SemaOverload.cpp revision 62ac5d01aade35790a6d8e814edb21062da5d3f7
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion,
56    ICC_Conversion,
57    ICC_Conversion
58  };
59  return Category[(int)Kind];
60}
61
62/// GetConversionRank - Retrieve the implicit conversion rank
63/// corresponding to the given implicit conversion kind.
64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
65  static const ImplicitConversionRank
66    Rank[(int)ICK_Num_Conversion_Kinds] = {
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Exact_Match,
72    ICR_Exact_Match,
73    ICR_Promotion,
74    ICR_Promotion,
75    ICR_Promotion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion,
84    ICR_Conversion,
85    ICR_Conversion,
86    ICR_Conversion,
87    ICR_Complex_Real_Conversion
88  };
89  return Rank[(int)Kind];
90}
91
92/// GetImplicitConversionName - Return the name of this kind of
93/// implicit conversion.
94const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
95  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
96    "No conversion",
97    "Lvalue-to-rvalue",
98    "Array-to-pointer",
99    "Function-to-pointer",
100    "Noreturn adjustment",
101    "Qualification",
102    "Integral promotion",
103    "Floating point promotion",
104    "Complex promotion",
105    "Integral conversion",
106    "Floating conversion",
107    "Complex conversion",
108    "Floating-integral conversion",
109    "Pointer conversion",
110    "Pointer-to-member conversion",
111    "Boolean conversion",
112    "Compatible-types conversion",
113    "Derived-to-base conversion",
114    "Vector conversion",
115    "Vector splat",
116    "Complex-real conversion"
117  };
118  return Name[Kind];
119}
120
121/// StandardConversionSequence - Set the standard conversion
122/// sequence to the identity conversion.
123void StandardConversionSequence::setAsIdentityConversion() {
124  First = ICK_Identity;
125  Second = ICK_Identity;
126  Third = ICK_Identity;
127  DeprecatedStringLiteralToCharPtr = false;
128  ReferenceBinding = false;
129  DirectBinding = false;
130  RRefBinding = false;
131  CopyConstructor = 0;
132}
133
134/// getRank - Retrieve the rank of this standard conversion sequence
135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
136/// implicit conversions.
137ImplicitConversionRank StandardConversionSequence::getRank() const {
138  ImplicitConversionRank Rank = ICR_Exact_Match;
139  if  (GetConversionRank(First) > Rank)
140    Rank = GetConversionRank(First);
141  if  (GetConversionRank(Second) > Rank)
142    Rank = GetConversionRank(Second);
143  if  (GetConversionRank(Third) > Rank)
144    Rank = GetConversionRank(Third);
145  return Rank;
146}
147
148/// isPointerConversionToBool - Determines whether this conversion is
149/// a conversion of a pointer or pointer-to-member to bool. This is
150/// used as part of the ranking of standard conversion sequences
151/// (C++ 13.3.3.2p4).
152bool StandardConversionSequence::isPointerConversionToBool() const {
153  // Note that FromType has not necessarily been transformed by the
154  // array-to-pointer or function-to-pointer implicit conversions, so
155  // check for their presence as well as checking whether FromType is
156  // a pointer.
157  if (getToType(1)->isBooleanType() &&
158      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
159       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
160    return true;
161
162  return false;
163}
164
165/// isPointerConversionToVoidPointer - Determines whether this
166/// conversion is a conversion of a pointer to a void pointer. This is
167/// used as part of the ranking of standard conversion sequences (C++
168/// 13.3.3.2p4).
169bool
170StandardConversionSequence::
171isPointerConversionToVoidPointer(ASTContext& Context) const {
172  QualType FromType = getFromType();
173  QualType ToType = getToType(1);
174
175  // Note that FromType has not necessarily been transformed by the
176  // array-to-pointer implicit conversion, so check for its presence
177  // and redo the conversion to get a pointer.
178  if (First == ICK_Array_To_Pointer)
179    FromType = Context.getArrayDecayedType(FromType);
180
181  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
182    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
183      return ToPtrType->getPointeeType()->isVoidType();
184
185  return false;
186}
187
188/// DebugPrint - Print this standard conversion sequence to standard
189/// error. Useful for debugging overloading issues.
190void StandardConversionSequence::DebugPrint() const {
191  llvm::raw_ostream &OS = llvm::errs();
192  bool PrintedSomething = false;
193  if (First != ICK_Identity) {
194    OS << GetImplicitConversionName(First);
195    PrintedSomething = true;
196  }
197
198  if (Second != ICK_Identity) {
199    if (PrintedSomething) {
200      OS << " -> ";
201    }
202    OS << GetImplicitConversionName(Second);
203
204    if (CopyConstructor) {
205      OS << " (by copy constructor)";
206    } else if (DirectBinding) {
207      OS << " (direct reference binding)";
208    } else if (ReferenceBinding) {
209      OS << " (reference binding)";
210    }
211    PrintedSomething = true;
212  }
213
214  if (Third != ICK_Identity) {
215    if (PrintedSomething) {
216      OS << " -> ";
217    }
218    OS << GetImplicitConversionName(Third);
219    PrintedSomething = true;
220  }
221
222  if (!PrintedSomething) {
223    OS << "No conversions required";
224  }
225}
226
227/// DebugPrint - Print this user-defined conversion sequence to standard
228/// error. Useful for debugging overloading issues.
229void UserDefinedConversionSequence::DebugPrint() const {
230  llvm::raw_ostream &OS = llvm::errs();
231  if (Before.First || Before.Second || Before.Third) {
232    Before.DebugPrint();
233    OS << " -> ";
234  }
235  OS << '\'' << ConversionFunction << '\'';
236  if (After.First || After.Second || After.Third) {
237    OS << " -> ";
238    After.DebugPrint();
239  }
240}
241
242/// DebugPrint - Print this implicit conversion sequence to standard
243/// error. Useful for debugging overloading issues.
244void ImplicitConversionSequence::DebugPrint() const {
245  llvm::raw_ostream &OS = llvm::errs();
246  switch (ConversionKind) {
247  case StandardConversion:
248    OS << "Standard conversion: ";
249    Standard.DebugPrint();
250    break;
251  case UserDefinedConversion:
252    OS << "User-defined conversion: ";
253    UserDefined.DebugPrint();
254    break;
255  case EllipsisConversion:
256    OS << "Ellipsis conversion";
257    break;
258  case AmbiguousConversion:
259    OS << "Ambiguous conversion";
260    break;
261  case BadConversion:
262    OS << "Bad conversion";
263    break;
264  }
265
266  OS << "\n";
267}
268
269void AmbiguousConversionSequence::construct() {
270  new (&conversions()) ConversionSet();
271}
272
273void AmbiguousConversionSequence::destruct() {
274  conversions().~ConversionSet();
275}
276
277void
278AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
279  FromTypePtr = O.FromTypePtr;
280  ToTypePtr = O.ToTypePtr;
281  new (&conversions()) ConversionSet(O.conversions());
282}
283
284namespace {
285  // Structure used by OverloadCandidate::DeductionFailureInfo to store
286  // template parameter and template argument information.
287  struct DFIParamWithArguments {
288    TemplateParameter Param;
289    TemplateArgument FirstArg;
290    TemplateArgument SecondArg;
291  };
292}
293
294/// \brief Convert from Sema's representation of template deduction information
295/// to the form used in overload-candidate information.
296OverloadCandidate::DeductionFailureInfo
297static MakeDeductionFailureInfo(ASTContext &Context,
298                                Sema::TemplateDeductionResult TDK,
299                                Sema::TemplateDeductionInfo &Info) {
300  OverloadCandidate::DeductionFailureInfo Result;
301  Result.Result = static_cast<unsigned>(TDK);
302  Result.Data = 0;
303  switch (TDK) {
304  case Sema::TDK_Success:
305  case Sema::TDK_InstantiationDepth:
306  case Sema::TDK_TooManyArguments:
307  case Sema::TDK_TooFewArguments:
308    break;
309
310  case Sema::TDK_Incomplete:
311  case Sema::TDK_InvalidExplicitArguments:
312    Result.Data = Info.Param.getOpaqueValue();
313    break;
314
315  case Sema::TDK_Inconsistent:
316  case Sema::TDK_InconsistentQuals: {
317    // FIXME: Should allocate from normal heap so that we can free this later.
318    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
319    Saved->Param = Info.Param;
320    Saved->FirstArg = Info.FirstArg;
321    Saved->SecondArg = Info.SecondArg;
322    Result.Data = Saved;
323    break;
324  }
325
326  case Sema::TDK_SubstitutionFailure:
327    Result.Data = Info.take();
328    break;
329
330  case Sema::TDK_NonDeducedMismatch:
331  case Sema::TDK_FailedOverloadResolution:
332    break;
333  }
334
335  return Result;
336}
337
338void OverloadCandidate::DeductionFailureInfo::Destroy() {
339  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
340  case Sema::TDK_Success:
341  case Sema::TDK_InstantiationDepth:
342  case Sema::TDK_Incomplete:
343  case Sema::TDK_TooManyArguments:
344  case Sema::TDK_TooFewArguments:
345  case Sema::TDK_InvalidExplicitArguments:
346    break;
347
348  case Sema::TDK_Inconsistent:
349  case Sema::TDK_InconsistentQuals:
350    // FIXME: Destroy the data?
351    Data = 0;
352    break;
353
354  case Sema::TDK_SubstitutionFailure:
355    // FIXME: Destroy the template arugment list?
356    Data = 0;
357    break;
358
359  // Unhandled
360  case Sema::TDK_NonDeducedMismatch:
361  case Sema::TDK_FailedOverloadResolution:
362    break;
363  }
364}
365
366TemplateParameter
367OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
368  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
369  case Sema::TDK_Success:
370  case Sema::TDK_InstantiationDepth:
371  case Sema::TDK_TooManyArguments:
372  case Sema::TDK_TooFewArguments:
373  case Sema::TDK_SubstitutionFailure:
374    return TemplateParameter();
375
376  case Sema::TDK_Incomplete:
377  case Sema::TDK_InvalidExplicitArguments:
378    return TemplateParameter::getFromOpaqueValue(Data);
379
380  case Sema::TDK_Inconsistent:
381  case Sema::TDK_InconsistentQuals:
382    return static_cast<DFIParamWithArguments*>(Data)->Param;
383
384  // Unhandled
385  case Sema::TDK_NonDeducedMismatch:
386  case Sema::TDK_FailedOverloadResolution:
387    break;
388  }
389
390  return TemplateParameter();
391}
392
393TemplateArgumentList *
394OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
395  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
396    case Sema::TDK_Success:
397    case Sema::TDK_InstantiationDepth:
398    case Sema::TDK_TooManyArguments:
399    case Sema::TDK_TooFewArguments:
400    case Sema::TDK_Incomplete:
401    case Sema::TDK_InvalidExplicitArguments:
402    case Sema::TDK_Inconsistent:
403    case Sema::TDK_InconsistentQuals:
404      return 0;
405
406    case Sema::TDK_SubstitutionFailure:
407      return static_cast<TemplateArgumentList*>(Data);
408
409    // Unhandled
410    case Sema::TDK_NonDeducedMismatch:
411    case Sema::TDK_FailedOverloadResolution:
412      break;
413  }
414
415  return 0;
416}
417
418const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
419  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
420  case Sema::TDK_Success:
421  case Sema::TDK_InstantiationDepth:
422  case Sema::TDK_Incomplete:
423  case Sema::TDK_TooManyArguments:
424  case Sema::TDK_TooFewArguments:
425  case Sema::TDK_InvalidExplicitArguments:
426  case Sema::TDK_SubstitutionFailure:
427    return 0;
428
429  case Sema::TDK_Inconsistent:
430  case Sema::TDK_InconsistentQuals:
431    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
432
433  // Unhandled
434  case Sema::TDK_NonDeducedMismatch:
435  case Sema::TDK_FailedOverloadResolution:
436    break;
437  }
438
439  return 0;
440}
441
442const TemplateArgument *
443OverloadCandidate::DeductionFailureInfo::getSecondArg() {
444  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
445  case Sema::TDK_Success:
446  case Sema::TDK_InstantiationDepth:
447  case Sema::TDK_Incomplete:
448  case Sema::TDK_TooManyArguments:
449  case Sema::TDK_TooFewArguments:
450  case Sema::TDK_InvalidExplicitArguments:
451  case Sema::TDK_SubstitutionFailure:
452    return 0;
453
454  case Sema::TDK_Inconsistent:
455  case Sema::TDK_InconsistentQuals:
456    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
457
458  // Unhandled
459  case Sema::TDK_NonDeducedMismatch:
460  case Sema::TDK_FailedOverloadResolution:
461    break;
462  }
463
464  return 0;
465}
466
467void OverloadCandidateSet::clear() {
468  inherited::clear();
469  Functions.clear();
470}
471
472// IsOverload - Determine whether the given New declaration is an
473// overload of the declarations in Old. This routine returns false if
474// New and Old cannot be overloaded, e.g., if New has the same
475// signature as some function in Old (C++ 1.3.10) or if the Old
476// declarations aren't functions (or function templates) at all. When
477// it does return false, MatchedDecl will point to the decl that New
478// cannot be overloaded with.  This decl may be a UsingShadowDecl on
479// top of the underlying declaration.
480//
481// Example: Given the following input:
482//
483//   void f(int, float); // #1
484//   void f(int, int); // #2
485//   int f(int, int); // #3
486//
487// When we process #1, there is no previous declaration of "f",
488// so IsOverload will not be used.
489//
490// When we process #2, Old contains only the FunctionDecl for #1.  By
491// comparing the parameter types, we see that #1 and #2 are overloaded
492// (since they have different signatures), so this routine returns
493// false; MatchedDecl is unchanged.
494//
495// When we process #3, Old is an overload set containing #1 and #2. We
496// compare the signatures of #3 to #1 (they're overloaded, so we do
497// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
498// identical (return types of functions are not part of the
499// signature), IsOverload returns false and MatchedDecl will be set to
500// point to the FunctionDecl for #2.
501Sema::OverloadKind
502Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
503                    NamedDecl *&Match) {
504  for (LookupResult::iterator I = Old.begin(), E = Old.end();
505         I != E; ++I) {
506    NamedDecl *OldD = (*I)->getUnderlyingDecl();
507    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
508      if (!IsOverload(New, OldT->getTemplatedDecl())) {
509        Match = *I;
510        return Ovl_Match;
511      }
512    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
513      if (!IsOverload(New, OldF)) {
514        Match = *I;
515        return Ovl_Match;
516      }
517    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
518      // We can overload with these, which can show up when doing
519      // redeclaration checks for UsingDecls.
520      assert(Old.getLookupKind() == LookupUsingDeclName);
521    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
522      // Optimistically assume that an unresolved using decl will
523      // overload; if it doesn't, we'll have to diagnose during
524      // template instantiation.
525    } else {
526      // (C++ 13p1):
527      //   Only function declarations can be overloaded; object and type
528      //   declarations cannot be overloaded.
529      Match = *I;
530      return Ovl_NonFunction;
531    }
532  }
533
534  return Ovl_Overload;
535}
536
537bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
538  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
539  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
540
541  // C++ [temp.fct]p2:
542  //   A function template can be overloaded with other function templates
543  //   and with normal (non-template) functions.
544  if ((OldTemplate == 0) != (NewTemplate == 0))
545    return true;
546
547  // Is the function New an overload of the function Old?
548  QualType OldQType = Context.getCanonicalType(Old->getType());
549  QualType NewQType = Context.getCanonicalType(New->getType());
550
551  // Compare the signatures (C++ 1.3.10) of the two functions to
552  // determine whether they are overloads. If we find any mismatch
553  // in the signature, they are overloads.
554
555  // If either of these functions is a K&R-style function (no
556  // prototype), then we consider them to have matching signatures.
557  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
558      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
559    return false;
560
561  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
562  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
563
564  // The signature of a function includes the types of its
565  // parameters (C++ 1.3.10), which includes the presence or absence
566  // of the ellipsis; see C++ DR 357).
567  if (OldQType != NewQType &&
568      (OldType->getNumArgs() != NewType->getNumArgs() ||
569       OldType->isVariadic() != NewType->isVariadic() ||
570       !FunctionArgTypesAreEqual(OldType, NewType)))
571    return true;
572
573  // C++ [temp.over.link]p4:
574  //   The signature of a function template consists of its function
575  //   signature, its return type and its template parameter list. The names
576  //   of the template parameters are significant only for establishing the
577  //   relationship between the template parameters and the rest of the
578  //   signature.
579  //
580  // We check the return type and template parameter lists for function
581  // templates first; the remaining checks follow.
582  if (NewTemplate &&
583      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
584                                       OldTemplate->getTemplateParameters(),
585                                       false, TPL_TemplateMatch) ||
586       OldType->getResultType() != NewType->getResultType()))
587    return true;
588
589  // If the function is a class member, its signature includes the
590  // cv-qualifiers (if any) on the function itself.
591  //
592  // As part of this, also check whether one of the member functions
593  // is static, in which case they are not overloads (C++
594  // 13.1p2). While not part of the definition of the signature,
595  // this check is important to determine whether these functions
596  // can be overloaded.
597  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
598  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
599  if (OldMethod && NewMethod &&
600      !OldMethod->isStatic() && !NewMethod->isStatic() &&
601      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
602    return true;
603
604  // The signatures match; this is not an overload.
605  return false;
606}
607
608/// TryImplicitConversion - Attempt to perform an implicit conversion
609/// from the given expression (Expr) to the given type (ToType). This
610/// function returns an implicit conversion sequence that can be used
611/// to perform the initialization. Given
612///
613///   void f(float f);
614///   void g(int i) { f(i); }
615///
616/// this routine would produce an implicit conversion sequence to
617/// describe the initialization of f from i, which will be a standard
618/// conversion sequence containing an lvalue-to-rvalue conversion (C++
619/// 4.1) followed by a floating-integral conversion (C++ 4.9).
620//
621/// Note that this routine only determines how the conversion can be
622/// performed; it does not actually perform the conversion. As such,
623/// it will not produce any diagnostics if no conversion is available,
624/// but will instead return an implicit conversion sequence of kind
625/// "BadConversion".
626///
627/// If @p SuppressUserConversions, then user-defined conversions are
628/// not permitted.
629/// If @p AllowExplicit, then explicit user-defined conversions are
630/// permitted.
631ImplicitConversionSequence
632Sema::TryImplicitConversion(Expr* From, QualType ToType,
633                            bool SuppressUserConversions,
634                            bool AllowExplicit,
635                            bool InOverloadResolution) {
636  ImplicitConversionSequence ICS;
637  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
638    ICS.setStandard();
639    return ICS;
640  }
641
642  if (!getLangOptions().CPlusPlus) {
643    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
644    return ICS;
645  }
646
647  if (SuppressUserConversions) {
648    // C++ [over.ics.user]p4:
649    //   A conversion of an expression of class type to the same class
650    //   type is given Exact Match rank, and a conversion of an
651    //   expression of class type to a base class of that type is
652    //   given Conversion rank, in spite of the fact that a copy/move
653    //   constructor (i.e., a user-defined conversion function) is
654    //   called for those cases.
655    QualType FromType = From->getType();
656    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
657        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
658          IsDerivedFrom(FromType, ToType))) {
659      // We're not in the case above, so there is no conversion that
660      // we can perform.
661      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
662      return ICS;
663    }
664
665    ICS.setStandard();
666    ICS.Standard.setAsIdentityConversion();
667    ICS.Standard.setFromType(FromType);
668    ICS.Standard.setAllToTypes(ToType);
669
670    // We don't actually check at this point whether there is a valid
671    // copy/move constructor, since overloading just assumes that it
672    // exists. When we actually perform initialization, we'll find the
673    // appropriate constructor to copy the returned object, if needed.
674    ICS.Standard.CopyConstructor = 0;
675
676    // Determine whether this is considered a derived-to-base conversion.
677    if (!Context.hasSameUnqualifiedType(FromType, ToType))
678      ICS.Standard.Second = ICK_Derived_To_Base;
679
680    return ICS;
681  }
682
683  // Attempt user-defined conversion.
684  OverloadCandidateSet Conversions(From->getExprLoc());
685  OverloadingResult UserDefResult
686    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
687                              AllowExplicit);
688
689  if (UserDefResult == OR_Success) {
690    ICS.setUserDefined();
691    // C++ [over.ics.user]p4:
692    //   A conversion of an expression of class type to the same class
693    //   type is given Exact Match rank, and a conversion of an
694    //   expression of class type to a base class of that type is
695    //   given Conversion rank, in spite of the fact that a copy
696    //   constructor (i.e., a user-defined conversion function) is
697    //   called for those cases.
698    if (CXXConstructorDecl *Constructor
699          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
700      QualType FromCanon
701        = Context.getCanonicalType(From->getType().getUnqualifiedType());
702      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
703      if (Constructor->isCopyConstructor() &&
704          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
705        // Turn this into a "standard" conversion sequence, so that it
706        // gets ranked with standard conversion sequences.
707        ICS.setStandard();
708        ICS.Standard.setAsIdentityConversion();
709        ICS.Standard.setFromType(From->getType());
710        ICS.Standard.setAllToTypes(ToType);
711        ICS.Standard.CopyConstructor = Constructor;
712        if (ToCanon != FromCanon)
713          ICS.Standard.Second = ICK_Derived_To_Base;
714      }
715    }
716
717    // C++ [over.best.ics]p4:
718    //   However, when considering the argument of a user-defined
719    //   conversion function that is a candidate by 13.3.1.3 when
720    //   invoked for the copying of the temporary in the second step
721    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
722    //   13.3.1.6 in all cases, only standard conversion sequences and
723    //   ellipsis conversion sequences are allowed.
724    if (SuppressUserConversions && ICS.isUserDefined()) {
725      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
726    }
727  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
728    ICS.setAmbiguous();
729    ICS.Ambiguous.setFromType(From->getType());
730    ICS.Ambiguous.setToType(ToType);
731    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
732         Cand != Conversions.end(); ++Cand)
733      if (Cand->Viable)
734        ICS.Ambiguous.addConversion(Cand->Function);
735  } else {
736    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
737  }
738
739  return ICS;
740}
741
742/// PerformImplicitConversion - Perform an implicit conversion of the
743/// expression From to the type ToType. Returns true if there was an
744/// error, false otherwise. The expression From is replaced with the
745/// converted expression. Flavor is the kind of conversion we're
746/// performing, used in the error message. If @p AllowExplicit,
747/// explicit user-defined conversions are permitted.
748bool
749Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
750                                AssignmentAction Action, bool AllowExplicit) {
751  ImplicitConversionSequence ICS;
752  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
753}
754
755bool
756Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
757                                AssignmentAction Action, bool AllowExplicit,
758                                ImplicitConversionSequence& ICS) {
759  ICS = TryImplicitConversion(From, ToType,
760                              /*SuppressUserConversions=*/false,
761                              AllowExplicit,
762                              /*InOverloadResolution=*/false);
763  return PerformImplicitConversion(From, ToType, ICS, Action);
764}
765
766/// \brief Determine whether the conversion from FromType to ToType is a valid
767/// conversion that strips "noreturn" off the nested function type.
768static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
769                                 QualType ToType, QualType &ResultTy) {
770  if (Context.hasSameUnqualifiedType(FromType, ToType))
771    return false;
772
773  // Strip the noreturn off the type we're converting from; noreturn can
774  // safely be removed.
775  FromType = Context.getNoReturnType(FromType, false);
776  if (!Context.hasSameUnqualifiedType(FromType, ToType))
777    return false;
778
779  ResultTy = FromType;
780  return true;
781}
782
783/// \brief Determine whether the conversion from FromType to ToType is a valid
784/// vector conversion.
785///
786/// \param ICK Will be set to the vector conversion kind, if this is a vector
787/// conversion.
788static bool IsVectorConversion(ASTContext &Context, QualType FromType,
789                               QualType ToType, ImplicitConversionKind &ICK) {
790  // We need at least one of these types to be a vector type to have a vector
791  // conversion.
792  if (!ToType->isVectorType() && !FromType->isVectorType())
793    return false;
794
795  // Identical types require no conversions.
796  if (Context.hasSameUnqualifiedType(FromType, ToType))
797    return false;
798
799  // There are no conversions between extended vector types, only identity.
800  if (ToType->isExtVectorType()) {
801    // There are no conversions between extended vector types other than the
802    // identity conversion.
803    if (FromType->isExtVectorType())
804      return false;
805
806    // Vector splat from any arithmetic type to a vector.
807    if (!FromType->isVectorType() && FromType->isArithmeticType()) {
808      ICK = ICK_Vector_Splat;
809      return true;
810    }
811  }
812
813  // If lax vector conversions are permitted and the vector types are of the
814  // same size, we can perform the conversion.
815  if (Context.getLangOptions().LaxVectorConversions &&
816      FromType->isVectorType() && ToType->isVectorType() &&
817      Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) {
818    ICK = ICK_Vector_Conversion;
819    return true;
820  }
821
822  return false;
823}
824
825/// IsStandardConversion - Determines whether there is a standard
826/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
827/// expression From to the type ToType. Standard conversion sequences
828/// only consider non-class types; for conversions that involve class
829/// types, use TryImplicitConversion. If a conversion exists, SCS will
830/// contain the standard conversion sequence required to perform this
831/// conversion and this routine will return true. Otherwise, this
832/// routine will return false and the value of SCS is unspecified.
833bool
834Sema::IsStandardConversion(Expr* From, QualType ToType,
835                           bool InOverloadResolution,
836                           StandardConversionSequence &SCS) {
837  QualType FromType = From->getType();
838
839  // Standard conversions (C++ [conv])
840  SCS.setAsIdentityConversion();
841  SCS.DeprecatedStringLiteralToCharPtr = false;
842  SCS.IncompatibleObjC = false;
843  SCS.setFromType(FromType);
844  SCS.CopyConstructor = 0;
845
846  // There are no standard conversions for class types in C++, so
847  // abort early. When overloading in C, however, we do permit
848  if (FromType->isRecordType() || ToType->isRecordType()) {
849    if (getLangOptions().CPlusPlus)
850      return false;
851
852    // When we're overloading in C, we allow, as standard conversions,
853  }
854
855  // The first conversion can be an lvalue-to-rvalue conversion,
856  // array-to-pointer conversion, or function-to-pointer conversion
857  // (C++ 4p1).
858
859  if (FromType == Context.OverloadTy) {
860    DeclAccessPair AccessPair;
861    if (FunctionDecl *Fn
862          = ResolveAddressOfOverloadedFunction(From, ToType, false,
863                                               AccessPair)) {
864      // We were able to resolve the address of the overloaded function,
865      // so we can convert to the type of that function.
866      FromType = Fn->getType();
867      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
868        if (!Method->isStatic()) {
869          Type *ClassType
870            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
871          FromType = Context.getMemberPointerType(FromType, ClassType);
872        }
873      }
874
875      // If the "from" expression takes the address of the overloaded
876      // function, update the type of the resulting expression accordingly.
877      if (FromType->getAs<FunctionType>())
878        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
879          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
880            FromType = Context.getPointerType(FromType);
881
882      // Check that we've computed the proper type after overload resolution.
883      assert(Context.hasSameType(FromType,
884              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
885    } else {
886      return false;
887    }
888  }
889  // Lvalue-to-rvalue conversion (C++ 4.1):
890  //   An lvalue (3.10) of a non-function, non-array type T can be
891  //   converted to an rvalue.
892  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
893  if (argIsLvalue == Expr::LV_Valid &&
894      !FromType->isFunctionType() && !FromType->isArrayType() &&
895      Context.getCanonicalType(FromType) != Context.OverloadTy) {
896    SCS.First = ICK_Lvalue_To_Rvalue;
897
898    // If T is a non-class type, the type of the rvalue is the
899    // cv-unqualified version of T. Otherwise, the type of the rvalue
900    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
901    // just strip the qualifiers because they don't matter.
902    FromType = FromType.getUnqualifiedType();
903  } else if (FromType->isArrayType()) {
904    // Array-to-pointer conversion (C++ 4.2)
905    SCS.First = ICK_Array_To_Pointer;
906
907    // An lvalue or rvalue of type "array of N T" or "array of unknown
908    // bound of T" can be converted to an rvalue of type "pointer to
909    // T" (C++ 4.2p1).
910    FromType = Context.getArrayDecayedType(FromType);
911
912    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
913      // This conversion is deprecated. (C++ D.4).
914      SCS.DeprecatedStringLiteralToCharPtr = true;
915
916      // For the purpose of ranking in overload resolution
917      // (13.3.3.1.1), this conversion is considered an
918      // array-to-pointer conversion followed by a qualification
919      // conversion (4.4). (C++ 4.2p2)
920      SCS.Second = ICK_Identity;
921      SCS.Third = ICK_Qualification;
922      SCS.setAllToTypes(FromType);
923      return true;
924    }
925  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
926    // Function-to-pointer conversion (C++ 4.3).
927    SCS.First = ICK_Function_To_Pointer;
928
929    // An lvalue of function type T can be converted to an rvalue of
930    // type "pointer to T." The result is a pointer to the
931    // function. (C++ 4.3p1).
932    FromType = Context.getPointerType(FromType);
933  } else {
934    // We don't require any conversions for the first step.
935    SCS.First = ICK_Identity;
936  }
937  SCS.setToType(0, FromType);
938
939  // The second conversion can be an integral promotion, floating
940  // point promotion, integral conversion, floating point conversion,
941  // floating-integral conversion, pointer conversion,
942  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
943  // For overloading in C, this can also be a "compatible-type"
944  // conversion.
945  bool IncompatibleObjC = false;
946  ImplicitConversionKind SecondICK = ICK_Identity;
947  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
948    // The unqualified versions of the types are the same: there's no
949    // conversion to do.
950    SCS.Second = ICK_Identity;
951  } else if (IsIntegralPromotion(From, FromType, ToType)) {
952    // Integral promotion (C++ 4.5).
953    SCS.Second = ICK_Integral_Promotion;
954    FromType = ToType.getUnqualifiedType();
955  } else if (IsFloatingPointPromotion(FromType, ToType)) {
956    // Floating point promotion (C++ 4.6).
957    SCS.Second = ICK_Floating_Promotion;
958    FromType = ToType.getUnqualifiedType();
959  } else if (IsComplexPromotion(FromType, ToType)) {
960    // Complex promotion (Clang extension)
961    SCS.Second = ICK_Complex_Promotion;
962    FromType = ToType.getUnqualifiedType();
963  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
964           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
965    // Integral conversions (C++ 4.7).
966    SCS.Second = ICK_Integral_Conversion;
967    FromType = ToType.getUnqualifiedType();
968  } else if (FromType->isComplexType() && ToType->isComplexType()) {
969    // Complex conversions (C99 6.3.1.6)
970    SCS.Second = ICK_Complex_Conversion;
971    FromType = ToType.getUnqualifiedType();
972  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
973             (ToType->isComplexType() && FromType->isArithmeticType())) {
974    // Complex-real conversions (C99 6.3.1.7)
975    SCS.Second = ICK_Complex_Real;
976    FromType = ToType.getUnqualifiedType();
977  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
978    // Floating point conversions (C++ 4.8).
979    SCS.Second = ICK_Floating_Conversion;
980    FromType = ToType.getUnqualifiedType();
981  } else if ((FromType->isFloatingType() &&
982              ToType->isIntegralType() && (!ToType->isBooleanType() &&
983                                           !ToType->isEnumeralType())) ||
984             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
985              ToType->isFloatingType())) {
986    // Floating-integral conversions (C++ 4.9).
987    SCS.Second = ICK_Floating_Integral;
988    FromType = ToType.getUnqualifiedType();
989  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
990                                 FromType, IncompatibleObjC)) {
991    // Pointer conversions (C++ 4.10).
992    SCS.Second = ICK_Pointer_Conversion;
993    SCS.IncompatibleObjC = IncompatibleObjC;
994  } else if (IsMemberPointerConversion(From, FromType, ToType,
995                                       InOverloadResolution, FromType)) {
996    // Pointer to member conversions (4.11).
997    SCS.Second = ICK_Pointer_Member;
998  } else if (ToType->isBooleanType() &&
999             (FromType->isArithmeticType() ||
1000              FromType->isEnumeralType() ||
1001              FromType->isAnyPointerType() ||
1002              FromType->isBlockPointerType() ||
1003              FromType->isMemberPointerType() ||
1004              FromType->isNullPtrType())) {
1005    // Boolean conversions (C++ 4.12).
1006    SCS.Second = ICK_Boolean_Conversion;
1007    FromType = Context.BoolTy;
1008  } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
1009    SCS.Second = SecondICK;
1010    FromType = ToType.getUnqualifiedType();
1011  } else if (!getLangOptions().CPlusPlus &&
1012             Context.typesAreCompatible(ToType, FromType)) {
1013    // Compatible conversions (Clang extension for C function overloading)
1014    SCS.Second = ICK_Compatible_Conversion;
1015    FromType = ToType.getUnqualifiedType();
1016  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
1017    // Treat a conversion that strips "noreturn" as an identity conversion.
1018    SCS.Second = ICK_NoReturn_Adjustment;
1019  } else {
1020    // No second conversion required.
1021    SCS.Second = ICK_Identity;
1022  }
1023  SCS.setToType(1, FromType);
1024
1025  QualType CanonFrom;
1026  QualType CanonTo;
1027  // The third conversion can be a qualification conversion (C++ 4p1).
1028  if (IsQualificationConversion(FromType, ToType)) {
1029    SCS.Third = ICK_Qualification;
1030    FromType = ToType;
1031    CanonFrom = Context.getCanonicalType(FromType);
1032    CanonTo = Context.getCanonicalType(ToType);
1033  } else {
1034    // No conversion required
1035    SCS.Third = ICK_Identity;
1036
1037    // C++ [over.best.ics]p6:
1038    //   [...] Any difference in top-level cv-qualification is
1039    //   subsumed by the initialization itself and does not constitute
1040    //   a conversion. [...]
1041    CanonFrom = Context.getCanonicalType(FromType);
1042    CanonTo = Context.getCanonicalType(ToType);
1043    if (CanonFrom.getLocalUnqualifiedType()
1044                                       == CanonTo.getLocalUnqualifiedType() &&
1045        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1046         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1047      FromType = ToType;
1048      CanonFrom = CanonTo;
1049    }
1050  }
1051  SCS.setToType(2, FromType);
1052
1053  // If we have not converted the argument type to the parameter type,
1054  // this is a bad conversion sequence.
1055  if (CanonFrom != CanonTo)
1056    return false;
1057
1058  return true;
1059}
1060
1061/// IsIntegralPromotion - Determines whether the conversion from the
1062/// expression From (whose potentially-adjusted type is FromType) to
1063/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1064/// sets PromotedType to the promoted type.
1065bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1066  const BuiltinType *To = ToType->getAs<BuiltinType>();
1067  // All integers are built-in.
1068  if (!To) {
1069    return false;
1070  }
1071
1072  // An rvalue of type char, signed char, unsigned char, short int, or
1073  // unsigned short int can be converted to an rvalue of type int if
1074  // int can represent all the values of the source type; otherwise,
1075  // the source rvalue can be converted to an rvalue of type unsigned
1076  // int (C++ 4.5p1).
1077  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1078      !FromType->isEnumeralType()) {
1079    if (// We can promote any signed, promotable integer type to an int
1080        (FromType->isSignedIntegerType() ||
1081         // We can promote any unsigned integer type whose size is
1082         // less than int to an int.
1083         (!FromType->isSignedIntegerType() &&
1084          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1085      return To->getKind() == BuiltinType::Int;
1086    }
1087
1088    return To->getKind() == BuiltinType::UInt;
1089  }
1090
1091  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1092  // can be converted to an rvalue of the first of the following types
1093  // that can represent all the values of its underlying type: int,
1094  // unsigned int, long, or unsigned long (C++ 4.5p2).
1095
1096  // We pre-calculate the promotion type for enum types.
1097  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1098    if (ToType->isIntegerType())
1099      return Context.hasSameUnqualifiedType(ToType,
1100                                FromEnumType->getDecl()->getPromotionType());
1101
1102  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1103    // Determine whether the type we're converting from is signed or
1104    // unsigned.
1105    bool FromIsSigned;
1106    uint64_t FromSize = Context.getTypeSize(FromType);
1107
1108    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1109    FromIsSigned = true;
1110
1111    // The types we'll try to promote to, in the appropriate
1112    // order. Try each of these types.
1113    QualType PromoteTypes[6] = {
1114      Context.IntTy, Context.UnsignedIntTy,
1115      Context.LongTy, Context.UnsignedLongTy ,
1116      Context.LongLongTy, Context.UnsignedLongLongTy
1117    };
1118    for (int Idx = 0; Idx < 6; ++Idx) {
1119      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1120      if (FromSize < ToSize ||
1121          (FromSize == ToSize &&
1122           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1123        // We found the type that we can promote to. If this is the
1124        // type we wanted, we have a promotion. Otherwise, no
1125        // promotion.
1126        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1127      }
1128    }
1129  }
1130
1131  // An rvalue for an integral bit-field (9.6) can be converted to an
1132  // rvalue of type int if int can represent all the values of the
1133  // bit-field; otherwise, it can be converted to unsigned int if
1134  // unsigned int can represent all the values of the bit-field. If
1135  // the bit-field is larger yet, no integral promotion applies to
1136  // it. If the bit-field has an enumerated type, it is treated as any
1137  // other value of that type for promotion purposes (C++ 4.5p3).
1138  // FIXME: We should delay checking of bit-fields until we actually perform the
1139  // conversion.
1140  using llvm::APSInt;
1141  if (From)
1142    if (FieldDecl *MemberDecl = From->getBitField()) {
1143      APSInt BitWidth;
1144      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
1145          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1146        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1147        ToSize = Context.getTypeSize(ToType);
1148
1149        // Are we promoting to an int from a bitfield that fits in an int?
1150        if (BitWidth < ToSize ||
1151            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1152          return To->getKind() == BuiltinType::Int;
1153        }
1154
1155        // Are we promoting to an unsigned int from an unsigned bitfield
1156        // that fits into an unsigned int?
1157        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1158          return To->getKind() == BuiltinType::UInt;
1159        }
1160
1161        return false;
1162      }
1163    }
1164
1165  // An rvalue of type bool can be converted to an rvalue of type int,
1166  // with false becoming zero and true becoming one (C++ 4.5p4).
1167  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1168    return true;
1169  }
1170
1171  return false;
1172}
1173
1174/// IsFloatingPointPromotion - Determines whether the conversion from
1175/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1176/// returns true and sets PromotedType to the promoted type.
1177bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1178  /// An rvalue of type float can be converted to an rvalue of type
1179  /// double. (C++ 4.6p1).
1180  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1181    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1182      if (FromBuiltin->getKind() == BuiltinType::Float &&
1183          ToBuiltin->getKind() == BuiltinType::Double)
1184        return true;
1185
1186      // C99 6.3.1.5p1:
1187      //   When a float is promoted to double or long double, or a
1188      //   double is promoted to long double [...].
1189      if (!getLangOptions().CPlusPlus &&
1190          (FromBuiltin->getKind() == BuiltinType::Float ||
1191           FromBuiltin->getKind() == BuiltinType::Double) &&
1192          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1193        return true;
1194    }
1195
1196  return false;
1197}
1198
1199/// \brief Determine if a conversion is a complex promotion.
1200///
1201/// A complex promotion is defined as a complex -> complex conversion
1202/// where the conversion between the underlying real types is a
1203/// floating-point or integral promotion.
1204bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1205  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1206  if (!FromComplex)
1207    return false;
1208
1209  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1210  if (!ToComplex)
1211    return false;
1212
1213  return IsFloatingPointPromotion(FromComplex->getElementType(),
1214                                  ToComplex->getElementType()) ||
1215    IsIntegralPromotion(0, FromComplex->getElementType(),
1216                        ToComplex->getElementType());
1217}
1218
1219/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1220/// the pointer type FromPtr to a pointer to type ToPointee, with the
1221/// same type qualifiers as FromPtr has on its pointee type. ToType,
1222/// if non-empty, will be a pointer to ToType that may or may not have
1223/// the right set of qualifiers on its pointee.
1224static QualType
1225BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1226                                   QualType ToPointee, QualType ToType,
1227                                   ASTContext &Context) {
1228  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1229  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1230  Qualifiers Quals = CanonFromPointee.getQualifiers();
1231
1232  // Exact qualifier match -> return the pointer type we're converting to.
1233  if (CanonToPointee.getLocalQualifiers() == Quals) {
1234    // ToType is exactly what we need. Return it.
1235    if (!ToType.isNull())
1236      return ToType;
1237
1238    // Build a pointer to ToPointee. It has the right qualifiers
1239    // already.
1240    return Context.getPointerType(ToPointee);
1241  }
1242
1243  // Just build a canonical type that has the right qualifiers.
1244  return Context.getPointerType(
1245         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1246                                  Quals));
1247}
1248
1249/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1250/// the FromType, which is an objective-c pointer, to ToType, which may or may
1251/// not have the right set of qualifiers.
1252static QualType
1253BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1254                                             QualType ToType,
1255                                             ASTContext &Context) {
1256  QualType CanonFromType = Context.getCanonicalType(FromType);
1257  QualType CanonToType = Context.getCanonicalType(ToType);
1258  Qualifiers Quals = CanonFromType.getQualifiers();
1259
1260  // Exact qualifier match -> return the pointer type we're converting to.
1261  if (CanonToType.getLocalQualifiers() == Quals)
1262    return ToType;
1263
1264  // Just build a canonical type that has the right qualifiers.
1265  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1266}
1267
1268static bool isNullPointerConstantForConversion(Expr *Expr,
1269                                               bool InOverloadResolution,
1270                                               ASTContext &Context) {
1271  // Handle value-dependent integral null pointer constants correctly.
1272  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1273  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1274      Expr->getType()->isIntegralType())
1275    return !InOverloadResolution;
1276
1277  return Expr->isNullPointerConstant(Context,
1278                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1279                                        : Expr::NPC_ValueDependentIsNull);
1280}
1281
1282/// IsPointerConversion - Determines whether the conversion of the
1283/// expression From, which has the (possibly adjusted) type FromType,
1284/// can be converted to the type ToType via a pointer conversion (C++
1285/// 4.10). If so, returns true and places the converted type (that
1286/// might differ from ToType in its cv-qualifiers at some level) into
1287/// ConvertedType.
1288///
1289/// This routine also supports conversions to and from block pointers
1290/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1291/// pointers to interfaces. FIXME: Once we've determined the
1292/// appropriate overloading rules for Objective-C, we may want to
1293/// split the Objective-C checks into a different routine; however,
1294/// GCC seems to consider all of these conversions to be pointer
1295/// conversions, so for now they live here. IncompatibleObjC will be
1296/// set if the conversion is an allowed Objective-C conversion that
1297/// should result in a warning.
1298bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1299                               bool InOverloadResolution,
1300                               QualType& ConvertedType,
1301                               bool &IncompatibleObjC) {
1302  IncompatibleObjC = false;
1303  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1304    return true;
1305
1306  // Conversion from a null pointer constant to any Objective-C pointer type.
1307  if (ToType->isObjCObjectPointerType() &&
1308      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1309    ConvertedType = ToType;
1310    return true;
1311  }
1312
1313  // Blocks: Block pointers can be converted to void*.
1314  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1315      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1316    ConvertedType = ToType;
1317    return true;
1318  }
1319  // Blocks: A null pointer constant can be converted to a block
1320  // pointer type.
1321  if (ToType->isBlockPointerType() &&
1322      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1323    ConvertedType = ToType;
1324    return true;
1325  }
1326
1327  // If the left-hand-side is nullptr_t, the right side can be a null
1328  // pointer constant.
1329  if (ToType->isNullPtrType() &&
1330      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1331    ConvertedType = ToType;
1332    return true;
1333  }
1334
1335  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1336  if (!ToTypePtr)
1337    return false;
1338
1339  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1340  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1341    ConvertedType = ToType;
1342    return true;
1343  }
1344
1345  // Beyond this point, both types need to be pointers
1346  // , including objective-c pointers.
1347  QualType ToPointeeType = ToTypePtr->getPointeeType();
1348  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1349    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1350                                                       ToType, Context);
1351    return true;
1352
1353  }
1354  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1355  if (!FromTypePtr)
1356    return false;
1357
1358  QualType FromPointeeType = FromTypePtr->getPointeeType();
1359
1360  // An rvalue of type "pointer to cv T," where T is an object type,
1361  // can be converted to an rvalue of type "pointer to cv void" (C++
1362  // 4.10p2).
1363  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1364    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1365                                                       ToPointeeType,
1366                                                       ToType, Context);
1367    return true;
1368  }
1369
1370  // When we're overloading in C, we allow a special kind of pointer
1371  // conversion for compatible-but-not-identical pointee types.
1372  if (!getLangOptions().CPlusPlus &&
1373      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1374    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1375                                                       ToPointeeType,
1376                                                       ToType, Context);
1377    return true;
1378  }
1379
1380  // C++ [conv.ptr]p3:
1381  //
1382  //   An rvalue of type "pointer to cv D," where D is a class type,
1383  //   can be converted to an rvalue of type "pointer to cv B," where
1384  //   B is a base class (clause 10) of D. If B is an inaccessible
1385  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1386  //   necessitates this conversion is ill-formed. The result of the
1387  //   conversion is a pointer to the base class sub-object of the
1388  //   derived class object. The null pointer value is converted to
1389  //   the null pointer value of the destination type.
1390  //
1391  // Note that we do not check for ambiguity or inaccessibility
1392  // here. That is handled by CheckPointerConversion.
1393  if (getLangOptions().CPlusPlus &&
1394      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1395      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1396      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1397      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1398    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1399                                                       ToPointeeType,
1400                                                       ToType, Context);
1401    return true;
1402  }
1403
1404  return false;
1405}
1406
1407/// isObjCPointerConversion - Determines whether this is an
1408/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1409/// with the same arguments and return values.
1410bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1411                                   QualType& ConvertedType,
1412                                   bool &IncompatibleObjC) {
1413  if (!getLangOptions().ObjC1)
1414    return false;
1415
1416  // First, we handle all conversions on ObjC object pointer types.
1417  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1418  const ObjCObjectPointerType *FromObjCPtr =
1419    FromType->getAs<ObjCObjectPointerType>();
1420
1421  if (ToObjCPtr && FromObjCPtr) {
1422    // Objective C++: We're able to convert between "id" or "Class" and a
1423    // pointer to any interface (in both directions).
1424    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1425      ConvertedType = ToType;
1426      return true;
1427    }
1428    // Conversions with Objective-C's id<...>.
1429    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1430         ToObjCPtr->isObjCQualifiedIdType()) &&
1431        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1432                                                  /*compare=*/false)) {
1433      ConvertedType = ToType;
1434      return true;
1435    }
1436    // Objective C++: We're able to convert from a pointer to an
1437    // interface to a pointer to a different interface.
1438    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1439      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1440      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1441      if (getLangOptions().CPlusPlus && LHS && RHS &&
1442          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1443                                                FromObjCPtr->getPointeeType()))
1444        return false;
1445      ConvertedType = ToType;
1446      return true;
1447    }
1448
1449    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1450      // Okay: this is some kind of implicit downcast of Objective-C
1451      // interfaces, which is permitted. However, we're going to
1452      // complain about it.
1453      IncompatibleObjC = true;
1454      ConvertedType = FromType;
1455      return true;
1456    }
1457  }
1458  // Beyond this point, both types need to be C pointers or block pointers.
1459  QualType ToPointeeType;
1460  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1461    ToPointeeType = ToCPtr->getPointeeType();
1462  else if (const BlockPointerType *ToBlockPtr =
1463            ToType->getAs<BlockPointerType>()) {
1464    // Objective C++: We're able to convert from a pointer to any object
1465    // to a block pointer type.
1466    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1467      ConvertedType = ToType;
1468      return true;
1469    }
1470    ToPointeeType = ToBlockPtr->getPointeeType();
1471  }
1472  else if (FromType->getAs<BlockPointerType>() &&
1473           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1474    // Objective C++: We're able to convert from a block pointer type to a
1475    // pointer to any object.
1476    ConvertedType = ToType;
1477    return true;
1478  }
1479  else
1480    return false;
1481
1482  QualType FromPointeeType;
1483  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1484    FromPointeeType = FromCPtr->getPointeeType();
1485  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1486    FromPointeeType = FromBlockPtr->getPointeeType();
1487  else
1488    return false;
1489
1490  // If we have pointers to pointers, recursively check whether this
1491  // is an Objective-C conversion.
1492  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1493      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1494                              IncompatibleObjC)) {
1495    // We always complain about this conversion.
1496    IncompatibleObjC = true;
1497    ConvertedType = ToType;
1498    return true;
1499  }
1500  // Allow conversion of pointee being objective-c pointer to another one;
1501  // as in I* to id.
1502  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1503      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1504      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1505                              IncompatibleObjC)) {
1506    ConvertedType = ToType;
1507    return true;
1508  }
1509
1510  // If we have pointers to functions or blocks, check whether the only
1511  // differences in the argument and result types are in Objective-C
1512  // pointer conversions. If so, we permit the conversion (but
1513  // complain about it).
1514  const FunctionProtoType *FromFunctionType
1515    = FromPointeeType->getAs<FunctionProtoType>();
1516  const FunctionProtoType *ToFunctionType
1517    = ToPointeeType->getAs<FunctionProtoType>();
1518  if (FromFunctionType && ToFunctionType) {
1519    // If the function types are exactly the same, this isn't an
1520    // Objective-C pointer conversion.
1521    if (Context.getCanonicalType(FromPointeeType)
1522          == Context.getCanonicalType(ToPointeeType))
1523      return false;
1524
1525    // Perform the quick checks that will tell us whether these
1526    // function types are obviously different.
1527    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1528        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1529        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1530      return false;
1531
1532    bool HasObjCConversion = false;
1533    if (Context.getCanonicalType(FromFunctionType->getResultType())
1534          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1535      // Okay, the types match exactly. Nothing to do.
1536    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1537                                       ToFunctionType->getResultType(),
1538                                       ConvertedType, IncompatibleObjC)) {
1539      // Okay, we have an Objective-C pointer conversion.
1540      HasObjCConversion = true;
1541    } else {
1542      // Function types are too different. Abort.
1543      return false;
1544    }
1545
1546    // Check argument types.
1547    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1548         ArgIdx != NumArgs; ++ArgIdx) {
1549      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1550      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1551      if (Context.getCanonicalType(FromArgType)
1552            == Context.getCanonicalType(ToArgType)) {
1553        // Okay, the types match exactly. Nothing to do.
1554      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1555                                         ConvertedType, IncompatibleObjC)) {
1556        // Okay, we have an Objective-C pointer conversion.
1557        HasObjCConversion = true;
1558      } else {
1559        // Argument types are too different. Abort.
1560        return false;
1561      }
1562    }
1563
1564    if (HasObjCConversion) {
1565      // We had an Objective-C conversion. Allow this pointer
1566      // conversion, but complain about it.
1567      ConvertedType = ToType;
1568      IncompatibleObjC = true;
1569      return true;
1570    }
1571  }
1572
1573  return false;
1574}
1575
1576/// FunctionArgTypesAreEqual - This routine checks two function proto types
1577/// for equlity of their argument types. Caller has already checked that
1578/// they have same number of arguments. This routine assumes that Objective-C
1579/// pointer types which only differ in their protocol qualifiers are equal.
1580bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1581                            FunctionProtoType*  NewType){
1582  if (!getLangOptions().ObjC1)
1583    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1584                      NewType->arg_type_begin());
1585
1586  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1587       N = NewType->arg_type_begin(),
1588       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1589    QualType ToType = (*O);
1590    QualType FromType = (*N);
1591    if (ToType != FromType) {
1592      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1593        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1594          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1595               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1596              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1597               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1598            continue;
1599      }
1600      else if (const ObjCObjectPointerType *PTTo =
1601                 ToType->getAs<ObjCObjectPointerType>()) {
1602        if (const ObjCObjectPointerType *PTFr =
1603              FromType->getAs<ObjCObjectPointerType>())
1604          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1605            continue;
1606      }
1607      return false;
1608    }
1609  }
1610  return true;
1611}
1612
1613/// CheckPointerConversion - Check the pointer conversion from the
1614/// expression From to the type ToType. This routine checks for
1615/// ambiguous or inaccessible derived-to-base pointer
1616/// conversions for which IsPointerConversion has already returned
1617/// true. It returns true and produces a diagnostic if there was an
1618/// error, or returns false otherwise.
1619bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1620                                  CastExpr::CastKind &Kind,
1621                                  CXXBaseSpecifierArray& BasePath,
1622                                  bool IgnoreBaseAccess) {
1623  QualType FromType = From->getType();
1624
1625  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1626    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1627      QualType FromPointeeType = FromPtrType->getPointeeType(),
1628               ToPointeeType   = ToPtrType->getPointeeType();
1629
1630      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1631          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1632        // We must have a derived-to-base conversion. Check an
1633        // ambiguous or inaccessible conversion.
1634        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1635                                         From->getExprLoc(),
1636                                         From->getSourceRange(), &BasePath,
1637                                         IgnoreBaseAccess))
1638          return true;
1639
1640        // The conversion was successful.
1641        Kind = CastExpr::CK_DerivedToBase;
1642      }
1643    }
1644  if (const ObjCObjectPointerType *FromPtrType =
1645        FromType->getAs<ObjCObjectPointerType>())
1646    if (const ObjCObjectPointerType *ToPtrType =
1647          ToType->getAs<ObjCObjectPointerType>()) {
1648      // Objective-C++ conversions are always okay.
1649      // FIXME: We should have a different class of conversions for the
1650      // Objective-C++ implicit conversions.
1651      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1652        return false;
1653
1654  }
1655  return false;
1656}
1657
1658/// IsMemberPointerConversion - Determines whether the conversion of the
1659/// expression From, which has the (possibly adjusted) type FromType, can be
1660/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1661/// If so, returns true and places the converted type (that might differ from
1662/// ToType in its cv-qualifiers at some level) into ConvertedType.
1663bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1664                                     QualType ToType,
1665                                     bool InOverloadResolution,
1666                                     QualType &ConvertedType) {
1667  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1668  if (!ToTypePtr)
1669    return false;
1670
1671  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1672  if (From->isNullPointerConstant(Context,
1673                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1674                                        : Expr::NPC_ValueDependentIsNull)) {
1675    ConvertedType = ToType;
1676    return true;
1677  }
1678
1679  // Otherwise, both types have to be member pointers.
1680  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1681  if (!FromTypePtr)
1682    return false;
1683
1684  // A pointer to member of B can be converted to a pointer to member of D,
1685  // where D is derived from B (C++ 4.11p2).
1686  QualType FromClass(FromTypePtr->getClass(), 0);
1687  QualType ToClass(ToTypePtr->getClass(), 0);
1688  // FIXME: What happens when these are dependent? Is this function even called?
1689
1690  if (IsDerivedFrom(ToClass, FromClass)) {
1691    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1692                                                 ToClass.getTypePtr());
1693    return true;
1694  }
1695
1696  return false;
1697}
1698
1699/// CheckMemberPointerConversion - Check the member pointer conversion from the
1700/// expression From to the type ToType. This routine checks for ambiguous or
1701/// virtual or inaccessible base-to-derived member pointer conversions
1702/// for which IsMemberPointerConversion has already returned true. It returns
1703/// true and produces a diagnostic if there was an error, or returns false
1704/// otherwise.
1705bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1706                                        CastExpr::CastKind &Kind,
1707                                        CXXBaseSpecifierArray &BasePath,
1708                                        bool IgnoreBaseAccess) {
1709  QualType FromType = From->getType();
1710  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1711  if (!FromPtrType) {
1712    // This must be a null pointer to member pointer conversion
1713    assert(From->isNullPointerConstant(Context,
1714                                       Expr::NPC_ValueDependentIsNull) &&
1715           "Expr must be null pointer constant!");
1716    Kind = CastExpr::CK_NullToMemberPointer;
1717    return false;
1718  }
1719
1720  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1721  assert(ToPtrType && "No member pointer cast has a target type "
1722                      "that is not a member pointer.");
1723
1724  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1725  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1726
1727  // FIXME: What about dependent types?
1728  assert(FromClass->isRecordType() && "Pointer into non-class.");
1729  assert(ToClass->isRecordType() && "Pointer into non-class.");
1730
1731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1732                     /*DetectVirtual=*/true);
1733  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1734  assert(DerivationOkay &&
1735         "Should not have been called if derivation isn't OK.");
1736  (void)DerivationOkay;
1737
1738  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1739                                  getUnqualifiedType())) {
1740    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1741    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1742      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1743    return true;
1744  }
1745
1746  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1747    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1748      << FromClass << ToClass << QualType(VBase, 0)
1749      << From->getSourceRange();
1750    return true;
1751  }
1752
1753  if (!IgnoreBaseAccess)
1754    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1755                         Paths.front(),
1756                         diag::err_downcast_from_inaccessible_base);
1757
1758  // Must be a base to derived member conversion.
1759  BuildBasePathArray(Paths, BasePath);
1760  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1761  return false;
1762}
1763
1764/// IsQualificationConversion - Determines whether the conversion from
1765/// an rvalue of type FromType to ToType is a qualification conversion
1766/// (C++ 4.4).
1767bool
1768Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1769  FromType = Context.getCanonicalType(FromType);
1770  ToType = Context.getCanonicalType(ToType);
1771
1772  // If FromType and ToType are the same type, this is not a
1773  // qualification conversion.
1774  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1775    return false;
1776
1777  // (C++ 4.4p4):
1778  //   A conversion can add cv-qualifiers at levels other than the first
1779  //   in multi-level pointers, subject to the following rules: [...]
1780  bool PreviousToQualsIncludeConst = true;
1781  bool UnwrappedAnyPointer = false;
1782  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1783    // Within each iteration of the loop, we check the qualifiers to
1784    // determine if this still looks like a qualification
1785    // conversion. Then, if all is well, we unwrap one more level of
1786    // pointers or pointers-to-members and do it all again
1787    // until there are no more pointers or pointers-to-members left to
1788    // unwrap.
1789    UnwrappedAnyPointer = true;
1790
1791    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1792    //      2,j, and similarly for volatile.
1793    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1794      return false;
1795
1796    //   -- if the cv 1,j and cv 2,j are different, then const is in
1797    //      every cv for 0 < k < j.
1798    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1799        && !PreviousToQualsIncludeConst)
1800      return false;
1801
1802    // Keep track of whether all prior cv-qualifiers in the "to" type
1803    // include const.
1804    PreviousToQualsIncludeConst
1805      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1806  }
1807
1808  // We are left with FromType and ToType being the pointee types
1809  // after unwrapping the original FromType and ToType the same number
1810  // of types. If we unwrapped any pointers, and if FromType and
1811  // ToType have the same unqualified type (since we checked
1812  // qualifiers above), then this is a qualification conversion.
1813  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1814}
1815
1816/// Determines whether there is a user-defined conversion sequence
1817/// (C++ [over.ics.user]) that converts expression From to the type
1818/// ToType. If such a conversion exists, User will contain the
1819/// user-defined conversion sequence that performs such a conversion
1820/// and this routine will return true. Otherwise, this routine returns
1821/// false and User is unspecified.
1822///
1823/// \param AllowExplicit  true if the conversion should consider C++0x
1824/// "explicit" conversion functions as well as non-explicit conversion
1825/// functions (C++0x [class.conv.fct]p2).
1826OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1827                                          UserDefinedConversionSequence& User,
1828                                           OverloadCandidateSet& CandidateSet,
1829                                                bool AllowExplicit) {
1830  // Whether we will only visit constructors.
1831  bool ConstructorsOnly = false;
1832
1833  // If the type we are conversion to is a class type, enumerate its
1834  // constructors.
1835  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1836    // C++ [over.match.ctor]p1:
1837    //   When objects of class type are direct-initialized (8.5), or
1838    //   copy-initialized from an expression of the same or a
1839    //   derived class type (8.5), overload resolution selects the
1840    //   constructor. [...] For copy-initialization, the candidate
1841    //   functions are all the converting constructors (12.3.1) of
1842    //   that class. The argument list is the expression-list within
1843    //   the parentheses of the initializer.
1844    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1845        (From->getType()->getAs<RecordType>() &&
1846         IsDerivedFrom(From->getType(), ToType)))
1847      ConstructorsOnly = true;
1848
1849    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1850      // We're not going to find any constructors.
1851    } else if (CXXRecordDecl *ToRecordDecl
1852                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1853      DeclarationName ConstructorName
1854        = Context.DeclarationNames.getCXXConstructorName(
1855                       Context.getCanonicalType(ToType).getUnqualifiedType());
1856      DeclContext::lookup_iterator Con, ConEnd;
1857      for (llvm::tie(Con, ConEnd)
1858             = ToRecordDecl->lookup(ConstructorName);
1859           Con != ConEnd; ++Con) {
1860        NamedDecl *D = *Con;
1861        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1862
1863        // Find the constructor (which may be a template).
1864        CXXConstructorDecl *Constructor = 0;
1865        FunctionTemplateDecl *ConstructorTmpl
1866          = dyn_cast<FunctionTemplateDecl>(D);
1867        if (ConstructorTmpl)
1868          Constructor
1869            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1870        else
1871          Constructor = cast<CXXConstructorDecl>(D);
1872
1873        if (!Constructor->isInvalidDecl() &&
1874            Constructor->isConvertingConstructor(AllowExplicit)) {
1875          if (ConstructorTmpl)
1876            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1877                                         /*ExplicitArgs*/ 0,
1878                                         &From, 1, CandidateSet,
1879                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1880          else
1881            // Allow one user-defined conversion when user specifies a
1882            // From->ToType conversion via an static cast (c-style, etc).
1883            AddOverloadCandidate(Constructor, FoundDecl,
1884                                 &From, 1, CandidateSet,
1885                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1886        }
1887      }
1888    }
1889  }
1890
1891  // Enumerate conversion functions, if we're allowed to.
1892  if (ConstructorsOnly) {
1893  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1894                          PDiag(0) << From->getSourceRange())) {
1895    // No conversion functions from incomplete types.
1896  } else if (const RecordType *FromRecordType
1897                                   = From->getType()->getAs<RecordType>()) {
1898    if (CXXRecordDecl *FromRecordDecl
1899         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1900      // Add all of the conversion functions as candidates.
1901      const UnresolvedSetImpl *Conversions
1902        = FromRecordDecl->getVisibleConversionFunctions();
1903      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1904             E = Conversions->end(); I != E; ++I) {
1905        DeclAccessPair FoundDecl = I.getPair();
1906        NamedDecl *D = FoundDecl.getDecl();
1907        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1908        if (isa<UsingShadowDecl>(D))
1909          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1910
1911        CXXConversionDecl *Conv;
1912        FunctionTemplateDecl *ConvTemplate;
1913        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1914          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1915        else
1916          Conv = cast<CXXConversionDecl>(D);
1917
1918        if (AllowExplicit || !Conv->isExplicit()) {
1919          if (ConvTemplate)
1920            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1921                                           ActingContext, From, ToType,
1922                                           CandidateSet);
1923          else
1924            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1925                                   From, ToType, CandidateSet);
1926        }
1927      }
1928    }
1929  }
1930
1931  OverloadCandidateSet::iterator Best;
1932  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1933    case OR_Success:
1934      // Record the standard conversion we used and the conversion function.
1935      if (CXXConstructorDecl *Constructor
1936            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1937        // C++ [over.ics.user]p1:
1938        //   If the user-defined conversion is specified by a
1939        //   constructor (12.3.1), the initial standard conversion
1940        //   sequence converts the source type to the type required by
1941        //   the argument of the constructor.
1942        //
1943        QualType ThisType = Constructor->getThisType(Context);
1944        if (Best->Conversions[0].isEllipsis())
1945          User.EllipsisConversion = true;
1946        else {
1947          User.Before = Best->Conversions[0].Standard;
1948          User.EllipsisConversion = false;
1949        }
1950        User.ConversionFunction = Constructor;
1951        User.After.setAsIdentityConversion();
1952        User.After.setFromType(
1953          ThisType->getAs<PointerType>()->getPointeeType());
1954        User.After.setAllToTypes(ToType);
1955        return OR_Success;
1956      } else if (CXXConversionDecl *Conversion
1957                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1958        // C++ [over.ics.user]p1:
1959        //
1960        //   [...] If the user-defined conversion is specified by a
1961        //   conversion function (12.3.2), the initial standard
1962        //   conversion sequence converts the source type to the
1963        //   implicit object parameter of the conversion function.
1964        User.Before = Best->Conversions[0].Standard;
1965        User.ConversionFunction = Conversion;
1966        User.EllipsisConversion = false;
1967
1968        // C++ [over.ics.user]p2:
1969        //   The second standard conversion sequence converts the
1970        //   result of the user-defined conversion to the target type
1971        //   for the sequence. Since an implicit conversion sequence
1972        //   is an initialization, the special rules for
1973        //   initialization by user-defined conversion apply when
1974        //   selecting the best user-defined conversion for a
1975        //   user-defined conversion sequence (see 13.3.3 and
1976        //   13.3.3.1).
1977        User.After = Best->FinalConversion;
1978        return OR_Success;
1979      } else {
1980        assert(false && "Not a constructor or conversion function?");
1981        return OR_No_Viable_Function;
1982      }
1983
1984    case OR_No_Viable_Function:
1985      return OR_No_Viable_Function;
1986    case OR_Deleted:
1987      // No conversion here! We're done.
1988      return OR_Deleted;
1989
1990    case OR_Ambiguous:
1991      return OR_Ambiguous;
1992    }
1993
1994  return OR_No_Viable_Function;
1995}
1996
1997bool
1998Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1999  ImplicitConversionSequence ICS;
2000  OverloadCandidateSet CandidateSet(From->getExprLoc());
2001  OverloadingResult OvResult =
2002    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
2003                            CandidateSet, false);
2004  if (OvResult == OR_Ambiguous)
2005    Diag(From->getSourceRange().getBegin(),
2006         diag::err_typecheck_ambiguous_condition)
2007          << From->getType() << ToType << From->getSourceRange();
2008  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2009    Diag(From->getSourceRange().getBegin(),
2010         diag::err_typecheck_nonviable_condition)
2011    << From->getType() << ToType << From->getSourceRange();
2012  else
2013    return false;
2014  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
2015  return true;
2016}
2017
2018/// CompareImplicitConversionSequences - Compare two implicit
2019/// conversion sequences to determine whether one is better than the
2020/// other or if they are indistinguishable (C++ 13.3.3.2).
2021ImplicitConversionSequence::CompareKind
2022Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
2023                                         const ImplicitConversionSequence& ICS2)
2024{
2025  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2026  // conversion sequences (as defined in 13.3.3.1)
2027  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2028  //      conversion sequence than a user-defined conversion sequence or
2029  //      an ellipsis conversion sequence, and
2030  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2031  //      conversion sequence than an ellipsis conversion sequence
2032  //      (13.3.3.1.3).
2033  //
2034  // C++0x [over.best.ics]p10:
2035  //   For the purpose of ranking implicit conversion sequences as
2036  //   described in 13.3.3.2, the ambiguous conversion sequence is
2037  //   treated as a user-defined sequence that is indistinguishable
2038  //   from any other user-defined conversion sequence.
2039  if (ICS1.getKindRank() < ICS2.getKindRank())
2040    return ImplicitConversionSequence::Better;
2041  else if (ICS2.getKindRank() < ICS1.getKindRank())
2042    return ImplicitConversionSequence::Worse;
2043
2044  // The following checks require both conversion sequences to be of
2045  // the same kind.
2046  if (ICS1.getKind() != ICS2.getKind())
2047    return ImplicitConversionSequence::Indistinguishable;
2048
2049  // Two implicit conversion sequences of the same form are
2050  // indistinguishable conversion sequences unless one of the
2051  // following rules apply: (C++ 13.3.3.2p3):
2052  if (ICS1.isStandard())
2053    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
2054  else if (ICS1.isUserDefined()) {
2055    // User-defined conversion sequence U1 is a better conversion
2056    // sequence than another user-defined conversion sequence U2 if
2057    // they contain the same user-defined conversion function or
2058    // constructor and if the second standard conversion sequence of
2059    // U1 is better than the second standard conversion sequence of
2060    // U2 (C++ 13.3.3.2p3).
2061    if (ICS1.UserDefined.ConversionFunction ==
2062          ICS2.UserDefined.ConversionFunction)
2063      return CompareStandardConversionSequences(ICS1.UserDefined.After,
2064                                                ICS2.UserDefined.After);
2065  }
2066
2067  return ImplicitConversionSequence::Indistinguishable;
2068}
2069
2070// Per 13.3.3.2p3, compare the given standard conversion sequences to
2071// determine if one is a proper subset of the other.
2072static ImplicitConversionSequence::CompareKind
2073compareStandardConversionSubsets(ASTContext &Context,
2074                                 const StandardConversionSequence& SCS1,
2075                                 const StandardConversionSequence& SCS2) {
2076  ImplicitConversionSequence::CompareKind Result
2077    = ImplicitConversionSequence::Indistinguishable;
2078
2079  if (SCS1.Second != SCS2.Second) {
2080    if (SCS1.Second == ICK_Identity)
2081      Result = ImplicitConversionSequence::Better;
2082    else if (SCS2.Second == ICK_Identity)
2083      Result = ImplicitConversionSequence::Worse;
2084    else
2085      return ImplicitConversionSequence::Indistinguishable;
2086  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
2087    return ImplicitConversionSequence::Indistinguishable;
2088
2089  if (SCS1.Third == SCS2.Third) {
2090    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2091                             : ImplicitConversionSequence::Indistinguishable;
2092  }
2093
2094  if (SCS1.Third == ICK_Identity)
2095    return Result == ImplicitConversionSequence::Worse
2096             ? ImplicitConversionSequence::Indistinguishable
2097             : ImplicitConversionSequence::Better;
2098
2099  if (SCS2.Third == ICK_Identity)
2100    return Result == ImplicitConversionSequence::Better
2101             ? ImplicitConversionSequence::Indistinguishable
2102             : ImplicitConversionSequence::Worse;
2103
2104  return ImplicitConversionSequence::Indistinguishable;
2105}
2106
2107/// CompareStandardConversionSequences - Compare two standard
2108/// conversion sequences to determine whether one is better than the
2109/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2110ImplicitConversionSequence::CompareKind
2111Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2112                                         const StandardConversionSequence& SCS2)
2113{
2114  // Standard conversion sequence S1 is a better conversion sequence
2115  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2116
2117  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2118  //     sequences in the canonical form defined by 13.3.3.1.1,
2119  //     excluding any Lvalue Transformation; the identity conversion
2120  //     sequence is considered to be a subsequence of any
2121  //     non-identity conversion sequence) or, if not that,
2122  if (ImplicitConversionSequence::CompareKind CK
2123        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2124    return CK;
2125
2126  //  -- the rank of S1 is better than the rank of S2 (by the rules
2127  //     defined below), or, if not that,
2128  ImplicitConversionRank Rank1 = SCS1.getRank();
2129  ImplicitConversionRank Rank2 = SCS2.getRank();
2130  if (Rank1 < Rank2)
2131    return ImplicitConversionSequence::Better;
2132  else if (Rank2 < Rank1)
2133    return ImplicitConversionSequence::Worse;
2134
2135  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2136  // are indistinguishable unless one of the following rules
2137  // applies:
2138
2139  //   A conversion that is not a conversion of a pointer, or
2140  //   pointer to member, to bool is better than another conversion
2141  //   that is such a conversion.
2142  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2143    return SCS2.isPointerConversionToBool()
2144             ? ImplicitConversionSequence::Better
2145             : ImplicitConversionSequence::Worse;
2146
2147  // C++ [over.ics.rank]p4b2:
2148  //
2149  //   If class B is derived directly or indirectly from class A,
2150  //   conversion of B* to A* is better than conversion of B* to
2151  //   void*, and conversion of A* to void* is better than conversion
2152  //   of B* to void*.
2153  bool SCS1ConvertsToVoid
2154    = SCS1.isPointerConversionToVoidPointer(Context);
2155  bool SCS2ConvertsToVoid
2156    = SCS2.isPointerConversionToVoidPointer(Context);
2157  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2158    // Exactly one of the conversion sequences is a conversion to
2159    // a void pointer; it's the worse conversion.
2160    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2161                              : ImplicitConversionSequence::Worse;
2162  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2163    // Neither conversion sequence converts to a void pointer; compare
2164    // their derived-to-base conversions.
2165    if (ImplicitConversionSequence::CompareKind DerivedCK
2166          = CompareDerivedToBaseConversions(SCS1, SCS2))
2167      return DerivedCK;
2168  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2169    // Both conversion sequences are conversions to void
2170    // pointers. Compare the source types to determine if there's an
2171    // inheritance relationship in their sources.
2172    QualType FromType1 = SCS1.getFromType();
2173    QualType FromType2 = SCS2.getFromType();
2174
2175    // Adjust the types we're converting from via the array-to-pointer
2176    // conversion, if we need to.
2177    if (SCS1.First == ICK_Array_To_Pointer)
2178      FromType1 = Context.getArrayDecayedType(FromType1);
2179    if (SCS2.First == ICK_Array_To_Pointer)
2180      FromType2 = Context.getArrayDecayedType(FromType2);
2181
2182    QualType FromPointee1
2183      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2184    QualType FromPointee2
2185      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2186
2187    if (IsDerivedFrom(FromPointee2, FromPointee1))
2188      return ImplicitConversionSequence::Better;
2189    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2190      return ImplicitConversionSequence::Worse;
2191
2192    // Objective-C++: If one interface is more specific than the
2193    // other, it is the better one.
2194    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2195    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2196    if (FromIface1 && FromIface1) {
2197      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2198        return ImplicitConversionSequence::Better;
2199      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2200        return ImplicitConversionSequence::Worse;
2201    }
2202  }
2203
2204  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2205  // bullet 3).
2206  if (ImplicitConversionSequence::CompareKind QualCK
2207        = CompareQualificationConversions(SCS1, SCS2))
2208    return QualCK;
2209
2210  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2211    // C++0x [over.ics.rank]p3b4:
2212    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2213    //      implicit object parameter of a non-static member function declared
2214    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2215    //      rvalue and S2 binds an lvalue reference.
2216    // FIXME: We don't know if we're dealing with the implicit object parameter,
2217    // or if the member function in this case has a ref qualifier.
2218    // (Of course, we don't have ref qualifiers yet.)
2219    if (SCS1.RRefBinding != SCS2.RRefBinding)
2220      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2221                              : ImplicitConversionSequence::Worse;
2222
2223    // C++ [over.ics.rank]p3b4:
2224    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2225    //      which the references refer are the same type except for
2226    //      top-level cv-qualifiers, and the type to which the reference
2227    //      initialized by S2 refers is more cv-qualified than the type
2228    //      to which the reference initialized by S1 refers.
2229    QualType T1 = SCS1.getToType(2);
2230    QualType T2 = SCS2.getToType(2);
2231    T1 = Context.getCanonicalType(T1);
2232    T2 = Context.getCanonicalType(T2);
2233    Qualifiers T1Quals, T2Quals;
2234    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2235    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2236    if (UnqualT1 == UnqualT2) {
2237      // If the type is an array type, promote the element qualifiers to the type
2238      // for comparison.
2239      if (isa<ArrayType>(T1) && T1Quals)
2240        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2241      if (isa<ArrayType>(T2) && T2Quals)
2242        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2243      if (T2.isMoreQualifiedThan(T1))
2244        return ImplicitConversionSequence::Better;
2245      else if (T1.isMoreQualifiedThan(T2))
2246        return ImplicitConversionSequence::Worse;
2247    }
2248  }
2249
2250  return ImplicitConversionSequence::Indistinguishable;
2251}
2252
2253/// CompareQualificationConversions - Compares two standard conversion
2254/// sequences to determine whether they can be ranked based on their
2255/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2256ImplicitConversionSequence::CompareKind
2257Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2258                                      const StandardConversionSequence& SCS2) {
2259  // C++ 13.3.3.2p3:
2260  //  -- S1 and S2 differ only in their qualification conversion and
2261  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2262  //     cv-qualification signature of type T1 is a proper subset of
2263  //     the cv-qualification signature of type T2, and S1 is not the
2264  //     deprecated string literal array-to-pointer conversion (4.2).
2265  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2266      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2267    return ImplicitConversionSequence::Indistinguishable;
2268
2269  // FIXME: the example in the standard doesn't use a qualification
2270  // conversion (!)
2271  QualType T1 = SCS1.getToType(2);
2272  QualType T2 = SCS2.getToType(2);
2273  T1 = Context.getCanonicalType(T1);
2274  T2 = Context.getCanonicalType(T2);
2275  Qualifiers T1Quals, T2Quals;
2276  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2277  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2278
2279  // If the types are the same, we won't learn anything by unwrapped
2280  // them.
2281  if (UnqualT1 == UnqualT2)
2282    return ImplicitConversionSequence::Indistinguishable;
2283
2284  // If the type is an array type, promote the element qualifiers to the type
2285  // for comparison.
2286  if (isa<ArrayType>(T1) && T1Quals)
2287    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2288  if (isa<ArrayType>(T2) && T2Quals)
2289    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2290
2291  ImplicitConversionSequence::CompareKind Result
2292    = ImplicitConversionSequence::Indistinguishable;
2293  while (UnwrapSimilarPointerTypes(T1, T2)) {
2294    // Within each iteration of the loop, we check the qualifiers to
2295    // determine if this still looks like a qualification
2296    // conversion. Then, if all is well, we unwrap one more level of
2297    // pointers or pointers-to-members and do it all again
2298    // until there are no more pointers or pointers-to-members left
2299    // to unwrap. This essentially mimics what
2300    // IsQualificationConversion does, but here we're checking for a
2301    // strict subset of qualifiers.
2302    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2303      // The qualifiers are the same, so this doesn't tell us anything
2304      // about how the sequences rank.
2305      ;
2306    else if (T2.isMoreQualifiedThan(T1)) {
2307      // T1 has fewer qualifiers, so it could be the better sequence.
2308      if (Result == ImplicitConversionSequence::Worse)
2309        // Neither has qualifiers that are a subset of the other's
2310        // qualifiers.
2311        return ImplicitConversionSequence::Indistinguishable;
2312
2313      Result = ImplicitConversionSequence::Better;
2314    } else if (T1.isMoreQualifiedThan(T2)) {
2315      // T2 has fewer qualifiers, so it could be the better sequence.
2316      if (Result == ImplicitConversionSequence::Better)
2317        // Neither has qualifiers that are a subset of the other's
2318        // qualifiers.
2319        return ImplicitConversionSequence::Indistinguishable;
2320
2321      Result = ImplicitConversionSequence::Worse;
2322    } else {
2323      // Qualifiers are disjoint.
2324      return ImplicitConversionSequence::Indistinguishable;
2325    }
2326
2327    // If the types after this point are equivalent, we're done.
2328    if (Context.hasSameUnqualifiedType(T1, T2))
2329      break;
2330  }
2331
2332  // Check that the winning standard conversion sequence isn't using
2333  // the deprecated string literal array to pointer conversion.
2334  switch (Result) {
2335  case ImplicitConversionSequence::Better:
2336    if (SCS1.DeprecatedStringLiteralToCharPtr)
2337      Result = ImplicitConversionSequence::Indistinguishable;
2338    break;
2339
2340  case ImplicitConversionSequence::Indistinguishable:
2341    break;
2342
2343  case ImplicitConversionSequence::Worse:
2344    if (SCS2.DeprecatedStringLiteralToCharPtr)
2345      Result = ImplicitConversionSequence::Indistinguishable;
2346    break;
2347  }
2348
2349  return Result;
2350}
2351
2352/// CompareDerivedToBaseConversions - Compares two standard conversion
2353/// sequences to determine whether they can be ranked based on their
2354/// various kinds of derived-to-base conversions (C++
2355/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2356/// conversions between Objective-C interface types.
2357ImplicitConversionSequence::CompareKind
2358Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2359                                      const StandardConversionSequence& SCS2) {
2360  QualType FromType1 = SCS1.getFromType();
2361  QualType ToType1 = SCS1.getToType(1);
2362  QualType FromType2 = SCS2.getFromType();
2363  QualType ToType2 = SCS2.getToType(1);
2364
2365  // Adjust the types we're converting from via the array-to-pointer
2366  // conversion, if we need to.
2367  if (SCS1.First == ICK_Array_To_Pointer)
2368    FromType1 = Context.getArrayDecayedType(FromType1);
2369  if (SCS2.First == ICK_Array_To_Pointer)
2370    FromType2 = Context.getArrayDecayedType(FromType2);
2371
2372  // Canonicalize all of the types.
2373  FromType1 = Context.getCanonicalType(FromType1);
2374  ToType1 = Context.getCanonicalType(ToType1);
2375  FromType2 = Context.getCanonicalType(FromType2);
2376  ToType2 = Context.getCanonicalType(ToType2);
2377
2378  // C++ [over.ics.rank]p4b3:
2379  //
2380  //   If class B is derived directly or indirectly from class A and
2381  //   class C is derived directly or indirectly from B,
2382  //
2383  // For Objective-C, we let A, B, and C also be Objective-C
2384  // interfaces.
2385
2386  // Compare based on pointer conversions.
2387  if (SCS1.Second == ICK_Pointer_Conversion &&
2388      SCS2.Second == ICK_Pointer_Conversion &&
2389      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2390      FromType1->isPointerType() && FromType2->isPointerType() &&
2391      ToType1->isPointerType() && ToType2->isPointerType()) {
2392    QualType FromPointee1
2393      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2394    QualType ToPointee1
2395      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2396    QualType FromPointee2
2397      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2398    QualType ToPointee2
2399      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2400
2401    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2402    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2403    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2404    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2405
2406    //   -- conversion of C* to B* is better than conversion of C* to A*,
2407    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2408      if (IsDerivedFrom(ToPointee1, ToPointee2))
2409        return ImplicitConversionSequence::Better;
2410      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2411        return ImplicitConversionSequence::Worse;
2412
2413      if (ToIface1 && ToIface2) {
2414        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2415          return ImplicitConversionSequence::Better;
2416        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2417          return ImplicitConversionSequence::Worse;
2418      }
2419    }
2420
2421    //   -- conversion of B* to A* is better than conversion of C* to A*,
2422    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2423      if (IsDerivedFrom(FromPointee2, FromPointee1))
2424        return ImplicitConversionSequence::Better;
2425      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2426        return ImplicitConversionSequence::Worse;
2427
2428      if (FromIface1 && FromIface2) {
2429        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2430          return ImplicitConversionSequence::Better;
2431        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2432          return ImplicitConversionSequence::Worse;
2433      }
2434    }
2435  }
2436
2437  // Ranking of member-pointer types.
2438  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2439      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2440      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2441    const MemberPointerType * FromMemPointer1 =
2442                                        FromType1->getAs<MemberPointerType>();
2443    const MemberPointerType * ToMemPointer1 =
2444                                          ToType1->getAs<MemberPointerType>();
2445    const MemberPointerType * FromMemPointer2 =
2446                                          FromType2->getAs<MemberPointerType>();
2447    const MemberPointerType * ToMemPointer2 =
2448                                          ToType2->getAs<MemberPointerType>();
2449    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2450    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2451    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2452    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2453    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2454    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2455    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2456    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2457    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2458    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2459      if (IsDerivedFrom(ToPointee1, ToPointee2))
2460        return ImplicitConversionSequence::Worse;
2461      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2462        return ImplicitConversionSequence::Better;
2463    }
2464    // conversion of B::* to C::* is better than conversion of A::* to C::*
2465    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2466      if (IsDerivedFrom(FromPointee1, FromPointee2))
2467        return ImplicitConversionSequence::Better;
2468      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2469        return ImplicitConversionSequence::Worse;
2470    }
2471  }
2472
2473  if (SCS1.Second == ICK_Derived_To_Base) {
2474    //   -- conversion of C to B is better than conversion of C to A,
2475    //   -- binding of an expression of type C to a reference of type
2476    //      B& is better than binding an expression of type C to a
2477    //      reference of type A&,
2478    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2479        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2480      if (IsDerivedFrom(ToType1, ToType2))
2481        return ImplicitConversionSequence::Better;
2482      else if (IsDerivedFrom(ToType2, ToType1))
2483        return ImplicitConversionSequence::Worse;
2484    }
2485
2486    //   -- conversion of B to A is better than conversion of C to A.
2487    //   -- binding of an expression of type B to a reference of type
2488    //      A& is better than binding an expression of type C to a
2489    //      reference of type A&,
2490    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2491        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2492      if (IsDerivedFrom(FromType2, FromType1))
2493        return ImplicitConversionSequence::Better;
2494      else if (IsDerivedFrom(FromType1, FromType2))
2495        return ImplicitConversionSequence::Worse;
2496    }
2497  }
2498
2499  return ImplicitConversionSequence::Indistinguishable;
2500}
2501
2502/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2503/// determine whether they are reference-related,
2504/// reference-compatible, reference-compatible with added
2505/// qualification, or incompatible, for use in C++ initialization by
2506/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2507/// type, and the first type (T1) is the pointee type of the reference
2508/// type being initialized.
2509Sema::ReferenceCompareResult
2510Sema::CompareReferenceRelationship(SourceLocation Loc,
2511                                   QualType OrigT1, QualType OrigT2,
2512                                   bool& DerivedToBase) {
2513  assert(!OrigT1->isReferenceType() &&
2514    "T1 must be the pointee type of the reference type");
2515  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2516
2517  QualType T1 = Context.getCanonicalType(OrigT1);
2518  QualType T2 = Context.getCanonicalType(OrigT2);
2519  Qualifiers T1Quals, T2Quals;
2520  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2521  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2522
2523  // C++ [dcl.init.ref]p4:
2524  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2525  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2526  //   T1 is a base class of T2.
2527  if (UnqualT1 == UnqualT2)
2528    DerivedToBase = false;
2529  else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2530           IsDerivedFrom(UnqualT2, UnqualT1))
2531    DerivedToBase = true;
2532  else
2533    return Ref_Incompatible;
2534
2535  // At this point, we know that T1 and T2 are reference-related (at
2536  // least).
2537
2538  // If the type is an array type, promote the element qualifiers to the type
2539  // for comparison.
2540  if (isa<ArrayType>(T1) && T1Quals)
2541    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2542  if (isa<ArrayType>(T2) && T2Quals)
2543    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2544
2545  // C++ [dcl.init.ref]p4:
2546  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2547  //   reference-related to T2 and cv1 is the same cv-qualification
2548  //   as, or greater cv-qualification than, cv2. For purposes of
2549  //   overload resolution, cases for which cv1 is greater
2550  //   cv-qualification than cv2 are identified as
2551  //   reference-compatible with added qualification (see 13.3.3.2).
2552  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2553    return Ref_Compatible;
2554  else if (T1.isMoreQualifiedThan(T2))
2555    return Ref_Compatible_With_Added_Qualification;
2556  else
2557    return Ref_Related;
2558}
2559
2560/// \brief Compute an implicit conversion sequence for reference
2561/// initialization.
2562static ImplicitConversionSequence
2563TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2564                 SourceLocation DeclLoc,
2565                 bool SuppressUserConversions,
2566                 bool AllowExplicit) {
2567  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2568
2569  // Most paths end in a failed conversion.
2570  ImplicitConversionSequence ICS;
2571  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2572
2573  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2574  QualType T2 = Init->getType();
2575
2576  // If the initializer is the address of an overloaded function, try
2577  // to resolve the overloaded function. If all goes well, T2 is the
2578  // type of the resulting function.
2579  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2580    DeclAccessPair Found;
2581    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2582                                                                false, Found))
2583      T2 = Fn->getType();
2584  }
2585
2586  // Compute some basic properties of the types and the initializer.
2587  bool isRValRef = DeclType->isRValueReferenceType();
2588  bool DerivedToBase = false;
2589  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2590  Sema::ReferenceCompareResult RefRelationship
2591    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2592
2593
2594  // C++ [over.ics.ref]p3:
2595  //   Except for an implicit object parameter, for which see 13.3.1,
2596  //   a standard conversion sequence cannot be formed if it requires
2597  //   binding an lvalue reference to non-const to an rvalue or
2598  //   binding an rvalue reference to an lvalue.
2599  //
2600  // FIXME: DPG doesn't trust this code. It seems far too early to
2601  // abort because of a binding of an rvalue reference to an lvalue.
2602  if (isRValRef && InitLvalue == Expr::LV_Valid)
2603    return ICS;
2604
2605  // C++0x [dcl.init.ref]p16:
2606  //   A reference to type "cv1 T1" is initialized by an expression
2607  //   of type "cv2 T2" as follows:
2608
2609  //     -- If the initializer expression
2610  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2611  //          reference-compatible with "cv2 T2," or
2612  //
2613  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2614  if (InitLvalue == Expr::LV_Valid &&
2615      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2616    // C++ [over.ics.ref]p1:
2617    //   When a parameter of reference type binds directly (8.5.3)
2618    //   to an argument expression, the implicit conversion sequence
2619    //   is the identity conversion, unless the argument expression
2620    //   has a type that is a derived class of the parameter type,
2621    //   in which case the implicit conversion sequence is a
2622    //   derived-to-base Conversion (13.3.3.1).
2623    ICS.setStandard();
2624    ICS.Standard.First = ICK_Identity;
2625    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2626    ICS.Standard.Third = ICK_Identity;
2627    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2628    ICS.Standard.setToType(0, T2);
2629    ICS.Standard.setToType(1, T1);
2630    ICS.Standard.setToType(2, T1);
2631    ICS.Standard.ReferenceBinding = true;
2632    ICS.Standard.DirectBinding = true;
2633    ICS.Standard.RRefBinding = false;
2634    ICS.Standard.CopyConstructor = 0;
2635
2636    // Nothing more to do: the inaccessibility/ambiguity check for
2637    // derived-to-base conversions is suppressed when we're
2638    // computing the implicit conversion sequence (C++
2639    // [over.best.ics]p2).
2640    return ICS;
2641  }
2642
2643  //       -- has a class type (i.e., T2 is a class type), where T1 is
2644  //          not reference-related to T2, and can be implicitly
2645  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2646  //          is reference-compatible with "cv3 T3" 92) (this
2647  //          conversion is selected by enumerating the applicable
2648  //          conversion functions (13.3.1.6) and choosing the best
2649  //          one through overload resolution (13.3)),
2650  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2651      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2652      RefRelationship == Sema::Ref_Incompatible) {
2653    CXXRecordDecl *T2RecordDecl
2654      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2655
2656    OverloadCandidateSet CandidateSet(DeclLoc);
2657    const UnresolvedSetImpl *Conversions
2658      = T2RecordDecl->getVisibleConversionFunctions();
2659    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2660           E = Conversions->end(); I != E; ++I) {
2661      NamedDecl *D = *I;
2662      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2663      if (isa<UsingShadowDecl>(D))
2664        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2665
2666      FunctionTemplateDecl *ConvTemplate
2667        = dyn_cast<FunctionTemplateDecl>(D);
2668      CXXConversionDecl *Conv;
2669      if (ConvTemplate)
2670        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2671      else
2672        Conv = cast<CXXConversionDecl>(D);
2673
2674      // If the conversion function doesn't return a reference type,
2675      // it can't be considered for this conversion.
2676      if (Conv->getConversionType()->isLValueReferenceType() &&
2677          (AllowExplicit || !Conv->isExplicit())) {
2678        if (ConvTemplate)
2679          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2680                                         Init, DeclType, CandidateSet);
2681        else
2682          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2683                                 DeclType, CandidateSet);
2684      }
2685    }
2686
2687    OverloadCandidateSet::iterator Best;
2688    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2689    case OR_Success:
2690      // C++ [over.ics.ref]p1:
2691      //
2692      //   [...] If the parameter binds directly to the result of
2693      //   applying a conversion function to the argument
2694      //   expression, the implicit conversion sequence is a
2695      //   user-defined conversion sequence (13.3.3.1.2), with the
2696      //   second standard conversion sequence either an identity
2697      //   conversion or, if the conversion function returns an
2698      //   entity of a type that is a derived class of the parameter
2699      //   type, a derived-to-base Conversion.
2700      if (!Best->FinalConversion.DirectBinding)
2701        break;
2702
2703      ICS.setUserDefined();
2704      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2705      ICS.UserDefined.After = Best->FinalConversion;
2706      ICS.UserDefined.ConversionFunction = Best->Function;
2707      ICS.UserDefined.EllipsisConversion = false;
2708      assert(ICS.UserDefined.After.ReferenceBinding &&
2709             ICS.UserDefined.After.DirectBinding &&
2710             "Expected a direct reference binding!");
2711      return ICS;
2712
2713    case OR_Ambiguous:
2714      ICS.setAmbiguous();
2715      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2716           Cand != CandidateSet.end(); ++Cand)
2717        if (Cand->Viable)
2718          ICS.Ambiguous.addConversion(Cand->Function);
2719      return ICS;
2720
2721    case OR_No_Viable_Function:
2722    case OR_Deleted:
2723      // There was no suitable conversion, or we found a deleted
2724      // conversion; continue with other checks.
2725      break;
2726    }
2727  }
2728
2729  //     -- Otherwise, the reference shall be to a non-volatile const
2730  //        type (i.e., cv1 shall be const), or the reference shall be an
2731  //        rvalue reference and the initializer expression shall be an rvalue.
2732  //
2733  // We actually handle one oddity of C++ [over.ics.ref] at this
2734  // point, which is that, due to p2 (which short-circuits reference
2735  // binding by only attempting a simple conversion for non-direct
2736  // bindings) and p3's strange wording, we allow a const volatile
2737  // reference to bind to an rvalue. Hence the check for the presence
2738  // of "const" rather than checking for "const" being the only
2739  // qualifier.
2740  if (!isRValRef && !T1.isConstQualified())
2741    return ICS;
2742
2743  //       -- if T2 is a class type and
2744  //          -- the initializer expression is an rvalue and "cv1 T1"
2745  //             is reference-compatible with "cv2 T2," or
2746  //
2747  //          -- T1 is not reference-related to T2 and the initializer
2748  //             expression can be implicitly converted to an rvalue
2749  //             of type "cv3 T3" (this conversion is selected by
2750  //             enumerating the applicable conversion functions
2751  //             (13.3.1.6) and choosing the best one through overload
2752  //             resolution (13.3)),
2753  //
2754  //          then the reference is bound to the initializer
2755  //          expression rvalue in the first case and to the object
2756  //          that is the result of the conversion in the second case
2757  //          (or, in either case, to the appropriate base class
2758  //          subobject of the object).
2759  //
2760  // We're only checking the first case here, which is a direct
2761  // binding in C++0x but not in C++03.
2762  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2763      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2764    ICS.setStandard();
2765    ICS.Standard.First = ICK_Identity;
2766    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2767    ICS.Standard.Third = ICK_Identity;
2768    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2769    ICS.Standard.setToType(0, T2);
2770    ICS.Standard.setToType(1, T1);
2771    ICS.Standard.setToType(2, T1);
2772    ICS.Standard.ReferenceBinding = true;
2773    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2774    ICS.Standard.RRefBinding = isRValRef;
2775    ICS.Standard.CopyConstructor = 0;
2776    return ICS;
2777  }
2778
2779  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2780  //          initialized from the initializer expression using the
2781  //          rules for a non-reference copy initialization (8.5). The
2782  //          reference is then bound to the temporary. If T1 is
2783  //          reference-related to T2, cv1 must be the same
2784  //          cv-qualification as, or greater cv-qualification than,
2785  //          cv2; otherwise, the program is ill-formed.
2786  if (RefRelationship == Sema::Ref_Related) {
2787    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2788    // we would be reference-compatible or reference-compatible with
2789    // added qualification. But that wasn't the case, so the reference
2790    // initialization fails.
2791    return ICS;
2792  }
2793
2794  // If at least one of the types is a class type, the types are not
2795  // related, and we aren't allowed any user conversions, the
2796  // reference binding fails. This case is important for breaking
2797  // recursion, since TryImplicitConversion below will attempt to
2798  // create a temporary through the use of a copy constructor.
2799  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2800      (T1->isRecordType() || T2->isRecordType()))
2801    return ICS;
2802
2803  // C++ [over.ics.ref]p2:
2804  //   When a parameter of reference type is not bound directly to
2805  //   an argument expression, the conversion sequence is the one
2806  //   required to convert the argument expression to the
2807  //   underlying type of the reference according to
2808  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2809  //   to copy-initializing a temporary of the underlying type with
2810  //   the argument expression. Any difference in top-level
2811  //   cv-qualification is subsumed by the initialization itself
2812  //   and does not constitute a conversion.
2813  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2814                                /*AllowExplicit=*/false,
2815                                /*InOverloadResolution=*/false);
2816
2817  // Of course, that's still a reference binding.
2818  if (ICS.isStandard()) {
2819    ICS.Standard.ReferenceBinding = true;
2820    ICS.Standard.RRefBinding = isRValRef;
2821  } else if (ICS.isUserDefined()) {
2822    ICS.UserDefined.After.ReferenceBinding = true;
2823    ICS.UserDefined.After.RRefBinding = isRValRef;
2824  }
2825  return ICS;
2826}
2827
2828/// TryCopyInitialization - Try to copy-initialize a value of type
2829/// ToType from the expression From. Return the implicit conversion
2830/// sequence required to pass this argument, which may be a bad
2831/// conversion sequence (meaning that the argument cannot be passed to
2832/// a parameter of this type). If @p SuppressUserConversions, then we
2833/// do not permit any user-defined conversion sequences.
2834static ImplicitConversionSequence
2835TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2836                      bool SuppressUserConversions,
2837                      bool InOverloadResolution) {
2838  if (ToType->isReferenceType())
2839    return TryReferenceInit(S, From, ToType,
2840                            /*FIXME:*/From->getLocStart(),
2841                            SuppressUserConversions,
2842                            /*AllowExplicit=*/false);
2843
2844  return S.TryImplicitConversion(From, ToType,
2845                                 SuppressUserConversions,
2846                                 /*AllowExplicit=*/false,
2847                                 InOverloadResolution);
2848}
2849
2850/// TryObjectArgumentInitialization - Try to initialize the object
2851/// parameter of the given member function (@c Method) from the
2852/// expression @p From.
2853ImplicitConversionSequence
2854Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2855                                      CXXMethodDecl *Method,
2856                                      CXXRecordDecl *ActingContext) {
2857  QualType ClassType = Context.getTypeDeclType(ActingContext);
2858  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2859  //                 const volatile object.
2860  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2861    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2862  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2863
2864  // Set up the conversion sequence as a "bad" conversion, to allow us
2865  // to exit early.
2866  ImplicitConversionSequence ICS;
2867
2868  // We need to have an object of class type.
2869  QualType FromType = OrigFromType;
2870  if (const PointerType *PT = FromType->getAs<PointerType>())
2871    FromType = PT->getPointeeType();
2872
2873  assert(FromType->isRecordType());
2874
2875  // The implicit object parameter is has the type "reference to cv X",
2876  // where X is the class of which the function is a member
2877  // (C++ [over.match.funcs]p4). However, when finding an implicit
2878  // conversion sequence for the argument, we are not allowed to
2879  // create temporaries or perform user-defined conversions
2880  // (C++ [over.match.funcs]p5). We perform a simplified version of
2881  // reference binding here, that allows class rvalues to bind to
2882  // non-constant references.
2883
2884  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2885  // with the implicit object parameter (C++ [over.match.funcs]p5).
2886  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2887  if (ImplicitParamType.getCVRQualifiers()
2888                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2889      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2890    ICS.setBad(BadConversionSequence::bad_qualifiers,
2891               OrigFromType, ImplicitParamType);
2892    return ICS;
2893  }
2894
2895  // Check that we have either the same type or a derived type. It
2896  // affects the conversion rank.
2897  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2898  ImplicitConversionKind SecondKind;
2899  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2900    SecondKind = ICK_Identity;
2901  } else if (IsDerivedFrom(FromType, ClassType))
2902    SecondKind = ICK_Derived_To_Base;
2903  else {
2904    ICS.setBad(BadConversionSequence::unrelated_class,
2905               FromType, ImplicitParamType);
2906    return ICS;
2907  }
2908
2909  // Success. Mark this as a reference binding.
2910  ICS.setStandard();
2911  ICS.Standard.setAsIdentityConversion();
2912  ICS.Standard.Second = SecondKind;
2913  ICS.Standard.setFromType(FromType);
2914  ICS.Standard.setAllToTypes(ImplicitParamType);
2915  ICS.Standard.ReferenceBinding = true;
2916  ICS.Standard.DirectBinding = true;
2917  ICS.Standard.RRefBinding = false;
2918  return ICS;
2919}
2920
2921/// PerformObjectArgumentInitialization - Perform initialization of
2922/// the implicit object parameter for the given Method with the given
2923/// expression.
2924bool
2925Sema::PerformObjectArgumentInitialization(Expr *&From,
2926                                          NestedNameSpecifier *Qualifier,
2927                                          NamedDecl *FoundDecl,
2928                                          CXXMethodDecl *Method) {
2929  QualType FromRecordType, DestType;
2930  QualType ImplicitParamRecordType  =
2931    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2932
2933  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2934    FromRecordType = PT->getPointeeType();
2935    DestType = Method->getThisType(Context);
2936  } else {
2937    FromRecordType = From->getType();
2938    DestType = ImplicitParamRecordType;
2939  }
2940
2941  // Note that we always use the true parent context when performing
2942  // the actual argument initialization.
2943  ImplicitConversionSequence ICS
2944    = TryObjectArgumentInitialization(From->getType(), Method,
2945                                      Method->getParent());
2946  if (ICS.isBad())
2947    return Diag(From->getSourceRange().getBegin(),
2948                diag::err_implicit_object_parameter_init)
2949       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2950
2951  if (ICS.Standard.Second == ICK_Derived_To_Base)
2952    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2953
2954  if (!Context.hasSameType(From->getType(), DestType))
2955    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2956                      /*isLvalue=*/!From->getType()->isPointerType());
2957  return false;
2958}
2959
2960/// TryContextuallyConvertToBool - Attempt to contextually convert the
2961/// expression From to bool (C++0x [conv]p3).
2962ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2963  // FIXME: This is pretty broken.
2964  return TryImplicitConversion(From, Context.BoolTy,
2965                               // FIXME: Are these flags correct?
2966                               /*SuppressUserConversions=*/false,
2967                               /*AllowExplicit=*/true,
2968                               /*InOverloadResolution=*/false);
2969}
2970
2971/// PerformContextuallyConvertToBool - Perform a contextual conversion
2972/// of the expression From to bool (C++0x [conv]p3).
2973bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2974  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2975  if (!ICS.isBad())
2976    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2977
2978  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2979    return  Diag(From->getSourceRange().getBegin(),
2980                 diag::err_typecheck_bool_condition)
2981                  << From->getType() << From->getSourceRange();
2982  return true;
2983}
2984
2985/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
2986/// expression From to 'id'.
2987ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
2988  QualType Ty = Context.getObjCIdType();
2989  return TryImplicitConversion(From, Ty,
2990                                 // FIXME: Are these flags correct?
2991                                 /*SuppressUserConversions=*/false,
2992                                 /*AllowExplicit=*/true,
2993                                 /*InOverloadResolution=*/false);
2994}
2995
2996/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
2997/// of the expression From to 'id'.
2998bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
2999  QualType Ty = Context.getObjCIdType();
3000  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
3001  if (!ICS.isBad())
3002    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3003  return true;
3004}
3005
3006/// AddOverloadCandidate - Adds the given function to the set of
3007/// candidate functions, using the given function call arguments.  If
3008/// @p SuppressUserConversions, then don't allow user-defined
3009/// conversions via constructors or conversion operators.
3010///
3011/// \para PartialOverloading true if we are performing "partial" overloading
3012/// based on an incomplete set of function arguments. This feature is used by
3013/// code completion.
3014void
3015Sema::AddOverloadCandidate(FunctionDecl *Function,
3016                           DeclAccessPair FoundDecl,
3017                           Expr **Args, unsigned NumArgs,
3018                           OverloadCandidateSet& CandidateSet,
3019                           bool SuppressUserConversions,
3020                           bool PartialOverloading) {
3021  const FunctionProtoType* Proto
3022    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3023  assert(Proto && "Functions without a prototype cannot be overloaded");
3024  assert(!Function->getDescribedFunctionTemplate() &&
3025         "Use AddTemplateOverloadCandidate for function templates");
3026
3027  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3028    if (!isa<CXXConstructorDecl>(Method)) {
3029      // If we get here, it's because we're calling a member function
3030      // that is named without a member access expression (e.g.,
3031      // "this->f") that was either written explicitly or created
3032      // implicitly. This can happen with a qualified call to a member
3033      // function, e.g., X::f(). We use an empty type for the implied
3034      // object argument (C++ [over.call.func]p3), and the acting context
3035      // is irrelevant.
3036      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3037                         QualType(), Args, NumArgs, CandidateSet,
3038                         SuppressUserConversions);
3039      return;
3040    }
3041    // We treat a constructor like a non-member function, since its object
3042    // argument doesn't participate in overload resolution.
3043  }
3044
3045  if (!CandidateSet.isNewCandidate(Function))
3046    return;
3047
3048  // Overload resolution is always an unevaluated context.
3049  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3050
3051  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3052    // C++ [class.copy]p3:
3053    //   A member function template is never instantiated to perform the copy
3054    //   of a class object to an object of its class type.
3055    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3056    if (NumArgs == 1 &&
3057        Constructor->isCopyConstructorLikeSpecialization() &&
3058        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3059         IsDerivedFrom(Args[0]->getType(), ClassType)))
3060      return;
3061  }
3062
3063  // Add this candidate
3064  CandidateSet.push_back(OverloadCandidate());
3065  OverloadCandidate& Candidate = CandidateSet.back();
3066  Candidate.FoundDecl = FoundDecl;
3067  Candidate.Function = Function;
3068  Candidate.Viable = true;
3069  Candidate.IsSurrogate = false;
3070  Candidate.IgnoreObjectArgument = false;
3071
3072  unsigned NumArgsInProto = Proto->getNumArgs();
3073
3074  // (C++ 13.3.2p2): A candidate function having fewer than m
3075  // parameters is viable only if it has an ellipsis in its parameter
3076  // list (8.3.5).
3077  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3078      !Proto->isVariadic()) {
3079    Candidate.Viable = false;
3080    Candidate.FailureKind = ovl_fail_too_many_arguments;
3081    return;
3082  }
3083
3084  // (C++ 13.3.2p2): A candidate function having more than m parameters
3085  // is viable only if the (m+1)st parameter has a default argument
3086  // (8.3.6). For the purposes of overload resolution, the
3087  // parameter list is truncated on the right, so that there are
3088  // exactly m parameters.
3089  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3090  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3091    // Not enough arguments.
3092    Candidate.Viable = false;
3093    Candidate.FailureKind = ovl_fail_too_few_arguments;
3094    return;
3095  }
3096
3097  // Determine the implicit conversion sequences for each of the
3098  // arguments.
3099  Candidate.Conversions.resize(NumArgs);
3100  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3101    if (ArgIdx < NumArgsInProto) {
3102      // (C++ 13.3.2p3): for F to be a viable function, there shall
3103      // exist for each argument an implicit conversion sequence
3104      // (13.3.3.1) that converts that argument to the corresponding
3105      // parameter of F.
3106      QualType ParamType = Proto->getArgType(ArgIdx);
3107      Candidate.Conversions[ArgIdx]
3108        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3109                                SuppressUserConversions,
3110                                /*InOverloadResolution=*/true);
3111      if (Candidate.Conversions[ArgIdx].isBad()) {
3112        Candidate.Viable = false;
3113        Candidate.FailureKind = ovl_fail_bad_conversion;
3114        break;
3115      }
3116    } else {
3117      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3118      // argument for which there is no corresponding parameter is
3119      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3120      Candidate.Conversions[ArgIdx].setEllipsis();
3121    }
3122  }
3123}
3124
3125/// \brief Add all of the function declarations in the given function set to
3126/// the overload canddiate set.
3127void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3128                                 Expr **Args, unsigned NumArgs,
3129                                 OverloadCandidateSet& CandidateSet,
3130                                 bool SuppressUserConversions) {
3131  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3132    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3133    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3134      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3135        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3136                           cast<CXXMethodDecl>(FD)->getParent(),
3137                           Args[0]->getType(), Args + 1, NumArgs - 1,
3138                           CandidateSet, SuppressUserConversions);
3139      else
3140        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3141                             SuppressUserConversions);
3142    } else {
3143      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3144      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3145          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3146        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3147                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3148                                   /*FIXME: explicit args */ 0,
3149                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3150                                   CandidateSet,
3151                                   SuppressUserConversions);
3152      else
3153        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3154                                     /*FIXME: explicit args */ 0,
3155                                     Args, NumArgs, CandidateSet,
3156                                     SuppressUserConversions);
3157    }
3158  }
3159}
3160
3161/// AddMethodCandidate - Adds a named decl (which is some kind of
3162/// method) as a method candidate to the given overload set.
3163void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3164                              QualType ObjectType,
3165                              Expr **Args, unsigned NumArgs,
3166                              OverloadCandidateSet& CandidateSet,
3167                              bool SuppressUserConversions) {
3168  NamedDecl *Decl = FoundDecl.getDecl();
3169  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3170
3171  if (isa<UsingShadowDecl>(Decl))
3172    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3173
3174  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3175    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3176           "Expected a member function template");
3177    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3178                               /*ExplicitArgs*/ 0,
3179                               ObjectType, Args, NumArgs,
3180                               CandidateSet,
3181                               SuppressUserConversions);
3182  } else {
3183    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3184                       ObjectType, Args, NumArgs,
3185                       CandidateSet, SuppressUserConversions);
3186  }
3187}
3188
3189/// AddMethodCandidate - Adds the given C++ member function to the set
3190/// of candidate functions, using the given function call arguments
3191/// and the object argument (@c Object). For example, in a call
3192/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3193/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3194/// allow user-defined conversions via constructors or conversion
3195/// operators.
3196void
3197Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3198                         CXXRecordDecl *ActingContext, QualType ObjectType,
3199                         Expr **Args, unsigned NumArgs,
3200                         OverloadCandidateSet& CandidateSet,
3201                         bool SuppressUserConversions) {
3202  const FunctionProtoType* Proto
3203    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3204  assert(Proto && "Methods without a prototype cannot be overloaded");
3205  assert(!isa<CXXConstructorDecl>(Method) &&
3206         "Use AddOverloadCandidate for constructors");
3207
3208  if (!CandidateSet.isNewCandidate(Method))
3209    return;
3210
3211  // Overload resolution is always an unevaluated context.
3212  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3213
3214  // Add this candidate
3215  CandidateSet.push_back(OverloadCandidate());
3216  OverloadCandidate& Candidate = CandidateSet.back();
3217  Candidate.FoundDecl = FoundDecl;
3218  Candidate.Function = Method;
3219  Candidate.IsSurrogate = false;
3220  Candidate.IgnoreObjectArgument = false;
3221
3222  unsigned NumArgsInProto = Proto->getNumArgs();
3223
3224  // (C++ 13.3.2p2): A candidate function having fewer than m
3225  // parameters is viable only if it has an ellipsis in its parameter
3226  // list (8.3.5).
3227  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3228    Candidate.Viable = false;
3229    Candidate.FailureKind = ovl_fail_too_many_arguments;
3230    return;
3231  }
3232
3233  // (C++ 13.3.2p2): A candidate function having more than m parameters
3234  // is viable only if the (m+1)st parameter has a default argument
3235  // (8.3.6). For the purposes of overload resolution, the
3236  // parameter list is truncated on the right, so that there are
3237  // exactly m parameters.
3238  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3239  if (NumArgs < MinRequiredArgs) {
3240    // Not enough arguments.
3241    Candidate.Viable = false;
3242    Candidate.FailureKind = ovl_fail_too_few_arguments;
3243    return;
3244  }
3245
3246  Candidate.Viable = true;
3247  Candidate.Conversions.resize(NumArgs + 1);
3248
3249  if (Method->isStatic() || ObjectType.isNull())
3250    // The implicit object argument is ignored.
3251    Candidate.IgnoreObjectArgument = true;
3252  else {
3253    // Determine the implicit conversion sequence for the object
3254    // parameter.
3255    Candidate.Conversions[0]
3256      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3257    if (Candidate.Conversions[0].isBad()) {
3258      Candidate.Viable = false;
3259      Candidate.FailureKind = ovl_fail_bad_conversion;
3260      return;
3261    }
3262  }
3263
3264  // Determine the implicit conversion sequences for each of the
3265  // arguments.
3266  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3267    if (ArgIdx < NumArgsInProto) {
3268      // (C++ 13.3.2p3): for F to be a viable function, there shall
3269      // exist for each argument an implicit conversion sequence
3270      // (13.3.3.1) that converts that argument to the corresponding
3271      // parameter of F.
3272      QualType ParamType = Proto->getArgType(ArgIdx);
3273      Candidate.Conversions[ArgIdx + 1]
3274        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3275                                SuppressUserConversions,
3276                                /*InOverloadResolution=*/true);
3277      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3278        Candidate.Viable = false;
3279        Candidate.FailureKind = ovl_fail_bad_conversion;
3280        break;
3281      }
3282    } else {
3283      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3284      // argument for which there is no corresponding parameter is
3285      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3286      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3287    }
3288  }
3289}
3290
3291/// \brief Add a C++ member function template as a candidate to the candidate
3292/// set, using template argument deduction to produce an appropriate member
3293/// function template specialization.
3294void
3295Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3296                                 DeclAccessPair FoundDecl,
3297                                 CXXRecordDecl *ActingContext,
3298                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3299                                 QualType ObjectType,
3300                                 Expr **Args, unsigned NumArgs,
3301                                 OverloadCandidateSet& CandidateSet,
3302                                 bool SuppressUserConversions) {
3303  if (!CandidateSet.isNewCandidate(MethodTmpl))
3304    return;
3305
3306  // C++ [over.match.funcs]p7:
3307  //   In each case where a candidate is a function template, candidate
3308  //   function template specializations are generated using template argument
3309  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3310  //   candidate functions in the usual way.113) A given name can refer to one
3311  //   or more function templates and also to a set of overloaded non-template
3312  //   functions. In such a case, the candidate functions generated from each
3313  //   function template are combined with the set of non-template candidate
3314  //   functions.
3315  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3316  FunctionDecl *Specialization = 0;
3317  if (TemplateDeductionResult Result
3318      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3319                                Args, NumArgs, Specialization, Info)) {
3320    CandidateSet.push_back(OverloadCandidate());
3321    OverloadCandidate &Candidate = CandidateSet.back();
3322    Candidate.FoundDecl = FoundDecl;
3323    Candidate.Function = MethodTmpl->getTemplatedDecl();
3324    Candidate.Viable = false;
3325    Candidate.FailureKind = ovl_fail_bad_deduction;
3326    Candidate.IsSurrogate = false;
3327    Candidate.IgnoreObjectArgument = false;
3328    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3329                                                          Info);
3330    return;
3331  }
3332
3333  // Add the function template specialization produced by template argument
3334  // deduction as a candidate.
3335  assert(Specialization && "Missing member function template specialization?");
3336  assert(isa<CXXMethodDecl>(Specialization) &&
3337         "Specialization is not a member function?");
3338  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3339                     ActingContext, ObjectType, Args, NumArgs,
3340                     CandidateSet, SuppressUserConversions);
3341}
3342
3343/// \brief Add a C++ function template specialization as a candidate
3344/// in the candidate set, using template argument deduction to produce
3345/// an appropriate function template specialization.
3346void
3347Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3348                                   DeclAccessPair FoundDecl,
3349                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3350                                   Expr **Args, unsigned NumArgs,
3351                                   OverloadCandidateSet& CandidateSet,
3352                                   bool SuppressUserConversions) {
3353  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3354    return;
3355
3356  // C++ [over.match.funcs]p7:
3357  //   In each case where a candidate is a function template, candidate
3358  //   function template specializations are generated using template argument
3359  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3360  //   candidate functions in the usual way.113) A given name can refer to one
3361  //   or more function templates and also to a set of overloaded non-template
3362  //   functions. In such a case, the candidate functions generated from each
3363  //   function template are combined with the set of non-template candidate
3364  //   functions.
3365  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3366  FunctionDecl *Specialization = 0;
3367  if (TemplateDeductionResult Result
3368        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3369                                  Args, NumArgs, Specialization, Info)) {
3370    CandidateSet.push_back(OverloadCandidate());
3371    OverloadCandidate &Candidate = CandidateSet.back();
3372    Candidate.FoundDecl = FoundDecl;
3373    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3374    Candidate.Viable = false;
3375    Candidate.FailureKind = ovl_fail_bad_deduction;
3376    Candidate.IsSurrogate = false;
3377    Candidate.IgnoreObjectArgument = false;
3378    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3379                                                          Info);
3380    return;
3381  }
3382
3383  // Add the function template specialization produced by template argument
3384  // deduction as a candidate.
3385  assert(Specialization && "Missing function template specialization?");
3386  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3387                       SuppressUserConversions);
3388}
3389
3390/// AddConversionCandidate - Add a C++ conversion function as a
3391/// candidate in the candidate set (C++ [over.match.conv],
3392/// C++ [over.match.copy]). From is the expression we're converting from,
3393/// and ToType is the type that we're eventually trying to convert to
3394/// (which may or may not be the same type as the type that the
3395/// conversion function produces).
3396void
3397Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3398                             DeclAccessPair FoundDecl,
3399                             CXXRecordDecl *ActingContext,
3400                             Expr *From, QualType ToType,
3401                             OverloadCandidateSet& CandidateSet) {
3402  assert(!Conversion->getDescribedFunctionTemplate() &&
3403         "Conversion function templates use AddTemplateConversionCandidate");
3404  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3405  if (!CandidateSet.isNewCandidate(Conversion))
3406    return;
3407
3408  // Overload resolution is always an unevaluated context.
3409  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3410
3411  // Add this candidate
3412  CandidateSet.push_back(OverloadCandidate());
3413  OverloadCandidate& Candidate = CandidateSet.back();
3414  Candidate.FoundDecl = FoundDecl;
3415  Candidate.Function = Conversion;
3416  Candidate.IsSurrogate = false;
3417  Candidate.IgnoreObjectArgument = false;
3418  Candidate.FinalConversion.setAsIdentityConversion();
3419  Candidate.FinalConversion.setFromType(ConvType);
3420  Candidate.FinalConversion.setAllToTypes(ToType);
3421
3422  // Determine the implicit conversion sequence for the implicit
3423  // object parameter.
3424  Candidate.Viable = true;
3425  Candidate.Conversions.resize(1);
3426  Candidate.Conversions[0]
3427    = TryObjectArgumentInitialization(From->getType(), Conversion,
3428                                      ActingContext);
3429  // Conversion functions to a different type in the base class is visible in
3430  // the derived class.  So, a derived to base conversion should not participate
3431  // in overload resolution.
3432  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3433    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3434  if (Candidate.Conversions[0].isBad()) {
3435    Candidate.Viable = false;
3436    Candidate.FailureKind = ovl_fail_bad_conversion;
3437    return;
3438  }
3439
3440  // We won't go through a user-define type conversion function to convert a
3441  // derived to base as such conversions are given Conversion Rank. They only
3442  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3443  QualType FromCanon
3444    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3445  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3446  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3447    Candidate.Viable = false;
3448    Candidate.FailureKind = ovl_fail_trivial_conversion;
3449    return;
3450  }
3451
3452  // To determine what the conversion from the result of calling the
3453  // conversion function to the type we're eventually trying to
3454  // convert to (ToType), we need to synthesize a call to the
3455  // conversion function and attempt copy initialization from it. This
3456  // makes sure that we get the right semantics with respect to
3457  // lvalues/rvalues and the type. Fortunately, we can allocate this
3458  // call on the stack and we don't need its arguments to be
3459  // well-formed.
3460  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3461                            From->getLocStart());
3462  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3463                                CastExpr::CK_FunctionToPointerDecay,
3464                                &ConversionRef, CXXBaseSpecifierArray(), false);
3465
3466  // Note that it is safe to allocate CallExpr on the stack here because
3467  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3468  // allocator).
3469  CallExpr Call(Context, &ConversionFn, 0, 0,
3470                Conversion->getConversionType().getNonReferenceType(),
3471                From->getLocStart());
3472  ImplicitConversionSequence ICS =
3473    TryCopyInitialization(*this, &Call, ToType,
3474                          /*SuppressUserConversions=*/true,
3475                          /*InOverloadResolution=*/false);
3476
3477  switch (ICS.getKind()) {
3478  case ImplicitConversionSequence::StandardConversion:
3479    Candidate.FinalConversion = ICS.Standard;
3480
3481    // C++ [over.ics.user]p3:
3482    //   If the user-defined conversion is specified by a specialization of a
3483    //   conversion function template, the second standard conversion sequence
3484    //   shall have exact match rank.
3485    if (Conversion->getPrimaryTemplate() &&
3486        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3487      Candidate.Viable = false;
3488      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3489    }
3490
3491    break;
3492
3493  case ImplicitConversionSequence::BadConversion:
3494    Candidate.Viable = false;
3495    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3496    break;
3497
3498  default:
3499    assert(false &&
3500           "Can only end up with a standard conversion sequence or failure");
3501  }
3502}
3503
3504/// \brief Adds a conversion function template specialization
3505/// candidate to the overload set, using template argument deduction
3506/// to deduce the template arguments of the conversion function
3507/// template from the type that we are converting to (C++
3508/// [temp.deduct.conv]).
3509void
3510Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3511                                     DeclAccessPair FoundDecl,
3512                                     CXXRecordDecl *ActingDC,
3513                                     Expr *From, QualType ToType,
3514                                     OverloadCandidateSet &CandidateSet) {
3515  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3516         "Only conversion function templates permitted here");
3517
3518  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3519    return;
3520
3521  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3522  CXXConversionDecl *Specialization = 0;
3523  if (TemplateDeductionResult Result
3524        = DeduceTemplateArguments(FunctionTemplate, ToType,
3525                                  Specialization, Info)) {
3526    CandidateSet.push_back(OverloadCandidate());
3527    OverloadCandidate &Candidate = CandidateSet.back();
3528    Candidate.FoundDecl = FoundDecl;
3529    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3530    Candidate.Viable = false;
3531    Candidate.FailureKind = ovl_fail_bad_deduction;
3532    Candidate.IsSurrogate = false;
3533    Candidate.IgnoreObjectArgument = false;
3534    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3535                                                          Info);
3536    return;
3537  }
3538
3539  // Add the conversion function template specialization produced by
3540  // template argument deduction as a candidate.
3541  assert(Specialization && "Missing function template specialization?");
3542  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3543                         CandidateSet);
3544}
3545
3546/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3547/// converts the given @c Object to a function pointer via the
3548/// conversion function @c Conversion, and then attempts to call it
3549/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3550/// the type of function that we'll eventually be calling.
3551void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3552                                 DeclAccessPair FoundDecl,
3553                                 CXXRecordDecl *ActingContext,
3554                                 const FunctionProtoType *Proto,
3555                                 QualType ObjectType,
3556                                 Expr **Args, unsigned NumArgs,
3557                                 OverloadCandidateSet& CandidateSet) {
3558  if (!CandidateSet.isNewCandidate(Conversion))
3559    return;
3560
3561  // Overload resolution is always an unevaluated context.
3562  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3563
3564  CandidateSet.push_back(OverloadCandidate());
3565  OverloadCandidate& Candidate = CandidateSet.back();
3566  Candidate.FoundDecl = FoundDecl;
3567  Candidate.Function = 0;
3568  Candidate.Surrogate = Conversion;
3569  Candidate.Viable = true;
3570  Candidate.IsSurrogate = true;
3571  Candidate.IgnoreObjectArgument = false;
3572  Candidate.Conversions.resize(NumArgs + 1);
3573
3574  // Determine the implicit conversion sequence for the implicit
3575  // object parameter.
3576  ImplicitConversionSequence ObjectInit
3577    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3578  if (ObjectInit.isBad()) {
3579    Candidate.Viable = false;
3580    Candidate.FailureKind = ovl_fail_bad_conversion;
3581    Candidate.Conversions[0] = ObjectInit;
3582    return;
3583  }
3584
3585  // The first conversion is actually a user-defined conversion whose
3586  // first conversion is ObjectInit's standard conversion (which is
3587  // effectively a reference binding). Record it as such.
3588  Candidate.Conversions[0].setUserDefined();
3589  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3590  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3591  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3592  Candidate.Conversions[0].UserDefined.After
3593    = Candidate.Conversions[0].UserDefined.Before;
3594  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3595
3596  // Find the
3597  unsigned NumArgsInProto = Proto->getNumArgs();
3598
3599  // (C++ 13.3.2p2): A candidate function having fewer than m
3600  // parameters is viable only if it has an ellipsis in its parameter
3601  // list (8.3.5).
3602  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3603    Candidate.Viable = false;
3604    Candidate.FailureKind = ovl_fail_too_many_arguments;
3605    return;
3606  }
3607
3608  // Function types don't have any default arguments, so just check if
3609  // we have enough arguments.
3610  if (NumArgs < NumArgsInProto) {
3611    // Not enough arguments.
3612    Candidate.Viable = false;
3613    Candidate.FailureKind = ovl_fail_too_few_arguments;
3614    return;
3615  }
3616
3617  // Determine the implicit conversion sequences for each of the
3618  // arguments.
3619  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3620    if (ArgIdx < NumArgsInProto) {
3621      // (C++ 13.3.2p3): for F to be a viable function, there shall
3622      // exist for each argument an implicit conversion sequence
3623      // (13.3.3.1) that converts that argument to the corresponding
3624      // parameter of F.
3625      QualType ParamType = Proto->getArgType(ArgIdx);
3626      Candidate.Conversions[ArgIdx + 1]
3627        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3628                                /*SuppressUserConversions=*/false,
3629                                /*InOverloadResolution=*/false);
3630      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3631        Candidate.Viable = false;
3632        Candidate.FailureKind = ovl_fail_bad_conversion;
3633        break;
3634      }
3635    } else {
3636      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3637      // argument for which there is no corresponding parameter is
3638      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3639      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3640    }
3641  }
3642}
3643
3644/// \brief Add overload candidates for overloaded operators that are
3645/// member functions.
3646///
3647/// Add the overloaded operator candidates that are member functions
3648/// for the operator Op that was used in an operator expression such
3649/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3650/// CandidateSet will store the added overload candidates. (C++
3651/// [over.match.oper]).
3652void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3653                                       SourceLocation OpLoc,
3654                                       Expr **Args, unsigned NumArgs,
3655                                       OverloadCandidateSet& CandidateSet,
3656                                       SourceRange OpRange) {
3657  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3658
3659  // C++ [over.match.oper]p3:
3660  //   For a unary operator @ with an operand of a type whose
3661  //   cv-unqualified version is T1, and for a binary operator @ with
3662  //   a left operand of a type whose cv-unqualified version is T1 and
3663  //   a right operand of a type whose cv-unqualified version is T2,
3664  //   three sets of candidate functions, designated member
3665  //   candidates, non-member candidates and built-in candidates, are
3666  //   constructed as follows:
3667  QualType T1 = Args[0]->getType();
3668  QualType T2;
3669  if (NumArgs > 1)
3670    T2 = Args[1]->getType();
3671
3672  //     -- If T1 is a class type, the set of member candidates is the
3673  //        result of the qualified lookup of T1::operator@
3674  //        (13.3.1.1.1); otherwise, the set of member candidates is
3675  //        empty.
3676  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3677    // Complete the type if it can be completed. Otherwise, we're done.
3678    if (RequireCompleteType(OpLoc, T1, PDiag()))
3679      return;
3680
3681    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3682    LookupQualifiedName(Operators, T1Rec->getDecl());
3683    Operators.suppressDiagnostics();
3684
3685    for (LookupResult::iterator Oper = Operators.begin(),
3686                             OperEnd = Operators.end();
3687         Oper != OperEnd;
3688         ++Oper)
3689      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3690                         Args + 1, NumArgs - 1, CandidateSet,
3691                         /* SuppressUserConversions = */ false);
3692  }
3693}
3694
3695/// AddBuiltinCandidate - Add a candidate for a built-in
3696/// operator. ResultTy and ParamTys are the result and parameter types
3697/// of the built-in candidate, respectively. Args and NumArgs are the
3698/// arguments being passed to the candidate. IsAssignmentOperator
3699/// should be true when this built-in candidate is an assignment
3700/// operator. NumContextualBoolArguments is the number of arguments
3701/// (at the beginning of the argument list) that will be contextually
3702/// converted to bool.
3703void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3704                               Expr **Args, unsigned NumArgs,
3705                               OverloadCandidateSet& CandidateSet,
3706                               bool IsAssignmentOperator,
3707                               unsigned NumContextualBoolArguments) {
3708  // Overload resolution is always an unevaluated context.
3709  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3710
3711  // Add this candidate
3712  CandidateSet.push_back(OverloadCandidate());
3713  OverloadCandidate& Candidate = CandidateSet.back();
3714  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3715  Candidate.Function = 0;
3716  Candidate.IsSurrogate = false;
3717  Candidate.IgnoreObjectArgument = false;
3718  Candidate.BuiltinTypes.ResultTy = ResultTy;
3719  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3720    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3721
3722  // Determine the implicit conversion sequences for each of the
3723  // arguments.
3724  Candidate.Viable = true;
3725  Candidate.Conversions.resize(NumArgs);
3726  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3727    // C++ [over.match.oper]p4:
3728    //   For the built-in assignment operators, conversions of the
3729    //   left operand are restricted as follows:
3730    //     -- no temporaries are introduced to hold the left operand, and
3731    //     -- no user-defined conversions are applied to the left
3732    //        operand to achieve a type match with the left-most
3733    //        parameter of a built-in candidate.
3734    //
3735    // We block these conversions by turning off user-defined
3736    // conversions, since that is the only way that initialization of
3737    // a reference to a non-class type can occur from something that
3738    // is not of the same type.
3739    if (ArgIdx < NumContextualBoolArguments) {
3740      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3741             "Contextual conversion to bool requires bool type");
3742      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3743    } else {
3744      Candidate.Conversions[ArgIdx]
3745        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3746                                ArgIdx == 0 && IsAssignmentOperator,
3747                                /*InOverloadResolution=*/false);
3748    }
3749    if (Candidate.Conversions[ArgIdx].isBad()) {
3750      Candidate.Viable = false;
3751      Candidate.FailureKind = ovl_fail_bad_conversion;
3752      break;
3753    }
3754  }
3755}
3756
3757/// BuiltinCandidateTypeSet - A set of types that will be used for the
3758/// candidate operator functions for built-in operators (C++
3759/// [over.built]). The types are separated into pointer types and
3760/// enumeration types.
3761class BuiltinCandidateTypeSet  {
3762  /// TypeSet - A set of types.
3763  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3764
3765  /// PointerTypes - The set of pointer types that will be used in the
3766  /// built-in candidates.
3767  TypeSet PointerTypes;
3768
3769  /// MemberPointerTypes - The set of member pointer types that will be
3770  /// used in the built-in candidates.
3771  TypeSet MemberPointerTypes;
3772
3773  /// EnumerationTypes - The set of enumeration types that will be
3774  /// used in the built-in candidates.
3775  TypeSet EnumerationTypes;
3776
3777  /// Sema - The semantic analysis instance where we are building the
3778  /// candidate type set.
3779  Sema &SemaRef;
3780
3781  /// Context - The AST context in which we will build the type sets.
3782  ASTContext &Context;
3783
3784  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3785                                               const Qualifiers &VisibleQuals);
3786  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3787
3788public:
3789  /// iterator - Iterates through the types that are part of the set.
3790  typedef TypeSet::iterator iterator;
3791
3792  BuiltinCandidateTypeSet(Sema &SemaRef)
3793    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3794
3795  void AddTypesConvertedFrom(QualType Ty,
3796                             SourceLocation Loc,
3797                             bool AllowUserConversions,
3798                             bool AllowExplicitConversions,
3799                             const Qualifiers &VisibleTypeConversionsQuals);
3800
3801  /// pointer_begin - First pointer type found;
3802  iterator pointer_begin() { return PointerTypes.begin(); }
3803
3804  /// pointer_end - Past the last pointer type found;
3805  iterator pointer_end() { return PointerTypes.end(); }
3806
3807  /// member_pointer_begin - First member pointer type found;
3808  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3809
3810  /// member_pointer_end - Past the last member pointer type found;
3811  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3812
3813  /// enumeration_begin - First enumeration type found;
3814  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3815
3816  /// enumeration_end - Past the last enumeration type found;
3817  iterator enumeration_end() { return EnumerationTypes.end(); }
3818};
3819
3820/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3821/// the set of pointer types along with any more-qualified variants of
3822/// that type. For example, if @p Ty is "int const *", this routine
3823/// will add "int const *", "int const volatile *", "int const
3824/// restrict *", and "int const volatile restrict *" to the set of
3825/// pointer types. Returns true if the add of @p Ty itself succeeded,
3826/// false otherwise.
3827///
3828/// FIXME: what to do about extended qualifiers?
3829bool
3830BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3831                                             const Qualifiers &VisibleQuals) {
3832
3833  // Insert this type.
3834  if (!PointerTypes.insert(Ty))
3835    return false;
3836
3837  const PointerType *PointerTy = Ty->getAs<PointerType>();
3838  assert(PointerTy && "type was not a pointer type!");
3839
3840  QualType PointeeTy = PointerTy->getPointeeType();
3841  // Don't add qualified variants of arrays. For one, they're not allowed
3842  // (the qualifier would sink to the element type), and for another, the
3843  // only overload situation where it matters is subscript or pointer +- int,
3844  // and those shouldn't have qualifier variants anyway.
3845  if (PointeeTy->isArrayType())
3846    return true;
3847  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3848  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3849    BaseCVR = Array->getElementType().getCVRQualifiers();
3850  bool hasVolatile = VisibleQuals.hasVolatile();
3851  bool hasRestrict = VisibleQuals.hasRestrict();
3852
3853  // Iterate through all strict supersets of BaseCVR.
3854  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3855    if ((CVR | BaseCVR) != CVR) continue;
3856    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3857    // in the types.
3858    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3859    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3860    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3861    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3862  }
3863
3864  return true;
3865}
3866
3867/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3868/// to the set of pointer types along with any more-qualified variants of
3869/// that type. For example, if @p Ty is "int const *", this routine
3870/// will add "int const *", "int const volatile *", "int const
3871/// restrict *", and "int const volatile restrict *" to the set of
3872/// pointer types. Returns true if the add of @p Ty itself succeeded,
3873/// false otherwise.
3874///
3875/// FIXME: what to do about extended qualifiers?
3876bool
3877BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3878    QualType Ty) {
3879  // Insert this type.
3880  if (!MemberPointerTypes.insert(Ty))
3881    return false;
3882
3883  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3884  assert(PointerTy && "type was not a member pointer type!");
3885
3886  QualType PointeeTy = PointerTy->getPointeeType();
3887  // Don't add qualified variants of arrays. For one, they're not allowed
3888  // (the qualifier would sink to the element type), and for another, the
3889  // only overload situation where it matters is subscript or pointer +- int,
3890  // and those shouldn't have qualifier variants anyway.
3891  if (PointeeTy->isArrayType())
3892    return true;
3893  const Type *ClassTy = PointerTy->getClass();
3894
3895  // Iterate through all strict supersets of the pointee type's CVR
3896  // qualifiers.
3897  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3898  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3899    if ((CVR | BaseCVR) != CVR) continue;
3900
3901    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3902    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3903  }
3904
3905  return true;
3906}
3907
3908/// AddTypesConvertedFrom - Add each of the types to which the type @p
3909/// Ty can be implicit converted to the given set of @p Types. We're
3910/// primarily interested in pointer types and enumeration types. We also
3911/// take member pointer types, for the conditional operator.
3912/// AllowUserConversions is true if we should look at the conversion
3913/// functions of a class type, and AllowExplicitConversions if we
3914/// should also include the explicit conversion functions of a class
3915/// type.
3916void
3917BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3918                                               SourceLocation Loc,
3919                                               bool AllowUserConversions,
3920                                               bool AllowExplicitConversions,
3921                                               const Qualifiers &VisibleQuals) {
3922  // Only deal with canonical types.
3923  Ty = Context.getCanonicalType(Ty);
3924
3925  // Look through reference types; they aren't part of the type of an
3926  // expression for the purposes of conversions.
3927  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3928    Ty = RefTy->getPointeeType();
3929
3930  // We don't care about qualifiers on the type.
3931  Ty = Ty.getLocalUnqualifiedType();
3932
3933  // If we're dealing with an array type, decay to the pointer.
3934  if (Ty->isArrayType())
3935    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3936
3937  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3938    QualType PointeeTy = PointerTy->getPointeeType();
3939
3940    // Insert our type, and its more-qualified variants, into the set
3941    // of types.
3942    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3943      return;
3944  } else if (Ty->isMemberPointerType()) {
3945    // Member pointers are far easier, since the pointee can't be converted.
3946    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3947      return;
3948  } else if (Ty->isEnumeralType()) {
3949    EnumerationTypes.insert(Ty);
3950  } else if (AllowUserConversions) {
3951    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3952      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3953        // No conversion functions in incomplete types.
3954        return;
3955      }
3956
3957      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3958      const UnresolvedSetImpl *Conversions
3959        = ClassDecl->getVisibleConversionFunctions();
3960      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3961             E = Conversions->end(); I != E; ++I) {
3962        NamedDecl *D = I.getDecl();
3963        if (isa<UsingShadowDecl>(D))
3964          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3965
3966        // Skip conversion function templates; they don't tell us anything
3967        // about which builtin types we can convert to.
3968        if (isa<FunctionTemplateDecl>(D))
3969          continue;
3970
3971        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3972        if (AllowExplicitConversions || !Conv->isExplicit()) {
3973          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3974                                VisibleQuals);
3975        }
3976      }
3977    }
3978  }
3979}
3980
3981/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3982/// the volatile- and non-volatile-qualified assignment operators for the
3983/// given type to the candidate set.
3984static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3985                                                   QualType T,
3986                                                   Expr **Args,
3987                                                   unsigned NumArgs,
3988                                    OverloadCandidateSet &CandidateSet) {
3989  QualType ParamTypes[2];
3990
3991  // T& operator=(T&, T)
3992  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3993  ParamTypes[1] = T;
3994  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3995                        /*IsAssignmentOperator=*/true);
3996
3997  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3998    // volatile T& operator=(volatile T&, T)
3999    ParamTypes[0]
4000      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4001    ParamTypes[1] = T;
4002    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4003                          /*IsAssignmentOperator=*/true);
4004  }
4005}
4006
4007/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4008/// if any, found in visible type conversion functions found in ArgExpr's type.
4009static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4010    Qualifiers VRQuals;
4011    const RecordType *TyRec;
4012    if (const MemberPointerType *RHSMPType =
4013        ArgExpr->getType()->getAs<MemberPointerType>())
4014      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4015    else
4016      TyRec = ArgExpr->getType()->getAs<RecordType>();
4017    if (!TyRec) {
4018      // Just to be safe, assume the worst case.
4019      VRQuals.addVolatile();
4020      VRQuals.addRestrict();
4021      return VRQuals;
4022    }
4023
4024    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4025    if (!ClassDecl->hasDefinition())
4026      return VRQuals;
4027
4028    const UnresolvedSetImpl *Conversions =
4029      ClassDecl->getVisibleConversionFunctions();
4030
4031    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4032           E = Conversions->end(); I != E; ++I) {
4033      NamedDecl *D = I.getDecl();
4034      if (isa<UsingShadowDecl>(D))
4035        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4036      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4037        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4038        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4039          CanTy = ResTypeRef->getPointeeType();
4040        // Need to go down the pointer/mempointer chain and add qualifiers
4041        // as see them.
4042        bool done = false;
4043        while (!done) {
4044          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4045            CanTy = ResTypePtr->getPointeeType();
4046          else if (const MemberPointerType *ResTypeMPtr =
4047                CanTy->getAs<MemberPointerType>())
4048            CanTy = ResTypeMPtr->getPointeeType();
4049          else
4050            done = true;
4051          if (CanTy.isVolatileQualified())
4052            VRQuals.addVolatile();
4053          if (CanTy.isRestrictQualified())
4054            VRQuals.addRestrict();
4055          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4056            return VRQuals;
4057        }
4058      }
4059    }
4060    return VRQuals;
4061}
4062
4063/// AddBuiltinOperatorCandidates - Add the appropriate built-in
4064/// operator overloads to the candidate set (C++ [over.built]), based
4065/// on the operator @p Op and the arguments given. For example, if the
4066/// operator is a binary '+', this routine might add "int
4067/// operator+(int, int)" to cover integer addition.
4068void
4069Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
4070                                   SourceLocation OpLoc,
4071                                   Expr **Args, unsigned NumArgs,
4072                                   OverloadCandidateSet& CandidateSet) {
4073  // The set of "promoted arithmetic types", which are the arithmetic
4074  // types are that preserved by promotion (C++ [over.built]p2). Note
4075  // that the first few of these types are the promoted integral
4076  // types; these types need to be first.
4077  // FIXME: What about complex?
4078  const unsigned FirstIntegralType = 0;
4079  const unsigned LastIntegralType = 13;
4080  const unsigned FirstPromotedIntegralType = 7,
4081                 LastPromotedIntegralType = 13;
4082  const unsigned FirstPromotedArithmeticType = 7,
4083                 LastPromotedArithmeticType = 16;
4084  const unsigned NumArithmeticTypes = 16;
4085  QualType ArithmeticTypes[NumArithmeticTypes] = {
4086    Context.BoolTy, Context.CharTy, Context.WCharTy,
4087// FIXME:   Context.Char16Ty, Context.Char32Ty,
4088    Context.SignedCharTy, Context.ShortTy,
4089    Context.UnsignedCharTy, Context.UnsignedShortTy,
4090    Context.IntTy, Context.LongTy, Context.LongLongTy,
4091    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
4092    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
4093  };
4094  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
4095         "Invalid first promoted integral type");
4096  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
4097           == Context.UnsignedLongLongTy &&
4098         "Invalid last promoted integral type");
4099  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
4100         "Invalid first promoted arithmetic type");
4101  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
4102            == Context.LongDoubleTy &&
4103         "Invalid last promoted arithmetic type");
4104
4105  // Find all of the types that the arguments can convert to, but only
4106  // if the operator we're looking at has built-in operator candidates
4107  // that make use of these types.
4108  Qualifiers VisibleTypeConversionsQuals;
4109  VisibleTypeConversionsQuals.addConst();
4110  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4111    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
4112
4113  BuiltinCandidateTypeSet CandidateTypes(*this);
4114  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
4115      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
4116      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
4117      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
4118      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
4119      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
4120    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4121      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4122                                           OpLoc,
4123                                           true,
4124                                           (Op == OO_Exclaim ||
4125                                            Op == OO_AmpAmp ||
4126                                            Op == OO_PipePipe),
4127                                           VisibleTypeConversionsQuals);
4128  }
4129
4130  bool isComparison = false;
4131  switch (Op) {
4132  case OO_None:
4133  case NUM_OVERLOADED_OPERATORS:
4134    assert(false && "Expected an overloaded operator");
4135    break;
4136
4137  case OO_Star: // '*' is either unary or binary
4138    if (NumArgs == 1)
4139      goto UnaryStar;
4140    else
4141      goto BinaryStar;
4142    break;
4143
4144  case OO_Plus: // '+' is either unary or binary
4145    if (NumArgs == 1)
4146      goto UnaryPlus;
4147    else
4148      goto BinaryPlus;
4149    break;
4150
4151  case OO_Minus: // '-' is either unary or binary
4152    if (NumArgs == 1)
4153      goto UnaryMinus;
4154    else
4155      goto BinaryMinus;
4156    break;
4157
4158  case OO_Amp: // '&' is either unary or binary
4159    if (NumArgs == 1)
4160      goto UnaryAmp;
4161    else
4162      goto BinaryAmp;
4163
4164  case OO_PlusPlus:
4165  case OO_MinusMinus:
4166    // C++ [over.built]p3:
4167    //
4168    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4169    //   is either volatile or empty, there exist candidate operator
4170    //   functions of the form
4171    //
4172    //       VQ T&      operator++(VQ T&);
4173    //       T          operator++(VQ T&, int);
4174    //
4175    // C++ [over.built]p4:
4176    //
4177    //   For every pair (T, VQ), where T is an arithmetic type other
4178    //   than bool, and VQ is either volatile or empty, there exist
4179    //   candidate operator functions of the form
4180    //
4181    //       VQ T&      operator--(VQ T&);
4182    //       T          operator--(VQ T&, int);
4183    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4184         Arith < NumArithmeticTypes; ++Arith) {
4185      QualType ArithTy = ArithmeticTypes[Arith];
4186      QualType ParamTypes[2]
4187        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4188
4189      // Non-volatile version.
4190      if (NumArgs == 1)
4191        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4192      else
4193        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4194      // heuristic to reduce number of builtin candidates in the set.
4195      // Add volatile version only if there are conversions to a volatile type.
4196      if (VisibleTypeConversionsQuals.hasVolatile()) {
4197        // Volatile version
4198        ParamTypes[0]
4199          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4200        if (NumArgs == 1)
4201          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4202        else
4203          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4204      }
4205    }
4206
4207    // C++ [over.built]p5:
4208    //
4209    //   For every pair (T, VQ), where T is a cv-qualified or
4210    //   cv-unqualified object type, and VQ is either volatile or
4211    //   empty, there exist candidate operator functions of the form
4212    //
4213    //       T*VQ&      operator++(T*VQ&);
4214    //       T*VQ&      operator--(T*VQ&);
4215    //       T*         operator++(T*VQ&, int);
4216    //       T*         operator--(T*VQ&, int);
4217    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4218         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4219      // Skip pointer types that aren't pointers to object types.
4220      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
4221        continue;
4222
4223      QualType ParamTypes[2] = {
4224        Context.getLValueReferenceType(*Ptr), Context.IntTy
4225      };
4226
4227      // Without volatile
4228      if (NumArgs == 1)
4229        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4230      else
4231        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4232
4233      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4234          VisibleTypeConversionsQuals.hasVolatile()) {
4235        // With volatile
4236        ParamTypes[0]
4237          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4238        if (NumArgs == 1)
4239          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4240        else
4241          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4242      }
4243    }
4244    break;
4245
4246  UnaryStar:
4247    // C++ [over.built]p6:
4248    //   For every cv-qualified or cv-unqualified object type T, there
4249    //   exist candidate operator functions of the form
4250    //
4251    //       T&         operator*(T*);
4252    //
4253    // C++ [over.built]p7:
4254    //   For every function type T, there exist candidate operator
4255    //   functions of the form
4256    //       T&         operator*(T*);
4257    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4258         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4259      QualType ParamTy = *Ptr;
4260      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4261      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4262                          &ParamTy, Args, 1, CandidateSet);
4263    }
4264    break;
4265
4266  UnaryPlus:
4267    // C++ [over.built]p8:
4268    //   For every type T, there exist candidate operator functions of
4269    //   the form
4270    //
4271    //       T*         operator+(T*);
4272    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4273         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4274      QualType ParamTy = *Ptr;
4275      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4276    }
4277
4278    // Fall through
4279
4280  UnaryMinus:
4281    // C++ [over.built]p9:
4282    //  For every promoted arithmetic type T, there exist candidate
4283    //  operator functions of the form
4284    //
4285    //       T         operator+(T);
4286    //       T         operator-(T);
4287    for (unsigned Arith = FirstPromotedArithmeticType;
4288         Arith < LastPromotedArithmeticType; ++Arith) {
4289      QualType ArithTy = ArithmeticTypes[Arith];
4290      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4291    }
4292    break;
4293
4294  case OO_Tilde:
4295    // C++ [over.built]p10:
4296    //   For every promoted integral type T, there exist candidate
4297    //   operator functions of the form
4298    //
4299    //        T         operator~(T);
4300    for (unsigned Int = FirstPromotedIntegralType;
4301         Int < LastPromotedIntegralType; ++Int) {
4302      QualType IntTy = ArithmeticTypes[Int];
4303      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4304    }
4305    break;
4306
4307  case OO_New:
4308  case OO_Delete:
4309  case OO_Array_New:
4310  case OO_Array_Delete:
4311  case OO_Call:
4312    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4313    break;
4314
4315  case OO_Comma:
4316  UnaryAmp:
4317  case OO_Arrow:
4318    // C++ [over.match.oper]p3:
4319    //   -- For the operator ',', the unary operator '&', or the
4320    //      operator '->', the built-in candidates set is empty.
4321    break;
4322
4323  case OO_EqualEqual:
4324  case OO_ExclaimEqual:
4325    // C++ [over.match.oper]p16:
4326    //   For every pointer to member type T, there exist candidate operator
4327    //   functions of the form
4328    //
4329    //        bool operator==(T,T);
4330    //        bool operator!=(T,T);
4331    for (BuiltinCandidateTypeSet::iterator
4332           MemPtr = CandidateTypes.member_pointer_begin(),
4333           MemPtrEnd = CandidateTypes.member_pointer_end();
4334         MemPtr != MemPtrEnd;
4335         ++MemPtr) {
4336      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4337      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4338    }
4339
4340    // Fall through
4341
4342  case OO_Less:
4343  case OO_Greater:
4344  case OO_LessEqual:
4345  case OO_GreaterEqual:
4346    // C++ [over.built]p15:
4347    //
4348    //   For every pointer or enumeration type T, there exist
4349    //   candidate operator functions of the form
4350    //
4351    //        bool       operator<(T, T);
4352    //        bool       operator>(T, T);
4353    //        bool       operator<=(T, T);
4354    //        bool       operator>=(T, T);
4355    //        bool       operator==(T, T);
4356    //        bool       operator!=(T, T);
4357    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4358         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4359      QualType ParamTypes[2] = { *Ptr, *Ptr };
4360      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4361    }
4362    for (BuiltinCandidateTypeSet::iterator Enum
4363           = CandidateTypes.enumeration_begin();
4364         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4365      QualType ParamTypes[2] = { *Enum, *Enum };
4366      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4367    }
4368
4369    // Fall through.
4370    isComparison = true;
4371
4372  BinaryPlus:
4373  BinaryMinus:
4374    if (!isComparison) {
4375      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4376
4377      // C++ [over.built]p13:
4378      //
4379      //   For every cv-qualified or cv-unqualified object type T
4380      //   there exist candidate operator functions of the form
4381      //
4382      //      T*         operator+(T*, ptrdiff_t);
4383      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4384      //      T*         operator-(T*, ptrdiff_t);
4385      //      T*         operator+(ptrdiff_t, T*);
4386      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4387      //
4388      // C++ [over.built]p14:
4389      //
4390      //   For every T, where T is a pointer to object type, there
4391      //   exist candidate operator functions of the form
4392      //
4393      //      ptrdiff_t  operator-(T, T);
4394      for (BuiltinCandidateTypeSet::iterator Ptr
4395             = CandidateTypes.pointer_begin();
4396           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4397        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4398
4399        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4400        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4401
4402        if (Op == OO_Plus) {
4403          // T* operator+(ptrdiff_t, T*);
4404          ParamTypes[0] = ParamTypes[1];
4405          ParamTypes[1] = *Ptr;
4406          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4407        } else {
4408          // ptrdiff_t operator-(T, T);
4409          ParamTypes[1] = *Ptr;
4410          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4411                              Args, 2, CandidateSet);
4412        }
4413      }
4414    }
4415    // Fall through
4416
4417  case OO_Slash:
4418  BinaryStar:
4419  Conditional:
4420    // C++ [over.built]p12:
4421    //
4422    //   For every pair of promoted arithmetic types L and R, there
4423    //   exist candidate operator functions of the form
4424    //
4425    //        LR         operator*(L, R);
4426    //        LR         operator/(L, R);
4427    //        LR         operator+(L, R);
4428    //        LR         operator-(L, R);
4429    //        bool       operator<(L, R);
4430    //        bool       operator>(L, R);
4431    //        bool       operator<=(L, R);
4432    //        bool       operator>=(L, R);
4433    //        bool       operator==(L, R);
4434    //        bool       operator!=(L, R);
4435    //
4436    //   where LR is the result of the usual arithmetic conversions
4437    //   between types L and R.
4438    //
4439    // C++ [over.built]p24:
4440    //
4441    //   For every pair of promoted arithmetic types L and R, there exist
4442    //   candidate operator functions of the form
4443    //
4444    //        LR       operator?(bool, L, R);
4445    //
4446    //   where LR is the result of the usual arithmetic conversions
4447    //   between types L and R.
4448    // Our candidates ignore the first parameter.
4449    for (unsigned Left = FirstPromotedArithmeticType;
4450         Left < LastPromotedArithmeticType; ++Left) {
4451      for (unsigned Right = FirstPromotedArithmeticType;
4452           Right < LastPromotedArithmeticType; ++Right) {
4453        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4454        QualType Result
4455          = isComparison
4456          ? Context.BoolTy
4457          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4458        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4459      }
4460    }
4461    break;
4462
4463  case OO_Percent:
4464  BinaryAmp:
4465  case OO_Caret:
4466  case OO_Pipe:
4467  case OO_LessLess:
4468  case OO_GreaterGreater:
4469    // C++ [over.built]p17:
4470    //
4471    //   For every pair of promoted integral types L and R, there
4472    //   exist candidate operator functions of the form
4473    //
4474    //      LR         operator%(L, R);
4475    //      LR         operator&(L, R);
4476    //      LR         operator^(L, R);
4477    //      LR         operator|(L, R);
4478    //      L          operator<<(L, R);
4479    //      L          operator>>(L, R);
4480    //
4481    //   where LR is the result of the usual arithmetic conversions
4482    //   between types L and R.
4483    for (unsigned Left = FirstPromotedIntegralType;
4484         Left < LastPromotedIntegralType; ++Left) {
4485      for (unsigned Right = FirstPromotedIntegralType;
4486           Right < LastPromotedIntegralType; ++Right) {
4487        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4488        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4489            ? LandR[0]
4490            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4491        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4492      }
4493    }
4494    break;
4495
4496  case OO_Equal:
4497    // C++ [over.built]p20:
4498    //
4499    //   For every pair (T, VQ), where T is an enumeration or
4500    //   pointer to member type and VQ is either volatile or
4501    //   empty, there exist candidate operator functions of the form
4502    //
4503    //        VQ T&      operator=(VQ T&, T);
4504    for (BuiltinCandidateTypeSet::iterator
4505           Enum = CandidateTypes.enumeration_begin(),
4506           EnumEnd = CandidateTypes.enumeration_end();
4507         Enum != EnumEnd; ++Enum)
4508      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4509                                             CandidateSet);
4510    for (BuiltinCandidateTypeSet::iterator
4511           MemPtr = CandidateTypes.member_pointer_begin(),
4512         MemPtrEnd = CandidateTypes.member_pointer_end();
4513         MemPtr != MemPtrEnd; ++MemPtr)
4514      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4515                                             CandidateSet);
4516      // Fall through.
4517
4518  case OO_PlusEqual:
4519  case OO_MinusEqual:
4520    // C++ [over.built]p19:
4521    //
4522    //   For every pair (T, VQ), where T is any type and VQ is either
4523    //   volatile or empty, there exist candidate operator functions
4524    //   of the form
4525    //
4526    //        T*VQ&      operator=(T*VQ&, T*);
4527    //
4528    // C++ [over.built]p21:
4529    //
4530    //   For every pair (T, VQ), where T is a cv-qualified or
4531    //   cv-unqualified object type and VQ is either volatile or
4532    //   empty, there exist candidate operator functions of the form
4533    //
4534    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4535    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4536    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4537         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4538      QualType ParamTypes[2];
4539      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4540
4541      // non-volatile version
4542      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4543      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4544                          /*IsAssigmentOperator=*/Op == OO_Equal);
4545
4546      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4547          VisibleTypeConversionsQuals.hasVolatile()) {
4548        // volatile version
4549        ParamTypes[0]
4550          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4551        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4552                            /*IsAssigmentOperator=*/Op == OO_Equal);
4553      }
4554    }
4555    // Fall through.
4556
4557  case OO_StarEqual:
4558  case OO_SlashEqual:
4559    // C++ [over.built]p18:
4560    //
4561    //   For every triple (L, VQ, R), where L is an arithmetic type,
4562    //   VQ is either volatile or empty, and R is a promoted
4563    //   arithmetic type, there exist candidate operator functions of
4564    //   the form
4565    //
4566    //        VQ L&      operator=(VQ L&, R);
4567    //        VQ L&      operator*=(VQ L&, R);
4568    //        VQ L&      operator/=(VQ L&, R);
4569    //        VQ L&      operator+=(VQ L&, R);
4570    //        VQ L&      operator-=(VQ L&, R);
4571    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4572      for (unsigned Right = FirstPromotedArithmeticType;
4573           Right < LastPromotedArithmeticType; ++Right) {
4574        QualType ParamTypes[2];
4575        ParamTypes[1] = ArithmeticTypes[Right];
4576
4577        // Add this built-in operator as a candidate (VQ is empty).
4578        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4579        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4580                            /*IsAssigmentOperator=*/Op == OO_Equal);
4581
4582        // Add this built-in operator as a candidate (VQ is 'volatile').
4583        if (VisibleTypeConversionsQuals.hasVolatile()) {
4584          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4585          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4586          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4587                              /*IsAssigmentOperator=*/Op == OO_Equal);
4588        }
4589      }
4590    }
4591    break;
4592
4593  case OO_PercentEqual:
4594  case OO_LessLessEqual:
4595  case OO_GreaterGreaterEqual:
4596  case OO_AmpEqual:
4597  case OO_CaretEqual:
4598  case OO_PipeEqual:
4599    // C++ [over.built]p22:
4600    //
4601    //   For every triple (L, VQ, R), where L is an integral type, VQ
4602    //   is either volatile or empty, and R is a promoted integral
4603    //   type, there exist candidate operator functions of the form
4604    //
4605    //        VQ L&       operator%=(VQ L&, R);
4606    //        VQ L&       operator<<=(VQ L&, R);
4607    //        VQ L&       operator>>=(VQ L&, R);
4608    //        VQ L&       operator&=(VQ L&, R);
4609    //        VQ L&       operator^=(VQ L&, R);
4610    //        VQ L&       operator|=(VQ L&, R);
4611    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4612      for (unsigned Right = FirstPromotedIntegralType;
4613           Right < LastPromotedIntegralType; ++Right) {
4614        QualType ParamTypes[2];
4615        ParamTypes[1] = ArithmeticTypes[Right];
4616
4617        // Add this built-in operator as a candidate (VQ is empty).
4618        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4619        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4620        if (VisibleTypeConversionsQuals.hasVolatile()) {
4621          // Add this built-in operator as a candidate (VQ is 'volatile').
4622          ParamTypes[0] = ArithmeticTypes[Left];
4623          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4624          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4625          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4626        }
4627      }
4628    }
4629    break;
4630
4631  case OO_Exclaim: {
4632    // C++ [over.operator]p23:
4633    //
4634    //   There also exist candidate operator functions of the form
4635    //
4636    //        bool        operator!(bool);
4637    //        bool        operator&&(bool, bool);     [BELOW]
4638    //        bool        operator||(bool, bool);     [BELOW]
4639    QualType ParamTy = Context.BoolTy;
4640    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4641                        /*IsAssignmentOperator=*/false,
4642                        /*NumContextualBoolArguments=*/1);
4643    break;
4644  }
4645
4646  case OO_AmpAmp:
4647  case OO_PipePipe: {
4648    // C++ [over.operator]p23:
4649    //
4650    //   There also exist candidate operator functions of the form
4651    //
4652    //        bool        operator!(bool);            [ABOVE]
4653    //        bool        operator&&(bool, bool);
4654    //        bool        operator||(bool, bool);
4655    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4656    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4657                        /*IsAssignmentOperator=*/false,
4658                        /*NumContextualBoolArguments=*/2);
4659    break;
4660  }
4661
4662  case OO_Subscript:
4663    // C++ [over.built]p13:
4664    //
4665    //   For every cv-qualified or cv-unqualified object type T there
4666    //   exist candidate operator functions of the form
4667    //
4668    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4669    //        T&         operator[](T*, ptrdiff_t);
4670    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4671    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4672    //        T&         operator[](ptrdiff_t, T*);
4673    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4674         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4675      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4676      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4677      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4678
4679      // T& operator[](T*, ptrdiff_t)
4680      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4681
4682      // T& operator[](ptrdiff_t, T*);
4683      ParamTypes[0] = ParamTypes[1];
4684      ParamTypes[1] = *Ptr;
4685      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4686    }
4687    break;
4688
4689  case OO_ArrowStar:
4690    // C++ [over.built]p11:
4691    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4692    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4693    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4694    //    there exist candidate operator functions of the form
4695    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4696    //    where CV12 is the union of CV1 and CV2.
4697    {
4698      for (BuiltinCandidateTypeSet::iterator Ptr =
4699             CandidateTypes.pointer_begin();
4700           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4701        QualType C1Ty = (*Ptr);
4702        QualType C1;
4703        QualifierCollector Q1;
4704        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4705          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4706          if (!isa<RecordType>(C1))
4707            continue;
4708          // heuristic to reduce number of builtin candidates in the set.
4709          // Add volatile/restrict version only if there are conversions to a
4710          // volatile/restrict type.
4711          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4712            continue;
4713          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4714            continue;
4715        }
4716        for (BuiltinCandidateTypeSet::iterator
4717             MemPtr = CandidateTypes.member_pointer_begin(),
4718             MemPtrEnd = CandidateTypes.member_pointer_end();
4719             MemPtr != MemPtrEnd; ++MemPtr) {
4720          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4721          QualType C2 = QualType(mptr->getClass(), 0);
4722          C2 = C2.getUnqualifiedType();
4723          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4724            break;
4725          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4726          // build CV12 T&
4727          QualType T = mptr->getPointeeType();
4728          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4729              T.isVolatileQualified())
4730            continue;
4731          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4732              T.isRestrictQualified())
4733            continue;
4734          T = Q1.apply(T);
4735          QualType ResultTy = Context.getLValueReferenceType(T);
4736          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4737        }
4738      }
4739    }
4740    break;
4741
4742  case OO_Conditional:
4743    // Note that we don't consider the first argument, since it has been
4744    // contextually converted to bool long ago. The candidates below are
4745    // therefore added as binary.
4746    //
4747    // C++ [over.built]p24:
4748    //   For every type T, where T is a pointer or pointer-to-member type,
4749    //   there exist candidate operator functions of the form
4750    //
4751    //        T        operator?(bool, T, T);
4752    //
4753    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4754         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4755      QualType ParamTypes[2] = { *Ptr, *Ptr };
4756      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4757    }
4758    for (BuiltinCandidateTypeSet::iterator Ptr =
4759           CandidateTypes.member_pointer_begin(),
4760         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4761      QualType ParamTypes[2] = { *Ptr, *Ptr };
4762      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4763    }
4764    goto Conditional;
4765  }
4766}
4767
4768/// \brief Add function candidates found via argument-dependent lookup
4769/// to the set of overloading candidates.
4770///
4771/// This routine performs argument-dependent name lookup based on the
4772/// given function name (which may also be an operator name) and adds
4773/// all of the overload candidates found by ADL to the overload
4774/// candidate set (C++ [basic.lookup.argdep]).
4775void
4776Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4777                                           bool Operator,
4778                                           Expr **Args, unsigned NumArgs,
4779                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4780                                           OverloadCandidateSet& CandidateSet,
4781                                           bool PartialOverloading) {
4782  ADLResult Fns;
4783
4784  // FIXME: This approach for uniquing ADL results (and removing
4785  // redundant candidates from the set) relies on pointer-equality,
4786  // which means we need to key off the canonical decl.  However,
4787  // always going back to the canonical decl might not get us the
4788  // right set of default arguments.  What default arguments are
4789  // we supposed to consider on ADL candidates, anyway?
4790
4791  // FIXME: Pass in the explicit template arguments?
4792  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4793
4794  // Erase all of the candidates we already knew about.
4795  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4796                                   CandEnd = CandidateSet.end();
4797       Cand != CandEnd; ++Cand)
4798    if (Cand->Function) {
4799      Fns.erase(Cand->Function);
4800      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4801        Fns.erase(FunTmpl);
4802    }
4803
4804  // For each of the ADL candidates we found, add it to the overload
4805  // set.
4806  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4807    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4808    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4809      if (ExplicitTemplateArgs)
4810        continue;
4811
4812      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4813                           false, PartialOverloading);
4814    } else
4815      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4816                                   FoundDecl, ExplicitTemplateArgs,
4817                                   Args, NumArgs, CandidateSet);
4818  }
4819}
4820
4821/// isBetterOverloadCandidate - Determines whether the first overload
4822/// candidate is a better candidate than the second (C++ 13.3.3p1).
4823bool
4824Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4825                                const OverloadCandidate& Cand2,
4826                                SourceLocation Loc) {
4827  // Define viable functions to be better candidates than non-viable
4828  // functions.
4829  if (!Cand2.Viable)
4830    return Cand1.Viable;
4831  else if (!Cand1.Viable)
4832    return false;
4833
4834  // C++ [over.match.best]p1:
4835  //
4836  //   -- if F is a static member function, ICS1(F) is defined such
4837  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4838  //      any function G, and, symmetrically, ICS1(G) is neither
4839  //      better nor worse than ICS1(F).
4840  unsigned StartArg = 0;
4841  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4842    StartArg = 1;
4843
4844  // C++ [over.match.best]p1:
4845  //   A viable function F1 is defined to be a better function than another
4846  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4847  //   conversion sequence than ICSi(F2), and then...
4848  unsigned NumArgs = Cand1.Conversions.size();
4849  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4850  bool HasBetterConversion = false;
4851  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4852    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4853                                               Cand2.Conversions[ArgIdx])) {
4854    case ImplicitConversionSequence::Better:
4855      // Cand1 has a better conversion sequence.
4856      HasBetterConversion = true;
4857      break;
4858
4859    case ImplicitConversionSequence::Worse:
4860      // Cand1 can't be better than Cand2.
4861      return false;
4862
4863    case ImplicitConversionSequence::Indistinguishable:
4864      // Do nothing.
4865      break;
4866    }
4867  }
4868
4869  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4870  //       ICSj(F2), or, if not that,
4871  if (HasBetterConversion)
4872    return true;
4873
4874  //     - F1 is a non-template function and F2 is a function template
4875  //       specialization, or, if not that,
4876  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4877      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4878    return true;
4879
4880  //   -- F1 and F2 are function template specializations, and the function
4881  //      template for F1 is more specialized than the template for F2
4882  //      according to the partial ordering rules described in 14.5.5.2, or,
4883  //      if not that,
4884  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4885      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4886    if (FunctionTemplateDecl *BetterTemplate
4887          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4888                                       Cand2.Function->getPrimaryTemplate(),
4889                                       Loc,
4890                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4891                                                             : TPOC_Call))
4892      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4893
4894  //   -- the context is an initialization by user-defined conversion
4895  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4896  //      from the return type of F1 to the destination type (i.e.,
4897  //      the type of the entity being initialized) is a better
4898  //      conversion sequence than the standard conversion sequence
4899  //      from the return type of F2 to the destination type.
4900  if (Cand1.Function && Cand2.Function &&
4901      isa<CXXConversionDecl>(Cand1.Function) &&
4902      isa<CXXConversionDecl>(Cand2.Function)) {
4903    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4904                                               Cand2.FinalConversion)) {
4905    case ImplicitConversionSequence::Better:
4906      // Cand1 has a better conversion sequence.
4907      return true;
4908
4909    case ImplicitConversionSequence::Worse:
4910      // Cand1 can't be better than Cand2.
4911      return false;
4912
4913    case ImplicitConversionSequence::Indistinguishable:
4914      // Do nothing
4915      break;
4916    }
4917  }
4918
4919  return false;
4920}
4921
4922/// \brief Computes the best viable function (C++ 13.3.3)
4923/// within an overload candidate set.
4924///
4925/// \param CandidateSet the set of candidate functions.
4926///
4927/// \param Loc the location of the function name (or operator symbol) for
4928/// which overload resolution occurs.
4929///
4930/// \param Best f overload resolution was successful or found a deleted
4931/// function, Best points to the candidate function found.
4932///
4933/// \returns The result of overload resolution.
4934OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4935                                           SourceLocation Loc,
4936                                        OverloadCandidateSet::iterator& Best) {
4937  // Find the best viable function.
4938  Best = CandidateSet.end();
4939  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4940       Cand != CandidateSet.end(); ++Cand) {
4941    if (Cand->Viable) {
4942      if (Best == CandidateSet.end() ||
4943          isBetterOverloadCandidate(*Cand, *Best, Loc))
4944        Best = Cand;
4945    }
4946  }
4947
4948  // If we didn't find any viable functions, abort.
4949  if (Best == CandidateSet.end())
4950    return OR_No_Viable_Function;
4951
4952  // Make sure that this function is better than every other viable
4953  // function. If not, we have an ambiguity.
4954  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4955       Cand != CandidateSet.end(); ++Cand) {
4956    if (Cand->Viable &&
4957        Cand != Best &&
4958        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4959      Best = CandidateSet.end();
4960      return OR_Ambiguous;
4961    }
4962  }
4963
4964  // Best is the best viable function.
4965  if (Best->Function &&
4966      (Best->Function->isDeleted() ||
4967       Best->Function->getAttr<UnavailableAttr>()))
4968    return OR_Deleted;
4969
4970  // C++ [basic.def.odr]p2:
4971  //   An overloaded function is used if it is selected by overload resolution
4972  //   when referred to from a potentially-evaluated expression. [Note: this
4973  //   covers calls to named functions (5.2.2), operator overloading
4974  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4975  //   placement new (5.3.4), as well as non-default initialization (8.5).
4976  if (Best->Function)
4977    MarkDeclarationReferenced(Loc, Best->Function);
4978  return OR_Success;
4979}
4980
4981namespace {
4982
4983enum OverloadCandidateKind {
4984  oc_function,
4985  oc_method,
4986  oc_constructor,
4987  oc_function_template,
4988  oc_method_template,
4989  oc_constructor_template,
4990  oc_implicit_default_constructor,
4991  oc_implicit_copy_constructor,
4992  oc_implicit_copy_assignment
4993};
4994
4995OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4996                                                FunctionDecl *Fn,
4997                                                std::string &Description) {
4998  bool isTemplate = false;
4999
5000  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
5001    isTemplate = true;
5002    Description = S.getTemplateArgumentBindingsText(
5003      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
5004  }
5005
5006  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
5007    if (!Ctor->isImplicit())
5008      return isTemplate ? oc_constructor_template : oc_constructor;
5009
5010    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
5011                                     : oc_implicit_default_constructor;
5012  }
5013
5014  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
5015    // This actually gets spelled 'candidate function' for now, but
5016    // it doesn't hurt to split it out.
5017    if (!Meth->isImplicit())
5018      return isTemplate ? oc_method_template : oc_method;
5019
5020    assert(Meth->isCopyAssignment()
5021           && "implicit method is not copy assignment operator?");
5022    return oc_implicit_copy_assignment;
5023  }
5024
5025  return isTemplate ? oc_function_template : oc_function;
5026}
5027
5028} // end anonymous namespace
5029
5030// Notes the location of an overload candidate.
5031void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
5032  std::string FnDesc;
5033  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
5034  Diag(Fn->getLocation(), diag::note_ovl_candidate)
5035    << (unsigned) K << FnDesc;
5036}
5037
5038/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
5039/// "lead" diagnostic; it will be given two arguments, the source and
5040/// target types of the conversion.
5041void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
5042                                       SourceLocation CaretLoc,
5043                                       const PartialDiagnostic &PDiag) {
5044  Diag(CaretLoc, PDiag)
5045    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
5046  for (AmbiguousConversionSequence::const_iterator
5047         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
5048    NoteOverloadCandidate(*I);
5049  }
5050}
5051
5052namespace {
5053
5054void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
5055  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
5056  assert(Conv.isBad());
5057  assert(Cand->Function && "for now, candidate must be a function");
5058  FunctionDecl *Fn = Cand->Function;
5059
5060  // There's a conversion slot for the object argument if this is a
5061  // non-constructor method.  Note that 'I' corresponds the
5062  // conversion-slot index.
5063  bool isObjectArgument = false;
5064  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
5065    if (I == 0)
5066      isObjectArgument = true;
5067    else
5068      I--;
5069  }
5070
5071  std::string FnDesc;
5072  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5073
5074  Expr *FromExpr = Conv.Bad.FromExpr;
5075  QualType FromTy = Conv.Bad.getFromType();
5076  QualType ToTy = Conv.Bad.getToType();
5077
5078  if (FromTy == S.Context.OverloadTy) {
5079    assert(FromExpr && "overload set argument came from implicit argument?");
5080    Expr *E = FromExpr->IgnoreParens();
5081    if (isa<UnaryOperator>(E))
5082      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
5083    DeclarationName Name = cast<OverloadExpr>(E)->getName();
5084
5085    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
5086      << (unsigned) FnKind << FnDesc
5087      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5088      << ToTy << Name << I+1;
5089    return;
5090  }
5091
5092  // Do some hand-waving analysis to see if the non-viability is due
5093  // to a qualifier mismatch.
5094  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
5095  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
5096  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
5097    CToTy = RT->getPointeeType();
5098  else {
5099    // TODO: detect and diagnose the full richness of const mismatches.
5100    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
5101      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
5102        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
5103  }
5104
5105  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5106      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
5107    // It is dumb that we have to do this here.
5108    while (isa<ArrayType>(CFromTy))
5109      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
5110    while (isa<ArrayType>(CToTy))
5111      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
5112
5113    Qualifiers FromQs = CFromTy.getQualifiers();
5114    Qualifiers ToQs = CToTy.getQualifiers();
5115
5116    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5117      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5118        << (unsigned) FnKind << FnDesc
5119        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5120        << FromTy
5121        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5122        << (unsigned) isObjectArgument << I+1;
5123      return;
5124    }
5125
5126    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5127    assert(CVR && "unexpected qualifiers mismatch");
5128
5129    if (isObjectArgument) {
5130      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5131        << (unsigned) FnKind << FnDesc
5132        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5133        << FromTy << (CVR - 1);
5134    } else {
5135      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5136        << (unsigned) FnKind << FnDesc
5137        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5138        << FromTy << (CVR - 1) << I+1;
5139    }
5140    return;
5141  }
5142
5143  // Diagnose references or pointers to incomplete types differently,
5144  // since it's far from impossible that the incompleteness triggered
5145  // the failure.
5146  QualType TempFromTy = FromTy.getNonReferenceType();
5147  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5148    TempFromTy = PTy->getPointeeType();
5149  if (TempFromTy->isIncompleteType()) {
5150    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5151      << (unsigned) FnKind << FnDesc
5152      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5153      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5154    return;
5155  }
5156
5157  // TODO: specialize more based on the kind of mismatch
5158  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5159    << (unsigned) FnKind << FnDesc
5160    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5161    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5162}
5163
5164void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5165                           unsigned NumFormalArgs) {
5166  // TODO: treat calls to a missing default constructor as a special case
5167
5168  FunctionDecl *Fn = Cand->Function;
5169  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5170
5171  unsigned MinParams = Fn->getMinRequiredArguments();
5172
5173  // at least / at most / exactly
5174  // FIXME: variadic templates "at most" should account for parameter packs
5175  unsigned mode, modeCount;
5176  if (NumFormalArgs < MinParams) {
5177    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5178           (Cand->FailureKind == ovl_fail_bad_deduction &&
5179            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5180    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5181      mode = 0; // "at least"
5182    else
5183      mode = 2; // "exactly"
5184    modeCount = MinParams;
5185  } else {
5186    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5187           (Cand->FailureKind == ovl_fail_bad_deduction &&
5188            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5189    if (MinParams != FnTy->getNumArgs())
5190      mode = 1; // "at most"
5191    else
5192      mode = 2; // "exactly"
5193    modeCount = FnTy->getNumArgs();
5194  }
5195
5196  std::string Description;
5197  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5198
5199  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5200    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5201    << modeCount << NumFormalArgs;
5202}
5203
5204/// Diagnose a failed template-argument deduction.
5205void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5206                          Expr **Args, unsigned NumArgs) {
5207  FunctionDecl *Fn = Cand->Function; // pattern
5208
5209  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5210  NamedDecl *ParamD;
5211  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5212  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5213  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5214  switch (Cand->DeductionFailure.Result) {
5215  case Sema::TDK_Success:
5216    llvm_unreachable("TDK_success while diagnosing bad deduction");
5217
5218  case Sema::TDK_Incomplete: {
5219    assert(ParamD && "no parameter found for incomplete deduction result");
5220    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5221      << ParamD->getDeclName();
5222    return;
5223  }
5224
5225  case Sema::TDK_Inconsistent:
5226  case Sema::TDK_InconsistentQuals: {
5227    assert(ParamD && "no parameter found for inconsistent deduction result");
5228    int which = 0;
5229    if (isa<TemplateTypeParmDecl>(ParamD))
5230      which = 0;
5231    else if (isa<NonTypeTemplateParmDecl>(ParamD))
5232      which = 1;
5233    else {
5234      which = 2;
5235    }
5236
5237    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5238      << which << ParamD->getDeclName()
5239      << *Cand->DeductionFailure.getFirstArg()
5240      << *Cand->DeductionFailure.getSecondArg();
5241    return;
5242  }
5243
5244  case Sema::TDK_InvalidExplicitArguments:
5245    assert(ParamD && "no parameter found for invalid explicit arguments");
5246    if (ParamD->getDeclName())
5247      S.Diag(Fn->getLocation(),
5248             diag::note_ovl_candidate_explicit_arg_mismatch_named)
5249        << ParamD->getDeclName();
5250    else {
5251      int index = 0;
5252      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
5253        index = TTP->getIndex();
5254      else if (NonTypeTemplateParmDecl *NTTP
5255                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
5256        index = NTTP->getIndex();
5257      else
5258        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
5259      S.Diag(Fn->getLocation(),
5260             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
5261        << (index + 1);
5262    }
5263    return;
5264
5265  case Sema::TDK_TooManyArguments:
5266  case Sema::TDK_TooFewArguments:
5267    DiagnoseArityMismatch(S, Cand, NumArgs);
5268    return;
5269
5270  case Sema::TDK_InstantiationDepth:
5271    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
5272    return;
5273
5274  case Sema::TDK_SubstitutionFailure: {
5275    std::string ArgString;
5276    if (TemplateArgumentList *Args
5277                            = Cand->DeductionFailure.getTemplateArgumentList())
5278      ArgString = S.getTemplateArgumentBindingsText(
5279                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
5280                                                    *Args);
5281    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
5282      << ArgString;
5283    return;
5284  }
5285
5286  // TODO: diagnose these individually, then kill off
5287  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5288  case Sema::TDK_NonDeducedMismatch:
5289  case Sema::TDK_FailedOverloadResolution:
5290    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5291    return;
5292  }
5293}
5294
5295/// Generates a 'note' diagnostic for an overload candidate.  We've
5296/// already generated a primary error at the call site.
5297///
5298/// It really does need to be a single diagnostic with its caret
5299/// pointed at the candidate declaration.  Yes, this creates some
5300/// major challenges of technical writing.  Yes, this makes pointing
5301/// out problems with specific arguments quite awkward.  It's still
5302/// better than generating twenty screens of text for every failed
5303/// overload.
5304///
5305/// It would be great to be able to express per-candidate problems
5306/// more richly for those diagnostic clients that cared, but we'd
5307/// still have to be just as careful with the default diagnostics.
5308void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5309                           Expr **Args, unsigned NumArgs) {
5310  FunctionDecl *Fn = Cand->Function;
5311
5312  // Note deleted candidates, but only if they're viable.
5313  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5314    std::string FnDesc;
5315    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5316
5317    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5318      << FnKind << FnDesc << Fn->isDeleted();
5319    return;
5320  }
5321
5322  // We don't really have anything else to say about viable candidates.
5323  if (Cand->Viable) {
5324    S.NoteOverloadCandidate(Fn);
5325    return;
5326  }
5327
5328  switch (Cand->FailureKind) {
5329  case ovl_fail_too_many_arguments:
5330  case ovl_fail_too_few_arguments:
5331    return DiagnoseArityMismatch(S, Cand, NumArgs);
5332
5333  case ovl_fail_bad_deduction:
5334    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5335
5336  case ovl_fail_trivial_conversion:
5337  case ovl_fail_bad_final_conversion:
5338  case ovl_fail_final_conversion_not_exact:
5339    return S.NoteOverloadCandidate(Fn);
5340
5341  case ovl_fail_bad_conversion: {
5342    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5343    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5344      if (Cand->Conversions[I].isBad())
5345        return DiagnoseBadConversion(S, Cand, I);
5346
5347    // FIXME: this currently happens when we're called from SemaInit
5348    // when user-conversion overload fails.  Figure out how to handle
5349    // those conditions and diagnose them well.
5350    return S.NoteOverloadCandidate(Fn);
5351  }
5352  }
5353}
5354
5355void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5356  // Desugar the type of the surrogate down to a function type,
5357  // retaining as many typedefs as possible while still showing
5358  // the function type (and, therefore, its parameter types).
5359  QualType FnType = Cand->Surrogate->getConversionType();
5360  bool isLValueReference = false;
5361  bool isRValueReference = false;
5362  bool isPointer = false;
5363  if (const LValueReferenceType *FnTypeRef =
5364        FnType->getAs<LValueReferenceType>()) {
5365    FnType = FnTypeRef->getPointeeType();
5366    isLValueReference = true;
5367  } else if (const RValueReferenceType *FnTypeRef =
5368               FnType->getAs<RValueReferenceType>()) {
5369    FnType = FnTypeRef->getPointeeType();
5370    isRValueReference = true;
5371  }
5372  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5373    FnType = FnTypePtr->getPointeeType();
5374    isPointer = true;
5375  }
5376  // Desugar down to a function type.
5377  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5378  // Reconstruct the pointer/reference as appropriate.
5379  if (isPointer) FnType = S.Context.getPointerType(FnType);
5380  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5381  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5382
5383  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5384    << FnType;
5385}
5386
5387void NoteBuiltinOperatorCandidate(Sema &S,
5388                                  const char *Opc,
5389                                  SourceLocation OpLoc,
5390                                  OverloadCandidate *Cand) {
5391  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5392  std::string TypeStr("operator");
5393  TypeStr += Opc;
5394  TypeStr += "(";
5395  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5396  if (Cand->Conversions.size() == 1) {
5397    TypeStr += ")";
5398    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5399  } else {
5400    TypeStr += ", ";
5401    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5402    TypeStr += ")";
5403    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5404  }
5405}
5406
5407void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5408                                  OverloadCandidate *Cand) {
5409  unsigned NoOperands = Cand->Conversions.size();
5410  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5411    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5412    if (ICS.isBad()) break; // all meaningless after first invalid
5413    if (!ICS.isAmbiguous()) continue;
5414
5415    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5416                              S.PDiag(diag::note_ambiguous_type_conversion));
5417  }
5418}
5419
5420SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5421  if (Cand->Function)
5422    return Cand->Function->getLocation();
5423  if (Cand->IsSurrogate)
5424    return Cand->Surrogate->getLocation();
5425  return SourceLocation();
5426}
5427
5428struct CompareOverloadCandidatesForDisplay {
5429  Sema &S;
5430  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5431
5432  bool operator()(const OverloadCandidate *L,
5433                  const OverloadCandidate *R) {
5434    // Fast-path this check.
5435    if (L == R) return false;
5436
5437    // Order first by viability.
5438    if (L->Viable) {
5439      if (!R->Viable) return true;
5440
5441      // TODO: introduce a tri-valued comparison for overload
5442      // candidates.  Would be more worthwhile if we had a sort
5443      // that could exploit it.
5444      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5445      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5446    } else if (R->Viable)
5447      return false;
5448
5449    assert(L->Viable == R->Viable);
5450
5451    // Criteria by which we can sort non-viable candidates:
5452    if (!L->Viable) {
5453      // 1. Arity mismatches come after other candidates.
5454      if (L->FailureKind == ovl_fail_too_many_arguments ||
5455          L->FailureKind == ovl_fail_too_few_arguments)
5456        return false;
5457      if (R->FailureKind == ovl_fail_too_many_arguments ||
5458          R->FailureKind == ovl_fail_too_few_arguments)
5459        return true;
5460
5461      // 2. Bad conversions come first and are ordered by the number
5462      // of bad conversions and quality of good conversions.
5463      if (L->FailureKind == ovl_fail_bad_conversion) {
5464        if (R->FailureKind != ovl_fail_bad_conversion)
5465          return true;
5466
5467        // If there's any ordering between the defined conversions...
5468        // FIXME: this might not be transitive.
5469        assert(L->Conversions.size() == R->Conversions.size());
5470
5471        int leftBetter = 0;
5472        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5473        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5474          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5475                                                       R->Conversions[I])) {
5476          case ImplicitConversionSequence::Better:
5477            leftBetter++;
5478            break;
5479
5480          case ImplicitConversionSequence::Worse:
5481            leftBetter--;
5482            break;
5483
5484          case ImplicitConversionSequence::Indistinguishable:
5485            break;
5486          }
5487        }
5488        if (leftBetter > 0) return true;
5489        if (leftBetter < 0) return false;
5490
5491      } else if (R->FailureKind == ovl_fail_bad_conversion)
5492        return false;
5493
5494      // TODO: others?
5495    }
5496
5497    // Sort everything else by location.
5498    SourceLocation LLoc = GetLocationForCandidate(L);
5499    SourceLocation RLoc = GetLocationForCandidate(R);
5500
5501    // Put candidates without locations (e.g. builtins) at the end.
5502    if (LLoc.isInvalid()) return false;
5503    if (RLoc.isInvalid()) return true;
5504
5505    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5506  }
5507};
5508
5509/// CompleteNonViableCandidate - Normally, overload resolution only
5510/// computes up to the first
5511void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5512                                Expr **Args, unsigned NumArgs) {
5513  assert(!Cand->Viable);
5514
5515  // Don't do anything on failures other than bad conversion.
5516  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5517
5518  // Skip forward to the first bad conversion.
5519  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5520  unsigned ConvCount = Cand->Conversions.size();
5521  while (true) {
5522    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5523    ConvIdx++;
5524    if (Cand->Conversions[ConvIdx - 1].isBad())
5525      break;
5526  }
5527
5528  if (ConvIdx == ConvCount)
5529    return;
5530
5531  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5532         "remaining conversion is initialized?");
5533
5534  // FIXME: this should probably be preserved from the overload
5535  // operation somehow.
5536  bool SuppressUserConversions = false;
5537
5538  const FunctionProtoType* Proto;
5539  unsigned ArgIdx = ConvIdx;
5540
5541  if (Cand->IsSurrogate) {
5542    QualType ConvType
5543      = Cand->Surrogate->getConversionType().getNonReferenceType();
5544    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5545      ConvType = ConvPtrType->getPointeeType();
5546    Proto = ConvType->getAs<FunctionProtoType>();
5547    ArgIdx--;
5548  } else if (Cand->Function) {
5549    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5550    if (isa<CXXMethodDecl>(Cand->Function) &&
5551        !isa<CXXConstructorDecl>(Cand->Function))
5552      ArgIdx--;
5553  } else {
5554    // Builtin binary operator with a bad first conversion.
5555    assert(ConvCount <= 3);
5556    for (; ConvIdx != ConvCount; ++ConvIdx)
5557      Cand->Conversions[ConvIdx]
5558        = TryCopyInitialization(S, Args[ConvIdx],
5559                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5560                                SuppressUserConversions,
5561                                /*InOverloadResolution*/ true);
5562    return;
5563  }
5564
5565  // Fill in the rest of the conversions.
5566  unsigned NumArgsInProto = Proto->getNumArgs();
5567  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5568    if (ArgIdx < NumArgsInProto)
5569      Cand->Conversions[ConvIdx]
5570        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5571                                SuppressUserConversions,
5572                                /*InOverloadResolution=*/true);
5573    else
5574      Cand->Conversions[ConvIdx].setEllipsis();
5575  }
5576}
5577
5578} // end anonymous namespace
5579
5580/// PrintOverloadCandidates - When overload resolution fails, prints
5581/// diagnostic messages containing the candidates in the candidate
5582/// set.
5583void
5584Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5585                              OverloadCandidateDisplayKind OCD,
5586                              Expr **Args, unsigned NumArgs,
5587                              const char *Opc,
5588                              SourceLocation OpLoc) {
5589  // Sort the candidates by viability and position.  Sorting directly would
5590  // be prohibitive, so we make a set of pointers and sort those.
5591  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5592  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5593  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5594                                  LastCand = CandidateSet.end();
5595       Cand != LastCand; ++Cand) {
5596    if (Cand->Viable)
5597      Cands.push_back(Cand);
5598    else if (OCD == OCD_AllCandidates) {
5599      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5600      Cands.push_back(Cand);
5601    }
5602  }
5603
5604  std::sort(Cands.begin(), Cands.end(),
5605            CompareOverloadCandidatesForDisplay(*this));
5606
5607  bool ReportedAmbiguousConversions = false;
5608
5609  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5610  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5611    OverloadCandidate *Cand = *I;
5612
5613    if (Cand->Function)
5614      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5615    else if (Cand->IsSurrogate)
5616      NoteSurrogateCandidate(*this, Cand);
5617
5618    // This a builtin candidate.  We do not, in general, want to list
5619    // every possible builtin candidate.
5620    else if (Cand->Viable) {
5621      // Generally we only see ambiguities including viable builtin
5622      // operators if overload resolution got screwed up by an
5623      // ambiguous user-defined conversion.
5624      //
5625      // FIXME: It's quite possible for different conversions to see
5626      // different ambiguities, though.
5627      if (!ReportedAmbiguousConversions) {
5628        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5629        ReportedAmbiguousConversions = true;
5630      }
5631
5632      // If this is a viable builtin, print it.
5633      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5634    }
5635  }
5636}
5637
5638static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5639  if (isa<UnresolvedLookupExpr>(E))
5640    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5641
5642  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5643}
5644
5645/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5646/// an overloaded function (C++ [over.over]), where @p From is an
5647/// expression with overloaded function type and @p ToType is the type
5648/// we're trying to resolve to. For example:
5649///
5650/// @code
5651/// int f(double);
5652/// int f(int);
5653///
5654/// int (*pfd)(double) = f; // selects f(double)
5655/// @endcode
5656///
5657/// This routine returns the resulting FunctionDecl if it could be
5658/// resolved, and NULL otherwise. When @p Complain is true, this
5659/// routine will emit diagnostics if there is an error.
5660FunctionDecl *
5661Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5662                                         bool Complain,
5663                                         DeclAccessPair &FoundResult) {
5664  QualType FunctionType = ToType;
5665  bool IsMember = false;
5666  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5667    FunctionType = ToTypePtr->getPointeeType();
5668  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5669    FunctionType = ToTypeRef->getPointeeType();
5670  else if (const MemberPointerType *MemTypePtr =
5671                    ToType->getAs<MemberPointerType>()) {
5672    FunctionType = MemTypePtr->getPointeeType();
5673    IsMember = true;
5674  }
5675
5676  // C++ [over.over]p1:
5677  //   [...] [Note: any redundant set of parentheses surrounding the
5678  //   overloaded function name is ignored (5.1). ]
5679  // C++ [over.over]p1:
5680  //   [...] The overloaded function name can be preceded by the &
5681  //   operator.
5682  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5683  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5684  if (OvlExpr->hasExplicitTemplateArgs()) {
5685    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5686    ExplicitTemplateArgs = &ETABuffer;
5687  }
5688
5689  // We expect a pointer or reference to function, or a function pointer.
5690  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5691  if (!FunctionType->isFunctionType()) {
5692    if (Complain)
5693      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5694        << OvlExpr->getName() << ToType;
5695
5696    return 0;
5697  }
5698
5699  assert(From->getType() == Context.OverloadTy);
5700
5701  // Look through all of the overloaded functions, searching for one
5702  // whose type matches exactly.
5703  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5704  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5705
5706  bool FoundNonTemplateFunction = false;
5707  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5708         E = OvlExpr->decls_end(); I != E; ++I) {
5709    // Look through any using declarations to find the underlying function.
5710    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5711
5712    // C++ [over.over]p3:
5713    //   Non-member functions and static member functions match
5714    //   targets of type "pointer-to-function" or "reference-to-function."
5715    //   Nonstatic member functions match targets of
5716    //   type "pointer-to-member-function."
5717    // Note that according to DR 247, the containing class does not matter.
5718
5719    if (FunctionTemplateDecl *FunctionTemplate
5720          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5721      if (CXXMethodDecl *Method
5722            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5723        // Skip non-static function templates when converting to pointer, and
5724        // static when converting to member pointer.
5725        if (Method->isStatic() == IsMember)
5726          continue;
5727      } else if (IsMember)
5728        continue;
5729
5730      // C++ [over.over]p2:
5731      //   If the name is a function template, template argument deduction is
5732      //   done (14.8.2.2), and if the argument deduction succeeds, the
5733      //   resulting template argument list is used to generate a single
5734      //   function template specialization, which is added to the set of
5735      //   overloaded functions considered.
5736      // FIXME: We don't really want to build the specialization here, do we?
5737      FunctionDecl *Specialization = 0;
5738      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5739      if (TemplateDeductionResult Result
5740            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5741                                      FunctionType, Specialization, Info)) {
5742        // FIXME: make a note of the failed deduction for diagnostics.
5743        (void)Result;
5744      } else {
5745        // FIXME: If the match isn't exact, shouldn't we just drop this as
5746        // a candidate? Find a testcase before changing the code.
5747        assert(FunctionType
5748                 == Context.getCanonicalType(Specialization->getType()));
5749        Matches.push_back(std::make_pair(I.getPair(),
5750                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5751      }
5752
5753      continue;
5754    }
5755
5756    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5757      // Skip non-static functions when converting to pointer, and static
5758      // when converting to member pointer.
5759      if (Method->isStatic() == IsMember)
5760        continue;
5761
5762      // If we have explicit template arguments, skip non-templates.
5763      if (OvlExpr->hasExplicitTemplateArgs())
5764        continue;
5765    } else if (IsMember)
5766      continue;
5767
5768    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5769      QualType ResultTy;
5770      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5771          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5772                               ResultTy)) {
5773        Matches.push_back(std::make_pair(I.getPair(),
5774                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5775        FoundNonTemplateFunction = true;
5776      }
5777    }
5778  }
5779
5780  // If there were 0 or 1 matches, we're done.
5781  if (Matches.empty()) {
5782    if (Complain) {
5783      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5784        << OvlExpr->getName() << FunctionType;
5785      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5786                                 E = OvlExpr->decls_end();
5787           I != E; ++I)
5788        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5789          NoteOverloadCandidate(F);
5790    }
5791
5792    return 0;
5793  } else if (Matches.size() == 1) {
5794    FunctionDecl *Result = Matches[0].second;
5795    FoundResult = Matches[0].first;
5796    MarkDeclarationReferenced(From->getLocStart(), Result);
5797    if (Complain)
5798      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5799    return Result;
5800  }
5801
5802  // C++ [over.over]p4:
5803  //   If more than one function is selected, [...]
5804  if (!FoundNonTemplateFunction) {
5805    //   [...] and any given function template specialization F1 is
5806    //   eliminated if the set contains a second function template
5807    //   specialization whose function template is more specialized
5808    //   than the function template of F1 according to the partial
5809    //   ordering rules of 14.5.5.2.
5810
5811    // The algorithm specified above is quadratic. We instead use a
5812    // two-pass algorithm (similar to the one used to identify the
5813    // best viable function in an overload set) that identifies the
5814    // best function template (if it exists).
5815
5816    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5817    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5818      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5819
5820    UnresolvedSetIterator Result =
5821        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5822                           TPOC_Other, From->getLocStart(),
5823                           PDiag(),
5824                           PDiag(diag::err_addr_ovl_ambiguous)
5825                               << Matches[0].second->getDeclName(),
5826                           PDiag(diag::note_ovl_candidate)
5827                               << (unsigned) oc_function_template);
5828    assert(Result != MatchesCopy.end() && "no most-specialized template");
5829    MarkDeclarationReferenced(From->getLocStart(), *Result);
5830    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5831    if (Complain) {
5832      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5833      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
5834    }
5835    return cast<FunctionDecl>(*Result);
5836  }
5837
5838  //   [...] any function template specializations in the set are
5839  //   eliminated if the set also contains a non-template function, [...]
5840  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5841    if (Matches[I].second->getPrimaryTemplate() == 0)
5842      ++I;
5843    else {
5844      Matches[I] = Matches[--N];
5845      Matches.set_size(N);
5846    }
5847  }
5848
5849  // [...] After such eliminations, if any, there shall remain exactly one
5850  // selected function.
5851  if (Matches.size() == 1) {
5852    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5853    FoundResult = Matches[0].first;
5854    if (Complain) {
5855      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5856      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
5857    }
5858    return cast<FunctionDecl>(Matches[0].second);
5859  }
5860
5861  // FIXME: We should probably return the same thing that BestViableFunction
5862  // returns (even if we issue the diagnostics here).
5863  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5864    << Matches[0].second->getDeclName();
5865  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5866    NoteOverloadCandidate(Matches[I].second);
5867  return 0;
5868}
5869
5870/// \brief Given an expression that refers to an overloaded function, try to
5871/// resolve that overloaded function expression down to a single function.
5872///
5873/// This routine can only resolve template-ids that refer to a single function
5874/// template, where that template-id refers to a single template whose template
5875/// arguments are either provided by the template-id or have defaults,
5876/// as described in C++0x [temp.arg.explicit]p3.
5877FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5878  // C++ [over.over]p1:
5879  //   [...] [Note: any redundant set of parentheses surrounding the
5880  //   overloaded function name is ignored (5.1). ]
5881  // C++ [over.over]p1:
5882  //   [...] The overloaded function name can be preceded by the &
5883  //   operator.
5884
5885  if (From->getType() != Context.OverloadTy)
5886    return 0;
5887
5888  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5889
5890  // If we didn't actually find any template-ids, we're done.
5891  if (!OvlExpr->hasExplicitTemplateArgs())
5892    return 0;
5893
5894  TemplateArgumentListInfo ExplicitTemplateArgs;
5895  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5896
5897  // Look through all of the overloaded functions, searching for one
5898  // whose type matches exactly.
5899  FunctionDecl *Matched = 0;
5900  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5901         E = OvlExpr->decls_end(); I != E; ++I) {
5902    // C++0x [temp.arg.explicit]p3:
5903    //   [...] In contexts where deduction is done and fails, or in contexts
5904    //   where deduction is not done, if a template argument list is
5905    //   specified and it, along with any default template arguments,
5906    //   identifies a single function template specialization, then the
5907    //   template-id is an lvalue for the function template specialization.
5908    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5909
5910    // C++ [over.over]p2:
5911    //   If the name is a function template, template argument deduction is
5912    //   done (14.8.2.2), and if the argument deduction succeeds, the
5913    //   resulting template argument list is used to generate a single
5914    //   function template specialization, which is added to the set of
5915    //   overloaded functions considered.
5916    FunctionDecl *Specialization = 0;
5917    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5918    if (TemplateDeductionResult Result
5919          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5920                                    Specialization, Info)) {
5921      // FIXME: make a note of the failed deduction for diagnostics.
5922      (void)Result;
5923      continue;
5924    }
5925
5926    // Multiple matches; we can't resolve to a single declaration.
5927    if (Matched)
5928      return 0;
5929
5930    Matched = Specialization;
5931  }
5932
5933  return Matched;
5934}
5935
5936/// \brief Add a single candidate to the overload set.
5937static void AddOverloadedCallCandidate(Sema &S,
5938                                       DeclAccessPair FoundDecl,
5939                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5940                                       Expr **Args, unsigned NumArgs,
5941                                       OverloadCandidateSet &CandidateSet,
5942                                       bool PartialOverloading) {
5943  NamedDecl *Callee = FoundDecl.getDecl();
5944  if (isa<UsingShadowDecl>(Callee))
5945    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5946
5947  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5948    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5949    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5950                           false, PartialOverloading);
5951    return;
5952  }
5953
5954  if (FunctionTemplateDecl *FuncTemplate
5955      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5956    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5957                                   ExplicitTemplateArgs,
5958                                   Args, NumArgs, CandidateSet);
5959    return;
5960  }
5961
5962  assert(false && "unhandled case in overloaded call candidate");
5963
5964  // do nothing?
5965}
5966
5967/// \brief Add the overload candidates named by callee and/or found by argument
5968/// dependent lookup to the given overload set.
5969void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5970                                       Expr **Args, unsigned NumArgs,
5971                                       OverloadCandidateSet &CandidateSet,
5972                                       bool PartialOverloading) {
5973
5974#ifndef NDEBUG
5975  // Verify that ArgumentDependentLookup is consistent with the rules
5976  // in C++0x [basic.lookup.argdep]p3:
5977  //
5978  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5979  //   and let Y be the lookup set produced by argument dependent
5980  //   lookup (defined as follows). If X contains
5981  //
5982  //     -- a declaration of a class member, or
5983  //
5984  //     -- a block-scope function declaration that is not a
5985  //        using-declaration, or
5986  //
5987  //     -- a declaration that is neither a function or a function
5988  //        template
5989  //
5990  //   then Y is empty.
5991
5992  if (ULE->requiresADL()) {
5993    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5994           E = ULE->decls_end(); I != E; ++I) {
5995      assert(!(*I)->getDeclContext()->isRecord());
5996      assert(isa<UsingShadowDecl>(*I) ||
5997             !(*I)->getDeclContext()->isFunctionOrMethod());
5998      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5999    }
6000  }
6001#endif
6002
6003  // It would be nice to avoid this copy.
6004  TemplateArgumentListInfo TABuffer;
6005  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6006  if (ULE->hasExplicitTemplateArgs()) {
6007    ULE->copyTemplateArgumentsInto(TABuffer);
6008    ExplicitTemplateArgs = &TABuffer;
6009  }
6010
6011  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6012         E = ULE->decls_end(); I != E; ++I)
6013    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
6014                               Args, NumArgs, CandidateSet,
6015                               PartialOverloading);
6016
6017  if (ULE->requiresADL())
6018    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
6019                                         Args, NumArgs,
6020                                         ExplicitTemplateArgs,
6021                                         CandidateSet,
6022                                         PartialOverloading);
6023}
6024
6025static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
6026                                      Expr **Args, unsigned NumArgs) {
6027  Fn->Destroy(SemaRef.Context);
6028  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6029    Args[Arg]->Destroy(SemaRef.Context);
6030  return SemaRef.ExprError();
6031}
6032
6033/// Attempts to recover from a call where no functions were found.
6034///
6035/// Returns true if new candidates were found.
6036static Sema::OwningExprResult
6037BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
6038                      UnresolvedLookupExpr *ULE,
6039                      SourceLocation LParenLoc,
6040                      Expr **Args, unsigned NumArgs,
6041                      SourceLocation *CommaLocs,
6042                      SourceLocation RParenLoc) {
6043
6044  CXXScopeSpec SS;
6045  if (ULE->getQualifier()) {
6046    SS.setScopeRep(ULE->getQualifier());
6047    SS.setRange(ULE->getQualifierRange());
6048  }
6049
6050  TemplateArgumentListInfo TABuffer;
6051  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6052  if (ULE->hasExplicitTemplateArgs()) {
6053    ULE->copyTemplateArgumentsInto(TABuffer);
6054    ExplicitTemplateArgs = &TABuffer;
6055  }
6056
6057  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
6058                 Sema::LookupOrdinaryName);
6059  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
6060    return Destroy(SemaRef, Fn, Args, NumArgs);
6061
6062  assert(!R.empty() && "lookup results empty despite recovery");
6063
6064  // Build an implicit member call if appropriate.  Just drop the
6065  // casts and such from the call, we don't really care.
6066  Sema::OwningExprResult NewFn = SemaRef.ExprError();
6067  if ((*R.begin())->isCXXClassMember())
6068    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
6069  else if (ExplicitTemplateArgs)
6070    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
6071  else
6072    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
6073
6074  if (NewFn.isInvalid())
6075    return Destroy(SemaRef, Fn, Args, NumArgs);
6076
6077  Fn->Destroy(SemaRef.Context);
6078
6079  // This shouldn't cause an infinite loop because we're giving it
6080  // an expression with non-empty lookup results, which should never
6081  // end up here.
6082  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
6083                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
6084                               CommaLocs, RParenLoc);
6085}
6086
6087/// ResolveOverloadedCallFn - Given the call expression that calls Fn
6088/// (which eventually refers to the declaration Func) and the call
6089/// arguments Args/NumArgs, attempt to resolve the function call down
6090/// to a specific function. If overload resolution succeeds, returns
6091/// the function declaration produced by overload
6092/// resolution. Otherwise, emits diagnostics, deletes all of the
6093/// arguments and Fn, and returns NULL.
6094Sema::OwningExprResult
6095Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
6096                              SourceLocation LParenLoc,
6097                              Expr **Args, unsigned NumArgs,
6098                              SourceLocation *CommaLocs,
6099                              SourceLocation RParenLoc) {
6100#ifndef NDEBUG
6101  if (ULE->requiresADL()) {
6102    // To do ADL, we must have found an unqualified name.
6103    assert(!ULE->getQualifier() && "qualified name with ADL");
6104
6105    // We don't perform ADL for implicit declarations of builtins.
6106    // Verify that this was correctly set up.
6107    FunctionDecl *F;
6108    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
6109        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
6110        F->getBuiltinID() && F->isImplicit())
6111      assert(0 && "performing ADL for builtin");
6112
6113    // We don't perform ADL in C.
6114    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
6115  }
6116#endif
6117
6118  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
6119
6120  // Add the functions denoted by the callee to the set of candidate
6121  // functions, including those from argument-dependent lookup.
6122  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
6123
6124  // If we found nothing, try to recover.
6125  // AddRecoveryCallCandidates diagnoses the error itself, so we just
6126  // bailout out if it fails.
6127  if (CandidateSet.empty())
6128    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
6129                                 CommaLocs, RParenLoc);
6130
6131  OverloadCandidateSet::iterator Best;
6132  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
6133  case OR_Success: {
6134    FunctionDecl *FDecl = Best->Function;
6135    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
6136    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
6137    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
6138    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
6139  }
6140
6141  case OR_No_Viable_Function:
6142    Diag(Fn->getSourceRange().getBegin(),
6143         diag::err_ovl_no_viable_function_in_call)
6144      << ULE->getName() << Fn->getSourceRange();
6145    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6146    break;
6147
6148  case OR_Ambiguous:
6149    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6150      << ULE->getName() << Fn->getSourceRange();
6151    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6152    break;
6153
6154  case OR_Deleted:
6155    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6156      << Best->Function->isDeleted()
6157      << ULE->getName()
6158      << Fn->getSourceRange();
6159    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6160    break;
6161  }
6162
6163  // Overload resolution failed. Destroy all of the subexpressions and
6164  // return NULL.
6165  Fn->Destroy(Context);
6166  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6167    Args[Arg]->Destroy(Context);
6168  return ExprError();
6169}
6170
6171static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6172  return Functions.size() > 1 ||
6173    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6174}
6175
6176/// \brief Create a unary operation that may resolve to an overloaded
6177/// operator.
6178///
6179/// \param OpLoc The location of the operator itself (e.g., '*').
6180///
6181/// \param OpcIn The UnaryOperator::Opcode that describes this
6182/// operator.
6183///
6184/// \param Functions The set of non-member functions that will be
6185/// considered by overload resolution. The caller needs to build this
6186/// set based on the context using, e.g.,
6187/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6188/// set should not contain any member functions; those will be added
6189/// by CreateOverloadedUnaryOp().
6190///
6191/// \param input The input argument.
6192Sema::OwningExprResult
6193Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6194                              const UnresolvedSetImpl &Fns,
6195                              ExprArg input) {
6196  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6197  Expr *Input = (Expr *)input.get();
6198
6199  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6200  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6201  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6202
6203  Expr *Args[2] = { Input, 0 };
6204  unsigned NumArgs = 1;
6205
6206  // For post-increment and post-decrement, add the implicit '0' as
6207  // the second argument, so that we know this is a post-increment or
6208  // post-decrement.
6209  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6210    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6211    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6212                                           SourceLocation());
6213    NumArgs = 2;
6214  }
6215
6216  if (Input->isTypeDependent()) {
6217    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6218    UnresolvedLookupExpr *Fn
6219      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6220                                     0, SourceRange(), OpName, OpLoc,
6221                                     /*ADL*/ true, IsOverloaded(Fns));
6222    Fn->addDecls(Fns.begin(), Fns.end());
6223
6224    input.release();
6225    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6226                                                   &Args[0], NumArgs,
6227                                                   Context.DependentTy,
6228                                                   OpLoc));
6229  }
6230
6231  // Build an empty overload set.
6232  OverloadCandidateSet CandidateSet(OpLoc);
6233
6234  // Add the candidates from the given function set.
6235  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6236
6237  // Add operator candidates that are member functions.
6238  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6239
6240  // Add candidates from ADL.
6241  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6242                                       Args, NumArgs,
6243                                       /*ExplicitTemplateArgs*/ 0,
6244                                       CandidateSet);
6245
6246  // Add builtin operator candidates.
6247  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6248
6249  // Perform overload resolution.
6250  OverloadCandidateSet::iterator Best;
6251  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6252  case OR_Success: {
6253    // We found a built-in operator or an overloaded operator.
6254    FunctionDecl *FnDecl = Best->Function;
6255
6256    if (FnDecl) {
6257      // We matched an overloaded operator. Build a call to that
6258      // operator.
6259
6260      // Convert the arguments.
6261      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6262        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6263
6264        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6265                                                Best->FoundDecl, Method))
6266          return ExprError();
6267      } else {
6268        // Convert the arguments.
6269        OwningExprResult InputInit
6270          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6271                                                      FnDecl->getParamDecl(0)),
6272                                      SourceLocation(),
6273                                      move(input));
6274        if (InputInit.isInvalid())
6275          return ExprError();
6276
6277        input = move(InputInit);
6278        Input = (Expr *)input.get();
6279      }
6280
6281      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6282
6283      // Determine the result type
6284      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
6285
6286      // Build the actual expression node.
6287      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6288                                               SourceLocation());
6289      UsualUnaryConversions(FnExpr);
6290
6291      input.release();
6292      Args[0] = Input;
6293      ExprOwningPtr<CallExpr> TheCall(this,
6294        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6295                                          Args, NumArgs, ResultTy, OpLoc));
6296
6297      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6298                              FnDecl))
6299        return ExprError();
6300
6301      return MaybeBindToTemporary(TheCall.release());
6302    } else {
6303      // We matched a built-in operator. Convert the arguments, then
6304      // break out so that we will build the appropriate built-in
6305      // operator node.
6306        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6307                                      Best->Conversions[0], AA_Passing))
6308          return ExprError();
6309
6310        break;
6311      }
6312    }
6313
6314    case OR_No_Viable_Function:
6315      // No viable function; fall through to handling this as a
6316      // built-in operator, which will produce an error message for us.
6317      break;
6318
6319    case OR_Ambiguous:
6320      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6321          << UnaryOperator::getOpcodeStr(Opc)
6322          << Input->getSourceRange();
6323      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6324                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6325      return ExprError();
6326
6327    case OR_Deleted:
6328      Diag(OpLoc, diag::err_ovl_deleted_oper)
6329        << Best->Function->isDeleted()
6330        << UnaryOperator::getOpcodeStr(Opc)
6331        << Input->getSourceRange();
6332      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6333      return ExprError();
6334    }
6335
6336  // Either we found no viable overloaded operator or we matched a
6337  // built-in operator. In either case, fall through to trying to
6338  // build a built-in operation.
6339  input.release();
6340  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6341}
6342
6343/// \brief Create a binary operation that may resolve to an overloaded
6344/// operator.
6345///
6346/// \param OpLoc The location of the operator itself (e.g., '+').
6347///
6348/// \param OpcIn The BinaryOperator::Opcode that describes this
6349/// operator.
6350///
6351/// \param Functions The set of non-member functions that will be
6352/// considered by overload resolution. The caller needs to build this
6353/// set based on the context using, e.g.,
6354/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6355/// set should not contain any member functions; those will be added
6356/// by CreateOverloadedBinOp().
6357///
6358/// \param LHS Left-hand argument.
6359/// \param RHS Right-hand argument.
6360Sema::OwningExprResult
6361Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6362                            unsigned OpcIn,
6363                            const UnresolvedSetImpl &Fns,
6364                            Expr *LHS, Expr *RHS) {
6365  Expr *Args[2] = { LHS, RHS };
6366  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6367
6368  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6369  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6370  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6371
6372  // If either side is type-dependent, create an appropriate dependent
6373  // expression.
6374  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6375    if (Fns.empty()) {
6376      // If there are no functions to store, just build a dependent
6377      // BinaryOperator or CompoundAssignment.
6378      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6379        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6380                                                  Context.DependentTy, OpLoc));
6381
6382      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6383                                                        Context.DependentTy,
6384                                                        Context.DependentTy,
6385                                                        Context.DependentTy,
6386                                                        OpLoc));
6387    }
6388
6389    // FIXME: save results of ADL from here?
6390    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6391    UnresolvedLookupExpr *Fn
6392      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6393                                     0, SourceRange(), OpName, OpLoc,
6394                                     /*ADL*/ true, IsOverloaded(Fns));
6395
6396    Fn->addDecls(Fns.begin(), Fns.end());
6397    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6398                                                   Args, 2,
6399                                                   Context.DependentTy,
6400                                                   OpLoc));
6401  }
6402
6403  // If this is the .* operator, which is not overloadable, just
6404  // create a built-in binary operator.
6405  if (Opc == BinaryOperator::PtrMemD)
6406    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6407
6408  // If this is the assignment operator, we only perform overload resolution
6409  // if the left-hand side is a class or enumeration type. This is actually
6410  // a hack. The standard requires that we do overload resolution between the
6411  // various built-in candidates, but as DR507 points out, this can lead to
6412  // problems. So we do it this way, which pretty much follows what GCC does.
6413  // Note that we go the traditional code path for compound assignment forms.
6414  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6415    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6416
6417  // Build an empty overload set.
6418  OverloadCandidateSet CandidateSet(OpLoc);
6419
6420  // Add the candidates from the given function set.
6421  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6422
6423  // Add operator candidates that are member functions.
6424  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6425
6426  // Add candidates from ADL.
6427  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6428                                       Args, 2,
6429                                       /*ExplicitTemplateArgs*/ 0,
6430                                       CandidateSet);
6431
6432  // Add builtin operator candidates.
6433  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6434
6435  // Perform overload resolution.
6436  OverloadCandidateSet::iterator Best;
6437  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6438    case OR_Success: {
6439      // We found a built-in operator or an overloaded operator.
6440      FunctionDecl *FnDecl = Best->Function;
6441
6442      if (FnDecl) {
6443        // We matched an overloaded operator. Build a call to that
6444        // operator.
6445
6446        // Convert the arguments.
6447        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6448          // Best->Access is only meaningful for class members.
6449          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6450
6451          OwningExprResult Arg1
6452            = PerformCopyInitialization(
6453                                        InitializedEntity::InitializeParameter(
6454                                                        FnDecl->getParamDecl(0)),
6455                                        SourceLocation(),
6456                                        Owned(Args[1]));
6457          if (Arg1.isInvalid())
6458            return ExprError();
6459
6460          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6461                                                  Best->FoundDecl, Method))
6462            return ExprError();
6463
6464          Args[1] = RHS = Arg1.takeAs<Expr>();
6465        } else {
6466          // Convert the arguments.
6467          OwningExprResult Arg0
6468            = PerformCopyInitialization(
6469                                        InitializedEntity::InitializeParameter(
6470                                                        FnDecl->getParamDecl(0)),
6471                                        SourceLocation(),
6472                                        Owned(Args[0]));
6473          if (Arg0.isInvalid())
6474            return ExprError();
6475
6476          OwningExprResult Arg1
6477            = PerformCopyInitialization(
6478                                        InitializedEntity::InitializeParameter(
6479                                                        FnDecl->getParamDecl(1)),
6480                                        SourceLocation(),
6481                                        Owned(Args[1]));
6482          if (Arg1.isInvalid())
6483            return ExprError();
6484          Args[0] = LHS = Arg0.takeAs<Expr>();
6485          Args[1] = RHS = Arg1.takeAs<Expr>();
6486        }
6487
6488        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6489
6490        // Determine the result type
6491        QualType ResultTy
6492          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6493        ResultTy = ResultTy.getNonReferenceType();
6494
6495        // Build the actual expression node.
6496        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6497                                                 OpLoc);
6498        UsualUnaryConversions(FnExpr);
6499
6500        ExprOwningPtr<CXXOperatorCallExpr>
6501          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6502                                                          Args, 2, ResultTy,
6503                                                          OpLoc));
6504
6505        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6506                                FnDecl))
6507          return ExprError();
6508
6509        return MaybeBindToTemporary(TheCall.release());
6510      } else {
6511        // We matched a built-in operator. Convert the arguments, then
6512        // break out so that we will build the appropriate built-in
6513        // operator node.
6514        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6515                                      Best->Conversions[0], AA_Passing) ||
6516            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6517                                      Best->Conversions[1], AA_Passing))
6518          return ExprError();
6519
6520        break;
6521      }
6522    }
6523
6524    case OR_No_Viable_Function: {
6525      // C++ [over.match.oper]p9:
6526      //   If the operator is the operator , [...] and there are no
6527      //   viable functions, then the operator is assumed to be the
6528      //   built-in operator and interpreted according to clause 5.
6529      if (Opc == BinaryOperator::Comma)
6530        break;
6531
6532      // For class as left operand for assignment or compound assigment operator
6533      // do not fall through to handling in built-in, but report that no overloaded
6534      // assignment operator found
6535      OwningExprResult Result = ExprError();
6536      if (Args[0]->getType()->isRecordType() &&
6537          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6538        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6539             << BinaryOperator::getOpcodeStr(Opc)
6540             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6541      } else {
6542        // No viable function; try to create a built-in operation, which will
6543        // produce an error. Then, show the non-viable candidates.
6544        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6545      }
6546      assert(Result.isInvalid() &&
6547             "C++ binary operator overloading is missing candidates!");
6548      if (Result.isInvalid())
6549        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6550                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6551      return move(Result);
6552    }
6553
6554    case OR_Ambiguous:
6555      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6556          << BinaryOperator::getOpcodeStr(Opc)
6557          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6558      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6559                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6560      return ExprError();
6561
6562    case OR_Deleted:
6563      Diag(OpLoc, diag::err_ovl_deleted_oper)
6564        << Best->Function->isDeleted()
6565        << BinaryOperator::getOpcodeStr(Opc)
6566        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6567      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6568      return ExprError();
6569  }
6570
6571  // We matched a built-in operator; build it.
6572  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6573}
6574
6575Action::OwningExprResult
6576Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6577                                         SourceLocation RLoc,
6578                                         ExprArg Base, ExprArg Idx) {
6579  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6580                    static_cast<Expr*>(Idx.get()) };
6581  DeclarationName OpName =
6582      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6583
6584  // If either side is type-dependent, create an appropriate dependent
6585  // expression.
6586  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6587
6588    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6589    UnresolvedLookupExpr *Fn
6590      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6591                                     0, SourceRange(), OpName, LLoc,
6592                                     /*ADL*/ true, /*Overloaded*/ false);
6593    // Can't add any actual overloads yet
6594
6595    Base.release();
6596    Idx.release();
6597    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6598                                                   Args, 2,
6599                                                   Context.DependentTy,
6600                                                   RLoc));
6601  }
6602
6603  // Build an empty overload set.
6604  OverloadCandidateSet CandidateSet(LLoc);
6605
6606  // Subscript can only be overloaded as a member function.
6607
6608  // Add operator candidates that are member functions.
6609  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6610
6611  // Add builtin operator candidates.
6612  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6613
6614  // Perform overload resolution.
6615  OverloadCandidateSet::iterator Best;
6616  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6617    case OR_Success: {
6618      // We found a built-in operator or an overloaded operator.
6619      FunctionDecl *FnDecl = Best->Function;
6620
6621      if (FnDecl) {
6622        // We matched an overloaded operator. Build a call to that
6623        // operator.
6624
6625        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6626        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
6627
6628        // Convert the arguments.
6629        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6630        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6631                                                Best->FoundDecl, Method))
6632          return ExprError();
6633
6634        // Convert the arguments.
6635        OwningExprResult InputInit
6636          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6637                                                      FnDecl->getParamDecl(0)),
6638                                      SourceLocation(),
6639                                      Owned(Args[1]));
6640        if (InputInit.isInvalid())
6641          return ExprError();
6642
6643        Args[1] = InputInit.takeAs<Expr>();
6644
6645        // Determine the result type
6646        QualType ResultTy
6647          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6648        ResultTy = ResultTy.getNonReferenceType();
6649
6650        // Build the actual expression node.
6651        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6652                                                 LLoc);
6653        UsualUnaryConversions(FnExpr);
6654
6655        Base.release();
6656        Idx.release();
6657        ExprOwningPtr<CXXOperatorCallExpr>
6658          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6659                                                          FnExpr, Args, 2,
6660                                                          ResultTy, RLoc));
6661
6662        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6663                                FnDecl))
6664          return ExprError();
6665
6666        return MaybeBindToTemporary(TheCall.release());
6667      } else {
6668        // We matched a built-in operator. Convert the arguments, then
6669        // break out so that we will build the appropriate built-in
6670        // operator node.
6671        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6672                                      Best->Conversions[0], AA_Passing) ||
6673            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6674                                      Best->Conversions[1], AA_Passing))
6675          return ExprError();
6676
6677        break;
6678      }
6679    }
6680
6681    case OR_No_Viable_Function: {
6682      if (CandidateSet.empty())
6683        Diag(LLoc, diag::err_ovl_no_oper)
6684          << Args[0]->getType() << /*subscript*/ 0
6685          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6686      else
6687        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6688          << Args[0]->getType()
6689          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6690      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6691                              "[]", LLoc);
6692      return ExprError();
6693    }
6694
6695    case OR_Ambiguous:
6696      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6697          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6698      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6699                              "[]", LLoc);
6700      return ExprError();
6701
6702    case OR_Deleted:
6703      Diag(LLoc, diag::err_ovl_deleted_oper)
6704        << Best->Function->isDeleted() << "[]"
6705        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6706      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6707                              "[]", LLoc);
6708      return ExprError();
6709    }
6710
6711  // We matched a built-in operator; build it.
6712  Base.release();
6713  Idx.release();
6714  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6715                                         Owned(Args[1]), RLoc);
6716}
6717
6718/// BuildCallToMemberFunction - Build a call to a member
6719/// function. MemExpr is the expression that refers to the member
6720/// function (and includes the object parameter), Args/NumArgs are the
6721/// arguments to the function call (not including the object
6722/// parameter). The caller needs to validate that the member
6723/// expression refers to a member function or an overloaded member
6724/// function.
6725Sema::OwningExprResult
6726Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6727                                SourceLocation LParenLoc, Expr **Args,
6728                                unsigned NumArgs, SourceLocation *CommaLocs,
6729                                SourceLocation RParenLoc) {
6730  // Dig out the member expression. This holds both the object
6731  // argument and the member function we're referring to.
6732  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6733
6734  MemberExpr *MemExpr;
6735  CXXMethodDecl *Method = 0;
6736  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6737  NestedNameSpecifier *Qualifier = 0;
6738  if (isa<MemberExpr>(NakedMemExpr)) {
6739    MemExpr = cast<MemberExpr>(NakedMemExpr);
6740    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6741    FoundDecl = MemExpr->getFoundDecl();
6742    Qualifier = MemExpr->getQualifier();
6743  } else {
6744    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6745    Qualifier = UnresExpr->getQualifier();
6746
6747    QualType ObjectType = UnresExpr->getBaseType();
6748
6749    // Add overload candidates
6750    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6751
6752    // FIXME: avoid copy.
6753    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6754    if (UnresExpr->hasExplicitTemplateArgs()) {
6755      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6756      TemplateArgs = &TemplateArgsBuffer;
6757    }
6758
6759    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6760           E = UnresExpr->decls_end(); I != E; ++I) {
6761
6762      NamedDecl *Func = *I;
6763      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6764      if (isa<UsingShadowDecl>(Func))
6765        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6766
6767      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6768        // If explicit template arguments were provided, we can't call a
6769        // non-template member function.
6770        if (TemplateArgs)
6771          continue;
6772
6773        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6774                           Args, NumArgs,
6775                           CandidateSet, /*SuppressUserConversions=*/false);
6776      } else {
6777        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6778                                   I.getPair(), ActingDC, TemplateArgs,
6779                                   ObjectType, Args, NumArgs,
6780                                   CandidateSet,
6781                                   /*SuppressUsedConversions=*/false);
6782      }
6783    }
6784
6785    DeclarationName DeclName = UnresExpr->getMemberName();
6786
6787    OverloadCandidateSet::iterator Best;
6788    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6789    case OR_Success:
6790      Method = cast<CXXMethodDecl>(Best->Function);
6791      FoundDecl = Best->FoundDecl;
6792      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6793      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
6794      break;
6795
6796    case OR_No_Viable_Function:
6797      Diag(UnresExpr->getMemberLoc(),
6798           diag::err_ovl_no_viable_member_function_in_call)
6799        << DeclName << MemExprE->getSourceRange();
6800      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6801      // FIXME: Leaking incoming expressions!
6802      return ExprError();
6803
6804    case OR_Ambiguous:
6805      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6806        << DeclName << MemExprE->getSourceRange();
6807      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6808      // FIXME: Leaking incoming expressions!
6809      return ExprError();
6810
6811    case OR_Deleted:
6812      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6813        << Best->Function->isDeleted()
6814        << DeclName << MemExprE->getSourceRange();
6815      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6816      // FIXME: Leaking incoming expressions!
6817      return ExprError();
6818    }
6819
6820    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6821
6822    // If overload resolution picked a static member, build a
6823    // non-member call based on that function.
6824    if (Method->isStatic()) {
6825      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6826                                   Args, NumArgs, RParenLoc);
6827    }
6828
6829    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6830  }
6831
6832  assert(Method && "Member call to something that isn't a method?");
6833  ExprOwningPtr<CXXMemberCallExpr>
6834    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6835                                                  NumArgs,
6836                                  Method->getResultType().getNonReferenceType(),
6837                                  RParenLoc));
6838
6839  // Check for a valid return type.
6840  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6841                          TheCall.get(), Method))
6842    return ExprError();
6843
6844  // Convert the object argument (for a non-static member function call).
6845  // We only need to do this if there was actually an overload; otherwise
6846  // it was done at lookup.
6847  Expr *ObjectArg = MemExpr->getBase();
6848  if (!Method->isStatic() &&
6849      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6850                                          FoundDecl, Method))
6851    return ExprError();
6852  MemExpr->setBase(ObjectArg);
6853
6854  // Convert the rest of the arguments
6855  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6856  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6857                              RParenLoc))
6858    return ExprError();
6859
6860  if (CheckFunctionCall(Method, TheCall.get()))
6861    return ExprError();
6862
6863  return MaybeBindToTemporary(TheCall.release());
6864}
6865
6866/// BuildCallToObjectOfClassType - Build a call to an object of class
6867/// type (C++ [over.call.object]), which can end up invoking an
6868/// overloaded function call operator (@c operator()) or performing a
6869/// user-defined conversion on the object argument.
6870Sema::ExprResult
6871Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6872                                   SourceLocation LParenLoc,
6873                                   Expr **Args, unsigned NumArgs,
6874                                   SourceLocation *CommaLocs,
6875                                   SourceLocation RParenLoc) {
6876  assert(Object->getType()->isRecordType() && "Requires object type argument");
6877  const RecordType *Record = Object->getType()->getAs<RecordType>();
6878
6879  // C++ [over.call.object]p1:
6880  //  If the primary-expression E in the function call syntax
6881  //  evaluates to a class object of type "cv T", then the set of
6882  //  candidate functions includes at least the function call
6883  //  operators of T. The function call operators of T are obtained by
6884  //  ordinary lookup of the name operator() in the context of
6885  //  (E).operator().
6886  OverloadCandidateSet CandidateSet(LParenLoc);
6887  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6888
6889  if (RequireCompleteType(LParenLoc, Object->getType(),
6890                          PDiag(diag::err_incomplete_object_call)
6891                          << Object->getSourceRange()))
6892    return true;
6893
6894  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6895  LookupQualifiedName(R, Record->getDecl());
6896  R.suppressDiagnostics();
6897
6898  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6899       Oper != OperEnd; ++Oper) {
6900    AddMethodCandidate(Oper.getPair(), Object->getType(),
6901                       Args, NumArgs, CandidateSet,
6902                       /*SuppressUserConversions=*/ false);
6903  }
6904
6905  // C++ [over.call.object]p2:
6906  //   In addition, for each conversion function declared in T of the
6907  //   form
6908  //
6909  //        operator conversion-type-id () cv-qualifier;
6910  //
6911  //   where cv-qualifier is the same cv-qualification as, or a
6912  //   greater cv-qualification than, cv, and where conversion-type-id
6913  //   denotes the type "pointer to function of (P1,...,Pn) returning
6914  //   R", or the type "reference to pointer to function of
6915  //   (P1,...,Pn) returning R", or the type "reference to function
6916  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6917  //   is also considered as a candidate function. Similarly,
6918  //   surrogate call functions are added to the set of candidate
6919  //   functions for each conversion function declared in an
6920  //   accessible base class provided the function is not hidden
6921  //   within T by another intervening declaration.
6922  const UnresolvedSetImpl *Conversions
6923    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6924  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6925         E = Conversions->end(); I != E; ++I) {
6926    NamedDecl *D = *I;
6927    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6928    if (isa<UsingShadowDecl>(D))
6929      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6930
6931    // Skip over templated conversion functions; they aren't
6932    // surrogates.
6933    if (isa<FunctionTemplateDecl>(D))
6934      continue;
6935
6936    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6937
6938    // Strip the reference type (if any) and then the pointer type (if
6939    // any) to get down to what might be a function type.
6940    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6941    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6942      ConvType = ConvPtrType->getPointeeType();
6943
6944    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6945      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6946                            Object->getType(), Args, NumArgs,
6947                            CandidateSet);
6948  }
6949
6950  // Perform overload resolution.
6951  OverloadCandidateSet::iterator Best;
6952  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6953  case OR_Success:
6954    // Overload resolution succeeded; we'll build the appropriate call
6955    // below.
6956    break;
6957
6958  case OR_No_Viable_Function:
6959    if (CandidateSet.empty())
6960      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6961        << Object->getType() << /*call*/ 1
6962        << Object->getSourceRange();
6963    else
6964      Diag(Object->getSourceRange().getBegin(),
6965           diag::err_ovl_no_viable_object_call)
6966        << Object->getType() << Object->getSourceRange();
6967    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6968    break;
6969
6970  case OR_Ambiguous:
6971    Diag(Object->getSourceRange().getBegin(),
6972         diag::err_ovl_ambiguous_object_call)
6973      << Object->getType() << Object->getSourceRange();
6974    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6975    break;
6976
6977  case OR_Deleted:
6978    Diag(Object->getSourceRange().getBegin(),
6979         diag::err_ovl_deleted_object_call)
6980      << Best->Function->isDeleted()
6981      << Object->getType() << Object->getSourceRange();
6982    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6983    break;
6984  }
6985
6986  if (Best == CandidateSet.end()) {
6987    // We had an error; delete all of the subexpressions and return
6988    // the error.
6989    Object->Destroy(Context);
6990    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6991      Args[ArgIdx]->Destroy(Context);
6992    return true;
6993  }
6994
6995  if (Best->Function == 0) {
6996    // Since there is no function declaration, this is one of the
6997    // surrogate candidates. Dig out the conversion function.
6998    CXXConversionDecl *Conv
6999      = cast<CXXConversionDecl>(
7000                         Best->Conversions[0].UserDefined.ConversionFunction);
7001
7002    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7003    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7004
7005    // We selected one of the surrogate functions that converts the
7006    // object parameter to a function pointer. Perform the conversion
7007    // on the object argument, then let ActOnCallExpr finish the job.
7008
7009    // Create an implicit member expr to refer to the conversion operator.
7010    // and then call it.
7011    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
7012                                                   Conv);
7013
7014    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
7015                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
7016                         CommaLocs, RParenLoc).result();
7017  }
7018
7019  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7020  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7021
7022  // We found an overloaded operator(). Build a CXXOperatorCallExpr
7023  // that calls this method, using Object for the implicit object
7024  // parameter and passing along the remaining arguments.
7025  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7026  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7027
7028  unsigned NumArgsInProto = Proto->getNumArgs();
7029  unsigned NumArgsToCheck = NumArgs;
7030
7031  // Build the full argument list for the method call (the
7032  // implicit object parameter is placed at the beginning of the
7033  // list).
7034  Expr **MethodArgs;
7035  if (NumArgs < NumArgsInProto) {
7036    NumArgsToCheck = NumArgsInProto;
7037    MethodArgs = new Expr*[NumArgsInProto + 1];
7038  } else {
7039    MethodArgs = new Expr*[NumArgs + 1];
7040  }
7041  MethodArgs[0] = Object;
7042  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7043    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
7044
7045  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
7046                                          SourceLocation());
7047  UsualUnaryConversions(NewFn);
7048
7049  // Once we've built TheCall, all of the expressions are properly
7050  // owned.
7051  QualType ResultTy = Method->getResultType().getNonReferenceType();
7052  ExprOwningPtr<CXXOperatorCallExpr>
7053    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
7054                                                    MethodArgs, NumArgs + 1,
7055                                                    ResultTy, RParenLoc));
7056  delete [] MethodArgs;
7057
7058  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
7059                          Method))
7060    return true;
7061
7062  // We may have default arguments. If so, we need to allocate more
7063  // slots in the call for them.
7064  if (NumArgs < NumArgsInProto)
7065    TheCall->setNumArgs(Context, NumArgsInProto + 1);
7066  else if (NumArgs > NumArgsInProto)
7067    NumArgsToCheck = NumArgsInProto;
7068
7069  bool IsError = false;
7070
7071  // Initialize the implicit object parameter.
7072  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
7073                                                 Best->FoundDecl, Method);
7074  TheCall->setArg(0, Object);
7075
7076
7077  // Check the argument types.
7078  for (unsigned i = 0; i != NumArgsToCheck; i++) {
7079    Expr *Arg;
7080    if (i < NumArgs) {
7081      Arg = Args[i];
7082
7083      // Pass the argument.
7084
7085      OwningExprResult InputInit
7086        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7087                                                    Method->getParamDecl(i)),
7088                                    SourceLocation(), Owned(Arg));
7089
7090      IsError |= InputInit.isInvalid();
7091      Arg = InputInit.takeAs<Expr>();
7092    } else {
7093      OwningExprResult DefArg
7094        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
7095      if (DefArg.isInvalid()) {
7096        IsError = true;
7097        break;
7098      }
7099
7100      Arg = DefArg.takeAs<Expr>();
7101    }
7102
7103    TheCall->setArg(i + 1, Arg);
7104  }
7105
7106  // If this is a variadic call, handle args passed through "...".
7107  if (Proto->isVariadic()) {
7108    // Promote the arguments (C99 6.5.2.2p7).
7109    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
7110      Expr *Arg = Args[i];
7111      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
7112      TheCall->setArg(i + 1, Arg);
7113    }
7114  }
7115
7116  if (IsError) return true;
7117
7118  if (CheckFunctionCall(Method, TheCall.get()))
7119    return true;
7120
7121  return MaybeBindToTemporary(TheCall.release()).result();
7122}
7123
7124/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
7125///  (if one exists), where @c Base is an expression of class type and
7126/// @c Member is the name of the member we're trying to find.
7127Sema::OwningExprResult
7128Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
7129  Expr *Base = static_cast<Expr *>(BaseIn.get());
7130  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
7131
7132  SourceLocation Loc = Base->getExprLoc();
7133
7134  // C++ [over.ref]p1:
7135  //
7136  //   [...] An expression x->m is interpreted as (x.operator->())->m
7137  //   for a class object x of type T if T::operator->() exists and if
7138  //   the operator is selected as the best match function by the
7139  //   overload resolution mechanism (13.3).
7140  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
7141  OverloadCandidateSet CandidateSet(Loc);
7142  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
7143
7144  if (RequireCompleteType(Loc, Base->getType(),
7145                          PDiag(diag::err_typecheck_incomplete_tag)
7146                            << Base->getSourceRange()))
7147    return ExprError();
7148
7149  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7150  LookupQualifiedName(R, BaseRecord->getDecl());
7151  R.suppressDiagnostics();
7152
7153  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7154       Oper != OperEnd; ++Oper) {
7155    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7156                       /*SuppressUserConversions=*/false);
7157  }
7158
7159  // Perform overload resolution.
7160  OverloadCandidateSet::iterator Best;
7161  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7162  case OR_Success:
7163    // Overload resolution succeeded; we'll build the call below.
7164    break;
7165
7166  case OR_No_Viable_Function:
7167    if (CandidateSet.empty())
7168      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7169        << Base->getType() << Base->getSourceRange();
7170    else
7171      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7172        << "operator->" << Base->getSourceRange();
7173    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7174    return ExprError();
7175
7176  case OR_Ambiguous:
7177    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7178      << "->" << Base->getSourceRange();
7179    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7180    return ExprError();
7181
7182  case OR_Deleted:
7183    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7184      << Best->Function->isDeleted()
7185      << "->" << Base->getSourceRange();
7186    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7187    return ExprError();
7188  }
7189
7190  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7191  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7192
7193  // Convert the object parameter.
7194  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7195  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7196                                          Best->FoundDecl, Method))
7197    return ExprError();
7198
7199  // No concerns about early exits now.
7200  BaseIn.release();
7201
7202  // Build the operator call.
7203  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7204                                           SourceLocation());
7205  UsualUnaryConversions(FnExpr);
7206
7207  QualType ResultTy = Method->getResultType().getNonReferenceType();
7208  ExprOwningPtr<CXXOperatorCallExpr>
7209    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7210                                                    &Base, 1, ResultTy, OpLoc));
7211
7212  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7213                          Method))
7214          return ExprError();
7215  return move(TheCall);
7216}
7217
7218/// FixOverloadedFunctionReference - E is an expression that refers to
7219/// a C++ overloaded function (possibly with some parentheses and
7220/// perhaps a '&' around it). We have resolved the overloaded function
7221/// to the function declaration Fn, so patch up the expression E to
7222/// refer (possibly indirectly) to Fn. Returns the new expr.
7223Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7224                                           FunctionDecl *Fn) {
7225  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7226    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7227                                                   Found, Fn);
7228    if (SubExpr == PE->getSubExpr())
7229      return PE->Retain();
7230
7231    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7232  }
7233
7234  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7235    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7236                                                   Found, Fn);
7237    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7238                               SubExpr->getType()) &&
7239           "Implicit cast type cannot be determined from overload");
7240    if (SubExpr == ICE->getSubExpr())
7241      return ICE->Retain();
7242
7243    return new (Context) ImplicitCastExpr(ICE->getType(),
7244                                          ICE->getCastKind(),
7245                                          SubExpr, CXXBaseSpecifierArray(),
7246                                          ICE->isLvalueCast());
7247  }
7248
7249  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7250    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7251           "Can only take the address of an overloaded function");
7252    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7253      if (Method->isStatic()) {
7254        // Do nothing: static member functions aren't any different
7255        // from non-member functions.
7256      } else {
7257        // Fix the sub expression, which really has to be an
7258        // UnresolvedLookupExpr holding an overloaded member function
7259        // or template.
7260        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7261                                                       Found, Fn);
7262        if (SubExpr == UnOp->getSubExpr())
7263          return UnOp->Retain();
7264
7265        assert(isa<DeclRefExpr>(SubExpr)
7266               && "fixed to something other than a decl ref");
7267        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7268               && "fixed to a member ref with no nested name qualifier");
7269
7270        // We have taken the address of a pointer to member
7271        // function. Perform the computation here so that we get the
7272        // appropriate pointer to member type.
7273        QualType ClassType
7274          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7275        QualType MemPtrType
7276          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7277
7278        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7279                                           MemPtrType, UnOp->getOperatorLoc());
7280      }
7281    }
7282    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7283                                                   Found, Fn);
7284    if (SubExpr == UnOp->getSubExpr())
7285      return UnOp->Retain();
7286
7287    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7288                                     Context.getPointerType(SubExpr->getType()),
7289                                       UnOp->getOperatorLoc());
7290  }
7291
7292  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7293    // FIXME: avoid copy.
7294    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7295    if (ULE->hasExplicitTemplateArgs()) {
7296      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7297      TemplateArgs = &TemplateArgsBuffer;
7298    }
7299
7300    return DeclRefExpr::Create(Context,
7301                               ULE->getQualifier(),
7302                               ULE->getQualifierRange(),
7303                               Fn,
7304                               ULE->getNameLoc(),
7305                               Fn->getType(),
7306                               TemplateArgs);
7307  }
7308
7309  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7310    // FIXME: avoid copy.
7311    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7312    if (MemExpr->hasExplicitTemplateArgs()) {
7313      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7314      TemplateArgs = &TemplateArgsBuffer;
7315    }
7316
7317    Expr *Base;
7318
7319    // If we're filling in
7320    if (MemExpr->isImplicitAccess()) {
7321      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7322        return DeclRefExpr::Create(Context,
7323                                   MemExpr->getQualifier(),
7324                                   MemExpr->getQualifierRange(),
7325                                   Fn,
7326                                   MemExpr->getMemberLoc(),
7327                                   Fn->getType(),
7328                                   TemplateArgs);
7329      } else {
7330        SourceLocation Loc = MemExpr->getMemberLoc();
7331        if (MemExpr->getQualifier())
7332          Loc = MemExpr->getQualifierRange().getBegin();
7333        Base = new (Context) CXXThisExpr(Loc,
7334                                         MemExpr->getBaseType(),
7335                                         /*isImplicit=*/true);
7336      }
7337    } else
7338      Base = MemExpr->getBase()->Retain();
7339
7340    return MemberExpr::Create(Context, Base,
7341                              MemExpr->isArrow(),
7342                              MemExpr->getQualifier(),
7343                              MemExpr->getQualifierRange(),
7344                              Fn,
7345                              Found,
7346                              MemExpr->getMemberLoc(),
7347                              TemplateArgs,
7348                              Fn->getType());
7349  }
7350
7351  assert(false && "Invalid reference to overloaded function");
7352  return E->Retain();
7353}
7354
7355Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7356                                                          DeclAccessPair Found,
7357                                                            FunctionDecl *Fn) {
7358  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7359}
7360
7361} // end namespace clang
7362