SemaOverload.cpp revision 52ab92bee00eb14e38dcbefc091d6b9aa5157506
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  } else if (FromType->isArrayType()) {
513    // Array-to-pointer conversion (C++ 4.2)
514    SCS.First = ICK_Array_To_Pointer;
515
516    // An lvalue or rvalue of type "array of N T" or "array of unknown
517    // bound of T" can be converted to an rvalue of type "pointer to
518    // T" (C++ 4.2p1).
519    FromType = Context.getArrayDecayedType(FromType);
520
521    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
522      // This conversion is deprecated. (C++ D.4).
523      SCS.Deprecated = true;
524
525      // For the purpose of ranking in overload resolution
526      // (13.3.3.1.1), this conversion is considered an
527      // array-to-pointer conversion followed by a qualification
528      // conversion (4.4). (C++ 4.2p2)
529      SCS.Second = ICK_Identity;
530      SCS.Third = ICK_Qualification;
531      SCS.ToTypePtr = ToType.getAsOpaquePtr();
532      return true;
533    }
534  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
535    // Function-to-pointer conversion (C++ 4.3).
536    SCS.First = ICK_Function_To_Pointer;
537
538    // An lvalue of function type T can be converted to an rvalue of
539    // type "pointer to T." The result is a pointer to the
540    // function. (C++ 4.3p1).
541    FromType = Context.getPointerType(FromType);
542  } else if (FunctionDecl *Fn
543             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
544    // Address of overloaded function (C++ [over.over]).
545    SCS.First = ICK_Function_To_Pointer;
546
547    // We were able to resolve the address of the overloaded function,
548    // so we can convert to the type of that function.
549    FromType = Fn->getType();
550    if (ToType->isLValueReferenceType())
551      FromType = Context.getLValueReferenceType(FromType);
552    else if (ToType->isRValueReferenceType())
553      FromType = Context.getRValueReferenceType(FromType);
554    else if (ToType->isMemberPointerType()) {
555      // Resolve address only succeeds if both sides are member pointers,
556      // but it doesn't have to be the same class. See DR 247.
557      // Note that this means that the type of &Derived::fn can be
558      // Ret (Base::*)(Args) if the fn overload actually found is from the
559      // base class, even if it was brought into the derived class via a
560      // using declaration. The standard isn't clear on this issue at all.
561      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
562      FromType = Context.getMemberPointerType(FromType,
563                    Context.getTypeDeclType(M->getParent()).getTypePtr());
564    } else
565      FromType = Context.getPointerType(FromType);
566  } else {
567    // We don't require any conversions for the first step.
568    SCS.First = ICK_Identity;
569  }
570
571  // The second conversion can be an integral promotion, floating
572  // point promotion, integral conversion, floating point conversion,
573  // floating-integral conversion, pointer conversion,
574  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
575  // For overloading in C, this can also be a "compatible-type"
576  // conversion.
577  bool IncompatibleObjC = false;
578  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
579    // The unqualified versions of the types are the same: there's no
580    // conversion to do.
581    SCS.Second = ICK_Identity;
582  } else if (IsIntegralPromotion(From, FromType, ToType)) {
583    // Integral promotion (C++ 4.5).
584    SCS.Second = ICK_Integral_Promotion;
585    FromType = ToType.getUnqualifiedType();
586  } else if (IsFloatingPointPromotion(FromType, ToType)) {
587    // Floating point promotion (C++ 4.6).
588    SCS.Second = ICK_Floating_Promotion;
589    FromType = ToType.getUnqualifiedType();
590  } else if (IsComplexPromotion(FromType, ToType)) {
591    // Complex promotion (Clang extension)
592    SCS.Second = ICK_Complex_Promotion;
593    FromType = ToType.getUnqualifiedType();
594  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
595           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
596    // Integral conversions (C++ 4.7).
597    // FIXME: isIntegralType shouldn't be true for enums in C++.
598    SCS.Second = ICK_Integral_Conversion;
599    FromType = ToType.getUnqualifiedType();
600  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
601    // Floating point conversions (C++ 4.8).
602    SCS.Second = ICK_Floating_Conversion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (FromType->isComplexType() && ToType->isComplexType()) {
605    // Complex conversions (C99 6.3.1.6)
606    SCS.Second = ICK_Complex_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  } else if ((FromType->isFloatingType() &&
609              ToType->isIntegralType() && (!ToType->isBooleanType() &&
610                                           !ToType->isEnumeralType())) ||
611             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
612              ToType->isFloatingType())) {
613    // Floating-integral conversions (C++ 4.9).
614    // FIXME: isIntegralType shouldn't be true for enums in C++.
615    SCS.Second = ICK_Floating_Integral;
616    FromType = ToType.getUnqualifiedType();
617  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
618             (ToType->isComplexType() && FromType->isArithmeticType())) {
619    // Complex-real conversions (C99 6.3.1.7)
620    SCS.Second = ICK_Complex_Real;
621    FromType = ToType.getUnqualifiedType();
622  } else if (IsPointerConversion(From, FromType, ToType, FromType,
623                                 IncompatibleObjC)) {
624    // Pointer conversions (C++ 4.10).
625    SCS.Second = ICK_Pointer_Conversion;
626    SCS.IncompatibleObjC = IncompatibleObjC;
627  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
628    // Pointer to member conversions (4.11).
629    SCS.Second = ICK_Pointer_Member;
630  } else if (ToType->isBooleanType() &&
631             (FromType->isArithmeticType() ||
632              FromType->isEnumeralType() ||
633              FromType->isPointerType() ||
634              FromType->isBlockPointerType() ||
635              FromType->isMemberPointerType() ||
636              FromType->isNullPtrType())) {
637    // Boolean conversions (C++ 4.12).
638    SCS.Second = ICK_Boolean_Conversion;
639    FromType = Context.BoolTy;
640  } else if (!getLangOptions().CPlusPlus &&
641             Context.typesAreCompatible(ToType, FromType)) {
642    // Compatible conversions (Clang extension for C function overloading)
643    SCS.Second = ICK_Compatible_Conversion;
644  } else {
645    // No second conversion required.
646    SCS.Second = ICK_Identity;
647  }
648
649  QualType CanonFrom;
650  QualType CanonTo;
651  // The third conversion can be a qualification conversion (C++ 4p1).
652  if (IsQualificationConversion(FromType, ToType)) {
653    SCS.Third = ICK_Qualification;
654    FromType = ToType;
655    CanonFrom = Context.getCanonicalType(FromType);
656    CanonTo = Context.getCanonicalType(ToType);
657  } else {
658    // No conversion required
659    SCS.Third = ICK_Identity;
660
661    // C++ [over.best.ics]p6:
662    //   [...] Any difference in top-level cv-qualification is
663    //   subsumed by the initialization itself and does not constitute
664    //   a conversion. [...]
665    CanonFrom = Context.getCanonicalType(FromType);
666    CanonTo = Context.getCanonicalType(ToType);
667    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
668        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
669      FromType = ToType;
670      CanonFrom = CanonTo;
671    }
672  }
673
674  // If we have not converted the argument type to the parameter type,
675  // this is a bad conversion sequence.
676  if (CanonFrom != CanonTo)
677    return false;
678
679  SCS.ToTypePtr = FromType.getAsOpaquePtr();
680  return true;
681}
682
683/// IsIntegralPromotion - Determines whether the conversion from the
684/// expression From (whose potentially-adjusted type is FromType) to
685/// ToType is an integral promotion (C++ 4.5). If so, returns true and
686/// sets PromotedType to the promoted type.
687bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
688{
689  const BuiltinType *To = ToType->getAsBuiltinType();
690  // All integers are built-in.
691  if (!To) {
692    return false;
693  }
694
695  // An rvalue of type char, signed char, unsigned char, short int, or
696  // unsigned short int can be converted to an rvalue of type int if
697  // int can represent all the values of the source type; otherwise,
698  // the source rvalue can be converted to an rvalue of type unsigned
699  // int (C++ 4.5p1).
700  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
701    if (// We can promote any signed, promotable integer type to an int
702        (FromType->isSignedIntegerType() ||
703         // We can promote any unsigned integer type whose size is
704         // less than int to an int.
705         (!FromType->isSignedIntegerType() &&
706          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
707      return To->getKind() == BuiltinType::Int;
708    }
709
710    return To->getKind() == BuiltinType::UInt;
711  }
712
713  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
714  // can be converted to an rvalue of the first of the following types
715  // that can represent all the values of its underlying type: int,
716  // unsigned int, long, or unsigned long (C++ 4.5p2).
717  if ((FromType->isEnumeralType() || FromType->isWideCharType())
718      && ToType->isIntegerType()) {
719    // Determine whether the type we're converting from is signed or
720    // unsigned.
721    bool FromIsSigned;
722    uint64_t FromSize = Context.getTypeSize(FromType);
723    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
724      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
725      FromIsSigned = UnderlyingType->isSignedIntegerType();
726    } else {
727      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
728      FromIsSigned = true;
729    }
730
731    // The types we'll try to promote to, in the appropriate
732    // order. Try each of these types.
733    QualType PromoteTypes[6] = {
734      Context.IntTy, Context.UnsignedIntTy,
735      Context.LongTy, Context.UnsignedLongTy ,
736      Context.LongLongTy, Context.UnsignedLongLongTy
737    };
738    for (int Idx = 0; Idx < 6; ++Idx) {
739      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
740      if (FromSize < ToSize ||
741          (FromSize == ToSize &&
742           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
743        // We found the type that we can promote to. If this is the
744        // type we wanted, we have a promotion. Otherwise, no
745        // promotion.
746        return Context.getCanonicalType(ToType).getUnqualifiedType()
747          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
748      }
749    }
750  }
751
752  // An rvalue for an integral bit-field (9.6) can be converted to an
753  // rvalue of type int if int can represent all the values of the
754  // bit-field; otherwise, it can be converted to unsigned int if
755  // unsigned int can represent all the values of the bit-field. If
756  // the bit-field is larger yet, no integral promotion applies to
757  // it. If the bit-field has an enumerated type, it is treated as any
758  // other value of that type for promotion purposes (C++ 4.5p3).
759  // FIXME: We should delay checking of bit-fields until we actually perform the
760  // conversion.
761  using llvm::APSInt;
762  if (From)
763    if (FieldDecl *MemberDecl = From->getBitField()) {
764      APSInt BitWidth;
765      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
766          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
767        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
768        ToSize = Context.getTypeSize(ToType);
769
770        // Are we promoting to an int from a bitfield that fits in an int?
771        if (BitWidth < ToSize ||
772            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
773          return To->getKind() == BuiltinType::Int;
774        }
775
776        // Are we promoting to an unsigned int from an unsigned bitfield
777        // that fits into an unsigned int?
778        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
779          return To->getKind() == BuiltinType::UInt;
780        }
781
782        return false;
783      }
784    }
785
786  // An rvalue of type bool can be converted to an rvalue of type int,
787  // with false becoming zero and true becoming one (C++ 4.5p4).
788  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
789    return true;
790  }
791
792  return false;
793}
794
795/// IsFloatingPointPromotion - Determines whether the conversion from
796/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
797/// returns true and sets PromotedType to the promoted type.
798bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
799{
800  /// An rvalue of type float can be converted to an rvalue of type
801  /// double. (C++ 4.6p1).
802  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
803    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
804      if (FromBuiltin->getKind() == BuiltinType::Float &&
805          ToBuiltin->getKind() == BuiltinType::Double)
806        return true;
807
808      // C99 6.3.1.5p1:
809      //   When a float is promoted to double or long double, or a
810      //   double is promoted to long double [...].
811      if (!getLangOptions().CPlusPlus &&
812          (FromBuiltin->getKind() == BuiltinType::Float ||
813           FromBuiltin->getKind() == BuiltinType::Double) &&
814          (ToBuiltin->getKind() == BuiltinType::LongDouble))
815        return true;
816    }
817
818  return false;
819}
820
821/// \brief Determine if a conversion is a complex promotion.
822///
823/// A complex promotion is defined as a complex -> complex conversion
824/// where the conversion between the underlying real types is a
825/// floating-point or integral promotion.
826bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
827  const ComplexType *FromComplex = FromType->getAsComplexType();
828  if (!FromComplex)
829    return false;
830
831  const ComplexType *ToComplex = ToType->getAsComplexType();
832  if (!ToComplex)
833    return false;
834
835  return IsFloatingPointPromotion(FromComplex->getElementType(),
836                                  ToComplex->getElementType()) ||
837    IsIntegralPromotion(0, FromComplex->getElementType(),
838                        ToComplex->getElementType());
839}
840
841/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
842/// the pointer type FromPtr to a pointer to type ToPointee, with the
843/// same type qualifiers as FromPtr has on its pointee type. ToType,
844/// if non-empty, will be a pointer to ToType that may or may not have
845/// the right set of qualifiers on its pointee.
846static QualType
847BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
848                                   QualType ToPointee, QualType ToType,
849                                   ASTContext &Context) {
850  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
851  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
852  unsigned Quals = CanonFromPointee.getCVRQualifiers();
853
854  // Exact qualifier match -> return the pointer type we're converting to.
855  if (CanonToPointee.getCVRQualifiers() == Quals) {
856    // ToType is exactly what we need. Return it.
857    if (ToType.getTypePtr())
858      return ToType;
859
860    // Build a pointer to ToPointee. It has the right qualifiers
861    // already.
862    return Context.getPointerType(ToPointee);
863  }
864
865  // Just build a canonical type that has the right qualifiers.
866  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
867}
868
869/// IsPointerConversion - Determines whether the conversion of the
870/// expression From, which has the (possibly adjusted) type FromType,
871/// can be converted to the type ToType via a pointer conversion (C++
872/// 4.10). If so, returns true and places the converted type (that
873/// might differ from ToType in its cv-qualifiers at some level) into
874/// ConvertedType.
875///
876/// This routine also supports conversions to and from block pointers
877/// and conversions with Objective-C's 'id', 'id<protocols...>', and
878/// pointers to interfaces. FIXME: Once we've determined the
879/// appropriate overloading rules for Objective-C, we may want to
880/// split the Objective-C checks into a different routine; however,
881/// GCC seems to consider all of these conversions to be pointer
882/// conversions, so for now they live here. IncompatibleObjC will be
883/// set if the conversion is an allowed Objective-C conversion that
884/// should result in a warning.
885bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
886                               QualType& ConvertedType,
887                               bool &IncompatibleObjC)
888{
889  IncompatibleObjC = false;
890  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
891    return true;
892
893  // Conversion from a null pointer constant to any Objective-C pointer type.
894  if (ToType->isObjCObjectPointerType() &&
895      From->isNullPointerConstant(Context)) {
896    ConvertedType = ToType;
897    return true;
898  }
899
900  // Blocks: Block pointers can be converted to void*.
901  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
902      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
903    ConvertedType = ToType;
904    return true;
905  }
906  // Blocks: A null pointer constant can be converted to a block
907  // pointer type.
908  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
909    ConvertedType = ToType;
910    return true;
911  }
912
913  // If the left-hand-side is nullptr_t, the right side can be a null
914  // pointer constant.
915  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
916    ConvertedType = ToType;
917    return true;
918  }
919
920  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
921  if (!ToTypePtr)
922    return false;
923
924  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
925  if (From->isNullPointerConstant(Context)) {
926    ConvertedType = ToType;
927    return true;
928  }
929
930  // Beyond this point, both types need to be pointers.
931  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
932  if (!FromTypePtr)
933    return false;
934
935  QualType FromPointeeType = FromTypePtr->getPointeeType();
936  QualType ToPointeeType = ToTypePtr->getPointeeType();
937
938  // An rvalue of type "pointer to cv T," where T is an object type,
939  // can be converted to an rvalue of type "pointer to cv void" (C++
940  // 4.10p2).
941  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
942    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
943                                                       ToPointeeType,
944                                                       ToType, Context);
945    return true;
946  }
947
948  // When we're overloading in C, we allow a special kind of pointer
949  // conversion for compatible-but-not-identical pointee types.
950  if (!getLangOptions().CPlusPlus &&
951      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
952    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
953                                                       ToPointeeType,
954                                                       ToType, Context);
955    return true;
956  }
957
958  // C++ [conv.ptr]p3:
959  //
960  //   An rvalue of type "pointer to cv D," where D is a class type,
961  //   can be converted to an rvalue of type "pointer to cv B," where
962  //   B is a base class (clause 10) of D. If B is an inaccessible
963  //   (clause 11) or ambiguous (10.2) base class of D, a program that
964  //   necessitates this conversion is ill-formed. The result of the
965  //   conversion is a pointer to the base class sub-object of the
966  //   derived class object. The null pointer value is converted to
967  //   the null pointer value of the destination type.
968  //
969  // Note that we do not check for ambiguity or inaccessibility
970  // here. That is handled by CheckPointerConversion.
971  if (getLangOptions().CPlusPlus &&
972      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
973      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
974    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
975                                                       ToPointeeType,
976                                                       ToType, Context);
977    return true;
978  }
979
980  return false;
981}
982
983/// isObjCPointerConversion - Determines whether this is an
984/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
985/// with the same arguments and return values.
986bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
987                                   QualType& ConvertedType,
988                                   bool &IncompatibleObjC) {
989  if (!getLangOptions().ObjC1)
990    return false;
991
992  // First, we handle all conversions on ObjC object pointer types.
993  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
994  const ObjCObjectPointerType *FromObjCPtr =
995    FromType->getAsObjCObjectPointerType();
996
997  if (ToObjCPtr && FromObjCPtr) {
998    // Objective C++: We're able to convert between "id" or "Class" and a
999    // pointer to any interface (in both directions).
1000    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1001      ConvertedType = ToType;
1002      return true;
1003    }
1004    // Conversions with Objective-C's id<...>.
1005    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1006         ToObjCPtr->isObjCQualifiedIdType()) &&
1007        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1008                                                  /*compare=*/false)) {
1009      ConvertedType = ToType;
1010      return true;
1011    }
1012    // Objective C++: We're able to convert from a pointer to an
1013    // interface to a pointer to a different interface.
1014    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1015      ConvertedType = ToType;
1016      return true;
1017    }
1018
1019    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1020      // Okay: this is some kind of implicit downcast of Objective-C
1021      // interfaces, which is permitted. However, we're going to
1022      // complain about it.
1023      IncompatibleObjC = true;
1024      ConvertedType = FromType;
1025      return true;
1026    }
1027  }
1028  // Beyond this point, both types need to be C pointers or block pointers.
1029  QualType ToPointeeType;
1030  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1031    ToPointeeType = ToCPtr->getPointeeType();
1032  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1033    ToPointeeType = ToBlockPtr->getPointeeType();
1034  else
1035    return false;
1036
1037  QualType FromPointeeType;
1038  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1039    FromPointeeType = FromCPtr->getPointeeType();
1040  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1041    FromPointeeType = FromBlockPtr->getPointeeType();
1042  else
1043    return false;
1044
1045  // If we have pointers to pointers, recursively check whether this
1046  // is an Objective-C conversion.
1047  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1048      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1049                              IncompatibleObjC)) {
1050    // We always complain about this conversion.
1051    IncompatibleObjC = true;
1052    ConvertedType = ToType;
1053    return true;
1054  }
1055  // If we have pointers to functions or blocks, check whether the only
1056  // differences in the argument and result types are in Objective-C
1057  // pointer conversions. If so, we permit the conversion (but
1058  // complain about it).
1059  const FunctionProtoType *FromFunctionType
1060    = FromPointeeType->getAsFunctionProtoType();
1061  const FunctionProtoType *ToFunctionType
1062    = ToPointeeType->getAsFunctionProtoType();
1063  if (FromFunctionType && ToFunctionType) {
1064    // If the function types are exactly the same, this isn't an
1065    // Objective-C pointer conversion.
1066    if (Context.getCanonicalType(FromPointeeType)
1067          == Context.getCanonicalType(ToPointeeType))
1068      return false;
1069
1070    // Perform the quick checks that will tell us whether these
1071    // function types are obviously different.
1072    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1073        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1074        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1075      return false;
1076
1077    bool HasObjCConversion = false;
1078    if (Context.getCanonicalType(FromFunctionType->getResultType())
1079          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1080      // Okay, the types match exactly. Nothing to do.
1081    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1082                                       ToFunctionType->getResultType(),
1083                                       ConvertedType, IncompatibleObjC)) {
1084      // Okay, we have an Objective-C pointer conversion.
1085      HasObjCConversion = true;
1086    } else {
1087      // Function types are too different. Abort.
1088      return false;
1089    }
1090
1091    // Check argument types.
1092    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1093         ArgIdx != NumArgs; ++ArgIdx) {
1094      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1095      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1096      if (Context.getCanonicalType(FromArgType)
1097            == Context.getCanonicalType(ToArgType)) {
1098        // Okay, the types match exactly. Nothing to do.
1099      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1100                                         ConvertedType, IncompatibleObjC)) {
1101        // Okay, we have an Objective-C pointer conversion.
1102        HasObjCConversion = true;
1103      } else {
1104        // Argument types are too different. Abort.
1105        return false;
1106      }
1107    }
1108
1109    if (HasObjCConversion) {
1110      // We had an Objective-C conversion. Allow this pointer
1111      // conversion, but complain about it.
1112      ConvertedType = ToType;
1113      IncompatibleObjC = true;
1114      return true;
1115    }
1116  }
1117
1118  return false;
1119}
1120
1121/// CheckPointerConversion - Check the pointer conversion from the
1122/// expression From to the type ToType. This routine checks for
1123/// ambiguous or inaccessible derived-to-base pointer
1124/// conversions for which IsPointerConversion has already returned
1125/// true. It returns true and produces a diagnostic if there was an
1126/// error, or returns false otherwise.
1127bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1128  QualType FromType = From->getType();
1129
1130  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1131    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1132      QualType FromPointeeType = FromPtrType->getPointeeType(),
1133               ToPointeeType   = ToPtrType->getPointeeType();
1134
1135      if (FromPointeeType->isRecordType() &&
1136          ToPointeeType->isRecordType()) {
1137        // We must have a derived-to-base conversion. Check an
1138        // ambiguous or inaccessible conversion.
1139        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1140                                            From->getExprLoc(),
1141                                            From->getSourceRange());
1142      }
1143    }
1144  if (const ObjCObjectPointerType *FromPtrType =
1145        FromType->getAsObjCObjectPointerType())
1146    if (const ObjCObjectPointerType *ToPtrType =
1147          ToType->getAsObjCObjectPointerType()) {
1148      // Objective-C++ conversions are always okay.
1149      // FIXME: We should have a different class of conversions for the
1150      // Objective-C++ implicit conversions.
1151      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1152        return false;
1153
1154  }
1155  return false;
1156}
1157
1158/// IsMemberPointerConversion - Determines whether the conversion of the
1159/// expression From, which has the (possibly adjusted) type FromType, can be
1160/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1161/// If so, returns true and places the converted type (that might differ from
1162/// ToType in its cv-qualifiers at some level) into ConvertedType.
1163bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1164                                     QualType ToType, QualType &ConvertedType)
1165{
1166  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1167  if (!ToTypePtr)
1168    return false;
1169
1170  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1171  if (From->isNullPointerConstant(Context)) {
1172    ConvertedType = ToType;
1173    return true;
1174  }
1175
1176  // Otherwise, both types have to be member pointers.
1177  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1178  if (!FromTypePtr)
1179    return false;
1180
1181  // A pointer to member of B can be converted to a pointer to member of D,
1182  // where D is derived from B (C++ 4.11p2).
1183  QualType FromClass(FromTypePtr->getClass(), 0);
1184  QualType ToClass(ToTypePtr->getClass(), 0);
1185  // FIXME: What happens when these are dependent? Is this function even called?
1186
1187  if (IsDerivedFrom(ToClass, FromClass)) {
1188    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1189                                                 ToClass.getTypePtr());
1190    return true;
1191  }
1192
1193  return false;
1194}
1195
1196/// CheckMemberPointerConversion - Check the member pointer conversion from the
1197/// expression From to the type ToType. This routine checks for ambiguous or
1198/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1199/// for which IsMemberPointerConversion has already returned true. It returns
1200/// true and produces a diagnostic if there was an error, or returns false
1201/// otherwise.
1202bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1203  QualType FromType = From->getType();
1204  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1205  if (!FromPtrType)
1206    return false;
1207
1208  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1209  assert(ToPtrType && "No member pointer cast has a target type "
1210                      "that is not a member pointer.");
1211
1212  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1213  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1214
1215  // FIXME: What about dependent types?
1216  assert(FromClass->isRecordType() && "Pointer into non-class.");
1217  assert(ToClass->isRecordType() && "Pointer into non-class.");
1218
1219  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1220                  /*DetectVirtual=*/true);
1221  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1222  assert(DerivationOkay &&
1223         "Should not have been called if derivation isn't OK.");
1224  (void)DerivationOkay;
1225
1226  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1227                                  getUnqualifiedType())) {
1228    // Derivation is ambiguous. Redo the check to find the exact paths.
1229    Paths.clear();
1230    Paths.setRecordingPaths(true);
1231    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1232    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1233    (void)StillOkay;
1234
1235    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1236    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1237      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1238    return true;
1239  }
1240
1241  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1242    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1243      << FromClass << ToClass << QualType(VBase, 0)
1244      << From->getSourceRange();
1245    return true;
1246  }
1247
1248  return false;
1249}
1250
1251/// IsQualificationConversion - Determines whether the conversion from
1252/// an rvalue of type FromType to ToType is a qualification conversion
1253/// (C++ 4.4).
1254bool
1255Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1256{
1257  FromType = Context.getCanonicalType(FromType);
1258  ToType = Context.getCanonicalType(ToType);
1259
1260  // If FromType and ToType are the same type, this is not a
1261  // qualification conversion.
1262  if (FromType == ToType)
1263    return false;
1264
1265  // (C++ 4.4p4):
1266  //   A conversion can add cv-qualifiers at levels other than the first
1267  //   in multi-level pointers, subject to the following rules: [...]
1268  bool PreviousToQualsIncludeConst = true;
1269  bool UnwrappedAnyPointer = false;
1270  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1271    // Within each iteration of the loop, we check the qualifiers to
1272    // determine if this still looks like a qualification
1273    // conversion. Then, if all is well, we unwrap one more level of
1274    // pointers or pointers-to-members and do it all again
1275    // until there are no more pointers or pointers-to-members left to
1276    // unwrap.
1277    UnwrappedAnyPointer = true;
1278
1279    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1280    //      2,j, and similarly for volatile.
1281    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1282      return false;
1283
1284    //   -- if the cv 1,j and cv 2,j are different, then const is in
1285    //      every cv for 0 < k < j.
1286    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1287        && !PreviousToQualsIncludeConst)
1288      return false;
1289
1290    // Keep track of whether all prior cv-qualifiers in the "to" type
1291    // include const.
1292    PreviousToQualsIncludeConst
1293      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1294  }
1295
1296  // We are left with FromType and ToType being the pointee types
1297  // after unwrapping the original FromType and ToType the same number
1298  // of types. If we unwrapped any pointers, and if FromType and
1299  // ToType have the same unqualified type (since we checked
1300  // qualifiers above), then this is a qualification conversion.
1301  return UnwrappedAnyPointer &&
1302    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1303}
1304
1305/// Determines whether there is a user-defined conversion sequence
1306/// (C++ [over.ics.user]) that converts expression From to the type
1307/// ToType. If such a conversion exists, User will contain the
1308/// user-defined conversion sequence that performs such a conversion
1309/// and this routine will return true. Otherwise, this routine returns
1310/// false and User is unspecified.
1311///
1312/// \param AllowConversionFunctions true if the conversion should
1313/// consider conversion functions at all. If false, only constructors
1314/// will be considered.
1315///
1316/// \param AllowExplicit  true if the conversion should consider C++0x
1317/// "explicit" conversion functions as well as non-explicit conversion
1318/// functions (C++0x [class.conv.fct]p2).
1319///
1320/// \param ForceRValue  true if the expression should be treated as an rvalue
1321/// for overload resolution.
1322bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1323                                   UserDefinedConversionSequence& User,
1324                                   bool AllowConversionFunctions,
1325                                   bool AllowExplicit, bool ForceRValue)
1326{
1327  OverloadCandidateSet CandidateSet;
1328  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1329    if (CXXRecordDecl *ToRecordDecl
1330          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1331      // C++ [over.match.ctor]p1:
1332      //   When objects of class type are direct-initialized (8.5), or
1333      //   copy-initialized from an expression of the same or a
1334      //   derived class type (8.5), overload resolution selects the
1335      //   constructor. [...] For copy-initialization, the candidate
1336      //   functions are all the converting constructors (12.3.1) of
1337      //   that class. The argument list is the expression-list within
1338      //   the parentheses of the initializer.
1339      DeclarationName ConstructorName
1340        = Context.DeclarationNames.getCXXConstructorName(
1341                          Context.getCanonicalType(ToType).getUnqualifiedType());
1342      DeclContext::lookup_iterator Con, ConEnd;
1343      for (llvm::tie(Con, ConEnd)
1344             = ToRecordDecl->lookup(ConstructorName);
1345           Con != ConEnd; ++Con) {
1346        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1347        if (!Constructor->isInvalidDecl() &&
1348            Constructor->isConvertingConstructor())
1349          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1350                               /*SuppressUserConversions=*/true, ForceRValue);
1351      }
1352    }
1353  }
1354
1355  if (!AllowConversionFunctions) {
1356    // Don't allow any conversion functions to enter the overload set.
1357  } else if (const RecordType *FromRecordType
1358               = From->getType()->getAs<RecordType>()) {
1359    if (CXXRecordDecl *FromRecordDecl
1360          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1361      // Add all of the conversion functions as candidates.
1362      // FIXME: Look for conversions in base classes!
1363      OverloadedFunctionDecl *Conversions
1364        = FromRecordDecl->getConversionFunctions();
1365      for (OverloadedFunctionDecl::function_iterator Func
1366             = Conversions->function_begin();
1367           Func != Conversions->function_end(); ++Func) {
1368        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1369        if (AllowExplicit || !Conv->isExplicit())
1370          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1371      }
1372    }
1373  }
1374
1375  OverloadCandidateSet::iterator Best;
1376  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1377    case OR_Success:
1378      // Record the standard conversion we used and the conversion function.
1379      if (CXXConstructorDecl *Constructor
1380            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1381        // C++ [over.ics.user]p1:
1382        //   If the user-defined conversion is specified by a
1383        //   constructor (12.3.1), the initial standard conversion
1384        //   sequence converts the source type to the type required by
1385        //   the argument of the constructor.
1386        //
1387        // FIXME: What about ellipsis conversions?
1388        QualType ThisType = Constructor->getThisType(Context);
1389        User.Before = Best->Conversions[0].Standard;
1390        User.ConversionFunction = Constructor;
1391        User.After.setAsIdentityConversion();
1392        User.After.FromTypePtr
1393          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1394        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1395        return true;
1396      } else if (CXXConversionDecl *Conversion
1397                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1398        // C++ [over.ics.user]p1:
1399        //
1400        //   [...] If the user-defined conversion is specified by a
1401        //   conversion function (12.3.2), the initial standard
1402        //   conversion sequence converts the source type to the
1403        //   implicit object parameter of the conversion function.
1404        User.Before = Best->Conversions[0].Standard;
1405        User.ConversionFunction = Conversion;
1406
1407        // C++ [over.ics.user]p2:
1408        //   The second standard conversion sequence converts the
1409        //   result of the user-defined conversion to the target type
1410        //   for the sequence. Since an implicit conversion sequence
1411        //   is an initialization, the special rules for
1412        //   initialization by user-defined conversion apply when
1413        //   selecting the best user-defined conversion for a
1414        //   user-defined conversion sequence (see 13.3.3 and
1415        //   13.3.3.1).
1416        User.After = Best->FinalConversion;
1417        return true;
1418      } else {
1419        assert(false && "Not a constructor or conversion function?");
1420        return false;
1421      }
1422
1423    case OR_No_Viable_Function:
1424    case OR_Deleted:
1425      // No conversion here! We're done.
1426      return false;
1427
1428    case OR_Ambiguous:
1429      // FIXME: See C++ [over.best.ics]p10 for the handling of
1430      // ambiguous conversion sequences.
1431      return false;
1432    }
1433
1434  return false;
1435}
1436
1437/// CompareImplicitConversionSequences - Compare two implicit
1438/// conversion sequences to determine whether one is better than the
1439/// other or if they are indistinguishable (C++ 13.3.3.2).
1440ImplicitConversionSequence::CompareKind
1441Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1442                                         const ImplicitConversionSequence& ICS2)
1443{
1444  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1445  // conversion sequences (as defined in 13.3.3.1)
1446  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1447  //      conversion sequence than a user-defined conversion sequence or
1448  //      an ellipsis conversion sequence, and
1449  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1450  //      conversion sequence than an ellipsis conversion sequence
1451  //      (13.3.3.1.3).
1452  //
1453  if (ICS1.ConversionKind < ICS2.ConversionKind)
1454    return ImplicitConversionSequence::Better;
1455  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1456    return ImplicitConversionSequence::Worse;
1457
1458  // Two implicit conversion sequences of the same form are
1459  // indistinguishable conversion sequences unless one of the
1460  // following rules apply: (C++ 13.3.3.2p3):
1461  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1462    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1463  else if (ICS1.ConversionKind ==
1464             ImplicitConversionSequence::UserDefinedConversion) {
1465    // User-defined conversion sequence U1 is a better conversion
1466    // sequence than another user-defined conversion sequence U2 if
1467    // they contain the same user-defined conversion function or
1468    // constructor and if the second standard conversion sequence of
1469    // U1 is better than the second standard conversion sequence of
1470    // U2 (C++ 13.3.3.2p3).
1471    if (ICS1.UserDefined.ConversionFunction ==
1472          ICS2.UserDefined.ConversionFunction)
1473      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1474                                                ICS2.UserDefined.After);
1475  }
1476
1477  return ImplicitConversionSequence::Indistinguishable;
1478}
1479
1480/// CompareStandardConversionSequences - Compare two standard
1481/// conversion sequences to determine whether one is better than the
1482/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1483ImplicitConversionSequence::CompareKind
1484Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1485                                         const StandardConversionSequence& SCS2)
1486{
1487  // Standard conversion sequence S1 is a better conversion sequence
1488  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1489
1490  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1491  //     sequences in the canonical form defined by 13.3.3.1.1,
1492  //     excluding any Lvalue Transformation; the identity conversion
1493  //     sequence is considered to be a subsequence of any
1494  //     non-identity conversion sequence) or, if not that,
1495  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1496    // Neither is a proper subsequence of the other. Do nothing.
1497    ;
1498  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1499           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1500           (SCS1.Second == ICK_Identity &&
1501            SCS1.Third == ICK_Identity))
1502    // SCS1 is a proper subsequence of SCS2.
1503    return ImplicitConversionSequence::Better;
1504  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1505           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1506           (SCS2.Second == ICK_Identity &&
1507            SCS2.Third == ICK_Identity))
1508    // SCS2 is a proper subsequence of SCS1.
1509    return ImplicitConversionSequence::Worse;
1510
1511  //  -- the rank of S1 is better than the rank of S2 (by the rules
1512  //     defined below), or, if not that,
1513  ImplicitConversionRank Rank1 = SCS1.getRank();
1514  ImplicitConversionRank Rank2 = SCS2.getRank();
1515  if (Rank1 < Rank2)
1516    return ImplicitConversionSequence::Better;
1517  else if (Rank2 < Rank1)
1518    return ImplicitConversionSequence::Worse;
1519
1520  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1521  // are indistinguishable unless one of the following rules
1522  // applies:
1523
1524  //   A conversion that is not a conversion of a pointer, or
1525  //   pointer to member, to bool is better than another conversion
1526  //   that is such a conversion.
1527  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1528    return SCS2.isPointerConversionToBool()
1529             ? ImplicitConversionSequence::Better
1530             : ImplicitConversionSequence::Worse;
1531
1532  // C++ [over.ics.rank]p4b2:
1533  //
1534  //   If class B is derived directly or indirectly from class A,
1535  //   conversion of B* to A* is better than conversion of B* to
1536  //   void*, and conversion of A* to void* is better than conversion
1537  //   of B* to void*.
1538  bool SCS1ConvertsToVoid
1539    = SCS1.isPointerConversionToVoidPointer(Context);
1540  bool SCS2ConvertsToVoid
1541    = SCS2.isPointerConversionToVoidPointer(Context);
1542  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1543    // Exactly one of the conversion sequences is a conversion to
1544    // a void pointer; it's the worse conversion.
1545    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1546                              : ImplicitConversionSequence::Worse;
1547  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1548    // Neither conversion sequence converts to a void pointer; compare
1549    // their derived-to-base conversions.
1550    if (ImplicitConversionSequence::CompareKind DerivedCK
1551          = CompareDerivedToBaseConversions(SCS1, SCS2))
1552      return DerivedCK;
1553  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1554    // Both conversion sequences are conversions to void
1555    // pointers. Compare the source types to determine if there's an
1556    // inheritance relationship in their sources.
1557    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1558    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1559
1560    // Adjust the types we're converting from via the array-to-pointer
1561    // conversion, if we need to.
1562    if (SCS1.First == ICK_Array_To_Pointer)
1563      FromType1 = Context.getArrayDecayedType(FromType1);
1564    if (SCS2.First == ICK_Array_To_Pointer)
1565      FromType2 = Context.getArrayDecayedType(FromType2);
1566
1567    QualType FromPointee1
1568      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1569    QualType FromPointee2
1570      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1571
1572    if (IsDerivedFrom(FromPointee2, FromPointee1))
1573      return ImplicitConversionSequence::Better;
1574    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1575      return ImplicitConversionSequence::Worse;
1576
1577    // Objective-C++: If one interface is more specific than the
1578    // other, it is the better one.
1579    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1580    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1581    if (FromIface1 && FromIface1) {
1582      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1583        return ImplicitConversionSequence::Better;
1584      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1585        return ImplicitConversionSequence::Worse;
1586    }
1587  }
1588
1589  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1590  // bullet 3).
1591  if (ImplicitConversionSequence::CompareKind QualCK
1592        = CompareQualificationConversions(SCS1, SCS2))
1593    return QualCK;
1594
1595  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1596    // C++0x [over.ics.rank]p3b4:
1597    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1598    //      implicit object parameter of a non-static member function declared
1599    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1600    //      rvalue and S2 binds an lvalue reference.
1601    // FIXME: We don't know if we're dealing with the implicit object parameter,
1602    // or if the member function in this case has a ref qualifier.
1603    // (Of course, we don't have ref qualifiers yet.)
1604    if (SCS1.RRefBinding != SCS2.RRefBinding)
1605      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1606                              : ImplicitConversionSequence::Worse;
1607
1608    // C++ [over.ics.rank]p3b4:
1609    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1610    //      which the references refer are the same type except for
1611    //      top-level cv-qualifiers, and the type to which the reference
1612    //      initialized by S2 refers is more cv-qualified than the type
1613    //      to which the reference initialized by S1 refers.
1614    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1615    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1616    T1 = Context.getCanonicalType(T1);
1617    T2 = Context.getCanonicalType(T2);
1618    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1619      if (T2.isMoreQualifiedThan(T1))
1620        return ImplicitConversionSequence::Better;
1621      else if (T1.isMoreQualifiedThan(T2))
1622        return ImplicitConversionSequence::Worse;
1623    }
1624  }
1625
1626  return ImplicitConversionSequence::Indistinguishable;
1627}
1628
1629/// CompareQualificationConversions - Compares two standard conversion
1630/// sequences to determine whether they can be ranked based on their
1631/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1632ImplicitConversionSequence::CompareKind
1633Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1634                                      const StandardConversionSequence& SCS2)
1635{
1636  // C++ 13.3.3.2p3:
1637  //  -- S1 and S2 differ only in their qualification conversion and
1638  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1639  //     cv-qualification signature of type T1 is a proper subset of
1640  //     the cv-qualification signature of type T2, and S1 is not the
1641  //     deprecated string literal array-to-pointer conversion (4.2).
1642  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1643      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1644    return ImplicitConversionSequence::Indistinguishable;
1645
1646  // FIXME: the example in the standard doesn't use a qualification
1647  // conversion (!)
1648  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1649  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1650  T1 = Context.getCanonicalType(T1);
1651  T2 = Context.getCanonicalType(T2);
1652
1653  // If the types are the same, we won't learn anything by unwrapped
1654  // them.
1655  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1656    return ImplicitConversionSequence::Indistinguishable;
1657
1658  ImplicitConversionSequence::CompareKind Result
1659    = ImplicitConversionSequence::Indistinguishable;
1660  while (UnwrapSimilarPointerTypes(T1, T2)) {
1661    // Within each iteration of the loop, we check the qualifiers to
1662    // determine if this still looks like a qualification
1663    // conversion. Then, if all is well, we unwrap one more level of
1664    // pointers or pointers-to-members and do it all again
1665    // until there are no more pointers or pointers-to-members left
1666    // to unwrap. This essentially mimics what
1667    // IsQualificationConversion does, but here we're checking for a
1668    // strict subset of qualifiers.
1669    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1670      // The qualifiers are the same, so this doesn't tell us anything
1671      // about how the sequences rank.
1672      ;
1673    else if (T2.isMoreQualifiedThan(T1)) {
1674      // T1 has fewer qualifiers, so it could be the better sequence.
1675      if (Result == ImplicitConversionSequence::Worse)
1676        // Neither has qualifiers that are a subset of the other's
1677        // qualifiers.
1678        return ImplicitConversionSequence::Indistinguishable;
1679
1680      Result = ImplicitConversionSequence::Better;
1681    } else if (T1.isMoreQualifiedThan(T2)) {
1682      // T2 has fewer qualifiers, so it could be the better sequence.
1683      if (Result == ImplicitConversionSequence::Better)
1684        // Neither has qualifiers that are a subset of the other's
1685        // qualifiers.
1686        return ImplicitConversionSequence::Indistinguishable;
1687
1688      Result = ImplicitConversionSequence::Worse;
1689    } else {
1690      // Qualifiers are disjoint.
1691      return ImplicitConversionSequence::Indistinguishable;
1692    }
1693
1694    // If the types after this point are equivalent, we're done.
1695    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1696      break;
1697  }
1698
1699  // Check that the winning standard conversion sequence isn't using
1700  // the deprecated string literal array to pointer conversion.
1701  switch (Result) {
1702  case ImplicitConversionSequence::Better:
1703    if (SCS1.Deprecated)
1704      Result = ImplicitConversionSequence::Indistinguishable;
1705    break;
1706
1707  case ImplicitConversionSequence::Indistinguishable:
1708    break;
1709
1710  case ImplicitConversionSequence::Worse:
1711    if (SCS2.Deprecated)
1712      Result = ImplicitConversionSequence::Indistinguishable;
1713    break;
1714  }
1715
1716  return Result;
1717}
1718
1719/// CompareDerivedToBaseConversions - Compares two standard conversion
1720/// sequences to determine whether they can be ranked based on their
1721/// various kinds of derived-to-base conversions (C++
1722/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1723/// conversions between Objective-C interface types.
1724ImplicitConversionSequence::CompareKind
1725Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1726                                      const StandardConversionSequence& SCS2) {
1727  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1728  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1729  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1730  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1731
1732  // Adjust the types we're converting from via the array-to-pointer
1733  // conversion, if we need to.
1734  if (SCS1.First == ICK_Array_To_Pointer)
1735    FromType1 = Context.getArrayDecayedType(FromType1);
1736  if (SCS2.First == ICK_Array_To_Pointer)
1737    FromType2 = Context.getArrayDecayedType(FromType2);
1738
1739  // Canonicalize all of the types.
1740  FromType1 = Context.getCanonicalType(FromType1);
1741  ToType1 = Context.getCanonicalType(ToType1);
1742  FromType2 = Context.getCanonicalType(FromType2);
1743  ToType2 = Context.getCanonicalType(ToType2);
1744
1745  // C++ [over.ics.rank]p4b3:
1746  //
1747  //   If class B is derived directly or indirectly from class A and
1748  //   class C is derived directly or indirectly from B,
1749  //
1750  // For Objective-C, we let A, B, and C also be Objective-C
1751  // interfaces.
1752
1753  // Compare based on pointer conversions.
1754  if (SCS1.Second == ICK_Pointer_Conversion &&
1755      SCS2.Second == ICK_Pointer_Conversion &&
1756      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1757      FromType1->isPointerType() && FromType2->isPointerType() &&
1758      ToType1->isPointerType() && ToType2->isPointerType()) {
1759    QualType FromPointee1
1760      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1761    QualType ToPointee1
1762      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1763    QualType FromPointee2
1764      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1765    QualType ToPointee2
1766      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1767
1768    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1769    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1770    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1771    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1772
1773    //   -- conversion of C* to B* is better than conversion of C* to A*,
1774    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1775      if (IsDerivedFrom(ToPointee1, ToPointee2))
1776        return ImplicitConversionSequence::Better;
1777      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1778        return ImplicitConversionSequence::Worse;
1779
1780      if (ToIface1 && ToIface2) {
1781        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1782          return ImplicitConversionSequence::Better;
1783        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1784          return ImplicitConversionSequence::Worse;
1785      }
1786    }
1787
1788    //   -- conversion of B* to A* is better than conversion of C* to A*,
1789    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1790      if (IsDerivedFrom(FromPointee2, FromPointee1))
1791        return ImplicitConversionSequence::Better;
1792      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1793        return ImplicitConversionSequence::Worse;
1794
1795      if (FromIface1 && FromIface2) {
1796        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1797          return ImplicitConversionSequence::Better;
1798        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1799          return ImplicitConversionSequence::Worse;
1800      }
1801    }
1802  }
1803
1804  // Compare based on reference bindings.
1805  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1806      SCS1.Second == ICK_Derived_To_Base) {
1807    //   -- binding of an expression of type C to a reference of type
1808    //      B& is better than binding an expression of type C to a
1809    //      reference of type A&,
1810    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1811        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1812      if (IsDerivedFrom(ToType1, ToType2))
1813        return ImplicitConversionSequence::Better;
1814      else if (IsDerivedFrom(ToType2, ToType1))
1815        return ImplicitConversionSequence::Worse;
1816    }
1817
1818    //   -- binding of an expression of type B to a reference of type
1819    //      A& is better than binding an expression of type C to a
1820    //      reference of type A&,
1821    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1822        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1823      if (IsDerivedFrom(FromType2, FromType1))
1824        return ImplicitConversionSequence::Better;
1825      else if (IsDerivedFrom(FromType1, FromType2))
1826        return ImplicitConversionSequence::Worse;
1827    }
1828  }
1829
1830
1831  // FIXME: conversion of A::* to B::* is better than conversion of
1832  // A::* to C::*,
1833
1834  // FIXME: conversion of B::* to C::* is better than conversion of
1835  // A::* to C::*, and
1836
1837  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1838      SCS1.Second == ICK_Derived_To_Base) {
1839    //   -- conversion of C to B is better than conversion of C to A,
1840    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1841        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1842      if (IsDerivedFrom(ToType1, ToType2))
1843        return ImplicitConversionSequence::Better;
1844      else if (IsDerivedFrom(ToType2, ToType1))
1845        return ImplicitConversionSequence::Worse;
1846    }
1847
1848    //   -- conversion of B to A is better than conversion of C to A.
1849    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1850        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1851      if (IsDerivedFrom(FromType2, FromType1))
1852        return ImplicitConversionSequence::Better;
1853      else if (IsDerivedFrom(FromType1, FromType2))
1854        return ImplicitConversionSequence::Worse;
1855    }
1856  }
1857
1858  return ImplicitConversionSequence::Indistinguishable;
1859}
1860
1861/// TryCopyInitialization - Try to copy-initialize a value of type
1862/// ToType from the expression From. Return the implicit conversion
1863/// sequence required to pass this argument, which may be a bad
1864/// conversion sequence (meaning that the argument cannot be passed to
1865/// a parameter of this type). If @p SuppressUserConversions, then we
1866/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1867/// then we treat @p From as an rvalue, even if it is an lvalue.
1868ImplicitConversionSequence
1869Sema::TryCopyInitialization(Expr *From, QualType ToType,
1870                            bool SuppressUserConversions, bool ForceRValue) {
1871  if (ToType->isReferenceType()) {
1872    ImplicitConversionSequence ICS;
1873    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1874                       /*AllowExplicit=*/false, ForceRValue);
1875    return ICS;
1876  } else {
1877    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1878                                 ForceRValue);
1879  }
1880}
1881
1882/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1883/// the expression @p From. Returns true (and emits a diagnostic) if there was
1884/// an error, returns false if the initialization succeeded. Elidable should
1885/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1886/// differently in C++0x for this case.
1887bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1888                                     const char* Flavor, bool Elidable) {
1889  if (!getLangOptions().CPlusPlus) {
1890    // In C, argument passing is the same as performing an assignment.
1891    QualType FromType = From->getType();
1892
1893    AssignConvertType ConvTy =
1894      CheckSingleAssignmentConstraints(ToType, From);
1895    if (ConvTy != Compatible &&
1896        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1897      ConvTy = Compatible;
1898
1899    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1900                                    FromType, From, Flavor);
1901  }
1902
1903  if (ToType->isReferenceType())
1904    return CheckReferenceInit(From, ToType);
1905
1906  if (!PerformImplicitConversion(From, ToType, Flavor,
1907                                 /*AllowExplicit=*/false, Elidable))
1908    return false;
1909
1910  return Diag(From->getSourceRange().getBegin(),
1911              diag::err_typecheck_convert_incompatible)
1912    << ToType << From->getType() << Flavor << From->getSourceRange();
1913}
1914
1915/// TryObjectArgumentInitialization - Try to initialize the object
1916/// parameter of the given member function (@c Method) from the
1917/// expression @p From.
1918ImplicitConversionSequence
1919Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1920  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1921  unsigned MethodQuals = Method->getTypeQualifiers();
1922  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1923
1924  // Set up the conversion sequence as a "bad" conversion, to allow us
1925  // to exit early.
1926  ImplicitConversionSequence ICS;
1927  ICS.Standard.setAsIdentityConversion();
1928  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1929
1930  // We need to have an object of class type.
1931  QualType FromType = From->getType();
1932  if (const PointerType *PT = FromType->getAs<PointerType>())
1933    FromType = PT->getPointeeType();
1934
1935  assert(FromType->isRecordType());
1936
1937  // The implicit object parmeter is has the type "reference to cv X",
1938  // where X is the class of which the function is a member
1939  // (C++ [over.match.funcs]p4). However, when finding an implicit
1940  // conversion sequence for the argument, we are not allowed to
1941  // create temporaries or perform user-defined conversions
1942  // (C++ [over.match.funcs]p5). We perform a simplified version of
1943  // reference binding here, that allows class rvalues to bind to
1944  // non-constant references.
1945
1946  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1947  // with the implicit object parameter (C++ [over.match.funcs]p5).
1948  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1949  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1950      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1951    return ICS;
1952
1953  // Check that we have either the same type or a derived type. It
1954  // affects the conversion rank.
1955  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1956  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1957    ICS.Standard.Second = ICK_Identity;
1958  else if (IsDerivedFrom(FromType, ClassType))
1959    ICS.Standard.Second = ICK_Derived_To_Base;
1960  else
1961    return ICS;
1962
1963  // Success. Mark this as a reference binding.
1964  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1965  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1966  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1967  ICS.Standard.ReferenceBinding = true;
1968  ICS.Standard.DirectBinding = true;
1969  ICS.Standard.RRefBinding = false;
1970  return ICS;
1971}
1972
1973/// PerformObjectArgumentInitialization - Perform initialization of
1974/// the implicit object parameter for the given Method with the given
1975/// expression.
1976bool
1977Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1978  QualType FromRecordType, DestType;
1979  QualType ImplicitParamRecordType  =
1980    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
1981
1982  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
1983    FromRecordType = PT->getPointeeType();
1984    DestType = Method->getThisType(Context);
1985  } else {
1986    FromRecordType = From->getType();
1987    DestType = ImplicitParamRecordType;
1988  }
1989
1990  ImplicitConversionSequence ICS
1991    = TryObjectArgumentInitialization(From, Method);
1992  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1993    return Diag(From->getSourceRange().getBegin(),
1994                diag::err_implicit_object_parameter_init)
1995       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
1996
1997  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1998      CheckDerivedToBaseConversion(FromRecordType,
1999                                   ImplicitParamRecordType,
2000                                   From->getSourceRange().getBegin(),
2001                                   From->getSourceRange()))
2002    return true;
2003
2004  ImpCastExprToType(From, DestType, CastExpr::CK_Unknown, /*isLvalue=*/true);
2005  return false;
2006}
2007
2008/// TryContextuallyConvertToBool - Attempt to contextually convert the
2009/// expression From to bool (C++0x [conv]p3).
2010ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2011  return TryImplicitConversion(From, Context.BoolTy, false, true);
2012}
2013
2014/// PerformContextuallyConvertToBool - Perform a contextual conversion
2015/// of the expression From to bool (C++0x [conv]p3).
2016bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2017  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2018  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2019    return false;
2020
2021  return Diag(From->getSourceRange().getBegin(),
2022              diag::err_typecheck_bool_condition)
2023    << From->getType() << From->getSourceRange();
2024}
2025
2026/// AddOverloadCandidate - Adds the given function to the set of
2027/// candidate functions, using the given function call arguments.  If
2028/// @p SuppressUserConversions, then don't allow user-defined
2029/// conversions via constructors or conversion operators.
2030/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2031/// hacky way to implement the overloading rules for elidable copy
2032/// initialization in C++0x (C++0x 12.8p15).
2033void
2034Sema::AddOverloadCandidate(FunctionDecl *Function,
2035                           Expr **Args, unsigned NumArgs,
2036                           OverloadCandidateSet& CandidateSet,
2037                           bool SuppressUserConversions,
2038                           bool ForceRValue)
2039{
2040  const FunctionProtoType* Proto
2041    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2042  assert(Proto && "Functions without a prototype cannot be overloaded");
2043  assert(!isa<CXXConversionDecl>(Function) &&
2044         "Use AddConversionCandidate for conversion functions");
2045  assert(!Function->getDescribedFunctionTemplate() &&
2046         "Use AddTemplateOverloadCandidate for function templates");
2047
2048  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2049    if (!isa<CXXConstructorDecl>(Method)) {
2050      // If we get here, it's because we're calling a member function
2051      // that is named without a member access expression (e.g.,
2052      // "this->f") that was either written explicitly or created
2053      // implicitly. This can happen with a qualified call to a member
2054      // function, e.g., X::f(). We use a NULL object as the implied
2055      // object argument (C++ [over.call.func]p3).
2056      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2057                         SuppressUserConversions, ForceRValue);
2058      return;
2059    }
2060    // We treat a constructor like a non-member function, since its object
2061    // argument doesn't participate in overload resolution.
2062  }
2063
2064
2065  // Add this candidate
2066  CandidateSet.push_back(OverloadCandidate());
2067  OverloadCandidate& Candidate = CandidateSet.back();
2068  Candidate.Function = Function;
2069  Candidate.Viable = true;
2070  Candidate.IsSurrogate = false;
2071  Candidate.IgnoreObjectArgument = false;
2072
2073  unsigned NumArgsInProto = Proto->getNumArgs();
2074
2075  // (C++ 13.3.2p2): A candidate function having fewer than m
2076  // parameters is viable only if it has an ellipsis in its parameter
2077  // list (8.3.5).
2078  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2079    Candidate.Viable = false;
2080    return;
2081  }
2082
2083  // (C++ 13.3.2p2): A candidate function having more than m parameters
2084  // is viable only if the (m+1)st parameter has a default argument
2085  // (8.3.6). For the purposes of overload resolution, the
2086  // parameter list is truncated on the right, so that there are
2087  // exactly m parameters.
2088  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2089  if (NumArgs < MinRequiredArgs) {
2090    // Not enough arguments.
2091    Candidate.Viable = false;
2092    return;
2093  }
2094
2095  // Determine the implicit conversion sequences for each of the
2096  // arguments.
2097  Candidate.Conversions.resize(NumArgs);
2098  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2099    if (ArgIdx < NumArgsInProto) {
2100      // (C++ 13.3.2p3): for F to be a viable function, there shall
2101      // exist for each argument an implicit conversion sequence
2102      // (13.3.3.1) that converts that argument to the corresponding
2103      // parameter of F.
2104      QualType ParamType = Proto->getArgType(ArgIdx);
2105      Candidate.Conversions[ArgIdx]
2106        = TryCopyInitialization(Args[ArgIdx], ParamType,
2107                                SuppressUserConversions, ForceRValue);
2108      if (Candidate.Conversions[ArgIdx].ConversionKind
2109            == ImplicitConversionSequence::BadConversion) {
2110        Candidate.Viable = false;
2111        break;
2112      }
2113    } else {
2114      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2115      // argument for which there is no corresponding parameter is
2116      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2117      Candidate.Conversions[ArgIdx].ConversionKind
2118        = ImplicitConversionSequence::EllipsisConversion;
2119    }
2120  }
2121}
2122
2123/// \brief Add all of the function declarations in the given function set to
2124/// the overload canddiate set.
2125void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2126                                 Expr **Args, unsigned NumArgs,
2127                                 OverloadCandidateSet& CandidateSet,
2128                                 bool SuppressUserConversions) {
2129  for (FunctionSet::const_iterator F = Functions.begin(),
2130                                FEnd = Functions.end();
2131       F != FEnd; ++F) {
2132    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2133      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2134                           SuppressUserConversions);
2135    else
2136      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2137                                   /*FIXME: explicit args */false, 0, 0,
2138                                   Args, NumArgs, CandidateSet,
2139                                   SuppressUserConversions);
2140  }
2141}
2142
2143/// AddMethodCandidate - Adds the given C++ member function to the set
2144/// of candidate functions, using the given function call arguments
2145/// and the object argument (@c Object). For example, in a call
2146/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2147/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2148/// allow user-defined conversions via constructors or conversion
2149/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2150/// a slightly hacky way to implement the overloading rules for elidable copy
2151/// initialization in C++0x (C++0x 12.8p15).
2152void
2153Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2154                         Expr **Args, unsigned NumArgs,
2155                         OverloadCandidateSet& CandidateSet,
2156                         bool SuppressUserConversions, bool ForceRValue)
2157{
2158  const FunctionProtoType* Proto
2159    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2160  assert(Proto && "Methods without a prototype cannot be overloaded");
2161  assert(!isa<CXXConversionDecl>(Method) &&
2162         "Use AddConversionCandidate for conversion functions");
2163  assert(!isa<CXXConstructorDecl>(Method) &&
2164         "Use AddOverloadCandidate for constructors");
2165
2166  // Add this candidate
2167  CandidateSet.push_back(OverloadCandidate());
2168  OverloadCandidate& Candidate = CandidateSet.back();
2169  Candidate.Function = Method;
2170  Candidate.IsSurrogate = false;
2171  Candidate.IgnoreObjectArgument = false;
2172
2173  unsigned NumArgsInProto = Proto->getNumArgs();
2174
2175  // (C++ 13.3.2p2): A candidate function having fewer than m
2176  // parameters is viable only if it has an ellipsis in its parameter
2177  // list (8.3.5).
2178  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2179    Candidate.Viable = false;
2180    return;
2181  }
2182
2183  // (C++ 13.3.2p2): A candidate function having more than m parameters
2184  // is viable only if the (m+1)st parameter has a default argument
2185  // (8.3.6). For the purposes of overload resolution, the
2186  // parameter list is truncated on the right, so that there are
2187  // exactly m parameters.
2188  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2189  if (NumArgs < MinRequiredArgs) {
2190    // Not enough arguments.
2191    Candidate.Viable = false;
2192    return;
2193  }
2194
2195  Candidate.Viable = true;
2196  Candidate.Conversions.resize(NumArgs + 1);
2197
2198  if (Method->isStatic() || !Object)
2199    // The implicit object argument is ignored.
2200    Candidate.IgnoreObjectArgument = true;
2201  else {
2202    // Determine the implicit conversion sequence for the object
2203    // parameter.
2204    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2205    if (Candidate.Conversions[0].ConversionKind
2206          == ImplicitConversionSequence::BadConversion) {
2207      Candidate.Viable = false;
2208      return;
2209    }
2210  }
2211
2212  // Determine the implicit conversion sequences for each of the
2213  // arguments.
2214  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2215    if (ArgIdx < NumArgsInProto) {
2216      // (C++ 13.3.2p3): for F to be a viable function, there shall
2217      // exist for each argument an implicit conversion sequence
2218      // (13.3.3.1) that converts that argument to the corresponding
2219      // parameter of F.
2220      QualType ParamType = Proto->getArgType(ArgIdx);
2221      Candidate.Conversions[ArgIdx + 1]
2222        = TryCopyInitialization(Args[ArgIdx], ParamType,
2223                                SuppressUserConversions, ForceRValue);
2224      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2225            == ImplicitConversionSequence::BadConversion) {
2226        Candidate.Viable = false;
2227        break;
2228      }
2229    } else {
2230      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2231      // argument for which there is no corresponding parameter is
2232      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2233      Candidate.Conversions[ArgIdx + 1].ConversionKind
2234        = ImplicitConversionSequence::EllipsisConversion;
2235    }
2236  }
2237}
2238
2239/// \brief Add a C++ function template as a candidate in the candidate set,
2240/// using template argument deduction to produce an appropriate function
2241/// template specialization.
2242void
2243Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2244                                   bool HasExplicitTemplateArgs,
2245                                 const TemplateArgument *ExplicitTemplateArgs,
2246                                   unsigned NumExplicitTemplateArgs,
2247                                   Expr **Args, unsigned NumArgs,
2248                                   OverloadCandidateSet& CandidateSet,
2249                                   bool SuppressUserConversions,
2250                                   bool ForceRValue) {
2251  // C++ [over.match.funcs]p7:
2252  //   In each case where a candidate is a function template, candidate
2253  //   function template specializations are generated using template argument
2254  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2255  //   candidate functions in the usual way.113) A given name can refer to one
2256  //   or more function templates and also to a set of overloaded non-template
2257  //   functions. In such a case, the candidate functions generated from each
2258  //   function template are combined with the set of non-template candidate
2259  //   functions.
2260  TemplateDeductionInfo Info(Context);
2261  FunctionDecl *Specialization = 0;
2262  if (TemplateDeductionResult Result
2263        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2264                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2265                                  Args, NumArgs, Specialization, Info)) {
2266    // FIXME: Record what happened with template argument deduction, so
2267    // that we can give the user a beautiful diagnostic.
2268    (void)Result;
2269    return;
2270  }
2271
2272  // Add the function template specialization produced by template argument
2273  // deduction as a candidate.
2274  assert(Specialization && "Missing function template specialization?");
2275  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2276                       SuppressUserConversions, ForceRValue);
2277}
2278
2279/// AddConversionCandidate - Add a C++ conversion function as a
2280/// candidate in the candidate set (C++ [over.match.conv],
2281/// C++ [over.match.copy]). From is the expression we're converting from,
2282/// and ToType is the type that we're eventually trying to convert to
2283/// (which may or may not be the same type as the type that the
2284/// conversion function produces).
2285void
2286Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2287                             Expr *From, QualType ToType,
2288                             OverloadCandidateSet& CandidateSet) {
2289  // Add this candidate
2290  CandidateSet.push_back(OverloadCandidate());
2291  OverloadCandidate& Candidate = CandidateSet.back();
2292  Candidate.Function = Conversion;
2293  Candidate.IsSurrogate = false;
2294  Candidate.IgnoreObjectArgument = false;
2295  Candidate.FinalConversion.setAsIdentityConversion();
2296  Candidate.FinalConversion.FromTypePtr
2297    = Conversion->getConversionType().getAsOpaquePtr();
2298  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2299
2300  // Determine the implicit conversion sequence for the implicit
2301  // object parameter.
2302  Candidate.Viable = true;
2303  Candidate.Conversions.resize(1);
2304  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2305
2306  if (Candidate.Conversions[0].ConversionKind
2307      == ImplicitConversionSequence::BadConversion) {
2308    Candidate.Viable = false;
2309    return;
2310  }
2311
2312  // To determine what the conversion from the result of calling the
2313  // conversion function to the type we're eventually trying to
2314  // convert to (ToType), we need to synthesize a call to the
2315  // conversion function and attempt copy initialization from it. This
2316  // makes sure that we get the right semantics with respect to
2317  // lvalues/rvalues and the type. Fortunately, we can allocate this
2318  // call on the stack and we don't need its arguments to be
2319  // well-formed.
2320  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2321                            SourceLocation());
2322  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2323                                CastExpr::CK_Unknown,
2324                                &ConversionRef, false);
2325
2326  // Note that it is safe to allocate CallExpr on the stack here because
2327  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2328  // allocator).
2329  CallExpr Call(Context, &ConversionFn, 0, 0,
2330                Conversion->getConversionType().getNonReferenceType(),
2331                SourceLocation());
2332  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2333  switch (ICS.ConversionKind) {
2334  case ImplicitConversionSequence::StandardConversion:
2335    Candidate.FinalConversion = ICS.Standard;
2336    break;
2337
2338  case ImplicitConversionSequence::BadConversion:
2339    Candidate.Viable = false;
2340    break;
2341
2342  default:
2343    assert(false &&
2344           "Can only end up with a standard conversion sequence or failure");
2345  }
2346}
2347
2348/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2349/// converts the given @c Object to a function pointer via the
2350/// conversion function @c Conversion, and then attempts to call it
2351/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2352/// the type of function that we'll eventually be calling.
2353void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2354                                 const FunctionProtoType *Proto,
2355                                 Expr *Object, Expr **Args, unsigned NumArgs,
2356                                 OverloadCandidateSet& CandidateSet) {
2357  CandidateSet.push_back(OverloadCandidate());
2358  OverloadCandidate& Candidate = CandidateSet.back();
2359  Candidate.Function = 0;
2360  Candidate.Surrogate = Conversion;
2361  Candidate.Viable = true;
2362  Candidate.IsSurrogate = true;
2363  Candidate.IgnoreObjectArgument = false;
2364  Candidate.Conversions.resize(NumArgs + 1);
2365
2366  // Determine the implicit conversion sequence for the implicit
2367  // object parameter.
2368  ImplicitConversionSequence ObjectInit
2369    = TryObjectArgumentInitialization(Object, Conversion);
2370  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2371    Candidate.Viable = false;
2372    return;
2373  }
2374
2375  // The first conversion is actually a user-defined conversion whose
2376  // first conversion is ObjectInit's standard conversion (which is
2377  // effectively a reference binding). Record it as such.
2378  Candidate.Conversions[0].ConversionKind
2379    = ImplicitConversionSequence::UserDefinedConversion;
2380  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2381  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2382  Candidate.Conversions[0].UserDefined.After
2383    = Candidate.Conversions[0].UserDefined.Before;
2384  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2385
2386  // Find the
2387  unsigned NumArgsInProto = Proto->getNumArgs();
2388
2389  // (C++ 13.3.2p2): A candidate function having fewer than m
2390  // parameters is viable only if it has an ellipsis in its parameter
2391  // list (8.3.5).
2392  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2393    Candidate.Viable = false;
2394    return;
2395  }
2396
2397  // Function types don't have any default arguments, so just check if
2398  // we have enough arguments.
2399  if (NumArgs < NumArgsInProto) {
2400    // Not enough arguments.
2401    Candidate.Viable = false;
2402    return;
2403  }
2404
2405  // Determine the implicit conversion sequences for each of the
2406  // arguments.
2407  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2408    if (ArgIdx < NumArgsInProto) {
2409      // (C++ 13.3.2p3): for F to be a viable function, there shall
2410      // exist for each argument an implicit conversion sequence
2411      // (13.3.3.1) that converts that argument to the corresponding
2412      // parameter of F.
2413      QualType ParamType = Proto->getArgType(ArgIdx);
2414      Candidate.Conversions[ArgIdx + 1]
2415        = TryCopyInitialization(Args[ArgIdx], ParamType,
2416                                /*SuppressUserConversions=*/false);
2417      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2418            == ImplicitConversionSequence::BadConversion) {
2419        Candidate.Viable = false;
2420        break;
2421      }
2422    } else {
2423      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2424      // argument for which there is no corresponding parameter is
2425      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2426      Candidate.Conversions[ArgIdx + 1].ConversionKind
2427        = ImplicitConversionSequence::EllipsisConversion;
2428    }
2429  }
2430}
2431
2432// FIXME: This will eventually be removed, once we've migrated all of the
2433// operator overloading logic over to the scheme used by binary operators, which
2434// works for template instantiation.
2435void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2436                                 SourceLocation OpLoc,
2437                                 Expr **Args, unsigned NumArgs,
2438                                 OverloadCandidateSet& CandidateSet,
2439                                 SourceRange OpRange) {
2440
2441  FunctionSet Functions;
2442
2443  QualType T1 = Args[0]->getType();
2444  QualType T2;
2445  if (NumArgs > 1)
2446    T2 = Args[1]->getType();
2447
2448  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2449  if (S)
2450    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2451  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2452  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2453  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2454  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2455}
2456
2457/// \brief Add overload candidates for overloaded operators that are
2458/// member functions.
2459///
2460/// Add the overloaded operator candidates that are member functions
2461/// for the operator Op that was used in an operator expression such
2462/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2463/// CandidateSet will store the added overload candidates. (C++
2464/// [over.match.oper]).
2465void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2466                                       SourceLocation OpLoc,
2467                                       Expr **Args, unsigned NumArgs,
2468                                       OverloadCandidateSet& CandidateSet,
2469                                       SourceRange OpRange) {
2470  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2471
2472  // C++ [over.match.oper]p3:
2473  //   For a unary operator @ with an operand of a type whose
2474  //   cv-unqualified version is T1, and for a binary operator @ with
2475  //   a left operand of a type whose cv-unqualified version is T1 and
2476  //   a right operand of a type whose cv-unqualified version is T2,
2477  //   three sets of candidate functions, designated member
2478  //   candidates, non-member candidates and built-in candidates, are
2479  //   constructed as follows:
2480  QualType T1 = Args[0]->getType();
2481  QualType T2;
2482  if (NumArgs > 1)
2483    T2 = Args[1]->getType();
2484
2485  //     -- If T1 is a class type, the set of member candidates is the
2486  //        result of the qualified lookup of T1::operator@
2487  //        (13.3.1.1.1); otherwise, the set of member candidates is
2488  //        empty.
2489  // FIXME: Lookup in base classes, too!
2490  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2491    DeclContext::lookup_const_iterator Oper, OperEnd;
2492    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2493         Oper != OperEnd; ++Oper)
2494      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2495                         Args+1, NumArgs - 1, CandidateSet,
2496                         /*SuppressUserConversions=*/false);
2497  }
2498}
2499
2500/// AddBuiltinCandidate - Add a candidate for a built-in
2501/// operator. ResultTy and ParamTys are the result and parameter types
2502/// of the built-in candidate, respectively. Args and NumArgs are the
2503/// arguments being passed to the candidate. IsAssignmentOperator
2504/// should be true when this built-in candidate is an assignment
2505/// operator. NumContextualBoolArguments is the number of arguments
2506/// (at the beginning of the argument list) that will be contextually
2507/// converted to bool.
2508void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2509                               Expr **Args, unsigned NumArgs,
2510                               OverloadCandidateSet& CandidateSet,
2511                               bool IsAssignmentOperator,
2512                               unsigned NumContextualBoolArguments) {
2513  // Add this candidate
2514  CandidateSet.push_back(OverloadCandidate());
2515  OverloadCandidate& Candidate = CandidateSet.back();
2516  Candidate.Function = 0;
2517  Candidate.IsSurrogate = false;
2518  Candidate.IgnoreObjectArgument = false;
2519  Candidate.BuiltinTypes.ResultTy = ResultTy;
2520  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2521    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2522
2523  // Determine the implicit conversion sequences for each of the
2524  // arguments.
2525  Candidate.Viable = true;
2526  Candidate.Conversions.resize(NumArgs);
2527  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2528    // C++ [over.match.oper]p4:
2529    //   For the built-in assignment operators, conversions of the
2530    //   left operand are restricted as follows:
2531    //     -- no temporaries are introduced to hold the left operand, and
2532    //     -- no user-defined conversions are applied to the left
2533    //        operand to achieve a type match with the left-most
2534    //        parameter of a built-in candidate.
2535    //
2536    // We block these conversions by turning off user-defined
2537    // conversions, since that is the only way that initialization of
2538    // a reference to a non-class type can occur from something that
2539    // is not of the same type.
2540    if (ArgIdx < NumContextualBoolArguments) {
2541      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2542             "Contextual conversion to bool requires bool type");
2543      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2544    } else {
2545      Candidate.Conversions[ArgIdx]
2546        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2547                                ArgIdx == 0 && IsAssignmentOperator);
2548    }
2549    if (Candidate.Conversions[ArgIdx].ConversionKind
2550        == ImplicitConversionSequence::BadConversion) {
2551      Candidate.Viable = false;
2552      break;
2553    }
2554  }
2555}
2556
2557/// BuiltinCandidateTypeSet - A set of types that will be used for the
2558/// candidate operator functions for built-in operators (C++
2559/// [over.built]). The types are separated into pointer types and
2560/// enumeration types.
2561class BuiltinCandidateTypeSet  {
2562  /// TypeSet - A set of types.
2563  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2564
2565  /// PointerTypes - The set of pointer types that will be used in the
2566  /// built-in candidates.
2567  TypeSet PointerTypes;
2568
2569  /// MemberPointerTypes - The set of member pointer types that will be
2570  /// used in the built-in candidates.
2571  TypeSet MemberPointerTypes;
2572
2573  /// EnumerationTypes - The set of enumeration types that will be
2574  /// used in the built-in candidates.
2575  TypeSet EnumerationTypes;
2576
2577  /// Context - The AST context in which we will build the type sets.
2578  ASTContext &Context;
2579
2580  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2581  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2582
2583public:
2584  /// iterator - Iterates through the types that are part of the set.
2585  typedef TypeSet::iterator iterator;
2586
2587  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2588
2589  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2590                             bool AllowExplicitConversions);
2591
2592  /// pointer_begin - First pointer type found;
2593  iterator pointer_begin() { return PointerTypes.begin(); }
2594
2595  /// pointer_end - Past the last pointer type found;
2596  iterator pointer_end() { return PointerTypes.end(); }
2597
2598  /// member_pointer_begin - First member pointer type found;
2599  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2600
2601  /// member_pointer_end - Past the last member pointer type found;
2602  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2603
2604  /// enumeration_begin - First enumeration type found;
2605  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2606
2607  /// enumeration_end - Past the last enumeration type found;
2608  iterator enumeration_end() { return EnumerationTypes.end(); }
2609};
2610
2611/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2612/// the set of pointer types along with any more-qualified variants of
2613/// that type. For example, if @p Ty is "int const *", this routine
2614/// will add "int const *", "int const volatile *", "int const
2615/// restrict *", and "int const volatile restrict *" to the set of
2616/// pointer types. Returns true if the add of @p Ty itself succeeded,
2617/// false otherwise.
2618bool
2619BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2620  // Insert this type.
2621  if (!PointerTypes.insert(Ty))
2622    return false;
2623
2624  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2625    QualType PointeeTy = PointerTy->getPointeeType();
2626    // FIXME: Optimize this so that we don't keep trying to add the same types.
2627
2628    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2629    // pointer conversions that don't cast away constness?
2630    if (!PointeeTy.isConstQualified())
2631      AddPointerWithMoreQualifiedTypeVariants
2632        (Context.getPointerType(PointeeTy.withConst()));
2633    if (!PointeeTy.isVolatileQualified())
2634      AddPointerWithMoreQualifiedTypeVariants
2635        (Context.getPointerType(PointeeTy.withVolatile()));
2636    if (!PointeeTy.isRestrictQualified())
2637      AddPointerWithMoreQualifiedTypeVariants
2638        (Context.getPointerType(PointeeTy.withRestrict()));
2639  }
2640
2641  return true;
2642}
2643
2644/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2645/// to the set of pointer types along with any more-qualified variants of
2646/// that type. For example, if @p Ty is "int const *", this routine
2647/// will add "int const *", "int const volatile *", "int const
2648/// restrict *", and "int const volatile restrict *" to the set of
2649/// pointer types. Returns true if the add of @p Ty itself succeeded,
2650/// false otherwise.
2651bool
2652BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2653    QualType Ty) {
2654  // Insert this type.
2655  if (!MemberPointerTypes.insert(Ty))
2656    return false;
2657
2658  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2659    QualType PointeeTy = PointerTy->getPointeeType();
2660    const Type *ClassTy = PointerTy->getClass();
2661    // FIXME: Optimize this so that we don't keep trying to add the same types.
2662
2663    if (!PointeeTy.isConstQualified())
2664      AddMemberPointerWithMoreQualifiedTypeVariants
2665        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2666    if (!PointeeTy.isVolatileQualified())
2667      AddMemberPointerWithMoreQualifiedTypeVariants
2668        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2669    if (!PointeeTy.isRestrictQualified())
2670      AddMemberPointerWithMoreQualifiedTypeVariants
2671        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2672  }
2673
2674  return true;
2675}
2676
2677/// AddTypesConvertedFrom - Add each of the types to which the type @p
2678/// Ty can be implicit converted to the given set of @p Types. We're
2679/// primarily interested in pointer types and enumeration types. We also
2680/// take member pointer types, for the conditional operator.
2681/// AllowUserConversions is true if we should look at the conversion
2682/// functions of a class type, and AllowExplicitConversions if we
2683/// should also include the explicit conversion functions of a class
2684/// type.
2685void
2686BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2687                                               bool AllowUserConversions,
2688                                               bool AllowExplicitConversions) {
2689  // Only deal with canonical types.
2690  Ty = Context.getCanonicalType(Ty);
2691
2692  // Look through reference types; they aren't part of the type of an
2693  // expression for the purposes of conversions.
2694  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2695    Ty = RefTy->getPointeeType();
2696
2697  // We don't care about qualifiers on the type.
2698  Ty = Ty.getUnqualifiedType();
2699
2700  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2701    QualType PointeeTy = PointerTy->getPointeeType();
2702
2703    // Insert our type, and its more-qualified variants, into the set
2704    // of types.
2705    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2706      return;
2707
2708    // Add 'cv void*' to our set of types.
2709    if (!Ty->isVoidType()) {
2710      QualType QualVoid
2711        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2712      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2713    }
2714
2715    // If this is a pointer to a class type, add pointers to its bases
2716    // (with the same level of cv-qualification as the original
2717    // derived class, of course).
2718    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2719      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2720      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2721           Base != ClassDecl->bases_end(); ++Base) {
2722        QualType BaseTy = Context.getCanonicalType(Base->getType());
2723        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2724
2725        // Add the pointer type, recursively, so that we get all of
2726        // the indirect base classes, too.
2727        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2728      }
2729    }
2730  } else if (Ty->isMemberPointerType()) {
2731    // Member pointers are far easier, since the pointee can't be converted.
2732    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2733      return;
2734  } else if (Ty->isEnumeralType()) {
2735    EnumerationTypes.insert(Ty);
2736  } else if (AllowUserConversions) {
2737    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2738      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2739      // FIXME: Visit conversion functions in the base classes, too.
2740      OverloadedFunctionDecl *Conversions
2741        = ClassDecl->getConversionFunctions();
2742      for (OverloadedFunctionDecl::function_iterator Func
2743             = Conversions->function_begin();
2744           Func != Conversions->function_end(); ++Func) {
2745        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2746        if (AllowExplicitConversions || !Conv->isExplicit())
2747          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2748      }
2749    }
2750  }
2751}
2752
2753/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2754/// operator overloads to the candidate set (C++ [over.built]), based
2755/// on the operator @p Op and the arguments given. For example, if the
2756/// operator is a binary '+', this routine might add "int
2757/// operator+(int, int)" to cover integer addition.
2758void
2759Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2760                                   Expr **Args, unsigned NumArgs,
2761                                   OverloadCandidateSet& CandidateSet) {
2762  // The set of "promoted arithmetic types", which are the arithmetic
2763  // types are that preserved by promotion (C++ [over.built]p2). Note
2764  // that the first few of these types are the promoted integral
2765  // types; these types need to be first.
2766  // FIXME: What about complex?
2767  const unsigned FirstIntegralType = 0;
2768  const unsigned LastIntegralType = 13;
2769  const unsigned FirstPromotedIntegralType = 7,
2770                 LastPromotedIntegralType = 13;
2771  const unsigned FirstPromotedArithmeticType = 7,
2772                 LastPromotedArithmeticType = 16;
2773  const unsigned NumArithmeticTypes = 16;
2774  QualType ArithmeticTypes[NumArithmeticTypes] = {
2775    Context.BoolTy, Context.CharTy, Context.WCharTy,
2776//    Context.Char16Ty, Context.Char32Ty,
2777    Context.SignedCharTy, Context.ShortTy,
2778    Context.UnsignedCharTy, Context.UnsignedShortTy,
2779    Context.IntTy, Context.LongTy, Context.LongLongTy,
2780    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2781    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2782  };
2783
2784  // Find all of the types that the arguments can convert to, but only
2785  // if the operator we're looking at has built-in operator candidates
2786  // that make use of these types.
2787  BuiltinCandidateTypeSet CandidateTypes(Context);
2788  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2789      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2790      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2791      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2792      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2793      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2794    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2795      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2796                                           true,
2797                                           (Op == OO_Exclaim ||
2798                                            Op == OO_AmpAmp ||
2799                                            Op == OO_PipePipe));
2800  }
2801
2802  bool isComparison = false;
2803  switch (Op) {
2804  case OO_None:
2805  case NUM_OVERLOADED_OPERATORS:
2806    assert(false && "Expected an overloaded operator");
2807    break;
2808
2809  case OO_Star: // '*' is either unary or binary
2810    if (NumArgs == 1)
2811      goto UnaryStar;
2812    else
2813      goto BinaryStar;
2814    break;
2815
2816  case OO_Plus: // '+' is either unary or binary
2817    if (NumArgs == 1)
2818      goto UnaryPlus;
2819    else
2820      goto BinaryPlus;
2821    break;
2822
2823  case OO_Minus: // '-' is either unary or binary
2824    if (NumArgs == 1)
2825      goto UnaryMinus;
2826    else
2827      goto BinaryMinus;
2828    break;
2829
2830  case OO_Amp: // '&' is either unary or binary
2831    if (NumArgs == 1)
2832      goto UnaryAmp;
2833    else
2834      goto BinaryAmp;
2835
2836  case OO_PlusPlus:
2837  case OO_MinusMinus:
2838    // C++ [over.built]p3:
2839    //
2840    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2841    //   is either volatile or empty, there exist candidate operator
2842    //   functions of the form
2843    //
2844    //       VQ T&      operator++(VQ T&);
2845    //       T          operator++(VQ T&, int);
2846    //
2847    // C++ [over.built]p4:
2848    //
2849    //   For every pair (T, VQ), where T is an arithmetic type other
2850    //   than bool, and VQ is either volatile or empty, there exist
2851    //   candidate operator functions of the form
2852    //
2853    //       VQ T&      operator--(VQ T&);
2854    //       T          operator--(VQ T&, int);
2855    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2856         Arith < NumArithmeticTypes; ++Arith) {
2857      QualType ArithTy = ArithmeticTypes[Arith];
2858      QualType ParamTypes[2]
2859        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2860
2861      // Non-volatile version.
2862      if (NumArgs == 1)
2863        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2864      else
2865        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2866
2867      // Volatile version
2868      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2869      if (NumArgs == 1)
2870        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2871      else
2872        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2873    }
2874
2875    // C++ [over.built]p5:
2876    //
2877    //   For every pair (T, VQ), where T is a cv-qualified or
2878    //   cv-unqualified object type, and VQ is either volatile or
2879    //   empty, there exist candidate operator functions of the form
2880    //
2881    //       T*VQ&      operator++(T*VQ&);
2882    //       T*VQ&      operator--(T*VQ&);
2883    //       T*         operator++(T*VQ&, int);
2884    //       T*         operator--(T*VQ&, int);
2885    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2886         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2887      // Skip pointer types that aren't pointers to object types.
2888      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
2889        continue;
2890
2891      QualType ParamTypes[2] = {
2892        Context.getLValueReferenceType(*Ptr), Context.IntTy
2893      };
2894
2895      // Without volatile
2896      if (NumArgs == 1)
2897        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2898      else
2899        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2900
2901      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2902        // With volatile
2903        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2904        if (NumArgs == 1)
2905          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2906        else
2907          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2908      }
2909    }
2910    break;
2911
2912  UnaryStar:
2913    // C++ [over.built]p6:
2914    //   For every cv-qualified or cv-unqualified object type T, there
2915    //   exist candidate operator functions of the form
2916    //
2917    //       T&         operator*(T*);
2918    //
2919    // C++ [over.built]p7:
2920    //   For every function type T, there exist candidate operator
2921    //   functions of the form
2922    //       T&         operator*(T*);
2923    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2924         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2925      QualType ParamTy = *Ptr;
2926      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
2927      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2928                          &ParamTy, Args, 1, CandidateSet);
2929    }
2930    break;
2931
2932  UnaryPlus:
2933    // C++ [over.built]p8:
2934    //   For every type T, there exist candidate operator functions of
2935    //   the form
2936    //
2937    //       T*         operator+(T*);
2938    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2939         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2940      QualType ParamTy = *Ptr;
2941      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2942    }
2943
2944    // Fall through
2945
2946  UnaryMinus:
2947    // C++ [over.built]p9:
2948    //  For every promoted arithmetic type T, there exist candidate
2949    //  operator functions of the form
2950    //
2951    //       T         operator+(T);
2952    //       T         operator-(T);
2953    for (unsigned Arith = FirstPromotedArithmeticType;
2954         Arith < LastPromotedArithmeticType; ++Arith) {
2955      QualType ArithTy = ArithmeticTypes[Arith];
2956      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2957    }
2958    break;
2959
2960  case OO_Tilde:
2961    // C++ [over.built]p10:
2962    //   For every promoted integral type T, there exist candidate
2963    //   operator functions of the form
2964    //
2965    //        T         operator~(T);
2966    for (unsigned Int = FirstPromotedIntegralType;
2967         Int < LastPromotedIntegralType; ++Int) {
2968      QualType IntTy = ArithmeticTypes[Int];
2969      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2970    }
2971    break;
2972
2973  case OO_New:
2974  case OO_Delete:
2975  case OO_Array_New:
2976  case OO_Array_Delete:
2977  case OO_Call:
2978    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2979    break;
2980
2981  case OO_Comma:
2982  UnaryAmp:
2983  case OO_Arrow:
2984    // C++ [over.match.oper]p3:
2985    //   -- For the operator ',', the unary operator '&', or the
2986    //      operator '->', the built-in candidates set is empty.
2987    break;
2988
2989  case OO_Less:
2990  case OO_Greater:
2991  case OO_LessEqual:
2992  case OO_GreaterEqual:
2993  case OO_EqualEqual:
2994  case OO_ExclaimEqual:
2995    // C++ [over.built]p15:
2996    //
2997    //   For every pointer or enumeration type T, there exist
2998    //   candidate operator functions of the form
2999    //
3000    //        bool       operator<(T, T);
3001    //        bool       operator>(T, T);
3002    //        bool       operator<=(T, T);
3003    //        bool       operator>=(T, T);
3004    //        bool       operator==(T, T);
3005    //        bool       operator!=(T, T);
3006    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3007         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3008      QualType ParamTypes[2] = { *Ptr, *Ptr };
3009      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3010    }
3011    for (BuiltinCandidateTypeSet::iterator Enum
3012           = CandidateTypes.enumeration_begin();
3013         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3014      QualType ParamTypes[2] = { *Enum, *Enum };
3015      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3016    }
3017
3018    // Fall through.
3019    isComparison = true;
3020
3021  BinaryPlus:
3022  BinaryMinus:
3023    if (!isComparison) {
3024      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3025
3026      // C++ [over.built]p13:
3027      //
3028      //   For every cv-qualified or cv-unqualified object type T
3029      //   there exist candidate operator functions of the form
3030      //
3031      //      T*         operator+(T*, ptrdiff_t);
3032      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3033      //      T*         operator-(T*, ptrdiff_t);
3034      //      T*         operator+(ptrdiff_t, T*);
3035      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3036      //
3037      // C++ [over.built]p14:
3038      //
3039      //   For every T, where T is a pointer to object type, there
3040      //   exist candidate operator functions of the form
3041      //
3042      //      ptrdiff_t  operator-(T, T);
3043      for (BuiltinCandidateTypeSet::iterator Ptr
3044             = CandidateTypes.pointer_begin();
3045           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3046        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3047
3048        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3049        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3050
3051        if (Op == OO_Plus) {
3052          // T* operator+(ptrdiff_t, T*);
3053          ParamTypes[0] = ParamTypes[1];
3054          ParamTypes[1] = *Ptr;
3055          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3056        } else {
3057          // ptrdiff_t operator-(T, T);
3058          ParamTypes[1] = *Ptr;
3059          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3060                              Args, 2, CandidateSet);
3061        }
3062      }
3063    }
3064    // Fall through
3065
3066  case OO_Slash:
3067  BinaryStar:
3068  Conditional:
3069    // C++ [over.built]p12:
3070    //
3071    //   For every pair of promoted arithmetic types L and R, there
3072    //   exist candidate operator functions of the form
3073    //
3074    //        LR         operator*(L, R);
3075    //        LR         operator/(L, R);
3076    //        LR         operator+(L, R);
3077    //        LR         operator-(L, R);
3078    //        bool       operator<(L, R);
3079    //        bool       operator>(L, R);
3080    //        bool       operator<=(L, R);
3081    //        bool       operator>=(L, R);
3082    //        bool       operator==(L, R);
3083    //        bool       operator!=(L, R);
3084    //
3085    //   where LR is the result of the usual arithmetic conversions
3086    //   between types L and R.
3087    //
3088    // C++ [over.built]p24:
3089    //
3090    //   For every pair of promoted arithmetic types L and R, there exist
3091    //   candidate operator functions of the form
3092    //
3093    //        LR       operator?(bool, L, R);
3094    //
3095    //   where LR is the result of the usual arithmetic conversions
3096    //   between types L and R.
3097    // Our candidates ignore the first parameter.
3098    for (unsigned Left = FirstPromotedArithmeticType;
3099         Left < LastPromotedArithmeticType; ++Left) {
3100      for (unsigned Right = FirstPromotedArithmeticType;
3101           Right < LastPromotedArithmeticType; ++Right) {
3102        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3103        QualType Result
3104          = isComparison? Context.BoolTy
3105                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3106        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3107      }
3108    }
3109    break;
3110
3111  case OO_Percent:
3112  BinaryAmp:
3113  case OO_Caret:
3114  case OO_Pipe:
3115  case OO_LessLess:
3116  case OO_GreaterGreater:
3117    // C++ [over.built]p17:
3118    //
3119    //   For every pair of promoted integral types L and R, there
3120    //   exist candidate operator functions of the form
3121    //
3122    //      LR         operator%(L, R);
3123    //      LR         operator&(L, R);
3124    //      LR         operator^(L, R);
3125    //      LR         operator|(L, R);
3126    //      L          operator<<(L, R);
3127    //      L          operator>>(L, R);
3128    //
3129    //   where LR is the result of the usual arithmetic conversions
3130    //   between types L and R.
3131    for (unsigned Left = FirstPromotedIntegralType;
3132         Left < LastPromotedIntegralType; ++Left) {
3133      for (unsigned Right = FirstPromotedIntegralType;
3134           Right < LastPromotedIntegralType; ++Right) {
3135        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3136        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3137            ? LandR[0]
3138            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3139        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3140      }
3141    }
3142    break;
3143
3144  case OO_Equal:
3145    // C++ [over.built]p20:
3146    //
3147    //   For every pair (T, VQ), where T is an enumeration or
3148    //   (FIXME:) pointer to member type and VQ is either volatile or
3149    //   empty, there exist candidate operator functions of the form
3150    //
3151    //        VQ T&      operator=(VQ T&, T);
3152    for (BuiltinCandidateTypeSet::iterator Enum
3153           = CandidateTypes.enumeration_begin();
3154         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3155      QualType ParamTypes[2];
3156
3157      // T& operator=(T&, T)
3158      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3159      ParamTypes[1] = *Enum;
3160      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3161                          /*IsAssignmentOperator=*/false);
3162
3163      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3164        // volatile T& operator=(volatile T&, T)
3165        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3166        ParamTypes[1] = *Enum;
3167        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3168                            /*IsAssignmentOperator=*/false);
3169      }
3170    }
3171    // Fall through.
3172
3173  case OO_PlusEqual:
3174  case OO_MinusEqual:
3175    // C++ [over.built]p19:
3176    //
3177    //   For every pair (T, VQ), where T is any type and VQ is either
3178    //   volatile or empty, there exist candidate operator functions
3179    //   of the form
3180    //
3181    //        T*VQ&      operator=(T*VQ&, T*);
3182    //
3183    // C++ [over.built]p21:
3184    //
3185    //   For every pair (T, VQ), where T is a cv-qualified or
3186    //   cv-unqualified object type and VQ is either volatile or
3187    //   empty, there exist candidate operator functions of the form
3188    //
3189    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3190    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3191    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3192         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3193      QualType ParamTypes[2];
3194      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3195
3196      // non-volatile version
3197      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3198      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3199                          /*IsAssigmentOperator=*/Op == OO_Equal);
3200
3201      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3202        // volatile version
3203        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3204        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3205                            /*IsAssigmentOperator=*/Op == OO_Equal);
3206      }
3207    }
3208    // Fall through.
3209
3210  case OO_StarEqual:
3211  case OO_SlashEqual:
3212    // C++ [over.built]p18:
3213    //
3214    //   For every triple (L, VQ, R), where L is an arithmetic type,
3215    //   VQ is either volatile or empty, and R is a promoted
3216    //   arithmetic type, there exist candidate operator functions of
3217    //   the form
3218    //
3219    //        VQ L&      operator=(VQ L&, R);
3220    //        VQ L&      operator*=(VQ L&, R);
3221    //        VQ L&      operator/=(VQ L&, R);
3222    //        VQ L&      operator+=(VQ L&, R);
3223    //        VQ L&      operator-=(VQ L&, R);
3224    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3225      for (unsigned Right = FirstPromotedArithmeticType;
3226           Right < LastPromotedArithmeticType; ++Right) {
3227        QualType ParamTypes[2];
3228        ParamTypes[1] = ArithmeticTypes[Right];
3229
3230        // Add this built-in operator as a candidate (VQ is empty).
3231        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3232        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3233                            /*IsAssigmentOperator=*/Op == OO_Equal);
3234
3235        // Add this built-in operator as a candidate (VQ is 'volatile').
3236        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3237        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3238        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3239                            /*IsAssigmentOperator=*/Op == OO_Equal);
3240      }
3241    }
3242    break;
3243
3244  case OO_PercentEqual:
3245  case OO_LessLessEqual:
3246  case OO_GreaterGreaterEqual:
3247  case OO_AmpEqual:
3248  case OO_CaretEqual:
3249  case OO_PipeEqual:
3250    // C++ [over.built]p22:
3251    //
3252    //   For every triple (L, VQ, R), where L is an integral type, VQ
3253    //   is either volatile or empty, and R is a promoted integral
3254    //   type, there exist candidate operator functions of the form
3255    //
3256    //        VQ L&       operator%=(VQ L&, R);
3257    //        VQ L&       operator<<=(VQ L&, R);
3258    //        VQ L&       operator>>=(VQ L&, R);
3259    //        VQ L&       operator&=(VQ L&, R);
3260    //        VQ L&       operator^=(VQ L&, R);
3261    //        VQ L&       operator|=(VQ L&, R);
3262    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3263      for (unsigned Right = FirstPromotedIntegralType;
3264           Right < LastPromotedIntegralType; ++Right) {
3265        QualType ParamTypes[2];
3266        ParamTypes[1] = ArithmeticTypes[Right];
3267
3268        // Add this built-in operator as a candidate (VQ is empty).
3269        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3270        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3271
3272        // Add this built-in operator as a candidate (VQ is 'volatile').
3273        ParamTypes[0] = ArithmeticTypes[Left];
3274        ParamTypes[0].addVolatile();
3275        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3276        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3277      }
3278    }
3279    break;
3280
3281  case OO_Exclaim: {
3282    // C++ [over.operator]p23:
3283    //
3284    //   There also exist candidate operator functions of the form
3285    //
3286    //        bool        operator!(bool);
3287    //        bool        operator&&(bool, bool);     [BELOW]
3288    //        bool        operator||(bool, bool);     [BELOW]
3289    QualType ParamTy = Context.BoolTy;
3290    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3291                        /*IsAssignmentOperator=*/false,
3292                        /*NumContextualBoolArguments=*/1);
3293    break;
3294  }
3295
3296  case OO_AmpAmp:
3297  case OO_PipePipe: {
3298    // C++ [over.operator]p23:
3299    //
3300    //   There also exist candidate operator functions of the form
3301    //
3302    //        bool        operator!(bool);            [ABOVE]
3303    //        bool        operator&&(bool, bool);
3304    //        bool        operator||(bool, bool);
3305    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3306    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3307                        /*IsAssignmentOperator=*/false,
3308                        /*NumContextualBoolArguments=*/2);
3309    break;
3310  }
3311
3312  case OO_Subscript:
3313    // C++ [over.built]p13:
3314    //
3315    //   For every cv-qualified or cv-unqualified object type T there
3316    //   exist candidate operator functions of the form
3317    //
3318    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3319    //        T&         operator[](T*, ptrdiff_t);
3320    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3321    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3322    //        T&         operator[](ptrdiff_t, T*);
3323    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3324         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3325      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3326      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3327      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3328
3329      // T& operator[](T*, ptrdiff_t)
3330      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3331
3332      // T& operator[](ptrdiff_t, T*);
3333      ParamTypes[0] = ParamTypes[1];
3334      ParamTypes[1] = *Ptr;
3335      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3336    }
3337    break;
3338
3339  case OO_ArrowStar:
3340    // FIXME: No support for pointer-to-members yet.
3341    break;
3342
3343  case OO_Conditional:
3344    // Note that we don't consider the first argument, since it has been
3345    // contextually converted to bool long ago. The candidates below are
3346    // therefore added as binary.
3347    //
3348    // C++ [over.built]p24:
3349    //   For every type T, where T is a pointer or pointer-to-member type,
3350    //   there exist candidate operator functions of the form
3351    //
3352    //        T        operator?(bool, T, T);
3353    //
3354    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3355         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3356      QualType ParamTypes[2] = { *Ptr, *Ptr };
3357      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3358    }
3359    for (BuiltinCandidateTypeSet::iterator Ptr =
3360           CandidateTypes.member_pointer_begin(),
3361         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3362      QualType ParamTypes[2] = { *Ptr, *Ptr };
3363      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3364    }
3365    goto Conditional;
3366  }
3367}
3368
3369/// \brief Add function candidates found via argument-dependent lookup
3370/// to the set of overloading candidates.
3371///
3372/// This routine performs argument-dependent name lookup based on the
3373/// given function name (which may also be an operator name) and adds
3374/// all of the overload candidates found by ADL to the overload
3375/// candidate set (C++ [basic.lookup.argdep]).
3376void
3377Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3378                                           Expr **Args, unsigned NumArgs,
3379                                           OverloadCandidateSet& CandidateSet) {
3380  FunctionSet Functions;
3381
3382  // Record all of the function candidates that we've already
3383  // added to the overload set, so that we don't add those same
3384  // candidates a second time.
3385  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3386                                   CandEnd = CandidateSet.end();
3387       Cand != CandEnd; ++Cand)
3388    if (Cand->Function) {
3389      Functions.insert(Cand->Function);
3390      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3391        Functions.insert(FunTmpl);
3392    }
3393
3394  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3395
3396  // Erase all of the candidates we already knew about.
3397  // FIXME: This is suboptimal. Is there a better way?
3398  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3399                                   CandEnd = CandidateSet.end();
3400       Cand != CandEnd; ++Cand)
3401    if (Cand->Function) {
3402      Functions.erase(Cand->Function);
3403      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3404        Functions.erase(FunTmpl);
3405    }
3406
3407  // For each of the ADL candidates we found, add it to the overload
3408  // set.
3409  for (FunctionSet::iterator Func = Functions.begin(),
3410                          FuncEnd = Functions.end();
3411       Func != FuncEnd; ++Func) {
3412    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3413      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3414    else
3415      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3416                                   /*FIXME: explicit args */false, 0, 0,
3417                                   Args, NumArgs, CandidateSet);
3418  }
3419}
3420
3421/// isBetterOverloadCandidate - Determines whether the first overload
3422/// candidate is a better candidate than the second (C++ 13.3.3p1).
3423bool
3424Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3425                                const OverloadCandidate& Cand2)
3426{
3427  // Define viable functions to be better candidates than non-viable
3428  // functions.
3429  if (!Cand2.Viable)
3430    return Cand1.Viable;
3431  else if (!Cand1.Viable)
3432    return false;
3433
3434  // C++ [over.match.best]p1:
3435  //
3436  //   -- if F is a static member function, ICS1(F) is defined such
3437  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3438  //      any function G, and, symmetrically, ICS1(G) is neither
3439  //      better nor worse than ICS1(F).
3440  unsigned StartArg = 0;
3441  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3442    StartArg = 1;
3443
3444  // C++ [over.match.best]p1:
3445  //   A viable function F1 is defined to be a better function than another
3446  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3447  //   conversion sequence than ICSi(F2), and then...
3448  unsigned NumArgs = Cand1.Conversions.size();
3449  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3450  bool HasBetterConversion = false;
3451  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3452    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3453                                               Cand2.Conversions[ArgIdx])) {
3454    case ImplicitConversionSequence::Better:
3455      // Cand1 has a better conversion sequence.
3456      HasBetterConversion = true;
3457      break;
3458
3459    case ImplicitConversionSequence::Worse:
3460      // Cand1 can't be better than Cand2.
3461      return false;
3462
3463    case ImplicitConversionSequence::Indistinguishable:
3464      // Do nothing.
3465      break;
3466    }
3467  }
3468
3469  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3470  //       ICSj(F2), or, if not that,
3471  if (HasBetterConversion)
3472    return true;
3473
3474  //     - F1 is a non-template function and F2 is a function template
3475  //       specialization, or, if not that,
3476  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3477      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3478    return true;
3479
3480  //   -- F1 and F2 are function template specializations, and the function
3481  //      template for F1 is more specialized than the template for F2
3482  //      according to the partial ordering rules described in 14.5.5.2, or,
3483  //      if not that,
3484  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3485      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3486    // FIXME: Implement partial ordering of function templates.
3487    Diag(SourceLocation(), diag::unsup_function_template_partial_ordering);
3488
3489  //   -- the context is an initialization by user-defined conversion
3490  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3491  //      from the return type of F1 to the destination type (i.e.,
3492  //      the type of the entity being initialized) is a better
3493  //      conversion sequence than the standard conversion sequence
3494  //      from the return type of F2 to the destination type.
3495  if (Cand1.Function && Cand2.Function &&
3496      isa<CXXConversionDecl>(Cand1.Function) &&
3497      isa<CXXConversionDecl>(Cand2.Function)) {
3498    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3499                                               Cand2.FinalConversion)) {
3500    case ImplicitConversionSequence::Better:
3501      // Cand1 has a better conversion sequence.
3502      return true;
3503
3504    case ImplicitConversionSequence::Worse:
3505      // Cand1 can't be better than Cand2.
3506      return false;
3507
3508    case ImplicitConversionSequence::Indistinguishable:
3509      // Do nothing
3510      break;
3511    }
3512  }
3513
3514  return false;
3515}
3516
3517/// \brief Computes the best viable function (C++ 13.3.3)
3518/// within an overload candidate set.
3519///
3520/// \param CandidateSet the set of candidate functions.
3521///
3522/// \param Loc the location of the function name (or operator symbol) for
3523/// which overload resolution occurs.
3524///
3525/// \param Best f overload resolution was successful or found a deleted
3526/// function, Best points to the candidate function found.
3527///
3528/// \returns The result of overload resolution.
3529Sema::OverloadingResult
3530Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3531                         SourceLocation Loc,
3532                         OverloadCandidateSet::iterator& Best)
3533{
3534  // Find the best viable function.
3535  Best = CandidateSet.end();
3536  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3537       Cand != CandidateSet.end(); ++Cand) {
3538    if (Cand->Viable) {
3539      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3540        Best = Cand;
3541    }
3542  }
3543
3544  // If we didn't find any viable functions, abort.
3545  if (Best == CandidateSet.end())
3546    return OR_No_Viable_Function;
3547
3548  // Make sure that this function is better than every other viable
3549  // function. If not, we have an ambiguity.
3550  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3551       Cand != CandidateSet.end(); ++Cand) {
3552    if (Cand->Viable &&
3553        Cand != Best &&
3554        !isBetterOverloadCandidate(*Best, *Cand)) {
3555      Best = CandidateSet.end();
3556      return OR_Ambiguous;
3557    }
3558  }
3559
3560  // Best is the best viable function.
3561  if (Best->Function &&
3562      (Best->Function->isDeleted() ||
3563       Best->Function->getAttr<UnavailableAttr>()))
3564    return OR_Deleted;
3565
3566  // C++ [basic.def.odr]p2:
3567  //   An overloaded function is used if it is selected by overload resolution
3568  //   when referred to from a potentially-evaluated expression. [Note: this
3569  //   covers calls to named functions (5.2.2), operator overloading
3570  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3571  //   placement new (5.3.4), as well as non-default initialization (8.5).
3572  if (Best->Function)
3573    MarkDeclarationReferenced(Loc, Best->Function);
3574  return OR_Success;
3575}
3576
3577/// PrintOverloadCandidates - When overload resolution fails, prints
3578/// diagnostic messages containing the candidates in the candidate
3579/// set. If OnlyViable is true, only viable candidates will be printed.
3580void
3581Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3582                              bool OnlyViable)
3583{
3584  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3585                             LastCand = CandidateSet.end();
3586  for (; Cand != LastCand; ++Cand) {
3587    if (Cand->Viable || !OnlyViable) {
3588      if (Cand->Function) {
3589        if (Cand->Function->isDeleted() ||
3590            Cand->Function->getAttr<UnavailableAttr>()) {
3591          // Deleted or "unavailable" function.
3592          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3593            << Cand->Function->isDeleted();
3594        } else {
3595          // Normal function
3596          // FIXME: Give a better reason!
3597          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3598        }
3599      } else if (Cand->IsSurrogate) {
3600        // Desugar the type of the surrogate down to a function type,
3601        // retaining as many typedefs as possible while still showing
3602        // the function type (and, therefore, its parameter types).
3603        QualType FnType = Cand->Surrogate->getConversionType();
3604        bool isLValueReference = false;
3605        bool isRValueReference = false;
3606        bool isPointer = false;
3607        if (const LValueReferenceType *FnTypeRef =
3608              FnType->getAs<LValueReferenceType>()) {
3609          FnType = FnTypeRef->getPointeeType();
3610          isLValueReference = true;
3611        } else if (const RValueReferenceType *FnTypeRef =
3612                     FnType->getAs<RValueReferenceType>()) {
3613          FnType = FnTypeRef->getPointeeType();
3614          isRValueReference = true;
3615        }
3616        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3617          FnType = FnTypePtr->getPointeeType();
3618          isPointer = true;
3619        }
3620        // Desugar down to a function type.
3621        FnType = QualType(FnType->getAsFunctionType(), 0);
3622        // Reconstruct the pointer/reference as appropriate.
3623        if (isPointer) FnType = Context.getPointerType(FnType);
3624        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3625        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3626
3627        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3628          << FnType;
3629      } else {
3630        // FIXME: We need to get the identifier in here
3631        // FIXME: Do we want the error message to point at the operator?
3632        // (built-ins won't have a location)
3633        QualType FnType
3634          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3635                                    Cand->BuiltinTypes.ParamTypes,
3636                                    Cand->Conversions.size(),
3637                                    false, 0);
3638
3639        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3640      }
3641    }
3642  }
3643}
3644
3645/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3646/// an overloaded function (C++ [over.over]), where @p From is an
3647/// expression with overloaded function type and @p ToType is the type
3648/// we're trying to resolve to. For example:
3649///
3650/// @code
3651/// int f(double);
3652/// int f(int);
3653///
3654/// int (*pfd)(double) = f; // selects f(double)
3655/// @endcode
3656///
3657/// This routine returns the resulting FunctionDecl if it could be
3658/// resolved, and NULL otherwise. When @p Complain is true, this
3659/// routine will emit diagnostics if there is an error.
3660FunctionDecl *
3661Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3662                                         bool Complain) {
3663  QualType FunctionType = ToType;
3664  bool IsMember = false;
3665  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3666    FunctionType = ToTypePtr->getPointeeType();
3667  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3668    FunctionType = ToTypeRef->getPointeeType();
3669  else if (const MemberPointerType *MemTypePtr =
3670                    ToType->getAs<MemberPointerType>()) {
3671    FunctionType = MemTypePtr->getPointeeType();
3672    IsMember = true;
3673  }
3674
3675  // We only look at pointers or references to functions.
3676  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3677  if (!FunctionType->isFunctionType())
3678    return 0;
3679
3680  // Find the actual overloaded function declaration.
3681  OverloadedFunctionDecl *Ovl = 0;
3682
3683  // C++ [over.over]p1:
3684  //   [...] [Note: any redundant set of parentheses surrounding the
3685  //   overloaded function name is ignored (5.1). ]
3686  Expr *OvlExpr = From->IgnoreParens();
3687
3688  // C++ [over.over]p1:
3689  //   [...] The overloaded function name can be preceded by the &
3690  //   operator.
3691  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3692    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3693      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3694  }
3695
3696  // Try to dig out the overloaded function.
3697  FunctionTemplateDecl *FunctionTemplate = 0;
3698  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3699    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3700    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3701  }
3702
3703  // If there's no overloaded function declaration or function template,
3704  // we're done.
3705  if (!Ovl && !FunctionTemplate)
3706    return 0;
3707
3708  OverloadIterator Fun;
3709  if (Ovl)
3710    Fun = Ovl;
3711  else
3712    Fun = FunctionTemplate;
3713
3714  // Look through all of the overloaded functions, searching for one
3715  // whose type matches exactly.
3716  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3717
3718  bool FoundNonTemplateFunction = false;
3719  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3720    // C++ [over.over]p3:
3721    //   Non-member functions and static member functions match
3722    //   targets of type "pointer-to-function" or "reference-to-function."
3723    //   Nonstatic member functions match targets of
3724    //   type "pointer-to-member-function."
3725    // Note that according to DR 247, the containing class does not matter.
3726
3727    if (FunctionTemplateDecl *FunctionTemplate
3728          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3729      if (CXXMethodDecl *Method
3730            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3731        // Skip non-static function templates when converting to pointer, and
3732        // static when converting to member pointer.
3733        if (Method->isStatic() == IsMember)
3734          continue;
3735      } else if (IsMember)
3736        continue;
3737
3738      // C++ [over.over]p2:
3739      //   If the name is a function template, template argument deduction is
3740      //   done (14.8.2.2), and if the argument deduction succeeds, the
3741      //   resulting template argument list is used to generate a single
3742      //   function template specialization, which is added to the set of
3743      //   overloaded functions considered.
3744      FunctionDecl *Specialization = 0;
3745      TemplateDeductionInfo Info(Context);
3746      if (TemplateDeductionResult Result
3747            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3748                                      /*FIXME:*/0, /*FIXME:*/0,
3749                                      FunctionType, Specialization, Info)) {
3750        // FIXME: make a note of the failed deduction for diagnostics.
3751        (void)Result;
3752      } else {
3753        assert(FunctionType
3754                 == Context.getCanonicalType(Specialization->getType()));
3755        Matches.insert(
3756                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3757      }
3758    }
3759
3760    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3761      // Skip non-static functions when converting to pointer, and static
3762      // when converting to member pointer.
3763      if (Method->isStatic() == IsMember)
3764        continue;
3765    } else if (IsMember)
3766      continue;
3767
3768    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3769      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3770        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3771        FoundNonTemplateFunction = true;
3772      }
3773    }
3774  }
3775
3776  // If there were 0 or 1 matches, we're done.
3777  if (Matches.empty())
3778    return 0;
3779  else if (Matches.size() == 1)
3780    return *Matches.begin();
3781
3782  // C++ [over.over]p4:
3783  //   If more than one function is selected, [...]
3784  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3785  if (FoundNonTemplateFunction) {
3786    // [...] any function template specializations in the set are eliminated
3787    // if the set also contains a non-template function, [...]
3788    for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3789                                                     MEnd = Matches.end();
3790         M != MEnd; ++M)
3791      if ((*M)->getPrimaryTemplate() == 0)
3792        RemainingMatches.push_back(*M);
3793  } else {
3794    // [...] and any given function template specialization F1 is eliminated
3795    // if the set contains a second function template specialization whose
3796    // function template is more specialized than the function template of F1
3797    // according to the partial ordering rules of 14.5.5.2.
3798    // FIXME: Implement this!
3799    RemainingMatches.append(Matches.begin(), Matches.end());
3800  }
3801
3802  // [...] After such eliminations, if any, there shall remain exactly one
3803  // selected function.
3804  if (RemainingMatches.size() == 1)
3805    return RemainingMatches.front();
3806
3807  // FIXME: We should probably return the same thing that BestViableFunction
3808  // returns (even if we issue the diagnostics here).
3809  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3810    << RemainingMatches[0]->getDeclName();
3811  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3812    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3813  return 0;
3814}
3815
3816/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3817/// (which eventually refers to the declaration Func) and the call
3818/// arguments Args/NumArgs, attempt to resolve the function call down
3819/// to a specific function. If overload resolution succeeds, returns
3820/// the function declaration produced by overload
3821/// resolution. Otherwise, emits diagnostics, deletes all of the
3822/// arguments and Fn, and returns NULL.
3823FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3824                                            DeclarationName UnqualifiedName,
3825                                            bool HasExplicitTemplateArgs,
3826                                 const TemplateArgument *ExplicitTemplateArgs,
3827                                            unsigned NumExplicitTemplateArgs,
3828                                            SourceLocation LParenLoc,
3829                                            Expr **Args, unsigned NumArgs,
3830                                            SourceLocation *CommaLocs,
3831                                            SourceLocation RParenLoc,
3832                                            bool &ArgumentDependentLookup) {
3833  OverloadCandidateSet CandidateSet;
3834
3835  // Add the functions denoted by Callee to the set of candidate
3836  // functions. While we're doing so, track whether argument-dependent
3837  // lookup still applies, per:
3838  //
3839  // C++0x [basic.lookup.argdep]p3:
3840  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3841  //   and let Y be the lookup set produced by argument dependent
3842  //   lookup (defined as follows). If X contains
3843  //
3844  //     -- a declaration of a class member, or
3845  //
3846  //     -- a block-scope function declaration that is not a
3847  //        using-declaration, or
3848  //
3849  //     -- a declaration that is neither a function or a function
3850  //        template
3851  //
3852  //   then Y is empty.
3853  if (OverloadedFunctionDecl *Ovl
3854        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3855    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3856                                                FuncEnd = Ovl->function_end();
3857         Func != FuncEnd; ++Func) {
3858      DeclContext *Ctx = 0;
3859      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3860        if (HasExplicitTemplateArgs)
3861          continue;
3862
3863        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3864        Ctx = FunDecl->getDeclContext();
3865      } else {
3866        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3867        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3868                                     ExplicitTemplateArgs,
3869                                     NumExplicitTemplateArgs,
3870                                     Args, NumArgs, CandidateSet);
3871        Ctx = FunTmpl->getDeclContext();
3872      }
3873
3874
3875      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3876        ArgumentDependentLookup = false;
3877    }
3878  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3879    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3880    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3881
3882    if (Func->getDeclContext()->isRecord() ||
3883        Func->getDeclContext()->isFunctionOrMethod())
3884      ArgumentDependentLookup = false;
3885  } else if (FunctionTemplateDecl *FuncTemplate
3886               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3887    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3888                                 ExplicitTemplateArgs,
3889                                 NumExplicitTemplateArgs,
3890                                 Args, NumArgs, CandidateSet);
3891
3892    if (FuncTemplate->getDeclContext()->isRecord())
3893      ArgumentDependentLookup = false;
3894  }
3895
3896  if (Callee)
3897    UnqualifiedName = Callee->getDeclName();
3898
3899  // FIXME: Pass explicit template arguments through for ADL
3900  if (ArgumentDependentLookup)
3901    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3902                                         CandidateSet);
3903
3904  OverloadCandidateSet::iterator Best;
3905  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3906  case OR_Success:
3907    return Best->Function;
3908
3909  case OR_No_Viable_Function:
3910    Diag(Fn->getSourceRange().getBegin(),
3911         diag::err_ovl_no_viable_function_in_call)
3912      << UnqualifiedName << Fn->getSourceRange();
3913    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3914    break;
3915
3916  case OR_Ambiguous:
3917    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3918      << UnqualifiedName << Fn->getSourceRange();
3919    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3920    break;
3921
3922  case OR_Deleted:
3923    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3924      << Best->Function->isDeleted()
3925      << UnqualifiedName
3926      << Fn->getSourceRange();
3927    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3928    break;
3929  }
3930
3931  // Overload resolution failed. Destroy all of the subexpressions and
3932  // return NULL.
3933  Fn->Destroy(Context);
3934  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3935    Args[Arg]->Destroy(Context);
3936  return 0;
3937}
3938
3939/// \brief Create a unary operation that may resolve to an overloaded
3940/// operator.
3941///
3942/// \param OpLoc The location of the operator itself (e.g., '*').
3943///
3944/// \param OpcIn The UnaryOperator::Opcode that describes this
3945/// operator.
3946///
3947/// \param Functions The set of non-member functions that will be
3948/// considered by overload resolution. The caller needs to build this
3949/// set based on the context using, e.g.,
3950/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3951/// set should not contain any member functions; those will be added
3952/// by CreateOverloadedUnaryOp().
3953///
3954/// \param input The input argument.
3955Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3956                                                     unsigned OpcIn,
3957                                                     FunctionSet &Functions,
3958                                                     ExprArg input) {
3959  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3960  Expr *Input = (Expr *)input.get();
3961
3962  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3963  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3964  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3965
3966  Expr *Args[2] = { Input, 0 };
3967  unsigned NumArgs = 1;
3968
3969  // For post-increment and post-decrement, add the implicit '0' as
3970  // the second argument, so that we know this is a post-increment or
3971  // post-decrement.
3972  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3973    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3974    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3975                                           SourceLocation());
3976    NumArgs = 2;
3977  }
3978
3979  if (Input->isTypeDependent()) {
3980    OverloadedFunctionDecl *Overloads
3981      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3982    for (FunctionSet::iterator Func = Functions.begin(),
3983                            FuncEnd = Functions.end();
3984         Func != FuncEnd; ++Func)
3985      Overloads->addOverload(*Func);
3986
3987    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3988                                                OpLoc, false, false);
3989
3990    input.release();
3991    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3992                                                   &Args[0], NumArgs,
3993                                                   Context.DependentTy,
3994                                                   OpLoc));
3995  }
3996
3997  // Build an empty overload set.
3998  OverloadCandidateSet CandidateSet;
3999
4000  // Add the candidates from the given function set.
4001  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4002
4003  // Add operator candidates that are member functions.
4004  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4005
4006  // Add builtin operator candidates.
4007  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4008
4009  // Perform overload resolution.
4010  OverloadCandidateSet::iterator Best;
4011  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4012  case OR_Success: {
4013    // We found a built-in operator or an overloaded operator.
4014    FunctionDecl *FnDecl = Best->Function;
4015
4016    if (FnDecl) {
4017      // We matched an overloaded operator. Build a call to that
4018      // operator.
4019
4020      // Convert the arguments.
4021      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4022        if (PerformObjectArgumentInitialization(Input, Method))
4023          return ExprError();
4024      } else {
4025        // Convert the arguments.
4026        if (PerformCopyInitialization(Input,
4027                                      FnDecl->getParamDecl(0)->getType(),
4028                                      "passing"))
4029          return ExprError();
4030      }
4031
4032      // Determine the result type
4033      QualType ResultTy
4034        = FnDecl->getType()->getAsFunctionType()->getResultType();
4035      ResultTy = ResultTy.getNonReferenceType();
4036
4037      // Build the actual expression node.
4038      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4039                                               SourceLocation());
4040      UsualUnaryConversions(FnExpr);
4041
4042      input.release();
4043      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4044                                                     &Input, 1, ResultTy,
4045                                                     OpLoc));
4046    } else {
4047      // We matched a built-in operator. Convert the arguments, then
4048      // break out so that we will build the appropriate built-in
4049      // operator node.
4050        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4051                                      Best->Conversions[0], "passing"))
4052          return ExprError();
4053
4054        break;
4055      }
4056    }
4057
4058    case OR_No_Viable_Function:
4059      // No viable function; fall through to handling this as a
4060      // built-in operator, which will produce an error message for us.
4061      break;
4062
4063    case OR_Ambiguous:
4064      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4065          << UnaryOperator::getOpcodeStr(Opc)
4066          << Input->getSourceRange();
4067      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4068      return ExprError();
4069
4070    case OR_Deleted:
4071      Diag(OpLoc, diag::err_ovl_deleted_oper)
4072        << Best->Function->isDeleted()
4073        << UnaryOperator::getOpcodeStr(Opc)
4074        << Input->getSourceRange();
4075      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4076      return ExprError();
4077    }
4078
4079  // Either we found no viable overloaded operator or we matched a
4080  // built-in operator. In either case, fall through to trying to
4081  // build a built-in operation.
4082  input.release();
4083  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4084}
4085
4086/// \brief Create a binary operation that may resolve to an overloaded
4087/// operator.
4088///
4089/// \param OpLoc The location of the operator itself (e.g., '+').
4090///
4091/// \param OpcIn The BinaryOperator::Opcode that describes this
4092/// operator.
4093///
4094/// \param Functions The set of non-member functions that will be
4095/// considered by overload resolution. The caller needs to build this
4096/// set based on the context using, e.g.,
4097/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4098/// set should not contain any member functions; those will be added
4099/// by CreateOverloadedBinOp().
4100///
4101/// \param LHS Left-hand argument.
4102/// \param RHS Right-hand argument.
4103Sema::OwningExprResult
4104Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4105                            unsigned OpcIn,
4106                            FunctionSet &Functions,
4107                            Expr *LHS, Expr *RHS) {
4108  Expr *Args[2] = { LHS, RHS };
4109
4110  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4111  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4112  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4113
4114  // If either side is type-dependent, create an appropriate dependent
4115  // expression.
4116  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4117    // .* cannot be overloaded.
4118    if (Opc == BinaryOperator::PtrMemD)
4119      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4120                                                Context.DependentTy, OpLoc));
4121
4122    OverloadedFunctionDecl *Overloads
4123      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4124    for (FunctionSet::iterator Func = Functions.begin(),
4125                            FuncEnd = Functions.end();
4126         Func != FuncEnd; ++Func)
4127      Overloads->addOverload(*Func);
4128
4129    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4130                                                OpLoc, false, false);
4131
4132    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4133                                                   Args, 2,
4134                                                   Context.DependentTy,
4135                                                   OpLoc));
4136  }
4137
4138  // If this is the .* operator, which is not overloadable, just
4139  // create a built-in binary operator.
4140  if (Opc == BinaryOperator::PtrMemD)
4141    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4142
4143  // If this is one of the assignment operators, we only perform
4144  // overload resolution if the left-hand side is a class or
4145  // enumeration type (C++ [expr.ass]p3).
4146  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4147      !LHS->getType()->isOverloadableType())
4148    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4149
4150  // Build an empty overload set.
4151  OverloadCandidateSet CandidateSet;
4152
4153  // Add the candidates from the given function set.
4154  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4155
4156  // Add operator candidates that are member functions.
4157  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4158
4159  // Add builtin operator candidates.
4160  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4161
4162  // Perform overload resolution.
4163  OverloadCandidateSet::iterator Best;
4164  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4165    case OR_Success: {
4166      // We found a built-in operator or an overloaded operator.
4167      FunctionDecl *FnDecl = Best->Function;
4168
4169      if (FnDecl) {
4170        // We matched an overloaded operator. Build a call to that
4171        // operator.
4172
4173        // Convert the arguments.
4174        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4175          if (PerformObjectArgumentInitialization(LHS, Method) ||
4176              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4177                                        "passing"))
4178            return ExprError();
4179        } else {
4180          // Convert the arguments.
4181          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4182                                        "passing") ||
4183              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4184                                        "passing"))
4185            return ExprError();
4186        }
4187
4188        // Determine the result type
4189        QualType ResultTy
4190          = FnDecl->getType()->getAsFunctionType()->getResultType();
4191        ResultTy = ResultTy.getNonReferenceType();
4192
4193        // Build the actual expression node.
4194        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4195                                                 OpLoc);
4196        UsualUnaryConversions(FnExpr);
4197
4198        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4199                                                       Args, 2, ResultTy,
4200                                                       OpLoc));
4201      } else {
4202        // We matched a built-in operator. Convert the arguments, then
4203        // break out so that we will build the appropriate built-in
4204        // operator node.
4205        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4206                                      Best->Conversions[0], "passing") ||
4207            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4208                                      Best->Conversions[1], "passing"))
4209          return ExprError();
4210
4211        break;
4212      }
4213    }
4214
4215    case OR_No_Viable_Function:
4216      // For class as left operand for assignment or compound assigment operator
4217      // do not fall through to handling in built-in, but report that no overloaded
4218      // assignment operator found
4219      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4220        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4221             << BinaryOperator::getOpcodeStr(Opc)
4222             << LHS->getSourceRange() << RHS->getSourceRange();
4223        return ExprError();
4224      }
4225      // No viable function; fall through to handling this as a
4226      // built-in operator, which will produce an error message for us.
4227      break;
4228
4229    case OR_Ambiguous:
4230      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4231          << BinaryOperator::getOpcodeStr(Opc)
4232          << LHS->getSourceRange() << RHS->getSourceRange();
4233      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4234      return ExprError();
4235
4236    case OR_Deleted:
4237      Diag(OpLoc, diag::err_ovl_deleted_oper)
4238        << Best->Function->isDeleted()
4239        << BinaryOperator::getOpcodeStr(Opc)
4240        << LHS->getSourceRange() << RHS->getSourceRange();
4241      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4242      return ExprError();
4243    }
4244
4245  // Either we found no viable overloaded operator or we matched a
4246  // built-in operator. In either case, try to build a built-in
4247  // operation.
4248  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4249}
4250
4251/// BuildCallToMemberFunction - Build a call to a member
4252/// function. MemExpr is the expression that refers to the member
4253/// function (and includes the object parameter), Args/NumArgs are the
4254/// arguments to the function call (not including the object
4255/// parameter). The caller needs to validate that the member
4256/// expression refers to a member function or an overloaded member
4257/// function.
4258Sema::ExprResult
4259Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4260                                SourceLocation LParenLoc, Expr **Args,
4261                                unsigned NumArgs, SourceLocation *CommaLocs,
4262                                SourceLocation RParenLoc) {
4263  // Dig out the member expression. This holds both the object
4264  // argument and the member function we're referring to.
4265  MemberExpr *MemExpr = 0;
4266  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4267    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4268  else
4269    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4270  assert(MemExpr && "Building member call without member expression");
4271
4272  // Extract the object argument.
4273  Expr *ObjectArg = MemExpr->getBase();
4274
4275  CXXMethodDecl *Method = 0;
4276  if (OverloadedFunctionDecl *Ovl
4277        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4278    // Add overload candidates
4279    OverloadCandidateSet CandidateSet;
4280    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4281                                                FuncEnd = Ovl->function_end();
4282         Func != FuncEnd; ++Func) {
4283      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4284      Method = cast<CXXMethodDecl>(*Func);
4285      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4286                         /*SuppressUserConversions=*/false);
4287    }
4288
4289    OverloadCandidateSet::iterator Best;
4290    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4291    case OR_Success:
4292      Method = cast<CXXMethodDecl>(Best->Function);
4293      break;
4294
4295    case OR_No_Viable_Function:
4296      Diag(MemExpr->getSourceRange().getBegin(),
4297           diag::err_ovl_no_viable_member_function_in_call)
4298        << Ovl->getDeclName() << MemExprE->getSourceRange();
4299      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4300      // FIXME: Leaking incoming expressions!
4301      return true;
4302
4303    case OR_Ambiguous:
4304      Diag(MemExpr->getSourceRange().getBegin(),
4305           diag::err_ovl_ambiguous_member_call)
4306        << Ovl->getDeclName() << MemExprE->getSourceRange();
4307      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4308      // FIXME: Leaking incoming expressions!
4309      return true;
4310
4311    case OR_Deleted:
4312      Diag(MemExpr->getSourceRange().getBegin(),
4313           diag::err_ovl_deleted_member_call)
4314        << Best->Function->isDeleted()
4315        << Ovl->getDeclName() << MemExprE->getSourceRange();
4316      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4317      // FIXME: Leaking incoming expressions!
4318      return true;
4319    }
4320
4321    FixOverloadedFunctionReference(MemExpr, Method);
4322  } else {
4323    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4324  }
4325
4326  assert(Method && "Member call to something that isn't a method?");
4327  ExprOwningPtr<CXXMemberCallExpr>
4328    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4329                                                  NumArgs,
4330                                  Method->getResultType().getNonReferenceType(),
4331                                  RParenLoc));
4332
4333  // Convert the object argument (for a non-static member function call).
4334  if (!Method->isStatic() &&
4335      PerformObjectArgumentInitialization(ObjectArg, Method))
4336    return true;
4337  MemExpr->setBase(ObjectArg);
4338
4339  // Convert the rest of the arguments
4340  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4341  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4342                              RParenLoc))
4343    return true;
4344
4345  return CheckFunctionCall(Method, TheCall.take()).release();
4346}
4347
4348/// BuildCallToObjectOfClassType - Build a call to an object of class
4349/// type (C++ [over.call.object]), which can end up invoking an
4350/// overloaded function call operator (@c operator()) or performing a
4351/// user-defined conversion on the object argument.
4352Sema::ExprResult
4353Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4354                                   SourceLocation LParenLoc,
4355                                   Expr **Args, unsigned NumArgs,
4356                                   SourceLocation *CommaLocs,
4357                                   SourceLocation RParenLoc) {
4358  assert(Object->getType()->isRecordType() && "Requires object type argument");
4359  const RecordType *Record = Object->getType()->getAs<RecordType>();
4360
4361  // C++ [over.call.object]p1:
4362  //  If the primary-expression E in the function call syntax
4363  //  evaluates to a class object of type "cv T", then the set of
4364  //  candidate functions includes at least the function call
4365  //  operators of T. The function call operators of T are obtained by
4366  //  ordinary lookup of the name operator() in the context of
4367  //  (E).operator().
4368  OverloadCandidateSet CandidateSet;
4369  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4370  DeclContext::lookup_const_iterator Oper, OperEnd;
4371  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4372       Oper != OperEnd; ++Oper)
4373    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4374                       CandidateSet, /*SuppressUserConversions=*/false);
4375
4376  // C++ [over.call.object]p2:
4377  //   In addition, for each conversion function declared in T of the
4378  //   form
4379  //
4380  //        operator conversion-type-id () cv-qualifier;
4381  //
4382  //   where cv-qualifier is the same cv-qualification as, or a
4383  //   greater cv-qualification than, cv, and where conversion-type-id
4384  //   denotes the type "pointer to function of (P1,...,Pn) returning
4385  //   R", or the type "reference to pointer to function of
4386  //   (P1,...,Pn) returning R", or the type "reference to function
4387  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4388  //   is also considered as a candidate function. Similarly,
4389  //   surrogate call functions are added to the set of candidate
4390  //   functions for each conversion function declared in an
4391  //   accessible base class provided the function is not hidden
4392  //   within T by another intervening declaration.
4393  //
4394  // FIXME: Look in base classes for more conversion operators!
4395  OverloadedFunctionDecl *Conversions
4396    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4397  for (OverloadedFunctionDecl::function_iterator
4398         Func = Conversions->function_begin(),
4399         FuncEnd = Conversions->function_end();
4400       Func != FuncEnd; ++Func) {
4401    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4402
4403    // Strip the reference type (if any) and then the pointer type (if
4404    // any) to get down to what might be a function type.
4405    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4406    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4407      ConvType = ConvPtrType->getPointeeType();
4408
4409    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4410      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4411  }
4412
4413  // Perform overload resolution.
4414  OverloadCandidateSet::iterator Best;
4415  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4416  case OR_Success:
4417    // Overload resolution succeeded; we'll build the appropriate call
4418    // below.
4419    break;
4420
4421  case OR_No_Viable_Function:
4422    Diag(Object->getSourceRange().getBegin(),
4423         diag::err_ovl_no_viable_object_call)
4424      << Object->getType() << Object->getSourceRange();
4425    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4426    break;
4427
4428  case OR_Ambiguous:
4429    Diag(Object->getSourceRange().getBegin(),
4430         diag::err_ovl_ambiguous_object_call)
4431      << Object->getType() << Object->getSourceRange();
4432    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4433    break;
4434
4435  case OR_Deleted:
4436    Diag(Object->getSourceRange().getBegin(),
4437         diag::err_ovl_deleted_object_call)
4438      << Best->Function->isDeleted()
4439      << Object->getType() << Object->getSourceRange();
4440    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4441    break;
4442  }
4443
4444  if (Best == CandidateSet.end()) {
4445    // We had an error; delete all of the subexpressions and return
4446    // the error.
4447    Object->Destroy(Context);
4448    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4449      Args[ArgIdx]->Destroy(Context);
4450    return true;
4451  }
4452
4453  if (Best->Function == 0) {
4454    // Since there is no function declaration, this is one of the
4455    // surrogate candidates. Dig out the conversion function.
4456    CXXConversionDecl *Conv
4457      = cast<CXXConversionDecl>(
4458                         Best->Conversions[0].UserDefined.ConversionFunction);
4459
4460    // We selected one of the surrogate functions that converts the
4461    // object parameter to a function pointer. Perform the conversion
4462    // on the object argument, then let ActOnCallExpr finish the job.
4463    // FIXME: Represent the user-defined conversion in the AST!
4464    ImpCastExprToType(Object,
4465                      Conv->getConversionType().getNonReferenceType(),
4466                      CastExpr::CK_Unknown,
4467                      Conv->getConversionType()->isLValueReferenceType());
4468    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4469                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4470                         CommaLocs, RParenLoc).release();
4471  }
4472
4473  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4474  // that calls this method, using Object for the implicit object
4475  // parameter and passing along the remaining arguments.
4476  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4477  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4478
4479  unsigned NumArgsInProto = Proto->getNumArgs();
4480  unsigned NumArgsToCheck = NumArgs;
4481
4482  // Build the full argument list for the method call (the
4483  // implicit object parameter is placed at the beginning of the
4484  // list).
4485  Expr **MethodArgs;
4486  if (NumArgs < NumArgsInProto) {
4487    NumArgsToCheck = NumArgsInProto;
4488    MethodArgs = new Expr*[NumArgsInProto + 1];
4489  } else {
4490    MethodArgs = new Expr*[NumArgs + 1];
4491  }
4492  MethodArgs[0] = Object;
4493  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4494    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4495
4496  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4497                                          SourceLocation());
4498  UsualUnaryConversions(NewFn);
4499
4500  // Once we've built TheCall, all of the expressions are properly
4501  // owned.
4502  QualType ResultTy = Method->getResultType().getNonReferenceType();
4503  ExprOwningPtr<CXXOperatorCallExpr>
4504    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4505                                                    MethodArgs, NumArgs + 1,
4506                                                    ResultTy, RParenLoc));
4507  delete [] MethodArgs;
4508
4509  // We may have default arguments. If so, we need to allocate more
4510  // slots in the call for them.
4511  if (NumArgs < NumArgsInProto)
4512    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4513  else if (NumArgs > NumArgsInProto)
4514    NumArgsToCheck = NumArgsInProto;
4515
4516  bool IsError = false;
4517
4518  // Initialize the implicit object parameter.
4519  IsError |= PerformObjectArgumentInitialization(Object, Method);
4520  TheCall->setArg(0, Object);
4521
4522
4523  // Check the argument types.
4524  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4525    Expr *Arg;
4526    if (i < NumArgs) {
4527      Arg = Args[i];
4528
4529      // Pass the argument.
4530      QualType ProtoArgType = Proto->getArgType(i);
4531      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4532    } else {
4533      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4534    }
4535
4536    TheCall->setArg(i + 1, Arg);
4537  }
4538
4539  // If this is a variadic call, handle args passed through "...".
4540  if (Proto->isVariadic()) {
4541    // Promote the arguments (C99 6.5.2.2p7).
4542    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4543      Expr *Arg = Args[i];
4544      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4545      TheCall->setArg(i + 1, Arg);
4546    }
4547  }
4548
4549  if (IsError) return true;
4550
4551  return CheckFunctionCall(Method, TheCall.take()).release();
4552}
4553
4554/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4555///  (if one exists), where @c Base is an expression of class type and
4556/// @c Member is the name of the member we're trying to find.
4557Sema::OwningExprResult
4558Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4559  Expr *Base = static_cast<Expr *>(BaseIn.get());
4560  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4561
4562  // C++ [over.ref]p1:
4563  //
4564  //   [...] An expression x->m is interpreted as (x.operator->())->m
4565  //   for a class object x of type T if T::operator->() exists and if
4566  //   the operator is selected as the best match function by the
4567  //   overload resolution mechanism (13.3).
4568  // FIXME: look in base classes.
4569  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4570  OverloadCandidateSet CandidateSet;
4571  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4572
4573  DeclContext::lookup_const_iterator Oper, OperEnd;
4574  for (llvm::tie(Oper, OperEnd)
4575         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4576    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4577                       /*SuppressUserConversions=*/false);
4578
4579  // Perform overload resolution.
4580  OverloadCandidateSet::iterator Best;
4581  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4582  case OR_Success:
4583    // Overload resolution succeeded; we'll build the call below.
4584    break;
4585
4586  case OR_No_Viable_Function:
4587    if (CandidateSet.empty())
4588      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4589        << Base->getType() << Base->getSourceRange();
4590    else
4591      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4592        << "operator->" << Base->getSourceRange();
4593    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4594    return ExprError();
4595
4596  case OR_Ambiguous:
4597    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4598      << "operator->" << Base->getSourceRange();
4599    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4600    return ExprError();
4601
4602  case OR_Deleted:
4603    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4604      << Best->Function->isDeleted()
4605      << "operator->" << Base->getSourceRange();
4606    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4607    return ExprError();
4608  }
4609
4610  // Convert the object parameter.
4611  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4612  if (PerformObjectArgumentInitialization(Base, Method))
4613    return ExprError();
4614
4615  // No concerns about early exits now.
4616  BaseIn.release();
4617
4618  // Build the operator call.
4619  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4620                                           SourceLocation());
4621  UsualUnaryConversions(FnExpr);
4622  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4623                                 Method->getResultType().getNonReferenceType(),
4624                                 OpLoc);
4625  return Owned(Base);
4626}
4627
4628/// FixOverloadedFunctionReference - E is an expression that refers to
4629/// a C++ overloaded function (possibly with some parentheses and
4630/// perhaps a '&' around it). We have resolved the overloaded function
4631/// to the function declaration Fn, so patch up the expression E to
4632/// refer (possibly indirectly) to Fn.
4633void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4634  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4635    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4636    E->setType(PE->getSubExpr()->getType());
4637  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4638    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4639           "Can only take the address of an overloaded function");
4640    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4641      if (Method->isStatic()) {
4642        // Do nothing: static member functions aren't any different
4643        // from non-member functions.
4644      } else if (QualifiedDeclRefExpr *DRE
4645                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4646        // We have taken the address of a pointer to member
4647        // function. Perform the computation here so that we get the
4648        // appropriate pointer to member type.
4649        DRE->setDecl(Fn);
4650        DRE->setType(Fn->getType());
4651        QualType ClassType
4652          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4653        E->setType(Context.getMemberPointerType(Fn->getType(),
4654                                                ClassType.getTypePtr()));
4655        return;
4656      }
4657    }
4658    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4659    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4660  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4661    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4662            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4663           "Expected overloaded function or function template");
4664    DR->setDecl(Fn);
4665    E->setType(Fn->getType());
4666  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4667    MemExpr->setMemberDecl(Fn);
4668    E->setType(Fn->getType());
4669  } else {
4670    assert(false && "Invalid reference to overloaded function");
4671  }
4672}
4673
4674} // end namespace clang
4675