SemaDeclCXX.cpp revision dcd5ef12488e4c7ea844327835896ca86b609a97
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
109                                ExprTy *defarg) {
110  ParmVarDecl *Param = (ParmVarDecl *)param;
111  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
129                                                     "in default argument");
130  if (DefaultArgPtr != DefaultArg.get()) {
131    DefaultArg.take();
132    DefaultArg.reset(DefaultArgPtr);
133  }
134  if (DefaultInitFailed) {
135    return;
136  }
137
138  // Check that the default argument is well-formed
139  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
140  if (DefaultArgChecker.Visit(DefaultArg.get()))
141    return;
142
143  // Okay: add the default argument to the parameter
144  Param->setDefaultArg(DefaultArg.take());
145}
146
147/// CheckExtraCXXDefaultArguments - Check for any extra default
148/// arguments in the declarator, which is not a function declaration
149/// or definition and therefore is not permitted to have default
150/// arguments. This routine should be invoked for every declarator
151/// that is not a function declaration or definition.
152void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
153  // C++ [dcl.fct.default]p3
154  //   A default argument expression shall be specified only in the
155  //   parameter-declaration-clause of a function declaration or in a
156  //   template-parameter (14.1). It shall not be specified for a
157  //   parameter pack. If it is specified in a
158  //   parameter-declaration-clause, it shall not occur within a
159  //   declarator or abstract-declarator of a parameter-declaration.
160  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
161    DeclaratorChunk &chunk = D.getTypeObject(i);
162    if (chunk.Kind == DeclaratorChunk::Function) {
163      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
164        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
165        if (Param->getDefaultArg()) {
166          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
167            << Param->getDefaultArg()->getSourceRange();
168          Param->setDefaultArg(0);
169        }
170      }
171    }
172  }
173}
174
175// MergeCXXFunctionDecl - Merge two declarations of the same C++
176// function, once we already know that they have the same
177// type. Subroutine of MergeFunctionDecl.
178FunctionDecl *
179Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
180  // C++ [dcl.fct.default]p4:
181  //
182  //   For non-template functions, default arguments can be added in
183  //   later declarations of a function in the same
184  //   scope. Declarations in different scopes have completely
185  //   distinct sets of default arguments. That is, declarations in
186  //   inner scopes do not acquire default arguments from
187  //   declarations in outer scopes, and vice versa. In a given
188  //   function declaration, all parameters subsequent to a
189  //   parameter with a default argument shall have default
190  //   arguments supplied in this or previous declarations. A
191  //   default argument shall not be redefined by a later
192  //   declaration (not even to the same value).
193  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
194    ParmVarDecl *OldParam = Old->getParamDecl(p);
195    ParmVarDecl *NewParam = New->getParamDecl(p);
196
197    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
198      Diag(NewParam->getLocation(),
199           diag::err_param_default_argument_redefinition)
200        << NewParam->getDefaultArg()->getSourceRange();
201      Diag(OldParam->getLocation(), diag::err_previous_definition);
202    } else if (OldParam->getDefaultArg()) {
203      // Merge the old default argument into the new parameter
204      NewParam->setDefaultArg(OldParam->getDefaultArg());
205    }
206  }
207
208  return New;
209}
210
211/// CheckCXXDefaultArguments - Verify that the default arguments for a
212/// function declaration are well-formed according to C++
213/// [dcl.fct.default].
214void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
215  unsigned NumParams = FD->getNumParams();
216  unsigned p;
217
218  // Find first parameter with a default argument
219  for (p = 0; p < NumParams; ++p) {
220    ParmVarDecl *Param = FD->getParamDecl(p);
221    if (Param->getDefaultArg())
222      break;
223  }
224
225  // C++ [dcl.fct.default]p4:
226  //   In a given function declaration, all parameters
227  //   subsequent to a parameter with a default argument shall
228  //   have default arguments supplied in this or previous
229  //   declarations. A default argument shall not be redefined
230  //   by a later declaration (not even to the same value).
231  unsigned LastMissingDefaultArg = 0;
232  for(; p < NumParams; ++p) {
233    ParmVarDecl *Param = FD->getParamDecl(p);
234    if (!Param->getDefaultArg()) {
235      if (Param->getIdentifier())
236        Diag(Param->getLocation(),
237             diag::err_param_default_argument_missing_name)
238          << Param->getIdentifier()->getName();
239      else
240        Diag(Param->getLocation(),
241             diag::err_param_default_argument_missing);
242
243      LastMissingDefaultArg = p;
244    }
245  }
246
247  if (LastMissingDefaultArg > 0) {
248    // Some default arguments were missing. Clear out all of the
249    // default arguments up to (and including) the last missing
250    // default argument, so that we leave the function parameters
251    // in a semantically valid state.
252    for (p = 0; p <= LastMissingDefaultArg; ++p) {
253      ParmVarDecl *Param = FD->getParamDecl(p);
254      if (Param->getDefaultArg()) {
255        delete Param->getDefaultArg();
256        Param->setDefaultArg(0);
257      }
258    }
259  }
260}
261
262/// isCurrentClassName - Determine whether the identifier II is the
263/// name of the class type currently being defined. In the case of
264/// nested classes, this will only return true if II is the name of
265/// the innermost class.
266bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
267                              const CXXScopeSpec *SS) {
268  CXXRecordDecl *CurDecl;
269  if (SS) {
270    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
271    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
272  } else
273    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
274
275  if (CurDecl)
276    return &II == CurDecl->getIdentifier();
277  else
278    return false;
279}
280
281/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
282/// one entry in the base class list of a class specifier, for
283/// example:
284///    class foo : public bar, virtual private baz {
285/// 'public bar' and 'virtual private baz' are each base-specifiers.
286Sema::BaseResult
287Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
288                         bool Virtual, AccessSpecifier Access,
289                         TypeTy *basetype, SourceLocation BaseLoc) {
290  RecordDecl *Decl = (RecordDecl*)classdecl;
291  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
292
293  // Base specifiers must be record types.
294  if (!BaseType->isRecordType())
295    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
296
297  // C++ [class.union]p1:
298  //   A union shall not be used as a base class.
299  if (BaseType->isUnionType())
300    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
301
302  // C++ [class.union]p1:
303  //   A union shall not have base classes.
304  if (Decl->isUnion())
305    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
306              << SpecifierRange;
307
308  // C++ [class.derived]p2:
309  //   The class-name in a base-specifier shall not be an incompletely
310  //   defined class.
311  if (BaseType->isIncompleteType())
312    return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
313
314  // If the base class is polymorphic, the new one is, too.
315  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
316  assert(BaseDecl && "Record type has no declaration");
317  BaseDecl = BaseDecl->getDefinition(Context);
318  assert(BaseDecl && "Base type is not incomplete, but has no definition");
319  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
320    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
321
322  // Create the base specifier.
323  return new CXXBaseSpecifier(SpecifierRange, Virtual,
324                              BaseType->isClassType(), Access, BaseType);
325}
326
327/// ActOnBaseSpecifiers - Attach the given base specifiers to the
328/// class, after checking whether there are any duplicate base
329/// classes.
330void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
331                               unsigned NumBases) {
332  if (NumBases == 0)
333    return;
334
335  // Used to keep track of which base types we have already seen, so
336  // that we can properly diagnose redundant direct base types. Note
337  // that the key is always the unqualified canonical type of the base
338  // class.
339  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
340
341  // Copy non-redundant base specifiers into permanent storage.
342  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
343  unsigned NumGoodBases = 0;
344  for (unsigned idx = 0; idx < NumBases; ++idx) {
345    QualType NewBaseType
346      = Context.getCanonicalType(BaseSpecs[idx]->getType());
347    NewBaseType = NewBaseType.getUnqualifiedType();
348
349    if (KnownBaseTypes[NewBaseType]) {
350      // C++ [class.mi]p3:
351      //   A class shall not be specified as a direct base class of a
352      //   derived class more than once.
353      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
354           diag::err_duplicate_base_class)
355        << KnownBaseTypes[NewBaseType]->getType().getAsString()
356        << BaseSpecs[idx]->getSourceRange();
357
358      // Delete the duplicate base class specifier; we're going to
359      // overwrite its pointer later.
360      delete BaseSpecs[idx];
361    } else {
362      // Okay, add this new base class.
363      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
364      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
365    }
366  }
367
368  // Attach the remaining base class specifiers to the derived class.
369  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
370  Decl->setBases(BaseSpecs, NumGoodBases);
371
372  // Delete the remaining (good) base class specifiers, since their
373  // data has been copied into the CXXRecordDecl.
374  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
375    delete BaseSpecs[idx];
376}
377
378//===----------------------------------------------------------------------===//
379// C++ class member Handling
380//===----------------------------------------------------------------------===//
381
382/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
383/// definition, when on C++.
384void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
385  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
386  PushDeclContext(Dcl);
387  FieldCollector->StartClass();
388
389  if (Dcl->getIdentifier()) {
390    // C++ [class]p2:
391    //   [...] The class-name is also inserted into the scope of the
392    //   class itself; this is known as the injected-class-name. For
393    //   purposes of access checking, the injected-class-name is treated
394    //   as if it were a public member name.
395    PushOnScopeChains(Dcl, S);
396  }
397}
398
399/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
400/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
401/// bitfield width if there is one and 'InitExpr' specifies the initializer if
402/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
403/// declarators on it.
404///
405/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
406/// an instance field is declared, a new CXXFieldDecl is created but the method
407/// does *not* return it; it returns LastInGroup instead. The other C++ members
408/// (which are all ScopedDecls) are returned after appending them to
409/// LastInGroup.
410Sema::DeclTy *
411Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
412                               ExprTy *BW, ExprTy *InitExpr,
413                               DeclTy *LastInGroup) {
414  const DeclSpec &DS = D.getDeclSpec();
415  DeclarationName Name = GetNameForDeclarator(D);
416  Expr *BitWidth = static_cast<Expr*>(BW);
417  Expr *Init = static_cast<Expr*>(InitExpr);
418  SourceLocation Loc = D.getIdentifierLoc();
419
420  bool isFunc = D.isFunctionDeclarator();
421
422  // C++ 9.2p6: A member shall not be declared to have automatic storage
423  // duration (auto, register) or with the extern storage-class-specifier.
424  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
425  // data members and cannot be applied to names declared const or static,
426  // and cannot be applied to reference members.
427  switch (DS.getStorageClassSpec()) {
428    case DeclSpec::SCS_unspecified:
429    case DeclSpec::SCS_typedef:
430    case DeclSpec::SCS_static:
431      // FALL THROUGH.
432      break;
433    case DeclSpec::SCS_mutable:
434      if (isFunc) {
435        if (DS.getStorageClassSpecLoc().isValid())
436          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
437        else
438          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
439
440        // FIXME: It would be nicer if the keyword was ignored only for this
441        // declarator. Otherwise we could get follow-up errors.
442        D.getMutableDeclSpec().ClearStorageClassSpecs();
443      } else {
444        QualType T = GetTypeForDeclarator(D, S);
445        diag::kind err = static_cast<diag::kind>(0);
446        if (T->isReferenceType())
447          err = diag::err_mutable_reference;
448        else if (T.isConstQualified())
449          err = diag::err_mutable_const;
450        if (err != 0) {
451          if (DS.getStorageClassSpecLoc().isValid())
452            Diag(DS.getStorageClassSpecLoc(), err);
453          else
454            Diag(DS.getThreadSpecLoc(), err);
455          // FIXME: It would be nicer if the keyword was ignored only for this
456          // declarator. Otherwise we could get follow-up errors.
457          D.getMutableDeclSpec().ClearStorageClassSpecs();
458        }
459      }
460      break;
461    default:
462      if (DS.getStorageClassSpecLoc().isValid())
463        Diag(DS.getStorageClassSpecLoc(),
464             diag::err_storageclass_invalid_for_member);
465      else
466        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
467      D.getMutableDeclSpec().ClearStorageClassSpecs();
468  }
469
470  if (!isFunc &&
471      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
472      D.getNumTypeObjects() == 0) {
473    // Check also for this case:
474    //
475    // typedef int f();
476    // f a;
477    //
478    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
479    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
480  }
481
482  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
483                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
484                      !isFunc);
485
486  Decl *Member;
487  bool InvalidDecl = false;
488
489  if (isInstField)
490    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
491  else
492    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
493
494  if (!Member) return LastInGroup;
495
496  assert((Name || isInstField) && "No identifier for non-field ?");
497
498  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
499  // specific methods. Use a wrapper class that can be used with all C++ class
500  // member decls.
501  CXXClassMemberWrapper(Member).setAccess(AS);
502
503  // C++ [dcl.init.aggr]p1:
504  //   An aggregate is an array or a class (clause 9) with [...] no
505  //   private or protected non-static data members (clause 11).
506  if (isInstField && (AS == AS_private || AS == AS_protected))
507    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
508
509  if (DS.isVirtualSpecified()) {
510    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
511      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
512      InvalidDecl = true;
513    } else {
514      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
515      CurClass->setAggregate(false);
516      CurClass->setPolymorphic(true);
517    }
518  }
519
520  if (BitWidth) {
521    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
522    // constant-expression be a value equal to zero.
523    // FIXME: Check this.
524
525    if (D.isFunctionDeclarator()) {
526      // FIXME: Emit diagnostic about only constructors taking base initializers
527      // or something similar, when constructor support is in place.
528      Diag(Loc, diag::err_not_bitfield_type)
529        << Name.getAsString() << BitWidth->getSourceRange();
530      InvalidDecl = true;
531
532    } else if (isInstField) {
533      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
534      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
535        Diag(Loc, diag::err_not_integral_type_bitfield)
536          << Name.getAsString() << BitWidth->getSourceRange();
537        InvalidDecl = true;
538      }
539
540    } else if (isa<FunctionDecl>(Member)) {
541      // A function typedef ("typedef int f(); f a;").
542      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
543      Diag(Loc, diag::err_not_integral_type_bitfield)
544        << Name.getAsString() << BitWidth->getSourceRange();
545      InvalidDecl = true;
546
547    } else if (isa<TypedefDecl>(Member)) {
548      // "cannot declare 'A' to be a bit-field type"
549      Diag(Loc, diag::err_not_bitfield_type)
550        << Name.getAsString() << BitWidth->getSourceRange();
551      InvalidDecl = true;
552
553    } else {
554      assert(isa<CXXClassVarDecl>(Member) &&
555             "Didn't we cover all member kinds?");
556      // C++ 9.6p3: A bit-field shall not be a static member.
557      // "static member 'A' cannot be a bit-field"
558      Diag(Loc, diag::err_static_not_bitfield)
559        << Name.getAsString() << BitWidth->getSourceRange();
560      InvalidDecl = true;
561    }
562  }
563
564  if (Init) {
565    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
566    // if it declares a static member of const integral or const enumeration
567    // type.
568    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
569      // ...static member of...
570      CVD->setInit(Init);
571      // ...const integral or const enumeration type.
572      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
573          CVD->getType()->isIntegralType()) {
574        // constant-initializer
575        if (CheckForConstantInitializer(Init, CVD->getType()))
576          InvalidDecl = true;
577
578      } else {
579        // not const integral.
580        Diag(Loc, diag::err_member_initialization,
581             Name.getAsString(), Init->getSourceRange());
582        InvalidDecl = true;
583      }
584
585    } else {
586      // not static member.
587      Diag(Loc, diag::err_member_initialization,
588           Name.getAsString(), Init->getSourceRange());
589      InvalidDecl = true;
590    }
591  }
592
593  if (InvalidDecl)
594    Member->setInvalidDecl();
595
596  if (isInstField) {
597    FieldCollector->Add(cast<CXXFieldDecl>(Member));
598    return LastInGroup;
599  }
600  return Member;
601}
602
603/// ActOnMemInitializer - Handle a C++ member initializer.
604Sema::MemInitResult
605Sema::ActOnMemInitializer(DeclTy *ConstructorD,
606                          Scope *S,
607                          IdentifierInfo *MemberOrBase,
608                          SourceLocation IdLoc,
609                          SourceLocation LParenLoc,
610                          ExprTy **Args, unsigned NumArgs,
611                          SourceLocation *CommaLocs,
612                          SourceLocation RParenLoc) {
613  CXXConstructorDecl *Constructor
614    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
615  if (!Constructor) {
616    // The user wrote a constructor initializer on a function that is
617    // not a C++ constructor. Ignore the error for now, because we may
618    // have more member initializers coming; we'll diagnose it just
619    // once in ActOnMemInitializers.
620    return true;
621  }
622
623  CXXRecordDecl *ClassDecl = Constructor->getParent();
624
625  // C++ [class.base.init]p2:
626  //   Names in a mem-initializer-id are looked up in the scope of the
627  //   constructor’s class and, if not found in that scope, are looked
628  //   up in the scope containing the constructor’s
629  //   definition. [Note: if the constructor’s class contains a member
630  //   with the same name as a direct or virtual base class of the
631  //   class, a mem-initializer-id naming the member or base class and
632  //   composed of a single identifier refers to the class member. A
633  //   mem-initializer-id for the hidden base class may be specified
634  //   using a qualified name. ]
635  // Look for a member, first.
636  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
637
638  // FIXME: Handle members of an anonymous union.
639
640  if (Member) {
641    // FIXME: Perform direct initialization of the member.
642    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
643  }
644
645  // It didn't name a member, so see if it names a class.
646  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
647  if (!BaseTy)
648    return Diag(IdLoc, diag::err_mem_init_not_member_or_class,
649                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
650
651  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
652  if (!BaseType->isRecordType())
653    return Diag(IdLoc, diag::err_base_init_does_not_name_class,
654                BaseType.getAsString(), SourceRange(IdLoc, RParenLoc));
655
656  // C++ [class.base.init]p2:
657  //   [...] Unless the mem-initializer-id names a nonstatic data
658  //   member of the constructor’s class or a direct or virtual base
659  //   of that class, the mem-initializer is ill-formed. A
660  //   mem-initializer-list can initialize a base class using any
661  //   name that denotes that base class type.
662
663  // First, check for a direct base class.
664  const CXXBaseSpecifier *DirectBaseSpec = 0;
665  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
666       Base != ClassDecl->bases_end(); ++Base) {
667    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
668        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
669      // We found a direct base of this type. That's what we're
670      // initializing.
671      DirectBaseSpec = &*Base;
672      break;
673    }
674  }
675
676  // Check for a virtual base class.
677  // FIXME: We might be able to short-circuit this if we know in
678  // advance that there are no virtual bases.
679  const CXXBaseSpecifier *VirtualBaseSpec = 0;
680  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
681    // We haven't found a base yet; search the class hierarchy for a
682    // virtual base class.
683    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
684                    /*DetectVirtual=*/false);
685    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
686      for (BasePaths::paths_iterator Path = Paths.begin();
687           Path != Paths.end(); ++Path) {
688        if (Path->back().Base->isVirtual()) {
689          VirtualBaseSpec = Path->back().Base;
690          break;
691        }
692      }
693    }
694  }
695
696  // C++ [base.class.init]p2:
697  //   If a mem-initializer-id is ambiguous because it designates both
698  //   a direct non-virtual base class and an inherited virtual base
699  //   class, the mem-initializer is ill-formed.
700  if (DirectBaseSpec && VirtualBaseSpec)
701    return Diag(IdLoc, diag::err_base_init_direct_and_virtual,
702                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
703
704  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
705}
706
707
708void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
709                                             DeclTy *TagDecl,
710                                             SourceLocation LBrac,
711                                             SourceLocation RBrac) {
712  ActOnFields(S, RLoc, TagDecl,
713              (DeclTy**)FieldCollector->getCurFields(),
714              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
715}
716
717/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
718/// special functions, such as the default constructor, copy
719/// constructor, or destructor, to the given C++ class (C++
720/// [special]p1).  This routine can only be executed just before the
721/// definition of the class is complete.
722void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
723  QualType ClassType = Context.getTypeDeclType(ClassDecl);
724  ClassType = Context.getCanonicalType(ClassType);
725
726  if (!ClassDecl->hasUserDeclaredConstructor()) {
727    // C++ [class.ctor]p5:
728    //   A default constructor for a class X is a constructor of class X
729    //   that can be called without an argument. If there is no
730    //   user-declared constructor for class X, a default constructor is
731    //   implicitly declared. An implicitly-declared default constructor
732    //   is an inline public member of its class.
733    DeclarationName Name
734      = Context.DeclarationNames.getCXXConstructorName(ClassType);
735    CXXConstructorDecl *DefaultCon =
736      CXXConstructorDecl::Create(Context, ClassDecl,
737                                 ClassDecl->getLocation(), Name,
738                                 Context.getFunctionType(Context.VoidTy,
739                                                         0, 0, false, 0),
740                                 /*isExplicit=*/false,
741                                 /*isInline=*/true,
742                                 /*isImplicitlyDeclared=*/true);
743    DefaultCon->setAccess(AS_public);
744    ClassDecl->addConstructor(Context, DefaultCon);
745  }
746
747  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
748    // C++ [class.copy]p4:
749    //   If the class definition does not explicitly declare a copy
750    //   constructor, one is declared implicitly.
751
752    // C++ [class.copy]p5:
753    //   The implicitly-declared copy constructor for a class X will
754    //   have the form
755    //
756    //       X::X(const X&)
757    //
758    //   if
759    bool HasConstCopyConstructor = true;
760
761    //     -- each direct or virtual base class B of X has a copy
762    //        constructor whose first parameter is of type const B& or
763    //        const volatile B&, and
764    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
765         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
766      const CXXRecordDecl *BaseClassDecl
767        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
768      HasConstCopyConstructor
769        = BaseClassDecl->hasConstCopyConstructor(Context);
770    }
771
772    //     -- for all the nonstatic data members of X that are of a
773    //        class type M (or array thereof), each such class type
774    //        has a copy constructor whose first parameter is of type
775    //        const M& or const volatile M&.
776    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
777         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
778      QualType FieldType = (*Field)->getType();
779      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
780        FieldType = Array->getElementType();
781      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
782        const CXXRecordDecl *FieldClassDecl
783          = cast<CXXRecordDecl>(FieldClassType->getDecl());
784        HasConstCopyConstructor
785          = FieldClassDecl->hasConstCopyConstructor(Context);
786      }
787    }
788
789    //  Otherwise, the implicitly declared copy constructor will have
790    //  the form
791    //
792    //       X::X(X&)
793    QualType ArgType = Context.getTypeDeclType(ClassDecl);
794    if (HasConstCopyConstructor)
795      ArgType = ArgType.withConst();
796    ArgType = Context.getReferenceType(ArgType);
797
798    //  An implicitly-declared copy constructor is an inline public
799    //  member of its class.
800    DeclarationName Name
801      = Context.DeclarationNames.getCXXConstructorName(ClassType);
802    CXXConstructorDecl *CopyConstructor
803      = CXXConstructorDecl::Create(Context, ClassDecl,
804                                   ClassDecl->getLocation(), Name,
805                                   Context.getFunctionType(Context.VoidTy,
806                                                           &ArgType, 1,
807                                                           false, 0),
808                                   /*isExplicit=*/false,
809                                   /*isInline=*/true,
810                                   /*isImplicitlyDeclared=*/true);
811    CopyConstructor->setAccess(AS_public);
812
813    // Add the parameter to the constructor.
814    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
815                                                 ClassDecl->getLocation(),
816                                                 /*IdentifierInfo=*/0,
817                                                 ArgType, VarDecl::None, 0, 0);
818    CopyConstructor->setParams(&FromParam, 1);
819
820    ClassDecl->addConstructor(Context, CopyConstructor);
821  }
822
823  if (!ClassDecl->getDestructor()) {
824    // C++ [class.dtor]p2:
825    //   If a class has no user-declared destructor, a destructor is
826    //   declared implicitly. An implicitly-declared destructor is an
827    //   inline public member of its class.
828    DeclarationName Name
829      = Context.DeclarationNames.getCXXDestructorName(ClassType);
830    CXXDestructorDecl *Destructor
831      = CXXDestructorDecl::Create(Context, ClassDecl,
832                                  ClassDecl->getLocation(), Name,
833                                  Context.getFunctionType(Context.VoidTy,
834                                                          0, 0, false, 0),
835                                  /*isInline=*/true,
836                                  /*isImplicitlyDeclared=*/true);
837    Destructor->setAccess(AS_public);
838    ClassDecl->setDestructor(Destructor);
839  }
840
841  // FIXME: Implicit copy assignment operator
842}
843
844void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
845  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
846  FieldCollector->FinishClass();
847  AddImplicitlyDeclaredMembersToClass(Rec);
848  PopDeclContext();
849
850  // Everything, including inline method definitions, have been parsed.
851  // Let the consumer know of the new TagDecl definition.
852  Consumer.HandleTagDeclDefinition(Rec);
853}
854
855/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
856/// the well-formednes of the constructor declarator @p D with type @p
857/// R. If there are any errors in the declarator, this routine will
858/// emit diagnostics and return true. Otherwise, it will return
859/// false. Either way, the type @p R will be updated to reflect a
860/// well-formed type for the constructor.
861bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
862                                      FunctionDecl::StorageClass& SC) {
863  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
864  bool isInvalid = false;
865
866  // C++ [class.ctor]p3:
867  //   A constructor shall not be virtual (10.3) or static (9.4). A
868  //   constructor can be invoked for a const, volatile or const
869  //   volatile object. A constructor shall not be declared const,
870  //   volatile, or const volatile (9.3.2).
871  if (isVirtual) {
872    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
873      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
874      << SourceRange(D.getIdentifierLoc());
875    isInvalid = true;
876  }
877  if (SC == FunctionDecl::Static) {
878    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
879      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
880      << SourceRange(D.getIdentifierLoc());
881    isInvalid = true;
882    SC = FunctionDecl::None;
883  }
884  if (D.getDeclSpec().hasTypeSpecifier()) {
885    // Constructors don't have return types, but the parser will
886    // happily parse something like:
887    //
888    //   class X {
889    //     float X(float);
890    //   };
891    //
892    // The return type will be eliminated later.
893    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
894      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
895      << SourceRange(D.getIdentifierLoc());
896  }
897  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
898    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
899    if (FTI.TypeQuals & QualType::Const)
900      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
901        << "const" << SourceRange(D.getIdentifierLoc());
902    if (FTI.TypeQuals & QualType::Volatile)
903      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
904        << "volatile" << SourceRange(D.getIdentifierLoc());
905    if (FTI.TypeQuals & QualType::Restrict)
906      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
907        << "restrict" << SourceRange(D.getIdentifierLoc());
908  }
909
910  // Rebuild the function type "R" without any type qualifiers (in
911  // case any of the errors above fired) and with "void" as the
912  // return type, since constructors don't have return types. We
913  // *always* have to do this, because GetTypeForDeclarator will
914  // put in a result type of "int" when none was specified.
915  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
916  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
917                              Proto->getNumArgs(),
918                              Proto->isVariadic(),
919                              0);
920
921  return isInvalid;
922}
923
924/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
925/// the well-formednes of the destructor declarator @p D with type @p
926/// R. If there are any errors in the declarator, this routine will
927/// emit diagnostics and return true. Otherwise, it will return
928/// false. Either way, the type @p R will be updated to reflect a
929/// well-formed type for the destructor.
930bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
931                                     FunctionDecl::StorageClass& SC) {
932  bool isInvalid = false;
933
934  // C++ [class.dtor]p1:
935  //   [...] A typedef-name that names a class is a class-name
936  //   (7.1.3); however, a typedef-name that names a class shall not
937  //   be used as the identifier in the declarator for a destructor
938  //   declaration.
939  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
940  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
941    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
942      << TypedefD->getName();
943    isInvalid = true;
944  }
945
946  // C++ [class.dtor]p2:
947  //   A destructor is used to destroy objects of its class type. A
948  //   destructor takes no parameters, and no return type can be
949  //   specified for it (not even void). The address of a destructor
950  //   shall not be taken. A destructor shall not be static. A
951  //   destructor can be invoked for a const, volatile or const
952  //   volatile object. A destructor shall not be declared const,
953  //   volatile or const volatile (9.3.2).
954  if (SC == FunctionDecl::Static) {
955    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
956      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
957      << SourceRange(D.getIdentifierLoc());
958    isInvalid = true;
959    SC = FunctionDecl::None;
960  }
961  if (D.getDeclSpec().hasTypeSpecifier()) {
962    // Destructors don't have return types, but the parser will
963    // happily parse something like:
964    //
965    //   class X {
966    //     float ~X();
967    //   };
968    //
969    // The return type will be eliminated later.
970    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
971      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
972      << SourceRange(D.getIdentifierLoc());
973  }
974  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
975    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
976    if (FTI.TypeQuals & QualType::Const)
977      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
978        << "const" << SourceRange(D.getIdentifierLoc());
979    if (FTI.TypeQuals & QualType::Volatile)
980      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
981        << "volatile" << SourceRange(D.getIdentifierLoc());
982    if (FTI.TypeQuals & QualType::Restrict)
983      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
984        << "restrict" << SourceRange(D.getIdentifierLoc());
985  }
986
987  // Make sure we don't have any parameters.
988  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
989    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
990
991    // Delete the parameters.
992    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
993    if (FTI.NumArgs) {
994      delete [] FTI.ArgInfo;
995      FTI.NumArgs = 0;
996      FTI.ArgInfo = 0;
997    }
998  }
999
1000  // Make sure the destructor isn't variadic.
1001  if (R->getAsFunctionTypeProto()->isVariadic())
1002    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1003
1004  // Rebuild the function type "R" without any type qualifiers or
1005  // parameters (in case any of the errors above fired) and with
1006  // "void" as the return type, since destructors don't have return
1007  // types. We *always* have to do this, because GetTypeForDeclarator
1008  // will put in a result type of "int" when none was specified.
1009  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1010
1011  return isInvalid;
1012}
1013
1014/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1015/// well-formednes of the conversion function declarator @p D with
1016/// type @p R. If there are any errors in the declarator, this routine
1017/// will emit diagnostics and return true. Otherwise, it will return
1018/// false. Either way, the type @p R will be updated to reflect a
1019/// well-formed type for the conversion operator.
1020bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1021                                     FunctionDecl::StorageClass& SC) {
1022  bool isInvalid = false;
1023
1024  // C++ [class.conv.fct]p1:
1025  //   Neither parameter types nor return type can be specified. The
1026  //   type of a conversion function (8.3.5) is “function taking no
1027  //   parameter returning conversion-type-id.”
1028  if (SC == FunctionDecl::Static) {
1029    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1030      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1031      << SourceRange(D.getIdentifierLoc());
1032    isInvalid = true;
1033    SC = FunctionDecl::None;
1034  }
1035  if (D.getDeclSpec().hasTypeSpecifier()) {
1036    // Conversion functions don't have return types, but the parser will
1037    // happily parse something like:
1038    //
1039    //   class X {
1040    //     float operator bool();
1041    //   };
1042    //
1043    // The return type will be changed later anyway.
1044    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1045      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1046      << SourceRange(D.getIdentifierLoc());
1047  }
1048
1049  // Make sure we don't have any parameters.
1050  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1051    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1052
1053    // Delete the parameters.
1054    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1055    if (FTI.NumArgs) {
1056      delete [] FTI.ArgInfo;
1057      FTI.NumArgs = 0;
1058      FTI.ArgInfo = 0;
1059    }
1060  }
1061
1062  // Make sure the conversion function isn't variadic.
1063  if (R->getAsFunctionTypeProto()->isVariadic())
1064    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1065
1066  // C++ [class.conv.fct]p4:
1067  //   The conversion-type-id shall not represent a function type nor
1068  //   an array type.
1069  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1070  if (ConvType->isArrayType()) {
1071    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1072    ConvType = Context.getPointerType(ConvType);
1073  } else if (ConvType->isFunctionType()) {
1074    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1075    ConvType = Context.getPointerType(ConvType);
1076  }
1077
1078  // Rebuild the function type "R" without any parameters (in case any
1079  // of the errors above fired) and with the conversion type as the
1080  // return type.
1081  R = Context.getFunctionType(ConvType, 0, 0, false,
1082                              R->getAsFunctionTypeProto()->getTypeQuals());
1083
1084  return isInvalid;
1085}
1086
1087/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
1088/// the declaration of the given C++ constructor ConDecl that was
1089/// built from declarator D. This routine is responsible for checking
1090/// that the newly-created constructor declaration is well-formed and
1091/// for recording it in the C++ class. Example:
1092///
1093/// @code
1094/// class X {
1095///   X(); // X::X() will be the ConDecl.
1096/// };
1097/// @endcode
1098Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
1099  assert(ConDecl && "Expected to receive a constructor declaration");
1100
1101  // Check default arguments on the constructor
1102  CheckCXXDefaultArguments(ConDecl);
1103
1104  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1105  if (!ClassDecl) {
1106    ConDecl->setInvalidDecl();
1107    return ConDecl;
1108  }
1109
1110  // Make sure this constructor is an overload of the existing
1111  // constructors.
1112  OverloadedFunctionDecl::function_iterator MatchedDecl;
1113  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
1114    Diag(ConDecl->getLocation(), diag::err_constructor_redeclared)
1115      << SourceRange(ConDecl->getLocation());
1116    Diag((*MatchedDecl)->getLocation(), diag::err_previous_declaration)
1117      << SourceRange((*MatchedDecl)->getLocation());
1118    ConDecl->setInvalidDecl();
1119    return ConDecl;
1120  }
1121
1122
1123  // C++ [class.copy]p3:
1124  //   A declaration of a constructor for a class X is ill-formed if
1125  //   its first parameter is of type (optionally cv-qualified) X and
1126  //   either there are no other parameters or else all other
1127  //   parameters have default arguments.
1128  if ((ConDecl->getNumParams() == 1) ||
1129      (ConDecl->getNumParams() > 1 &&
1130       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
1131    QualType ParamType = ConDecl->getParamDecl(0)->getType();
1132    QualType ClassTy = Context.getTagDeclType(
1133                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
1134    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1135      Diag(ConDecl->getLocation(), diag::err_constructor_byvalue_arg)
1136        << SourceRange(ConDecl->getParamDecl(0)->getLocation());
1137      ConDecl->setInvalidDecl();
1138      return ConDecl;
1139    }
1140  }
1141
1142  // Add this constructor to the set of constructors of the current
1143  // class.
1144  ClassDecl->addConstructor(Context, ConDecl);
1145  return (DeclTy *)ConDecl;
1146}
1147
1148/// ActOnDestructorDeclarator - Called by ActOnDeclarator to complete
1149/// the declaration of the given C++ @p Destructor. This routine is
1150/// responsible for recording the destructor in the C++ class, if
1151/// possible.
1152Sema::DeclTy *Sema::ActOnDestructorDeclarator(CXXDestructorDecl *Destructor) {
1153  assert(Destructor && "Expected to receive a destructor declaration");
1154
1155  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1156
1157  // Make sure we aren't redeclaring the destructor.
1158  if (CXXDestructorDecl *PrevDestructor = ClassDecl->getDestructor()) {
1159    Diag(Destructor->getLocation(), diag::err_destructor_redeclared);
1160    Diag(PrevDestructor->getLocation(),
1161         PrevDestructor->isThisDeclarationADefinition()?
1162             diag::err_previous_definition
1163           : diag::err_previous_declaration);
1164    Destructor->setInvalidDecl();
1165    return Destructor;
1166  }
1167
1168  ClassDecl->setDestructor(Destructor);
1169  return (DeclTy *)Destructor;
1170}
1171
1172/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1173/// the declaration of the given C++ conversion function. This routine
1174/// is responsible for recording the conversion function in the C++
1175/// class, if possible.
1176Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1177  assert(Conversion && "Expected to receive a conversion function declaration");
1178
1179  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1180
1181  // Make sure we aren't redeclaring the conversion function.
1182  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1183  OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1184  for (OverloadedFunctionDecl::function_iterator Func
1185         = Conversions->function_begin();
1186       Func != Conversions->function_end(); ++Func) {
1187    CXXConversionDecl *OtherConv = cast<CXXConversionDecl>(*Func);
1188    if (ConvType == Context.getCanonicalType(OtherConv->getConversionType())) {
1189      Diag(Conversion->getLocation(), diag::err_conv_function_redeclared);
1190      Diag(OtherConv->getLocation(),
1191           OtherConv->isThisDeclarationADefinition()?
1192              diag::err_previous_definition
1193            : diag::err_previous_declaration);
1194      Conversion->setInvalidDecl();
1195      return (DeclTy *)Conversion;
1196    }
1197  }
1198
1199  // C++ [class.conv.fct]p1:
1200  //   [...] A conversion function is never used to convert a
1201  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1202  //   same object type (or a reference to it), to a (possibly
1203  //   cv-qualified) base class of that type (or a reference to it),
1204  //   or to (possibly cv-qualified) void.
1205  // FIXME: Suppress this warning if the conversion function ends up
1206  // being a virtual function that overrides a virtual function in a
1207  // base class.
1208  QualType ClassType
1209    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1210  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1211    ConvType = ConvTypeRef->getPointeeType();
1212  if (ConvType->isRecordType()) {
1213    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1214    if (ConvType == ClassType)
1215      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used,
1216           ClassType.getAsString());
1217    else if (IsDerivedFrom(ClassType, ConvType))
1218      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used,
1219           ClassType.getAsString(),
1220           ConvType.getAsString());
1221  } else if (ConvType->isVoidType()) {
1222    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used,
1223         ClassType.getAsString(), ConvType.getAsString());
1224  }
1225
1226  ClassDecl->addConversionFunction(Context, Conversion);
1227
1228  return (DeclTy *)Conversion;
1229}
1230
1231//===----------------------------------------------------------------------===//
1232// Namespace Handling
1233//===----------------------------------------------------------------------===//
1234
1235/// ActOnStartNamespaceDef - This is called at the start of a namespace
1236/// definition.
1237Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1238                                           SourceLocation IdentLoc,
1239                                           IdentifierInfo *II,
1240                                           SourceLocation LBrace) {
1241  NamespaceDecl *Namespc =
1242      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1243  Namespc->setLBracLoc(LBrace);
1244
1245  Scope *DeclRegionScope = NamespcScope->getParent();
1246
1247  if (II) {
1248    // C++ [namespace.def]p2:
1249    // The identifier in an original-namespace-definition shall not have been
1250    // previously defined in the declarative region in which the
1251    // original-namespace-definition appears. The identifier in an
1252    // original-namespace-definition is the name of the namespace. Subsequently
1253    // in that declarative region, it is treated as an original-namespace-name.
1254
1255    Decl *PrevDecl =
1256        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1257                   /*enableLazyBuiltinCreation=*/false);
1258
1259    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
1260      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
1261        // This is an extended namespace definition.
1262        // Attach this namespace decl to the chain of extended namespace
1263        // definitions.
1264        NamespaceDecl *NextNS = OrigNS;
1265        while (NextNS->getNextNamespace())
1266          NextNS = NextNS->getNextNamespace();
1267
1268        NextNS->setNextNamespace(Namespc);
1269        Namespc->setOriginalNamespace(OrigNS);
1270
1271        // We won't add this decl to the current scope. We want the namespace
1272        // name to return the original namespace decl during a name lookup.
1273      } else {
1274        // This is an invalid name redefinition.
1275        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
1276          Namespc->getName());
1277        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1278        Namespc->setInvalidDecl();
1279        // Continue on to push Namespc as current DeclContext and return it.
1280      }
1281    } else {
1282      // This namespace name is declared for the first time.
1283      PushOnScopeChains(Namespc, DeclRegionScope);
1284    }
1285  }
1286  else {
1287    // FIXME: Handle anonymous namespaces
1288  }
1289
1290  // Although we could have an invalid decl (i.e. the namespace name is a
1291  // redefinition), push it as current DeclContext and try to continue parsing.
1292  PushDeclContext(Namespc->getOriginalNamespace());
1293  return Namespc;
1294}
1295
1296/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1297/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1298void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1299  Decl *Dcl = static_cast<Decl *>(D);
1300  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1301  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1302  Namespc->setRBracLoc(RBrace);
1303  PopDeclContext();
1304}
1305
1306
1307/// AddCXXDirectInitializerToDecl - This action is called immediately after
1308/// ActOnDeclarator, when a C++ direct initializer is present.
1309/// e.g: "int x(1);"
1310void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1311                                         ExprTy **ExprTys, unsigned NumExprs,
1312                                         SourceLocation *CommaLocs,
1313                                         SourceLocation RParenLoc) {
1314  assert(NumExprs != 0 && ExprTys && "missing expressions");
1315  Decl *RealDecl = static_cast<Decl *>(Dcl);
1316
1317  // If there is no declaration, there was an error parsing it.  Just ignore
1318  // the initializer.
1319  if (RealDecl == 0) {
1320    for (unsigned i = 0; i != NumExprs; ++i)
1321      delete static_cast<Expr *>(ExprTys[i]);
1322    return;
1323  }
1324
1325  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1326  if (!VDecl) {
1327    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1328    RealDecl->setInvalidDecl();
1329    return;
1330  }
1331
1332  // We will treat direct-initialization as a copy-initialization:
1333  //    int x(1);  -as-> int x = 1;
1334  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1335  //
1336  // Clients that want to distinguish between the two forms, can check for
1337  // direct initializer using VarDecl::hasCXXDirectInitializer().
1338  // A major benefit is that clients that don't particularly care about which
1339  // exactly form was it (like the CodeGen) can handle both cases without
1340  // special case code.
1341
1342  // C++ 8.5p11:
1343  // The form of initialization (using parentheses or '=') is generally
1344  // insignificant, but does matter when the entity being initialized has a
1345  // class type.
1346  QualType DeclInitType = VDecl->getType();
1347  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1348    DeclInitType = Array->getElementType();
1349
1350  if (VDecl->getType()->isRecordType()) {
1351    CXXConstructorDecl *Constructor
1352      = PerformInitializationByConstructor(DeclInitType,
1353                                           (Expr **)ExprTys, NumExprs,
1354                                           VDecl->getLocation(),
1355                                           SourceRange(VDecl->getLocation(),
1356                                                       RParenLoc),
1357                                           VDecl->getName(),
1358                                           IK_Direct);
1359    if (!Constructor) {
1360      RealDecl->setInvalidDecl();
1361    }
1362
1363    // Let clients know that initialization was done with a direct
1364    // initializer.
1365    VDecl->setCXXDirectInitializer(true);
1366
1367    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1368    // the initializer.
1369    return;
1370  }
1371
1372  if (NumExprs > 1) {
1373    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1374      << SourceRange(VDecl->getLocation(), RParenLoc);
1375    RealDecl->setInvalidDecl();
1376    return;
1377  }
1378
1379  // Let clients know that initialization was done with a direct initializer.
1380  VDecl->setCXXDirectInitializer(true);
1381
1382  assert(NumExprs == 1 && "Expected 1 expression");
1383  // Set the init expression, handles conversions.
1384  AddInitializerToDecl(Dcl, ExprTys[0]);
1385}
1386
1387/// PerformInitializationByConstructor - Perform initialization by
1388/// constructor (C++ [dcl.init]p14), which may occur as part of
1389/// direct-initialization or copy-initialization. We are initializing
1390/// an object of type @p ClassType with the given arguments @p
1391/// Args. @p Loc is the location in the source code where the
1392/// initializer occurs (e.g., a declaration, member initializer,
1393/// functional cast, etc.) while @p Range covers the whole
1394/// initialization. @p InitEntity is the entity being initialized,
1395/// which may by the name of a declaration or a type. @p Kind is the
1396/// kind of initialization we're performing, which affects whether
1397/// explicit constructors will be considered. When successful, returns
1398/// the constructor that will be used to perform the initialization;
1399/// when the initialization fails, emits a diagnostic and returns
1400/// null.
1401CXXConstructorDecl *
1402Sema::PerformInitializationByConstructor(QualType ClassType,
1403                                         Expr **Args, unsigned NumArgs,
1404                                         SourceLocation Loc, SourceRange Range,
1405                                         std::string InitEntity,
1406                                         InitializationKind Kind) {
1407  const RecordType *ClassRec = ClassType->getAsRecordType();
1408  assert(ClassRec && "Can only initialize a class type here");
1409
1410  // C++ [dcl.init]p14:
1411  //
1412  //   If the initialization is direct-initialization, or if it is
1413  //   copy-initialization where the cv-unqualified version of the
1414  //   source type is the same class as, or a derived class of, the
1415  //   class of the destination, constructors are considered. The
1416  //   applicable constructors are enumerated (13.3.1.3), and the
1417  //   best one is chosen through overload resolution (13.3). The
1418  //   constructor so selected is called to initialize the object,
1419  //   with the initializer expression(s) as its argument(s). If no
1420  //   constructor applies, or the overload resolution is ambiguous,
1421  //   the initialization is ill-formed.
1422  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1423  OverloadCandidateSet CandidateSet;
1424
1425  // Add constructors to the overload set.
1426  OverloadedFunctionDecl *Constructors
1427    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1428  for (OverloadedFunctionDecl::function_iterator Con
1429         = Constructors->function_begin();
1430       Con != Constructors->function_end(); ++Con) {
1431    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1432    if ((Kind == IK_Direct) ||
1433        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1434        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1435      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1436  }
1437
1438  OverloadCandidateSet::iterator Best;
1439  switch (BestViableFunction(CandidateSet, Best)) {
1440  case OR_Success:
1441    // We found a constructor. Return it.
1442    return cast<CXXConstructorDecl>(Best->Function);
1443
1444  case OR_No_Viable_Function:
1445    if (CandidateSet.empty())
1446      Diag(Loc, diag::err_ovl_no_viable_function_in_init,
1447           InitEntity, Range);
1448    else {
1449      Diag(Loc, diag::err_ovl_no_viable_function_in_init_with_cands,
1450           InitEntity, Range);
1451      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1452    }
1453    return 0;
1454
1455  case OR_Ambiguous:
1456    Diag(Loc, diag::err_ovl_ambiguous_init,
1457         InitEntity, Range);
1458    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1459    return 0;
1460  }
1461
1462  return 0;
1463}
1464
1465/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1466/// determine whether they are reference-related,
1467/// reference-compatible, reference-compatible with added
1468/// qualification, or incompatible, for use in C++ initialization by
1469/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1470/// type, and the first type (T1) is the pointee type of the reference
1471/// type being initialized.
1472Sema::ReferenceCompareResult
1473Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1474                                   bool& DerivedToBase) {
1475  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1476  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1477
1478  T1 = Context.getCanonicalType(T1);
1479  T2 = Context.getCanonicalType(T2);
1480  QualType UnqualT1 = T1.getUnqualifiedType();
1481  QualType UnqualT2 = T2.getUnqualifiedType();
1482
1483  // C++ [dcl.init.ref]p4:
1484  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1485  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1486  //   T1 is a base class of T2.
1487  if (UnqualT1 == UnqualT2)
1488    DerivedToBase = false;
1489  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1490    DerivedToBase = true;
1491  else
1492    return Ref_Incompatible;
1493
1494  // At this point, we know that T1 and T2 are reference-related (at
1495  // least).
1496
1497  // C++ [dcl.init.ref]p4:
1498  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1499  //   reference-related to T2 and cv1 is the same cv-qualification
1500  //   as, or greater cv-qualification than, cv2. For purposes of
1501  //   overload resolution, cases for which cv1 is greater
1502  //   cv-qualification than cv2 are identified as
1503  //   reference-compatible with added qualification (see 13.3.3.2).
1504  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1505    return Ref_Compatible;
1506  else if (T1.isMoreQualifiedThan(T2))
1507    return Ref_Compatible_With_Added_Qualification;
1508  else
1509    return Ref_Related;
1510}
1511
1512/// CheckReferenceInit - Check the initialization of a reference
1513/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1514/// the initializer (either a simple initializer or an initializer
1515/// list), and DeclType is the type of the declaration. When ICS is
1516/// non-null, this routine will compute the implicit conversion
1517/// sequence according to C++ [over.ics.ref] and will not produce any
1518/// diagnostics; when ICS is null, it will emit diagnostics when any
1519/// errors are found. Either way, a return value of true indicates
1520/// that there was a failure, a return value of false indicates that
1521/// the reference initialization succeeded.
1522///
1523/// When @p SuppressUserConversions, user-defined conversions are
1524/// suppressed.
1525bool
1526Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1527                         ImplicitConversionSequence *ICS,
1528                         bool SuppressUserConversions) {
1529  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1530
1531  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1532  QualType T2 = Init->getType();
1533
1534  // If the initializer is the address of an overloaded function, try
1535  // to resolve the overloaded function. If all goes well, T2 is the
1536  // type of the resulting function.
1537  if (T2->isOverloadType()) {
1538    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1539                                                          ICS != 0);
1540    if (Fn) {
1541      // Since we're performing this reference-initialization for
1542      // real, update the initializer with the resulting function.
1543      if (!ICS)
1544        FixOverloadedFunctionReference(Init, Fn);
1545
1546      T2 = Fn->getType();
1547    }
1548  }
1549
1550  // Compute some basic properties of the types and the initializer.
1551  bool DerivedToBase = false;
1552  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1553  ReferenceCompareResult RefRelationship
1554    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1555
1556  // Most paths end in a failed conversion.
1557  if (ICS)
1558    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1559
1560  // C++ [dcl.init.ref]p5:
1561  //   A reference to type “cv1 T1” is initialized by an expression
1562  //   of type “cv2 T2” as follows:
1563
1564  //     -- If the initializer expression
1565
1566  bool BindsDirectly = false;
1567  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1568  //          reference-compatible with “cv2 T2,” or
1569  //
1570  // Note that the bit-field check is skipped if we are just computing
1571  // the implicit conversion sequence (C++ [over.best.ics]p2).
1572  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1573      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1574    BindsDirectly = true;
1575
1576    if (ICS) {
1577      // C++ [over.ics.ref]p1:
1578      //   When a parameter of reference type binds directly (8.5.3)
1579      //   to an argument expression, the implicit conversion sequence
1580      //   is the identity conversion, unless the argument expression
1581      //   has a type that is a derived class of the parameter type,
1582      //   in which case the implicit conversion sequence is a
1583      //   derived-to-base Conversion (13.3.3.1).
1584      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1585      ICS->Standard.First = ICK_Identity;
1586      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1587      ICS->Standard.Third = ICK_Identity;
1588      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1589      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1590      ICS->Standard.ReferenceBinding = true;
1591      ICS->Standard.DirectBinding = true;
1592
1593      // Nothing more to do: the inaccessibility/ambiguity check for
1594      // derived-to-base conversions is suppressed when we're
1595      // computing the implicit conversion sequence (C++
1596      // [over.best.ics]p2).
1597      return false;
1598    } else {
1599      // Perform the conversion.
1600      // FIXME: Binding to a subobject of the lvalue is going to require
1601      // more AST annotation than this.
1602      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1603    }
1604  }
1605
1606  //       -- has a class type (i.e., T2 is a class type) and can be
1607  //          implicitly converted to an lvalue of type “cv3 T3,”
1608  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1609  //          92) (this conversion is selected by enumerating the
1610  //          applicable conversion functions (13.3.1.6) and choosing
1611  //          the best one through overload resolution (13.3)),
1612  if (!SuppressUserConversions && T2->isRecordType()) {
1613    // FIXME: Look for conversions in base classes!
1614    CXXRecordDecl *T2RecordDecl
1615      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1616
1617    OverloadCandidateSet CandidateSet;
1618    OverloadedFunctionDecl *Conversions
1619      = T2RecordDecl->getConversionFunctions();
1620    for (OverloadedFunctionDecl::function_iterator Func
1621           = Conversions->function_begin();
1622         Func != Conversions->function_end(); ++Func) {
1623      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1624
1625      // If the conversion function doesn't return a reference type,
1626      // it can't be considered for this conversion.
1627      // FIXME: This will change when we support rvalue references.
1628      if (Conv->getConversionType()->isReferenceType())
1629        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1630    }
1631
1632    OverloadCandidateSet::iterator Best;
1633    switch (BestViableFunction(CandidateSet, Best)) {
1634    case OR_Success:
1635      // This is a direct binding.
1636      BindsDirectly = true;
1637
1638      if (ICS) {
1639        // C++ [over.ics.ref]p1:
1640        //
1641        //   [...] If the parameter binds directly to the result of
1642        //   applying a conversion function to the argument
1643        //   expression, the implicit conversion sequence is a
1644        //   user-defined conversion sequence (13.3.3.1.2), with the
1645        //   second standard conversion sequence either an identity
1646        //   conversion or, if the conversion function returns an
1647        //   entity of a type that is a derived class of the parameter
1648        //   type, a derived-to-base Conversion.
1649        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1650        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1651        ICS->UserDefined.After = Best->FinalConversion;
1652        ICS->UserDefined.ConversionFunction = Best->Function;
1653        assert(ICS->UserDefined.After.ReferenceBinding &&
1654               ICS->UserDefined.After.DirectBinding &&
1655               "Expected a direct reference binding!");
1656        return false;
1657      } else {
1658        // Perform the conversion.
1659        // FIXME: Binding to a subobject of the lvalue is going to require
1660        // more AST annotation than this.
1661        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1662      }
1663      break;
1664
1665    case OR_Ambiguous:
1666      assert(false && "Ambiguous reference binding conversions not implemented.");
1667      return true;
1668
1669    case OR_No_Viable_Function:
1670      // There was no suitable conversion; continue with other checks.
1671      break;
1672    }
1673  }
1674
1675  if (BindsDirectly) {
1676    // C++ [dcl.init.ref]p4:
1677    //   [...] In all cases where the reference-related or
1678    //   reference-compatible relationship of two types is used to
1679    //   establish the validity of a reference binding, and T1 is a
1680    //   base class of T2, a program that necessitates such a binding
1681    //   is ill-formed if T1 is an inaccessible (clause 11) or
1682    //   ambiguous (10.2) base class of T2.
1683    //
1684    // Note that we only check this condition when we're allowed to
1685    // complain about errors, because we should not be checking for
1686    // ambiguity (or inaccessibility) unless the reference binding
1687    // actually happens.
1688    if (DerivedToBase)
1689      return CheckDerivedToBaseConversion(T2, T1,
1690                                          Init->getSourceRange().getBegin(),
1691                                          Init->getSourceRange());
1692    else
1693      return false;
1694  }
1695
1696  //     -- Otherwise, the reference shall be to a non-volatile const
1697  //        type (i.e., cv1 shall be const).
1698  if (T1.getCVRQualifiers() != QualType::Const) {
1699    if (!ICS)
1700      Diag(Init->getSourceRange().getBegin(),
1701           diag::err_not_reference_to_const_init)
1702        <<  T1.getAsString()
1703        << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1704        <<  T2.getAsString() << Init->getSourceRange();
1705    return true;
1706  }
1707
1708  //       -- If the initializer expression is an rvalue, with T2 a
1709  //          class type, and “cv1 T1” is reference-compatible with
1710  //          “cv2 T2,” the reference is bound in one of the
1711  //          following ways (the choice is implementation-defined):
1712  //
1713  //          -- The reference is bound to the object represented by
1714  //             the rvalue (see 3.10) or to a sub-object within that
1715  //             object.
1716  //
1717  //          -- A temporary of type “cv1 T2” [sic] is created, and
1718  //             a constructor is called to copy the entire rvalue
1719  //             object into the temporary. The reference is bound to
1720  //             the temporary or to a sub-object within the
1721  //             temporary.
1722  //
1723  //
1724  //          The constructor that would be used to make the copy
1725  //          shall be callable whether or not the copy is actually
1726  //          done.
1727  //
1728  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1729  // freedom, so we will always take the first option and never build
1730  // a temporary in this case. FIXME: We will, however, have to check
1731  // for the presence of a copy constructor in C++98/03 mode.
1732  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1733      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1734    if (ICS) {
1735      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1736      ICS->Standard.First = ICK_Identity;
1737      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1738      ICS->Standard.Third = ICK_Identity;
1739      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1740      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1741      ICS->Standard.ReferenceBinding = true;
1742      ICS->Standard.DirectBinding = false;
1743    } else {
1744      // FIXME: Binding to a subobject of the rvalue is going to require
1745      // more AST annotation than this.
1746      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1747    }
1748    return false;
1749  }
1750
1751  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1752  //          initialized from the initializer expression using the
1753  //          rules for a non-reference copy initialization (8.5). The
1754  //          reference is then bound to the temporary. If T1 is
1755  //          reference-related to T2, cv1 must be the same
1756  //          cv-qualification as, or greater cv-qualification than,
1757  //          cv2; otherwise, the program is ill-formed.
1758  if (RefRelationship == Ref_Related) {
1759    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1760    // we would be reference-compatible or reference-compatible with
1761    // added qualification. But that wasn't the case, so the reference
1762    // initialization fails.
1763    if (!ICS)
1764      Diag(Init->getSourceRange().getBegin(),
1765           diag::err_reference_init_drops_quals)
1766        << T1.getAsString()
1767        << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1768        << T2.getAsString() << Init->getSourceRange();
1769    return true;
1770  }
1771
1772  // Actually try to convert the initializer to T1.
1773  if (ICS) {
1774    /// C++ [over.ics.ref]p2:
1775    ///
1776    ///   When a parameter of reference type is not bound directly to
1777    ///   an argument expression, the conversion sequence is the one
1778    ///   required to convert the argument expression to the
1779    ///   underlying type of the reference according to
1780    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1781    ///   to copy-initializing a temporary of the underlying type with
1782    ///   the argument expression. Any difference in top-level
1783    ///   cv-qualification is subsumed by the initialization itself
1784    ///   and does not constitute a conversion.
1785    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1786    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1787  } else {
1788    return PerformImplicitConversion(Init, T1);
1789  }
1790}
1791
1792/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1793/// of this overloaded operator is well-formed. If so, returns false;
1794/// otherwise, emits appropriate diagnostics and returns true.
1795bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1796  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1797         "Expected an overloaded operator declaration");
1798
1799  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1800
1801  // C++ [over.oper]p5:
1802  //   The allocation and deallocation functions, operator new,
1803  //   operator new[], operator delete and operator delete[], are
1804  //   described completely in 3.7.3. The attributes and restrictions
1805  //   found in the rest of this subclause do not apply to them unless
1806  //   explicitly stated in 3.7.3.
1807  // FIXME: Write a separate routine for checking this. For now, just
1808  // allow it.
1809  if (Op == OO_New || Op == OO_Array_New ||
1810      Op == OO_Delete || Op == OO_Array_Delete)
1811    return false;
1812
1813  // C++ [over.oper]p6:
1814  //   An operator function shall either be a non-static member
1815  //   function or be a non-member function and have at least one
1816  //   parameter whose type is a class, a reference to a class, an
1817  //   enumeration, or a reference to an enumeration.
1818  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1819    if (MethodDecl->isStatic())
1820      return Diag(FnDecl->getLocation(),
1821                  diag::err_operator_overload_static,
1822                  FnDecl->getName());
1823  } else {
1824    bool ClassOrEnumParam = false;
1825    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
1826                                   ParamEnd = FnDecl->param_end();
1827         Param != ParamEnd; ++Param) {
1828      QualType ParamType = (*Param)->getType().getNonReferenceType();
1829      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1830        ClassOrEnumParam = true;
1831        break;
1832      }
1833    }
1834
1835    if (!ClassOrEnumParam)
1836      return Diag(FnDecl->getLocation(),
1837                  diag::err_operator_overload_needs_class_or_enum,
1838                  FnDecl->getName());
1839  }
1840
1841  // C++ [over.oper]p8:
1842  //   An operator function cannot have default arguments (8.3.6),
1843  //   except where explicitly stated below.
1844  //
1845  // Only the function-call operator allows default arguments
1846  // (C++ [over.call]p1).
1847  if (Op != OO_Call) {
1848    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1849         Param != FnDecl->param_end(); ++Param) {
1850      if (Expr *DefArg = (*Param)->getDefaultArg())
1851        return Diag((*Param)->getLocation(),
1852                    diag::err_operator_overload_default_arg,
1853                    FnDecl->getName(), DefArg->getSourceRange());
1854    }
1855  }
1856
1857  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
1858    { false, false, false }
1859#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1860    , { Unary, Binary, MemberOnly }
1861#include "clang/Basic/OperatorKinds.def"
1862  };
1863
1864  bool CanBeUnaryOperator = OperatorUses[Op][0];
1865  bool CanBeBinaryOperator = OperatorUses[Op][1];
1866  bool MustBeMemberOperator = OperatorUses[Op][2];
1867
1868  // C++ [over.oper]p8:
1869  //   [...] Operator functions cannot have more or fewer parameters
1870  //   than the number required for the corresponding operator, as
1871  //   described in the rest of this subclause.
1872  unsigned NumParams = FnDecl->getNumParams()
1873                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
1874  if (Op != OO_Call &&
1875      ((NumParams == 1 && !CanBeUnaryOperator) ||
1876       (NumParams == 2 && !CanBeBinaryOperator) ||
1877       (NumParams < 1) || (NumParams > 2))) {
1878    // We have the wrong number of parameters.
1879    std::string NumParamsStr = llvm::utostr(NumParams);
1880
1881    diag::kind DK;
1882
1883    if (CanBeUnaryOperator && CanBeBinaryOperator) {
1884      if (NumParams == 1)
1885        DK = diag::err_operator_overload_must_be_unary_or_binary;
1886      else
1887        DK = diag::err_operator_overload_must_be_unary_or_binary;
1888    } else if (CanBeUnaryOperator) {
1889      if (NumParams == 1)
1890        DK = diag::err_operator_overload_must_be_unary;
1891      else
1892        DK = diag::err_operator_overload_must_be_unary_plural;
1893    } else if (CanBeBinaryOperator) {
1894      if (NumParams == 1)
1895        DK = diag::err_operator_overload_must_be_binary;
1896      else
1897        DK = diag::err_operator_overload_must_be_binary_plural;
1898    } else {
1899      assert(false && "All non-call overloaded operators are unary or binary!");
1900    }
1901
1902    return Diag(FnDecl->getLocation(), DK,
1903                FnDecl->getName(), NumParamsStr);
1904  }
1905
1906  // Overloaded operators other than operator() cannot be variadic.
1907  if (Op != OO_Call &&
1908      FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1909    return Diag(FnDecl->getLocation(),
1910                diag::err_operator_overload_variadic,
1911                FnDecl->getName());
1912  }
1913
1914  // Some operators must be non-static member functions.
1915  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
1916    return Diag(FnDecl->getLocation(),
1917                diag::err_operator_overload_must_be_member,
1918                FnDecl->getName());
1919  }
1920
1921  // C++ [over.inc]p1:
1922  //   The user-defined function called operator++ implements the
1923  //   prefix and postfix ++ operator. If this function is a member
1924  //   function with no parameters, or a non-member function with one
1925  //   parameter of class or enumeration type, it defines the prefix
1926  //   increment operator ++ for objects of that type. If the function
1927  //   is a member function with one parameter (which shall be of type
1928  //   int) or a non-member function with two parameters (the second
1929  //   of which shall be of type int), it defines the postfix
1930  //   increment operator ++ for objects of that type.
1931  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1932    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1933    bool ParamIsInt = false;
1934    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1935      ParamIsInt = BT->getKind() == BuiltinType::Int;
1936
1937    if (!ParamIsInt) {
1938      diag::kind DK;
1939      if (Op == OO_PlusPlus)
1940        DK = diag::err_operator_overload_post_inc_must_be_int;
1941      else
1942        DK = diag::err_operator_overload_post_dec_must_be_int;
1943      return Diag(LastParam->getLocation(), DK,
1944                  Context.getCanonicalType(LastParam->getType()).getAsString());
1945    }
1946  }
1947
1948  return false;
1949}
1950