SemaDeclCXX.cpp revision 9557f5387a6b3f4636101298d0cf029538b60ded
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  if (Member->getType()->isDependentType() || HasDependentArg) {
1289    // Can't check initialization for a member of dependent type or when
1290    // any of the arguments are type-dependent expressions.
1291    OwningExprResult Init
1292      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1293                                          RParenLoc));
1294
1295    // Erase any temporaries within this evaluation context; we're not
1296    // going to track them in the AST, since we'll be rebuilding the
1297    // ASTs during template instantiation.
1298    ExprTemporaries.erase(
1299              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1300                          ExprTemporaries.end());
1301
1302    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1303                                                    LParenLoc,
1304                                                    Init.takeAs<Expr>(),
1305                                                    RParenLoc);
1306
1307  }
1308
1309  if (Member->isInvalidDecl())
1310    return true;
1311
1312  // Initialize the member.
1313  InitializedEntity MemberEntity =
1314    InitializedEntity::InitializeMember(Member, 0);
1315  InitializationKind Kind =
1316    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1317
1318  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1319
1320  OwningExprResult MemberInit =
1321    InitSeq.Perform(*this, MemberEntity, Kind,
1322                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1323  if (MemberInit.isInvalid())
1324    return true;
1325
1326  // C++0x [class.base.init]p7:
1327  //   The initialization of each base and member constitutes a
1328  //   full-expression.
1329  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // If we are in a dependent context, template instantiation will
1334  // perform this type-checking again. Just save the arguments that we
1335  // received in a ParenListExpr.
1336  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1337  // of the information that we have about the member
1338  // initializer. However, deconstructing the ASTs is a dicey process,
1339  // and this approach is far more likely to get the corner cases right.
1340  if (CurContext->isDependentContext()) {
1341    // Bump the reference count of all of the arguments.
1342    for (unsigned I = 0; I != NumArgs; ++I)
1343      Args[I]->Retain();
1344
1345    OwningExprResult Init
1346      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1347                                          RParenLoc));
1348    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1349                                                    LParenLoc,
1350                                                    Init.takeAs<Expr>(),
1351                                                    RParenLoc);
1352  }
1353
1354  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1355                                                  LParenLoc,
1356                                                  MemberInit.takeAs<Expr>(),
1357                                                  RParenLoc);
1358}
1359
1360Sema::MemInitResult
1361Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1362                           Expr **Args, unsigned NumArgs,
1363                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1364                           CXXRecordDecl *ClassDecl) {
1365  bool HasDependentArg = false;
1366  for (unsigned i = 0; i < NumArgs; i++)
1367    HasDependentArg |= Args[i]->isTypeDependent();
1368
1369  SourceLocation BaseLoc
1370    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1371
1372  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1373    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1374             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1375
1376  // C++ [class.base.init]p2:
1377  //   [...] Unless the mem-initializer-id names a nonstatic data
1378  //   member of the constructor’s class or a direct or virtual base
1379  //   of that class, the mem-initializer is ill-formed. A
1380  //   mem-initializer-list can initialize a base class using any
1381  //   name that denotes that base class type.
1382  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1383
1384  // Check for direct and virtual base classes.
1385  const CXXBaseSpecifier *DirectBaseSpec = 0;
1386  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1387  if (!Dependent) {
1388    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1389                        VirtualBaseSpec);
1390
1391    // C++ [base.class.init]p2:
1392    // Unless the mem-initializer-id names a nonstatic data member of the
1393    // constructor's class or a direct or virtual base of that class, the
1394    // mem-initializer is ill-formed.
1395    if (!DirectBaseSpec && !VirtualBaseSpec) {
1396      // If the class has any dependent bases, then it's possible that
1397      // one of those types will resolve to the same type as
1398      // BaseType. Therefore, just treat this as a dependent base
1399      // class initialization.  FIXME: Should we try to check the
1400      // initialization anyway? It seems odd.
1401      if (ClassDecl->hasAnyDependentBases())
1402        Dependent = true;
1403      else
1404        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1405          << BaseType << Context.getTypeDeclType(ClassDecl)
1406          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1407    }
1408  }
1409
1410  if (Dependent) {
1411    // Can't check initialization for a base of dependent type or when
1412    // any of the arguments are type-dependent expressions.
1413    OwningExprResult BaseInit
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416
1417    // Erase any temporaries within this evaluation context; we're not
1418    // going to track them in the AST, since we'll be rebuilding the
1419    // ASTs during template instantiation.
1420    ExprTemporaries.erase(
1421              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1422                          ExprTemporaries.end());
1423
1424    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1425                                                    /*IsVirtual=*/false,
1426                                                    LParenLoc,
1427                                                    BaseInit.takeAs<Expr>(),
1428                                                    RParenLoc);
1429  }
1430
1431  // C++ [base.class.init]p2:
1432  //   If a mem-initializer-id is ambiguous because it designates both
1433  //   a direct non-virtual base class and an inherited virtual base
1434  //   class, the mem-initializer is ill-formed.
1435  if (DirectBaseSpec && VirtualBaseSpec)
1436    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1437      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1438
1439  CXXBaseSpecifier *BaseSpec
1440    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1441  if (!BaseSpec)
1442    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1443
1444  // Initialize the base.
1445  InitializedEntity BaseEntity =
1446    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1447  InitializationKind Kind =
1448    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1449
1450  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1451
1452  OwningExprResult BaseInit =
1453    InitSeq.Perform(*this, BaseEntity, Kind,
1454                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1455  if (BaseInit.isInvalid())
1456    return true;
1457
1458  // C++0x [class.base.init]p7:
1459  //   The initialization of each base and member constitutes a
1460  //   full-expression.
1461  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1462  if (BaseInit.isInvalid())
1463    return true;
1464
1465  // If we are in a dependent context, template instantiation will
1466  // perform this type-checking again. Just save the arguments that we
1467  // received in a ParenListExpr.
1468  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1469  // of the information that we have about the base
1470  // initializer. However, deconstructing the ASTs is a dicey process,
1471  // and this approach is far more likely to get the corner cases right.
1472  if (CurContext->isDependentContext()) {
1473    // Bump the reference count of all of the arguments.
1474    for (unsigned I = 0; I != NumArgs; ++I)
1475      Args[I]->Retain();
1476
1477    OwningExprResult Init
1478      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1479                                          RParenLoc));
1480    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1481                                                    BaseSpec->isVirtual(),
1482                                                    LParenLoc,
1483                                                    Init.takeAs<Expr>(),
1484                                                    RParenLoc);
1485  }
1486
1487  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1488                                                  BaseSpec->isVirtual(),
1489                                                  LParenLoc,
1490                                                  BaseInit.takeAs<Expr>(),
1491                                                  RParenLoc);
1492}
1493
1494/// ImplicitInitializerKind - How an implicit base or member initializer should
1495/// initialize its base or member.
1496enum ImplicitInitializerKind {
1497  IIK_Default,
1498  IIK_Copy,
1499  IIK_Move
1500};
1501
1502static bool
1503BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1504                             ImplicitInitializerKind ImplicitInitKind,
1505                             CXXBaseSpecifier *BaseSpec,
1506                             bool IsInheritedVirtualBase,
1507                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1508  InitializedEntity InitEntity
1509    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1510                                        IsInheritedVirtualBase);
1511
1512  Sema::OwningExprResult BaseInit(SemaRef);
1513
1514  switch (ImplicitInitKind) {
1515  case IIK_Default: {
1516    InitializationKind InitKind
1517      = InitializationKind::CreateDefault(Constructor->getLocation());
1518    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1519    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1520                               Sema::MultiExprArg(SemaRef, 0, 0));
1521    break;
1522  }
1523
1524  case IIK_Copy: {
1525    ParmVarDecl *Param = Constructor->getParamDecl(0);
1526    QualType ParamType = Param->getType().getNonReferenceType();
1527
1528    Expr *CopyCtorArg =
1529      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1530                          Constructor->getLocation(), ParamType, 0);
1531
1532    // Cast to the base class to avoid ambiguities.
1533    QualType ArgTy =
1534      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1535                                       ParamType.getQualifiers());
1536    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1537                              CastExpr::CK_UncheckedDerivedToBase,
1538                              ImplicitCastExpr::LValue,
1539                              CXXBaseSpecifierArray(BaseSpec));
1540
1541    InitializationKind InitKind
1542      = InitializationKind::CreateDirect(Constructor->getLocation(),
1543                                         SourceLocation(), SourceLocation());
1544    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1545                                   &CopyCtorArg, 1);
1546    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1547                               Sema::MultiExprArg(SemaRef,
1548                                                  (void**)&CopyCtorArg, 1));
1549    break;
1550  }
1551
1552  case IIK_Move:
1553    assert(false && "Unhandled initializer kind!");
1554  }
1555
1556  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1557  if (BaseInit.isInvalid())
1558    return true;
1559
1560  CXXBaseInit =
1561    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1562               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1563                                                        SourceLocation()),
1564                                             BaseSpec->isVirtual(),
1565                                             SourceLocation(),
1566                                             BaseInit.takeAs<Expr>(),
1567                                             SourceLocation());
1568
1569  return false;
1570}
1571
1572static bool
1573BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1574                               ImplicitInitializerKind ImplicitInitKind,
1575                               FieldDecl *Field,
1576                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1577  if (Field->isInvalidDecl())
1578    return true;
1579
1580  SourceLocation Loc = Constructor->getLocation();
1581
1582  if (ImplicitInitKind == IIK_Copy) {
1583    ParmVarDecl *Param = Constructor->getParamDecl(0);
1584    QualType ParamType = Param->getType().getNonReferenceType();
1585
1586    Expr *MemberExprBase =
1587      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1588                          Loc, ParamType, 0);
1589
1590    // Build a reference to this field within the parameter.
1591    CXXScopeSpec SS;
1592    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1593                              Sema::LookupMemberName);
1594    MemberLookup.addDecl(Field, AS_public);
1595    MemberLookup.resolveKind();
1596    Sema::OwningExprResult CopyCtorArg
1597      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1598                                         ParamType, Loc,
1599                                         /*IsArrow=*/false,
1600                                         SS,
1601                                         /*FirstQualifierInScope=*/0,
1602                                         MemberLookup,
1603                                         /*TemplateArgs=*/0);
1604    if (CopyCtorArg.isInvalid())
1605      return true;
1606
1607    // When the field we are copying is an array, create index variables for
1608    // each dimension of the array. We use these index variables to subscript
1609    // the source array, and other clients (e.g., CodeGen) will perform the
1610    // necessary iteration with these index variables.
1611    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1612    QualType BaseType = Field->getType();
1613    QualType SizeType = SemaRef.Context.getSizeType();
1614    while (const ConstantArrayType *Array
1615                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1616      // Create the iteration variable for this array index.
1617      IdentifierInfo *IterationVarName = 0;
1618      {
1619        llvm::SmallString<8> Str;
1620        llvm::raw_svector_ostream OS(Str);
1621        OS << "__i" << IndexVariables.size();
1622        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1623      }
1624      VarDecl *IterationVar
1625        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1626                          IterationVarName, SizeType,
1627                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1628                          VarDecl::None, VarDecl::None);
1629      IndexVariables.push_back(IterationVar);
1630
1631      // Create a reference to the iteration variable.
1632      Sema::OwningExprResult IterationVarRef
1633        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1634      assert(!IterationVarRef.isInvalid() &&
1635             "Reference to invented variable cannot fail!");
1636
1637      // Subscript the array with this iteration variable.
1638      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1639                                                            Loc,
1640                                                          move(IterationVarRef),
1641                                                            Loc);
1642      if (CopyCtorArg.isInvalid())
1643        return true;
1644
1645      BaseType = Array->getElementType();
1646    }
1647
1648    // Construct the entity that we will be initializing. For an array, this
1649    // will be first element in the array, which may require several levels
1650    // of array-subscript entities.
1651    llvm::SmallVector<InitializedEntity, 4> Entities;
1652    Entities.reserve(1 + IndexVariables.size());
1653    Entities.push_back(InitializedEntity::InitializeMember(Field));
1654    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1655      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1656                                                              0,
1657                                                              Entities.back()));
1658
1659    // Direct-initialize to use the copy constructor.
1660    InitializationKind InitKind =
1661      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1662
1663    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1664    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1665                                   &CopyCtorArgE, 1);
1666
1667    Sema::OwningExprResult MemberInit
1668      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1669                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1670    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1671    if (MemberInit.isInvalid())
1672      return true;
1673
1674    CXXMemberInit
1675      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1676                                           MemberInit.takeAs<Expr>(), Loc,
1677                                           IndexVariables.data(),
1678                                           IndexVariables.size());
1679    return false;
1680  }
1681
1682  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1683
1684  QualType FieldBaseElementType =
1685    SemaRef.Context.getBaseElementType(Field->getType());
1686
1687  if (FieldBaseElementType->isRecordType()) {
1688    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1689    InitializationKind InitKind =
1690      InitializationKind::CreateDefault(Loc);
1691
1692    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1693    Sema::OwningExprResult MemberInit =
1694      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1695                      Sema::MultiExprArg(SemaRef, 0, 0));
1696    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1697    if (MemberInit.isInvalid())
1698      return true;
1699
1700    CXXMemberInit =
1701      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1702                                                       Field, Loc, Loc,
1703                                                      MemberInit.takeAs<Expr>(),
1704                                                       Loc);
1705    return false;
1706  }
1707
1708  if (FieldBaseElementType->isReferenceType()) {
1709    SemaRef.Diag(Constructor->getLocation(),
1710                 diag::err_uninitialized_member_in_ctor)
1711    << (int)Constructor->isImplicit()
1712    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1713    << 0 << Field->getDeclName();
1714    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1715    return true;
1716  }
1717
1718  if (FieldBaseElementType.isConstQualified()) {
1719    SemaRef.Diag(Constructor->getLocation(),
1720                 diag::err_uninitialized_member_in_ctor)
1721    << (int)Constructor->isImplicit()
1722    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1723    << 1 << Field->getDeclName();
1724    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1725    return true;
1726  }
1727
1728  // Nothing to initialize.
1729  CXXMemberInit = 0;
1730  return false;
1731}
1732
1733namespace {
1734struct BaseAndFieldInfo {
1735  Sema &S;
1736  CXXConstructorDecl *Ctor;
1737  bool AnyErrorsInInits;
1738  ImplicitInitializerKind IIK;
1739  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1740  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1741
1742  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1743    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1744    // FIXME: Handle implicit move constructors.
1745    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1746      IIK = IIK_Copy;
1747    else
1748      IIK = IIK_Default;
1749  }
1750};
1751}
1752
1753static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1754                                   FieldDecl *Top, FieldDecl *Field,
1755                                   CXXBaseOrMemberInitializer *Init) {
1756  // If the member doesn't need to be initialized, Init will still be null.
1757  if (!Init)
1758    return;
1759
1760  Info.AllToInit.push_back(Init);
1761  if (Field != Top) {
1762    Init->setMember(Top);
1763    Init->setAnonUnionMember(Field);
1764  }
1765}
1766
1767static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1768                                    FieldDecl *Top, FieldDecl *Field) {
1769
1770  // Overwhelmingly common case: we have a direct initializer for this field.
1771  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1772    RecordFieldInitializer(Info, Top, Field, Init);
1773    return false;
1774  }
1775
1776  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1777    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1778    assert(FieldClassType && "anonymous struct/union without record type");
1779    CXXRecordDecl *FieldClassDecl
1780      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1781
1782    // Even though union members never have non-trivial default
1783    // constructions in C++03, we still build member initializers for aggregate
1784    // record types which can be union members, and C++0x allows non-trivial
1785    // default constructors for union members, so we ensure that only one
1786    // member is initialized for these.
1787    if (FieldClassDecl->isUnion()) {
1788      // First check for an explicit initializer for one field.
1789      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1790           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1791        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1792          RecordFieldInitializer(Info, Top, *FA, Init);
1793
1794          // Once we've initialized a field of an anonymous union, the union
1795          // field in the class is also initialized, so exit immediately.
1796          return false;
1797        }
1798      }
1799
1800      // Fallthrough and construct a default initializer for the union as
1801      // a whole, which can call its default constructor if such a thing exists
1802      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1803      // behavior going forward with C++0x, when anonymous unions there are
1804      // finalized, we should revisit this.
1805    } else {
1806      // For structs, we simply descend through to initialize all members where
1807      // necessary.
1808      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1809           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1810        if (CollectFieldInitializer(Info, Top, *FA))
1811          return true;
1812      }
1813    }
1814  }
1815
1816  // Don't try to build an implicit initializer if there were semantic
1817  // errors in any of the initializers (and therefore we might be
1818  // missing some that the user actually wrote).
1819  if (Info.AnyErrorsInInits)
1820    return false;
1821
1822  CXXBaseOrMemberInitializer *Init = 0;
1823  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1824    return true;
1825
1826  RecordFieldInitializer(Info, Top, Field, Init);
1827  return false;
1828}
1829
1830bool
1831Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1832                                  CXXBaseOrMemberInitializer **Initializers,
1833                                  unsigned NumInitializers,
1834                                  bool AnyErrors) {
1835  if (Constructor->getDeclContext()->isDependentContext()) {
1836    // Just store the initializers as written, they will be checked during
1837    // instantiation.
1838    if (NumInitializers > 0) {
1839      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1840      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1841        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1842      memcpy(baseOrMemberInitializers, Initializers,
1843             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1844      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1845    }
1846
1847    return false;
1848  }
1849
1850  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1851
1852  // We need to build the initializer AST according to order of construction
1853  // and not what user specified in the Initializers list.
1854  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1855  if (!ClassDecl)
1856    return true;
1857
1858  bool HadError = false;
1859
1860  for (unsigned i = 0; i < NumInitializers; i++) {
1861    CXXBaseOrMemberInitializer *Member = Initializers[i];
1862
1863    if (Member->isBaseInitializer())
1864      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1865    else
1866      Info.AllBaseFields[Member->getMember()] = Member;
1867  }
1868
1869  // Keep track of the direct virtual bases.
1870  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1871  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1872       E = ClassDecl->bases_end(); I != E; ++I) {
1873    if (I->isVirtual())
1874      DirectVBases.insert(I);
1875  }
1876
1877  // Push virtual bases before others.
1878  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1879       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1880
1881    if (CXXBaseOrMemberInitializer *Value
1882        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1883      Info.AllToInit.push_back(Value);
1884    } else if (!AnyErrors) {
1885      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1886      CXXBaseOrMemberInitializer *CXXBaseInit;
1887      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1888                                       VBase, IsInheritedVirtualBase,
1889                                       CXXBaseInit)) {
1890        HadError = true;
1891        continue;
1892      }
1893
1894      Info.AllToInit.push_back(CXXBaseInit);
1895    }
1896  }
1897
1898  // Non-virtual bases.
1899  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1900       E = ClassDecl->bases_end(); Base != E; ++Base) {
1901    // Virtuals are in the virtual base list and already constructed.
1902    if (Base->isVirtual())
1903      continue;
1904
1905    if (CXXBaseOrMemberInitializer *Value
1906          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1907      Info.AllToInit.push_back(Value);
1908    } else if (!AnyErrors) {
1909      CXXBaseOrMemberInitializer *CXXBaseInit;
1910      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1911                                       Base, /*IsInheritedVirtualBase=*/false,
1912                                       CXXBaseInit)) {
1913        HadError = true;
1914        continue;
1915      }
1916
1917      Info.AllToInit.push_back(CXXBaseInit);
1918    }
1919  }
1920
1921  // Fields.
1922  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1923       E = ClassDecl->field_end(); Field != E; ++Field) {
1924    if ((*Field)->getType()->isIncompleteArrayType()) {
1925      assert(ClassDecl->hasFlexibleArrayMember() &&
1926             "Incomplete array type is not valid");
1927      continue;
1928    }
1929    if (CollectFieldInitializer(Info, *Field, *Field))
1930      HadError = true;
1931  }
1932
1933  NumInitializers = Info.AllToInit.size();
1934  if (NumInitializers > 0) {
1935    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1936    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1937      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1938    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1939           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1940    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1941
1942    // Constructors implicitly reference the base and member
1943    // destructors.
1944    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1945                                           Constructor->getParent());
1946  }
1947
1948  return HadError;
1949}
1950
1951static void *GetKeyForTopLevelField(FieldDecl *Field) {
1952  // For anonymous unions, use the class declaration as the key.
1953  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1954    if (RT->getDecl()->isAnonymousStructOrUnion())
1955      return static_cast<void *>(RT->getDecl());
1956  }
1957  return static_cast<void *>(Field);
1958}
1959
1960static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1961  return Context.getCanonicalType(BaseType).getTypePtr();
1962}
1963
1964static void *GetKeyForMember(ASTContext &Context,
1965                             CXXBaseOrMemberInitializer *Member,
1966                             bool MemberMaybeAnon = false) {
1967  if (!Member->isMemberInitializer())
1968    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1969
1970  // For fields injected into the class via declaration of an anonymous union,
1971  // use its anonymous union class declaration as the unique key.
1972  FieldDecl *Field = Member->getMember();
1973
1974  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1975  // data member of the class. Data member used in the initializer list is
1976  // in AnonUnionMember field.
1977  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1978    Field = Member->getAnonUnionMember();
1979
1980  // If the field is a member of an anonymous struct or union, our key
1981  // is the anonymous record decl that's a direct child of the class.
1982  RecordDecl *RD = Field->getParent();
1983  if (RD->isAnonymousStructOrUnion()) {
1984    while (true) {
1985      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1986      if (Parent->isAnonymousStructOrUnion())
1987        RD = Parent;
1988      else
1989        break;
1990    }
1991
1992    return static_cast<void *>(RD);
1993  }
1994
1995  return static_cast<void *>(Field);
1996}
1997
1998static void
1999DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2000                                  const CXXConstructorDecl *Constructor,
2001                                  CXXBaseOrMemberInitializer **Inits,
2002                                  unsigned NumInits) {
2003  if (Constructor->getDeclContext()->isDependentContext())
2004    return;
2005
2006  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2007        == Diagnostic::Ignored)
2008    return;
2009
2010  // Build the list of bases and members in the order that they'll
2011  // actually be initialized.  The explicit initializers should be in
2012  // this same order but may be missing things.
2013  llvm::SmallVector<const void*, 32> IdealInitKeys;
2014
2015  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2016
2017  // 1. Virtual bases.
2018  for (CXXRecordDecl::base_class_const_iterator VBase =
2019       ClassDecl->vbases_begin(),
2020       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2021    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2022
2023  // 2. Non-virtual bases.
2024  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); Base != E; ++Base) {
2026    if (Base->isVirtual())
2027      continue;
2028    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2029  }
2030
2031  // 3. Direct fields.
2032  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2033       E = ClassDecl->field_end(); Field != E; ++Field)
2034    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2035
2036  unsigned NumIdealInits = IdealInitKeys.size();
2037  unsigned IdealIndex = 0;
2038
2039  CXXBaseOrMemberInitializer *PrevInit = 0;
2040  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2041    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2042    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2043
2044    // Scan forward to try to find this initializer in the idealized
2045    // initializers list.
2046    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2047      if (InitKey == IdealInitKeys[IdealIndex])
2048        break;
2049
2050    // If we didn't find this initializer, it must be because we
2051    // scanned past it on a previous iteration.  That can only
2052    // happen if we're out of order;  emit a warning.
2053    if (IdealIndex == NumIdealInits && PrevInit) {
2054      Sema::SemaDiagnosticBuilder D =
2055        SemaRef.Diag(PrevInit->getSourceLocation(),
2056                     diag::warn_initializer_out_of_order);
2057
2058      if (PrevInit->isMemberInitializer())
2059        D << 0 << PrevInit->getMember()->getDeclName();
2060      else
2061        D << 1 << PrevInit->getBaseClassInfo()->getType();
2062
2063      if (Init->isMemberInitializer())
2064        D << 0 << Init->getMember()->getDeclName();
2065      else
2066        D << 1 << Init->getBaseClassInfo()->getType();
2067
2068      // Move back to the initializer's location in the ideal list.
2069      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2070        if (InitKey == IdealInitKeys[IdealIndex])
2071          break;
2072
2073      assert(IdealIndex != NumIdealInits &&
2074             "initializer not found in initializer list");
2075    }
2076
2077    PrevInit = Init;
2078  }
2079}
2080
2081namespace {
2082bool CheckRedundantInit(Sema &S,
2083                        CXXBaseOrMemberInitializer *Init,
2084                        CXXBaseOrMemberInitializer *&PrevInit) {
2085  if (!PrevInit) {
2086    PrevInit = Init;
2087    return false;
2088  }
2089
2090  if (FieldDecl *Field = Init->getMember())
2091    S.Diag(Init->getSourceLocation(),
2092           diag::err_multiple_mem_initialization)
2093      << Field->getDeclName()
2094      << Init->getSourceRange();
2095  else {
2096    Type *BaseClass = Init->getBaseClass();
2097    assert(BaseClass && "neither field nor base");
2098    S.Diag(Init->getSourceLocation(),
2099           diag::err_multiple_base_initialization)
2100      << QualType(BaseClass, 0)
2101      << Init->getSourceRange();
2102  }
2103  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2104    << 0 << PrevInit->getSourceRange();
2105
2106  return true;
2107}
2108
2109typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2110typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2111
2112bool CheckRedundantUnionInit(Sema &S,
2113                             CXXBaseOrMemberInitializer *Init,
2114                             RedundantUnionMap &Unions) {
2115  FieldDecl *Field = Init->getMember();
2116  RecordDecl *Parent = Field->getParent();
2117  if (!Parent->isAnonymousStructOrUnion())
2118    return false;
2119
2120  NamedDecl *Child = Field;
2121  do {
2122    if (Parent->isUnion()) {
2123      UnionEntry &En = Unions[Parent];
2124      if (En.first && En.first != Child) {
2125        S.Diag(Init->getSourceLocation(),
2126               diag::err_multiple_mem_union_initialization)
2127          << Field->getDeclName()
2128          << Init->getSourceRange();
2129        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2130          << 0 << En.second->getSourceRange();
2131        return true;
2132      } else if (!En.first) {
2133        En.first = Child;
2134        En.second = Init;
2135      }
2136    }
2137
2138    Child = Parent;
2139    Parent = cast<RecordDecl>(Parent->getDeclContext());
2140  } while (Parent->isAnonymousStructOrUnion());
2141
2142  return false;
2143}
2144}
2145
2146/// ActOnMemInitializers - Handle the member initializers for a constructor.
2147void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2148                                SourceLocation ColonLoc,
2149                                MemInitTy **meminits, unsigned NumMemInits,
2150                                bool AnyErrors) {
2151  if (!ConstructorDecl)
2152    return;
2153
2154  AdjustDeclIfTemplate(ConstructorDecl);
2155
2156  CXXConstructorDecl *Constructor
2157    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2158
2159  if (!Constructor) {
2160    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2161    return;
2162  }
2163
2164  CXXBaseOrMemberInitializer **MemInits =
2165    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2166
2167  // Mapping for the duplicate initializers check.
2168  // For member initializers, this is keyed with a FieldDecl*.
2169  // For base initializers, this is keyed with a Type*.
2170  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2171
2172  // Mapping for the inconsistent anonymous-union initializers check.
2173  RedundantUnionMap MemberUnions;
2174
2175  bool HadError = false;
2176  for (unsigned i = 0; i < NumMemInits; i++) {
2177    CXXBaseOrMemberInitializer *Init = MemInits[i];
2178
2179    // Set the source order index.
2180    Init->setSourceOrder(i);
2181
2182    if (Init->isMemberInitializer()) {
2183      FieldDecl *Field = Init->getMember();
2184      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2185          CheckRedundantUnionInit(*this, Init, MemberUnions))
2186        HadError = true;
2187    } else {
2188      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2189      if (CheckRedundantInit(*this, Init, Members[Key]))
2190        HadError = true;
2191    }
2192  }
2193
2194  if (HadError)
2195    return;
2196
2197  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2198
2199  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2200}
2201
2202void
2203Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2204                                             CXXRecordDecl *ClassDecl) {
2205  // Ignore dependent contexts.
2206  if (ClassDecl->isDependentContext())
2207    return;
2208
2209  // FIXME: all the access-control diagnostics are positioned on the
2210  // field/base declaration.  That's probably good; that said, the
2211  // user might reasonably want to know why the destructor is being
2212  // emitted, and we currently don't say.
2213
2214  // Non-static data members.
2215  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2216       E = ClassDecl->field_end(); I != E; ++I) {
2217    FieldDecl *Field = *I;
2218    if (Field->isInvalidDecl())
2219      continue;
2220    QualType FieldType = Context.getBaseElementType(Field->getType());
2221
2222    const RecordType* RT = FieldType->getAs<RecordType>();
2223    if (!RT)
2224      continue;
2225
2226    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2227    if (FieldClassDecl->hasTrivialDestructor())
2228      continue;
2229
2230    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2231    CheckDestructorAccess(Field->getLocation(), Dtor,
2232                          PDiag(diag::err_access_dtor_field)
2233                            << Field->getDeclName()
2234                            << FieldType);
2235
2236    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2237  }
2238
2239  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2240
2241  // Bases.
2242  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2243       E = ClassDecl->bases_end(); Base != E; ++Base) {
2244    // Bases are always records in a well-formed non-dependent class.
2245    const RecordType *RT = Base->getType()->getAs<RecordType>();
2246
2247    // Remember direct virtual bases.
2248    if (Base->isVirtual())
2249      DirectVirtualBases.insert(RT);
2250
2251    // Ignore trivial destructors.
2252    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2253    if (BaseClassDecl->hasTrivialDestructor())
2254      continue;
2255
2256    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2257
2258    // FIXME: caret should be on the start of the class name
2259    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2260                          PDiag(diag::err_access_dtor_base)
2261                            << Base->getType()
2262                            << Base->getSourceRange());
2263
2264    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2265  }
2266
2267  // Virtual bases.
2268  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2269       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2270
2271    // Bases are always records in a well-formed non-dependent class.
2272    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2273
2274    // Ignore direct virtual bases.
2275    if (DirectVirtualBases.count(RT))
2276      continue;
2277
2278    // Ignore trivial destructors.
2279    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2280    if (BaseClassDecl->hasTrivialDestructor())
2281      continue;
2282
2283    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2284    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2285                          PDiag(diag::err_access_dtor_vbase)
2286                            << VBase->getType());
2287
2288    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2289  }
2290}
2291
2292void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2293  if (!CDtorDecl)
2294    return;
2295
2296  if (CXXConstructorDecl *Constructor
2297      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2298    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2299}
2300
2301bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2302                                  unsigned DiagID, AbstractDiagSelID SelID,
2303                                  const CXXRecordDecl *CurrentRD) {
2304  if (SelID == -1)
2305    return RequireNonAbstractType(Loc, T,
2306                                  PDiag(DiagID), CurrentRD);
2307  else
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID) << SelID, CurrentRD);
2310}
2311
2312bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2313                                  const PartialDiagnostic &PD,
2314                                  const CXXRecordDecl *CurrentRD) {
2315  if (!getLangOptions().CPlusPlus)
2316    return false;
2317
2318  if (const ArrayType *AT = Context.getAsArrayType(T))
2319    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2320                                  CurrentRD);
2321
2322  if (const PointerType *PT = T->getAs<PointerType>()) {
2323    // Find the innermost pointer type.
2324    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2325      PT = T;
2326
2327    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2328      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2329  }
2330
2331  const RecordType *RT = T->getAs<RecordType>();
2332  if (!RT)
2333    return false;
2334
2335  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2336
2337  if (CurrentRD && CurrentRD != RD)
2338    return false;
2339
2340  // FIXME: is this reasonable?  It matches current behavior, but....
2341  if (!RD->getDefinition())
2342    return false;
2343
2344  if (!RD->isAbstract())
2345    return false;
2346
2347  Diag(Loc, PD) << RD->getDeclName();
2348
2349  // Check if we've already emitted the list of pure virtual functions for this
2350  // class.
2351  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2352    return true;
2353
2354  CXXFinalOverriderMap FinalOverriders;
2355  RD->getFinalOverriders(FinalOverriders);
2356
2357  // Keep a set of seen pure methods so we won't diagnose the same method
2358  // more than once.
2359  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2360
2361  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2362                                   MEnd = FinalOverriders.end();
2363       M != MEnd;
2364       ++M) {
2365    for (OverridingMethods::iterator SO = M->second.begin(),
2366                                  SOEnd = M->second.end();
2367         SO != SOEnd; ++SO) {
2368      // C++ [class.abstract]p4:
2369      //   A class is abstract if it contains or inherits at least one
2370      //   pure virtual function for which the final overrider is pure
2371      //   virtual.
2372
2373      //
2374      if (SO->second.size() != 1)
2375        continue;
2376
2377      if (!SO->second.front().Method->isPure())
2378        continue;
2379
2380      if (!SeenPureMethods.insert(SO->second.front().Method))
2381        continue;
2382
2383      Diag(SO->second.front().Method->getLocation(),
2384           diag::note_pure_virtual_function)
2385        << SO->second.front().Method->getDeclName();
2386    }
2387  }
2388
2389  if (!PureVirtualClassDiagSet)
2390    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2391  PureVirtualClassDiagSet->insert(RD);
2392
2393  return true;
2394}
2395
2396namespace {
2397  class AbstractClassUsageDiagnoser
2398    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2399    Sema &SemaRef;
2400    CXXRecordDecl *AbstractClass;
2401
2402    bool VisitDeclContext(const DeclContext *DC) {
2403      bool Invalid = false;
2404
2405      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2406           E = DC->decls_end(); I != E; ++I)
2407        Invalid |= Visit(*I);
2408
2409      return Invalid;
2410    }
2411
2412  public:
2413    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2414      : SemaRef(SemaRef), AbstractClass(ac) {
2415        Visit(SemaRef.Context.getTranslationUnitDecl());
2416    }
2417
2418    bool VisitFunctionDecl(const FunctionDecl *FD) {
2419      if (FD->isThisDeclarationADefinition()) {
2420        // No need to do the check if we're in a definition, because it requires
2421        // that the return/param types are complete.
2422        // because that requires
2423        return VisitDeclContext(FD);
2424      }
2425
2426      // Check the return type.
2427      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2428      bool Invalid =
2429        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2430                                       diag::err_abstract_type_in_decl,
2431                                       Sema::AbstractReturnType,
2432                                       AbstractClass);
2433
2434      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2435           E = FD->param_end(); I != E; ++I) {
2436        const ParmVarDecl *VD = *I;
2437        Invalid |=
2438          SemaRef.RequireNonAbstractType(VD->getLocation(),
2439                                         VD->getOriginalType(),
2440                                         diag::err_abstract_type_in_decl,
2441                                         Sema::AbstractParamType,
2442                                         AbstractClass);
2443      }
2444
2445      return Invalid;
2446    }
2447
2448    bool VisitDecl(const Decl* D) {
2449      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2450        return VisitDeclContext(DC);
2451
2452      return false;
2453    }
2454  };
2455}
2456
2457/// \brief Perform semantic checks on a class definition that has been
2458/// completing, introducing implicitly-declared members, checking for
2459/// abstract types, etc.
2460void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2461  if (!Record || Record->isInvalidDecl())
2462    return;
2463
2464  if (!Record->isDependentType())
2465    AddImplicitlyDeclaredMembersToClass(Record);
2466
2467  if (Record->isInvalidDecl())
2468    return;
2469
2470  // Set access bits correctly on the directly-declared conversions.
2471  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2472  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2473    Convs->setAccess(I, (*I)->getAccess());
2474
2475  // Determine whether we need to check for final overriders. We do
2476  // this either when there are virtual base classes (in which case we
2477  // may end up finding multiple final overriders for a given virtual
2478  // function) or any of the base classes is abstract (in which case
2479  // we might detect that this class is abstract).
2480  bool CheckFinalOverriders = false;
2481  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2482      !Record->isDependentType()) {
2483    if (Record->getNumVBases())
2484      CheckFinalOverriders = true;
2485    else if (!Record->isAbstract()) {
2486      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2487                                                 BEnd = Record->bases_end();
2488           B != BEnd; ++B) {
2489        CXXRecordDecl *BaseDecl
2490          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2491        if (BaseDecl->isAbstract()) {
2492          CheckFinalOverriders = true;
2493          break;
2494        }
2495      }
2496    }
2497  }
2498
2499  if (CheckFinalOverriders) {
2500    CXXFinalOverriderMap FinalOverriders;
2501    Record->getFinalOverriders(FinalOverriders);
2502
2503    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2504                                     MEnd = FinalOverriders.end();
2505         M != MEnd; ++M) {
2506      for (OverridingMethods::iterator SO = M->second.begin(),
2507                                    SOEnd = M->second.end();
2508           SO != SOEnd; ++SO) {
2509        assert(SO->second.size() > 0 &&
2510               "All virtual functions have overridding virtual functions");
2511        if (SO->second.size() == 1) {
2512          // C++ [class.abstract]p4:
2513          //   A class is abstract if it contains or inherits at least one
2514          //   pure virtual function for which the final overrider is pure
2515          //   virtual.
2516          if (SO->second.front().Method->isPure())
2517            Record->setAbstract(true);
2518          continue;
2519        }
2520
2521        // C++ [class.virtual]p2:
2522        //   In a derived class, if a virtual member function of a base
2523        //   class subobject has more than one final overrider the
2524        //   program is ill-formed.
2525        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2526          << (NamedDecl *)M->first << Record;
2527        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2528        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2529                                                 OMEnd = SO->second.end();
2530             OM != OMEnd; ++OM)
2531          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2532            << (NamedDecl *)M->first << OM->Method->getParent();
2533
2534        Record->setInvalidDecl();
2535      }
2536    }
2537  }
2538
2539  if (Record->isAbstract() && !Record->isInvalidDecl())
2540    (void)AbstractClassUsageDiagnoser(*this, Record);
2541
2542  // If this is not an aggregate type and has no user-declared constructor,
2543  // complain about any non-static data members of reference or const scalar
2544  // type, since they will never get initializers.
2545  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2546      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2547    bool Complained = false;
2548    for (RecordDecl::field_iterator F = Record->field_begin(),
2549                                 FEnd = Record->field_end();
2550         F != FEnd; ++F) {
2551      if (F->getType()->isReferenceType() ||
2552          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2553        if (!Complained) {
2554          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2555            << Record->getTagKind() << Record;
2556          Complained = true;
2557        }
2558
2559        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2560          << F->getType()->isReferenceType()
2561          << F->getDeclName();
2562      }
2563    }
2564  }
2565
2566  if (Record->isDynamicClass())
2567    DynamicClasses.push_back(Record);
2568}
2569
2570void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2571                                             DeclPtrTy TagDecl,
2572                                             SourceLocation LBrac,
2573                                             SourceLocation RBrac,
2574                                             AttributeList *AttrList) {
2575  if (!TagDecl)
2576    return;
2577
2578  AdjustDeclIfTemplate(TagDecl);
2579
2580  ActOnFields(S, RLoc, TagDecl,
2581              (DeclPtrTy*)FieldCollector->getCurFields(),
2582              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2583
2584  CheckCompletedCXXClass(
2585                        dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2586}
2587
2588namespace {
2589  /// \brief Helper class that collects exception specifications for
2590  /// implicitly-declared special member functions.
2591  class ImplicitExceptionSpecification {
2592    ASTContext &Context;
2593    bool AllowsAllExceptions;
2594    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2595    llvm::SmallVector<QualType, 4> Exceptions;
2596
2597  public:
2598    explicit ImplicitExceptionSpecification(ASTContext &Context)
2599      : Context(Context), AllowsAllExceptions(false) { }
2600
2601    /// \brief Whether the special member function should have any
2602    /// exception specification at all.
2603    bool hasExceptionSpecification() const {
2604      return !AllowsAllExceptions;
2605    }
2606
2607    /// \brief Whether the special member function should have a
2608    /// throw(...) exception specification (a Microsoft extension).
2609    bool hasAnyExceptionSpecification() const {
2610      return false;
2611    }
2612
2613    /// \brief The number of exceptions in the exception specification.
2614    unsigned size() const { return Exceptions.size(); }
2615
2616    /// \brief The set of exceptions in the exception specification.
2617    const QualType *data() const { return Exceptions.data(); }
2618
2619    /// \brief Note that
2620    void CalledDecl(CXXMethodDecl *Method) {
2621      // If we already know that we allow all exceptions, do nothing.
2622      if (AllowsAllExceptions || !Method)
2623        return;
2624
2625      const FunctionProtoType *Proto
2626        = Method->getType()->getAs<FunctionProtoType>();
2627
2628      // If this function can throw any exceptions, make a note of that.
2629      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2630        AllowsAllExceptions = true;
2631        ExceptionsSeen.clear();
2632        Exceptions.clear();
2633        return;
2634      }
2635
2636      // Record the exceptions in this function's exception specification.
2637      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2638                                              EEnd = Proto->exception_end();
2639           E != EEnd; ++E)
2640        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2641          Exceptions.push_back(*E);
2642    }
2643  };
2644}
2645
2646
2647/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2648/// special functions, such as the default constructor, copy
2649/// constructor, or destructor, to the given C++ class (C++
2650/// [special]p1).  This routine can only be executed just before the
2651/// definition of the class is complete.
2652void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2653  if (!ClassDecl->hasUserDeclaredConstructor())
2654    ++ASTContext::NumImplicitDefaultConstructors;
2655
2656  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2657    ++ASTContext::NumImplicitCopyConstructors;
2658
2659  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2660    ++ASTContext::NumImplicitCopyAssignmentOperators;
2661
2662    // If we have a dynamic class, then the copy assignment operator may be
2663    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2664    // it shows up in the right place in the vtable and that we diagnose
2665    // problems with the implicit exception specification.
2666    if (ClassDecl->isDynamicClass())
2667      DeclareImplicitCopyAssignment(ClassDecl);
2668  }
2669
2670  if (!ClassDecl->hasUserDeclaredDestructor()) {
2671    ++ASTContext::NumImplicitDestructors;
2672
2673    // If we have a dynamic class, then the destructor may be virtual, so we
2674    // have to declare the destructor immediately. This ensures that, e.g., it
2675    // shows up in the right place in the vtable and that we diagnose problems
2676    // with the implicit exception specification.
2677    if (ClassDecl->isDynamicClass())
2678      DeclareImplicitDestructor(ClassDecl);
2679  }
2680}
2681
2682void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2683  Decl *D = TemplateD.getAs<Decl>();
2684  if (!D)
2685    return;
2686
2687  TemplateParameterList *Params = 0;
2688  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2689    Params = Template->getTemplateParameters();
2690  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2691           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2692    Params = PartialSpec->getTemplateParameters();
2693  else
2694    return;
2695
2696  for (TemplateParameterList::iterator Param = Params->begin(),
2697                                    ParamEnd = Params->end();
2698       Param != ParamEnd; ++Param) {
2699    NamedDecl *Named = cast<NamedDecl>(*Param);
2700    if (Named->getDeclName()) {
2701      S->AddDecl(DeclPtrTy::make(Named));
2702      IdResolver.AddDecl(Named);
2703    }
2704  }
2705}
2706
2707void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2708  if (!RecordD) return;
2709  AdjustDeclIfTemplate(RecordD);
2710  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2711  PushDeclContext(S, Record);
2712}
2713
2714void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2715  if (!RecordD) return;
2716  PopDeclContext();
2717}
2718
2719/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2720/// parsing a top-level (non-nested) C++ class, and we are now
2721/// parsing those parts of the given Method declaration that could
2722/// not be parsed earlier (C++ [class.mem]p2), such as default
2723/// arguments. This action should enter the scope of the given
2724/// Method declaration as if we had just parsed the qualified method
2725/// name. However, it should not bring the parameters into scope;
2726/// that will be performed by ActOnDelayedCXXMethodParameter.
2727void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2728}
2729
2730/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2731/// C++ method declaration. We're (re-)introducing the given
2732/// function parameter into scope for use in parsing later parts of
2733/// the method declaration. For example, we could see an
2734/// ActOnParamDefaultArgument event for this parameter.
2735void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2736  if (!ParamD)
2737    return;
2738
2739  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2740
2741  // If this parameter has an unparsed default argument, clear it out
2742  // to make way for the parsed default argument.
2743  if (Param->hasUnparsedDefaultArg())
2744    Param->setDefaultArg(0);
2745
2746  S->AddDecl(DeclPtrTy::make(Param));
2747  if (Param->getDeclName())
2748    IdResolver.AddDecl(Param);
2749}
2750
2751/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2752/// processing the delayed method declaration for Method. The method
2753/// declaration is now considered finished. There may be a separate
2754/// ActOnStartOfFunctionDef action later (not necessarily
2755/// immediately!) for this method, if it was also defined inside the
2756/// class body.
2757void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2758  if (!MethodD)
2759    return;
2760
2761  AdjustDeclIfTemplate(MethodD);
2762
2763  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2764
2765  // Now that we have our default arguments, check the constructor
2766  // again. It could produce additional diagnostics or affect whether
2767  // the class has implicitly-declared destructors, among other
2768  // things.
2769  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2770    CheckConstructor(Constructor);
2771
2772  // Check the default arguments, which we may have added.
2773  if (!Method->isInvalidDecl())
2774    CheckCXXDefaultArguments(Method);
2775}
2776
2777/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2778/// the well-formedness of the constructor declarator @p D with type @p
2779/// R. If there are any errors in the declarator, this routine will
2780/// emit diagnostics and set the invalid bit to true.  In any case, the type
2781/// will be updated to reflect a well-formed type for the constructor and
2782/// returned.
2783QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2784                                          FunctionDecl::StorageClass &SC) {
2785  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2786
2787  // C++ [class.ctor]p3:
2788  //   A constructor shall not be virtual (10.3) or static (9.4). A
2789  //   constructor can be invoked for a const, volatile or const
2790  //   volatile object. A constructor shall not be declared const,
2791  //   volatile, or const volatile (9.3.2).
2792  if (isVirtual) {
2793    if (!D.isInvalidType())
2794      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2795        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2796        << SourceRange(D.getIdentifierLoc());
2797    D.setInvalidType();
2798  }
2799  if (SC == FunctionDecl::Static) {
2800    if (!D.isInvalidType())
2801      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2802        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2803        << SourceRange(D.getIdentifierLoc());
2804    D.setInvalidType();
2805    SC = FunctionDecl::None;
2806  }
2807
2808  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2809  if (FTI.TypeQuals != 0) {
2810    if (FTI.TypeQuals & Qualifiers::Const)
2811      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2812        << "const" << SourceRange(D.getIdentifierLoc());
2813    if (FTI.TypeQuals & Qualifiers::Volatile)
2814      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2815        << "volatile" << SourceRange(D.getIdentifierLoc());
2816    if (FTI.TypeQuals & Qualifiers::Restrict)
2817      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2818        << "restrict" << SourceRange(D.getIdentifierLoc());
2819  }
2820
2821  // Rebuild the function type "R" without any type qualifiers (in
2822  // case any of the errors above fired) and with "void" as the
2823  // return type, since constructors don't have return types.
2824  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2825  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2826                                 Proto->getNumArgs(),
2827                                 Proto->isVariadic(), 0,
2828                                 Proto->hasExceptionSpec(),
2829                                 Proto->hasAnyExceptionSpec(),
2830                                 Proto->getNumExceptions(),
2831                                 Proto->exception_begin(),
2832                                 Proto->getExtInfo());
2833}
2834
2835/// CheckConstructor - Checks a fully-formed constructor for
2836/// well-formedness, issuing any diagnostics required. Returns true if
2837/// the constructor declarator is invalid.
2838void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2839  CXXRecordDecl *ClassDecl
2840    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2841  if (!ClassDecl)
2842    return Constructor->setInvalidDecl();
2843
2844  // C++ [class.copy]p3:
2845  //   A declaration of a constructor for a class X is ill-formed if
2846  //   its first parameter is of type (optionally cv-qualified) X and
2847  //   either there are no other parameters or else all other
2848  //   parameters have default arguments.
2849  if (!Constructor->isInvalidDecl() &&
2850      ((Constructor->getNumParams() == 1) ||
2851       (Constructor->getNumParams() > 1 &&
2852        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2853      Constructor->getTemplateSpecializationKind()
2854                                              != TSK_ImplicitInstantiation) {
2855    QualType ParamType = Constructor->getParamDecl(0)->getType();
2856    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2857    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2858      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2859      const char *ConstRef
2860        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2861                                                        : " const &";
2862      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2863        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2864
2865      // FIXME: Rather that making the constructor invalid, we should endeavor
2866      // to fix the type.
2867      Constructor->setInvalidDecl();
2868    }
2869  }
2870
2871  // Notify the class that we've added a constructor.  In principle we
2872  // don't need to do this for out-of-line declarations; in practice
2873  // we only instantiate the most recent declaration of a method, so
2874  // we have to call this for everything but friends.
2875  if (!Constructor->getFriendObjectKind())
2876    ClassDecl->addedConstructor(Context, Constructor);
2877}
2878
2879/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2880/// issuing any diagnostics required. Returns true on error.
2881bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2882  CXXRecordDecl *RD = Destructor->getParent();
2883
2884  if (Destructor->isVirtual()) {
2885    SourceLocation Loc;
2886
2887    if (!Destructor->isImplicit())
2888      Loc = Destructor->getLocation();
2889    else
2890      Loc = RD->getLocation();
2891
2892    // If we have a virtual destructor, look up the deallocation function
2893    FunctionDecl *OperatorDelete = 0;
2894    DeclarationName Name =
2895    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2896    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2897      return true;
2898
2899    MarkDeclarationReferenced(Loc, OperatorDelete);
2900
2901    Destructor->setOperatorDelete(OperatorDelete);
2902  }
2903
2904  return false;
2905}
2906
2907static inline bool
2908FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2909  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2910          FTI.ArgInfo[0].Param &&
2911          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2912}
2913
2914/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2915/// the well-formednes of the destructor declarator @p D with type @p
2916/// R. If there are any errors in the declarator, this routine will
2917/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2918/// will be updated to reflect a well-formed type for the destructor and
2919/// returned.
2920QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2921                                         FunctionDecl::StorageClass& SC) {
2922  // C++ [class.dtor]p1:
2923  //   [...] A typedef-name that names a class is a class-name
2924  //   (7.1.3); however, a typedef-name that names a class shall not
2925  //   be used as the identifier in the declarator for a destructor
2926  //   declaration.
2927  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2928  if (isa<TypedefType>(DeclaratorType))
2929    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2930      << DeclaratorType;
2931
2932  // C++ [class.dtor]p2:
2933  //   A destructor is used to destroy objects of its class type. A
2934  //   destructor takes no parameters, and no return type can be
2935  //   specified for it (not even void). The address of a destructor
2936  //   shall not be taken. A destructor shall not be static. A
2937  //   destructor can be invoked for a const, volatile or const
2938  //   volatile object. A destructor shall not be declared const,
2939  //   volatile or const volatile (9.3.2).
2940  if (SC == FunctionDecl::Static) {
2941    if (!D.isInvalidType())
2942      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2943        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2944        << SourceRange(D.getIdentifierLoc())
2945        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2946
2947    SC = FunctionDecl::None;
2948  }
2949  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2950    // Destructors don't have return types, but the parser will
2951    // happily parse something like:
2952    //
2953    //   class X {
2954    //     float ~X();
2955    //   };
2956    //
2957    // The return type will be eliminated later.
2958    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2959      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2960      << SourceRange(D.getIdentifierLoc());
2961  }
2962
2963  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2964  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2965    if (FTI.TypeQuals & Qualifiers::Const)
2966      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2967        << "const" << SourceRange(D.getIdentifierLoc());
2968    if (FTI.TypeQuals & Qualifiers::Volatile)
2969      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2970        << "volatile" << SourceRange(D.getIdentifierLoc());
2971    if (FTI.TypeQuals & Qualifiers::Restrict)
2972      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2973        << "restrict" << SourceRange(D.getIdentifierLoc());
2974    D.setInvalidType();
2975  }
2976
2977  // Make sure we don't have any parameters.
2978  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2979    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2980
2981    // Delete the parameters.
2982    FTI.freeArgs();
2983    D.setInvalidType();
2984  }
2985
2986  // Make sure the destructor isn't variadic.
2987  if (FTI.isVariadic) {
2988    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2989    D.setInvalidType();
2990  }
2991
2992  // Rebuild the function type "R" without any type qualifiers or
2993  // parameters (in case any of the errors above fired) and with
2994  // "void" as the return type, since destructors don't have return
2995  // types.
2996  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2997  if (!Proto)
2998    return QualType();
2999
3000  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3001                                 Proto->hasExceptionSpec(),
3002                                 Proto->hasAnyExceptionSpec(),
3003                                 Proto->getNumExceptions(),
3004                                 Proto->exception_begin(),
3005                                 Proto->getExtInfo());
3006}
3007
3008/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3009/// well-formednes of the conversion function declarator @p D with
3010/// type @p R. If there are any errors in the declarator, this routine
3011/// will emit diagnostics and return true. Otherwise, it will return
3012/// false. Either way, the type @p R will be updated to reflect a
3013/// well-formed type for the conversion operator.
3014void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3015                                     FunctionDecl::StorageClass& SC) {
3016  // C++ [class.conv.fct]p1:
3017  //   Neither parameter types nor return type can be specified. The
3018  //   type of a conversion function (8.3.5) is "function taking no
3019  //   parameter returning conversion-type-id."
3020  if (SC == FunctionDecl::Static) {
3021    if (!D.isInvalidType())
3022      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3023        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3024        << SourceRange(D.getIdentifierLoc());
3025    D.setInvalidType();
3026    SC = FunctionDecl::None;
3027  }
3028
3029  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3030
3031  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3032    // Conversion functions don't have return types, but the parser will
3033    // happily parse something like:
3034    //
3035    //   class X {
3036    //     float operator bool();
3037    //   };
3038    //
3039    // The return type will be changed later anyway.
3040    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3041      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3042      << SourceRange(D.getIdentifierLoc());
3043    D.setInvalidType();
3044  }
3045
3046  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3047
3048  // Make sure we don't have any parameters.
3049  if (Proto->getNumArgs() > 0) {
3050    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3051
3052    // Delete the parameters.
3053    D.getTypeObject(0).Fun.freeArgs();
3054    D.setInvalidType();
3055  } else if (Proto->isVariadic()) {
3056    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3057    D.setInvalidType();
3058  }
3059
3060  // Diagnose "&operator bool()" and other such nonsense.  This
3061  // is actually a gcc extension which we don't support.
3062  if (Proto->getResultType() != ConvType) {
3063    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3064      << Proto->getResultType();
3065    D.setInvalidType();
3066    ConvType = Proto->getResultType();
3067  }
3068
3069  // C++ [class.conv.fct]p4:
3070  //   The conversion-type-id shall not represent a function type nor
3071  //   an array type.
3072  if (ConvType->isArrayType()) {
3073    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3074    ConvType = Context.getPointerType(ConvType);
3075    D.setInvalidType();
3076  } else if (ConvType->isFunctionType()) {
3077    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3078    ConvType = Context.getPointerType(ConvType);
3079    D.setInvalidType();
3080  }
3081
3082  // Rebuild the function type "R" without any parameters (in case any
3083  // of the errors above fired) and with the conversion type as the
3084  // return type.
3085  if (D.isInvalidType()) {
3086    R = Context.getFunctionType(ConvType, 0, 0, false,
3087                                Proto->getTypeQuals(),
3088                                Proto->hasExceptionSpec(),
3089                                Proto->hasAnyExceptionSpec(),
3090                                Proto->getNumExceptions(),
3091                                Proto->exception_begin(),
3092                                Proto->getExtInfo());
3093  }
3094
3095  // C++0x explicit conversion operators.
3096  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3097    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3098         diag::warn_explicit_conversion_functions)
3099      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3100}
3101
3102/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3103/// the declaration of the given C++ conversion function. This routine
3104/// is responsible for recording the conversion function in the C++
3105/// class, if possible.
3106Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3107  assert(Conversion && "Expected to receive a conversion function declaration");
3108
3109  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3110
3111  // Make sure we aren't redeclaring the conversion function.
3112  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3113
3114  // C++ [class.conv.fct]p1:
3115  //   [...] A conversion function is never used to convert a
3116  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3117  //   same object type (or a reference to it), to a (possibly
3118  //   cv-qualified) base class of that type (or a reference to it),
3119  //   or to (possibly cv-qualified) void.
3120  // FIXME: Suppress this warning if the conversion function ends up being a
3121  // virtual function that overrides a virtual function in a base class.
3122  QualType ClassType
3123    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3124  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3125    ConvType = ConvTypeRef->getPointeeType();
3126  if (ConvType->isRecordType()) {
3127    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3128    if (ConvType == ClassType)
3129      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3130        << ClassType;
3131    else if (IsDerivedFrom(ClassType, ConvType))
3132      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3133        <<  ClassType << ConvType;
3134  } else if (ConvType->isVoidType()) {
3135    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3136      << ClassType << ConvType;
3137  }
3138
3139  if (Conversion->getPrimaryTemplate()) {
3140    // ignore specializations
3141  } else if (Conversion->getPreviousDeclaration()) {
3142    if (FunctionTemplateDecl *ConversionTemplate
3143                                  = Conversion->getDescribedFunctionTemplate()) {
3144      if (ClassDecl->replaceConversion(
3145                                   ConversionTemplate->getPreviousDeclaration(),
3146                                       ConversionTemplate))
3147        return DeclPtrTy::make(ConversionTemplate);
3148    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3149                                            Conversion))
3150      return DeclPtrTy::make(Conversion);
3151    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3152  } else if (FunctionTemplateDecl *ConversionTemplate
3153               = Conversion->getDescribedFunctionTemplate())
3154    ClassDecl->addConversionFunction(ConversionTemplate);
3155  else
3156    ClassDecl->addConversionFunction(Conversion);
3157
3158  return DeclPtrTy::make(Conversion);
3159}
3160
3161//===----------------------------------------------------------------------===//
3162// Namespace Handling
3163//===----------------------------------------------------------------------===//
3164
3165/// ActOnStartNamespaceDef - This is called at the start of a namespace
3166/// definition.
3167Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3168                                             SourceLocation IdentLoc,
3169                                             IdentifierInfo *II,
3170                                             SourceLocation LBrace,
3171                                             AttributeList *AttrList) {
3172  NamespaceDecl *Namespc =
3173      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3174  Namespc->setLBracLoc(LBrace);
3175
3176  Scope *DeclRegionScope = NamespcScope->getParent();
3177
3178  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3179
3180  if (II) {
3181    // C++ [namespace.def]p2:
3182    // The identifier in an original-namespace-definition shall not have been
3183    // previously defined in the declarative region in which the
3184    // original-namespace-definition appears. The identifier in an
3185    // original-namespace-definition is the name of the namespace. Subsequently
3186    // in that declarative region, it is treated as an original-namespace-name.
3187
3188    NamedDecl *PrevDecl
3189      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3190                         ForRedeclaration);
3191
3192    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3193      // This is an extended namespace definition.
3194      // Attach this namespace decl to the chain of extended namespace
3195      // definitions.
3196      OrigNS->setNextNamespace(Namespc);
3197      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3198
3199      // Remove the previous declaration from the scope.
3200      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3201        IdResolver.RemoveDecl(OrigNS);
3202        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3203      }
3204    } else if (PrevDecl) {
3205      // This is an invalid name redefinition.
3206      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3207       << Namespc->getDeclName();
3208      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3209      Namespc->setInvalidDecl();
3210      // Continue on to push Namespc as current DeclContext and return it.
3211    } else if (II->isStr("std") &&
3212               CurContext->getLookupContext()->isTranslationUnit()) {
3213      // This is the first "real" definition of the namespace "std", so update
3214      // our cache of the "std" namespace to point at this definition.
3215      if (StdNamespace) {
3216        // We had already defined a dummy namespace "std". Link this new
3217        // namespace definition to the dummy namespace "std".
3218        StdNamespace->setNextNamespace(Namespc);
3219        StdNamespace->setLocation(IdentLoc);
3220        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3221      }
3222
3223      // Make our StdNamespace cache point at the first real definition of the
3224      // "std" namespace.
3225      StdNamespace = Namespc;
3226    }
3227
3228    PushOnScopeChains(Namespc, DeclRegionScope);
3229  } else {
3230    // Anonymous namespaces.
3231    assert(Namespc->isAnonymousNamespace());
3232
3233    // Link the anonymous namespace into its parent.
3234    NamespaceDecl *PrevDecl;
3235    DeclContext *Parent = CurContext->getLookupContext();
3236    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3237      PrevDecl = TU->getAnonymousNamespace();
3238      TU->setAnonymousNamespace(Namespc);
3239    } else {
3240      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3241      PrevDecl = ND->getAnonymousNamespace();
3242      ND->setAnonymousNamespace(Namespc);
3243    }
3244
3245    // Link the anonymous namespace with its previous declaration.
3246    if (PrevDecl) {
3247      assert(PrevDecl->isAnonymousNamespace());
3248      assert(!PrevDecl->getNextNamespace());
3249      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3250      PrevDecl->setNextNamespace(Namespc);
3251    }
3252
3253    CurContext->addDecl(Namespc);
3254
3255    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3256    //   behaves as if it were replaced by
3257    //     namespace unique { /* empty body */ }
3258    //     using namespace unique;
3259    //     namespace unique { namespace-body }
3260    //   where all occurrences of 'unique' in a translation unit are
3261    //   replaced by the same identifier and this identifier differs
3262    //   from all other identifiers in the entire program.
3263
3264    // We just create the namespace with an empty name and then add an
3265    // implicit using declaration, just like the standard suggests.
3266    //
3267    // CodeGen enforces the "universally unique" aspect by giving all
3268    // declarations semantically contained within an anonymous
3269    // namespace internal linkage.
3270
3271    if (!PrevDecl) {
3272      UsingDirectiveDecl* UD
3273        = UsingDirectiveDecl::Create(Context, CurContext,
3274                                     /* 'using' */ LBrace,
3275                                     /* 'namespace' */ SourceLocation(),
3276                                     /* qualifier */ SourceRange(),
3277                                     /* NNS */ NULL,
3278                                     /* identifier */ SourceLocation(),
3279                                     Namespc,
3280                                     /* Ancestor */ CurContext);
3281      UD->setImplicit();
3282      CurContext->addDecl(UD);
3283    }
3284  }
3285
3286  // Although we could have an invalid decl (i.e. the namespace name is a
3287  // redefinition), push it as current DeclContext and try to continue parsing.
3288  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3289  // for the namespace has the declarations that showed up in that particular
3290  // namespace definition.
3291  PushDeclContext(NamespcScope, Namespc);
3292  return DeclPtrTy::make(Namespc);
3293}
3294
3295/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3296/// is a namespace alias, returns the namespace it points to.
3297static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3298  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3299    return AD->getNamespace();
3300  return dyn_cast_or_null<NamespaceDecl>(D);
3301}
3302
3303/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3304/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3305void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3306  Decl *Dcl = D.getAs<Decl>();
3307  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3308  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3309  Namespc->setRBracLoc(RBrace);
3310  PopDeclContext();
3311}
3312
3313/// \brief Retrieve the special "std" namespace, which may require us to
3314/// implicitly define the namespace.
3315NamespaceDecl *Sema::getStdNamespace() {
3316  if (!StdNamespace) {
3317    // The "std" namespace has not yet been defined, so build one implicitly.
3318    StdNamespace = NamespaceDecl::Create(Context,
3319                                         Context.getTranslationUnitDecl(),
3320                                         SourceLocation(),
3321                                         &PP.getIdentifierTable().get("std"));
3322    StdNamespace->setImplicit(true);
3323  }
3324
3325  return StdNamespace;
3326}
3327
3328Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3329                                          SourceLocation UsingLoc,
3330                                          SourceLocation NamespcLoc,
3331                                          CXXScopeSpec &SS,
3332                                          SourceLocation IdentLoc,
3333                                          IdentifierInfo *NamespcName,
3334                                          AttributeList *AttrList) {
3335  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3336  assert(NamespcName && "Invalid NamespcName.");
3337  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3338  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3339
3340  UsingDirectiveDecl *UDir = 0;
3341  NestedNameSpecifier *Qualifier = 0;
3342  if (SS.isSet())
3343    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3344
3345  // Lookup namespace name.
3346  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3347  LookupParsedName(R, S, &SS);
3348  if (R.isAmbiguous())
3349    return DeclPtrTy();
3350
3351  if (R.empty()) {
3352    // Allow "using namespace std;" or "using namespace ::std;" even if
3353    // "std" hasn't been defined yet, for GCC compatibility.
3354    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3355        NamespcName->isStr("std")) {
3356      Diag(IdentLoc, diag::ext_using_undefined_std);
3357      R.addDecl(getStdNamespace());
3358      R.resolveKind();
3359    }
3360    // Otherwise, attempt typo correction.
3361    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3362                                                       CTC_NoKeywords, 0)) {
3363      if (R.getAsSingle<NamespaceDecl>() ||
3364          R.getAsSingle<NamespaceAliasDecl>()) {
3365        if (DeclContext *DC = computeDeclContext(SS, false))
3366          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3367            << NamespcName << DC << Corrected << SS.getRange()
3368            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3369        else
3370          Diag(IdentLoc, diag::err_using_directive_suggest)
3371            << NamespcName << Corrected
3372            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3373        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3374          << Corrected;
3375
3376        NamespcName = Corrected.getAsIdentifierInfo();
3377      } else {
3378        R.clear();
3379        R.setLookupName(NamespcName);
3380      }
3381    }
3382  }
3383
3384  if (!R.empty()) {
3385    NamedDecl *Named = R.getFoundDecl();
3386    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3387        && "expected namespace decl");
3388    // C++ [namespace.udir]p1:
3389    //   A using-directive specifies that the names in the nominated
3390    //   namespace can be used in the scope in which the
3391    //   using-directive appears after the using-directive. During
3392    //   unqualified name lookup (3.4.1), the names appear as if they
3393    //   were declared in the nearest enclosing namespace which
3394    //   contains both the using-directive and the nominated
3395    //   namespace. [Note: in this context, "contains" means "contains
3396    //   directly or indirectly". ]
3397
3398    // Find enclosing context containing both using-directive and
3399    // nominated namespace.
3400    NamespaceDecl *NS = getNamespaceDecl(Named);
3401    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3402    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3403      CommonAncestor = CommonAncestor->getParent();
3404
3405    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3406                                      SS.getRange(),
3407                                      (NestedNameSpecifier *)SS.getScopeRep(),
3408                                      IdentLoc, Named, CommonAncestor);
3409    PushUsingDirective(S, UDir);
3410  } else {
3411    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3412  }
3413
3414  // FIXME: We ignore attributes for now.
3415  delete AttrList;
3416  return DeclPtrTy::make(UDir);
3417}
3418
3419void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3420  // If scope has associated entity, then using directive is at namespace
3421  // or translation unit scope. We add UsingDirectiveDecls, into
3422  // it's lookup structure.
3423  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3424    Ctx->addDecl(UDir);
3425  else
3426    // Otherwise it is block-sope. using-directives will affect lookup
3427    // only to the end of scope.
3428    S->PushUsingDirective(DeclPtrTy::make(UDir));
3429}
3430
3431
3432Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3433                                            AccessSpecifier AS,
3434                                            bool HasUsingKeyword,
3435                                            SourceLocation UsingLoc,
3436                                            CXXScopeSpec &SS,
3437                                            UnqualifiedId &Name,
3438                                            AttributeList *AttrList,
3439                                            bool IsTypeName,
3440                                            SourceLocation TypenameLoc) {
3441  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3442
3443  switch (Name.getKind()) {
3444  case UnqualifiedId::IK_Identifier:
3445  case UnqualifiedId::IK_OperatorFunctionId:
3446  case UnqualifiedId::IK_LiteralOperatorId:
3447  case UnqualifiedId::IK_ConversionFunctionId:
3448    break;
3449
3450  case UnqualifiedId::IK_ConstructorName:
3451  case UnqualifiedId::IK_ConstructorTemplateId:
3452    // C++0x inherited constructors.
3453    if (getLangOptions().CPlusPlus0x) break;
3454
3455    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3456      << SS.getRange();
3457    return DeclPtrTy();
3458
3459  case UnqualifiedId::IK_DestructorName:
3460    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3461      << SS.getRange();
3462    return DeclPtrTy();
3463
3464  case UnqualifiedId::IK_TemplateId:
3465    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3466      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3467    return DeclPtrTy();
3468  }
3469
3470  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3471  if (!TargetName)
3472    return DeclPtrTy();
3473
3474  // Warn about using declarations.
3475  // TODO: store that the declaration was written without 'using' and
3476  // talk about access decls instead of using decls in the
3477  // diagnostics.
3478  if (!HasUsingKeyword) {
3479    UsingLoc = Name.getSourceRange().getBegin();
3480
3481    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3482      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3483  }
3484
3485  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3486                                        Name.getSourceRange().getBegin(),
3487                                        TargetName, AttrList,
3488                                        /* IsInstantiation */ false,
3489                                        IsTypeName, TypenameLoc);
3490  if (UD)
3491    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3492
3493  return DeclPtrTy::make(UD);
3494}
3495
3496/// \brief Determine whether a using declaration considers the given
3497/// declarations as "equivalent", e.g., if they are redeclarations of
3498/// the same entity or are both typedefs of the same type.
3499static bool
3500IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3501                         bool &SuppressRedeclaration) {
3502  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3503    SuppressRedeclaration = false;
3504    return true;
3505  }
3506
3507  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3508    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3509      SuppressRedeclaration = true;
3510      return Context.hasSameType(TD1->getUnderlyingType(),
3511                                 TD2->getUnderlyingType());
3512    }
3513
3514  return false;
3515}
3516
3517
3518/// Determines whether to create a using shadow decl for a particular
3519/// decl, given the set of decls existing prior to this using lookup.
3520bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3521                                const LookupResult &Previous) {
3522  // Diagnose finding a decl which is not from a base class of the
3523  // current class.  We do this now because there are cases where this
3524  // function will silently decide not to build a shadow decl, which
3525  // will pre-empt further diagnostics.
3526  //
3527  // We don't need to do this in C++0x because we do the check once on
3528  // the qualifier.
3529  //
3530  // FIXME: diagnose the following if we care enough:
3531  //   struct A { int foo; };
3532  //   struct B : A { using A::foo; };
3533  //   template <class T> struct C : A {};
3534  //   template <class T> struct D : C<T> { using B::foo; } // <---
3535  // This is invalid (during instantiation) in C++03 because B::foo
3536  // resolves to the using decl in B, which is not a base class of D<T>.
3537  // We can't diagnose it immediately because C<T> is an unknown
3538  // specialization.  The UsingShadowDecl in D<T> then points directly
3539  // to A::foo, which will look well-formed when we instantiate.
3540  // The right solution is to not collapse the shadow-decl chain.
3541  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3542    DeclContext *OrigDC = Orig->getDeclContext();
3543
3544    // Handle enums and anonymous structs.
3545    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3546    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3547    while (OrigRec->isAnonymousStructOrUnion())
3548      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3549
3550    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3551      if (OrigDC == CurContext) {
3552        Diag(Using->getLocation(),
3553             diag::err_using_decl_nested_name_specifier_is_current_class)
3554          << Using->getNestedNameRange();
3555        Diag(Orig->getLocation(), diag::note_using_decl_target);
3556        return true;
3557      }
3558
3559      Diag(Using->getNestedNameRange().getBegin(),
3560           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3561        << Using->getTargetNestedNameDecl()
3562        << cast<CXXRecordDecl>(CurContext)
3563        << Using->getNestedNameRange();
3564      Diag(Orig->getLocation(), diag::note_using_decl_target);
3565      return true;
3566    }
3567  }
3568
3569  if (Previous.empty()) return false;
3570
3571  NamedDecl *Target = Orig;
3572  if (isa<UsingShadowDecl>(Target))
3573    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3574
3575  // If the target happens to be one of the previous declarations, we
3576  // don't have a conflict.
3577  //
3578  // FIXME: but we might be increasing its access, in which case we
3579  // should redeclare it.
3580  NamedDecl *NonTag = 0, *Tag = 0;
3581  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3582         I != E; ++I) {
3583    NamedDecl *D = (*I)->getUnderlyingDecl();
3584    bool Result;
3585    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3586      return Result;
3587
3588    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3589  }
3590
3591  if (Target->isFunctionOrFunctionTemplate()) {
3592    FunctionDecl *FD;
3593    if (isa<FunctionTemplateDecl>(Target))
3594      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3595    else
3596      FD = cast<FunctionDecl>(Target);
3597
3598    NamedDecl *OldDecl = 0;
3599    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3600    case Ovl_Overload:
3601      return false;
3602
3603    case Ovl_NonFunction:
3604      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3605      break;
3606
3607    // We found a decl with the exact signature.
3608    case Ovl_Match:
3609      // If we're in a record, we want to hide the target, so we
3610      // return true (without a diagnostic) to tell the caller not to
3611      // build a shadow decl.
3612      if (CurContext->isRecord())
3613        return true;
3614
3615      // If we're not in a record, this is an error.
3616      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3617      break;
3618    }
3619
3620    Diag(Target->getLocation(), diag::note_using_decl_target);
3621    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3622    return true;
3623  }
3624
3625  // Target is not a function.
3626
3627  if (isa<TagDecl>(Target)) {
3628    // No conflict between a tag and a non-tag.
3629    if (!Tag) return false;
3630
3631    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3632    Diag(Target->getLocation(), diag::note_using_decl_target);
3633    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3634    return true;
3635  }
3636
3637  // No conflict between a tag and a non-tag.
3638  if (!NonTag) return false;
3639
3640  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3641  Diag(Target->getLocation(), diag::note_using_decl_target);
3642  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3643  return true;
3644}
3645
3646/// Builds a shadow declaration corresponding to a 'using' declaration.
3647UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3648                                            UsingDecl *UD,
3649                                            NamedDecl *Orig) {
3650
3651  // If we resolved to another shadow declaration, just coalesce them.
3652  NamedDecl *Target = Orig;
3653  if (isa<UsingShadowDecl>(Target)) {
3654    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3655    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3656  }
3657
3658  UsingShadowDecl *Shadow
3659    = UsingShadowDecl::Create(Context, CurContext,
3660                              UD->getLocation(), UD, Target);
3661  UD->addShadowDecl(Shadow);
3662
3663  if (S)
3664    PushOnScopeChains(Shadow, S);
3665  else
3666    CurContext->addDecl(Shadow);
3667  Shadow->setAccess(UD->getAccess());
3668
3669  // Register it as a conversion if appropriate.
3670  if (Shadow->getDeclName().getNameKind()
3671        == DeclarationName::CXXConversionFunctionName)
3672    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3673
3674  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3675    Shadow->setInvalidDecl();
3676
3677  return Shadow;
3678}
3679
3680/// Hides a using shadow declaration.  This is required by the current
3681/// using-decl implementation when a resolvable using declaration in a
3682/// class is followed by a declaration which would hide or override
3683/// one or more of the using decl's targets; for example:
3684///
3685///   struct Base { void foo(int); };
3686///   struct Derived : Base {
3687///     using Base::foo;
3688///     void foo(int);
3689///   };
3690///
3691/// The governing language is C++03 [namespace.udecl]p12:
3692///
3693///   When a using-declaration brings names from a base class into a
3694///   derived class scope, member functions in the derived class
3695///   override and/or hide member functions with the same name and
3696///   parameter types in a base class (rather than conflicting).
3697///
3698/// There are two ways to implement this:
3699///   (1) optimistically create shadow decls when they're not hidden
3700///       by existing declarations, or
3701///   (2) don't create any shadow decls (or at least don't make them
3702///       visible) until we've fully parsed/instantiated the class.
3703/// The problem with (1) is that we might have to retroactively remove
3704/// a shadow decl, which requires several O(n) operations because the
3705/// decl structures are (very reasonably) not designed for removal.
3706/// (2) avoids this but is very fiddly and phase-dependent.
3707void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3708  if (Shadow->getDeclName().getNameKind() ==
3709        DeclarationName::CXXConversionFunctionName)
3710    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3711
3712  // Remove it from the DeclContext...
3713  Shadow->getDeclContext()->removeDecl(Shadow);
3714
3715  // ...and the scope, if applicable...
3716  if (S) {
3717    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3718    IdResolver.RemoveDecl(Shadow);
3719  }
3720
3721  // ...and the using decl.
3722  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3723
3724  // TODO: complain somehow if Shadow was used.  It shouldn't
3725  // be possible for this to happen, because...?
3726}
3727
3728/// Builds a using declaration.
3729///
3730/// \param IsInstantiation - Whether this call arises from an
3731///   instantiation of an unresolved using declaration.  We treat
3732///   the lookup differently for these declarations.
3733NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3734                                       SourceLocation UsingLoc,
3735                                       CXXScopeSpec &SS,
3736                                       SourceLocation IdentLoc,
3737                                       DeclarationName Name,
3738                                       AttributeList *AttrList,
3739                                       bool IsInstantiation,
3740                                       bool IsTypeName,
3741                                       SourceLocation TypenameLoc) {
3742  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3743  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3744
3745  // FIXME: We ignore attributes for now.
3746  delete AttrList;
3747
3748  if (SS.isEmpty()) {
3749    Diag(IdentLoc, diag::err_using_requires_qualname);
3750    return 0;
3751  }
3752
3753  // Do the redeclaration lookup in the current scope.
3754  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3755                        ForRedeclaration);
3756  Previous.setHideTags(false);
3757  if (S) {
3758    LookupName(Previous, S);
3759
3760    // It is really dumb that we have to do this.
3761    LookupResult::Filter F = Previous.makeFilter();
3762    while (F.hasNext()) {
3763      NamedDecl *D = F.next();
3764      if (!isDeclInScope(D, CurContext, S))
3765        F.erase();
3766    }
3767    F.done();
3768  } else {
3769    assert(IsInstantiation && "no scope in non-instantiation");
3770    assert(CurContext->isRecord() && "scope not record in instantiation");
3771    LookupQualifiedName(Previous, CurContext);
3772  }
3773
3774  NestedNameSpecifier *NNS =
3775    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3776
3777  // Check for invalid redeclarations.
3778  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3779    return 0;
3780
3781  // Check for bad qualifiers.
3782  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3783    return 0;
3784
3785  DeclContext *LookupContext = computeDeclContext(SS);
3786  NamedDecl *D;
3787  if (!LookupContext) {
3788    if (IsTypeName) {
3789      // FIXME: not all declaration name kinds are legal here
3790      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3791                                              UsingLoc, TypenameLoc,
3792                                              SS.getRange(), NNS,
3793                                              IdentLoc, Name);
3794    } else {
3795      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3796                                           UsingLoc, SS.getRange(), NNS,
3797                                           IdentLoc, Name);
3798    }
3799  } else {
3800    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3801                          SS.getRange(), UsingLoc, NNS, Name,
3802                          IsTypeName);
3803  }
3804  D->setAccess(AS);
3805  CurContext->addDecl(D);
3806
3807  if (!LookupContext) return D;
3808  UsingDecl *UD = cast<UsingDecl>(D);
3809
3810  if (RequireCompleteDeclContext(SS, LookupContext)) {
3811    UD->setInvalidDecl();
3812    return UD;
3813  }
3814
3815  // Look up the target name.
3816
3817  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3818
3819  // Unlike most lookups, we don't always want to hide tag
3820  // declarations: tag names are visible through the using declaration
3821  // even if hidden by ordinary names, *except* in a dependent context
3822  // where it's important for the sanity of two-phase lookup.
3823  if (!IsInstantiation)
3824    R.setHideTags(false);
3825
3826  LookupQualifiedName(R, LookupContext);
3827
3828  if (R.empty()) {
3829    Diag(IdentLoc, diag::err_no_member)
3830      << Name << LookupContext << SS.getRange();
3831    UD->setInvalidDecl();
3832    return UD;
3833  }
3834
3835  if (R.isAmbiguous()) {
3836    UD->setInvalidDecl();
3837    return UD;
3838  }
3839
3840  if (IsTypeName) {
3841    // If we asked for a typename and got a non-type decl, error out.
3842    if (!R.getAsSingle<TypeDecl>()) {
3843      Diag(IdentLoc, diag::err_using_typename_non_type);
3844      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3845        Diag((*I)->getUnderlyingDecl()->getLocation(),
3846             diag::note_using_decl_target);
3847      UD->setInvalidDecl();
3848      return UD;
3849    }
3850  } else {
3851    // If we asked for a non-typename and we got a type, error out,
3852    // but only if this is an instantiation of an unresolved using
3853    // decl.  Otherwise just silently find the type name.
3854    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3855      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3856      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3857      UD->setInvalidDecl();
3858      return UD;
3859    }
3860  }
3861
3862  // C++0x N2914 [namespace.udecl]p6:
3863  // A using-declaration shall not name a namespace.
3864  if (R.getAsSingle<NamespaceDecl>()) {
3865    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3866      << SS.getRange();
3867    UD->setInvalidDecl();
3868    return UD;
3869  }
3870
3871  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3872    if (!CheckUsingShadowDecl(UD, *I, Previous))
3873      BuildUsingShadowDecl(S, UD, *I);
3874  }
3875
3876  return UD;
3877}
3878
3879/// Checks that the given using declaration is not an invalid
3880/// redeclaration.  Note that this is checking only for the using decl
3881/// itself, not for any ill-formedness among the UsingShadowDecls.
3882bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3883                                       bool isTypeName,
3884                                       const CXXScopeSpec &SS,
3885                                       SourceLocation NameLoc,
3886                                       const LookupResult &Prev) {
3887  // C++03 [namespace.udecl]p8:
3888  // C++0x [namespace.udecl]p10:
3889  //   A using-declaration is a declaration and can therefore be used
3890  //   repeatedly where (and only where) multiple declarations are
3891  //   allowed.
3892  //
3893  // That's in non-member contexts.
3894  if (!CurContext->getLookupContext()->isRecord())
3895    return false;
3896
3897  NestedNameSpecifier *Qual
3898    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3899
3900  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3901    NamedDecl *D = *I;
3902
3903    bool DTypename;
3904    NestedNameSpecifier *DQual;
3905    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3906      DTypename = UD->isTypeName();
3907      DQual = UD->getTargetNestedNameDecl();
3908    } else if (UnresolvedUsingValueDecl *UD
3909                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3910      DTypename = false;
3911      DQual = UD->getTargetNestedNameSpecifier();
3912    } else if (UnresolvedUsingTypenameDecl *UD
3913                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3914      DTypename = true;
3915      DQual = UD->getTargetNestedNameSpecifier();
3916    } else continue;
3917
3918    // using decls differ if one says 'typename' and the other doesn't.
3919    // FIXME: non-dependent using decls?
3920    if (isTypeName != DTypename) continue;
3921
3922    // using decls differ if they name different scopes (but note that
3923    // template instantiation can cause this check to trigger when it
3924    // didn't before instantiation).
3925    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3926        Context.getCanonicalNestedNameSpecifier(DQual))
3927      continue;
3928
3929    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3930    Diag(D->getLocation(), diag::note_using_decl) << 1;
3931    return true;
3932  }
3933
3934  return false;
3935}
3936
3937
3938/// Checks that the given nested-name qualifier used in a using decl
3939/// in the current context is appropriately related to the current
3940/// scope.  If an error is found, diagnoses it and returns true.
3941bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3942                                   const CXXScopeSpec &SS,
3943                                   SourceLocation NameLoc) {
3944  DeclContext *NamedContext = computeDeclContext(SS);
3945
3946  if (!CurContext->isRecord()) {
3947    // C++03 [namespace.udecl]p3:
3948    // C++0x [namespace.udecl]p8:
3949    //   A using-declaration for a class member shall be a member-declaration.
3950
3951    // If we weren't able to compute a valid scope, it must be a
3952    // dependent class scope.
3953    if (!NamedContext || NamedContext->isRecord()) {
3954      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3955        << SS.getRange();
3956      return true;
3957    }
3958
3959    // Otherwise, everything is known to be fine.
3960    return false;
3961  }
3962
3963  // The current scope is a record.
3964
3965  // If the named context is dependent, we can't decide much.
3966  if (!NamedContext) {
3967    // FIXME: in C++0x, we can diagnose if we can prove that the
3968    // nested-name-specifier does not refer to a base class, which is
3969    // still possible in some cases.
3970
3971    // Otherwise we have to conservatively report that things might be
3972    // okay.
3973    return false;
3974  }
3975
3976  if (!NamedContext->isRecord()) {
3977    // Ideally this would point at the last name in the specifier,
3978    // but we don't have that level of source info.
3979    Diag(SS.getRange().getBegin(),
3980         diag::err_using_decl_nested_name_specifier_is_not_class)
3981      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3982    return true;
3983  }
3984
3985  if (getLangOptions().CPlusPlus0x) {
3986    // C++0x [namespace.udecl]p3:
3987    //   In a using-declaration used as a member-declaration, the
3988    //   nested-name-specifier shall name a base class of the class
3989    //   being defined.
3990
3991    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3992                                 cast<CXXRecordDecl>(NamedContext))) {
3993      if (CurContext == NamedContext) {
3994        Diag(NameLoc,
3995             diag::err_using_decl_nested_name_specifier_is_current_class)
3996          << SS.getRange();
3997        return true;
3998      }
3999
4000      Diag(SS.getRange().getBegin(),
4001           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4002        << (NestedNameSpecifier*) SS.getScopeRep()
4003        << cast<CXXRecordDecl>(CurContext)
4004        << SS.getRange();
4005      return true;
4006    }
4007
4008    return false;
4009  }
4010
4011  // C++03 [namespace.udecl]p4:
4012  //   A using-declaration used as a member-declaration shall refer
4013  //   to a member of a base class of the class being defined [etc.].
4014
4015  // Salient point: SS doesn't have to name a base class as long as
4016  // lookup only finds members from base classes.  Therefore we can
4017  // diagnose here only if we can prove that that can't happen,
4018  // i.e. if the class hierarchies provably don't intersect.
4019
4020  // TODO: it would be nice if "definitely valid" results were cached
4021  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4022  // need to be repeated.
4023
4024  struct UserData {
4025    llvm::DenseSet<const CXXRecordDecl*> Bases;
4026
4027    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4028      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4029      Data->Bases.insert(Base);
4030      return true;
4031    }
4032
4033    bool hasDependentBases(const CXXRecordDecl *Class) {
4034      return !Class->forallBases(collect, this);
4035    }
4036
4037    /// Returns true if the base is dependent or is one of the
4038    /// accumulated base classes.
4039    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4040      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4041      return !Data->Bases.count(Base);
4042    }
4043
4044    bool mightShareBases(const CXXRecordDecl *Class) {
4045      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4046    }
4047  };
4048
4049  UserData Data;
4050
4051  // Returns false if we find a dependent base.
4052  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4053    return false;
4054
4055  // Returns false if the class has a dependent base or if it or one
4056  // of its bases is present in the base set of the current context.
4057  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4058    return false;
4059
4060  Diag(SS.getRange().getBegin(),
4061       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4062    << (NestedNameSpecifier*) SS.getScopeRep()
4063    << cast<CXXRecordDecl>(CurContext)
4064    << SS.getRange();
4065
4066  return true;
4067}
4068
4069Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4070                                             SourceLocation NamespaceLoc,
4071                                             SourceLocation AliasLoc,
4072                                             IdentifierInfo *Alias,
4073                                             CXXScopeSpec &SS,
4074                                             SourceLocation IdentLoc,
4075                                             IdentifierInfo *Ident) {
4076
4077  // Lookup the namespace name.
4078  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4079  LookupParsedName(R, S, &SS);
4080
4081  // Check if we have a previous declaration with the same name.
4082  NamedDecl *PrevDecl
4083    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4084                       ForRedeclaration);
4085  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4086    PrevDecl = 0;
4087
4088  if (PrevDecl) {
4089    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4090      // We already have an alias with the same name that points to the same
4091      // namespace, so don't create a new one.
4092      // FIXME: At some point, we'll want to create the (redundant)
4093      // declaration to maintain better source information.
4094      if (!R.isAmbiguous() && !R.empty() &&
4095          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4096        return DeclPtrTy();
4097    }
4098
4099    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4100      diag::err_redefinition_different_kind;
4101    Diag(AliasLoc, DiagID) << Alias;
4102    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4103    return DeclPtrTy();
4104  }
4105
4106  if (R.isAmbiguous())
4107    return DeclPtrTy();
4108
4109  if (R.empty()) {
4110    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4111                                                CTC_NoKeywords, 0)) {
4112      if (R.getAsSingle<NamespaceDecl>() ||
4113          R.getAsSingle<NamespaceAliasDecl>()) {
4114        if (DeclContext *DC = computeDeclContext(SS, false))
4115          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4116            << Ident << DC << Corrected << SS.getRange()
4117            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4118        else
4119          Diag(IdentLoc, diag::err_using_directive_suggest)
4120            << Ident << Corrected
4121            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4122
4123        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4124          << Corrected;
4125
4126        Ident = Corrected.getAsIdentifierInfo();
4127      } else {
4128        R.clear();
4129        R.setLookupName(Ident);
4130      }
4131    }
4132
4133    if (R.empty()) {
4134      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4135      return DeclPtrTy();
4136    }
4137  }
4138
4139  NamespaceAliasDecl *AliasDecl =
4140    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4141                               Alias, SS.getRange(),
4142                               (NestedNameSpecifier *)SS.getScopeRep(),
4143                               IdentLoc, R.getFoundDecl());
4144
4145  PushOnScopeChains(AliasDecl, S);
4146  return DeclPtrTy::make(AliasDecl);
4147}
4148
4149namespace {
4150  /// \brief Scoped object used to handle the state changes required in Sema
4151  /// to implicitly define the body of a C++ member function;
4152  class ImplicitlyDefinedFunctionScope {
4153    Sema &S;
4154    DeclContext *PreviousContext;
4155
4156  public:
4157    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4158      : S(S), PreviousContext(S.CurContext)
4159    {
4160      S.CurContext = Method;
4161      S.PushFunctionScope();
4162      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4163    }
4164
4165    ~ImplicitlyDefinedFunctionScope() {
4166      S.PopExpressionEvaluationContext();
4167      S.PopFunctionOrBlockScope();
4168      S.CurContext = PreviousContext;
4169    }
4170  };
4171}
4172
4173CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4174                                                     CXXRecordDecl *ClassDecl) {
4175  // C++ [class.ctor]p5:
4176  //   A default constructor for a class X is a constructor of class X
4177  //   that can be called without an argument. If there is no
4178  //   user-declared constructor for class X, a default constructor is
4179  //   implicitly declared. An implicitly-declared default constructor
4180  //   is an inline public member of its class.
4181  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4182         "Should not build implicit default constructor!");
4183
4184  // C++ [except.spec]p14:
4185  //   An implicitly declared special member function (Clause 12) shall have an
4186  //   exception-specification. [...]
4187  ImplicitExceptionSpecification ExceptSpec(Context);
4188
4189  // Direct base-class destructors.
4190  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4191                                       BEnd = ClassDecl->bases_end();
4192       B != BEnd; ++B) {
4193    if (B->isVirtual()) // Handled below.
4194      continue;
4195
4196    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4197      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4198      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4199        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4200      else if (CXXConstructorDecl *Constructor
4201                                       = BaseClassDecl->getDefaultConstructor())
4202        ExceptSpec.CalledDecl(Constructor);
4203    }
4204  }
4205
4206  // Virtual base-class destructors.
4207  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4208                                       BEnd = ClassDecl->vbases_end();
4209       B != BEnd; ++B) {
4210    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4211      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4212      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4213        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4214      else if (CXXConstructorDecl *Constructor
4215                                       = BaseClassDecl->getDefaultConstructor())
4216        ExceptSpec.CalledDecl(Constructor);
4217    }
4218  }
4219
4220  // Field destructors.
4221  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4222                               FEnd = ClassDecl->field_end();
4223       F != FEnd; ++F) {
4224    if (const RecordType *RecordTy
4225              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4226      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4227      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4228        ExceptSpec.CalledDecl(
4229                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4230      else if (CXXConstructorDecl *Constructor
4231                                      = FieldClassDecl->getDefaultConstructor())
4232        ExceptSpec.CalledDecl(Constructor);
4233    }
4234  }
4235
4236
4237  // Create the actual constructor declaration.
4238  CanQualType ClassType
4239    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4240  DeclarationName Name
4241    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4242  CXXConstructorDecl *DefaultCon
4243    = CXXConstructorDecl::Create(Context, ClassDecl,
4244                                 ClassDecl->getLocation(), Name,
4245                                 Context.getFunctionType(Context.VoidTy,
4246                                                         0, 0, false, 0,
4247                                       ExceptSpec.hasExceptionSpecification(),
4248                                     ExceptSpec.hasAnyExceptionSpecification(),
4249                                                         ExceptSpec.size(),
4250                                                         ExceptSpec.data(),
4251                                                       FunctionType::ExtInfo()),
4252                                 /*TInfo=*/0,
4253                                 /*isExplicit=*/false,
4254                                 /*isInline=*/true,
4255                                 /*isImplicitlyDeclared=*/true);
4256  DefaultCon->setAccess(AS_public);
4257  DefaultCon->setImplicit();
4258  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4259
4260  // Note that we have declared this constructor.
4261  ClassDecl->setDeclaredDefaultConstructor(true);
4262  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4263
4264  if (Scope *S = getScopeForContext(ClassDecl))
4265    PushOnScopeChains(DefaultCon, S, false);
4266  ClassDecl->addDecl(DefaultCon);
4267
4268  return DefaultCon;
4269}
4270
4271void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4272                                            CXXConstructorDecl *Constructor) {
4273  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4274          !Constructor->isUsed(false)) &&
4275    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4276
4277  CXXRecordDecl *ClassDecl = Constructor->getParent();
4278  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4279
4280  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4281  ErrorTrap Trap(*this);
4282  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4283      Trap.hasErrorOccurred()) {
4284    Diag(CurrentLocation, diag::note_member_synthesized_at)
4285      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4286    Constructor->setInvalidDecl();
4287  } else {
4288    Constructor->setUsed();
4289    MarkVTableUsed(CurrentLocation, ClassDecl);
4290  }
4291}
4292
4293CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4294  // C++ [class.dtor]p2:
4295  //   If a class has no user-declared destructor, a destructor is
4296  //   declared implicitly. An implicitly-declared destructor is an
4297  //   inline public member of its class.
4298
4299  // C++ [except.spec]p14:
4300  //   An implicitly declared special member function (Clause 12) shall have
4301  //   an exception-specification.
4302  ImplicitExceptionSpecification ExceptSpec(Context);
4303
4304  // Direct base-class destructors.
4305  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4306                                       BEnd = ClassDecl->bases_end();
4307       B != BEnd; ++B) {
4308    if (B->isVirtual()) // Handled below.
4309      continue;
4310
4311    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4312      ExceptSpec.CalledDecl(
4313                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4314  }
4315
4316  // Virtual base-class destructors.
4317  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4318                                       BEnd = ClassDecl->vbases_end();
4319       B != BEnd; ++B) {
4320    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4321      ExceptSpec.CalledDecl(
4322                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4323  }
4324
4325  // Field destructors.
4326  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4327                               FEnd = ClassDecl->field_end();
4328       F != FEnd; ++F) {
4329    if (const RecordType *RecordTy
4330        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4331      ExceptSpec.CalledDecl(
4332                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4333  }
4334
4335  // Create the actual destructor declaration.
4336  QualType Ty = Context.getFunctionType(Context.VoidTy,
4337                                        0, 0, false, 0,
4338                                        ExceptSpec.hasExceptionSpecification(),
4339                                    ExceptSpec.hasAnyExceptionSpecification(),
4340                                        ExceptSpec.size(),
4341                                        ExceptSpec.data(),
4342                                        FunctionType::ExtInfo());
4343
4344  CanQualType ClassType
4345    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4346  DeclarationName Name
4347    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4348  CXXDestructorDecl *Destructor
4349    = CXXDestructorDecl::Create(Context, ClassDecl,
4350                                ClassDecl->getLocation(), Name, Ty,
4351                                /*isInline=*/true,
4352                                /*isImplicitlyDeclared=*/true);
4353  Destructor->setAccess(AS_public);
4354  Destructor->setImplicit();
4355  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4356
4357  // Note that we have declared this destructor.
4358  ClassDecl->setDeclaredDestructor(true);
4359  ++ASTContext::NumImplicitDestructorsDeclared;
4360
4361  // Introduce this destructor into its scope.
4362  if (Scope *S = getScopeForContext(ClassDecl))
4363    PushOnScopeChains(Destructor, S, false);
4364  ClassDecl->addDecl(Destructor);
4365
4366  // This could be uniqued if it ever proves significant.
4367  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4368
4369  AddOverriddenMethods(ClassDecl, Destructor);
4370
4371  return Destructor;
4372}
4373
4374void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4375                                    CXXDestructorDecl *Destructor) {
4376  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4377         "DefineImplicitDestructor - call it for implicit default dtor");
4378  CXXRecordDecl *ClassDecl = Destructor->getParent();
4379  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4380
4381  if (Destructor->isInvalidDecl())
4382    return;
4383
4384  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4385
4386  ErrorTrap Trap(*this);
4387  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4388                                         Destructor->getParent());
4389
4390  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4391    Diag(CurrentLocation, diag::note_member_synthesized_at)
4392      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4393
4394    Destructor->setInvalidDecl();
4395    return;
4396  }
4397
4398  Destructor->setUsed();
4399  MarkVTableUsed(CurrentLocation, ClassDecl);
4400}
4401
4402/// \brief Builds a statement that copies the given entity from \p From to
4403/// \c To.
4404///
4405/// This routine is used to copy the members of a class with an
4406/// implicitly-declared copy assignment operator. When the entities being
4407/// copied are arrays, this routine builds for loops to copy them.
4408///
4409/// \param S The Sema object used for type-checking.
4410///
4411/// \param Loc The location where the implicit copy is being generated.
4412///
4413/// \param T The type of the expressions being copied. Both expressions must
4414/// have this type.
4415///
4416/// \param To The expression we are copying to.
4417///
4418/// \param From The expression we are copying from.
4419///
4420/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4421/// Otherwise, it's a non-static member subobject.
4422///
4423/// \param Depth Internal parameter recording the depth of the recursion.
4424///
4425/// \returns A statement or a loop that copies the expressions.
4426static Sema::OwningStmtResult
4427BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4428                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4429                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4430  typedef Sema::OwningStmtResult OwningStmtResult;
4431  typedef Sema::OwningExprResult OwningExprResult;
4432
4433  // C++0x [class.copy]p30:
4434  //   Each subobject is assigned in the manner appropriate to its type:
4435  //
4436  //     - if the subobject is of class type, the copy assignment operator
4437  //       for the class is used (as if by explicit qualification; that is,
4438  //       ignoring any possible virtual overriding functions in more derived
4439  //       classes);
4440  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4441    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4442
4443    // Look for operator=.
4444    DeclarationName Name
4445      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4446    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4447    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4448
4449    // Filter out any result that isn't a copy-assignment operator.
4450    LookupResult::Filter F = OpLookup.makeFilter();
4451    while (F.hasNext()) {
4452      NamedDecl *D = F.next();
4453      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4454        if (Method->isCopyAssignmentOperator())
4455          continue;
4456
4457      F.erase();
4458    }
4459    F.done();
4460
4461    // Suppress the protected check (C++ [class.protected]) for each of the
4462    // assignment operators we found. This strange dance is required when
4463    // we're assigning via a base classes's copy-assignment operator. To
4464    // ensure that we're getting the right base class subobject (without
4465    // ambiguities), we need to cast "this" to that subobject type; to
4466    // ensure that we don't go through the virtual call mechanism, we need
4467    // to qualify the operator= name with the base class (see below). However,
4468    // this means that if the base class has a protected copy assignment
4469    // operator, the protected member access check will fail. So, we
4470    // rewrite "protected" access to "public" access in this case, since we
4471    // know by construction that we're calling from a derived class.
4472    if (CopyingBaseSubobject) {
4473      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4474           L != LEnd; ++L) {
4475        if (L.getAccess() == AS_protected)
4476          L.setAccess(AS_public);
4477      }
4478    }
4479
4480    // Create the nested-name-specifier that will be used to qualify the
4481    // reference to operator=; this is required to suppress the virtual
4482    // call mechanism.
4483    CXXScopeSpec SS;
4484    SS.setRange(Loc);
4485    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4486                                               T.getTypePtr()));
4487
4488    // Create the reference to operator=.
4489    OwningExprResult OpEqualRef
4490      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4491                                   /*FirstQualifierInScope=*/0, OpLookup,
4492                                   /*TemplateArgs=*/0,
4493                                   /*SuppressQualifierCheck=*/true);
4494    if (OpEqualRef.isInvalid())
4495      return S.StmtError();
4496
4497    // Build the call to the assignment operator.
4498    Expr *FromE = From.takeAs<Expr>();
4499    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4500                                                      OpEqualRef.takeAs<Expr>(),
4501                                                        Loc, &FromE, 1, 0, Loc);
4502    if (Call.isInvalid())
4503      return S.StmtError();
4504
4505    return S.Owned(Call.takeAs<Stmt>());
4506  }
4507
4508  //     - if the subobject is of scalar type, the built-in assignment
4509  //       operator is used.
4510  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4511  if (!ArrayTy) {
4512    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4513                                                       BinaryOperator::Assign,
4514                                                       To.takeAs<Expr>(),
4515                                                       From.takeAs<Expr>());
4516    if (Assignment.isInvalid())
4517      return S.StmtError();
4518
4519    return S.Owned(Assignment.takeAs<Stmt>());
4520  }
4521
4522  //     - if the subobject is an array, each element is assigned, in the
4523  //       manner appropriate to the element type;
4524
4525  // Construct a loop over the array bounds, e.g.,
4526  //
4527  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4528  //
4529  // that will copy each of the array elements.
4530  QualType SizeType = S.Context.getSizeType();
4531
4532  // Create the iteration variable.
4533  IdentifierInfo *IterationVarName = 0;
4534  {
4535    llvm::SmallString<8> Str;
4536    llvm::raw_svector_ostream OS(Str);
4537    OS << "__i" << Depth;
4538    IterationVarName = &S.Context.Idents.get(OS.str());
4539  }
4540  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4541                                          IterationVarName, SizeType,
4542                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4543                                          VarDecl::None, VarDecl::None);
4544
4545  // Initialize the iteration variable to zero.
4546  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4547  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4548
4549  // Create a reference to the iteration variable; we'll use this several
4550  // times throughout.
4551  Expr *IterationVarRef
4552    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4553  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4554
4555  // Create the DeclStmt that holds the iteration variable.
4556  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4557
4558  // Create the comparison against the array bound.
4559  llvm::APInt Upper = ArrayTy->getSize();
4560  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4561  OwningExprResult Comparison
4562    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4563                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4564                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4565
4566  // Create the pre-increment of the iteration variable.
4567  OwningExprResult Increment
4568    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4569                                            UnaryOperator::PreInc,
4570                                            SizeType, Loc));
4571
4572  // Subscript the "from" and "to" expressions with the iteration variable.
4573  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4574                                           S.Owned(IterationVarRef->Retain()),
4575                                           Loc);
4576  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4577                                         S.Owned(IterationVarRef->Retain()),
4578                                         Loc);
4579  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4580  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4581
4582  // Build the copy for an individual element of the array.
4583  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4584                                                ArrayTy->getElementType(),
4585                                                move(To), move(From),
4586                                                CopyingBaseSubobject, Depth+1);
4587  if (Copy.isInvalid()) {
4588    InitStmt->Destroy(S.Context);
4589    return S.StmtError();
4590  }
4591
4592  // Construct the loop that copies all elements of this array.
4593  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4594                        S.MakeFullExpr(Comparison),
4595                        Sema::DeclPtrTy(),
4596                        S.MakeFullExpr(Increment),
4597                        Loc, move(Copy));
4598}
4599
4600/// \brief Determine whether the given class has a copy assignment operator
4601/// that accepts a const-qualified argument.
4602static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4603  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4604
4605  if (!Class->hasDeclaredCopyAssignment())
4606    S.DeclareImplicitCopyAssignment(Class);
4607
4608  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4609  DeclarationName OpName
4610    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4611
4612  DeclContext::lookup_const_iterator Op, OpEnd;
4613  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4614    // C++ [class.copy]p9:
4615    //   A user-declared copy assignment operator is a non-static non-template
4616    //   member function of class X with exactly one parameter of type X, X&,
4617    //   const X&, volatile X& or const volatile X&.
4618    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4619    if (!Method)
4620      continue;
4621
4622    if (Method->isStatic())
4623      continue;
4624    if (Method->getPrimaryTemplate())
4625      continue;
4626    const FunctionProtoType *FnType =
4627    Method->getType()->getAs<FunctionProtoType>();
4628    assert(FnType && "Overloaded operator has no prototype.");
4629    // Don't assert on this; an invalid decl might have been left in the AST.
4630    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4631      continue;
4632    bool AcceptsConst = true;
4633    QualType ArgType = FnType->getArgType(0);
4634    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4635      ArgType = Ref->getPointeeType();
4636      // Is it a non-const lvalue reference?
4637      if (!ArgType.isConstQualified())
4638        AcceptsConst = false;
4639    }
4640    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4641      continue;
4642
4643    // We have a single argument of type cv X or cv X&, i.e. we've found the
4644    // copy assignment operator. Return whether it accepts const arguments.
4645    return AcceptsConst;
4646  }
4647  assert(Class->isInvalidDecl() &&
4648         "No copy assignment operator declared in valid code.");
4649  return false;
4650}
4651
4652CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4653  // Note: The following rules are largely analoguous to the copy
4654  // constructor rules. Note that virtual bases are not taken into account
4655  // for determining the argument type of the operator. Note also that
4656  // operators taking an object instead of a reference are allowed.
4657
4658
4659  // C++ [class.copy]p10:
4660  //   If the class definition does not explicitly declare a copy
4661  //   assignment operator, one is declared implicitly.
4662  //   The implicitly-defined copy assignment operator for a class X
4663  //   will have the form
4664  //
4665  //       X& X::operator=(const X&)
4666  //
4667  //   if
4668  bool HasConstCopyAssignment = true;
4669
4670  //       -- each direct base class B of X has a copy assignment operator
4671  //          whose parameter is of type const B&, const volatile B& or B,
4672  //          and
4673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4674                                       BaseEnd = ClassDecl->bases_end();
4675       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4676    assert(!Base->getType()->isDependentType() &&
4677           "Cannot generate implicit members for class with dependent bases.");
4678    const CXXRecordDecl *BaseClassDecl
4679      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4680    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4681  }
4682
4683  //       -- for all the nonstatic data members of X that are of a class
4684  //          type M (or array thereof), each such class type has a copy
4685  //          assignment operator whose parameter is of type const M&,
4686  //          const volatile M& or M.
4687  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4688                                  FieldEnd = ClassDecl->field_end();
4689       HasConstCopyAssignment && Field != FieldEnd;
4690       ++Field) {
4691    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4692    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4693      const CXXRecordDecl *FieldClassDecl
4694        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4695      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4696    }
4697  }
4698
4699  //   Otherwise, the implicitly declared copy assignment operator will
4700  //   have the form
4701  //
4702  //       X& X::operator=(X&)
4703  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4704  QualType RetType = Context.getLValueReferenceType(ArgType);
4705  if (HasConstCopyAssignment)
4706    ArgType = ArgType.withConst();
4707  ArgType = Context.getLValueReferenceType(ArgType);
4708
4709  // C++ [except.spec]p14:
4710  //   An implicitly declared special member function (Clause 12) shall have an
4711  //   exception-specification. [...]
4712  ImplicitExceptionSpecification ExceptSpec(Context);
4713  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4714                                       BaseEnd = ClassDecl->bases_end();
4715       Base != BaseEnd; ++Base) {
4716    CXXRecordDecl *BaseClassDecl
4717      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4718
4719    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4720      DeclareImplicitCopyAssignment(BaseClassDecl);
4721
4722    if (CXXMethodDecl *CopyAssign
4723           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4724      ExceptSpec.CalledDecl(CopyAssign);
4725  }
4726  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4727                                  FieldEnd = ClassDecl->field_end();
4728       Field != FieldEnd;
4729       ++Field) {
4730    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4731    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4732      CXXRecordDecl *FieldClassDecl
4733        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4734
4735      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4736        DeclareImplicitCopyAssignment(FieldClassDecl);
4737
4738      if (CXXMethodDecl *CopyAssign
4739            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4740        ExceptSpec.CalledDecl(CopyAssign);
4741    }
4742  }
4743
4744  //   An implicitly-declared copy assignment operator is an inline public
4745  //   member of its class.
4746  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4747  CXXMethodDecl *CopyAssignment
4748    = CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
4749                            Context.getFunctionType(RetType, &ArgType, 1,
4750                                                    false, 0,
4751                                         ExceptSpec.hasExceptionSpecification(),
4752                                      ExceptSpec.hasAnyExceptionSpecification(),
4753                                                    ExceptSpec.size(),
4754                                                    ExceptSpec.data(),
4755                                                    FunctionType::ExtInfo()),
4756                            /*TInfo=*/0, /*isStatic=*/false,
4757                            /*StorageClassAsWritten=*/FunctionDecl::None,
4758                            /*isInline=*/true);
4759  CopyAssignment->setAccess(AS_public);
4760  CopyAssignment->setImplicit();
4761  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4762  CopyAssignment->setCopyAssignment(true);
4763
4764  // Add the parameter to the operator.
4765  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4766                                               ClassDecl->getLocation(),
4767                                               /*Id=*/0,
4768                                               ArgType, /*TInfo=*/0,
4769                                               VarDecl::None,
4770                                               VarDecl::None, 0);
4771  CopyAssignment->setParams(&FromParam, 1);
4772
4773  // Note that we have added this copy-assignment operator.
4774  ClassDecl->setDeclaredCopyAssignment(true);
4775  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4776
4777  if (Scope *S = getScopeForContext(ClassDecl))
4778    PushOnScopeChains(CopyAssignment, S, false);
4779  ClassDecl->addDecl(CopyAssignment);
4780
4781  AddOverriddenMethods(ClassDecl, CopyAssignment);
4782  return CopyAssignment;
4783}
4784
4785void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4786                                        CXXMethodDecl *CopyAssignOperator) {
4787  assert((CopyAssignOperator->isImplicit() &&
4788          CopyAssignOperator->isOverloadedOperator() &&
4789          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4790          !CopyAssignOperator->isUsed(false)) &&
4791         "DefineImplicitCopyAssignment called for wrong function");
4792
4793  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4794
4795  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4796    CopyAssignOperator->setInvalidDecl();
4797    return;
4798  }
4799
4800  CopyAssignOperator->setUsed();
4801
4802  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4803  ErrorTrap Trap(*this);
4804
4805  // C++0x [class.copy]p30:
4806  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4807  //   for a non-union class X performs memberwise copy assignment of its
4808  //   subobjects. The direct base classes of X are assigned first, in the
4809  //   order of their declaration in the base-specifier-list, and then the
4810  //   immediate non-static data members of X are assigned, in the order in
4811  //   which they were declared in the class definition.
4812
4813  // The statements that form the synthesized function body.
4814  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4815
4816  // The parameter for the "other" object, which we are copying from.
4817  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4818  Qualifiers OtherQuals = Other->getType().getQualifiers();
4819  QualType OtherRefType = Other->getType();
4820  if (const LValueReferenceType *OtherRef
4821                                = OtherRefType->getAs<LValueReferenceType>()) {
4822    OtherRefType = OtherRef->getPointeeType();
4823    OtherQuals = OtherRefType.getQualifiers();
4824  }
4825
4826  // Our location for everything implicitly-generated.
4827  SourceLocation Loc = CopyAssignOperator->getLocation();
4828
4829  // Construct a reference to the "other" object. We'll be using this
4830  // throughout the generated ASTs.
4831  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4832  assert(OtherRef && "Reference to parameter cannot fail!");
4833
4834  // Construct the "this" pointer. We'll be using this throughout the generated
4835  // ASTs.
4836  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4837  assert(This && "Reference to this cannot fail!");
4838
4839  // Assign base classes.
4840  bool Invalid = false;
4841  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4842       E = ClassDecl->bases_end(); Base != E; ++Base) {
4843    // Form the assignment:
4844    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4845    QualType BaseType = Base->getType().getUnqualifiedType();
4846    CXXRecordDecl *BaseClassDecl = 0;
4847    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4848      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4849    else {
4850      Invalid = true;
4851      continue;
4852    }
4853
4854    // Construct the "from" expression, which is an implicit cast to the
4855    // appropriately-qualified base type.
4856    Expr *From = OtherRef->Retain();
4857    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4858                      CastExpr::CK_UncheckedDerivedToBase,
4859                      ImplicitCastExpr::LValue, CXXBaseSpecifierArray(Base));
4860
4861    // Dereference "this".
4862    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4863                                               Owned(This->Retain()));
4864
4865    // Implicitly cast "this" to the appropriately-qualified base type.
4866    Expr *ToE = To.takeAs<Expr>();
4867    ImpCastExprToType(ToE,
4868                      Context.getCVRQualifiedType(BaseType,
4869                                      CopyAssignOperator->getTypeQualifiers()),
4870                      CastExpr::CK_UncheckedDerivedToBase,
4871                      ImplicitCastExpr::LValue, CXXBaseSpecifierArray(Base));
4872    To = Owned(ToE);
4873
4874    // Build the copy.
4875    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4876                                                  move(To), Owned(From),
4877                                                /*CopyingBaseSubobject=*/true);
4878    if (Copy.isInvalid()) {
4879      Diag(CurrentLocation, diag::note_member_synthesized_at)
4880        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4881      CopyAssignOperator->setInvalidDecl();
4882      return;
4883    }
4884
4885    // Success! Record the copy.
4886    Statements.push_back(Copy.takeAs<Expr>());
4887  }
4888
4889  // \brief Reference to the __builtin_memcpy function.
4890  Expr *BuiltinMemCpyRef = 0;
4891  // \brief Reference to the __builtin_objc_memmove_collectable function.
4892  Expr *CollectableMemCpyRef = 0;
4893
4894  // Assign non-static members.
4895  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4896                                  FieldEnd = ClassDecl->field_end();
4897       Field != FieldEnd; ++Field) {
4898    // Check for members of reference type; we can't copy those.
4899    if (Field->getType()->isReferenceType()) {
4900      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4901        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4902      Diag(Field->getLocation(), diag::note_declared_at);
4903      Diag(CurrentLocation, diag::note_member_synthesized_at)
4904        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4905      Invalid = true;
4906      continue;
4907    }
4908
4909    // Check for members of const-qualified, non-class type.
4910    QualType BaseType = Context.getBaseElementType(Field->getType());
4911    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4912      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4913        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4914      Diag(Field->getLocation(), diag::note_declared_at);
4915      Diag(CurrentLocation, diag::note_member_synthesized_at)
4916        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4917      Invalid = true;
4918      continue;
4919    }
4920
4921    QualType FieldType = Field->getType().getNonReferenceType();
4922    if (FieldType->isIncompleteArrayType()) {
4923      assert(ClassDecl->hasFlexibleArrayMember() &&
4924             "Incomplete array type is not valid");
4925      continue;
4926    }
4927
4928    // Build references to the field in the object we're copying from and to.
4929    CXXScopeSpec SS; // Intentionally empty
4930    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4931                              LookupMemberName);
4932    MemberLookup.addDecl(*Field);
4933    MemberLookup.resolveKind();
4934    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4935                                                     OtherRefType,
4936                                                     Loc, /*IsArrow=*/false,
4937                                                     SS, 0, MemberLookup, 0);
4938    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4939                                                   This->getType(),
4940                                                   Loc, /*IsArrow=*/true,
4941                                                   SS, 0, MemberLookup, 0);
4942    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4943    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4944
4945    // If the field should be copied with __builtin_memcpy rather than via
4946    // explicit assignments, do so. This optimization only applies for arrays
4947    // of scalars and arrays of class type with trivial copy-assignment
4948    // operators.
4949    if (FieldType->isArrayType() &&
4950        (!BaseType->isRecordType() ||
4951         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4952           ->hasTrivialCopyAssignment())) {
4953      // Compute the size of the memory buffer to be copied.
4954      QualType SizeType = Context.getSizeType();
4955      llvm::APInt Size(Context.getTypeSize(SizeType),
4956                       Context.getTypeSizeInChars(BaseType).getQuantity());
4957      for (const ConstantArrayType *Array
4958              = Context.getAsConstantArrayType(FieldType);
4959           Array;
4960           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4961        llvm::APInt ArraySize = Array->getSize();
4962        ArraySize.zextOrTrunc(Size.getBitWidth());
4963        Size *= ArraySize;
4964      }
4965
4966      // Take the address of the field references for "from" and "to".
4967      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4968      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4969
4970      bool NeedsCollectableMemCpy =
4971          (BaseType->isRecordType() &&
4972           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4973
4974      if (NeedsCollectableMemCpy) {
4975        if (!CollectableMemCpyRef) {
4976          // Create a reference to the __builtin_objc_memmove_collectable function.
4977          LookupResult R(*this,
4978                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4979                         Loc, LookupOrdinaryName);
4980          LookupName(R, TUScope, true);
4981
4982          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4983          if (!CollectableMemCpy) {
4984            // Something went horribly wrong earlier, and we will have
4985            // complained about it.
4986            Invalid = true;
4987            continue;
4988          }
4989
4990          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4991                                                  CollectableMemCpy->getType(),
4992                                                  Loc, 0).takeAs<Expr>();
4993          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4994        }
4995      }
4996      // Create a reference to the __builtin_memcpy builtin function.
4997      else if (!BuiltinMemCpyRef) {
4998        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4999                       LookupOrdinaryName);
5000        LookupName(R, TUScope, true);
5001
5002        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5003        if (!BuiltinMemCpy) {
5004          // Something went horribly wrong earlier, and we will have complained
5005          // about it.
5006          Invalid = true;
5007          continue;
5008        }
5009
5010        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5011                                            BuiltinMemCpy->getType(),
5012                                            Loc, 0).takeAs<Expr>();
5013        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5014      }
5015
5016      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5017      CallArgs.push_back(To.takeAs<Expr>());
5018      CallArgs.push_back(From.takeAs<Expr>());
5019      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5020      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5021      Commas.push_back(Loc);
5022      Commas.push_back(Loc);
5023      OwningExprResult Call = ExprError();
5024      if (NeedsCollectableMemCpy)
5025        Call = ActOnCallExpr(/*Scope=*/0,
5026                             Owned(CollectableMemCpyRef->Retain()),
5027                             Loc, move_arg(CallArgs),
5028                             Commas.data(), Loc);
5029      else
5030        Call = ActOnCallExpr(/*Scope=*/0,
5031                             Owned(BuiltinMemCpyRef->Retain()),
5032                             Loc, move_arg(CallArgs),
5033                             Commas.data(), Loc);
5034
5035      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5036      Statements.push_back(Call.takeAs<Expr>());
5037      continue;
5038    }
5039
5040    // Build the copy of this field.
5041    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5042                                                  move(To), move(From),
5043                                              /*CopyingBaseSubobject=*/false);
5044    if (Copy.isInvalid()) {
5045      Diag(CurrentLocation, diag::note_member_synthesized_at)
5046        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5047      CopyAssignOperator->setInvalidDecl();
5048      return;
5049    }
5050
5051    // Success! Record the copy.
5052    Statements.push_back(Copy.takeAs<Stmt>());
5053  }
5054
5055  if (!Invalid) {
5056    // Add a "return *this;"
5057    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5058                                                    Owned(This->Retain()));
5059
5060    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5061    if (Return.isInvalid())
5062      Invalid = true;
5063    else {
5064      Statements.push_back(Return.takeAs<Stmt>());
5065
5066      if (Trap.hasErrorOccurred()) {
5067        Diag(CurrentLocation, diag::note_member_synthesized_at)
5068          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5069        Invalid = true;
5070      }
5071    }
5072  }
5073
5074  if (Invalid) {
5075    CopyAssignOperator->setInvalidDecl();
5076    return;
5077  }
5078
5079  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5080                                            /*isStmtExpr=*/false);
5081  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5082  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5083}
5084
5085CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5086                                                    CXXRecordDecl *ClassDecl) {
5087  // C++ [class.copy]p4:
5088  //   If the class definition does not explicitly declare a copy
5089  //   constructor, one is declared implicitly.
5090
5091  // C++ [class.copy]p5:
5092  //   The implicitly-declared copy constructor for a class X will
5093  //   have the form
5094  //
5095  //       X::X(const X&)
5096  //
5097  //   if
5098  bool HasConstCopyConstructor = true;
5099
5100  //     -- each direct or virtual base class B of X has a copy
5101  //        constructor whose first parameter is of type const B& or
5102  //        const volatile B&, and
5103  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5104                                       BaseEnd = ClassDecl->bases_end();
5105       HasConstCopyConstructor && Base != BaseEnd;
5106       ++Base) {
5107    // Virtual bases are handled below.
5108    if (Base->isVirtual())
5109      continue;
5110
5111    CXXRecordDecl *BaseClassDecl
5112      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5113    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5114      DeclareImplicitCopyConstructor(BaseClassDecl);
5115
5116    HasConstCopyConstructor
5117      = BaseClassDecl->hasConstCopyConstructor(Context);
5118  }
5119
5120  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5121                                       BaseEnd = ClassDecl->vbases_end();
5122       HasConstCopyConstructor && Base != BaseEnd;
5123       ++Base) {
5124    CXXRecordDecl *BaseClassDecl
5125      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5126    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5127      DeclareImplicitCopyConstructor(BaseClassDecl);
5128
5129    HasConstCopyConstructor
5130      = BaseClassDecl->hasConstCopyConstructor(Context);
5131  }
5132
5133  //     -- for all the nonstatic data members of X that are of a
5134  //        class type M (or array thereof), each such class type
5135  //        has a copy constructor whose first parameter is of type
5136  //        const M& or const volatile M&.
5137  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5138                                  FieldEnd = ClassDecl->field_end();
5139       HasConstCopyConstructor && Field != FieldEnd;
5140       ++Field) {
5141    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5142    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5143      CXXRecordDecl *FieldClassDecl
5144        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5145      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5146        DeclareImplicitCopyConstructor(FieldClassDecl);
5147
5148      HasConstCopyConstructor
5149        = FieldClassDecl->hasConstCopyConstructor(Context);
5150    }
5151  }
5152
5153  //   Otherwise, the implicitly declared copy constructor will have
5154  //   the form
5155  //
5156  //       X::X(X&)
5157  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5158  QualType ArgType = ClassType;
5159  if (HasConstCopyConstructor)
5160    ArgType = ArgType.withConst();
5161  ArgType = Context.getLValueReferenceType(ArgType);
5162
5163  // C++ [except.spec]p14:
5164  //   An implicitly declared special member function (Clause 12) shall have an
5165  //   exception-specification. [...]
5166  ImplicitExceptionSpecification ExceptSpec(Context);
5167  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5168  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5169                                       BaseEnd = ClassDecl->bases_end();
5170       Base != BaseEnd;
5171       ++Base) {
5172    // Virtual bases are handled below.
5173    if (Base->isVirtual())
5174      continue;
5175
5176    CXXRecordDecl *BaseClassDecl
5177      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5178    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5179      DeclareImplicitCopyConstructor(BaseClassDecl);
5180
5181    if (CXXConstructorDecl *CopyConstructor
5182                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5183      ExceptSpec.CalledDecl(CopyConstructor);
5184  }
5185  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5186                                       BaseEnd = ClassDecl->vbases_end();
5187       Base != BaseEnd;
5188       ++Base) {
5189    CXXRecordDecl *BaseClassDecl
5190      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5191    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5192      DeclareImplicitCopyConstructor(BaseClassDecl);
5193
5194    if (CXXConstructorDecl *CopyConstructor
5195                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5196      ExceptSpec.CalledDecl(CopyConstructor);
5197  }
5198  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5199                                  FieldEnd = ClassDecl->field_end();
5200       Field != FieldEnd;
5201       ++Field) {
5202    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5203    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5204      CXXRecordDecl *FieldClassDecl
5205        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5206      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5207        DeclareImplicitCopyConstructor(FieldClassDecl);
5208
5209      if (CXXConstructorDecl *CopyConstructor
5210                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5211        ExceptSpec.CalledDecl(CopyConstructor);
5212    }
5213  }
5214
5215  //   An implicitly-declared copy constructor is an inline public
5216  //   member of its class.
5217  DeclarationName Name
5218    = Context.DeclarationNames.getCXXConstructorName(
5219                                           Context.getCanonicalType(ClassType));
5220  CXXConstructorDecl *CopyConstructor
5221    = CXXConstructorDecl::Create(Context, ClassDecl,
5222                                 ClassDecl->getLocation(), Name,
5223                                 Context.getFunctionType(Context.VoidTy,
5224                                                         &ArgType, 1,
5225                                                         false, 0,
5226                                         ExceptSpec.hasExceptionSpecification(),
5227                                      ExceptSpec.hasAnyExceptionSpecification(),
5228                                                         ExceptSpec.size(),
5229                                                         ExceptSpec.data(),
5230                                                       FunctionType::ExtInfo()),
5231                                 /*TInfo=*/0,
5232                                 /*isExplicit=*/false,
5233                                 /*isInline=*/true,
5234                                 /*isImplicitlyDeclared=*/true);
5235  CopyConstructor->setAccess(AS_public);
5236  CopyConstructor->setImplicit();
5237  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5238
5239  // Note that we have declared this constructor.
5240  ClassDecl->setDeclaredCopyConstructor(true);
5241  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5242
5243  // Add the parameter to the constructor.
5244  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5245                                               ClassDecl->getLocation(),
5246                                               /*IdentifierInfo=*/0,
5247                                               ArgType, /*TInfo=*/0,
5248                                               VarDecl::None,
5249                                               VarDecl::None, 0);
5250  CopyConstructor->setParams(&FromParam, 1);
5251  if (Scope *S = getScopeForContext(ClassDecl))
5252    PushOnScopeChains(CopyConstructor, S, false);
5253  ClassDecl->addDecl(CopyConstructor);
5254
5255  return CopyConstructor;
5256}
5257
5258void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5259                                   CXXConstructorDecl *CopyConstructor,
5260                                   unsigned TypeQuals) {
5261  assert((CopyConstructor->isImplicit() &&
5262          CopyConstructor->isCopyConstructor(TypeQuals) &&
5263          !CopyConstructor->isUsed(false)) &&
5264         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5265
5266  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5267  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5268
5269  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5270  ErrorTrap Trap(*this);
5271
5272  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5273      Trap.hasErrorOccurred()) {
5274    Diag(CurrentLocation, diag::note_member_synthesized_at)
5275      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5276    CopyConstructor->setInvalidDecl();
5277  }  else {
5278    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5279                                               CopyConstructor->getLocation(),
5280                                               MultiStmtArg(*this, 0, 0),
5281                                               /*isStmtExpr=*/false)
5282                                                              .takeAs<Stmt>());
5283  }
5284
5285  CopyConstructor->setUsed();
5286}
5287
5288Sema::OwningExprResult
5289Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5290                            CXXConstructorDecl *Constructor,
5291                            MultiExprArg ExprArgs,
5292                            bool RequiresZeroInit,
5293                            CXXConstructExpr::ConstructionKind ConstructKind) {
5294  bool Elidable = false;
5295
5296  // C++0x [class.copy]p34:
5297  //   When certain criteria are met, an implementation is allowed to
5298  //   omit the copy/move construction of a class object, even if the
5299  //   copy/move constructor and/or destructor for the object have
5300  //   side effects. [...]
5301  //     - when a temporary class object that has not been bound to a
5302  //       reference (12.2) would be copied/moved to a class object
5303  //       with the same cv-unqualified type, the copy/move operation
5304  //       can be omitted by constructing the temporary object
5305  //       directly into the target of the omitted copy/move
5306  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5307    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5308    Elidable = SubExpr->isTemporaryObject() &&
5309      Context.hasSameUnqualifiedType(SubExpr->getType(),
5310                           Context.getTypeDeclType(Constructor->getParent()));
5311  }
5312
5313  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5314                               Elidable, move(ExprArgs), RequiresZeroInit,
5315                               ConstructKind);
5316}
5317
5318/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5319/// including handling of its default argument expressions.
5320Sema::OwningExprResult
5321Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5322                            CXXConstructorDecl *Constructor, bool Elidable,
5323                            MultiExprArg ExprArgs,
5324                            bool RequiresZeroInit,
5325                            CXXConstructExpr::ConstructionKind ConstructKind) {
5326  unsigned NumExprs = ExprArgs.size();
5327  Expr **Exprs = (Expr **)ExprArgs.release();
5328
5329  MarkDeclarationReferenced(ConstructLoc, Constructor);
5330  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5331                                        Constructor, Elidable, Exprs, NumExprs,
5332                                        RequiresZeroInit, ConstructKind));
5333}
5334
5335bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5336                                        CXXConstructorDecl *Constructor,
5337                                        MultiExprArg Exprs) {
5338  OwningExprResult TempResult =
5339    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5340                          move(Exprs));
5341  if (TempResult.isInvalid())
5342    return true;
5343
5344  Expr *Temp = TempResult.takeAs<Expr>();
5345  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5346  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5347  VD->setInit(Temp);
5348
5349  return false;
5350}
5351
5352void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5353  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5354  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5355      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5356    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5357    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5358    CheckDestructorAccess(VD->getLocation(), Destructor,
5359                          PDiag(diag::err_access_dtor_var)
5360                            << VD->getDeclName()
5361                            << VD->getType());
5362  }
5363}
5364
5365/// AddCXXDirectInitializerToDecl - This action is called immediately after
5366/// ActOnDeclarator, when a C++ direct initializer is present.
5367/// e.g: "int x(1);"
5368void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5369                                         SourceLocation LParenLoc,
5370                                         MultiExprArg Exprs,
5371                                         SourceLocation *CommaLocs,
5372                                         SourceLocation RParenLoc) {
5373  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5374  Decl *RealDecl = Dcl.getAs<Decl>();
5375
5376  // If there is no declaration, there was an error parsing it.  Just ignore
5377  // the initializer.
5378  if (RealDecl == 0)
5379    return;
5380
5381  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5382  if (!VDecl) {
5383    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5384    RealDecl->setInvalidDecl();
5385    return;
5386  }
5387
5388  // We will represent direct-initialization similarly to copy-initialization:
5389  //    int x(1);  -as-> int x = 1;
5390  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5391  //
5392  // Clients that want to distinguish between the two forms, can check for
5393  // direct initializer using VarDecl::hasCXXDirectInitializer().
5394  // A major benefit is that clients that don't particularly care about which
5395  // exactly form was it (like the CodeGen) can handle both cases without
5396  // special case code.
5397
5398  // C++ 8.5p11:
5399  // The form of initialization (using parentheses or '=') is generally
5400  // insignificant, but does matter when the entity being initialized has a
5401  // class type.
5402
5403  if (!VDecl->getType()->isDependentType() &&
5404      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5405                          diag::err_typecheck_decl_incomplete_type)) {
5406    VDecl->setInvalidDecl();
5407    return;
5408  }
5409
5410  // The variable can not have an abstract class type.
5411  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5412                             diag::err_abstract_type_in_decl,
5413                             AbstractVariableType))
5414    VDecl->setInvalidDecl();
5415
5416  const VarDecl *Def;
5417  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5418    Diag(VDecl->getLocation(), diag::err_redefinition)
5419    << VDecl->getDeclName();
5420    Diag(Def->getLocation(), diag::note_previous_definition);
5421    VDecl->setInvalidDecl();
5422    return;
5423  }
5424
5425  // If either the declaration has a dependent type or if any of the
5426  // expressions is type-dependent, we represent the initialization
5427  // via a ParenListExpr for later use during template instantiation.
5428  if (VDecl->getType()->isDependentType() ||
5429      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5430    // Let clients know that initialization was done with a direct initializer.
5431    VDecl->setCXXDirectInitializer(true);
5432
5433    // Store the initialization expressions as a ParenListExpr.
5434    unsigned NumExprs = Exprs.size();
5435    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5436                                               (Expr **)Exprs.release(),
5437                                               NumExprs, RParenLoc));
5438    return;
5439  }
5440
5441  // Capture the variable that is being initialized and the style of
5442  // initialization.
5443  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5444
5445  // FIXME: Poor source location information.
5446  InitializationKind Kind
5447    = InitializationKind::CreateDirect(VDecl->getLocation(),
5448                                       LParenLoc, RParenLoc);
5449
5450  InitializationSequence InitSeq(*this, Entity, Kind,
5451                                 (Expr**)Exprs.get(), Exprs.size());
5452  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5453  if (Result.isInvalid()) {
5454    VDecl->setInvalidDecl();
5455    return;
5456  }
5457
5458  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5459  VDecl->setInit(Result.takeAs<Expr>());
5460  VDecl->setCXXDirectInitializer(true);
5461
5462  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5463    FinalizeVarWithDestructor(VDecl, Record);
5464}
5465
5466/// \brief Given a constructor and the set of arguments provided for the
5467/// constructor, convert the arguments and add any required default arguments
5468/// to form a proper call to this constructor.
5469///
5470/// \returns true if an error occurred, false otherwise.
5471bool
5472Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5473                              MultiExprArg ArgsPtr,
5474                              SourceLocation Loc,
5475                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5476  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5477  unsigned NumArgs = ArgsPtr.size();
5478  Expr **Args = (Expr **)ArgsPtr.get();
5479
5480  const FunctionProtoType *Proto
5481    = Constructor->getType()->getAs<FunctionProtoType>();
5482  assert(Proto && "Constructor without a prototype?");
5483  unsigned NumArgsInProto = Proto->getNumArgs();
5484
5485  // If too few arguments are available, we'll fill in the rest with defaults.
5486  if (NumArgs < NumArgsInProto)
5487    ConvertedArgs.reserve(NumArgsInProto);
5488  else
5489    ConvertedArgs.reserve(NumArgs);
5490
5491  VariadicCallType CallType =
5492    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5493  llvm::SmallVector<Expr *, 8> AllArgs;
5494  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5495                                        Proto, 0, Args, NumArgs, AllArgs,
5496                                        CallType);
5497  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5498    ConvertedArgs.push_back(AllArgs[i]);
5499  return Invalid;
5500}
5501
5502static inline bool
5503CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5504                                       const FunctionDecl *FnDecl) {
5505  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5506  if (isa<NamespaceDecl>(DC)) {
5507    return SemaRef.Diag(FnDecl->getLocation(),
5508                        diag::err_operator_new_delete_declared_in_namespace)
5509      << FnDecl->getDeclName();
5510  }
5511
5512  if (isa<TranslationUnitDecl>(DC) &&
5513      FnDecl->getStorageClass() == FunctionDecl::Static) {
5514    return SemaRef.Diag(FnDecl->getLocation(),
5515                        diag::err_operator_new_delete_declared_static)
5516      << FnDecl->getDeclName();
5517  }
5518
5519  return false;
5520}
5521
5522static inline bool
5523CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5524                            CanQualType ExpectedResultType,
5525                            CanQualType ExpectedFirstParamType,
5526                            unsigned DependentParamTypeDiag,
5527                            unsigned InvalidParamTypeDiag) {
5528  QualType ResultType =
5529    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5530
5531  // Check that the result type is not dependent.
5532  if (ResultType->isDependentType())
5533    return SemaRef.Diag(FnDecl->getLocation(),
5534                        diag::err_operator_new_delete_dependent_result_type)
5535    << FnDecl->getDeclName() << ExpectedResultType;
5536
5537  // Check that the result type is what we expect.
5538  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5539    return SemaRef.Diag(FnDecl->getLocation(),
5540                        diag::err_operator_new_delete_invalid_result_type)
5541    << FnDecl->getDeclName() << ExpectedResultType;
5542
5543  // A function template must have at least 2 parameters.
5544  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5545    return SemaRef.Diag(FnDecl->getLocation(),
5546                      diag::err_operator_new_delete_template_too_few_parameters)
5547        << FnDecl->getDeclName();
5548
5549  // The function decl must have at least 1 parameter.
5550  if (FnDecl->getNumParams() == 0)
5551    return SemaRef.Diag(FnDecl->getLocation(),
5552                        diag::err_operator_new_delete_too_few_parameters)
5553      << FnDecl->getDeclName();
5554
5555  // Check the the first parameter type is not dependent.
5556  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5557  if (FirstParamType->isDependentType())
5558    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5559      << FnDecl->getDeclName() << ExpectedFirstParamType;
5560
5561  // Check that the first parameter type is what we expect.
5562  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5563      ExpectedFirstParamType)
5564    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5565    << FnDecl->getDeclName() << ExpectedFirstParamType;
5566
5567  return false;
5568}
5569
5570static bool
5571CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5572  // C++ [basic.stc.dynamic.allocation]p1:
5573  //   A program is ill-formed if an allocation function is declared in a
5574  //   namespace scope other than global scope or declared static in global
5575  //   scope.
5576  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5577    return true;
5578
5579  CanQualType SizeTy =
5580    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5581
5582  // C++ [basic.stc.dynamic.allocation]p1:
5583  //  The return type shall be void*. The first parameter shall have type
5584  //  std::size_t.
5585  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5586                                  SizeTy,
5587                                  diag::err_operator_new_dependent_param_type,
5588                                  diag::err_operator_new_param_type))
5589    return true;
5590
5591  // C++ [basic.stc.dynamic.allocation]p1:
5592  //  The first parameter shall not have an associated default argument.
5593  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5594    return SemaRef.Diag(FnDecl->getLocation(),
5595                        diag::err_operator_new_default_arg)
5596      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5597
5598  return false;
5599}
5600
5601static bool
5602CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5603  // C++ [basic.stc.dynamic.deallocation]p1:
5604  //   A program is ill-formed if deallocation functions are declared in a
5605  //   namespace scope other than global scope or declared static in global
5606  //   scope.
5607  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5608    return true;
5609
5610  // C++ [basic.stc.dynamic.deallocation]p2:
5611  //   Each deallocation function shall return void and its first parameter
5612  //   shall be void*.
5613  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5614                                  SemaRef.Context.VoidPtrTy,
5615                                 diag::err_operator_delete_dependent_param_type,
5616                                 diag::err_operator_delete_param_type))
5617    return true;
5618
5619  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5620  if (FirstParamType->isDependentType())
5621    return SemaRef.Diag(FnDecl->getLocation(),
5622                        diag::err_operator_delete_dependent_param_type)
5623    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5624
5625  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5626      SemaRef.Context.VoidPtrTy)
5627    return SemaRef.Diag(FnDecl->getLocation(),
5628                        diag::err_operator_delete_param_type)
5629      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5630
5631  return false;
5632}
5633
5634/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5635/// of this overloaded operator is well-formed. If so, returns false;
5636/// otherwise, emits appropriate diagnostics and returns true.
5637bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5638  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5639         "Expected an overloaded operator declaration");
5640
5641  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5642
5643  // C++ [over.oper]p5:
5644  //   The allocation and deallocation functions, operator new,
5645  //   operator new[], operator delete and operator delete[], are
5646  //   described completely in 3.7.3. The attributes and restrictions
5647  //   found in the rest of this subclause do not apply to them unless
5648  //   explicitly stated in 3.7.3.
5649  if (Op == OO_Delete || Op == OO_Array_Delete)
5650    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5651
5652  if (Op == OO_New || Op == OO_Array_New)
5653    return CheckOperatorNewDeclaration(*this, FnDecl);
5654
5655  // C++ [over.oper]p6:
5656  //   An operator function shall either be a non-static member
5657  //   function or be a non-member function and have at least one
5658  //   parameter whose type is a class, a reference to a class, an
5659  //   enumeration, or a reference to an enumeration.
5660  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5661    if (MethodDecl->isStatic())
5662      return Diag(FnDecl->getLocation(),
5663                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5664  } else {
5665    bool ClassOrEnumParam = false;
5666    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5667                                   ParamEnd = FnDecl->param_end();
5668         Param != ParamEnd; ++Param) {
5669      QualType ParamType = (*Param)->getType().getNonReferenceType();
5670      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5671          ParamType->isEnumeralType()) {
5672        ClassOrEnumParam = true;
5673        break;
5674      }
5675    }
5676
5677    if (!ClassOrEnumParam)
5678      return Diag(FnDecl->getLocation(),
5679                  diag::err_operator_overload_needs_class_or_enum)
5680        << FnDecl->getDeclName();
5681  }
5682
5683  // C++ [over.oper]p8:
5684  //   An operator function cannot have default arguments (8.3.6),
5685  //   except where explicitly stated below.
5686  //
5687  // Only the function-call operator allows default arguments
5688  // (C++ [over.call]p1).
5689  if (Op != OO_Call) {
5690    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5691         Param != FnDecl->param_end(); ++Param) {
5692      if ((*Param)->hasDefaultArg())
5693        return Diag((*Param)->getLocation(),
5694                    diag::err_operator_overload_default_arg)
5695          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5696    }
5697  }
5698
5699  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5700    { false, false, false }
5701#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5702    , { Unary, Binary, MemberOnly }
5703#include "clang/Basic/OperatorKinds.def"
5704  };
5705
5706  bool CanBeUnaryOperator = OperatorUses[Op][0];
5707  bool CanBeBinaryOperator = OperatorUses[Op][1];
5708  bool MustBeMemberOperator = OperatorUses[Op][2];
5709
5710  // C++ [over.oper]p8:
5711  //   [...] Operator functions cannot have more or fewer parameters
5712  //   than the number required for the corresponding operator, as
5713  //   described in the rest of this subclause.
5714  unsigned NumParams = FnDecl->getNumParams()
5715                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5716  if (Op != OO_Call &&
5717      ((NumParams == 1 && !CanBeUnaryOperator) ||
5718       (NumParams == 2 && !CanBeBinaryOperator) ||
5719       (NumParams < 1) || (NumParams > 2))) {
5720    // We have the wrong number of parameters.
5721    unsigned ErrorKind;
5722    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5723      ErrorKind = 2;  // 2 -> unary or binary.
5724    } else if (CanBeUnaryOperator) {
5725      ErrorKind = 0;  // 0 -> unary
5726    } else {
5727      assert(CanBeBinaryOperator &&
5728             "All non-call overloaded operators are unary or binary!");
5729      ErrorKind = 1;  // 1 -> binary
5730    }
5731
5732    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5733      << FnDecl->getDeclName() << NumParams << ErrorKind;
5734  }
5735
5736  // Overloaded operators other than operator() cannot be variadic.
5737  if (Op != OO_Call &&
5738      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5739    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5740      << FnDecl->getDeclName();
5741  }
5742
5743  // Some operators must be non-static member functions.
5744  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5745    return Diag(FnDecl->getLocation(),
5746                diag::err_operator_overload_must_be_member)
5747      << FnDecl->getDeclName();
5748  }
5749
5750  // C++ [over.inc]p1:
5751  //   The user-defined function called operator++ implements the
5752  //   prefix and postfix ++ operator. If this function is a member
5753  //   function with no parameters, or a non-member function with one
5754  //   parameter of class or enumeration type, it defines the prefix
5755  //   increment operator ++ for objects of that type. If the function
5756  //   is a member function with one parameter (which shall be of type
5757  //   int) or a non-member function with two parameters (the second
5758  //   of which shall be of type int), it defines the postfix
5759  //   increment operator ++ for objects of that type.
5760  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5761    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5762    bool ParamIsInt = false;
5763    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5764      ParamIsInt = BT->getKind() == BuiltinType::Int;
5765
5766    if (!ParamIsInt)
5767      return Diag(LastParam->getLocation(),
5768                  diag::err_operator_overload_post_incdec_must_be_int)
5769        << LastParam->getType() << (Op == OO_MinusMinus);
5770  }
5771
5772  // Notify the class if it got an assignment operator.
5773  if (Op == OO_Equal) {
5774    // Would have returned earlier otherwise.
5775    assert(isa<CXXMethodDecl>(FnDecl) &&
5776      "Overloaded = not member, but not filtered.");
5777    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5778    Method->getParent()->addedAssignmentOperator(Context, Method);
5779  }
5780
5781  return false;
5782}
5783
5784/// CheckLiteralOperatorDeclaration - Check whether the declaration
5785/// of this literal operator function is well-formed. If so, returns
5786/// false; otherwise, emits appropriate diagnostics and returns true.
5787bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5788  DeclContext *DC = FnDecl->getDeclContext();
5789  Decl::Kind Kind = DC->getDeclKind();
5790  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5791      Kind != Decl::LinkageSpec) {
5792    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5793      << FnDecl->getDeclName();
5794    return true;
5795  }
5796
5797  bool Valid = false;
5798
5799  // template <char...> type operator "" name() is the only valid template
5800  // signature, and the only valid signature with no parameters.
5801  if (FnDecl->param_size() == 0) {
5802    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5803      // Must have only one template parameter
5804      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5805      if (Params->size() == 1) {
5806        NonTypeTemplateParmDecl *PmDecl =
5807          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5808
5809        // The template parameter must be a char parameter pack.
5810        // FIXME: This test will always fail because non-type parameter packs
5811        //   have not been implemented.
5812        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5813            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5814          Valid = true;
5815      }
5816    }
5817  } else {
5818    // Check the first parameter
5819    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5820
5821    QualType T = (*Param)->getType();
5822
5823    // unsigned long long int, long double, and any character type are allowed
5824    // as the only parameters.
5825    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5826        Context.hasSameType(T, Context.LongDoubleTy) ||
5827        Context.hasSameType(T, Context.CharTy) ||
5828        Context.hasSameType(T, Context.WCharTy) ||
5829        Context.hasSameType(T, Context.Char16Ty) ||
5830        Context.hasSameType(T, Context.Char32Ty)) {
5831      if (++Param == FnDecl->param_end())
5832        Valid = true;
5833      goto FinishedParams;
5834    }
5835
5836    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5837    const PointerType *PT = T->getAs<PointerType>();
5838    if (!PT)
5839      goto FinishedParams;
5840    T = PT->getPointeeType();
5841    if (!T.isConstQualified())
5842      goto FinishedParams;
5843    T = T.getUnqualifiedType();
5844
5845    // Move on to the second parameter;
5846    ++Param;
5847
5848    // If there is no second parameter, the first must be a const char *
5849    if (Param == FnDecl->param_end()) {
5850      if (Context.hasSameType(T, Context.CharTy))
5851        Valid = true;
5852      goto FinishedParams;
5853    }
5854
5855    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5856    // are allowed as the first parameter to a two-parameter function
5857    if (!(Context.hasSameType(T, Context.CharTy) ||
5858          Context.hasSameType(T, Context.WCharTy) ||
5859          Context.hasSameType(T, Context.Char16Ty) ||
5860          Context.hasSameType(T, Context.Char32Ty)))
5861      goto FinishedParams;
5862
5863    // The second and final parameter must be an std::size_t
5864    T = (*Param)->getType().getUnqualifiedType();
5865    if (Context.hasSameType(T, Context.getSizeType()) &&
5866        ++Param == FnDecl->param_end())
5867      Valid = true;
5868  }
5869
5870  // FIXME: This diagnostic is absolutely terrible.
5871FinishedParams:
5872  if (!Valid) {
5873    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5874      << FnDecl->getDeclName();
5875    return true;
5876  }
5877
5878  return false;
5879}
5880
5881/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5882/// linkage specification, including the language and (if present)
5883/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5884/// the location of the language string literal, which is provided
5885/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5886/// the '{' brace. Otherwise, this linkage specification does not
5887/// have any braces.
5888Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5889                                                     SourceLocation ExternLoc,
5890                                                     SourceLocation LangLoc,
5891                                                     llvm::StringRef Lang,
5892                                                     SourceLocation LBraceLoc) {
5893  LinkageSpecDecl::LanguageIDs Language;
5894  if (Lang == "\"C\"")
5895    Language = LinkageSpecDecl::lang_c;
5896  else if (Lang == "\"C++\"")
5897    Language = LinkageSpecDecl::lang_cxx;
5898  else {
5899    Diag(LangLoc, diag::err_bad_language);
5900    return DeclPtrTy();
5901  }
5902
5903  // FIXME: Add all the various semantics of linkage specifications
5904
5905  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5906                                               LangLoc, Language,
5907                                               LBraceLoc.isValid());
5908  CurContext->addDecl(D);
5909  PushDeclContext(S, D);
5910  return DeclPtrTy::make(D);
5911}
5912
5913/// ActOnFinishLinkageSpecification - Completely the definition of
5914/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5915/// valid, it's the position of the closing '}' brace in a linkage
5916/// specification that uses braces.
5917Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5918                                                      DeclPtrTy LinkageSpec,
5919                                                      SourceLocation RBraceLoc) {
5920  if (LinkageSpec)
5921    PopDeclContext();
5922  return LinkageSpec;
5923}
5924
5925/// \brief Perform semantic analysis for the variable declaration that
5926/// occurs within a C++ catch clause, returning the newly-created
5927/// variable.
5928VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5929                                         TypeSourceInfo *TInfo,
5930                                         IdentifierInfo *Name,
5931                                         SourceLocation Loc,
5932                                         SourceRange Range) {
5933  bool Invalid = false;
5934
5935  // Arrays and functions decay.
5936  if (ExDeclType->isArrayType())
5937    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5938  else if (ExDeclType->isFunctionType())
5939    ExDeclType = Context.getPointerType(ExDeclType);
5940
5941  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5942  // The exception-declaration shall not denote a pointer or reference to an
5943  // incomplete type, other than [cv] void*.
5944  // N2844 forbids rvalue references.
5945  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5946    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5947    Invalid = true;
5948  }
5949
5950  // GCC allows catching pointers and references to incomplete types
5951  // as an extension; so do we, but we warn by default.
5952
5953  QualType BaseType = ExDeclType;
5954  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5955  unsigned DK = diag::err_catch_incomplete;
5956  bool IncompleteCatchIsInvalid = true;
5957  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5958    BaseType = Ptr->getPointeeType();
5959    Mode = 1;
5960    DK = diag::ext_catch_incomplete_ptr;
5961    IncompleteCatchIsInvalid = false;
5962  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5963    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5964    BaseType = Ref->getPointeeType();
5965    Mode = 2;
5966    DK = diag::ext_catch_incomplete_ref;
5967    IncompleteCatchIsInvalid = false;
5968  }
5969  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5970      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5971      IncompleteCatchIsInvalid)
5972    Invalid = true;
5973
5974  if (!Invalid && !ExDeclType->isDependentType() &&
5975      RequireNonAbstractType(Loc, ExDeclType,
5976                             diag::err_abstract_type_in_decl,
5977                             AbstractVariableType))
5978    Invalid = true;
5979
5980  // Only the non-fragile NeXT runtime currently supports C++ catches
5981  // of ObjC types, and no runtime supports catching ObjC types by value.
5982  if (!Invalid && getLangOptions().ObjC1) {
5983    QualType T = ExDeclType;
5984    if (const ReferenceType *RT = T->getAs<ReferenceType>())
5985      T = RT->getPointeeType();
5986
5987    if (T->isObjCObjectType()) {
5988      Diag(Loc, diag::err_objc_object_catch);
5989      Invalid = true;
5990    } else if (T->isObjCObjectPointerType()) {
5991      if (!getLangOptions().NeXTRuntime) {
5992        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
5993        Invalid = true;
5994      } else if (!getLangOptions().ObjCNonFragileABI) {
5995        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
5996        Invalid = true;
5997      }
5998    }
5999  }
6000
6001  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6002                                    Name, ExDeclType, TInfo, VarDecl::None,
6003                                    VarDecl::None);
6004  ExDecl->setExceptionVariable(true);
6005
6006  if (!Invalid) {
6007    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6008      // C++ [except.handle]p16:
6009      //   The object declared in an exception-declaration or, if the
6010      //   exception-declaration does not specify a name, a temporary (12.2) is
6011      //   copy-initialized (8.5) from the exception object. [...]
6012      //   The object is destroyed when the handler exits, after the destruction
6013      //   of any automatic objects initialized within the handler.
6014      //
6015      // We just pretend to initialize the object with itself, then make sure
6016      // it can be destroyed later.
6017      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6018      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6019                                            Loc, ExDeclType, 0);
6020      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6021                                                               SourceLocation());
6022      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6023      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6024                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6025      if (Result.isInvalid())
6026        Invalid = true;
6027      else
6028        FinalizeVarWithDestructor(ExDecl, RecordTy);
6029    }
6030  }
6031
6032  if (Invalid)
6033    ExDecl->setInvalidDecl();
6034
6035  return ExDecl;
6036}
6037
6038/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6039/// handler.
6040Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6041  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6042  QualType ExDeclType = TInfo->getType();
6043
6044  bool Invalid = D.isInvalidType();
6045  IdentifierInfo *II = D.getIdentifier();
6046  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6047                                             LookupOrdinaryName,
6048                                             ForRedeclaration)) {
6049    // The scope should be freshly made just for us. There is just no way
6050    // it contains any previous declaration.
6051    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
6052    if (PrevDecl->isTemplateParameter()) {
6053      // Maybe we will complain about the shadowed template parameter.
6054      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6055    }
6056  }
6057
6058  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6059    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6060      << D.getCXXScopeSpec().getRange();
6061    Invalid = true;
6062  }
6063
6064  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6065                                              D.getIdentifier(),
6066                                              D.getIdentifierLoc(),
6067                                            D.getDeclSpec().getSourceRange());
6068
6069  if (Invalid)
6070    ExDecl->setInvalidDecl();
6071
6072  // Add the exception declaration into this scope.
6073  if (II)
6074    PushOnScopeChains(ExDecl, S);
6075  else
6076    CurContext->addDecl(ExDecl);
6077
6078  ProcessDeclAttributes(S, ExDecl, D);
6079  return DeclPtrTy::make(ExDecl);
6080}
6081
6082Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6083                                                   ExprArg assertexpr,
6084                                                   ExprArg assertmessageexpr) {
6085  Expr *AssertExpr = (Expr *)assertexpr.get();
6086  StringLiteral *AssertMessage =
6087    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6088
6089  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6090    llvm::APSInt Value(32);
6091    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6092      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6093        AssertExpr->getSourceRange();
6094      return DeclPtrTy();
6095    }
6096
6097    if (Value == 0) {
6098      Diag(AssertLoc, diag::err_static_assert_failed)
6099        << AssertMessage->getString() << AssertExpr->getSourceRange();
6100    }
6101  }
6102
6103  assertexpr.release();
6104  assertmessageexpr.release();
6105  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6106                                        AssertExpr, AssertMessage);
6107
6108  CurContext->addDecl(Decl);
6109  return DeclPtrTy::make(Decl);
6110}
6111
6112/// \brief Perform semantic analysis of the given friend type declaration.
6113///
6114/// \returns A friend declaration that.
6115FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6116                                      TypeSourceInfo *TSInfo) {
6117  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6118
6119  QualType T = TSInfo->getType();
6120  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6121
6122  if (!getLangOptions().CPlusPlus0x) {
6123    // C++03 [class.friend]p2:
6124    //   An elaborated-type-specifier shall be used in a friend declaration
6125    //   for a class.*
6126    //
6127    //   * The class-key of the elaborated-type-specifier is required.
6128    if (!ActiveTemplateInstantiations.empty()) {
6129      // Do not complain about the form of friend template types during
6130      // template instantiation; we will already have complained when the
6131      // template was declared.
6132    } else if (!T->isElaboratedTypeSpecifier()) {
6133      // If we evaluated the type to a record type, suggest putting
6134      // a tag in front.
6135      if (const RecordType *RT = T->getAs<RecordType>()) {
6136        RecordDecl *RD = RT->getDecl();
6137
6138        std::string InsertionText = std::string(" ") + RD->getKindName();
6139
6140        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6141          << (unsigned) RD->getTagKind()
6142          << T
6143          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6144                                        InsertionText);
6145      } else {
6146        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6147          << T
6148          << SourceRange(FriendLoc, TypeRange.getEnd());
6149      }
6150    } else if (T->getAs<EnumType>()) {
6151      Diag(FriendLoc, diag::ext_enum_friend)
6152        << T
6153        << SourceRange(FriendLoc, TypeRange.getEnd());
6154    }
6155  }
6156
6157  // C++0x [class.friend]p3:
6158  //   If the type specifier in a friend declaration designates a (possibly
6159  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6160  //   the friend declaration is ignored.
6161
6162  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6163  // in [class.friend]p3 that we do not implement.
6164
6165  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6166}
6167
6168/// Handle a friend type declaration.  This works in tandem with
6169/// ActOnTag.
6170///
6171/// Notes on friend class templates:
6172///
6173/// We generally treat friend class declarations as if they were
6174/// declaring a class.  So, for example, the elaborated type specifier
6175/// in a friend declaration is required to obey the restrictions of a
6176/// class-head (i.e. no typedefs in the scope chain), template
6177/// parameters are required to match up with simple template-ids, &c.
6178/// However, unlike when declaring a template specialization, it's
6179/// okay to refer to a template specialization without an empty
6180/// template parameter declaration, e.g.
6181///   friend class A<T>::B<unsigned>;
6182/// We permit this as a special case; if there are any template
6183/// parameters present at all, require proper matching, i.e.
6184///   template <> template <class T> friend class A<int>::B;
6185Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6186                                          MultiTemplateParamsArg TempParams) {
6187  SourceLocation Loc = DS.getSourceRange().getBegin();
6188
6189  assert(DS.isFriendSpecified());
6190  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6191
6192  // Try to convert the decl specifier to a type.  This works for
6193  // friend templates because ActOnTag never produces a ClassTemplateDecl
6194  // for a TUK_Friend.
6195  Declarator TheDeclarator(DS, Declarator::MemberContext);
6196  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6197  QualType T = TSI->getType();
6198  if (TheDeclarator.isInvalidType())
6199    return DeclPtrTy();
6200
6201  // This is definitely an error in C++98.  It's probably meant to
6202  // be forbidden in C++0x, too, but the specification is just
6203  // poorly written.
6204  //
6205  // The problem is with declarations like the following:
6206  //   template <T> friend A<T>::foo;
6207  // where deciding whether a class C is a friend or not now hinges
6208  // on whether there exists an instantiation of A that causes
6209  // 'foo' to equal C.  There are restrictions on class-heads
6210  // (which we declare (by fiat) elaborated friend declarations to
6211  // be) that makes this tractable.
6212  //
6213  // FIXME: handle "template <> friend class A<T>;", which
6214  // is possibly well-formed?  Who even knows?
6215  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6216    Diag(Loc, diag::err_tagless_friend_type_template)
6217      << DS.getSourceRange();
6218    return DeclPtrTy();
6219  }
6220
6221  // C++98 [class.friend]p1: A friend of a class is a function
6222  //   or class that is not a member of the class . . .
6223  // This is fixed in DR77, which just barely didn't make the C++03
6224  // deadline.  It's also a very silly restriction that seriously
6225  // affects inner classes and which nobody else seems to implement;
6226  // thus we never diagnose it, not even in -pedantic.
6227  //
6228  // But note that we could warn about it: it's always useless to
6229  // friend one of your own members (it's not, however, worthless to
6230  // friend a member of an arbitrary specialization of your template).
6231
6232  Decl *D;
6233  if (unsigned NumTempParamLists = TempParams.size())
6234    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6235                                   NumTempParamLists,
6236                                 (TemplateParameterList**) TempParams.release(),
6237                                   TSI,
6238                                   DS.getFriendSpecLoc());
6239  else
6240    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6241
6242  if (!D)
6243    return DeclPtrTy();
6244
6245  D->setAccess(AS_public);
6246  CurContext->addDecl(D);
6247
6248  return DeclPtrTy::make(D);
6249}
6250
6251Sema::DeclPtrTy
6252Sema::ActOnFriendFunctionDecl(Scope *S,
6253                              Declarator &D,
6254                              bool IsDefinition,
6255                              MultiTemplateParamsArg TemplateParams) {
6256  const DeclSpec &DS = D.getDeclSpec();
6257
6258  assert(DS.isFriendSpecified());
6259  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6260
6261  SourceLocation Loc = D.getIdentifierLoc();
6262  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6263  QualType T = TInfo->getType();
6264
6265  // C++ [class.friend]p1
6266  //   A friend of a class is a function or class....
6267  // Note that this sees through typedefs, which is intended.
6268  // It *doesn't* see through dependent types, which is correct
6269  // according to [temp.arg.type]p3:
6270  //   If a declaration acquires a function type through a
6271  //   type dependent on a template-parameter and this causes
6272  //   a declaration that does not use the syntactic form of a
6273  //   function declarator to have a function type, the program
6274  //   is ill-formed.
6275  if (!T->isFunctionType()) {
6276    Diag(Loc, diag::err_unexpected_friend);
6277
6278    // It might be worthwhile to try to recover by creating an
6279    // appropriate declaration.
6280    return DeclPtrTy();
6281  }
6282
6283  // C++ [namespace.memdef]p3
6284  //  - If a friend declaration in a non-local class first declares a
6285  //    class or function, the friend class or function is a member
6286  //    of the innermost enclosing namespace.
6287  //  - The name of the friend is not found by simple name lookup
6288  //    until a matching declaration is provided in that namespace
6289  //    scope (either before or after the class declaration granting
6290  //    friendship).
6291  //  - If a friend function is called, its name may be found by the
6292  //    name lookup that considers functions from namespaces and
6293  //    classes associated with the types of the function arguments.
6294  //  - When looking for a prior declaration of a class or a function
6295  //    declared as a friend, scopes outside the innermost enclosing
6296  //    namespace scope are not considered.
6297
6298  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6299  DeclarationName Name = GetNameForDeclarator(D);
6300  assert(Name);
6301
6302  // The context we found the declaration in, or in which we should
6303  // create the declaration.
6304  DeclContext *DC;
6305
6306  // FIXME: handle local classes
6307
6308  // Recover from invalid scope qualifiers as if they just weren't there.
6309  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
6310                        ForRedeclaration);
6311  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6312    DC = computeDeclContext(ScopeQual);
6313
6314    // FIXME: handle dependent contexts
6315    if (!DC) return DeclPtrTy();
6316    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6317
6318    LookupQualifiedName(Previous, DC);
6319
6320    // Ignore things found implicitly in the wrong scope.
6321    // TODO: better diagnostics for this case.  Suggesting the right
6322    // qualified scope would be nice...
6323    LookupResult::Filter F = Previous.makeFilter();
6324    while (F.hasNext()) {
6325      NamedDecl *D = F.next();
6326      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6327        F.erase();
6328    }
6329    F.done();
6330
6331    if (Previous.empty()) {
6332      D.setInvalidType();
6333      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6334      return DeclPtrTy();
6335    }
6336
6337    // C++ [class.friend]p1: A friend of a class is a function or
6338    //   class that is not a member of the class . . .
6339    if (DC->Equals(CurContext))
6340      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6341
6342  // Otherwise walk out to the nearest namespace scope looking for matches.
6343  } else {
6344    // TODO: handle local class contexts.
6345
6346    DC = CurContext;
6347    while (true) {
6348      // Skip class contexts.  If someone can cite chapter and verse
6349      // for this behavior, that would be nice --- it's what GCC and
6350      // EDG do, and it seems like a reasonable intent, but the spec
6351      // really only says that checks for unqualified existing
6352      // declarations should stop at the nearest enclosing namespace,
6353      // not that they should only consider the nearest enclosing
6354      // namespace.
6355      while (DC->isRecord())
6356        DC = DC->getParent();
6357
6358      LookupQualifiedName(Previous, DC);
6359
6360      // TODO: decide what we think about using declarations.
6361      if (!Previous.empty())
6362        break;
6363
6364      if (DC->isFileContext()) break;
6365      DC = DC->getParent();
6366    }
6367
6368    // C++ [class.friend]p1: A friend of a class is a function or
6369    //   class that is not a member of the class . . .
6370    // C++0x changes this for both friend types and functions.
6371    // Most C++ 98 compilers do seem to give an error here, so
6372    // we do, too.
6373    if (!Previous.empty() && DC->Equals(CurContext)
6374        && !getLangOptions().CPlusPlus0x)
6375      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6376  }
6377
6378  if (DC->isFileContext()) {
6379    // This implies that it has to be an operator or function.
6380    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6381        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6382        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6383      Diag(Loc, diag::err_introducing_special_friend) <<
6384        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6385         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6386      return DeclPtrTy();
6387    }
6388  }
6389
6390  bool Redeclaration = false;
6391  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6392                                          move(TemplateParams),
6393                                          IsDefinition,
6394                                          Redeclaration);
6395  if (!ND) return DeclPtrTy();
6396
6397  assert(ND->getDeclContext() == DC);
6398  assert(ND->getLexicalDeclContext() == CurContext);
6399
6400  // Add the function declaration to the appropriate lookup tables,
6401  // adjusting the redeclarations list as necessary.  We don't
6402  // want to do this yet if the friending class is dependent.
6403  //
6404  // Also update the scope-based lookup if the target context's
6405  // lookup context is in lexical scope.
6406  if (!CurContext->isDependentContext()) {
6407    DC = DC->getLookupContext();
6408    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6409    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6410      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6411  }
6412
6413  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6414                                       D.getIdentifierLoc(), ND,
6415                                       DS.getFriendSpecLoc());
6416  FrD->setAccess(AS_public);
6417  CurContext->addDecl(FrD);
6418
6419  return DeclPtrTy::make(ND);
6420}
6421
6422void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6423  AdjustDeclIfTemplate(dcl);
6424
6425  Decl *Dcl = dcl.getAs<Decl>();
6426  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6427  if (!Fn) {
6428    Diag(DelLoc, diag::err_deleted_non_function);
6429    return;
6430  }
6431  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6432    Diag(DelLoc, diag::err_deleted_decl_not_first);
6433    Diag(Prev->getLocation(), diag::note_previous_declaration);
6434    // If the declaration wasn't the first, we delete the function anyway for
6435    // recovery.
6436  }
6437  Fn->setDeleted();
6438}
6439
6440static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6441  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6442       ++CI) {
6443    Stmt *SubStmt = *CI;
6444    if (!SubStmt)
6445      continue;
6446    if (isa<ReturnStmt>(SubStmt))
6447      Self.Diag(SubStmt->getSourceRange().getBegin(),
6448           diag::err_return_in_constructor_handler);
6449    if (!isa<Expr>(SubStmt))
6450      SearchForReturnInStmt(Self, SubStmt);
6451  }
6452}
6453
6454void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6455  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6456    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6457    SearchForReturnInStmt(*this, Handler);
6458  }
6459}
6460
6461bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6462                                             const CXXMethodDecl *Old) {
6463  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6464  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6465
6466  if (Context.hasSameType(NewTy, OldTy) ||
6467      NewTy->isDependentType() || OldTy->isDependentType())
6468    return false;
6469
6470  // Check if the return types are covariant
6471  QualType NewClassTy, OldClassTy;
6472
6473  /// Both types must be pointers or references to classes.
6474  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6475    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6476      NewClassTy = NewPT->getPointeeType();
6477      OldClassTy = OldPT->getPointeeType();
6478    }
6479  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6480    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6481      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6482        NewClassTy = NewRT->getPointeeType();
6483        OldClassTy = OldRT->getPointeeType();
6484      }
6485    }
6486  }
6487
6488  // The return types aren't either both pointers or references to a class type.
6489  if (NewClassTy.isNull()) {
6490    Diag(New->getLocation(),
6491         diag::err_different_return_type_for_overriding_virtual_function)
6492      << New->getDeclName() << NewTy << OldTy;
6493    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6494
6495    return true;
6496  }
6497
6498  // C++ [class.virtual]p6:
6499  //   If the return type of D::f differs from the return type of B::f, the
6500  //   class type in the return type of D::f shall be complete at the point of
6501  //   declaration of D::f or shall be the class type D.
6502  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6503    if (!RT->isBeingDefined() &&
6504        RequireCompleteType(New->getLocation(), NewClassTy,
6505                            PDiag(diag::err_covariant_return_incomplete)
6506                              << New->getDeclName()))
6507    return true;
6508  }
6509
6510  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6511    // Check if the new class derives from the old class.
6512    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6513      Diag(New->getLocation(),
6514           diag::err_covariant_return_not_derived)
6515      << New->getDeclName() << NewTy << OldTy;
6516      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6517      return true;
6518    }
6519
6520    // Check if we the conversion from derived to base is valid.
6521    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6522                    diag::err_covariant_return_inaccessible_base,
6523                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6524                    // FIXME: Should this point to the return type?
6525                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6526      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6527      return true;
6528    }
6529  }
6530
6531  // The qualifiers of the return types must be the same.
6532  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6533    Diag(New->getLocation(),
6534         diag::err_covariant_return_type_different_qualifications)
6535    << New->getDeclName() << NewTy << OldTy;
6536    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6537    return true;
6538  };
6539
6540
6541  // The new class type must have the same or less qualifiers as the old type.
6542  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6543    Diag(New->getLocation(),
6544         diag::err_covariant_return_type_class_type_more_qualified)
6545    << New->getDeclName() << NewTy << OldTy;
6546    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6547    return true;
6548  };
6549
6550  return false;
6551}
6552
6553bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6554                                             const CXXMethodDecl *Old)
6555{
6556  if (Old->hasAttr<FinalAttr>()) {
6557    Diag(New->getLocation(), diag::err_final_function_overridden)
6558      << New->getDeclName();
6559    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6560    return true;
6561  }
6562
6563  return false;
6564}
6565
6566/// \brief Mark the given method pure.
6567///
6568/// \param Method the method to be marked pure.
6569///
6570/// \param InitRange the source range that covers the "0" initializer.
6571bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6572  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6573    Method->setPure();
6574
6575    // A class is abstract if at least one function is pure virtual.
6576    Method->getParent()->setAbstract(true);
6577    return false;
6578  }
6579
6580  if (!Method->isInvalidDecl())
6581    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6582      << Method->getDeclName() << InitRange;
6583  return true;
6584}
6585
6586/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6587/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6588/// is a fresh scope pushed for just this purpose.
6589///
6590/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6591/// static data member of class X, names should be looked up in the scope of
6592/// class X.
6593void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6594  // If there is no declaration, there was an error parsing it.
6595  Decl *D = Dcl.getAs<Decl>();
6596  if (D == 0) return;
6597
6598  // We should only get called for declarations with scope specifiers, like:
6599  //   int foo::bar;
6600  assert(D->isOutOfLine());
6601  EnterDeclaratorContext(S, D->getDeclContext());
6602}
6603
6604/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6605/// initializer for the out-of-line declaration 'Dcl'.
6606void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6607  // If there is no declaration, there was an error parsing it.
6608  Decl *D = Dcl.getAs<Decl>();
6609  if (D == 0) return;
6610
6611  assert(D->isOutOfLine());
6612  ExitDeclaratorContext(S);
6613}
6614
6615/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6616/// C++ if/switch/while/for statement.
6617/// e.g: "if (int x = f()) {...}"
6618Action::DeclResult
6619Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6620  // C++ 6.4p2:
6621  // The declarator shall not specify a function or an array.
6622  // The type-specifier-seq shall not contain typedef and shall not declare a
6623  // new class or enumeration.
6624  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6625         "Parser allowed 'typedef' as storage class of condition decl.");
6626
6627  TagDecl *OwnedTag = 0;
6628  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6629  QualType Ty = TInfo->getType();
6630
6631  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6632                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6633                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6634    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6635      << D.getSourceRange();
6636    return DeclResult();
6637  } else if (OwnedTag && OwnedTag->isDefinition()) {
6638    // The type-specifier-seq shall not declare a new class or enumeration.
6639    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6640  }
6641
6642  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6643  if (!Dcl)
6644    return DeclResult();
6645
6646  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6647  VD->setDeclaredInCondition(true);
6648  return Dcl;
6649}
6650
6651void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6652                          bool DefinitionRequired) {
6653  // Ignore any vtable uses in unevaluated operands or for classes that do
6654  // not have a vtable.
6655  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6656      CurContext->isDependentContext() ||
6657      ExprEvalContexts.back().Context == Unevaluated)
6658    return;
6659
6660  // Try to insert this class into the map.
6661  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6662  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6663    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6664  if (!Pos.second) {
6665    // If we already had an entry, check to see if we are promoting this vtable
6666    // to required a definition. If so, we need to reappend to the VTableUses
6667    // list, since we may have already processed the first entry.
6668    if (DefinitionRequired && !Pos.first->second) {
6669      Pos.first->second = true;
6670    } else {
6671      // Otherwise, we can early exit.
6672      return;
6673    }
6674  }
6675
6676  // Local classes need to have their virtual members marked
6677  // immediately. For all other classes, we mark their virtual members
6678  // at the end of the translation unit.
6679  if (Class->isLocalClass())
6680    MarkVirtualMembersReferenced(Loc, Class);
6681  else
6682    VTableUses.push_back(std::make_pair(Class, Loc));
6683}
6684
6685bool Sema::DefineUsedVTables() {
6686  // If any dynamic classes have their key function defined within
6687  // this translation unit, then those vtables are considered "used" and must
6688  // be emitted.
6689  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6690    if (const CXXMethodDecl *KeyFunction
6691                             = Context.getKeyFunction(DynamicClasses[I])) {
6692      const FunctionDecl *Definition = 0;
6693      if (KeyFunction->hasBody(Definition))
6694        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6695    }
6696  }
6697
6698  if (VTableUses.empty())
6699    return false;
6700
6701  // Note: The VTableUses vector could grow as a result of marking
6702  // the members of a class as "used", so we check the size each
6703  // time through the loop and prefer indices (with are stable) to
6704  // iterators (which are not).
6705  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6706    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6707    if (!Class)
6708      continue;
6709
6710    SourceLocation Loc = VTableUses[I].second;
6711
6712    // If this class has a key function, but that key function is
6713    // defined in another translation unit, we don't need to emit the
6714    // vtable even though we're using it.
6715    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6716    if (KeyFunction && !KeyFunction->hasBody()) {
6717      switch (KeyFunction->getTemplateSpecializationKind()) {
6718      case TSK_Undeclared:
6719      case TSK_ExplicitSpecialization:
6720      case TSK_ExplicitInstantiationDeclaration:
6721        // The key function is in another translation unit.
6722        continue;
6723
6724      case TSK_ExplicitInstantiationDefinition:
6725      case TSK_ImplicitInstantiation:
6726        // We will be instantiating the key function.
6727        break;
6728      }
6729    } else if (!KeyFunction) {
6730      // If we have a class with no key function that is the subject
6731      // of an explicit instantiation declaration, suppress the
6732      // vtable; it will live with the explicit instantiation
6733      // definition.
6734      bool IsExplicitInstantiationDeclaration
6735        = Class->getTemplateSpecializationKind()
6736                                      == TSK_ExplicitInstantiationDeclaration;
6737      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6738                                 REnd = Class->redecls_end();
6739           R != REnd; ++R) {
6740        TemplateSpecializationKind TSK
6741          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6742        if (TSK == TSK_ExplicitInstantiationDeclaration)
6743          IsExplicitInstantiationDeclaration = true;
6744        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6745          IsExplicitInstantiationDeclaration = false;
6746          break;
6747        }
6748      }
6749
6750      if (IsExplicitInstantiationDeclaration)
6751        continue;
6752    }
6753
6754    // Mark all of the virtual members of this class as referenced, so
6755    // that we can build a vtable. Then, tell the AST consumer that a
6756    // vtable for this class is required.
6757    MarkVirtualMembersReferenced(Loc, Class);
6758    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6759    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6760
6761    // Optionally warn if we're emitting a weak vtable.
6762    if (Class->getLinkage() == ExternalLinkage &&
6763        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6764      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6765        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6766    }
6767  }
6768  VTableUses.clear();
6769
6770  return true;
6771}
6772
6773void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6774                                        const CXXRecordDecl *RD) {
6775  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6776       e = RD->method_end(); i != e; ++i) {
6777    CXXMethodDecl *MD = *i;
6778
6779    // C++ [basic.def.odr]p2:
6780    //   [...] A virtual member function is used if it is not pure. [...]
6781    if (MD->isVirtual() && !MD->isPure())
6782      MarkDeclarationReferenced(Loc, MD);
6783  }
6784
6785  // Only classes that have virtual bases need a VTT.
6786  if (RD->getNumVBases() == 0)
6787    return;
6788
6789  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6790           e = RD->bases_end(); i != e; ++i) {
6791    const CXXRecordDecl *Base =
6792        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6793    if (i->isVirtual())
6794      continue;
6795    if (Base->getNumVBases() == 0)
6796      continue;
6797    MarkVirtualMembersReferenced(Loc, Base);
6798  }
6799}
6800
6801/// SetIvarInitializers - This routine builds initialization ASTs for the
6802/// Objective-C implementation whose ivars need be initialized.
6803void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6804  if (!getLangOptions().CPlusPlus)
6805    return;
6806  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6807    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6808    CollectIvarsToConstructOrDestruct(OID, ivars);
6809    if (ivars.empty())
6810      return;
6811    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6812    for (unsigned i = 0; i < ivars.size(); i++) {
6813      FieldDecl *Field = ivars[i];
6814      if (Field->isInvalidDecl())
6815        continue;
6816
6817      CXXBaseOrMemberInitializer *Member;
6818      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6819      InitializationKind InitKind =
6820        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6821
6822      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6823      Sema::OwningExprResult MemberInit =
6824        InitSeq.Perform(*this, InitEntity, InitKind,
6825                        Sema::MultiExprArg(*this, 0, 0));
6826      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6827      // Note, MemberInit could actually come back empty if no initialization
6828      // is required (e.g., because it would call a trivial default constructor)
6829      if (!MemberInit.get() || MemberInit.isInvalid())
6830        continue;
6831
6832      Member =
6833        new (Context) CXXBaseOrMemberInitializer(Context,
6834                                                 Field, SourceLocation(),
6835                                                 SourceLocation(),
6836                                                 MemberInit.takeAs<Expr>(),
6837                                                 SourceLocation());
6838      AllToInit.push_back(Member);
6839
6840      // Be sure that the destructor is accessible and is marked as referenced.
6841      if (const RecordType *RecordTy
6842                  = Context.getBaseElementType(Field->getType())
6843                                                        ->getAs<RecordType>()) {
6844                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6845        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6846          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6847          CheckDestructorAccess(Field->getLocation(), Destructor,
6848                            PDiag(diag::err_access_dtor_ivar)
6849                              << Context.getBaseElementType(Field->getType()));
6850        }
6851      }
6852    }
6853    ObjCImplementation->setIvarInitializers(Context,
6854                                            AllToInit.data(), AllToInit.size());
6855  }
6856}
6857