note_using_decl_target);
6225    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6226    return true;
6227  }
6228
6229  // No conflict between a tag and a non-tag.
6230  if (!NonTag) return false;
6231
6232  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6233  Diag(Target->getLocation(), diag::note_using_decl_target);
6234  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6235  return true;
6236}
6237
6238/// Builds a shadow declaration corresponding to a 'using' declaration.
6239UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6240                                            UsingDecl *UD,
6241                                            NamedDecl *Orig) {
6242
6243  // If we resolved to another shadow declaration, just coalesce them.
6244  NamedDecl *Target = Orig;
6245  if (isa<UsingShadowDecl>(Target)) {
6246    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6247    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6248  }
6249
6250  UsingShadowDecl *Shadow
6251    = UsingShadowDecl::Create(Context, CurContext,
6252                              UD->getLocation(), UD, Target);
6253  UD->addShadowDecl(Shadow);
6254
6255  Shadow->setAccess(UD->getAccess());
6256  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6257    Shadow->setInvalidDecl();
6258
6259  if (S)
6260    PushOnScopeChains(Shadow, S);
6261  else
6262    CurContext->addDecl(Shadow);
6263
6264
6265  return Shadow;
6266}
6267
6268/// Hides a using shadow declaration.  This is required by the current
6269/// using-decl implementation when a resolvable using declaration in a
6270/// class is followed by a declaration which would hide or override
6271/// one or more of the using decl's targets; for example:
6272///
6273///   struct Base { void foo(int); };
6274///   struct Derived : Base {
6275///     using Base::foo;
6276///     void foo(int);
6277///   };
6278///
6279/// The governing language is C++03 [namespace.udecl]p12:
6280///
6281///   When a using-declaration brings names from a base class into a
6282///   derived class scope, member functions in the derived class
6283///   override and/or hide member functions with the same name and
6284///   parameter types in a base class (rather than conflicting).
6285///
6286/// There are two ways to implement this:
6287///   (1) optimistically create shadow decls when they're not hidden
6288///       by existing declarations, or
6289///   (2) don't create any shadow decls (or at least don't make them
6290///       visible) until we've fully parsed/instantiated the class.
6291/// The problem with (1) is that we might have to retroactively remove
6292/// a shadow decl, which requires several O(n) operations because the
6293/// decl structures are (very reasonably) not designed for removal.
6294/// (2) avoids this but is very fiddly and phase-dependent.
6295void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6296  if (Shadow->getDeclName().getNameKind() ==
6297        DeclarationName::CXXConversionFunctionName)
6298    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6299
6300  // Remove it from the DeclContext...
6301  Shadow->getDeclContext()->removeDecl(Shadow);
6302
6303  // ...and the scope, if applicable...
6304  if (S) {
6305    S->RemoveDecl(Shadow);
6306    IdResolver.RemoveDecl(Shadow);
6307  }
6308
6309  // ...and the using decl.
6310  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6311
6312  // TODO: complain somehow if Shadow was used.  It shouldn't
6313  // be possible for this to happen, because...?
6314}
6315
6316/// Builds a using declaration.
6317///
6318/// \param IsInstantiation - Whether this call arises from an
6319///   instantiation of an unresolved using declaration.  We treat
6320///   the lookup differently for these declarations.
6321NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6322                                       SourceLocation UsingLoc,
6323                                       CXXScopeSpec &SS,
6324                                       const DeclarationNameInfo &NameInfo,
6325                                       AttributeList *AttrList,
6326                                       bool IsInstantiation,
6327                                       bool IsTypeName,
6328                                       SourceLocation TypenameLoc) {
6329  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6330  SourceLocation IdentLoc = NameInfo.getLoc();
6331  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6332
6333  // FIXME: We ignore attributes for now.
6334
6335  if (SS.isEmpty()) {
6336    Diag(IdentLoc, diag::err_using_requires_qualname);
6337    return 0;
6338  }
6339
6340  // Do the redeclaration lookup in the current scope.
6341  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6342                        ForRedeclaration);
6343  Previous.setHideTags(false);
6344  if (S) {
6345    LookupName(Previous, S);
6346
6347    // It is really dumb that we have to do this.
6348    LookupResult::Filter F = Previous.makeFilter();
6349    while (F.hasNext()) {
6350      NamedDecl *D = F.next();
6351      if (!isDeclInScope(D, CurContext, S))
6352        F.erase();
6353    }
6354    F.done();
6355  } else {
6356    assert(IsInstantiation && "no scope in non-instantiation");
6357    assert(CurContext->isRecord() && "scope not record in instantiation");
6358    LookupQualifiedName(Previous, CurContext);
6359  }
6360
6361  // Check for invalid redeclarations.
6362  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6363    return 0;
6364
6365  // Check for bad qualifiers.
6366  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6367    return 0;
6368
6369  DeclContext *LookupContext = computeDeclContext(SS);
6370  NamedDecl *D;
6371  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6372  if (!LookupContext) {
6373    if (IsTypeName) {
6374      // FIXME: not all declaration name kinds are legal here
6375      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6376                                              UsingLoc, TypenameLoc,
6377                                              QualifierLoc,
6378                                              IdentLoc, NameInfo.getName());
6379    } else {
6380      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6381                                           QualifierLoc, NameInfo);
6382    }
6383  } else {
6384    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6385                          NameInfo, IsTypeName);
6386  }
6387  D->setAccess(AS);
6388  CurContext->addDecl(D);
6389
6390  if (!LookupContext) return D;
6391  UsingDecl *UD = cast<UsingDecl>(D);
6392
6393  if (RequireCompleteDeclContext(SS, LookupContext)) {
6394    UD->setInvalidDecl();
6395    return UD;
6396  }
6397
6398  // The normal rules do not apply to inheriting constructor declarations.
6399  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6400    if (CheckInheritingConstructorUsingDecl(UD))
6401      UD->setInvalidDecl();
6402    return UD;
6403  }
6404
6405  // Otherwise, look up the target name.
6406
6407  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6408
6409  // Unlike most lookups, we don't always want to hide tag
6410  // declarations: tag names are visible through the using declaration
6411  // even if hidden by ordinary names, *except* in a dependent context
6412  // where it's important for the sanity of two-phase lookup.
6413  if (!IsInstantiation)
6414    R.setHideTags(false);
6415
6416  // For the purposes of this lookup, we have a base object type
6417  // equal to that of the current context.
6418  if (CurContext->isRecord()) {
6419    R.setBaseObjectType(
6420                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6421  }
6422
6423  LookupQualifiedName(R, LookupContext);
6424
6425  if (R.empty()) {
6426    Diag(IdentLoc, diag::err_no_member)
6427      << NameInfo.getName() << LookupContext << SS.getRange();
6428    UD->setInvalidDecl();
6429    return UD;
6430  }
6431
6432  if (R.isAmbiguous()) {
6433    UD->setInvalidDecl();
6434    return UD;
6435  }
6436
6437  if (IsTypeName) {
6438    // If we asked for a typename and got a non-type decl, error out.
6439    if (!R.getAsSingle<TypeDecl>()) {
6440      Diag(IdentLoc, diag::err_using_typename_non_type);
6441      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6442        Diag((*I)->getUnderlyingDecl()->getLocation(),
6443             diag::note_using_decl_target);
6444      UD->setInvalidDecl();
6445      return UD;
6446    }
6447  } else {
6448    // If we asked for a non-typename and we got a type, error out,
6449    // but only if this is an instantiation of an unresolved using
6450    // decl.  Otherwise just silently find the type name.
6451    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6452      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6453      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6454      UD->setInvalidDecl();
6455      return UD;
6456    }
6457  }
6458
6459  // C++0x N2914 [namespace.udecl]p6:
6460  // A using-declaration shall not name a namespace.
6461  if (R.getAsSingle<NamespaceDecl>()) {
6462    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6463      << SS.getRange();
6464    UD->setInvalidDecl();
6465    return UD;
6466  }
6467
6468  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6469    if (!CheckUsingShadowDecl(UD, *I, Previous))
6470      BuildUsingShadowDecl(S, UD, *I);
6471  }
6472
6473  return UD;
6474}
6475
6476/// Additional checks for a using declaration referring to a constructor name.
6477bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6478  assert(!UD->isTypeName() && "expecting a constructor name");
6479
6480  const Type *SourceType = UD->getQualifier()->getAsType();
6481  assert(SourceType &&
6482         "Using decl naming constructor doesn't have type in scope spec.");
6483  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6484
6485  // Check whether the named type is a direct base class.
6486  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6487  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6488  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6489       BaseIt != BaseE; ++BaseIt) {
6490    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6491    if (CanonicalSourceType == BaseType)
6492      break;
6493    if (BaseIt->getType()->isDependentType())
6494      break;
6495  }
6496
6497  if (BaseIt == BaseE) {
6498    // Did not find SourceType in the bases.
6499    Diag(UD->getUsingLocation(),
6500         diag::err_using_decl_constructor_not_in_direct_base)
6501      << UD->getNameInfo().getSourceRange()
6502      << QualType(SourceType, 0) << TargetClass;
6503    return true;
6504  }
6505
6506  if (!CurContext->isDependentContext())
6507    BaseIt->setInheritConstructors();
6508
6509  return false;
6510}
6511
6512/// Checks that the given using declaration is not an invalid
6513/// redeclaration.  Note that this is checking only for the using decl
6514/// itself, not for any ill-formedness among the UsingShadowDecls.
6515bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6516                                       bool isTypeName,
6517                                       const CXXScopeSpec &SS,
6518                                       SourceLocation NameLoc,
6519                                       const LookupResult &Prev) {
6520  // C++03 [namespace.udecl]p8:
6521  // C++0x [namespace.udecl]p10:
6522  //   A using-declaration is a declaration and can therefore be used
6523  //   repeatedly where (and only where) multiple declarations are
6524  //   allowed.
6525  //
6526  // That's in non-member contexts.
6527  if (!CurContext->getRedeclContext()->isRecord())
6528    return false;
6529
6530  NestedNameSpecifier *Qual
6531    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6532
6533  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6534    NamedDecl *D = *I;
6535
6536    bool DTypename;
6537    NestedNameSpecifier *DQual;
6538    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6539      DTypename = UD->isTypeName();
6540      DQual = UD->getQualifier();
6541    } else if (UnresolvedUsingValueDecl *UD
6542                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6543      DTypename = false;
6544      DQual = UD->getQualifier();
6545    } else if (UnresolvedUsingTypenameDecl *UD
6546                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6547      DTypename = true;
6548      DQual = UD->getQualifier();
6549    } else continue;
6550
6551    // using decls differ if one says 'typename' and the other doesn't.
6552    // FIXME: non-dependent using decls?
6553    if (isTypeName != DTypename) continue;
6554
6555    // using decls differ if they name different scopes (but note that
6556    // template instantiation can cause this check to trigger when it
6557    // didn't before instantiation).
6558    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6559        Context.getCanonicalNestedNameSpecifier(DQual))
6560      continue;
6561
6562    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6563    Diag(D->getLocation(), diag::note_using_decl) << 1;
6564    return true;
6565  }
6566
6567  return false;
6568}
6569
6570
6571/// Checks that the given nested-name qualifier used in a using decl
6572/// in the current context is appropriately related to the current
6573/// scope.  If an error is found, diagnoses it and returns true.
6574bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6575                                   const CXXScopeSpec &SS,
6576                                   SourceLocation NameLoc) {
6577  DeclContext *NamedContext = computeDeclContext(SS);
6578
6579  if (!CurContext->isRecord()) {
6580    // C++03 [namespace.udecl]p3:
6581    // C++0x [namespace.udecl]p8:
6582    //   A using-declaration for a class member shall be a member-declaration.
6583
6584    // If we weren't able to compute a valid scope, it must be a
6585    // dependent class scope.
6586    if (!NamedContext || NamedContext->isRecord()) {
6587      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6588        << SS.getRange();
6589      return true;
6590    }
6591
6592    // Otherwise, everything is known to be fine.
6593    return false;
6594  }
6595
6596  // The current scope is a record.
6597
6598  // If the named context is dependent, we can't decide much.
6599  if (!NamedContext) {
6600    // FIXME: in C++0x, we can diagnose if we can prove that the
6601    // nested-name-specifier does not refer to a base class, which is
6602    // still possible in some cases.
6603
6604    // Otherwise we have to conservatively report that things might be
6605    // okay.
6606    return false;
6607  }
6608
6609  if (!NamedContext->isRecord()) {
6610    // Ideally this would point at the last name in the specifier,
6611    // but we don't have that level of source info.
6612    Diag(SS.getRange().getBegin(),
6613         diag::err_using_decl_nested_name_specifier_is_not_class)
6614      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6615    return true;
6616  }
6617
6618  if (!NamedContext->isDependentContext() &&
6619      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6620    return true;
6621
6622  if (getLangOpts().CPlusPlus0x) {
6623    // C++0x [namespace.udecl]p3:
6624    //   In a using-declaration used as a member-declaration, the
6625    //   nested-name-specifier shall name a base class of the class
6626    //   being defined.
6627
6628    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6629                                 cast<CXXRecordDecl>(NamedContext))) {
6630      if (CurContext == NamedContext) {
6631        Diag(NameLoc,
6632             diag::err_using_decl_nested_name_specifier_is_current_class)
6633          << SS.getRange();
6634        return true;
6635      }
6636
6637      Diag(SS.getRange().getBegin(),
6638           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6639        << (NestedNameSpecifier*) SS.getScopeRep()
6640        << cast<CXXRecordDecl>(CurContext)
6641        << SS.getRange();
6642      return true;
6643    }
6644
6645    return false;
6646  }
6647
6648  // C++03 [namespace.udecl]p4:
6649  //   A using-declaration used as a member-declaration shall refer
6650  //   to a member of a base class of the class being defined [etc.].
6651
6652  // Salient point: SS doesn't have to name a base class as long as
6653  // lookup only finds members from base classes.  Therefore we can
6654  // diagnose here only if we can prove that that can't happen,
6655  // i.e. if the class hierarchies provably don't intersect.
6656
6657  // TODO: it would be nice if "definitely valid" results were cached
6658  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6659  // need to be repeated.
6660
6661  struct UserData {
6662    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6663
6664    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6665      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6666      Data->Bases.insert(Base);
6667      return true;
6668    }
6669
6670    bool hasDependentBases(const CXXRecordDecl *Class) {
6671      return !Class->forallBases(collect, this);
6672    }
6673
6674    /// Returns true if the base is dependent or is one of the
6675    /// accumulated base classes.
6676    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6677      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6678      return !Data->Bases.count(Base);
6679    }
6680
6681    bool mightShareBases(const CXXRecordDecl *Class) {
6682      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6683    }
6684  };
6685
6686  UserData Data;
6687
6688  // Returns false if we find a dependent base.
6689  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6690    return false;
6691
6692  // Returns false if the class has a dependent base or if it or one
6693  // of its bases is present in the base set of the current context.
6694  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6695    return false;
6696
6697  Diag(SS.getRange().getBegin(),
6698       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6699    << (NestedNameSpecifier*) SS.getScopeRep()
6700    << cast<CXXRecordDecl>(CurContext)
6701    << SS.getRange();
6702
6703  return true;
6704}
6705
6706Decl *Sema::ActOnAliasDeclaration(Scope *S,
6707                                  AccessSpecifier AS,
6708                                  MultiTemplateParamsArg TemplateParamLists,
6709                                  SourceLocation UsingLoc,
6710                                  UnqualifiedId &Name,
6711                                  TypeResult Type) {
6712  // Skip up to the relevant declaration scope.
6713  while (S->getFlags() & Scope::TemplateParamScope)
6714    S = S->getParent();
6715  assert((S->getFlags() & Scope::DeclScope) &&
6716         "got alias-declaration outside of declaration scope");
6717
6718  if (Type.isInvalid())
6719    return 0;
6720
6721  bool Invalid = false;
6722  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6723  TypeSourceInfo *TInfo = 0;
6724  GetTypeFromParser(Type.get(), &TInfo);
6725
6726  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6727    return 0;
6728
6729  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6730                                      UPPC_DeclarationType)) {
6731    Invalid = true;
6732    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6733                                             TInfo->getTypeLoc().getBeginLoc());
6734  }
6735
6736  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6737  LookupName(Previous, S);
6738
6739  // Warn about shadowing the name of a template parameter.
6740  if (Previous.isSingleResult() &&
6741      Previous.getFoundDecl()->isTemplateParameter()) {
6742    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6743    Previous.clear();
6744  }
6745
6746  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6747         "name in alias declaration must be an identifier");
6748  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6749                                               Name.StartLocation,
6750                                               Name.Identifier, TInfo);
6751
6752  NewTD->setAccess(AS);
6753
6754  if (Invalid)
6755    NewTD->setInvalidDecl();
6756
6757  CheckTypedefForVariablyModifiedType(S, NewTD);
6758  Invalid |= NewTD->isInvalidDecl();
6759
6760  bool Redeclaration = false;
6761
6762  NamedDecl *NewND;
6763  if (TemplateParamLists.size()) {
6764    TypeAliasTemplateDecl *OldDecl = 0;
6765    TemplateParameterList *OldTemplateParams = 0;
6766
6767    if (TemplateParamLists.size() != 1) {
6768      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6769        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
6770         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
6771    }
6772    TemplateParameterList *TemplateParams = TemplateParamLists[0];
6773
6774    // Only consider previous declarations in the same scope.
6775    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6776                         /*ExplicitInstantiationOrSpecialization*/false);
6777    if (!Previous.empty()) {
6778      Redeclaration = true;
6779
6780      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6781      if (!OldDecl && !Invalid) {
6782        Diag(UsingLoc, diag::err_redefinition_different_kind)
6783          << Name.Identifier;
6784
6785        NamedDecl *OldD = Previous.getRepresentativeDecl();
6786        if (OldD->getLocation().isValid())
6787          Diag(OldD->getLocation(), diag::note_previous_definition);
6788
6789        Invalid = true;
6790      }
6791
6792      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6793        if (TemplateParameterListsAreEqual(TemplateParams,
6794                                           OldDecl->getTemplateParameters(),
6795                                           /*Complain=*/true,
6796                                           TPL_TemplateMatch))
6797          OldTemplateParams = OldDecl->getTemplateParameters();
6798        else
6799          Invalid = true;
6800
6801        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6802        if (!Invalid &&
6803            !Context.hasSameType(OldTD->getUnderlyingType(),
6804                                 NewTD->getUnderlyingType())) {
6805          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6806          // but we can't reasonably accept it.
6807          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6808            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6809          if (OldTD->getLocation().isValid())
6810            Diag(OldTD->getLocation(), diag::note_previous_definition);
6811          Invalid = true;
6812        }
6813      }
6814    }
6815
6816    // Merge any previous default template arguments into our parameters,
6817    // and check the parameter list.
6818    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6819                                   TPC_TypeAliasTemplate))
6820      return 0;
6821
6822    TypeAliasTemplateDecl *NewDecl =
6823      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6824                                    Name.Identifier, TemplateParams,
6825                                    NewTD);
6826
6827    NewDecl->setAccess(AS);
6828
6829    if (Invalid)
6830      NewDecl->setInvalidDecl();
6831    else if (OldDecl)
6832      NewDecl->setPreviousDeclaration(OldDecl);
6833
6834    NewND = NewDecl;
6835  } else {
6836    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6837    NewND = NewTD;
6838  }
6839
6840  if (!Redeclaration)
6841    PushOnScopeChains(NewND, S);
6842
6843  ActOnDocumentableDecl(NewND);
6844  return NewND;
6845}
6846
6847Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6848                                             SourceLocation NamespaceLoc,
6849                                             SourceLocation AliasLoc,
6850                                             IdentifierInfo *Alias,
6851                                             CXXScopeSpec &SS,
6852                                             SourceLocation IdentLoc,
6853                                             IdentifierInfo *Ident) {
6854
6855  // Lookup the namespace name.
6856  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6857  LookupParsedName(R, S, &SS);
6858
6859  // Check if we have a previous declaration with the same name.
6860  NamedDecl *PrevDecl
6861    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6862                       ForRedeclaration);
6863  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6864    PrevDecl = 0;
6865
6866  if (PrevDecl) {
6867    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6868      // We already have an alias with the same name that points to the same
6869      // namespace, so don't create a new one.
6870      // FIXME: At some point, we'll want to create the (redundant)
6871      // declaration to maintain better source information.
6872      if (!R.isAmbiguous() && !R.empty() &&
6873          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6874        return 0;
6875    }
6876
6877    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6878      diag::err_redefinition_different_kind;
6879    Diag(AliasLoc, DiagID) << Alias;
6880    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6881    return 0;
6882  }
6883
6884  if (R.isAmbiguous())
6885    return 0;
6886
6887  if (R.empty()) {
6888    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6889      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6890      return 0;
6891    }
6892  }
6893
6894  NamespaceAliasDecl *AliasDecl =
6895    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6896                               Alias, SS.getWithLocInContext(Context),
6897                               IdentLoc, R.getFoundDecl());
6898
6899  PushOnScopeChains(AliasDecl, S);
6900  return AliasDecl;
6901}
6902
6903Sema::ImplicitExceptionSpecification
6904Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6905                                               CXXMethodDecl *MD) {
6906  CXXRecordDecl *ClassDecl = MD->getParent();
6907
6908  // C++ [except.spec]p14:
6909  //   An implicitly declared special member function (Clause 12) shall have an
6910  //   exception-specification. [...]
6911  ImplicitExceptionSpecification ExceptSpec(*this);
6912  if (ClassDecl->isInvalidDecl())
6913    return ExceptSpec;
6914
6915  // Direct base-class constructors.
6916  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6917                                       BEnd = ClassDecl->bases_end();
6918       B != BEnd; ++B) {
6919    if (B->isVirtual()) // Handled below.
6920      continue;
6921
6922    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6923      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6924      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6925      // If this is a deleted function, add it anyway. This might be conformant
6926      // with the standard. This might not. I'm not sure. It might not matter.
6927      if (Constructor)
6928        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6929    }
6930  }
6931
6932  // Virtual base-class constructors.
6933  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6934                                       BEnd = ClassDecl->vbases_end();
6935       B != BEnd; ++B) {
6936    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6937      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6938      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6939      // If this is a deleted function, add it anyway. This might be conformant
6940      // with the standard. This might not. I'm not sure. It might not matter.
6941      if (Constructor)
6942        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6943    }
6944  }
6945
6946  // Field constructors.
6947  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6948                               FEnd = ClassDecl->field_end();
6949       F != FEnd; ++F) {
6950    if (F->hasInClassInitializer()) {
6951      if (Expr *E = F->getInClassInitializer())
6952        ExceptSpec.CalledExpr(E);
6953      else if (!F->isInvalidDecl())
6954        // DR1351:
6955        //   If the brace-or-equal-initializer of a non-static data member
6956        //   invokes a defaulted default constructor of its class or of an
6957        //   enclosing class in a potentially evaluated subexpression, the
6958        //   program is ill-formed.
6959        //
6960        // This resolution is unworkable: the exception specification of the
6961        // default constructor can be needed in an unevaluated context, in
6962        // particular, in the operand of a noexcept-expression, and we can be
6963        // unable to compute an exception specification for an enclosed class.
6964        //
6965        // We do not allow an in-class initializer to require the evaluation
6966        // of the exception specification for any in-class initializer whose
6967        // definition is not lexically complete.
6968        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6969    } else if (const RecordType *RecordTy
6970              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6971      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6972      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6973      // If this is a deleted function, add it anyway. This might be conformant
6974      // with the standard. This might not. I'm not sure. It might not matter.
6975      // In particular, the problem is that this function never gets called. It
6976      // might just be ill-formed because this function attempts to refer to
6977      // a deleted function here.
6978      if (Constructor)
6979        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6980    }
6981  }
6982
6983  return ExceptSpec;
6984}
6985
6986CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6987                                                     CXXRecordDecl *ClassDecl) {
6988  // C++ [class.ctor]p5:
6989  //   A default constructor for a class X is a constructor of class X
6990  //   that can be called without an argument. If there is no
6991  //   user-declared constructor for class X, a default constructor is
6992  //   implicitly declared. An implicitly-declared default constructor
6993  //   is an inline public member of its class.
6994  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6995         "Should not build implicit default constructor!");
6996
6997  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6998                                                     CXXDefaultConstructor,
6999                                                     false);
7000
7001  // Create the actual constructor declaration.
7002  CanQualType ClassType
7003    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7004  SourceLocation ClassLoc = ClassDecl->getLocation();
7005  DeclarationName Name
7006    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7007  DeclarationNameInfo NameInfo(Name, ClassLoc);
7008  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7009      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7010      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7011      Constexpr);
7012  DefaultCon->setAccess(AS_public);
7013  DefaultCon->setDefaulted();
7014  DefaultCon->setImplicit();
7015  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7016
7017  // Build an exception specification pointing back at this constructor.
7018  FunctionProtoType::ExtProtoInfo EPI;
7019  EPI.ExceptionSpecType = EST_Unevaluated;
7020  EPI.ExceptionSpecDecl = DefaultCon;
7021  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7022
7023  // Note that we have declared this constructor.
7024  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7025
7026  if (Scope *S = getScopeForContext(ClassDecl))
7027    PushOnScopeChains(DefaultCon, S, false);
7028  ClassDecl->addDecl(DefaultCon);
7029
7030  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7031    DefaultCon->setDeletedAsWritten();
7032
7033  return DefaultCon;
7034}
7035
7036void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7037                                            CXXConstructorDecl *Constructor) {
7038  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7039          !Constructor->doesThisDeclarationHaveABody() &&
7040          !Constructor->isDeleted()) &&
7041    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7042
7043  CXXRecordDecl *ClassDecl = Constructor->getParent();
7044  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7045
7046  SynthesizedFunctionScope Scope(*this, Constructor);
7047  DiagnosticErrorTrap Trap(Diags);
7048  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7049      Trap.hasErrorOccurred()) {
7050    Diag(CurrentLocation, diag::note_member_synthesized_at)
7051      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7052    Constructor->setInvalidDecl();
7053    return;
7054  }
7055
7056  SourceLocation Loc = Constructor->getLocation();
7057  Constructor->setBody(new (Context) CompoundStmt(Loc));
7058
7059  Constructor->setUsed();
7060  MarkVTableUsed(CurrentLocation, ClassDecl);
7061
7062  if (ASTMutationListener *L = getASTMutationListener()) {
7063    L->CompletedImplicitDefinition(Constructor);
7064  }
7065}
7066
7067void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7068  if (!D) return;
7069  AdjustDeclIfTemplate(D);
7070
7071  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7072
7073  if (!ClassDecl->isDependentType())
7074    CheckExplicitlyDefaultedMethods(ClassDecl);
7075}
7076
7077void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7078  // We start with an initial pass over the base classes to collect those that
7079  // inherit constructors from. If there are none, we can forgo all further
7080  // processing.
7081  typedef SmallVector<const RecordType *, 4> BasesVector;
7082  BasesVector BasesToInheritFrom;
7083  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7084                                          BaseE = ClassDecl->bases_end();
7085         BaseIt != BaseE; ++BaseIt) {
7086    if (BaseIt->getInheritConstructors()) {
7087      QualType Base = BaseIt->getType();
7088      if (Base->isDependentType()) {
7089        // If we inherit constructors from anything that is dependent, just
7090        // abort processing altogether. We'll get another chance for the
7091        // instantiations.
7092        return;
7093      }
7094      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7095    }
7096  }
7097  if (BasesToInheritFrom.empty())
7098    return;
7099
7100  // Now collect the constructors that we already have in the current class.
7101  // Those take precedence over inherited constructors.
7102  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7103  //   unless there is a user-declared constructor with the same signature in
7104  //   the class where the using-declaration appears.
7105  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7106  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7107                                    CtorE = ClassDecl->ctor_end();
7108       CtorIt != CtorE; ++CtorIt) {
7109    ExistingConstructors.insert(
7110        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7111  }
7112
7113  DeclarationName CreatedCtorName =
7114      Context.DeclarationNames.getCXXConstructorName(
7115          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7116
7117  // Now comes the true work.
7118  // First, we keep a map from constructor types to the base that introduced
7119  // them. Needed for finding conflicting constructors. We also keep the
7120  // actually inserted declarations in there, for pretty diagnostics.
7121  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7122  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7123  ConstructorToSourceMap InheritedConstructors;
7124  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7125                             BaseE = BasesToInheritFrom.end();
7126       BaseIt != BaseE; ++BaseIt) {
7127    const RecordType *Base = *BaseIt;
7128    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7129    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7130    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7131                                      CtorE = BaseDecl->ctor_end();
7132         CtorIt != CtorE; ++CtorIt) {
7133      // Find the using declaration for inheriting this base's constructors.
7134      // FIXME: Don't perform name lookup just to obtain a source location!
7135      DeclarationName Name =
7136          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7137      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7138      LookupQualifiedName(Result, CurContext);
7139      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7140      SourceLocation UsingLoc = UD ? UD->getLocation() :
7141                                     ClassDecl->getLocation();
7142
7143      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7144      //   from the class X named in the using-declaration consists of actual
7145      //   constructors and notional constructors that result from the
7146      //   transformation of defaulted parameters as follows:
7147      //   - all non-template default constructors of X, and
7148      //   - for each non-template constructor of X that has at least one
7149      //     parameter with a default argument, the set of constructors that
7150      //     results from omitting any ellipsis parameter specification and
7151      //     successively omitting parameters with a default argument from the
7152      //     end of the parameter-type-list.
7153      CXXConstructorDecl *BaseCtor = *CtorIt;
7154      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7155      const FunctionProtoType *BaseCtorType =
7156          BaseCtor->getType()->getAs<FunctionProtoType>();
7157
7158      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7159                    maxParams = BaseCtor->getNumParams();
7160           params <= maxParams; ++params) {
7161        // Skip default constructors. They're never inherited.
7162        if (params == 0)
7163          continue;
7164        // Skip copy and move constructors for the same reason.
7165        if (CanBeCopyOrMove && params == 1)
7166          continue;
7167
7168        // Build up a function type for this particular constructor.
7169        // FIXME: The working paper does not consider that the exception spec
7170        // for the inheriting constructor might be larger than that of the
7171        // source. This code doesn't yet, either. When it does, this code will
7172        // need to be delayed until after exception specifications and in-class
7173        // member initializers are attached.
7174        const Type *NewCtorType;
7175        if (params == maxParams)
7176          NewCtorType = BaseCtorType;
7177        else {
7178          SmallVector<QualType, 16> Args;
7179          for (unsigned i = 0; i < params; ++i) {
7180            Args.push_back(BaseCtorType->getArgType(i));
7181          }
7182          FunctionProtoType::ExtProtoInfo ExtInfo =
7183              BaseCtorType->getExtProtoInfo();
7184          ExtInfo.Variadic = false;
7185          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7186                                                Args.data(), params, ExtInfo)
7187                       .getTypePtr();
7188        }
7189        const Type *CanonicalNewCtorType =
7190            Context.getCanonicalType(NewCtorType);
7191
7192        // Now that we have the type, first check if the class already has a
7193        // constructor with this signature.
7194        if (ExistingConstructors.count(CanonicalNewCtorType))
7195          continue;
7196
7197        // Then we check if we have already declared an inherited constructor
7198        // with this signature.
7199        std::pair<ConstructorToSourceMap::iterator, bool> result =
7200            InheritedConstructors.insert(std::make_pair(
7201                CanonicalNewCtorType,
7202                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7203        if (!result.second) {
7204          // Already in the map. If it came from a different class, that's an
7205          // error. Not if it's from the same.
7206          CanQualType PreviousBase = result.first->second.first;
7207          if (CanonicalBase != PreviousBase) {
7208            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7209            const CXXConstructorDecl *PrevBaseCtor =
7210                PrevCtor->getInheritedConstructor();
7211            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7212
7213            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7214            Diag(BaseCtor->getLocation(),
7215                 diag::note_using_decl_constructor_conflict_current_ctor);
7216            Diag(PrevBaseCtor->getLocation(),
7217                 diag::note_using_decl_constructor_conflict_previous_ctor);
7218            Diag(PrevCtor->getLocation(),
7219                 diag::note_using_decl_constructor_conflict_previous_using);
7220          }
7221          continue;
7222        }
7223
7224        // OK, we're there, now add the constructor.
7225        // C++0x [class.inhctor]p8: [...] that would be performed by a
7226        //   user-written inline constructor [...]
7227        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7228        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7229            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7230            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7231            /*ImplicitlyDeclared=*/true,
7232            // FIXME: Due to a defect in the standard, we treat inherited
7233            // constructors as constexpr even if that makes them ill-formed.
7234            /*Constexpr=*/BaseCtor->isConstexpr());
7235        NewCtor->setAccess(BaseCtor->getAccess());
7236
7237        // Build up the parameter decls and add them.
7238        SmallVector<ParmVarDecl *, 16> ParamDecls;
7239        for (unsigned i = 0; i < params; ++i) {
7240          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7241                                                   UsingLoc, UsingLoc,
7242                                                   /*IdentifierInfo=*/0,
7243                                                   BaseCtorType->getArgType(i),
7244                                                   /*TInfo=*/0, SC_None,
7245                                                   SC_None, /*DefaultArg=*/0));
7246        }
7247        NewCtor->setParams(ParamDecls);
7248        NewCtor->setInheritedConstructor(BaseCtor);
7249
7250        ClassDecl->addDecl(NewCtor);
7251        result.first->second.second = NewCtor;
7252      }
7253    }
7254  }
7255}
7256
7257Sema::ImplicitExceptionSpecification
7258Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7259  CXXRecordDecl *ClassDecl = MD->getParent();
7260
7261  // C++ [except.spec]p14:
7262  //   An implicitly declared special member function (Clause 12) shall have
7263  //   an exception-specification.
7264  ImplicitExceptionSpecification ExceptSpec(*this);
7265  if (ClassDecl->isInvalidDecl())
7266    return ExceptSpec;
7267
7268  // Direct base-class destructors.
7269  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7270                                       BEnd = ClassDecl->bases_end();
7271       B != BEnd; ++B) {
7272    if (B->isVirtual()) // Handled below.
7273      continue;
7274
7275    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7276      ExceptSpec.CalledDecl(B->getLocStart(),
7277                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7278  }
7279
7280  // Virtual base-class destructors.
7281  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7282                                       BEnd = ClassDecl->vbases_end();
7283       B != BEnd; ++B) {
7284    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7285      ExceptSpec.CalledDecl(B->getLocStart(),
7286                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7287  }
7288
7289  // Field destructors.
7290  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7291                               FEnd = ClassDecl->field_end();
7292       F != FEnd; ++F) {
7293    if (const RecordType *RecordTy
7294        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7295      ExceptSpec.CalledDecl(F->getLocation(),
7296                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7297  }
7298
7299  return ExceptSpec;
7300}
7301
7302CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7303  // C++ [class.dtor]p2:
7304  //   If a class has no user-declared destructor, a destructor is
7305  //   declared implicitly. An implicitly-declared destructor is an
7306  //   inline public member of its class.
7307
7308  // Create the actual destructor declaration.
7309  CanQualType ClassType
7310    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7311  SourceLocation ClassLoc = ClassDecl->getLocation();
7312  DeclarationName Name
7313    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7314  DeclarationNameInfo NameInfo(Name, ClassLoc);
7315  CXXDestructorDecl *Destructor
7316      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7317                                  QualType(), 0, /*isInline=*/true,
7318                                  /*isImplicitlyDeclared=*/true);
7319  Destructor->setAccess(AS_public);
7320  Destructor->setDefaulted();
7321  Destructor->setImplicit();
7322  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7323
7324  // Build an exception specification pointing back at this destructor.
7325  FunctionProtoType::ExtProtoInfo EPI;
7326  EPI.ExceptionSpecType = EST_Unevaluated;
7327  EPI.ExceptionSpecDecl = Destructor;
7328  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7329
7330  // Note that we have declared this destructor.
7331  ++ASTContext::NumImplicitDestructorsDeclared;
7332
7333  // Introduce this destructor into its scope.
7334  if (Scope *S = getScopeForContext(ClassDecl))
7335    PushOnScopeChains(Destructor, S, false);
7336  ClassDecl->addDecl(Destructor);
7337
7338  AddOverriddenMethods(ClassDecl, Destructor);
7339
7340  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7341    Destructor->setDeletedAsWritten();
7342
7343  return Destructor;
7344}
7345
7346void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7347                                    CXXDestructorDecl *Destructor) {
7348  assert((Destructor->isDefaulted() &&
7349          !Destructor->doesThisDeclarationHaveABody() &&
7350          !Destructor->isDeleted()) &&
7351         "DefineImplicitDestructor - call it for implicit default dtor");
7352  CXXRecordDecl *ClassDecl = Destructor->getParent();
7353  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7354
7355  if (Destructor->isInvalidDecl())
7356    return;
7357
7358  SynthesizedFunctionScope Scope(*this, Destructor);
7359
7360  DiagnosticErrorTrap Trap(Diags);
7361  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7362                                         Destructor->getParent());
7363
7364  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7365    Diag(CurrentLocation, diag::note_member_synthesized_at)
7366      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7367
7368    Destructor->setInvalidDecl();
7369    return;
7370  }
7371
7372  SourceLocation Loc = Destructor->getLocation();
7373  Destructor->setBody(new (Context) CompoundStmt(Loc));
7374  Destructor->setImplicitlyDefined(true);
7375  Destructor->setUsed();
7376  MarkVTableUsed(CurrentLocation, ClassDecl);
7377
7378  if (ASTMutationListener *L = getASTMutationListener()) {
7379    L->CompletedImplicitDefinition(Destructor);
7380  }
7381}
7382
7383/// \brief Perform any semantic analysis which needs to be delayed until all
7384/// pending class member declarations have been parsed.
7385void Sema::ActOnFinishCXXMemberDecls() {
7386  // Perform any deferred checking of exception specifications for virtual
7387  // destructors.
7388  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7389       i != e; ++i) {
7390    const CXXDestructorDecl *Dtor =
7391        DelayedDestructorExceptionSpecChecks[i].first;
7392    assert(!Dtor->getParent()->isDependentType() &&
7393           "Should not ever add destructors of templates into the list.");
7394    CheckOverridingFunctionExceptionSpec(Dtor,
7395        DelayedDestructorExceptionSpecChecks[i].second);
7396  }
7397  DelayedDestructorExceptionSpecChecks.clear();
7398}
7399
7400void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7401                                         CXXDestructorDecl *Destructor) {
7402  assert(getLangOpts().CPlusPlus0x &&
7403         "adjusting dtor exception specs was introduced in c++11");
7404
7405  // C++11 [class.dtor]p3:
7406  //   A declaration of a destructor that does not have an exception-
7407  //   specification is implicitly considered to have the same exception-
7408  //   specification as an implicit declaration.
7409  const FunctionProtoType *DtorType = Destructor->getType()->
7410                                        getAs<FunctionProtoType>();
7411  if (DtorType->hasExceptionSpec())
7412    return;
7413
7414  // Replace the destructor's type, building off the existing one. Fortunately,
7415  // the only thing of interest in the destructor type is its extended info.
7416  // The return and arguments are fixed.
7417  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7418  EPI.ExceptionSpecType = EST_Unevaluated;
7419  EPI.ExceptionSpecDecl = Destructor;
7420  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7421
7422  // FIXME: If the destructor has a body that could throw, and the newly created
7423  // spec doesn't allow exceptions, we should emit a warning, because this
7424  // change in behavior can break conforming C++03 programs at runtime.
7425  // However, we don't have a body or an exception specification yet, so it
7426  // needs to be done somewhere else.
7427}
7428
7429/// When generating a defaulted copy or move assignment operator, if a field
7430/// should be copied with __builtin_memcpy rather than via explicit assignments,
7431/// do so. This optimization only applies for arrays of scalars, and for arrays
7432/// of class type where the selected copy/move-assignment operator is trivial.
7433static StmtResult
7434buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
7435                           Expr *To, Expr *From) {
7436  // Compute the size of the memory buffer to be copied.
7437  QualType SizeType = S.Context.getSizeType();
7438  llvm::APInt Size(S.Context.getTypeSize(SizeType),
7439                   S.Context.getTypeSizeInChars(T).getQuantity());
7440
7441  // Take the address of the field references for "from" and "to". We
7442  // directly construct UnaryOperators here because semantic analysis
7443  // does not permit us to take the address of an xvalue.
7444  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
7445                         S.Context.getPointerType(From->getType()),
7446                         VK_RValue, OK_Ordinary, Loc);
7447  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
7448                       S.Context.getPointerType(To->getType()),
7449                       VK_RValue, OK_Ordinary, Loc);
7450
7451  const Type *E = T->getBaseElementTypeUnsafe();
7452  bool NeedsCollectableMemCpy =
7453    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
7454
7455  // Create a reference to the __builtin_objc_memmove_collectable function
7456  StringRef MemCpyName = NeedsCollectableMemCpy ?
7457    "__builtin_objc_memmove_collectable" :
7458    "__builtin_memcpy";
7459  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
7460                 Sema::LookupOrdinaryName);
7461  S.LookupName(R, S.TUScope, true);
7462
7463  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
7464  if (!MemCpy)
7465    // Something went horribly wrong earlier, and we will have complained
7466    // about it.
7467    return StmtError();
7468
7469  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
7470                                            VK_RValue, Loc, 0);
7471  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
7472
7473  Expr *CallArgs[] = {
7474    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
7475  };
7476  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
7477                                    Loc, CallArgs, Loc);
7478
7479  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7480  return S.Owned(Call.takeAs<Stmt>());
7481}
7482
7483/// \brief Builds a statement that copies/moves the given entity from \p From to
7484/// \c To.
7485///
7486/// This routine is used to copy/move the members of a class with an
7487/// implicitly-declared copy/move assignment operator. When the entities being
7488/// copied are arrays, this routine builds for loops to copy them.
7489///
7490/// \param S The Sema object used for type-checking.
7491///
7492/// \param Loc The location where the implicit copy/move is being generated.
7493///
7494/// \param T The type of the expressions being copied/moved. Both expressions
7495/// must have this type.
7496///
7497/// \param To The expression we are copying/moving to.
7498///
7499/// \param From The expression we are copying/moving from.
7500///
7501/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7502/// Otherwise, it's a non-static member subobject.
7503///
7504/// \param Copying Whether we're copying or moving.
7505///
7506/// \param Depth Internal parameter recording the depth of the recursion.
7507///
7508/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
7509/// if a memcpy should be used instead.
7510static StmtResult
7511buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
7512                                 Expr *To, Expr *From,
7513                                 bool CopyingBaseSubobject, bool Copying,
7514                                 unsigned Depth = 0) {
7515  // C++11 [class.copy]p28:
7516  //   Each subobject is assigned in the manner appropriate to its type:
7517  //
7518  //     - if the subobject is of class type, as if by a call to operator= with
7519  //       the subobject as the object expression and the corresponding
7520  //       subobject of x as a single function argument (as if by explicit
7521  //       qualification; that is, ignoring any possible virtual overriding
7522  //       functions in more derived classes);
7523  //
7524  // C++03 [class.copy]p13:
7525  //     - if the subobject is of class type, the copy assignment operator for
7526  //       the class is used (as if by explicit qualification; that is,
7527  //       ignoring any possible virtual overriding functions in more derived
7528  //       classes);
7529  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7530    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7531
7532    // Look for operator=.
7533    DeclarationName Name
7534      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7535    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7536    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7537
7538    // Prior to C++11, filter out any result that isn't a copy/move-assignment
7539    // operator.
7540    if (!S.getLangOpts().CPlusPlus0x) {
7541      LookupResult::Filter F = OpLookup.makeFilter();
7542      while (F.hasNext()) {
7543        NamedDecl *D = F.next();
7544        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7545          if (Method->isCopyAssignmentOperator() ||
7546              (!Copying && Method->isMoveAssignmentOperator()))
7547            continue;
7548
7549        F.erase();
7550      }
7551      F.done();
7552    }
7553
7554    // Suppress the protected check (C++ [class.protected]) for each of the
7555    // assignment operators we found. This strange dance is required when
7556    // we're assigning via a base classes's copy-assignment operator. To
7557    // ensure that we're getting the right base class subobject (without
7558    // ambiguities), we need to cast "this" to that subobject type; to
7559    // ensure that we don't go through the virtual call mechanism, we need
7560    // to qualify the operator= name with the base class (see below). However,
7561    // this means that if the base class has a protected copy assignment
7562    // operator, the protected member access check will fail. So, we
7563    // rewrite "protected" access to "public" access in this case, since we
7564    // know by construction that we're calling from a derived class.
7565    if (CopyingBaseSubobject) {
7566      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7567           L != LEnd; ++L) {
7568        if (L.getAccess() == AS_protected)
7569          L.setAccess(AS_public);
7570      }
7571    }
7572
7573    // Create the nested-name-specifier that will be used to qualify the
7574    // reference to operator=; this is required to suppress the virtual
7575    // call mechanism.
7576    CXXScopeSpec SS;
7577    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7578    SS.MakeTrivial(S.Context,
7579                   NestedNameSpecifier::Create(S.Context, 0, false,
7580                                               CanonicalT),
7581                   Loc);
7582
7583    // Create the reference to operator=.
7584    ExprResult OpEqualRef
7585      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7586                                   /*TemplateKWLoc=*/SourceLocation(),
7587                                   /*FirstQualifierInScope=*/0,
7588                                   OpLookup,
7589                                   /*TemplateArgs=*/0,
7590                                   /*SuppressQualifierCheck=*/true);
7591    if (OpEqualRef.isInvalid())
7592      return StmtError();
7593
7594    // Build the call to the assignment operator.
7595
7596    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7597                                                  OpEqualRef.takeAs<Expr>(),
7598                                                  Loc, &From, 1, Loc);
7599    if (Call.isInvalid())
7600      return StmtError();
7601
7602    // If we built a call to a trivial 'operator=' while copying an array,
7603    // bail out. We'll replace the whole shebang with a memcpy.
7604    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
7605    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
7606      return StmtResult((Stmt*)0);
7607
7608    // Convert to an expression-statement, and clean up any produced
7609    // temporaries.
7610    return S.ActOnExprStmt(S.MakeFullExpr(Call.take(), Loc));
7611  }
7612
7613  //     - if the subobject is of scalar type, the built-in assignment
7614  //       operator is used.
7615  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7616  if (!ArrayTy) {
7617    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7618    if (Assignment.isInvalid())
7619      return StmtError();
7620    return S.ActOnExprStmt(S.MakeFullExpr(Assignment.take(), Loc));
7621  }
7622
7623  //     - if the subobject is an array, each element is assigned, in the
7624  //       manner appropriate to the element type;
7625
7626  // Construct a loop over the array bounds, e.g.,
7627  //
7628  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7629  //
7630  // that will copy each of the array elements.
7631  QualType SizeType = S.Context.getSizeType();
7632
7633  // Create the iteration variable.
7634  IdentifierInfo *IterationVarName = 0;
7635  {
7636    SmallString<8> Str;
7637    llvm::raw_svector_ostream OS(Str);
7638    OS << "__i" << Depth;
7639    IterationVarName = &S.Context.Idents.get(OS.str());
7640  }
7641  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7642                                          IterationVarName, SizeType,
7643                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7644                                          SC_None, SC_None);
7645
7646  // Initialize the iteration variable to zero.
7647  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7648  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7649
7650  // Create a reference to the iteration variable; we'll use this several
7651  // times throughout.
7652  Expr *IterationVarRef
7653    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7654  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7655  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7656  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7657
7658  // Create the DeclStmt that holds the iteration variable.
7659  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7660
7661  // Subscript the "from" and "to" expressions with the iteration variable.
7662  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7663                                                         IterationVarRefRVal,
7664                                                         Loc));
7665  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7666                                                       IterationVarRefRVal,
7667                                                       Loc));
7668  if (!Copying) // Cast to rvalue
7669    From = CastForMoving(S, From);
7670
7671  // Build the copy/move for an individual element of the array.
7672  StmtResult Copy =
7673    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
7674                                     To, From, CopyingBaseSubobject,
7675                                     Copying, Depth + 1);
7676  // Bail out if copying fails or if we determined that we should use memcpy.
7677  if (Copy.isInvalid() || !Copy.get())
7678    return Copy;
7679
7680  // Create the comparison against the array bound.
7681  llvm::APInt Upper
7682    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7683  Expr *Comparison
7684    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7685                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7686                                     BO_NE, S.Context.BoolTy,
7687                                     VK_RValue, OK_Ordinary, Loc, false);
7688
7689  // Create the pre-increment of the iteration variable.
7690  Expr *Increment
7691    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7692                                    VK_LValue, OK_Ordinary, Loc);
7693
7694  // Construct the loop that copies all elements of this array.
7695  return S.ActOnForStmt(Loc, Loc, InitStmt,
7696                        S.MakeFullExpr(Comparison),
7697                        0, S.MakeFullExpr(Increment),
7698                        Loc, Copy.take());
7699}
7700
7701static StmtResult
7702buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7703                      Expr *To, Expr *From,
7704                      bool CopyingBaseSubobject, bool Copying) {
7705  // Maybe we should use a memcpy?
7706  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
7707      T.isTriviallyCopyableType(S.Context))
7708    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
7709
7710  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
7711                                                     CopyingBaseSubobject,
7712                                                     Copying, 0));
7713
7714  // If we ended up picking a trivial assignment operator for an array of a
7715  // non-trivially-copyable class type, just emit a memcpy.
7716  if (!Result.isInvalid() && !Result.get())
7717    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
7718
7719  return Result;
7720}
7721
7722/// Determine whether an implicit copy assignment operator for ClassDecl has a
7723/// const argument.
7724/// FIXME: It ought to be possible to store this on the record.
7725static bool isImplicitCopyAssignmentArgConst(Sema &S,
7726                                             CXXRecordDecl *ClassDecl) {
7727  if (ClassDecl->isInvalidDecl())
7728    return true;
7729
7730  // C++ [class.copy]p10:
7731  //   If the class definition does not explicitly declare a copy
7732  //   assignment operator, one is declared implicitly.
7733  //   The implicitly-defined copy assignment operator for a class X
7734  //   will have the form
7735  //
7736  //       X& X::operator=(const X&)
7737  //
7738  //   if
7739  //       -- each direct base class B of X has a copy assignment operator
7740  //          whose parameter is of type const B&, const volatile B& or B,
7741  //          and
7742  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7743                                       BaseEnd = ClassDecl->bases_end();
7744       Base != BaseEnd; ++Base) {
7745    // We'll handle this below
7746    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7747      continue;
7748
7749    assert(!Base->getType()->isDependentType() &&
7750           "Cannot generate implicit members for class with dependent bases.");
7751    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7752    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7753      return false;
7754  }
7755
7756  // In C++11, the above citation has "or virtual" added
7757  if (S.getLangOpts().CPlusPlus0x) {
7758    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7759                                         BaseEnd = ClassDecl->vbases_end();
7760         Base != BaseEnd; ++Base) {
7761      assert(!Base->getType()->isDependentType() &&
7762             "Cannot generate implicit members for class with dependent bases.");
7763      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7764      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7765                                     false, 0))
7766        return false;
7767    }
7768  }
7769
7770  //       -- for all the nonstatic data members of X that are of a class
7771  //          type M (or array thereof), each such class type has a copy
7772  //          assignment operator whose parameter is of type const M&,
7773  //          const volatile M& or M.
7774  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7775                                  FieldEnd = ClassDecl->field_end();
7776       Field != FieldEnd; ++Field) {
7777    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7778    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7779      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7780                                     false, 0))
7781        return false;
7782  }
7783
7784  //   Otherwise, the implicitly declared copy assignment operator will
7785  //   have the form
7786  //
7787  //       X& X::operator=(X&)
7788
7789  return true;
7790}
7791
7792Sema::ImplicitExceptionSpecification
7793Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7794  CXXRecordDecl *ClassDecl = MD->getParent();
7795
7796  ImplicitExceptionSpecification ExceptSpec(*this);
7797  if (ClassDecl->isInvalidDecl())
7798    return ExceptSpec;
7799
7800  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7801  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7802  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7803
7804  // C++ [except.spec]p14:
7805  //   An implicitly declared special member function (Clause 12) shall have an
7806  //   exception-specification. [...]
7807
7808  // It is unspecified whether or not an implicit copy assignment operator
7809  // attempts to deduplicate calls to assignment operators of virtual bases are
7810  // made. As such, this exception specification is effectively unspecified.
7811  // Based on a similar decision made for constness in C++0x, we're erring on
7812  // the side of assuming such calls to be made regardless of whether they
7813  // actually happen.
7814  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7815                                       BaseEnd = ClassDecl->bases_end();
7816       Base != BaseEnd; ++Base) {
7817    if (Base->isVirtual())
7818      continue;
7819
7820    CXXRecordDecl *BaseClassDecl
7821      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7822    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7823                                                            ArgQuals, false, 0))
7824      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7825  }
7826
7827  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7828                                       BaseEnd = ClassDecl->vbases_end();
7829       Base != BaseEnd; ++Base) {
7830    CXXRecordDecl *BaseClassDecl
7831      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7832    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7833                                                            ArgQuals, false, 0))
7834      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7835  }
7836
7837  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7838                                  FieldEnd = ClassDecl->field_end();
7839       Field != FieldEnd;
7840       ++Field) {
7841    QualType FieldType = Context.getBaseElementType(Field->getType());
7842    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7843      if (CXXMethodDecl *CopyAssign =
7844          LookupCopyingAssignment(FieldClassDecl,
7845                                  ArgQuals | FieldType.getCVRQualifiers(),
7846                                  false, 0))
7847        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7848    }
7849  }
7850
7851  return ExceptSpec;
7852}
7853
7854CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7855  // Note: The following rules are largely analoguous to the copy
7856  // constructor rules. Note that virtual bases are not taken into account
7857  // for determining the argument type of the operator. Note also that
7858  // operators taking an object instead of a reference are allowed.
7859
7860  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7861  QualType RetType = Context.getLValueReferenceType(ArgType);
7862  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7863    ArgType = ArgType.withConst();
7864  ArgType = Context.getLValueReferenceType(ArgType);
7865
7866  //   An implicitly-declared copy assignment operator is an inline public
7867  //   member of its class.
7868  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7869  SourceLocation ClassLoc = ClassDecl->getLocation();
7870  DeclarationNameInfo NameInfo(Name, ClassLoc);
7871  CXXMethodDecl *CopyAssignment
7872    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7873                            /*TInfo=*/0, /*isStatic=*/false,
7874                            /*StorageClassAsWritten=*/SC_None,
7875                            /*isInline=*/true, /*isConstexpr=*/false,
7876                            SourceLocation());
7877  CopyAssignment->setAccess(AS_public);
7878  CopyAssignment->setDefaulted();
7879  CopyAssignment->setImplicit();
7880  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7881
7882  // Build an exception specification pointing back at this member.
7883  FunctionProtoType::ExtProtoInfo EPI;
7884  EPI.ExceptionSpecType = EST_Unevaluated;
7885  EPI.ExceptionSpecDecl = CopyAssignment;
7886  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7887
7888  // Add the parameter to the operator.
7889  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7890                                               ClassLoc, ClassLoc, /*Id=*/0,
7891                                               ArgType, /*TInfo=*/0,
7892                                               SC_None,
7893                                               SC_None, 0);
7894  CopyAssignment->setParams(FromParam);
7895
7896  // Note that we have added this copy-assignment operator.
7897  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7898
7899  if (Scope *S = getScopeForContext(ClassDecl))
7900    PushOnScopeChains(CopyAssignment, S, false);
7901  ClassDecl->addDecl(CopyAssignment);
7902
7903  // C++0x [class.copy]p19:
7904  //   ....  If the class definition does not explicitly declare a copy
7905  //   assignment operator, there is no user-declared move constructor, and
7906  //   there is no user-declared move assignment operator, a copy assignment
7907  //   operator is implicitly declared as defaulted.
7908  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7909    CopyAssignment->setDeletedAsWritten();
7910
7911  AddOverriddenMethods(ClassDecl, CopyAssignment);
7912  return CopyAssignment;
7913}
7914
7915void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7916                                        CXXMethodDecl *CopyAssignOperator) {
7917  assert((CopyAssignOperator->isDefaulted() &&
7918          CopyAssignOperator->isOverloadedOperator() &&
7919          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7920          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7921          !CopyAssignOperator->isDeleted()) &&
7922         "DefineImplicitCopyAssignment called for wrong function");
7923
7924  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7925
7926  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7927    CopyAssignOperator->setInvalidDecl();
7928    return;
7929  }
7930
7931  CopyAssignOperator->setUsed();
7932
7933  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
7934  DiagnosticErrorTrap Trap(Diags);
7935
7936  // C++0x [class.copy]p30:
7937  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7938  //   for a non-union class X performs memberwise copy assignment of its
7939  //   subobjects. The direct base classes of X are assigned first, in the
7940  //   order of their declaration in the base-specifier-list, and then the
7941  //   immediate non-static data members of X are assigned, in the order in
7942  //   which they were declared in the class definition.
7943
7944  // The statements that form the synthesized function body.
7945  SmallVector<Stmt*, 8> Statements;
7946
7947  // The parameter for the "other" object, which we are copying from.
7948  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7949  Qualifiers OtherQuals = Other->getType().getQualifiers();
7950  QualType OtherRefType = Other->getType();
7951  if (const LValueReferenceType *OtherRef
7952                                = OtherRefType->getAs<LValueReferenceType>()) {
7953    OtherRefType = OtherRef->getPointeeType();
7954    OtherQuals = OtherRefType.getQualifiers();
7955  }
7956
7957  // Our location for everything implicitly-generated.
7958  SourceLocation Loc = CopyAssignOperator->getLocation();
7959
7960  // Construct a reference to the "other" object. We'll be using this
7961  // throughout the generated ASTs.
7962  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7963  assert(OtherRef && "Reference to parameter cannot fail!");
7964
7965  // Construct the "this" pointer. We'll be using this throughout the generated
7966  // ASTs.
7967  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7968  assert(This && "Reference to this cannot fail!");
7969
7970  // Assign base classes.
7971  bool Invalid = false;
7972  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7973       E = ClassDecl->bases_end(); Base != E; ++Base) {
7974    // Form the assignment:
7975    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7976    QualType BaseType = Base->getType().getUnqualifiedType();
7977    if (!BaseType->isRecordType()) {
7978      Invalid = true;
7979      continue;
7980    }
7981
7982    CXXCastPath BasePath;
7983    BasePath.push_back(Base);
7984
7985    // Construct the "from" expression, which is an implicit cast to the
7986    // appropriately-qualified base type.
7987    Expr *From = OtherRef;
7988    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7989                             CK_UncheckedDerivedToBase,
7990                             VK_LValue, &BasePath).take();
7991
7992    // Dereference "this".
7993    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7994
7995    // Implicitly cast "this" to the appropriately-qualified base type.
7996    To = ImpCastExprToType(To.take(),
7997                           Context.getCVRQualifiedType(BaseType,
7998                                     CopyAssignOperator->getTypeQualifiers()),
7999                           CK_UncheckedDerivedToBase,
8000                           VK_LValue, &BasePath);
8001
8002    // Build the copy.
8003    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8004                                            To.get(), From,
8005                                            /*CopyingBaseSubobject=*/true,
8006                                            /*Copying=*/true);
8007    if (Copy.isInvalid()) {
8008      Diag(CurrentLocation, diag::note_member_synthesized_at)
8009        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8010      CopyAssignOperator->setInvalidDecl();
8011      return;
8012    }
8013
8014    // Success! Record the copy.
8015    Statements.push_back(Copy.takeAs<Expr>());
8016  }
8017
8018  // Assign non-static members.
8019  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8020                                  FieldEnd = ClassDecl->field_end();
8021       Field != FieldEnd; ++Field) {
8022    if (Field->isUnnamedBitfield())
8023      continue;
8024
8025    // Check for members of reference type; we can't copy those.
8026    if (Field->getType()->isReferenceType()) {
8027      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8028        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8029      Diag(Field->getLocation(), diag::note_declared_at);
8030      Diag(CurrentLocation, diag::note_member_synthesized_at)
8031        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8032      Invalid = true;
8033      continue;
8034    }
8035
8036    // Check for members of const-qualified, non-class type.
8037    QualType BaseType = Context.getBaseElementType(Field->getType());
8038    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8039      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8040        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8041      Diag(Field->getLocation(), diag::note_declared_at);
8042      Diag(CurrentLocation, diag::note_member_synthesized_at)
8043        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8044      Invalid = true;
8045      continue;
8046    }
8047
8048    // Suppress assigning zero-width bitfields.
8049    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8050      continue;
8051
8052    QualType FieldType = Field->getType().getNonReferenceType();
8053    if (FieldType->isIncompleteArrayType()) {
8054      assert(ClassDecl->hasFlexibleArrayMember() &&
8055             "Incomplete array type is not valid");
8056      continue;
8057    }
8058
8059    // Build references to the field in the object we're copying from and to.
8060    CXXScopeSpec SS; // Intentionally empty
8061    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8062                              LookupMemberName);
8063    MemberLookup.addDecl(*Field);
8064    MemberLookup.resolveKind();
8065    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8066                                               Loc, /*IsArrow=*/false,
8067                                               SS, SourceLocation(), 0,
8068                                               MemberLookup, 0);
8069    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8070                                             Loc, /*IsArrow=*/true,
8071                                             SS, SourceLocation(), 0,
8072                                             MemberLookup, 0);
8073    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8074    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8075
8076    // Build the copy of this field.
8077    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8078                                            To.get(), From.get(),
8079                                            /*CopyingBaseSubobject=*/false,
8080                                            /*Copying=*/true);
8081    if (Copy.isInvalid()) {
8082      Diag(CurrentLocation, diag::note_member_synthesized_at)
8083        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8084      CopyAssignOperator->setInvalidDecl();
8085      return;
8086    }
8087
8088    // Success! Record the copy.
8089    Statements.push_back(Copy.takeAs<Stmt>());
8090  }
8091
8092  if (!Invalid) {
8093    // Add a "return *this;"
8094    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8095
8096    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8097    if (Return.isInvalid())
8098      Invalid = true;
8099    else {
8100      Statements.push_back(Return.takeAs<Stmt>());
8101
8102      if (Trap.hasErrorOccurred()) {
8103        Diag(CurrentLocation, diag::note_member_synthesized_at)
8104          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8105        Invalid = true;
8106      }
8107    }
8108  }
8109
8110  if (Invalid) {
8111    CopyAssignOperator->setInvalidDecl();
8112    return;
8113  }
8114
8115  StmtResult Body;
8116  {
8117    CompoundScopeRAII CompoundScope(*this);
8118    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8119                             /*isStmtExpr=*/false);
8120    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8121  }
8122  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8123
8124  if (ASTMutationListener *L = getASTMutationListener()) {
8125    L->CompletedImplicitDefinition(CopyAssignOperator);
8126  }
8127}
8128
8129Sema::ImplicitExceptionSpecification
8130Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8131  CXXRecordDecl *ClassDecl = MD->getParent();
8132
8133  ImplicitExceptionSpecification ExceptSpec(*this);
8134  if (ClassDecl->isInvalidDecl())
8135    return ExceptSpec;
8136
8137  // C++0x [except.spec]p14:
8138  //   An implicitly declared special member function (Clause 12) shall have an
8139  //   exception-specification. [...]
8140
8141  // It is unspecified whether or not an implicit move assignment operator
8142  // attempts to deduplicate calls to assignment operators of virtual bases are
8143  // made. As such, this exception specification is effectively unspecified.
8144  // Based on a similar decision made for constness in C++0x, we're erring on
8145  // the side of assuming such calls to be made regardless of whether they
8146  // actually happen.
8147  // Note that a move constructor is not implicitly declared when there are
8148  // virtual bases, but it can still be user-declared and explicitly defaulted.
8149  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8150                                       BaseEnd = ClassDecl->bases_end();
8151       Base != BaseEnd; ++Base) {
8152    if (Base->isVirtual())
8153      continue;
8154
8155    CXXRecordDecl *BaseClassDecl
8156      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8157    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8158                                                           0, false, 0))
8159      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8160  }
8161
8162  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8163                                       BaseEnd = ClassDecl->vbases_end();
8164       Base != BaseEnd; ++Base) {
8165    CXXRecordDecl *BaseClassDecl
8166      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8167    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8168                                                           0, false, 0))
8169      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8170  }
8171
8172  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8173                                  FieldEnd = ClassDecl->field_end();
8174       Field != FieldEnd;
8175       ++Field) {
8176    QualType FieldType = Context.getBaseElementType(Field->getType());
8177    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8178      if (CXXMethodDecl *MoveAssign =
8179              LookupMovingAssignment(FieldClassDecl,
8180                                     FieldType.getCVRQualifiers(),
8181                                     false, 0))
8182        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8183    }
8184  }
8185
8186  return ExceptSpec;
8187}
8188
8189/// Determine whether the class type has any direct or indirect virtual base
8190/// classes which have a non-trivial move assignment operator.
8191static bool
8192hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8193  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8194                                          BaseEnd = ClassDecl->vbases_end();
8195       Base != BaseEnd; ++Base) {
8196    CXXRecordDecl *BaseClass =
8197        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8198
8199    // Try to declare the move assignment. If it would be deleted, then the
8200    // class does not have a non-trivial move assignment.
8201    if (BaseClass->needsImplicitMoveAssignment())
8202      S.DeclareImplicitMoveAssignment(BaseClass);
8203
8204    // If the class has both a trivial move assignment and a non-trivial move
8205    // assignment, hasTrivialMoveAssignment() is false.
8206    if (BaseClass->hasDeclaredMoveAssignment() &&
8207        !BaseClass->hasTrivialMoveAssignment())
8208      return true;
8209  }
8210
8211  return false;
8212}
8213
8214/// Determine whether the given type either has a move constructor or is
8215/// trivially copyable.
8216static bool
8217hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8218  Type = S.Context.getBaseElementType(Type);
8219
8220  // FIXME: Technically, non-trivially-copyable non-class types, such as
8221  // reference types, are supposed to return false here, but that appears
8222  // to be a standard defect.
8223  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8224  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8225    return true;
8226
8227  if (Type.isTriviallyCopyableType(S.Context))
8228    return true;
8229
8230  if (IsConstructor) {
8231    if (ClassDecl->needsImplicitMoveConstructor())
8232      S.DeclareImplicitMoveConstructor(ClassDecl);
8233    return ClassDecl->hasDeclaredMoveConstructor();
8234  }
8235
8236  if (ClassDecl->needsImplicitMoveAssignment())
8237    S.DeclareImplicitMoveAssignment(ClassDecl);
8238  return ClassDecl->hasDeclaredMoveAssignment();
8239}
8240
8241/// Determine whether all non-static data members and direct or virtual bases
8242/// of class \p ClassDecl have either a move operation, or are trivially
8243/// copyable.
8244static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8245                                            bool IsConstructor) {
8246  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8247                                          BaseEnd = ClassDecl->bases_end();
8248       Base != BaseEnd; ++Base) {
8249    if (Base->isVirtual())
8250      continue;
8251
8252    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8253      return false;
8254  }
8255
8256  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8257                                          BaseEnd = ClassDecl->vbases_end();
8258       Base != BaseEnd; ++Base) {
8259    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8260      return false;
8261  }
8262
8263  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8264                                     FieldEnd = ClassDecl->field_end();
8265       Field != FieldEnd; ++Field) {
8266    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8267      return false;
8268  }
8269
8270  return true;
8271}
8272
8273CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8274  // C++11 [class.copy]p20:
8275  //   If the definition of a class X does not explicitly declare a move
8276  //   assignment operator, one will be implicitly declared as defaulted
8277  //   if and only if:
8278  //
8279  //   - [first 4 bullets]
8280  assert(ClassDecl->needsImplicitMoveAssignment());
8281
8282  // [Checked after we build the declaration]
8283  //   - the move assignment operator would not be implicitly defined as
8284  //     deleted,
8285
8286  // [DR1402]:
8287  //   - X has no direct or indirect virtual base class with a non-trivial
8288  //     move assignment operator, and
8289  //   - each of X's non-static data members and direct or virtual base classes
8290  //     has a type that either has a move assignment operator or is trivially
8291  //     copyable.
8292  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8293      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8294    ClassDecl->setFailedImplicitMoveAssignment();
8295    return 0;
8296  }
8297
8298  // Note: The following rules are largely analoguous to the move
8299  // constructor rules.
8300
8301  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8302  QualType RetType = Context.getLValueReferenceType(ArgType);
8303  ArgType = Context.getRValueReferenceType(ArgType);
8304
8305  //   An implicitly-declared move assignment operator is an inline public
8306  //   member of its class.
8307  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8308  SourceLocation ClassLoc = ClassDecl->getLocation();
8309  DeclarationNameInfo NameInfo(Name, ClassLoc);
8310  CXXMethodDecl *MoveAssignment
8311    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8312                            /*TInfo=*/0, /*isStatic=*/false,
8313                            /*StorageClassAsWritten=*/SC_None,
8314                            /*isInline=*/true,
8315                            /*isConstexpr=*/false,
8316                            SourceLocation());
8317  MoveAssignment->setAccess(AS_public);
8318  MoveAssignment->setDefaulted();
8319  MoveAssignment->setImplicit();
8320  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8321
8322  // Build an exception specification pointing back at this member.
8323  FunctionProtoType::ExtProtoInfo EPI;
8324  EPI.ExceptionSpecType = EST_Unevaluated;
8325  EPI.ExceptionSpecDecl = MoveAssignment;
8326  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8327
8328  // Add the parameter to the operator.
8329  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8330                                               ClassLoc, ClassLoc, /*Id=*/0,
8331                                               ArgType, /*TInfo=*/0,
8332                                               SC_None,
8333                                               SC_None, 0);
8334  MoveAssignment->setParams(FromParam);
8335
8336  // Note that we have added this copy-assignment operator.
8337  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8338
8339  // C++0x [class.copy]p9:
8340  //   If the definition of a class X does not explicitly declare a move
8341  //   assignment operator, one will be implicitly declared as defaulted if and
8342  //   only if:
8343  //   [...]
8344  //   - the move assignment operator would not be implicitly defined as
8345  //     deleted.
8346  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8347    // Cache this result so that we don't try to generate this over and over
8348    // on every lookup, leaking memory and wasting time.
8349    ClassDecl->setFailedImplicitMoveAssignment();
8350    return 0;
8351  }
8352
8353  if (Scope *S = getScopeForContext(ClassDecl))
8354    PushOnScopeChains(MoveAssignment, S, false);
8355  ClassDecl->addDecl(MoveAssignment);
8356
8357  AddOverriddenMethods(ClassDecl, MoveAssignment);
8358  return MoveAssignment;
8359}
8360
8361void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8362                                        CXXMethodDecl *MoveAssignOperator) {
8363  assert((MoveAssignOperator->isDefaulted() &&
8364          MoveAssignOperator->isOverloadedOperator() &&
8365          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8366          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8367          !MoveAssignOperator->isDeleted()) &&
8368         "DefineImplicitMoveAssignment called for wrong function");
8369
8370  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8371
8372  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8373    MoveAssignOperator->setInvalidDecl();
8374    return;
8375  }
8376
8377  MoveAssignOperator->setUsed();
8378
8379  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8380  DiagnosticErrorTrap Trap(Diags);
8381
8382  // C++0x [class.copy]p28:
8383  //   The implicitly-defined or move assignment operator for a non-union class
8384  //   X performs memberwise move assignment of its subobjects. The direct base
8385  //   classes of X are assigned first, in the order of their declaration in the
8386  //   base-specifier-list, and then the immediate non-static data members of X
8387  //   are assigned, in the order in which they were declared in the class
8388  //   definition.
8389
8390  // The statements that form the synthesized function body.
8391  SmallVector<Stmt*, 8> Statements;
8392
8393  // The parameter for the "other" object, which we are move from.
8394  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8395  QualType OtherRefType = Other->getType()->
8396      getAs<RValueReferenceType>()->getPointeeType();
8397  assert(OtherRefType.getQualifiers() == 0 &&
8398         "Bad argument type of defaulted move assignment");
8399
8400  // Our location for everything implicitly-generated.
8401  SourceLocation Loc = MoveAssignOperator->getLocation();
8402
8403  // Construct a reference to the "other" object. We'll be using this
8404  // throughout the generated ASTs.
8405  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8406  assert(OtherRef && "Reference to parameter cannot fail!");
8407  // Cast to rvalue.
8408  OtherRef = CastForMoving(*this, OtherRef);
8409
8410  // Construct the "this" pointer. We'll be using this throughout the generated
8411  // ASTs.
8412  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8413  assert(This && "Reference to this cannot fail!");
8414
8415  // Assign base classes.
8416  bool Invalid = false;
8417  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8418       E = ClassDecl->bases_end(); Base != E; ++Base) {
8419    // Form the assignment:
8420    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8421    QualType BaseType = Base->getType().getUnqualifiedType();
8422    if (!BaseType->isRecordType()) {
8423      Invalid = true;
8424      continue;
8425    }
8426
8427    CXXCastPath BasePath;
8428    BasePath.push_back(Base);
8429
8430    // Construct the "from" expression, which is an implicit cast to the
8431    // appropriately-qualified base type.
8432    Expr *From = OtherRef;
8433    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8434                             VK_XValue, &BasePath).take();
8435
8436    // Dereference "this".
8437    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8438
8439    // Implicitly cast "this" to the appropriately-qualified base type.
8440    To = ImpCastExprToType(To.take(),
8441                           Context.getCVRQualifiedType(BaseType,
8442                                     MoveAssignOperator->getTypeQualifiers()),
8443                           CK_UncheckedDerivedToBase,
8444                           VK_LValue, &BasePath);
8445
8446    // Build the move.
8447    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
8448                                            To.get(), From,
8449                                            /*CopyingBaseSubobject=*/true,
8450                                            /*Copying=*/false);
8451    if (Move.isInvalid()) {
8452      Diag(CurrentLocation, diag::note_member_synthesized_at)
8453        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8454      MoveAssignOperator->setInvalidDecl();
8455      return;
8456    }
8457
8458    // Success! Record the move.
8459    Statements.push_back(Move.takeAs<Expr>());
8460  }
8461
8462  // Assign non-static members.
8463  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8464                                  FieldEnd = ClassDecl->field_end();
8465       Field != FieldEnd; ++Field) {
8466    if (Field->isUnnamedBitfield())
8467      continue;
8468
8469    // Check for members of reference type; we can't move those.
8470    if (Field->getType()->isReferenceType()) {
8471      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8472        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8473      Diag(Field->getLocation(), diag::note_declared_at);
8474      Diag(CurrentLocation, diag::note_member_synthesized_at)
8475        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8476      Invalid = true;
8477      continue;
8478    }
8479
8480    // Check for members of const-qualified, non-class type.
8481    QualType BaseType = Context.getBaseElementType(Field->getType());
8482    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8483      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8484        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8485      Diag(Field->getLocation(), diag::note_declared_at);
8486      Diag(CurrentLocation, diag::note_member_synthesized_at)
8487        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8488      Invalid = true;
8489      continue;
8490    }
8491
8492    // Suppress assigning zero-width bitfields.
8493    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8494      continue;
8495
8496    QualType FieldType = Field->getType().getNonReferenceType();
8497    if (FieldType->isIncompleteArrayType()) {
8498      assert(ClassDecl->hasFlexibleArrayMember() &&
8499             "Incomplete array type is not valid");
8500      continue;
8501    }
8502
8503    // Build references to the field in the object we're copying from and to.
8504    CXXScopeSpec SS; // Intentionally empty
8505    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8506                              LookupMemberName);
8507    MemberLookup.addDecl(*Field);
8508    MemberLookup.resolveKind();
8509    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8510                                               Loc, /*IsArrow=*/false,
8511                                               SS, SourceLocation(), 0,
8512                                               MemberLookup, 0);
8513    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8514                                             Loc, /*IsArrow=*/true,
8515                                             SS, SourceLocation(), 0,
8516                                             MemberLookup, 0);
8517    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8518    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8519
8520    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8521        "Member reference with rvalue base must be rvalue except for reference "
8522        "members, which aren't allowed for move assignment.");
8523
8524    // Build the move of this field.
8525    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
8526                                            To.get(), From.get(),
8527                                            /*CopyingBaseSubobject=*/false,
8528                                            /*Copying=*/false);
8529    if (Move.isInvalid()) {
8530      Diag(CurrentLocation, diag::note_member_synthesized_at)
8531        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8532      MoveAssignOperator->setInvalidDecl();
8533      return;
8534    }
8535
8536    // Success! Record the copy.
8537    Statements.push_back(Move.takeAs<Stmt>());
8538  }
8539
8540  if (!Invalid) {
8541    // Add a "return *this;"
8542    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8543
8544    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8545    if (Return.isInvalid())
8546      Invalid = true;
8547    else {
8548      Statements.push_back(Return.takeAs<Stmt>());
8549
8550      if (Trap.hasErrorOccurred()) {
8551        Diag(CurrentLocation, diag::note_member_synthesized_at)
8552          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8553        Invalid = true;
8554      }
8555    }
8556  }
8557
8558  if (Invalid) {
8559    MoveAssignOperator->setInvalidDecl();
8560    return;
8561  }
8562
8563  StmtResult Body;
8564  {
8565    CompoundScopeRAII CompoundScope(*this);
8566    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8567                             /*isStmtExpr=*/false);
8568    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8569  }
8570  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8571
8572  if (ASTMutationListener *L = getASTMutationListener()) {
8573    L->CompletedImplicitDefinition(MoveAssignOperator);
8574  }
8575}
8576
8577/// Determine whether an implicit copy constructor for ClassDecl has a const
8578/// argument.
8579/// FIXME: It ought to be possible to store this on the record.
8580static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8581  if (ClassDecl->isInvalidDecl())
8582    return true;
8583
8584  // C++ [class.copy]p5:
8585  //   The implicitly-declared copy constructor for a class X will
8586  //   have the form
8587  //
8588  //       X::X(const X&)
8589  //
8590  //   if
8591  //     -- each direct or virtual base class B of X has a copy
8592  //        constructor whose first parameter is of type const B& or
8593  //        const volatile B&, and
8594  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8595                                       BaseEnd = ClassDecl->bases_end();
8596       Base != BaseEnd; ++Base) {
8597    // Virtual bases are handled below.
8598    if (Base->isVirtual())
8599      continue;
8600
8601    CXXRecordDecl *BaseClassDecl
8602      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8603    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8604    // ambiguous, we should still produce a constructor with a const-qualified
8605    // parameter.
8606    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8607      return false;
8608  }
8609
8610  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8611                                       BaseEnd = ClassDecl->vbases_end();
8612       Base != BaseEnd; ++Base) {
8613    CXXRecordDecl *BaseClassDecl
8614      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8615    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8616      return false;
8617  }
8618
8619  //     -- for all the nonstatic data members of X that are of a
8620  //        class type M (or array thereof), each such class type
8621  //        has a copy constructor whose first parameter is of type
8622  //        const M& or const volatile M&.
8623  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8624                                  FieldEnd = ClassDecl->field_end();
8625       Field != FieldEnd; ++Field) {
8626    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8627    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8628      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8629        return false;
8630    }
8631  }
8632
8633  //   Otherwise, the implicitly declared copy constructor will have
8634  //   the form
8635  //
8636  //       X::X(X&)
8637
8638  return true;
8639}
8640
8641Sema::ImplicitExceptionSpecification
8642Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8643  CXXRecordDecl *ClassDecl = MD->getParent();
8644
8645  ImplicitExceptionSpecification ExceptSpec(*this);
8646  if (ClassDecl->isInvalidDecl())
8647    return ExceptSpec;
8648
8649  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8650  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8651  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8652
8653  // C++ [except.spec]p14:
8654  //   An implicitly declared special member function (Clause 12) shall have an
8655  //   exception-specification. [...]
8656  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8657                                       BaseEnd = ClassDecl->bases_end();
8658       Base != BaseEnd;
8659       ++Base) {
8660    // Virtual bases are handled below.
8661    if (Base->isVirtual())
8662      continue;
8663
8664    CXXRecordDecl *BaseClassDecl
8665      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8666    if (CXXConstructorDecl *CopyConstructor =
8667          LookupCopyingConstructor(BaseClassDecl, Quals))
8668      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8669  }
8670  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8671                                       BaseEnd = ClassDecl->vbases_end();
8672       Base != BaseEnd;
8673       ++Base) {
8674    CXXRecordDecl *BaseClassDecl
8675      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8676    if (CXXConstructorDecl *CopyConstructor =
8677          LookupCopyingConstructor(BaseClassDecl, Quals))
8678      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8679  }
8680  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8681                                  FieldEnd = ClassDecl->field_end();
8682       Field != FieldEnd;
8683       ++Field) {
8684    QualType FieldType = Context.getBaseElementType(Field->getType());
8685    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8686      if (CXXConstructorDecl *CopyConstructor =
8687              LookupCopyingConstructor(FieldClassDecl,
8688                                       Quals | FieldType.getCVRQualifiers()))
8689      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8690    }
8691  }
8692
8693  return ExceptSpec;
8694}
8695
8696CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8697                                                    CXXRecordDecl *ClassDecl) {
8698  // C++ [class.copy]p4:
8699  //   If the class definition does not explicitly declare a copy
8700  //   constructor, one is declared implicitly.
8701
8702  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8703  QualType ArgType = ClassType;
8704  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8705  if (Const)
8706    ArgType = ArgType.withConst();
8707  ArgType = Context.getLValueReferenceType(ArgType);
8708
8709  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8710                                                     CXXCopyConstructor,
8711                                                     Const);
8712
8713  DeclarationName Name
8714    = Context.DeclarationNames.getCXXConstructorName(
8715                                           Context.getCanonicalType(ClassType));
8716  SourceLocation ClassLoc = ClassDecl->getLocation();
8717  DeclarationNameInfo NameInfo(Name, ClassLoc);
8718
8719  //   An implicitly-declared copy constructor is an inline public
8720  //   member of its class.
8721  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8722      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8723      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8724      Constexpr);
8725  CopyConstructor->setAccess(AS_public);
8726  CopyConstructor->setDefaulted();
8727  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8728
8729  // Build an exception specification pointing back at this member.
8730  FunctionProtoType::ExtProtoInfo EPI;
8731  EPI.ExceptionSpecType = EST_Unevaluated;
8732  EPI.ExceptionSpecDecl = CopyConstructor;
8733  CopyConstructor->setType(
8734      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8735
8736  // Note that we have declared this constructor.
8737  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8738
8739  // Add the parameter to the constructor.
8740  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8741                                               ClassLoc, ClassLoc,
8742                                               /*IdentifierInfo=*/0,
8743                                               ArgType, /*TInfo=*/0,
8744                                               SC_None,
8745                                               SC_None, 0);
8746  CopyConstructor->setParams(FromParam);
8747
8748  if (Scope *S = getScopeForContext(ClassDecl))
8749    PushOnScopeChains(CopyConstructor, S, false);
8750  ClassDecl->addDecl(CopyConstructor);
8751
8752  // C++11 [class.copy]p8:
8753  //   ... If the class definition does not explicitly declare a copy
8754  //   constructor, there is no user-declared move constructor, and there is no
8755  //   user-declared move assignment operator, a copy constructor is implicitly
8756  //   declared as defaulted.
8757  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8758    CopyConstructor->setDeletedAsWritten();
8759
8760  return CopyConstructor;
8761}
8762
8763void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8764                                   CXXConstructorDecl *CopyConstructor) {
8765  assert((CopyConstructor->isDefaulted() &&
8766          CopyConstructor->isCopyConstructor() &&
8767          !CopyConstructor->doesThisDeclarationHaveABody() &&
8768          !CopyConstructor->isDeleted()) &&
8769         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8770
8771  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8772  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8773
8774  SynthesizedFunctionScope Scope(*this, CopyConstructor);
8775  DiagnosticErrorTrap Trap(Diags);
8776
8777  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8778      Trap.hasErrorOccurred()) {
8779    Diag(CurrentLocation, diag::note_member_synthesized_at)
8780      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8781    CopyConstructor->setInvalidDecl();
8782  }  else {
8783    Sema::CompoundScopeRAII CompoundScope(*this);
8784    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8785                                               CopyConstructor->getLocation(),
8786                                               MultiStmtArg(),
8787                                               /*isStmtExpr=*/false)
8788                                                              .takeAs<Stmt>());
8789    CopyConstructor->setImplicitlyDefined(true);
8790  }
8791
8792  CopyConstructor->setUsed();
8793  if (ASTMutationListener *L = getASTMutationListener()) {
8794    L->CompletedImplicitDefinition(CopyConstructor);
8795  }
8796}
8797
8798Sema::ImplicitExceptionSpecification
8799Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8800  CXXRecordDecl *ClassDecl = MD->getParent();
8801
8802  // C++ [except.spec]p14:
8803  //   An implicitly declared special member function (Clause 12) shall have an
8804  //   exception-specification. [...]
8805  ImplicitExceptionSpecification ExceptSpec(*this);
8806  if (ClassDecl->isInvalidDecl())
8807    return ExceptSpec;
8808
8809  // Direct base-class constructors.
8810  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8811                                       BEnd = ClassDecl->bases_end();
8812       B != BEnd; ++B) {
8813    if (B->isVirtual()) // Handled below.
8814      continue;
8815
8816    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8817      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8818      CXXConstructorDecl *Constructor =
8819          LookupMovingConstructor(BaseClassDecl, 0);
8820      // If this is a deleted function, add it anyway. This might be conformant
8821      // with the standard. This might not. I'm not sure. It might not matter.
8822      if (Constructor)
8823        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8824    }
8825  }
8826
8827  // Virtual base-class constructors.
8828  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8829                                       BEnd = ClassDecl->vbases_end();
8830       B != BEnd; ++B) {
8831    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8832      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8833      CXXConstructorDecl *Constructor =
8834          LookupMovingConstructor(BaseClassDecl, 0);
8835      // If this is a deleted function, add it anyway. This might be conformant
8836      // with the standard. This might not. I'm not sure. It might not matter.
8837      if (Constructor)
8838        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8839    }
8840  }
8841
8842  // Field constructors.
8843  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8844                               FEnd = ClassDecl->field_end();
8845       F != FEnd; ++F) {
8846    QualType FieldType = Context.getBaseElementType(F->getType());
8847    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8848      CXXConstructorDecl *Constructor =
8849          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8850      // If this is a deleted function, add it anyway. This might be conformant
8851      // with the standard. This might not. I'm not sure. It might not matter.
8852      // In particular, the problem is that this function never gets called. It
8853      // might just be ill-formed because this function attempts to refer to
8854      // a deleted function here.
8855      if (Constructor)
8856        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8857    }
8858  }
8859
8860  return ExceptSpec;
8861}
8862
8863CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8864                                                    CXXRecordDecl *ClassDecl) {
8865  // C++11 [class.copy]p9:
8866  //   If the definition of a class X does not explicitly declare a move
8867  //   constructor, one will be implicitly declared as defaulted if and only if:
8868  //
8869  //   - [first 4 bullets]
8870  assert(ClassDecl->needsImplicitMoveConstructor());
8871
8872  // [Checked after we build the declaration]
8873  //   - the move assignment operator would not be implicitly defined as
8874  //     deleted,
8875
8876  // [DR1402]:
8877  //   - each of X's non-static data members and direct or virtual base classes
8878  //     has a type that either has a move constructor or is trivially copyable.
8879  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8880    ClassDecl->setFailedImplicitMoveConstructor();
8881    return 0;
8882  }
8883
8884  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8885  QualType ArgType = Context.getRValueReferenceType(ClassType);
8886
8887  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8888                                                     CXXMoveConstructor,
8889                                                     false);
8890
8891  DeclarationName Name
8892    = Context.DeclarationNames.getCXXConstructorName(
8893                                           Context.getCanonicalType(ClassType));
8894  SourceLocation ClassLoc = ClassDecl->getLocation();
8895  DeclarationNameInfo NameInfo(Name, ClassLoc);
8896
8897  // C++0x [class.copy]p11:
8898  //   An implicitly-declared copy/move constructor is an inline public
8899  //   member of its class.
8900  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8901      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8902      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8903      Constexpr);
8904  MoveConstructor->setAccess(AS_public);
8905  MoveConstructor->setDefaulted();
8906  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8907
8908  // Build an exception specification pointing back at this member.
8909  FunctionProtoType::ExtProtoInfo EPI;
8910  EPI.ExceptionSpecType = EST_Unevaluated;
8911  EPI.ExceptionSpecDecl = MoveConstructor;
8912  MoveConstructor->setType(
8913      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8914
8915  // Add the parameter to the constructor.
8916  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8917                                               ClassLoc, ClassLoc,
8918                                               /*IdentifierInfo=*/0,
8919                                               ArgType, /*TInfo=*/0,
8920                                               SC_None,
8921                                               SC_None, 0);
8922  MoveConstructor->setParams(FromParam);
8923
8924  // C++0x [class.copy]p9:
8925  //   If the definition of a class X does not explicitly declare a move
8926  //   constructor, one will be implicitly declared as defaulted if and only if:
8927  //   [...]
8928  //   - the move constructor would not be implicitly defined as deleted.
8929  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8930    // Cache this result so that we don't try to generate this over and over
8931    // on every lookup, leaking memory and wasting time.
8932    ClassDecl->setFailedImplicitMoveConstructor();
8933    return 0;
8934  }
8935
8936  // Note that we have declared this constructor.
8937  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8938
8939  if (Scope *S = getScopeForContext(ClassDecl))
8940    PushOnScopeChains(MoveConstructor, S, false);
8941  ClassDecl->addDecl(MoveConstructor);
8942
8943  return MoveConstructor;
8944}
8945
8946void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8947                                   CXXConstructorDecl *MoveConstructor) {
8948  assert((MoveConstructor->isDefaulted() &&
8949          MoveConstructor->isMoveConstructor() &&
8950          !MoveConstructor->doesThisDeclarationHaveABody() &&
8951          !MoveConstructor->isDeleted()) &&
8952         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8953
8954  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8955  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8956
8957  SynthesizedFunctionScope Scope(*this, MoveConstructor);
8958  DiagnosticErrorTrap Trap(Diags);
8959
8960  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8961      Trap.hasErrorOccurred()) {
8962    Diag(CurrentLocation, diag::note_member_synthesized_at)
8963      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8964    MoveConstructor->setInvalidDecl();
8965  }  else {
8966    Sema::CompoundScopeRAII CompoundScope(*this);
8967    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8968                                               MoveConstructor->getLocation(),
8969                                               MultiStmtArg(),
8970                                               /*isStmtExpr=*/false)
8971                                                              .takeAs<Stmt>());
8972    MoveConstructor->setImplicitlyDefined(true);
8973  }
8974
8975  MoveConstructor->setUsed();
8976
8977  if (ASTMutationListener *L = getASTMutationListener()) {
8978    L->CompletedImplicitDefinition(MoveConstructor);
8979  }
8980}
8981
8982bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8983  return FD->isDeleted() &&
8984         (FD->isDefaulted() || FD->isImplicit()) &&
8985         isa<CXXMethodDecl>(FD);
8986}
8987
8988/// \brief Mark the call operator of the given lambda closure type as "used".
8989static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8990  CXXMethodDecl *CallOperator
8991    = cast<CXXMethodDecl>(
8992        *Lambda->lookup(
8993          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8994  CallOperator->setReferenced();
8995  CallOperator->setUsed();
8996}
8997
8998void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8999       SourceLocation CurrentLocation,
9000       CXXConversionDecl *Conv)
9001{
9002  CXXRecordDecl *Lambda = Conv->getParent();
9003
9004  // Make sure that the lambda call operator is marked used.
9005  markLambdaCallOperatorUsed(*this, Lambda);
9006
9007  Conv->setUsed();
9008
9009  SynthesizedFunctionScope Scope(*this, Conv);
9010  DiagnosticErrorTrap Trap(Diags);
9011
9012  // Return the address of the __invoke function.
9013  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9014  CXXMethodDecl *Invoke
9015    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9016  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9017                                       VK_LValue, Conv->getLocation()).take();
9018  assert(FunctionRef && "Can't refer to __invoke function?");
9019  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9020  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9021                                           Conv->getLocation(),
9022                                           Conv->getLocation()));
9023
9024  // Fill in the __invoke function with a dummy implementation. IR generation
9025  // will fill in the actual details.
9026  Invoke->setUsed();
9027  Invoke->setReferenced();
9028  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9029
9030  if (ASTMutationListener *L = getASTMutationListener()) {
9031    L->CompletedImplicitDefinition(Conv);
9032    L->CompletedImplicitDefinition(Invoke);
9033  }
9034}
9035
9036void Sema::DefineImplicitLambdaToBlockPointerConversion(
9037       SourceLocation CurrentLocation,
9038       CXXConversionDecl *Conv)
9039{
9040  Conv->setUsed();
9041
9042  SynthesizedFunctionScope Scope(*this, Conv);
9043  DiagnosticErrorTrap Trap(Diags);
9044
9045  // Copy-initialize the lambda object as needed to capture it.
9046  Expr *This = ActOnCXXThis(CurrentLocation).take();
9047  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9048
9049  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9050                                                        Conv->getLocation(),
9051                                                        Conv, DerefThis);
9052
9053  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9054  // behavior.  Note that only the general conversion function does this
9055  // (since it's unusable otherwise); in the case where we inline the
9056  // block literal, it has block literal lifetime semantics.
9057  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9058    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9059                                          CK_CopyAndAutoreleaseBlockObject,
9060                                          BuildBlock.get(), 0, VK_RValue);
9061
9062  if (BuildBlock.isInvalid()) {
9063    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9064    Conv->setInvalidDecl();
9065    return;
9066  }
9067
9068  // Create the return statement that returns the block from the conversion
9069  // function.
9070  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9071  if (Return.isInvalid()) {
9072    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9073    Conv->setInvalidDecl();
9074    return;
9075  }
9076
9077  // Set the body of the conversion function.
9078  Stmt *ReturnS = Return.take();
9079  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9080                                           Conv->getLocation(),
9081                                           Conv->getLocation()));
9082
9083  // We're done; notify the mutation listener, if any.
9084  if (ASTMutationListener *L = getASTMutationListener()) {
9085    L->CompletedImplicitDefinition(Conv);
9086  }
9087}
9088
9089/// \brief Determine whether the given list arguments contains exactly one
9090/// "real" (non-default) argument.
9091static bool hasOneRealArgument(MultiExprArg Args) {
9092  switch (Args.size()) {
9093  case 0:
9094    return false;
9095
9096  default:
9097    if (!Args[1]->isDefaultArgument())
9098      return false;
9099
9100    // fall through
9101  case 1:
9102    return !Args[0]->isDefaultArgument();
9103  }
9104
9105  return false;
9106}
9107
9108ExprResult
9109Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9110                            CXXConstructorDecl *Constructor,
9111                            MultiExprArg ExprArgs,
9112                            bool HadMultipleCandidates,
9113                            bool RequiresZeroInit,
9114                            unsigned ConstructKind,
9115                            SourceRange ParenRange) {
9116  bool Elidable = false;
9117
9118  // C++0x [class.copy]p34:
9119  //   When certain criteria are met, an implementation is allowed to
9120  //   omit the copy/move construction of a class object, even if the
9121  //   copy/move constructor and/or destructor for the object have
9122  //   side effects. [...]
9123  //     - when a temporary class object that has not been bound to a
9124  //       reference (12.2) would be copied/moved to a class object
9125  //       with the same cv-unqualified type, the copy/move operation
9126  //       can be omitted by constructing the temporary object
9127  //       directly into the target of the omitted copy/move
9128  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9129      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9130    Expr *SubExpr = ExprArgs[0];
9131    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9132  }
9133
9134  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9135                               Elidable, ExprArgs, HadMultipleCandidates,
9136                               RequiresZeroInit, ConstructKind, ParenRange);
9137}
9138
9139/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9140/// including handling of its default argument expressions.
9141ExprResult
9142Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9143                            CXXConstructorDecl *Constructor, bool Elidable,
9144                            MultiExprArg ExprArgs,
9145                            bool HadMultipleCandidates,
9146                            bool RequiresZeroInit,
9147                            unsigned ConstructKind,
9148                            SourceRange ParenRange) {
9149  MarkFunctionReferenced(ConstructLoc, Constructor);
9150  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9151                                        Constructor, Elidable, ExprArgs,
9152                                        HadMultipleCandidates, /*FIXME*/false,
9153                                        RequiresZeroInit,
9154              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9155                                        ParenRange));
9156}
9157
9158bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9159                                        CXXConstructorDecl *Constructor,
9160                                        MultiExprArg Exprs,
9161                                        bool HadMultipleCandidates) {
9162  // FIXME: Provide the correct paren SourceRange when available.
9163  ExprResult TempResult =
9164    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9165                          Exprs, HadMultipleCandidates, false,
9166                          CXXConstructExpr::CK_Complete, SourceRange());
9167  if (TempResult.isInvalid())
9168    return true;
9169
9170  Expr *Temp = TempResult.takeAs<Expr>();
9171  CheckImplicitConversions(Temp, VD->getLocation());
9172  MarkFunctionReferenced(VD->getLocation(), Constructor);
9173  Temp = MaybeCreateExprWithCleanups(Temp);
9174  VD->setInit(Temp);
9175
9176  return false;
9177}
9178
9179void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9180  if (VD->isInvalidDecl()) return;
9181
9182  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9183  if (ClassDecl->isInvalidDecl()) return;
9184  if (ClassDecl->hasIrrelevantDestructor()) return;
9185  if (ClassDecl->isDependentContext()) return;
9186
9187  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9188  MarkFunctionReferenced(VD->getLocation(), Destructor);
9189  CheckDestructorAccess(VD->getLocation(), Destructor,
9190                        PDiag(diag::err_access_dtor_var)
9191                        << VD->getDeclName()
9192                        << VD->getType());
9193  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9194
9195  if (!VD->hasGlobalStorage()) return;
9196
9197  // Emit warning for non-trivial dtor in global scope (a real global,
9198  // class-static, function-static).
9199  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9200
9201  // TODO: this should be re-enabled for static locals by !CXAAtExit
9202  if (!VD->isStaticLocal())
9203    Diag(VD->getLocation(), diag::warn_global_destructor);
9204}
9205
9206/// \brief Given a constructor and the set of arguments provided for the
9207/// constructor, convert the arguments and add any required default arguments
9208/// to form a proper call to this constructor.
9209///
9210/// \returns true if an error occurred, false otherwise.
9211bool
9212Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9213                              MultiExprArg ArgsPtr,
9214                              SourceLocation Loc,
9215                              SmallVectorImpl<Expr*> &ConvertedArgs,
9216                              bool AllowExplicit) {
9217  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9218  unsigned NumArgs = ArgsPtr.size();
9219  Expr **Args = ArgsPtr.data();
9220
9221  const FunctionProtoType *Proto
9222    = Constructor->getType()->getAs<FunctionProtoType>();
9223  assert(Proto && "Constructor without a prototype?");
9224  unsigned NumArgsInProto = Proto->getNumArgs();
9225
9226  // If too few arguments are available, we'll fill in the rest with defaults.
9227  if (NumArgs < NumArgsInProto)
9228    ConvertedArgs.reserve(NumArgsInProto);
9229  else
9230    ConvertedArgs.reserve(NumArgs);
9231
9232  VariadicCallType CallType =
9233    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9234  SmallVector<Expr *, 8> AllArgs;
9235  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9236                                        Proto, 0, Args, NumArgs, AllArgs,
9237                                        CallType, AllowExplicit);
9238  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9239
9240  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9241
9242  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9243                       Proto, Loc);
9244
9245  return Invalid;
9246}
9247
9248static inline bool
9249CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9250                                       const FunctionDecl *FnDecl) {
9251  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9252  if (isa<NamespaceDecl>(DC)) {
9253    return SemaRef.Diag(FnDecl->getLocation(),
9254                        diag::err_operator_new_delete_declared_in_namespace)
9255      << FnDecl->getDeclName();
9256  }
9257
9258  if (isa<TranslationUnitDecl>(DC) &&
9259      FnDecl->getStorageClass() == SC_Static) {
9260    return SemaRef.Diag(FnDecl->getLocation(),
9261                        diag::err_operator_new_delete_declared_static)
9262      << FnDecl->getDeclName();
9263  }
9264
9265  return false;
9266}
9267
9268static inline bool
9269CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9270                            CanQualType ExpectedResultType,
9271                            CanQualType ExpectedFirstParamType,
9272                            unsigned DependentParamTypeDiag,
9273                            unsigned InvalidParamTypeDiag) {
9274  QualType ResultType =
9275    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9276
9277  // Check that the result type is not dependent.
9278  if (ResultType->isDependentType())
9279    return SemaRef.Diag(FnDecl->getLocation(),
9280                        diag::err_operator_new_delete_dependent_result_type)
9281    << FnDecl->getDeclName() << ExpectedResultType;
9282
9283  // Check that the result type is what we expect.
9284  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9285    return SemaRef.Diag(FnDecl->getLocation(),
9286                        diag::err_operator_new_delete_invalid_result_type)
9287    << FnDecl->getDeclName() << ExpectedResultType;
9288
9289  // A function template must have at least 2 parameters.
9290  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9291    return SemaRef.Diag(FnDecl->getLocation(),
9292                      diag::err_operator_new_delete_template_too_few_parameters)
9293        << FnDecl->getDeclName();
9294
9295  // The function decl must have at least 1 parameter.
9296  if (FnDecl->getNumParams() == 0)
9297    return SemaRef.Diag(FnDecl->getLocation(),
9298                        diag::err_operator_new_delete_too_few_parameters)
9299      << FnDecl->getDeclName();
9300
9301  // Check the first parameter type is not dependent.
9302  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9303  if (FirstParamType->isDependentType())
9304    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9305      << FnDecl->getDeclName() << ExpectedFirstParamType;
9306
9307  // Check that the first parameter type is what we expect.
9308  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9309      ExpectedFirstParamType)
9310    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9311    << FnDecl->getDeclName() << ExpectedFirstParamType;
9312
9313  return false;
9314}
9315
9316static bool
9317CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9318  // C++ [basic.stc.dynamic.allocation]p1:
9319  //   A program is ill-formed if an allocation function is declared in a
9320  //   namespace scope other than global scope or declared static in global
9321  //   scope.
9322  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9323    return true;
9324
9325  CanQualType SizeTy =
9326    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9327
9328  // C++ [basic.stc.dynamic.allocation]p1:
9329  //  The return type shall be void*. The first parameter shall have type
9330  //  std::size_t.
9331  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9332                                  SizeTy,
9333                                  diag::err_operator_new_dependent_param_type,
9334                                  diag::err_operator_new_param_type))
9335    return true;
9336
9337  // C++ [basic.stc.dynamic.allocation]p1:
9338  //  The first parameter shall not have an associated default argument.
9339  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9340    return SemaRef.Diag(FnDecl->getLocation(),
9341                        diag::err_operator_new_default_arg)
9342      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9343
9344  return false;
9345}
9346
9347static bool
9348CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9349  // C++ [basic.stc.dynamic.deallocation]p1:
9350  //   A program is ill-formed if deallocation functions are declared in a
9351  //   namespace scope other than global scope or declared static in global
9352  //   scope.
9353  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9354    return true;
9355
9356  // C++ [basic.stc.dynamic.deallocation]p2:
9357  //   Each deallocation function shall return void and its first parameter
9358  //   shall be void*.
9359  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9360                                  SemaRef.Context.VoidPtrTy,
9361                                 diag::err_operator_delete_dependent_param_type,
9362                                 diag::err_operator_delete_param_type))
9363    return true;
9364
9365  return false;
9366}
9367
9368/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9369/// of this overloaded operator is well-formed. If so, returns false;
9370/// otherwise, emits appropriate diagnostics and returns true.
9371bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9372  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9373         "Expected an overloaded operator declaration");
9374
9375  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9376
9377  // C++ [over.oper]p5:
9378  //   The allocation and deallocation functions, operator new,
9379  //   operator new[], operator delete and operator delete[], are
9380  //   described completely in 3.7.3. The attributes and restrictions
9381  //   found in the rest of this subclause do not apply to them unless
9382  //   explicitly stated in 3.7.3.
9383  if (Op == OO_Delete || Op == OO_Array_Delete)
9384    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9385
9386  if (Op == OO_New || Op == OO_Array_New)
9387    return CheckOperatorNewDeclaration(*this, FnDecl);
9388
9389  // C++ [over.oper]p6:
9390  //   An operator function shall either be a non-static member
9391  //   function or be a non-member function and have at least one
9392  //   parameter whose type is a class, a reference to a class, an
9393  //   enumeration, or a reference to an enumeration.
9394  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9395    if (MethodDecl->isStatic())
9396      return Diag(FnDecl->getLocation(),
9397                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9398  } else {
9399    bool ClassOrEnumParam = false;
9400    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9401                                   ParamEnd = FnDecl->param_end();
9402         Param != ParamEnd; ++Param) {
9403      QualType ParamType = (*Param)->getType().getNonReferenceType();
9404      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9405          ParamType->isEnumeralType()) {
9406        ClassOrEnumParam = true;
9407        break;
9408      }
9409    }
9410
9411    if (!ClassOrEnumParam)
9412      return Diag(FnDecl->getLocation(),
9413                  diag::err_operator_overload_needs_class_or_enum)
9414        << FnDecl->getDeclName();
9415  }
9416
9417  // C++ [over.oper]p8:
9418  //   An operator function cannot have default arguments (8.3.6),
9419  //   except where explicitly stated below.
9420  //
9421  // Only the function-call operator allows default arguments
9422  // (C++ [over.call]p1).
9423  if (Op != OO_Call) {
9424    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9425         Param != FnDecl->param_end(); ++Param) {
9426      if ((*Param)->hasDefaultArg())
9427        return Diag((*Param)->getLocation(),
9428                    diag::err_operator_overload_default_arg)
9429          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9430    }
9431  }
9432
9433  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9434    { false, false, false }
9435#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9436    , { Unary, Binary, MemberOnly }
9437#include "clang/Basic/OperatorKinds.def"
9438  };
9439
9440  bool CanBeUnaryOperator = OperatorUses[Op][0];
9441  bool CanBeBinaryOperator = OperatorUses[Op][1];
9442  bool MustBeMemberOperator = OperatorUses[Op][2];
9443
9444  // C++ [over.oper]p8:
9445  //   [...] Operator functions cannot have more or fewer parameters
9446  //   than the number required for the corresponding operator, as
9447  //   described in the rest of this subclause.
9448  unsigned NumParams = FnDecl->getNumParams()
9449                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9450  if (Op != OO_Call &&
9451      ((NumParams == 1 && !CanBeUnaryOperator) ||
9452       (NumParams == 2 && !CanBeBinaryOperator) ||
9453       (NumParams < 1) || (NumParams > 2))) {
9454    // We have the wrong number of parameters.
9455    unsigned ErrorKind;
9456    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9457      ErrorKind = 2;  // 2 -> unary or binary.
9458    } else if (CanBeUnaryOperator) {
9459      ErrorKind = 0;  // 0 -> unary
9460    } else {
9461      assert(CanBeBinaryOperator &&
9462             "All non-call overloaded operators are unary or binary!");
9463      ErrorKind = 1;  // 1 -> binary
9464    }
9465
9466    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9467      << FnDecl->getDeclName() << NumParams << ErrorKind;
9468  }
9469
9470  // Overloaded operators other than operator() cannot be variadic.
9471  if (Op != OO_Call &&
9472      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9473    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9474      << FnDecl->getDeclName();
9475  }
9476
9477  // Some operators must be non-static member functions.
9478  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9479    return Diag(FnDecl->getLocation(),
9480                diag::err_operator_overload_must_be_member)
9481      << FnDecl->getDeclName();
9482  }
9483
9484  // C++ [over.inc]p1:
9485  //   The user-defined function called operator++ implements the
9486  //   prefix and postfix ++ operator. If this function is a member
9487  //   function with no parameters, or a non-member function with one
9488  //   parameter of class or enumeration type, it defines the prefix
9489  //   increment operator ++ for objects of that type. If the function
9490  //   is a member function with one parameter (which shall be of type
9491  //   int) or a non-member function with two parameters (the second
9492  //   of which shall be of type int), it defines the postfix
9493  //   increment operator ++ for objects of that type.
9494  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9495    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9496    bool ParamIsInt = false;
9497    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9498      ParamIsInt = BT->getKind() == BuiltinType::Int;
9499
9500    if (!ParamIsInt)
9501      return Diag(LastParam->getLocation(),
9502                  diag::err_operator_overload_post_incdec_must_be_int)
9503        << LastParam->getType() << (Op == OO_MinusMinus);
9504  }
9505
9506  return false;
9507}
9508
9509/// CheckLiteralOperatorDeclaration - Check whether the declaration
9510/// of this literal operator function is well-formed. If so, returns
9511/// false; otherwise, emits appropriate diagnostics and returns true.
9512bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9513  if (isa<CXXMethodDecl>(FnDecl)) {
9514    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9515      << FnDecl->getDeclName();
9516    return true;
9517  }
9518
9519  if (FnDecl->isExternC()) {
9520    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9521    return true;
9522  }
9523
9524  bool Valid = false;
9525
9526  // This might be the definition of a literal operator template.
9527  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9528  // This might be a specialization of a literal operator template.
9529  if (!TpDecl)
9530    TpDecl = FnDecl->getPrimaryTemplate();
9531
9532  // template <char...> type operator "" name() is the only valid template
9533  // signature, and the only valid signature with no parameters.
9534  if (TpDecl) {
9535    if (FnDecl->param_size() == 0) {
9536      // Must have only one template parameter
9537      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9538      if (Params->size() == 1) {
9539        NonTypeTemplateParmDecl *PmDecl =
9540          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9541
9542        // The template parameter must be a char parameter pack.
9543        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9544            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9545          Valid = true;
9546      }
9547    }
9548  } else if (FnDecl->param_size()) {
9549    // Check the first parameter
9550    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9551
9552    QualType T = (*Param)->getType().getUnqualifiedType();
9553
9554    // unsigned long long int, long double, and any character type are allowed
9555    // as the only parameters.
9556    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9557        Context.hasSameType(T, Context.LongDoubleTy) ||
9558        Context.hasSameType(T, Context.CharTy) ||
9559        Context.hasSameType(T, Context.WCharTy) ||
9560        Context.hasSameType(T, Context.Char16Ty) ||
9561        Context.hasSameType(T, Context.Char32Ty)) {
9562      if (++Param == FnDecl->param_end())
9563        Valid = true;
9564      goto FinishedParams;
9565    }
9566
9567    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9568    const PointerType *PT = T->getAs<PointerType>();
9569    if (!PT)
9570      goto FinishedParams;
9571    T = PT->getPointeeType();
9572    if (!T.isConstQualified() || T.isVolatileQualified())
9573      goto FinishedParams;
9574    T = T.getUnqualifiedType();
9575
9576    // Move on to the second parameter;
9577    ++Param;
9578
9579    // If there is no second parameter, the first must be a const char *
9580    if (Param == FnDecl->param_end()) {
9581      if (Context.hasSameType(T, Context.CharTy))
9582        Valid = true;
9583      goto FinishedParams;
9584    }
9585
9586    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9587    // are allowed as the first parameter to a two-parameter function
9588    if (!(Context.hasSameType(T, Context.CharTy) ||
9589          Context.hasSameType(T, Context.WCharTy) ||
9590          Context.hasSameType(T, Context.Char16Ty) ||
9591          Context.hasSameType(T, Context.Char32Ty)))
9592      goto FinishedParams;
9593
9594    // The second and final parameter must be an std::size_t
9595    T = (*Param)->getType().getUnqualifiedType();
9596    if (Context.hasSameType(T, Context.getSizeType()) &&
9597        ++Param == FnDecl->param_end())
9598      Valid = true;
9599  }
9600
9601  // FIXME: This diagnostic is absolutely terrible.
9602FinishedParams:
9603  if (!Valid) {
9604    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9605      << FnDecl->getDeclName();
9606    return true;
9607  }
9608
9609  // A parameter-declaration-clause containing a default argument is not
9610  // equivalent to any of the permitted forms.
9611  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9612                                    ParamEnd = FnDecl->param_end();
9613       Param != ParamEnd; ++Param) {
9614    if ((*Param)->hasDefaultArg()) {
9615      Diag((*Param)->getDefaultArgRange().getBegin(),
9616           diag::err_literal_operator_default_argument)
9617        << (*Param)->getDefaultArgRange();
9618      break;
9619    }
9620  }
9621
9622  StringRef LiteralName
9623    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9624  if (LiteralName[0] != '_') {
9625    // C++11 [usrlit.suffix]p1:
9626    //   Literal suffix identifiers that do not start with an underscore
9627    //   are reserved for future standardization.
9628    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9629  }
9630
9631  return false;
9632}
9633
9634/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9635/// linkage specification, including the language and (if present)
9636/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9637/// the location of the language string literal, which is provided
9638/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9639/// the '{' brace. Otherwise, this linkage specification does not
9640/// have any braces.
9641Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9642                                           SourceLocation LangLoc,
9643                                           StringRef Lang,
9644                                           SourceLocation LBraceLoc) {
9645  LinkageSpecDecl::LanguageIDs Language;
9646  if (Lang == "\"C\"")
9647    Language = LinkageSpecDecl::lang_c;
9648  else if (Lang == "\"C++\"")
9649    Language = LinkageSpecDecl::lang_cxx;
9650  else {
9651    Diag(LangLoc, diag::err_bad_language);
9652    return 0;
9653  }
9654
9655  // FIXME: Add all the various semantics of linkage specifications
9656
9657  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9658                                               ExternLoc, LangLoc, Language);
9659  CurContext->addDecl(D);
9660  PushDeclContext(S, D);
9661  return D;
9662}
9663
9664/// ActOnFinishLinkageSpecification - Complete the definition of
9665/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9666/// valid, it's the position of the closing '}' brace in a linkage
9667/// specification that uses braces.
9668Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9669                                            Decl *LinkageSpec,
9670                                            SourceLocation RBraceLoc) {
9671  if (LinkageSpec) {
9672    if (RBraceLoc.isValid()) {
9673      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9674      LSDecl->setRBraceLoc(RBraceLoc);
9675    }
9676    PopDeclContext();
9677  }
9678  return LinkageSpec;
9679}
9680
9681/// \brief Perform semantic analysis for the variable declaration that
9682/// occurs within a C++ catch clause, returning the newly-created
9683/// variable.
9684VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9685                                         TypeSourceInfo *TInfo,
9686                                         SourceLocation StartLoc,
9687                                         SourceLocation Loc,
9688                                         IdentifierInfo *Name) {
9689  bool Invalid = false;
9690  QualType ExDeclType = TInfo->getType();
9691
9692  // Arrays and functions decay.
9693  if (ExDeclType->isArrayType())
9694    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9695  else if (ExDeclType->isFunctionType())
9696    ExDeclType = Context.getPointerType(ExDeclType);
9697
9698  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9699  // The exception-declaration shall not denote a pointer or reference to an
9700  // incomplete type, other than [cv] void*.
9701  // N2844 forbids rvalue references.
9702  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9703    Diag(Loc, diag::err_catch_rvalue_ref);
9704    Invalid = true;
9705  }
9706
9707  QualType BaseType = ExDeclType;
9708  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9709  unsigned DK = diag::err_catch_incomplete;
9710  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9711    BaseType = Ptr->getPointeeType();
9712    Mode = 1;
9713    DK = diag::err_catch_incomplete_ptr;
9714  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9715    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9716    BaseType = Ref->getPointeeType();
9717    Mode = 2;
9718    DK = diag::err_catch_incomplete_ref;
9719  }
9720  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9721      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9722    Invalid = true;
9723
9724  if (!Invalid && !ExDeclType->isDependentType() &&
9725      RequireNonAbstractType(Loc, ExDeclType,
9726                             diag::err_abstract_type_in_decl,
9727                             AbstractVariableType))
9728    Invalid = true;
9729
9730  // Only the non-fragile NeXT runtime currently supports C++ catches
9731  // of ObjC types, and no runtime supports catching ObjC types by value.
9732  if (!Invalid && getLangOpts().ObjC1) {
9733    QualType T = ExDeclType;
9734    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9735      T = RT->getPointeeType();
9736
9737    if (T->isObjCObjectType()) {
9738      Diag(Loc, diag::err_objc_object_catch);
9739      Invalid = true;
9740    } else if (T->isObjCObjectPointerType()) {
9741      // FIXME: should this be a test for macosx-fragile specifically?
9742      if (getLangOpts().ObjCRuntime.isFragile())
9743        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9744    }
9745  }
9746
9747  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9748                                    ExDeclType, TInfo, SC_None, SC_None);
9749  ExDecl->setExceptionVariable(true);
9750
9751  // In ARC, infer 'retaining' for variables of retainable type.
9752  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9753    Invalid = true;
9754
9755  if (!Invalid && !ExDeclType->isDependentType()) {
9756    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9757      // C++ [except.handle]p16:
9758      //   The object declared in an exception-declaration or, if the
9759      //   exception-declaration does not specify a name, a temporary (12.2) is
9760      //   copy-initialized (8.5) from the exception object. [...]
9761      //   The object is destroyed when the handler exits, after the destruction
9762      //   of any automatic objects initialized within the handler.
9763      //
9764      // We just pretend to initialize the object with itself, then make sure
9765      // it can be destroyed later.
9766      QualType initType = ExDeclType;
9767
9768      InitializedEntity entity =
9769        InitializedEntity::InitializeVariable(ExDecl);
9770      InitializationKind initKind =
9771        InitializationKind::CreateCopy(Loc, SourceLocation());
9772
9773      Expr *opaqueValue =
9774        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9775      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9776      ExprResult result = sequence.Perform(*this, entity, initKind,
9777                                           MultiExprArg(&opaqueValue, 1));
9778      if (result.isInvalid())
9779        Invalid = true;
9780      else {
9781        // If the constructor used was non-trivial, set this as the
9782        // "initializer".
9783        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9784        if (!construct->getConstructor()->isTrivial()) {
9785          Expr *init = MaybeCreateExprWithCleanups(construct);
9786          ExDecl->setInit(init);
9787        }
9788
9789        // And make sure it's destructable.
9790        FinalizeVarWithDestructor(ExDecl, recordType);
9791      }
9792    }
9793  }
9794
9795  if (Invalid)
9796    ExDecl->setInvalidDecl();
9797
9798  return ExDecl;
9799}
9800
9801/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9802/// handler.
9803Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9804  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9805  bool Invalid = D.isInvalidType();
9806
9807  // Check for unexpanded parameter packs.
9808  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9809                                               UPPC_ExceptionType)) {
9810    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9811                                             D.getIdentifierLoc());
9812    Invalid = true;
9813  }
9814
9815  IdentifierInfo *II = D.getIdentifier();
9816  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9817                                             LookupOrdinaryName,
9818                                             ForRedeclaration)) {
9819    // The scope should be freshly made just for us. There is just no way
9820    // it contains any previous declaration.
9821    assert(!S->isDeclScope(PrevDecl));
9822    if (PrevDecl->isTemplateParameter()) {
9823      // Maybe we will complain about the shadowed template parameter.
9824      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9825      PrevDecl = 0;
9826    }
9827  }
9828
9829  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9830    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9831      << D.getCXXScopeSpec().getRange();
9832    Invalid = true;
9833  }
9834
9835  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9836                                              D.getLocStart(),
9837                                              D.getIdentifierLoc(),
9838                                              D.getIdentifier());
9839  if (Invalid)
9840    ExDecl->setInvalidDecl();
9841
9842  // Add the exception declaration into this scope.
9843  if (II)
9844    PushOnScopeChains(ExDecl, S);
9845  else
9846    CurContext->addDecl(ExDecl);
9847
9848  ProcessDeclAttributes(S, ExDecl, D);
9849  return ExDecl;
9850}
9851
9852Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9853                                         Expr *AssertExpr,
9854                                         Expr *AssertMessageExpr,
9855                                         SourceLocation RParenLoc) {
9856  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9857
9858  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9859    return 0;
9860
9861  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9862                                      AssertMessage, RParenLoc, false);
9863}
9864
9865Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9866                                         Expr *AssertExpr,
9867                                         StringLiteral *AssertMessage,
9868                                         SourceLocation RParenLoc,
9869                                         bool Failed) {
9870  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9871      !Failed) {
9872    // In a static_assert-declaration, the constant-expression shall be a
9873    // constant expression that can be contextually converted to bool.
9874    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9875    if (Converted.isInvalid())
9876      Failed = true;
9877
9878    llvm::APSInt Cond;
9879    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9880          diag::err_static_assert_expression_is_not_constant,
9881          /*AllowFold=*/false).isInvalid())
9882      Failed = true;
9883
9884    if (!Failed && !Cond) {
9885      llvm::SmallString<256> MsgBuffer;
9886      llvm::raw_svector_ostream Msg(MsgBuffer);
9887      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
9888      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9889        << Msg.str() << AssertExpr->getSourceRange();
9890      Failed = true;
9891    }
9892  }
9893
9894  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9895                                        AssertExpr, AssertMessage, RParenLoc,
9896                                        Failed);
9897
9898  CurContext->addDecl(Decl);
9899  return Decl;
9900}
9901
9902/// \brief Perform semantic analysis of the given friend type declaration.
9903///
9904/// \returns A friend declaration that.
9905FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
9906                                      SourceLocation FriendLoc,
9907                                      TypeSourceInfo *TSInfo) {
9908  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9909
9910  QualType T = TSInfo->getType();
9911  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9912
9913  // C++03 [class.friend]p2:
9914  //   An elaborated-type-specifier shall be used in a friend declaration
9915  //   for a class.*
9916  //
9917  //   * The class-key of the elaborated-type-specifier is required.
9918  if (!ActiveTemplateInstantiations.empty()) {
9919    // Do not complain about the form of friend template types during
9920    // template instantiation; we will already have complained when the
9921    // template was declared.
9922  } else if (!T->isElaboratedTypeSpecifier()) {
9923    // If we evaluated the type to a record type, suggest putting
9924    // a tag in front.
9925    if (const RecordType *RT = T->getAs<RecordType>()) {
9926      RecordDecl *RD = RT->getDecl();
9927
9928      std::string InsertionText = std::string(" ") + RD->getKindName();
9929
9930      Diag(TypeRange.getBegin(),
9931           getLangOpts().CPlusPlus0x ?
9932             diag::warn_cxx98_compat_unelaborated_friend_type :
9933             diag::ext_unelaborated_friend_type)
9934        << (unsigned) RD->getTagKind()
9935        << T
9936        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9937                                      InsertionText);
9938    } else {
9939      Diag(FriendLoc,
9940           getLangOpts().CPlusPlus0x ?
9941             diag::warn_cxx98_compat_nonclass_type_friend :
9942             diag::ext_nonclass_type_friend)
9943        << T
9944        << TypeRange;
9945    }
9946  } else if (T->getAs<EnumType>()) {
9947    Diag(FriendLoc,
9948         getLangOpts().CPlusPlus0x ?
9949           diag::warn_cxx98_compat_enum_friend :
9950           diag::ext_enum_friend)
9951      << T
9952      << TypeRange;
9953  }
9954
9955  // C++11 [class.friend]p3:
9956  //   A friend declaration that does not declare a function shall have one
9957  //   of the following forms:
9958  //     friend elaborated-type-specifier ;
9959  //     friend simple-type-specifier ;
9960  //     friend typename-specifier ;
9961  if (getLangOpts().CPlusPlus0x && LocStart != FriendLoc)
9962    Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
9963
9964  //   If the type specifier in a friend declaration designates a (possibly
9965  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9966  //   the friend declaration is ignored.
9967  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
9968}
9969
9970/// Handle a friend tag declaration where the scope specifier was
9971/// templated.
9972Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9973                                    unsigned TagSpec, SourceLocation TagLoc,
9974                                    CXXScopeSpec &SS,
9975                                    IdentifierInfo *Name, SourceLocation NameLoc,
9976                                    AttributeList *Attr,
9977                                    MultiTemplateParamsArg TempParamLists) {
9978  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9979
9980  bool isExplicitSpecialization = false;
9981  bool Invalid = false;
9982
9983  if (TemplateParameterList *TemplateParams
9984        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9985                                                  TempParamLists.data(),
9986                                                  TempParamLists.size(),
9987                                                  /*friend*/ true,
9988                                                  isExplicitSpecialization,
9989                                                  Invalid)) {
9990    if (TemplateParams->size() > 0) {
9991      // This is a declaration of a class template.
9992      if (Invalid)
9993        return 0;
9994
9995      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9996                                SS, Name, NameLoc, Attr,
9997                                TemplateParams, AS_public,
9998                                /*ModulePrivateLoc=*/SourceLocation(),
9999                                TempParamLists.size() - 1,
10000                                TempParamLists.data()).take();
10001    } else {
10002      // The "template<>" header is extraneous.
10003      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10004        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10005      isExplicitSpecialization = true;
10006    }
10007  }
10008
10009  if (Invalid) return 0;
10010
10011  bool isAllExplicitSpecializations = true;
10012  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10013    if (TempParamLists[I]->size()) {
10014      isAllExplicitSpecializations = false;
10015      break;
10016    }
10017  }
10018
10019  // FIXME: don't ignore attributes.
10020
10021  // If it's explicit specializations all the way down, just forget
10022  // about the template header and build an appropriate non-templated
10023  // friend.  TODO: for source fidelity, remember the headers.
10024  if (isAllExplicitSpecializations) {
10025    if (SS.isEmpty()) {
10026      bool Owned = false;
10027      bool IsDependent = false;
10028      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10029                      Attr, AS_public,
10030                      /*ModulePrivateLoc=*/SourceLocation(),
10031                      MultiTemplateParamsArg(), Owned, IsDependent,
10032                      /*ScopedEnumKWLoc=*/SourceLocation(),
10033                      /*ScopedEnumUsesClassTag=*/false,
10034                      /*UnderlyingType=*/TypeResult());
10035    }
10036
10037    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10038    ElaboratedTypeKeyword Keyword
10039      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10040    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10041                                   *Name, NameLoc);
10042    if (T.isNull())
10043      return 0;
10044
10045    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10046    if (isa<DependentNameType>(T)) {
10047      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10048      TL.setElaboratedKeywordLoc(TagLoc);
10049      TL.setQualifierLoc(QualifierLoc);
10050      TL.setNameLoc(NameLoc);
10051    } else {
10052      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10053      TL.setElaboratedKeywordLoc(TagLoc);
10054      TL.setQualifierLoc(QualifierLoc);
10055      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10056    }
10057
10058    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10059                                            TSI, FriendLoc);
10060    Friend->setAccess(AS_public);
10061    CurContext->addDecl(Friend);
10062    return Friend;
10063  }
10064
10065  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10066
10067
10068
10069  // Handle the case of a templated-scope friend class.  e.g.
10070  //   template <class T> class A<T>::B;
10071  // FIXME: we don't support these right now.
10072  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10073  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10074  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10075  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10076  TL.setElaboratedKeywordLoc(TagLoc);
10077  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10078  TL.setNameLoc(NameLoc);
10079
10080  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10081                                          TSI, FriendLoc);
10082  Friend->setAccess(AS_public);
10083  Friend->setUnsupportedFriend(true);
10084  CurContext->addDecl(Friend);
10085  return Friend;
10086}
10087
10088
10089/// Handle a friend type declaration.  This works in tandem with
10090/// ActOnTag.
10091///
10092/// Notes on friend class templates:
10093///
10094/// We generally treat friend class declarations as if they were
10095/// declaring a class.  So, for example, the elaborated type specifier
10096/// in a friend declaration is required to obey the restrictions of a
10097/// class-head (i.e. no typedefs in the scope chain), template
10098/// parameters are required to match up with simple template-ids, &c.
10099/// However, unlike when declaring a template specialization, it's
10100/// okay to refer to a template specialization without an empty
10101/// template parameter declaration, e.g.
10102///   friend class A<T>::B<unsigned>;
10103/// We permit this as a special case; if there are any template
10104/// parameters present at all, require proper matching, i.e.
10105///   template <> template \<class T> friend class A<int>::B;
10106Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10107                                MultiTemplateParamsArg TempParams) {
10108  SourceLocation Loc = DS.getLocStart();
10109
10110  assert(DS.isFriendSpecified());
10111  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10112
10113  // Try to convert the decl specifier to a type.  This works for
10114  // friend templates because ActOnTag never produces a ClassTemplateDecl
10115  // for a TUK_Friend.
10116  Declarator TheDeclarator(DS, Declarator::MemberContext);
10117  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10118  QualType T = TSI->getType();
10119  if (TheDeclarator.isInvalidType())
10120    return 0;
10121
10122  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10123    return 0;
10124
10125  // This is definitely an error in C++98.  It's probably meant to
10126  // be forbidden in C++0x, too, but the specification is just
10127  // poorly written.
10128  //
10129  // The problem is with declarations like the following:
10130  //   template <T> friend A<T>::foo;
10131  // where deciding whether a class C is a friend or not now hinges
10132  // on whether there exists an instantiation of A that causes
10133  // 'foo' to equal C.  There are restrictions on class-heads
10134  // (which we declare (by fiat) elaborated friend declarations to
10135  // be) that makes this tractable.
10136  //
10137  // FIXME: handle "template <> friend class A<T>;", which
10138  // is possibly well-formed?  Who even knows?
10139  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10140    Diag(Loc, diag::err_tagless_friend_type_template)
10141      << DS.getSourceRange();
10142    return 0;
10143  }
10144
10145  // C++98 [class.friend]p1: A friend of a class is a function
10146  //   or class that is not a member of the class . . .
10147  // This is fixed in DR77, which just barely didn't make the C++03
10148  // deadline.  It's also a very silly restriction that seriously
10149  // affects inner classes and which nobody else seems to implement;
10150  // thus we never diagnose it, not even in -pedantic.
10151  //
10152  // But note that we could warn about it: it's always useless to
10153  // friend one of your own members (it's not, however, worthless to
10154  // friend a member of an arbitrary specialization of your template).
10155
10156  Decl *D;
10157  if (unsigned NumTempParamLists = TempParams.size())
10158    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10159                                   NumTempParamLists,
10160                                   TempParams.data(),
10161                                   TSI,
10162                                   DS.getFriendSpecLoc());
10163  else
10164    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10165
10166  if (!D)
10167    return 0;
10168
10169  D->setAccess(AS_public);
10170  CurContext->addDecl(D);
10171
10172  return D;
10173}
10174
10175Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10176                                    MultiTemplateParamsArg TemplateParams) {
10177  const DeclSpec &DS = D.getDeclSpec();
10178
10179  assert(DS.isFriendSpecified());
10180  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10181
10182  SourceLocation Loc = D.getIdentifierLoc();
10183  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10184
10185  // C++ [class.friend]p1
10186  //   A friend of a class is a function or class....
10187  // Note that this sees through typedefs, which is intended.
10188  // It *doesn't* see through dependent types, which is correct
10189  // according to [temp.arg.type]p3:
10190  //   If a declaration acquires a function type through a
10191  //   type dependent on a template-parameter and this causes
10192  //   a declaration that does not use the syntactic form of a
10193  //   function declarator to have a function type, the program
10194  //   is ill-formed.
10195  if (!TInfo->getType()->isFunctionType()) {
10196    Diag(Loc, diag::err_unexpected_friend);
10197
10198    // It might be worthwhile to try to recover by creating an
10199    // appropriate declaration.
10200    return 0;
10201  }
10202
10203  // C++ [namespace.memdef]p3
10204  //  - If a friend declaration in a non-local class first declares a
10205  //    class or function, the friend class or function is a member
10206  //    of the innermost enclosing namespace.
10207  //  - The name of the friend is not found by simple name lookup
10208  //    until a matching declaration is provided in that namespace
10209  //    scope (either before or after the class declaration granting
10210  //    friendship).
10211  //  - If a friend function is called, its name may be found by the
10212  //    name lookup that considers functions from namespaces and
10213  //    classes associated with the types of the function arguments.
10214  //  - When looking for a prior declaration of a class or a function
10215  //    declared as a friend, scopes outside the innermost enclosing
10216  //    namespace scope are not considered.
10217
10218  CXXScopeSpec &SS = D.getCXXScopeSpec();
10219  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10220  DeclarationName Name = NameInfo.getName();
10221  assert(Name);
10222
10223  // Check for unexpanded parameter packs.
10224  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10225      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10226      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10227    return 0;
10228
10229  // The context we found the declaration in, or in which we should
10230  // create the declaration.
10231  DeclContext *DC;
10232  Scope *DCScope = S;
10233  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10234                        ForRedeclaration);
10235
10236  // FIXME: there are different rules in local classes
10237
10238  // There are four cases here.
10239  //   - There's no scope specifier, in which case we just go to the
10240  //     appropriate scope and look for a function or function template
10241  //     there as appropriate.
10242  // Recover from invalid scope qualifiers as if they just weren't there.
10243  if (SS.isInvalid() || !SS.isSet()) {
10244    // C++0x [namespace.memdef]p3:
10245    //   If the name in a friend declaration is neither qualified nor
10246    //   a template-id and the declaration is a function or an
10247    //   elaborated-type-specifier, the lookup to determine whether
10248    //   the entity has been previously declared shall not consider
10249    //   any scopes outside the innermost enclosing namespace.
10250    // C++0x [class.friend]p11:
10251    //   If a friend declaration appears in a local class and the name
10252    //   specified is an unqualified name, a prior declaration is
10253    //   looked up without considering scopes that are outside the
10254    //   innermost enclosing non-class scope. For a friend function
10255    //   declaration, if there is no prior declaration, the program is
10256    //   ill-formed.
10257    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10258    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10259
10260    // Find the appropriate context according to the above.
10261    DC = CurContext;
10262    while (true) {
10263      // Skip class contexts.  If someone can cite chapter and verse
10264      // for this behavior, that would be nice --- it's what GCC and
10265      // EDG do, and it seems like a reasonable intent, but the spec
10266      // really only says that checks for unqualified existing
10267      // declarations should stop at the nearest enclosing namespace,
10268      // not that they should only consider the nearest enclosing
10269      // namespace.
10270      while (DC->isRecord() || DC->isTransparentContext())
10271        DC = DC->getParent();
10272
10273      LookupQualifiedName(Previous, DC);
10274
10275      // TODO: decide what we think about using declarations.
10276      if (isLocal || !Previous.empty())
10277        break;
10278
10279      if (isTemplateId) {
10280        if (isa<TranslationUnitDecl>(DC)) break;
10281      } else {
10282        if (DC->isFileContext()) break;
10283      }
10284      DC = DC->getParent();
10285    }
10286
10287    // C++ [class.friend]p1: A friend of a class is a function or
10288    //   class that is not a member of the class . . .
10289    // C++11 changes this for both friend types and functions.
10290    // Most C++ 98 compilers do seem to give an error here, so
10291    // we do, too.
10292    if (!Previous.empty() && DC->Equals(CurContext))
10293      Diag(DS.getFriendSpecLoc(),
10294           getLangOpts().CPlusPlus0x ?
10295             diag::warn_cxx98_compat_friend_is_member :
10296             diag::err_friend_is_member);
10297
10298    DCScope = getScopeForDeclContext(S, DC);
10299
10300    // C++ [class.friend]p6:
10301    //   A function can be defined in a friend declaration of a class if and
10302    //   only if the class is a non-local class (9.8), the function name is
10303    //   unqualified, and the function has namespace scope.
10304    if (isLocal && D.isFunctionDefinition()) {
10305      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10306    }
10307
10308  //   - There's a non-dependent scope specifier, in which case we
10309  //     compute it and do a previous lookup there for a function
10310  //     or function template.
10311  } else if (!SS.getScopeRep()->isDependent()) {
10312    DC = computeDeclContext(SS);
10313    if (!DC) return 0;
10314
10315    if (RequireCompleteDeclContext(SS, DC)) return 0;
10316
10317    LookupQualifiedName(Previous, DC);
10318
10319    // Ignore things found implicitly in the wrong scope.
10320    // TODO: better diagnostics for this case.  Suggesting the right
10321    // qualified scope would be nice...
10322    LookupResult::Filter F = Previous.makeFilter();
10323    while (F.hasNext()) {
10324      NamedDecl *D = F.next();
10325      if (!DC->InEnclosingNamespaceSetOf(
10326              D->getDeclContext()->getRedeclContext()))
10327        F.erase();
10328    }
10329    F.done();
10330
10331    if (Previous.empty()) {
10332      D.setInvalidType();
10333      Diag(Loc, diag::err_qualified_friend_not_found)
10334          << Name << TInfo->getType();
10335      return 0;
10336    }
10337
10338    // C++ [class.friend]p1: A friend of a class is a function or
10339    //   class that is not a member of the class . . .
10340    if (DC->Equals(CurContext))
10341      Diag(DS.getFriendSpecLoc(),
10342           getLangOpts().CPlusPlus0x ?
10343             diag::warn_cxx98_compat_friend_is_member :
10344             diag::err_friend_is_member);
10345
10346    if (D.isFunctionDefinition()) {
10347      // C++ [class.friend]p6:
10348      //   A function can be defined in a friend declaration of a class if and
10349      //   only if the class is a non-local class (9.8), the function name is
10350      //   unqualified, and the function has namespace scope.
10351      SemaDiagnosticBuilder DB
10352        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10353
10354      DB << SS.getScopeRep();
10355      if (DC->isFileContext())
10356        DB << FixItHint::CreateRemoval(SS.getRange());
10357      SS.clear();
10358    }
10359
10360  //   - There's a scope specifier that does not match any template
10361  //     parameter lists, in which case we use some arbitrary context,
10362  //     create a method or method template, and wait for instantiation.
10363  //   - There's a scope specifier that does match some template
10364  //     parameter lists, which we don't handle right now.
10365  } else {
10366    if (D.isFunctionDefinition()) {
10367      // C++ [class.friend]p6:
10368      //   A function can be defined in a friend declaration of a class if and
10369      //   only if the class is a non-local class (9.8), the function name is
10370      //   unqualified, and the function has namespace scope.
10371      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10372        << SS.getScopeRep();
10373    }
10374
10375    DC = CurContext;
10376    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10377  }
10378
10379  if (!DC->isRecord()) {
10380    // This implies that it has to be an operator or function.
10381    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10382        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10383        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10384      Diag(Loc, diag::err_introducing_special_friend) <<
10385        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10386         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10387      return 0;
10388    }
10389  }
10390
10391  // FIXME: This is an egregious hack to cope with cases where the scope stack
10392  // does not contain the declaration context, i.e., in an out-of-line
10393  // definition of a class.
10394  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10395  if (!DCScope) {
10396    FakeDCScope.setEntity(DC);
10397    DCScope = &FakeDCScope;
10398  }
10399
10400  bool AddToScope = true;
10401  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10402                                          TemplateParams, AddToScope);
10403  if (!ND) return 0;
10404
10405  assert(ND->getDeclContext() == DC);
10406  assert(ND->getLexicalDeclContext() == CurContext);
10407
10408  // Add the function declaration to the appropriate lookup tables,
10409  // adjusting the redeclarations list as necessary.  We don't
10410  // want to do this yet if the friending class is dependent.
10411  //
10412  // Also update the scope-based lookup if the target context's
10413  // lookup context is in lexical scope.
10414  if (!CurContext->isDependentContext()) {
10415    DC = DC->getRedeclContext();
10416    DC->makeDeclVisibleInContext(ND);
10417    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10418      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10419  }
10420
10421  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10422                                       D.getIdentifierLoc(), ND,
10423                                       DS.getFriendSpecLoc());
10424  FrD->setAccess(AS_public);
10425  CurContext->addDecl(FrD);
10426
10427  if (ND->isInvalidDecl()) {
10428    FrD->setInvalidDecl();
10429  } else {
10430    if (DC->isRecord()) CheckFriendAccess(ND);
10431
10432    FunctionDecl *FD;
10433    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10434      FD = FTD->getTemplatedDecl();
10435    else
10436      FD = cast<FunctionDecl>(ND);
10437
10438    // Mark templated-scope function declarations as unsupported.
10439    if (FD->getNumTemplateParameterLists())
10440      FrD->setUnsupportedFriend(true);
10441  }
10442
10443  return ND;
10444}
10445
10446void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10447  AdjustDeclIfTemplate(Dcl);
10448
10449  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10450  if (!Fn) {
10451    Diag(DelLoc, diag::err_deleted_non_function);
10452    return;
10453  }
10454  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10455    // Don't consider the implicit declaration we generate for explicit
10456    // specializations. FIXME: Do not generate these implicit declarations.
10457    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10458        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10459      Diag(DelLoc, diag::err_deleted_decl_not_first);
10460      Diag(Prev->getLocation(), diag::note_previous_declaration);
10461    }
10462    // If the declaration wasn't the first, we delete the function anyway for
10463    // recovery.
10464  }
10465  Fn->setDeletedAsWritten();
10466
10467  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10468  if (!MD)
10469    return;
10470
10471  // A deleted special member function is trivial if the corresponding
10472  // implicitly-declared function would have been.
10473  switch (getSpecialMember(MD)) {
10474  case CXXInvalid:
10475    break;
10476  case CXXDefaultConstructor:
10477    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10478    break;
10479  case CXXCopyConstructor:
10480    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10481    break;
10482  case CXXMoveConstructor:
10483    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10484    break;
10485  case CXXCopyAssignment:
10486    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10487    break;
10488  case CXXMoveAssignment:
10489    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10490    break;
10491  case CXXDestructor:
10492    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10493    break;
10494  }
10495}
10496
10497void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10498  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10499
10500  if (MD) {
10501    if (MD->getParent()->isDependentType()) {
10502      MD->setDefaulted();
10503      MD->setExplicitlyDefaulted();
10504      return;
10505    }
10506
10507    CXXSpecialMember Member = getSpecialMember(MD);
10508    if (Member == CXXInvalid) {
10509      Diag(DefaultLoc, diag::err_default_special_members);
10510      return;
10511    }
10512
10513    MD->setDefaulted();
10514    MD->setExplicitlyDefaulted();
10515
10516    // If this definition appears within the record, do the checking when
10517    // the record is complete.
10518    const FunctionDecl *Primary = MD;
10519    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10520      // Find the uninstantiated declaration that actually had the '= default'
10521      // on it.
10522      Pattern->isDefined(Primary);
10523
10524    if (Primary == Primary->getCanonicalDecl())
10525      return;
10526
10527    CheckExplicitlyDefaultedSpecialMember(MD);
10528
10529    switch (Member) {
10530    case CXXDefaultConstructor: {
10531      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10532      if (!CD->isInvalidDecl())
10533        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10534      break;
10535    }
10536
10537    case CXXCopyConstructor: {
10538      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10539      if (!CD->isInvalidDecl())
10540        DefineImplicitCopyConstructor(DefaultLoc, CD);
10541      break;
10542    }
10543
10544    case CXXCopyAssignment: {
10545      if (!MD->isInvalidDecl())
10546        DefineImplicitCopyAssignment(DefaultLoc, MD);
10547      break;
10548    }
10549
10550    case CXXDestructor: {
10551      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10552      if (!DD->isInvalidDecl())
10553        DefineImplicitDestructor(DefaultLoc, DD);
10554      break;
10555    }
10556
10557    case CXXMoveConstructor: {
10558      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10559      if (!CD->isInvalidDecl())
10560        DefineImplicitMoveConstructor(DefaultLoc, CD);
10561      break;
10562    }
10563
10564    case CXXMoveAssignment: {
10565      if (!MD->isInvalidDecl())
10566        DefineImplicitMoveAssignment(DefaultLoc, MD);
10567      break;
10568    }
10569
10570    case CXXInvalid:
10571      llvm_unreachable("Invalid special member.");
10572    }
10573  } else {
10574    Diag(DefaultLoc, diag::err_default_special_members);
10575  }
10576}
10577
10578static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10579  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10580    Stmt *SubStmt = *CI;
10581    if (!SubStmt)
10582      continue;
10583    if (isa<ReturnStmt>(SubStmt))
10584      Self.Diag(SubStmt->getLocStart(),
10585           diag::err_return_in_constructor_handler);
10586    if (!isa<Expr>(SubStmt))
10587      SearchForReturnInStmt(Self, SubStmt);
10588  }
10589}
10590
10591void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10592  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10593    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10594    SearchForReturnInStmt(*this, Handler);
10595  }
10596}
10597
10598bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10599                                             const CXXMethodDecl *Old) {
10600  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10601  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10602
10603  if (Context.hasSameType(NewTy, OldTy) ||
10604      NewTy->isDependentType() || OldTy->isDependentType())
10605    return false;
10606
10607  // Check if the return types are covariant
10608  QualType NewClassTy, OldClassTy;
10609
10610  /// Both types must be pointers or references to classes.
10611  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10612    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10613      NewClassTy = NewPT->getPointeeType();
10614      OldClassTy = OldPT->getPointeeType();
10615    }
10616  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10617    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10618      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10619        NewClassTy = NewRT->getPointeeType();
10620        OldClassTy = OldRT->getPointeeType();
10621      }
10622    }
10623  }
10624
10625  // The return types aren't either both pointers or references to a class type.
10626  if (NewClassTy.isNull()) {
10627    Diag(New->getLocation(),
10628         diag::err_different_return_type_for_overriding_virtual_function)
10629      << New->getDeclName() << NewTy << OldTy;
10630    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10631
10632    return true;
10633  }
10634
10635  // C++ [class.virtual]p6:
10636  //   If the return type of D::f differs from the return type of B::f, the
10637  //   class type in the return type of D::f shall be complete at the point of
10638  //   declaration of D::f or shall be the class type D.
10639  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10640    if (!RT->isBeingDefined() &&
10641        RequireCompleteType(New->getLocation(), NewClassTy,
10642                            diag::err_covariant_return_incomplete,
10643                            New->getDeclName()))
10644    return true;
10645  }
10646
10647  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10648    // Check if the new class derives from the old class.
10649    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10650      Diag(New->getLocation(),
10651           diag::err_covariant_return_not_derived)
10652      << New->getDeclName() << NewTy << OldTy;
10653      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10654      return true;
10655    }
10656
10657    // Check if we the conversion from derived to base is valid.
10658    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10659                    diag::err_covariant_return_inaccessible_base,
10660                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10661                    // FIXME: Should this point to the return type?
10662                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10663      // FIXME: this note won't trigger for delayed access control
10664      // diagnostics, and it's impossible to get an undelayed error
10665      // here from access control during the original parse because
10666      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10667      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10668      return true;
10669    }
10670  }
10671
10672  // The qualifiers of the return types must be the same.
10673  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10674    Diag(New->getLocation(),
10675         diag::err_covariant_return_type_different_qualifications)
10676    << New->getDeclName() << NewTy << OldTy;
10677    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10678    return true;
10679  };
10680
10681
10682  // The new class type must have the same or less qualifiers as the old type.
10683  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10684    Diag(New->getLocation(),
10685         diag::err_covariant_return_type_class_type_more_qualified)
10686    << New->getDeclName() << NewTy << OldTy;
10687    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10688    return true;
10689  };
10690
10691  return false;
10692}
10693
10694/// \brief Mark the given method pure.
10695///
10696/// \param Method the method to be marked pure.
10697///
10698/// \param InitRange the source range that covers the "0" initializer.
10699bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10700  SourceLocation EndLoc = InitRange.getEnd();
10701  if (EndLoc.isValid())
10702    Method->setRangeEnd(EndLoc);
10703
10704  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10705    Method->setPure();
10706    return false;
10707  }
10708
10709  if (!Method->isInvalidDecl())
10710    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10711      << Method->getDeclName() << InitRange;
10712  return true;
10713}
10714
10715/// \brief Determine whether the given declaration is a static data member.
10716static bool isStaticDataMember(Decl *D) {
10717  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10718  if (!Var)
10719    return false;
10720
10721  return Var->isStaticDataMember();
10722}
10723/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10724/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10725/// is a fresh scope pushed for just this purpose.
10726///
10727/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10728/// static data member of class X, names should be looked up in the scope of
10729/// class X.
10730void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10731  // If there is no declaration, there was an error parsing it.
10732  if (D == 0 || D->isInvalidDecl()) return;
10733
10734  // We should only get called for declarations with scope specifiers, like:
10735  //   int foo::bar;
10736  assert(D->isOutOfLine());
10737  EnterDeclaratorContext(S, D->getDeclContext());
10738
10739  // If we are parsing the initializer for a static data member, push a
10740  // new expression evaluation context that is associated with this static
10741  // data member.
10742  if (isStaticDataMember(D))
10743    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10744}
10745
10746/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10747/// initializer for the out-of-line declaration 'D'.
10748void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10749  // If there is no declaration, there was an error parsing it.
10750  if (D == 0 || D->isInvalidDecl()) return;
10751
10752  if (isStaticDataMember(D))
10753    PopExpressionEvaluationContext();
10754
10755  assert(D->isOutOfLine());
10756  ExitDeclaratorContext(S);
10757}
10758
10759/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10760/// C++ if/switch/while/for statement.
10761/// e.g: "if (int x = f()) {...}"
10762DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10763  // C++ 6.4p2:
10764  // The declarator shall not specify a function or an array.
10765  // The type-specifier-seq shall not contain typedef and shall not declare a
10766  // new class or enumeration.
10767  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10768         "Parser allowed 'typedef' as storage class of condition decl.");
10769
10770  Decl *Dcl = ActOnDeclarator(S, D);
10771  if (!Dcl)
10772    return true;
10773
10774  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10775    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10776      << D.getSourceRange();
10777    return true;
10778  }
10779
10780  return Dcl;
10781}
10782
10783void Sema::LoadExternalVTableUses() {
10784  if (!ExternalSource)
10785    return;
10786
10787  SmallVector<ExternalVTableUse, 4> VTables;
10788  ExternalSource->ReadUsedVTables(VTables);
10789  SmallVector<VTableUse, 4> NewUses;
10790  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10791    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10792      = VTablesUsed.find(VTables[I].Record);
10793    // Even if a definition wasn't required before, it may be required now.
10794    if (Pos != VTablesUsed.end()) {
10795      if (!Pos->second && VTables[I].DefinitionRequired)
10796        Pos->second = true;
10797      continue;
10798    }
10799
10800    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10801    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10802  }
10803
10804  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10805}
10806
10807void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10808                          bool DefinitionRequired) {
10809  // Ignore any vtable uses in unevaluated operands or for classes that do
10810  // not have a vtable.
10811  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10812      CurContext->isDependentContext() ||
10813      ExprEvalContexts.back().Context == Unevaluated)
10814    return;
10815
10816  // Try to insert this class into the map.
10817  LoadExternalVTableUses();
10818  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10819  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10820    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10821  if (!Pos.second) {
10822    // If we already had an entry, check to see if we are promoting this vtable
10823    // to required a definition. If so, we need to reappend to the VTableUses
10824    // list, since we may have already processed the first entry.
10825    if (DefinitionRequired && !Pos.first->second) {
10826      Pos.first->second = true;
10827    } else {
10828      // Otherwise, we can early exit.
10829      return;
10830    }
10831  }
10832
10833  // Local classes need to have their virtual members marked
10834  // immediately. For all other classes, we mark their virtual members
10835  // at the end of the translation unit.
10836  if (Class->isLocalClass())
10837    MarkVirtualMembersReferenced(Loc, Class);
10838  else
10839    VTableUses.push_back(std::make_pair(Class, Loc));
10840}
10841
10842bool Sema::DefineUsedVTables() {
10843  LoadExternalVTableUses();
10844  if (VTableUses.empty())
10845    return false;
10846
10847  // Note: The VTableUses vector could grow as a result of marking
10848  // the members of a class as "used", so we check the size each
10849  // time through the loop and prefer indices (which are stable) to
10850  // iterators (which are not).
10851  bool DefinedAnything = false;
10852  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10853    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10854    if (!Class)
10855      continue;
10856
10857    SourceLocation Loc = VTableUses[I].second;
10858
10859    bool DefineVTable = true;
10860
10861    // If this class has a key function, but that key function is
10862    // defined in another translation unit, we don't need to emit the
10863    // vtable even though we're using it.
10864    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10865    if (KeyFunction && !KeyFunction->hasBody()) {
10866      switch (KeyFunction->getTemplateSpecializationKind()) {
10867      case TSK_Undeclared:
10868      case TSK_ExplicitSpecialization:
10869      case TSK_ExplicitInstantiationDeclaration:
10870        // The key function is in another translation unit.
10871        DefineVTable = false;
10872        break;
10873
10874      case TSK_ExplicitInstantiationDefinition:
10875      case TSK_ImplicitInstantiation:
10876        // We will be instantiating the key function.
10877        break;
10878      }
10879    } else if (!KeyFunction) {
10880      // If we have a class with no key function that is the subject
10881      // of an explicit instantiation declaration, suppress the
10882      // vtable; it will live with the explicit instantiation
10883      // definition.
10884      bool IsExplicitInstantiationDeclaration
10885        = Class->getTemplateSpecializationKind()
10886                                      == TSK_ExplicitInstantiationDeclaration;
10887      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10888                                 REnd = Class->redecls_end();
10889           R != REnd; ++R) {
10890        TemplateSpecializationKind TSK
10891          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10892        if (TSK == TSK_ExplicitInstantiationDeclaration)
10893          IsExplicitInstantiationDeclaration = true;
10894        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10895          IsExplicitInstantiationDeclaration = false;
10896          break;
10897        }
10898      }
10899
10900      if (IsExplicitInstantiationDeclaration)
10901        DefineVTable = false;
10902    }
10903
10904    // The exception specifications for all virtual members may be needed even
10905    // if we are not providing an authoritative form of the vtable in this TU.
10906    // We may choose to emit it available_externally anyway.
10907    if (!DefineVTable) {
10908      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10909      continue;
10910    }
10911
10912    // Mark all of the virtual members of this class as referenced, so
10913    // that we can build a vtable. Then, tell the AST consumer that a
10914    // vtable for this class is required.
10915    DefinedAnything = true;
10916    MarkVirtualMembersReferenced(Loc, Class);
10917    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10918    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10919
10920    // Optionally warn if we're emitting a weak vtable.
10921    if (Class->getLinkage() == ExternalLinkage &&
10922        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10923      const FunctionDecl *KeyFunctionDef = 0;
10924      if (!KeyFunction ||
10925          (KeyFunction->hasBody(KeyFunctionDef) &&
10926           KeyFunctionDef->isInlined()))
10927        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10928             TSK_ExplicitInstantiationDefinition
10929             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10930          << Class;
10931    }
10932  }
10933  VTableUses.clear();
10934
10935  return DefinedAnything;
10936}
10937
10938void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
10939                                                 const CXXRecordDecl *RD) {
10940  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
10941                                      E = RD->method_end(); I != E; ++I)
10942    if ((*I)->isVirtual() && !(*I)->isPure())
10943      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
10944}
10945
10946void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10947                                        const CXXRecordDecl *RD) {
10948  // Mark all functions which will appear in RD's vtable as used.
10949  CXXFinalOverriderMap FinalOverriders;
10950  RD->getFinalOverriders(FinalOverriders);
10951  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10952                                            E = FinalOverriders.end();
10953       I != E; ++I) {
10954    for (OverridingMethods::const_iterator OI = I->second.begin(),
10955                                           OE = I->second.end();
10956         OI != OE; ++OI) {
10957      assert(OI->second.size() > 0 && "no final overrider");
10958      CXXMethodDecl *Overrider = OI->second.front().Method;
10959
10960      // C++ [basic.def.odr]p2:
10961      //   [...] A virtual member function is used if it is not pure. [...]
10962      if (!Overrider->isPure())
10963        MarkFunctionReferenced(Loc, Overrider);
10964    }
10965  }
10966
10967  // Only classes that have virtual bases need a VTT.
10968  if (RD->getNumVBases() == 0)
10969    return;
10970
10971  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10972           e = RD->bases_end(); i != e; ++i) {
10973    const CXXRecordDecl *Base =
10974        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10975    if (Base->getNumVBases() == 0)
10976      continue;
10977    MarkVirtualMembersReferenced(Loc, Base);
10978  }
10979}
10980
10981/// SetIvarInitializers - This routine builds initialization ASTs for the
10982/// Objective-C implementation whose ivars need be initialized.
10983void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10984  if (!getLangOpts().CPlusPlus)
10985    return;
10986  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10987    SmallVector<ObjCIvarDecl*, 8> ivars;
10988    CollectIvarsToConstructOrDestruct(OID, ivars);
10989    if (ivars.empty())
10990      return;
10991    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10992    for (unsigned i = 0; i < ivars.size(); i++) {
10993      FieldDecl *Field = ivars[i];
10994      if (Field->isInvalidDecl())
10995        continue;
10996
10997      CXXCtorInitializer *Member;
10998      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10999      InitializationKind InitKind =
11000        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11001
11002      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11003      ExprResult MemberInit =
11004        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11005      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11006      // Note, MemberInit could actually come back empty if no initialization
11007      // is required (e.g., because it would call a trivial default constructor)
11008      if (!MemberInit.get() || MemberInit.isInvalid())
11009        continue;
11010
11011      Member =
11012        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11013                                         SourceLocation(),
11014                                         MemberInit.takeAs<Expr>(),
11015                                         SourceLocation());
11016      AllToInit.push_back(Member);
11017
11018      // Be sure that the destructor is accessible and is marked as referenced.
11019      if (const RecordType *RecordTy
11020                  = Context.getBaseElementType(Field->getType())
11021                                                        ->getAs<RecordType>()) {
11022                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11023        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11024          MarkFunctionReferenced(Field->getLocation(), Destructor);
11025          CheckDestructorAccess(Field->getLocation(), Destructor,
11026                            PDiag(diag::err_access_dtor_ivar)
11027                              << Context.getBaseElementType(Field->getType()));
11028        }
11029      }
11030    }
11031    ObjCImplementation->setIvarInitializers(Context,
11032                                            AllToInit.data(), AllToInit.size());
11033  }
11034}
11035
11036static
11037void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11038                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11039                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11040                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11041                           Sema &S) {
11042  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11043                                                   CE = Current.end();
11044  if (Ctor->isInvalidDecl())
11045    return;
11046
11047  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11048
11049  // Target may not be determinable yet, for instance if this is a dependent
11050  // call in an uninstantiated template.
11051  if (Target) {
11052    const FunctionDecl *FNTarget = 0;
11053    (void)Target->hasBody(FNTarget);
11054    Target = const_cast<CXXConstructorDecl*>(
11055      cast_or_null<CXXConstructorDecl>(FNTarget));
11056  }
11057
11058  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11059                     // Avoid dereferencing a null pointer here.
11060                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11061
11062  if (!Current.insert(Canonical))
11063    return;
11064
11065  // We know that beyond here, we aren't chaining into a cycle.
11066  if (!Target || !Target->isDelegatingConstructor() ||
11067      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11068    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11069      Valid.insert(*CI);
11070    Current.clear();
11071  // We've hit a cycle.
11072  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11073             Current.count(TCanonical)) {
11074    // If we haven't diagnosed this cycle yet, do so now.
11075    if (!Invalid.count(TCanonical)) {
11076      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11077             diag::warn_delegating_ctor_cycle)
11078        << Ctor;
11079
11080      // Don't add a note for a function delegating directly to itself.
11081      if (TCanonical != Canonical)
11082        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11083
11084      CXXConstructorDecl *C = Target;
11085      while (C->getCanonicalDecl() != Canonical) {
11086        const FunctionDecl *FNTarget = 0;
11087        (void)C->getTargetConstructor()->hasBody(FNTarget);
11088        assert(FNTarget && "Ctor cycle through bodiless function");
11089
11090        C = const_cast<CXXConstructorDecl*>(
11091          cast<CXXConstructorDecl>(FNTarget));
11092        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11093      }
11094    }
11095
11096    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11097      Invalid.insert(*CI);
11098    Current.clear();
11099  } else {
11100    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11101  }
11102}
11103
11104
11105void Sema::CheckDelegatingCtorCycles() {
11106  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11107
11108  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11109                                                   CE = Current.end();
11110
11111  for (DelegatingCtorDeclsType::iterator
11112         I = DelegatingCtorDecls.begin(ExternalSource),
11113         E = DelegatingCtorDecls.end();
11114       I != E; ++I)
11115    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11116
11117  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11118    (*CI)->setInvalidDecl();
11119}
11120
11121namespace {
11122  /// \brief AST visitor that finds references to the 'this' expression.
11123  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11124    Sema &S;
11125
11126  public:
11127    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11128
11129    bool VisitCXXThisExpr(CXXThisExpr *E) {
11130      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11131        << E->isImplicit();
11132      return false;
11133    }
11134  };
11135}
11136
11137bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11138  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11139  if (!TSInfo)
11140    return false;
11141
11142  TypeLoc TL = TSInfo->getTypeLoc();
11143  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11144  if (!ProtoTL)
11145    return false;
11146
11147  // C++11 [expr.prim.general]p3:
11148  //   [The expression this] shall not appear before the optional
11149  //   cv-qualifier-seq and it shall not appear within the declaration of a
11150  //   static member function (although its type and value category are defined
11151  //   within a static member function as they are within a non-static member
11152  //   function). [ Note: this is because declaration matching does not occur
11153  //  until the complete declarator is known. - end note ]
11154  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11155  FindCXXThisExpr Finder(*this);
11156
11157  // If the return type came after the cv-qualifier-seq, check it now.
11158  if (Proto->hasTrailingReturn() &&
11159      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11160    return true;
11161
11162  // Check the exception specification.
11163  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11164    return true;
11165
11166  return checkThisInStaticMemberFunctionAttributes(Method);
11167}
11168
11169bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11170  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11171  if (!TSInfo)
11172    return false;
11173
11174  TypeLoc TL = TSInfo->getTypeLoc();
11175  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11176  if (!ProtoTL)
11177    return false;
11178
11179  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11180  FindCXXThisExpr Finder(*this);
11181
11182  switch (Proto->getExceptionSpecType()) {
11183  case EST_Uninstantiated:
11184  case EST_Unevaluated:
11185  case EST_BasicNoexcept:
11186  case EST_DynamicNone:
11187  case EST_MSAny:
11188  case EST_None:
11189    break;
11190
11191  case EST_ComputedNoexcept:
11192    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11193      return true;
11194
11195  case EST_Dynamic:
11196    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11197         EEnd = Proto->exception_end();
11198         E != EEnd; ++E) {
11199      if (!Finder.TraverseType(*E))
11200        return true;
11201    }
11202    break;
11203  }
11204
11205  return false;
11206}
11207
11208bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11209  FindCXXThisExpr Finder(*this);
11210
11211  // Check attributes.
11212  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11213       A != AEnd; ++A) {
11214    // FIXME: This should be emitted by tblgen.
11215    Expr *Arg = 0;
11216    ArrayRef<Expr *> Args;
11217    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11218      Arg = G->getArg();
11219    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11220      Arg = G->getArg();
11221    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11222      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11223    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11224      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11225    else if (ExclusiveLockFunctionAttr *ELF
11226               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11227      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11228    else if (SharedLockFunctionAttr *SLF
11229               = dyn_cast<SharedLockFunctionAttr>(*A))
11230      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11231    else if (ExclusiveTrylockFunctionAttr *ETLF
11232               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11233      Arg = ETLF->getSuccessValue();
11234      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11235    } else if (SharedTrylockFunctionAttr *STLF
11236                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11237      Arg = STLF->getSuccessValue();
11238      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11239    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11240      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11241    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11242      Arg = LR->getArg();
11243    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11244      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11245    else if (ExclusiveLocksRequiredAttr *ELR
11246               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11247      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11248    else if (SharedLocksRequiredAttr *SLR
11249               = dyn_cast<SharedLocksRequiredAttr>(*A))
11250      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11251
11252    if (Arg && !Finder.TraverseStmt(Arg))
11253      return true;
11254
11255    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11256      if (!Finder.TraverseStmt(Args[I]))
11257        return true;
11258    }
11259  }
11260
11261  return false;
11262}
11263
11264void
11265Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11266                                  ArrayRef<ParsedType> DynamicExceptions,
11267                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11268                                  Expr *NoexceptExpr,
11269                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11270                                  FunctionProtoType::ExtProtoInfo &EPI) {
11271  Exceptions.clear();
11272  EPI.ExceptionSpecType = EST;
11273  if (EST == EST_Dynamic) {
11274    Exceptions.reserve(DynamicExceptions.size());
11275    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11276      // FIXME: Preserve type source info.
11277      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11278
11279      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11280      collectUnexpandedParameterPacks(ET, Unexpanded);
11281      if (!Unexpanded.empty()) {
11282        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11283                                         UPPC_ExceptionType,
11284                                         Unexpanded);
11285        continue;
11286      }
11287
11288      // Check that the type is valid for an exception spec, and
11289      // drop it if not.
11290      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11291        Exceptions.push_back(ET);
11292    }
11293    EPI.NumExceptions = Exceptions.size();
11294    EPI.Exceptions = Exceptions.data();
11295    return;
11296  }
11297
11298  if (EST == EST_ComputedNoexcept) {
11299    // If an error occurred, there's no expression here.
11300    if (NoexceptExpr) {
11301      assert((NoexceptExpr->isTypeDependent() ||
11302              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11303              Context.BoolTy) &&
11304             "Parser should have made sure that the expression is boolean");
11305      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11306        EPI.ExceptionSpecType = EST_BasicNoexcept;
11307        return;
11308      }
11309
11310      if (!NoexceptExpr->isValueDependent())
11311        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11312                         diag::err_noexcept_needs_constant_expression,
11313                         /*AllowFold*/ false).take();
11314      EPI.NoexceptExpr = NoexceptExpr;
11315    }
11316    return;
11317  }
11318}
11319
11320/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11321Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11322  // Implicitly declared functions (e.g. copy constructors) are
11323  // __host__ __device__
11324  if (D->isImplicit())
11325    return CFT_HostDevice;
11326
11327  if (D->hasAttr<CUDAGlobalAttr>())
11328    return CFT_Global;
11329
11330  if (D->hasAttr<CUDADeviceAttr>()) {
11331    if (D->hasAttr<CUDAHostAttr>())
11332      return CFT_HostDevice;
11333    else
11334      return CFT_Device;
11335  }
11336
11337  return CFT_Host;
11338}
11339
11340bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11341                           CUDAFunctionTarget CalleeTarget) {
11342  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11343  // Callable from the device only."
11344  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11345    return true;
11346
11347  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11348  // Callable from the host only."
11349  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11350  // Callable from the host only."
11351  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11352      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11353    return true;
11354
11355  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11356    return true;
11357
11358  return false;
11359}
11360