SemaOverload.cpp revision 74eb6581973124a0e7e6ffe50bde081379030c34
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (From->getType() == Context.OverloadTy) {
617    if (FunctionDecl *Fn
618          = ResolveAddressOfOverloadedFunction(From, ToType, false,
619                                               AccessPair)) {
620      // Address of overloaded function (C++ [over.over]).
621      SCS.First = ICK_Function_To_Pointer;
622
623      // We were able to resolve the address of the overloaded function,
624      // so we can convert to the type of that function.
625      FromType = Fn->getType();
626      if (ToType->isLValueReferenceType())
627        FromType = Context.getLValueReferenceType(FromType);
628      else if (ToType->isRValueReferenceType())
629        FromType = Context.getRValueReferenceType(FromType);
630      else if (ToType->isMemberPointerType()) {
631        // Resolve address only succeeds if both sides are member pointers,
632        // but it doesn't have to be the same class. See DR 247.
633        // Note that this means that the type of &Derived::fn can be
634        // Ret (Base::*)(Args) if the fn overload actually found is from the
635        // base class, even if it was brought into the derived class via a
636        // using declaration. The standard isn't clear on this issue at all.
637        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
638        FromType = Context.getMemberPointerType(FromType,
639                      Context.getTypeDeclType(M->getParent()).getTypePtr());
640      } else {
641        FromType = Context.getPointerType(FromType);
642      }
643    } else {
644      return false;
645    }
646  } else {
647    // We don't require any conversions for the first step.
648    SCS.First = ICK_Identity;
649  }
650  SCS.setToType(0, FromType);
651
652  // The second conversion can be an integral promotion, floating
653  // point promotion, integral conversion, floating point conversion,
654  // floating-integral conversion, pointer conversion,
655  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
656  // For overloading in C, this can also be a "compatible-type"
657  // conversion.
658  bool IncompatibleObjC = false;
659  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
660    // The unqualified versions of the types are the same: there's no
661    // conversion to do.
662    SCS.Second = ICK_Identity;
663  } else if (IsIntegralPromotion(From, FromType, ToType)) {
664    // Integral promotion (C++ 4.5).
665    SCS.Second = ICK_Integral_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if (IsFloatingPointPromotion(FromType, ToType)) {
668    // Floating point promotion (C++ 4.6).
669    SCS.Second = ICK_Floating_Promotion;
670    FromType = ToType.getUnqualifiedType();
671  } else if (IsComplexPromotion(FromType, ToType)) {
672    // Complex promotion (Clang extension)
673    SCS.Second = ICK_Complex_Promotion;
674    FromType = ToType.getUnqualifiedType();
675  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
676           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
677    // Integral conversions (C++ 4.7).
678    SCS.Second = ICK_Integral_Conversion;
679    FromType = ToType.getUnqualifiedType();
680  } else if (FromType->isComplexType() && ToType->isComplexType()) {
681    // Complex conversions (C99 6.3.1.6)
682    SCS.Second = ICK_Complex_Conversion;
683    FromType = ToType.getUnqualifiedType();
684  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
685             (ToType->isComplexType() && FromType->isArithmeticType())) {
686    // Complex-real conversions (C99 6.3.1.7)
687    SCS.Second = ICK_Complex_Real;
688    FromType = ToType.getUnqualifiedType();
689  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
690    // Floating point conversions (C++ 4.8).
691    SCS.Second = ICK_Floating_Conversion;
692    FromType = ToType.getUnqualifiedType();
693  } else if ((FromType->isFloatingType() &&
694              ToType->isIntegralType() && (!ToType->isBooleanType() &&
695                                           !ToType->isEnumeralType())) ||
696             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
697              ToType->isFloatingType())) {
698    // Floating-integral conversions (C++ 4.9).
699    SCS.Second = ICK_Floating_Integral;
700    FromType = ToType.getUnqualifiedType();
701  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
702                                 FromType, IncompatibleObjC)) {
703    // Pointer conversions (C++ 4.10).
704    SCS.Second = ICK_Pointer_Conversion;
705    SCS.IncompatibleObjC = IncompatibleObjC;
706  } else if (IsMemberPointerConversion(From, FromType, ToType,
707                                       InOverloadResolution, FromType)) {
708    // Pointer to member conversions (4.11).
709    SCS.Second = ICK_Pointer_Member;
710  } else if (ToType->isBooleanType() &&
711             (FromType->isArithmeticType() ||
712              FromType->isEnumeralType() ||
713              FromType->isAnyPointerType() ||
714              FromType->isBlockPointerType() ||
715              FromType->isMemberPointerType() ||
716              FromType->isNullPtrType())) {
717    // Boolean conversions (C++ 4.12).
718    SCS.Second = ICK_Boolean_Conversion;
719    FromType = Context.BoolTy;
720  } else if (!getLangOptions().CPlusPlus &&
721             Context.typesAreCompatible(ToType, FromType)) {
722    // Compatible conversions (Clang extension for C function overloading)
723    SCS.Second = ICK_Compatible_Conversion;
724  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
725    // Treat a conversion that strips "noreturn" as an identity conversion.
726    SCS.Second = ICK_NoReturn_Adjustment;
727  } else {
728    // No second conversion required.
729    SCS.Second = ICK_Identity;
730  }
731  SCS.setToType(1, FromType);
732
733  QualType CanonFrom;
734  QualType CanonTo;
735  // The third conversion can be a qualification conversion (C++ 4p1).
736  if (IsQualificationConversion(FromType, ToType)) {
737    SCS.Third = ICK_Qualification;
738    FromType = ToType;
739    CanonFrom = Context.getCanonicalType(FromType);
740    CanonTo = Context.getCanonicalType(ToType);
741  } else {
742    // No conversion required
743    SCS.Third = ICK_Identity;
744
745    // C++ [over.best.ics]p6:
746    //   [...] Any difference in top-level cv-qualification is
747    //   subsumed by the initialization itself and does not constitute
748    //   a conversion. [...]
749    CanonFrom = Context.getCanonicalType(FromType);
750    CanonTo = Context.getCanonicalType(ToType);
751    if (CanonFrom.getLocalUnqualifiedType()
752                                       == CanonTo.getLocalUnqualifiedType() &&
753        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
754      FromType = ToType;
755      CanonFrom = CanonTo;
756    }
757  }
758  SCS.setToType(2, FromType);
759
760  // If we have not converted the argument type to the parameter type,
761  // this is a bad conversion sequence.
762  if (CanonFrom != CanonTo)
763    return false;
764
765  return true;
766}
767
768/// IsIntegralPromotion - Determines whether the conversion from the
769/// expression From (whose potentially-adjusted type is FromType) to
770/// ToType is an integral promotion (C++ 4.5). If so, returns true and
771/// sets PromotedType to the promoted type.
772bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
773  const BuiltinType *To = ToType->getAs<BuiltinType>();
774  // All integers are built-in.
775  if (!To) {
776    return false;
777  }
778
779  // An rvalue of type char, signed char, unsigned char, short int, or
780  // unsigned short int can be converted to an rvalue of type int if
781  // int can represent all the values of the source type; otherwise,
782  // the source rvalue can be converted to an rvalue of type unsigned
783  // int (C++ 4.5p1).
784  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
785      !FromType->isEnumeralType()) {
786    if (// We can promote any signed, promotable integer type to an int
787        (FromType->isSignedIntegerType() ||
788         // We can promote any unsigned integer type whose size is
789         // less than int to an int.
790         (!FromType->isSignedIntegerType() &&
791          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
792      return To->getKind() == BuiltinType::Int;
793    }
794
795    return To->getKind() == BuiltinType::UInt;
796  }
797
798  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
799  // can be converted to an rvalue of the first of the following types
800  // that can represent all the values of its underlying type: int,
801  // unsigned int, long, or unsigned long (C++ 4.5p2).
802
803  // We pre-calculate the promotion type for enum types.
804  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
805    if (ToType->isIntegerType())
806      return Context.hasSameUnqualifiedType(ToType,
807                                FromEnumType->getDecl()->getPromotionType());
808
809  if (FromType->isWideCharType() && ToType->isIntegerType()) {
810    // Determine whether the type we're converting from is signed or
811    // unsigned.
812    bool FromIsSigned;
813    uint64_t FromSize = Context.getTypeSize(FromType);
814
815    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
816    FromIsSigned = true;
817
818    // The types we'll try to promote to, in the appropriate
819    // order. Try each of these types.
820    QualType PromoteTypes[6] = {
821      Context.IntTy, Context.UnsignedIntTy,
822      Context.LongTy, Context.UnsignedLongTy ,
823      Context.LongLongTy, Context.UnsignedLongLongTy
824    };
825    for (int Idx = 0; Idx < 6; ++Idx) {
826      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
827      if (FromSize < ToSize ||
828          (FromSize == ToSize &&
829           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
830        // We found the type that we can promote to. If this is the
831        // type we wanted, we have a promotion. Otherwise, no
832        // promotion.
833        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
834      }
835    }
836  }
837
838  // An rvalue for an integral bit-field (9.6) can be converted to an
839  // rvalue of type int if int can represent all the values of the
840  // bit-field; otherwise, it can be converted to unsigned int if
841  // unsigned int can represent all the values of the bit-field. If
842  // the bit-field is larger yet, no integral promotion applies to
843  // it. If the bit-field has an enumerated type, it is treated as any
844  // other value of that type for promotion purposes (C++ 4.5p3).
845  // FIXME: We should delay checking of bit-fields until we actually perform the
846  // conversion.
847  using llvm::APSInt;
848  if (From)
849    if (FieldDecl *MemberDecl = From->getBitField()) {
850      APSInt BitWidth;
851      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
852          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
853        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
854        ToSize = Context.getTypeSize(ToType);
855
856        // Are we promoting to an int from a bitfield that fits in an int?
857        if (BitWidth < ToSize ||
858            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
859          return To->getKind() == BuiltinType::Int;
860        }
861
862        // Are we promoting to an unsigned int from an unsigned bitfield
863        // that fits into an unsigned int?
864        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
865          return To->getKind() == BuiltinType::UInt;
866        }
867
868        return false;
869      }
870    }
871
872  // An rvalue of type bool can be converted to an rvalue of type int,
873  // with false becoming zero and true becoming one (C++ 4.5p4).
874  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
875    return true;
876  }
877
878  return false;
879}
880
881/// IsFloatingPointPromotion - Determines whether the conversion from
882/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
883/// returns true and sets PromotedType to the promoted type.
884bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
885  /// An rvalue of type float can be converted to an rvalue of type
886  /// double. (C++ 4.6p1).
887  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
888    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
889      if (FromBuiltin->getKind() == BuiltinType::Float &&
890          ToBuiltin->getKind() == BuiltinType::Double)
891        return true;
892
893      // C99 6.3.1.5p1:
894      //   When a float is promoted to double or long double, or a
895      //   double is promoted to long double [...].
896      if (!getLangOptions().CPlusPlus &&
897          (FromBuiltin->getKind() == BuiltinType::Float ||
898           FromBuiltin->getKind() == BuiltinType::Double) &&
899          (ToBuiltin->getKind() == BuiltinType::LongDouble))
900        return true;
901    }
902
903  return false;
904}
905
906/// \brief Determine if a conversion is a complex promotion.
907///
908/// A complex promotion is defined as a complex -> complex conversion
909/// where the conversion between the underlying real types is a
910/// floating-point or integral promotion.
911bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
912  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
913  if (!FromComplex)
914    return false;
915
916  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
917  if (!ToComplex)
918    return false;
919
920  return IsFloatingPointPromotion(FromComplex->getElementType(),
921                                  ToComplex->getElementType()) ||
922    IsIntegralPromotion(0, FromComplex->getElementType(),
923                        ToComplex->getElementType());
924}
925
926/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
927/// the pointer type FromPtr to a pointer to type ToPointee, with the
928/// same type qualifiers as FromPtr has on its pointee type. ToType,
929/// if non-empty, will be a pointer to ToType that may or may not have
930/// the right set of qualifiers on its pointee.
931static QualType
932BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
933                                   QualType ToPointee, QualType ToType,
934                                   ASTContext &Context) {
935  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
936  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
937  Qualifiers Quals = CanonFromPointee.getQualifiers();
938
939  // Exact qualifier match -> return the pointer type we're converting to.
940  if (CanonToPointee.getLocalQualifiers() == Quals) {
941    // ToType is exactly what we need. Return it.
942    if (!ToType.isNull())
943      return ToType;
944
945    // Build a pointer to ToPointee. It has the right qualifiers
946    // already.
947    return Context.getPointerType(ToPointee);
948  }
949
950  // Just build a canonical type that has the right qualifiers.
951  return Context.getPointerType(
952         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
953                                  Quals));
954}
955
956/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
957/// the FromType, which is an objective-c pointer, to ToType, which may or may
958/// not have the right set of qualifiers.
959static QualType
960BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
961                                             QualType ToType,
962                                             ASTContext &Context) {
963  QualType CanonFromType = Context.getCanonicalType(FromType);
964  QualType CanonToType = Context.getCanonicalType(ToType);
965  Qualifiers Quals = CanonFromType.getQualifiers();
966
967  // Exact qualifier match -> return the pointer type we're converting to.
968  if (CanonToType.getLocalQualifiers() == Quals)
969    return ToType;
970
971  // Just build a canonical type that has the right qualifiers.
972  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
973}
974
975static bool isNullPointerConstantForConversion(Expr *Expr,
976                                               bool InOverloadResolution,
977                                               ASTContext &Context) {
978  // Handle value-dependent integral null pointer constants correctly.
979  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
980  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
981      Expr->getType()->isIntegralType())
982    return !InOverloadResolution;
983
984  return Expr->isNullPointerConstant(Context,
985                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
986                                        : Expr::NPC_ValueDependentIsNull);
987}
988
989/// IsPointerConversion - Determines whether the conversion of the
990/// expression From, which has the (possibly adjusted) type FromType,
991/// can be converted to the type ToType via a pointer conversion (C++
992/// 4.10). If so, returns true and places the converted type (that
993/// might differ from ToType in its cv-qualifiers at some level) into
994/// ConvertedType.
995///
996/// This routine also supports conversions to and from block pointers
997/// and conversions with Objective-C's 'id', 'id<protocols...>', and
998/// pointers to interfaces. FIXME: Once we've determined the
999/// appropriate overloading rules for Objective-C, we may want to
1000/// split the Objective-C checks into a different routine; however,
1001/// GCC seems to consider all of these conversions to be pointer
1002/// conversions, so for now they live here. IncompatibleObjC will be
1003/// set if the conversion is an allowed Objective-C conversion that
1004/// should result in a warning.
1005bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1006                               bool InOverloadResolution,
1007                               QualType& ConvertedType,
1008                               bool &IncompatibleObjC) {
1009  IncompatibleObjC = false;
1010  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1011    return true;
1012
1013  // Conversion from a null pointer constant to any Objective-C pointer type.
1014  if (ToType->isObjCObjectPointerType() &&
1015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1016    ConvertedType = ToType;
1017    return true;
1018  }
1019
1020  // Blocks: Block pointers can be converted to void*.
1021  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1022      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1023    ConvertedType = ToType;
1024    return true;
1025  }
1026  // Blocks: A null pointer constant can be converted to a block
1027  // pointer type.
1028  if (ToType->isBlockPointerType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  // If the left-hand-side is nullptr_t, the right side can be a null
1035  // pointer constant.
1036  if (ToType->isNullPtrType() &&
1037      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1038    ConvertedType = ToType;
1039    return true;
1040  }
1041
1042  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1043  if (!ToTypePtr)
1044    return false;
1045
1046  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1047  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // Beyond this point, both types need to be pointers
1053  // , including objective-c pointers.
1054  QualType ToPointeeType = ToTypePtr->getPointeeType();
1055  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1056    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1057                                                       ToType, Context);
1058    return true;
1059
1060  }
1061  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1062  if (!FromTypePtr)
1063    return false;
1064
1065  QualType FromPointeeType = FromTypePtr->getPointeeType();
1066
1067  // An rvalue of type "pointer to cv T," where T is an object type,
1068  // can be converted to an rvalue of type "pointer to cv void" (C++
1069  // 4.10p2).
1070  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1071    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1072                                                       ToPointeeType,
1073                                                       ToType, Context);
1074    return true;
1075  }
1076
1077  // When we're overloading in C, we allow a special kind of pointer
1078  // conversion for compatible-but-not-identical pointee types.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1081    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1082                                                       ToPointeeType,
1083                                                       ToType, Context);
1084    return true;
1085  }
1086
1087  // C++ [conv.ptr]p3:
1088  //
1089  //   An rvalue of type "pointer to cv D," where D is a class type,
1090  //   can be converted to an rvalue of type "pointer to cv B," where
1091  //   B is a base class (clause 10) of D. If B is an inaccessible
1092  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1093  //   necessitates this conversion is ill-formed. The result of the
1094  //   conversion is a pointer to the base class sub-object of the
1095  //   derived class object. The null pointer value is converted to
1096  //   the null pointer value of the destination type.
1097  //
1098  // Note that we do not check for ambiguity or inaccessibility
1099  // here. That is handled by CheckPointerConversion.
1100  if (getLangOptions().CPlusPlus &&
1101      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1102      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1103      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1104      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1105    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1106                                                       ToPointeeType,
1107                                                       ToType, Context);
1108    return true;
1109  }
1110
1111  return false;
1112}
1113
1114/// isObjCPointerConversion - Determines whether this is an
1115/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1116/// with the same arguments and return values.
1117bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1118                                   QualType& ConvertedType,
1119                                   bool &IncompatibleObjC) {
1120  if (!getLangOptions().ObjC1)
1121    return false;
1122
1123  // First, we handle all conversions on ObjC object pointer types.
1124  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1125  const ObjCObjectPointerType *FromObjCPtr =
1126    FromType->getAs<ObjCObjectPointerType>();
1127
1128  if (ToObjCPtr && FromObjCPtr) {
1129    // Objective C++: We're able to convert between "id" or "Class" and a
1130    // pointer to any interface (in both directions).
1131    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Conversions with Objective-C's id<...>.
1136    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1137         ToObjCPtr->isObjCQualifiedIdType()) &&
1138        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1139                                                  /*compare=*/false)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143    // Objective C++: We're able to convert from a pointer to an
1144    // interface to a pointer to a different interface.
1145    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1146      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1147      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1148      if (getLangOptions().CPlusPlus && LHS && RHS &&
1149          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1150                                                FromObjCPtr->getPointeeType()))
1151        return false;
1152      ConvertedType = ToType;
1153      return true;
1154    }
1155
1156    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1157      // Okay: this is some kind of implicit downcast of Objective-C
1158      // interfaces, which is permitted. However, we're going to
1159      // complain about it.
1160      IncompatibleObjC = true;
1161      ConvertedType = FromType;
1162      return true;
1163    }
1164  }
1165  // Beyond this point, both types need to be C pointers or block pointers.
1166  QualType ToPointeeType;
1167  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1168    ToPointeeType = ToCPtr->getPointeeType();
1169  else if (const BlockPointerType *ToBlockPtr =
1170            ToType->getAs<BlockPointerType>()) {
1171    // Objective C++: We're able to convert from a pointer to any object
1172    // to a block pointer type.
1173    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1174      ConvertedType = ToType;
1175      return true;
1176    }
1177    ToPointeeType = ToBlockPtr->getPointeeType();
1178  }
1179  else if (FromType->getAs<BlockPointerType>() &&
1180           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1181    // Objective C++: We're able to convert from a block pointer type to a
1182    // pointer to any object.
1183    ConvertedType = ToType;
1184    return true;
1185  }
1186  else
1187    return false;
1188
1189  QualType FromPointeeType;
1190  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1191    FromPointeeType = FromCPtr->getPointeeType();
1192  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1193    FromPointeeType = FromBlockPtr->getPointeeType();
1194  else
1195    return false;
1196
1197  // If we have pointers to pointers, recursively check whether this
1198  // is an Objective-C conversion.
1199  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1200      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1201                              IncompatibleObjC)) {
1202    // We always complain about this conversion.
1203    IncompatibleObjC = true;
1204    ConvertedType = ToType;
1205    return true;
1206  }
1207  // Allow conversion of pointee being objective-c pointer to another one;
1208  // as in I* to id.
1209  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1210      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1211      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1212                              IncompatibleObjC)) {
1213    ConvertedType = ToType;
1214    return true;
1215  }
1216
1217  // If we have pointers to functions or blocks, check whether the only
1218  // differences in the argument and result types are in Objective-C
1219  // pointer conversions. If so, we permit the conversion (but
1220  // complain about it).
1221  const FunctionProtoType *FromFunctionType
1222    = FromPointeeType->getAs<FunctionProtoType>();
1223  const FunctionProtoType *ToFunctionType
1224    = ToPointeeType->getAs<FunctionProtoType>();
1225  if (FromFunctionType && ToFunctionType) {
1226    // If the function types are exactly the same, this isn't an
1227    // Objective-C pointer conversion.
1228    if (Context.getCanonicalType(FromPointeeType)
1229          == Context.getCanonicalType(ToPointeeType))
1230      return false;
1231
1232    // Perform the quick checks that will tell us whether these
1233    // function types are obviously different.
1234    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1235        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1236        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1237      return false;
1238
1239    bool HasObjCConversion = false;
1240    if (Context.getCanonicalType(FromFunctionType->getResultType())
1241          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1242      // Okay, the types match exactly. Nothing to do.
1243    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1244                                       ToFunctionType->getResultType(),
1245                                       ConvertedType, IncompatibleObjC)) {
1246      // Okay, we have an Objective-C pointer conversion.
1247      HasObjCConversion = true;
1248    } else {
1249      // Function types are too different. Abort.
1250      return false;
1251    }
1252
1253    // Check argument types.
1254    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1255         ArgIdx != NumArgs; ++ArgIdx) {
1256      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1257      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1258      if (Context.getCanonicalType(FromArgType)
1259            == Context.getCanonicalType(ToArgType)) {
1260        // Okay, the types match exactly. Nothing to do.
1261      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1262                                         ConvertedType, IncompatibleObjC)) {
1263        // Okay, we have an Objective-C pointer conversion.
1264        HasObjCConversion = true;
1265      } else {
1266        // Argument types are too different. Abort.
1267        return false;
1268      }
1269    }
1270
1271    if (HasObjCConversion) {
1272      // We had an Objective-C conversion. Allow this pointer
1273      // conversion, but complain about it.
1274      ConvertedType = ToType;
1275      IncompatibleObjC = true;
1276      return true;
1277    }
1278  }
1279
1280  return false;
1281}
1282
1283/// CheckPointerConversion - Check the pointer conversion from the
1284/// expression From to the type ToType. This routine checks for
1285/// ambiguous or inaccessible derived-to-base pointer
1286/// conversions for which IsPointerConversion has already returned
1287/// true. It returns true and produces a diagnostic if there was an
1288/// error, or returns false otherwise.
1289bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1290                                  CastExpr::CastKind &Kind,
1291                                  bool IgnoreBaseAccess) {
1292  QualType FromType = From->getType();
1293
1294  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1295    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1296      QualType FromPointeeType = FromPtrType->getPointeeType(),
1297               ToPointeeType   = ToPtrType->getPointeeType();
1298
1299      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1300          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1301        // We must have a derived-to-base conversion. Check an
1302        // ambiguous or inaccessible conversion.
1303        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1304                                         From->getExprLoc(),
1305                                         From->getSourceRange(),
1306                                         IgnoreBaseAccess))
1307          return true;
1308
1309        // The conversion was successful.
1310        Kind = CastExpr::CK_DerivedToBase;
1311      }
1312    }
1313  if (const ObjCObjectPointerType *FromPtrType =
1314        FromType->getAs<ObjCObjectPointerType>())
1315    if (const ObjCObjectPointerType *ToPtrType =
1316          ToType->getAs<ObjCObjectPointerType>()) {
1317      // Objective-C++ conversions are always okay.
1318      // FIXME: We should have a different class of conversions for the
1319      // Objective-C++ implicit conversions.
1320      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1321        return false;
1322
1323  }
1324  return false;
1325}
1326
1327/// IsMemberPointerConversion - Determines whether the conversion of the
1328/// expression From, which has the (possibly adjusted) type FromType, can be
1329/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1330/// If so, returns true and places the converted type (that might differ from
1331/// ToType in its cv-qualifiers at some level) into ConvertedType.
1332bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1333                                     QualType ToType,
1334                                     bool InOverloadResolution,
1335                                     QualType &ConvertedType) {
1336  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1337  if (!ToTypePtr)
1338    return false;
1339
1340  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1341  if (From->isNullPointerConstant(Context,
1342                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1343                                        : Expr::NPC_ValueDependentIsNull)) {
1344    ConvertedType = ToType;
1345    return true;
1346  }
1347
1348  // Otherwise, both types have to be member pointers.
1349  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1350  if (!FromTypePtr)
1351    return false;
1352
1353  // A pointer to member of B can be converted to a pointer to member of D,
1354  // where D is derived from B (C++ 4.11p2).
1355  QualType FromClass(FromTypePtr->getClass(), 0);
1356  QualType ToClass(ToTypePtr->getClass(), 0);
1357  // FIXME: What happens when these are dependent? Is this function even called?
1358
1359  if (IsDerivedFrom(ToClass, FromClass)) {
1360    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1361                                                 ToClass.getTypePtr());
1362    return true;
1363  }
1364
1365  return false;
1366}
1367
1368/// CheckMemberPointerConversion - Check the member pointer conversion from the
1369/// expression From to the type ToType. This routine checks for ambiguous or
1370/// virtual or inaccessible base-to-derived member pointer conversions
1371/// for which IsMemberPointerConversion has already returned true. It returns
1372/// true and produces a diagnostic if there was an error, or returns false
1373/// otherwise.
1374bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1375                                        CastExpr::CastKind &Kind,
1376                                        bool IgnoreBaseAccess) {
1377  QualType FromType = From->getType();
1378  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1379  if (!FromPtrType) {
1380    // This must be a null pointer to member pointer conversion
1381    assert(From->isNullPointerConstant(Context,
1382                                       Expr::NPC_ValueDependentIsNull) &&
1383           "Expr must be null pointer constant!");
1384    Kind = CastExpr::CK_NullToMemberPointer;
1385    return false;
1386  }
1387
1388  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1389  assert(ToPtrType && "No member pointer cast has a target type "
1390                      "that is not a member pointer.");
1391
1392  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1393  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1394
1395  // FIXME: What about dependent types?
1396  assert(FromClass->isRecordType() && "Pointer into non-class.");
1397  assert(ToClass->isRecordType() && "Pointer into non-class.");
1398
1399  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1400                     /*DetectVirtual=*/true);
1401  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1402  assert(DerivationOkay &&
1403         "Should not have been called if derivation isn't OK.");
1404  (void)DerivationOkay;
1405
1406  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1407                                  getUnqualifiedType())) {
1408    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1409    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1410      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1411    return true;
1412  }
1413
1414  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1415    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1416      << FromClass << ToClass << QualType(VBase, 0)
1417      << From->getSourceRange();
1418    return true;
1419  }
1420
1421  if (!IgnoreBaseAccess)
1422    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1423                         Paths.front(),
1424                         diag::err_downcast_from_inaccessible_base);
1425
1426  // Must be a base to derived member conversion.
1427  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1428  return false;
1429}
1430
1431/// IsQualificationConversion - Determines whether the conversion from
1432/// an rvalue of type FromType to ToType is a qualification conversion
1433/// (C++ 4.4).
1434bool
1435Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1436  FromType = Context.getCanonicalType(FromType);
1437  ToType = Context.getCanonicalType(ToType);
1438
1439  // If FromType and ToType are the same type, this is not a
1440  // qualification conversion.
1441  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1442    return false;
1443
1444  // (C++ 4.4p4):
1445  //   A conversion can add cv-qualifiers at levels other than the first
1446  //   in multi-level pointers, subject to the following rules: [...]
1447  bool PreviousToQualsIncludeConst = true;
1448  bool UnwrappedAnyPointer = false;
1449  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1450    // Within each iteration of the loop, we check the qualifiers to
1451    // determine if this still looks like a qualification
1452    // conversion. Then, if all is well, we unwrap one more level of
1453    // pointers or pointers-to-members and do it all again
1454    // until there are no more pointers or pointers-to-members left to
1455    // unwrap.
1456    UnwrappedAnyPointer = true;
1457
1458    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1459    //      2,j, and similarly for volatile.
1460    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1461      return false;
1462
1463    //   -- if the cv 1,j and cv 2,j are different, then const is in
1464    //      every cv for 0 < k < j.
1465    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1466        && !PreviousToQualsIncludeConst)
1467      return false;
1468
1469    // Keep track of whether all prior cv-qualifiers in the "to" type
1470    // include const.
1471    PreviousToQualsIncludeConst
1472      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1473  }
1474
1475  // We are left with FromType and ToType being the pointee types
1476  // after unwrapping the original FromType and ToType the same number
1477  // of types. If we unwrapped any pointers, and if FromType and
1478  // ToType have the same unqualified type (since we checked
1479  // qualifiers above), then this is a qualification conversion.
1480  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1481}
1482
1483/// Determines whether there is a user-defined conversion sequence
1484/// (C++ [over.ics.user]) that converts expression From to the type
1485/// ToType. If such a conversion exists, User will contain the
1486/// user-defined conversion sequence that performs such a conversion
1487/// and this routine will return true. Otherwise, this routine returns
1488/// false and User is unspecified.
1489///
1490/// \param AllowConversionFunctions true if the conversion should
1491/// consider conversion functions at all. If false, only constructors
1492/// will be considered.
1493///
1494/// \param AllowExplicit  true if the conversion should consider C++0x
1495/// "explicit" conversion functions as well as non-explicit conversion
1496/// functions (C++0x [class.conv.fct]p2).
1497///
1498/// \param UserCast true if looking for user defined conversion for a static
1499/// cast.
1500OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1501                                          UserDefinedConversionSequence& User,
1502                                            OverloadCandidateSet& CandidateSet,
1503                                                bool AllowConversionFunctions,
1504                                                bool AllowExplicit,
1505                                                bool UserCast) {
1506  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1507    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1508      // We're not going to find any constructors.
1509    } else if (CXXRecordDecl *ToRecordDecl
1510                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1511      // C++ [over.match.ctor]p1:
1512      //   When objects of class type are direct-initialized (8.5), or
1513      //   copy-initialized from an expression of the same or a
1514      //   derived class type (8.5), overload resolution selects the
1515      //   constructor. [...] For copy-initialization, the candidate
1516      //   functions are all the converting constructors (12.3.1) of
1517      //   that class. The argument list is the expression-list within
1518      //   the parentheses of the initializer.
1519      bool SuppressUserConversions = !UserCast;
1520      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1521          IsDerivedFrom(From->getType(), ToType)) {
1522        SuppressUserConversions = false;
1523        AllowConversionFunctions = false;
1524      }
1525
1526      DeclarationName ConstructorName
1527        = Context.DeclarationNames.getCXXConstructorName(
1528                          Context.getCanonicalType(ToType).getUnqualifiedType());
1529      DeclContext::lookup_iterator Con, ConEnd;
1530      for (llvm::tie(Con, ConEnd)
1531             = ToRecordDecl->lookup(ConstructorName);
1532           Con != ConEnd; ++Con) {
1533        NamedDecl *D = *Con;
1534        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1535
1536        // Find the constructor (which may be a template).
1537        CXXConstructorDecl *Constructor = 0;
1538        FunctionTemplateDecl *ConstructorTmpl
1539          = dyn_cast<FunctionTemplateDecl>(D);
1540        if (ConstructorTmpl)
1541          Constructor
1542            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1543        else
1544          Constructor = cast<CXXConstructorDecl>(D);
1545
1546        if (!Constructor->isInvalidDecl() &&
1547            Constructor->isConvertingConstructor(AllowExplicit)) {
1548          if (ConstructorTmpl)
1549            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1550                                         /*ExplicitArgs*/ 0,
1551                                         &From, 1, CandidateSet,
1552                                         SuppressUserConversions);
1553          else
1554            // Allow one user-defined conversion when user specifies a
1555            // From->ToType conversion via an static cast (c-style, etc).
1556            AddOverloadCandidate(Constructor, FoundDecl,
1557                                 &From, 1, CandidateSet,
1558                                 SuppressUserConversions);
1559        }
1560      }
1561    }
1562  }
1563
1564  if (!AllowConversionFunctions) {
1565    // Don't allow any conversion functions to enter the overload set.
1566  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1567                                 PDiag(0)
1568                                   << From->getSourceRange())) {
1569    // No conversion functions from incomplete types.
1570  } else if (const RecordType *FromRecordType
1571               = From->getType()->getAs<RecordType>()) {
1572    if (CXXRecordDecl *FromRecordDecl
1573         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1574      // Add all of the conversion functions as candidates.
1575      const UnresolvedSetImpl *Conversions
1576        = FromRecordDecl->getVisibleConversionFunctions();
1577      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1578             E = Conversions->end(); I != E; ++I) {
1579        DeclAccessPair FoundDecl = I.getPair();
1580        NamedDecl *D = FoundDecl.getDecl();
1581        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1582        if (isa<UsingShadowDecl>(D))
1583          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1584
1585        CXXConversionDecl *Conv;
1586        FunctionTemplateDecl *ConvTemplate;
1587        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1588          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1589        else
1590          Conv = cast<CXXConversionDecl>(D);
1591
1592        if (AllowExplicit || !Conv->isExplicit()) {
1593          if (ConvTemplate)
1594            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1595                                           ActingContext, From, ToType,
1596                                           CandidateSet);
1597          else
1598            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1599                                   From, ToType, CandidateSet);
1600        }
1601      }
1602    }
1603  }
1604
1605  OverloadCandidateSet::iterator Best;
1606  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1607    case OR_Success:
1608      // Record the standard conversion we used and the conversion function.
1609      if (CXXConstructorDecl *Constructor
1610            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1611        // C++ [over.ics.user]p1:
1612        //   If the user-defined conversion is specified by a
1613        //   constructor (12.3.1), the initial standard conversion
1614        //   sequence converts the source type to the type required by
1615        //   the argument of the constructor.
1616        //
1617        QualType ThisType = Constructor->getThisType(Context);
1618        if (Best->Conversions[0].isEllipsis())
1619          User.EllipsisConversion = true;
1620        else {
1621          User.Before = Best->Conversions[0].Standard;
1622          User.EllipsisConversion = false;
1623        }
1624        User.ConversionFunction = Constructor;
1625        User.After.setAsIdentityConversion();
1626        User.After.setFromType(
1627          ThisType->getAs<PointerType>()->getPointeeType());
1628        User.After.setAllToTypes(ToType);
1629        return OR_Success;
1630      } else if (CXXConversionDecl *Conversion
1631                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1632        // C++ [over.ics.user]p1:
1633        //
1634        //   [...] If the user-defined conversion is specified by a
1635        //   conversion function (12.3.2), the initial standard
1636        //   conversion sequence converts the source type to the
1637        //   implicit object parameter of the conversion function.
1638        User.Before = Best->Conversions[0].Standard;
1639        User.ConversionFunction = Conversion;
1640        User.EllipsisConversion = false;
1641
1642        // C++ [over.ics.user]p2:
1643        //   The second standard conversion sequence converts the
1644        //   result of the user-defined conversion to the target type
1645        //   for the sequence. Since an implicit conversion sequence
1646        //   is an initialization, the special rules for
1647        //   initialization by user-defined conversion apply when
1648        //   selecting the best user-defined conversion for a
1649        //   user-defined conversion sequence (see 13.3.3 and
1650        //   13.3.3.1).
1651        User.After = Best->FinalConversion;
1652        return OR_Success;
1653      } else {
1654        assert(false && "Not a constructor or conversion function?");
1655        return OR_No_Viable_Function;
1656      }
1657
1658    case OR_No_Viable_Function:
1659      return OR_No_Viable_Function;
1660    case OR_Deleted:
1661      // No conversion here! We're done.
1662      return OR_Deleted;
1663
1664    case OR_Ambiguous:
1665      return OR_Ambiguous;
1666    }
1667
1668  return OR_No_Viable_Function;
1669}
1670
1671bool
1672Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1673  ImplicitConversionSequence ICS;
1674  OverloadCandidateSet CandidateSet(From->getExprLoc());
1675  OverloadingResult OvResult =
1676    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1677                            CandidateSet, true, false, false);
1678  if (OvResult == OR_Ambiguous)
1679    Diag(From->getSourceRange().getBegin(),
1680         diag::err_typecheck_ambiguous_condition)
1681          << From->getType() << ToType << From->getSourceRange();
1682  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1683    Diag(From->getSourceRange().getBegin(),
1684         diag::err_typecheck_nonviable_condition)
1685    << From->getType() << ToType << From->getSourceRange();
1686  else
1687    return false;
1688  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1689  return true;
1690}
1691
1692/// CompareImplicitConversionSequences - Compare two implicit
1693/// conversion sequences to determine whether one is better than the
1694/// other or if they are indistinguishable (C++ 13.3.3.2).
1695ImplicitConversionSequence::CompareKind
1696Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1697                                         const ImplicitConversionSequence& ICS2)
1698{
1699  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1700  // conversion sequences (as defined in 13.3.3.1)
1701  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1702  //      conversion sequence than a user-defined conversion sequence or
1703  //      an ellipsis conversion sequence, and
1704  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1705  //      conversion sequence than an ellipsis conversion sequence
1706  //      (13.3.3.1.3).
1707  //
1708  // C++0x [over.best.ics]p10:
1709  //   For the purpose of ranking implicit conversion sequences as
1710  //   described in 13.3.3.2, the ambiguous conversion sequence is
1711  //   treated as a user-defined sequence that is indistinguishable
1712  //   from any other user-defined conversion sequence.
1713  if (ICS1.getKind() < ICS2.getKind()) {
1714    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1715      return ImplicitConversionSequence::Better;
1716  } else if (ICS2.getKind() < ICS1.getKind()) {
1717    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1718      return ImplicitConversionSequence::Worse;
1719  }
1720
1721  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1722    return ImplicitConversionSequence::Indistinguishable;
1723
1724  // Two implicit conversion sequences of the same form are
1725  // indistinguishable conversion sequences unless one of the
1726  // following rules apply: (C++ 13.3.3.2p3):
1727  if (ICS1.isStandard())
1728    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1729  else if (ICS1.isUserDefined()) {
1730    // User-defined conversion sequence U1 is a better conversion
1731    // sequence than another user-defined conversion sequence U2 if
1732    // they contain the same user-defined conversion function or
1733    // constructor and if the second standard conversion sequence of
1734    // U1 is better than the second standard conversion sequence of
1735    // U2 (C++ 13.3.3.2p3).
1736    if (ICS1.UserDefined.ConversionFunction ==
1737          ICS2.UserDefined.ConversionFunction)
1738      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1739                                                ICS2.UserDefined.After);
1740  }
1741
1742  return ImplicitConversionSequence::Indistinguishable;
1743}
1744
1745// Per 13.3.3.2p3, compare the given standard conversion sequences to
1746// determine if one is a proper subset of the other.
1747static ImplicitConversionSequence::CompareKind
1748compareStandardConversionSubsets(ASTContext &Context,
1749                                 const StandardConversionSequence& SCS1,
1750                                 const StandardConversionSequence& SCS2) {
1751  ImplicitConversionSequence::CompareKind Result
1752    = ImplicitConversionSequence::Indistinguishable;
1753
1754  if (SCS1.Second != SCS2.Second) {
1755    if (SCS1.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Better;
1757    else if (SCS2.Second == ICK_Identity)
1758      Result = ImplicitConversionSequence::Worse;
1759    else
1760      return ImplicitConversionSequence::Indistinguishable;
1761  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  if (SCS1.Third == SCS2.Third) {
1765    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1766                             : ImplicitConversionSequence::Indistinguishable;
1767  }
1768
1769  if (SCS1.Third == ICK_Identity)
1770    return Result == ImplicitConversionSequence::Worse
1771             ? ImplicitConversionSequence::Indistinguishable
1772             : ImplicitConversionSequence::Better;
1773
1774  if (SCS2.Third == ICK_Identity)
1775    return Result == ImplicitConversionSequence::Better
1776             ? ImplicitConversionSequence::Indistinguishable
1777             : ImplicitConversionSequence::Worse;
1778
1779  return ImplicitConversionSequence::Indistinguishable;
1780}
1781
1782/// CompareStandardConversionSequences - Compare two standard
1783/// conversion sequences to determine whether one is better than the
1784/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1785ImplicitConversionSequence::CompareKind
1786Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1787                                         const StandardConversionSequence& SCS2)
1788{
1789  // Standard conversion sequence S1 is a better conversion sequence
1790  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1791
1792  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1793  //     sequences in the canonical form defined by 13.3.3.1.1,
1794  //     excluding any Lvalue Transformation; the identity conversion
1795  //     sequence is considered to be a subsequence of any
1796  //     non-identity conversion sequence) or, if not that,
1797  if (ImplicitConversionSequence::CompareKind CK
1798        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1799    return CK;
1800
1801  //  -- the rank of S1 is better than the rank of S2 (by the rules
1802  //     defined below), or, if not that,
1803  ImplicitConversionRank Rank1 = SCS1.getRank();
1804  ImplicitConversionRank Rank2 = SCS2.getRank();
1805  if (Rank1 < Rank2)
1806    return ImplicitConversionSequence::Better;
1807  else if (Rank2 < Rank1)
1808    return ImplicitConversionSequence::Worse;
1809
1810  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1811  // are indistinguishable unless one of the following rules
1812  // applies:
1813
1814  //   A conversion that is not a conversion of a pointer, or
1815  //   pointer to member, to bool is better than another conversion
1816  //   that is such a conversion.
1817  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1818    return SCS2.isPointerConversionToBool()
1819             ? ImplicitConversionSequence::Better
1820             : ImplicitConversionSequence::Worse;
1821
1822  // C++ [over.ics.rank]p4b2:
1823  //
1824  //   If class B is derived directly or indirectly from class A,
1825  //   conversion of B* to A* is better than conversion of B* to
1826  //   void*, and conversion of A* to void* is better than conversion
1827  //   of B* to void*.
1828  bool SCS1ConvertsToVoid
1829    = SCS1.isPointerConversionToVoidPointer(Context);
1830  bool SCS2ConvertsToVoid
1831    = SCS2.isPointerConversionToVoidPointer(Context);
1832  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1833    // Exactly one of the conversion sequences is a conversion to
1834    // a void pointer; it's the worse conversion.
1835    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1836                              : ImplicitConversionSequence::Worse;
1837  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1838    // Neither conversion sequence converts to a void pointer; compare
1839    // their derived-to-base conversions.
1840    if (ImplicitConversionSequence::CompareKind DerivedCK
1841          = CompareDerivedToBaseConversions(SCS1, SCS2))
1842      return DerivedCK;
1843  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1844    // Both conversion sequences are conversions to void
1845    // pointers. Compare the source types to determine if there's an
1846    // inheritance relationship in their sources.
1847    QualType FromType1 = SCS1.getFromType();
1848    QualType FromType2 = SCS2.getFromType();
1849
1850    // Adjust the types we're converting from via the array-to-pointer
1851    // conversion, if we need to.
1852    if (SCS1.First == ICK_Array_To_Pointer)
1853      FromType1 = Context.getArrayDecayedType(FromType1);
1854    if (SCS2.First == ICK_Array_To_Pointer)
1855      FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857    QualType FromPointee1
1858      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859    QualType FromPointee2
1860      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1861
1862    if (IsDerivedFrom(FromPointee2, FromPointee1))
1863      return ImplicitConversionSequence::Better;
1864    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1865      return ImplicitConversionSequence::Worse;
1866
1867    // Objective-C++: If one interface is more specific than the
1868    // other, it is the better one.
1869    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1870    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1871    if (FromIface1 && FromIface1) {
1872      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1873        return ImplicitConversionSequence::Better;
1874      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877  }
1878
1879  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1880  // bullet 3).
1881  if (ImplicitConversionSequence::CompareKind QualCK
1882        = CompareQualificationConversions(SCS1, SCS2))
1883    return QualCK;
1884
1885  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1886    // C++0x [over.ics.rank]p3b4:
1887    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1888    //      implicit object parameter of a non-static member function declared
1889    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1890    //      rvalue and S2 binds an lvalue reference.
1891    // FIXME: We don't know if we're dealing with the implicit object parameter,
1892    // or if the member function in this case has a ref qualifier.
1893    // (Of course, we don't have ref qualifiers yet.)
1894    if (SCS1.RRefBinding != SCS2.RRefBinding)
1895      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1896                              : ImplicitConversionSequence::Worse;
1897
1898    // C++ [over.ics.rank]p3b4:
1899    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1900    //      which the references refer are the same type except for
1901    //      top-level cv-qualifiers, and the type to which the reference
1902    //      initialized by S2 refers is more cv-qualified than the type
1903    //      to which the reference initialized by S1 refers.
1904    QualType T1 = SCS1.getToType(2);
1905    QualType T2 = SCS2.getToType(2);
1906    T1 = Context.getCanonicalType(T1);
1907    T2 = Context.getCanonicalType(T2);
1908    Qualifiers T1Quals, T2Quals;
1909    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1910    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1911    if (UnqualT1 == UnqualT2) {
1912      // If the type is an array type, promote the element qualifiers to the type
1913      // for comparison.
1914      if (isa<ArrayType>(T1) && T1Quals)
1915        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1916      if (isa<ArrayType>(T2) && T2Quals)
1917        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1918      if (T2.isMoreQualifiedThan(T1))
1919        return ImplicitConversionSequence::Better;
1920      else if (T1.isMoreQualifiedThan(T2))
1921        return ImplicitConversionSequence::Worse;
1922    }
1923  }
1924
1925  return ImplicitConversionSequence::Indistinguishable;
1926}
1927
1928/// CompareQualificationConversions - Compares two standard conversion
1929/// sequences to determine whether they can be ranked based on their
1930/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1931ImplicitConversionSequence::CompareKind
1932Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1933                                      const StandardConversionSequence& SCS2) {
1934  // C++ 13.3.3.2p3:
1935  //  -- S1 and S2 differ only in their qualification conversion and
1936  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1937  //     cv-qualification signature of type T1 is a proper subset of
1938  //     the cv-qualification signature of type T2, and S1 is not the
1939  //     deprecated string literal array-to-pointer conversion (4.2).
1940  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1941      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1942    return ImplicitConversionSequence::Indistinguishable;
1943
1944  // FIXME: the example in the standard doesn't use a qualification
1945  // conversion (!)
1946  QualType T1 = SCS1.getToType(2);
1947  QualType T2 = SCS2.getToType(2);
1948  T1 = Context.getCanonicalType(T1);
1949  T2 = Context.getCanonicalType(T2);
1950  Qualifiers T1Quals, T2Quals;
1951  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1952  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1953
1954  // If the types are the same, we won't learn anything by unwrapped
1955  // them.
1956  if (UnqualT1 == UnqualT2)
1957    return ImplicitConversionSequence::Indistinguishable;
1958
1959  // If the type is an array type, promote the element qualifiers to the type
1960  // for comparison.
1961  if (isa<ArrayType>(T1) && T1Quals)
1962    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1963  if (isa<ArrayType>(T2) && T2Quals)
1964    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1965
1966  ImplicitConversionSequence::CompareKind Result
1967    = ImplicitConversionSequence::Indistinguishable;
1968  while (UnwrapSimilarPointerTypes(T1, T2)) {
1969    // Within each iteration of the loop, we check the qualifiers to
1970    // determine if this still looks like a qualification
1971    // conversion. Then, if all is well, we unwrap one more level of
1972    // pointers or pointers-to-members and do it all again
1973    // until there are no more pointers or pointers-to-members left
1974    // to unwrap. This essentially mimics what
1975    // IsQualificationConversion does, but here we're checking for a
1976    // strict subset of qualifiers.
1977    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1978      // The qualifiers are the same, so this doesn't tell us anything
1979      // about how the sequences rank.
1980      ;
1981    else if (T2.isMoreQualifiedThan(T1)) {
1982      // T1 has fewer qualifiers, so it could be the better sequence.
1983      if (Result == ImplicitConversionSequence::Worse)
1984        // Neither has qualifiers that are a subset of the other's
1985        // qualifiers.
1986        return ImplicitConversionSequence::Indistinguishable;
1987
1988      Result = ImplicitConversionSequence::Better;
1989    } else if (T1.isMoreQualifiedThan(T2)) {
1990      // T2 has fewer qualifiers, so it could be the better sequence.
1991      if (Result == ImplicitConversionSequence::Better)
1992        // Neither has qualifiers that are a subset of the other's
1993        // qualifiers.
1994        return ImplicitConversionSequence::Indistinguishable;
1995
1996      Result = ImplicitConversionSequence::Worse;
1997    } else {
1998      // Qualifiers are disjoint.
1999      return ImplicitConversionSequence::Indistinguishable;
2000    }
2001
2002    // If the types after this point are equivalent, we're done.
2003    if (Context.hasSameUnqualifiedType(T1, T2))
2004      break;
2005  }
2006
2007  // Check that the winning standard conversion sequence isn't using
2008  // the deprecated string literal array to pointer conversion.
2009  switch (Result) {
2010  case ImplicitConversionSequence::Better:
2011    if (SCS1.DeprecatedStringLiteralToCharPtr)
2012      Result = ImplicitConversionSequence::Indistinguishable;
2013    break;
2014
2015  case ImplicitConversionSequence::Indistinguishable:
2016    break;
2017
2018  case ImplicitConversionSequence::Worse:
2019    if (SCS2.DeprecatedStringLiteralToCharPtr)
2020      Result = ImplicitConversionSequence::Indistinguishable;
2021    break;
2022  }
2023
2024  return Result;
2025}
2026
2027/// CompareDerivedToBaseConversions - Compares two standard conversion
2028/// sequences to determine whether they can be ranked based on their
2029/// various kinds of derived-to-base conversions (C++
2030/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2031/// conversions between Objective-C interface types.
2032ImplicitConversionSequence::CompareKind
2033Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2034                                      const StandardConversionSequence& SCS2) {
2035  QualType FromType1 = SCS1.getFromType();
2036  QualType ToType1 = SCS1.getToType(1);
2037  QualType FromType2 = SCS2.getFromType();
2038  QualType ToType2 = SCS2.getToType(1);
2039
2040  // Adjust the types we're converting from via the array-to-pointer
2041  // conversion, if we need to.
2042  if (SCS1.First == ICK_Array_To_Pointer)
2043    FromType1 = Context.getArrayDecayedType(FromType1);
2044  if (SCS2.First == ICK_Array_To_Pointer)
2045    FromType2 = Context.getArrayDecayedType(FromType2);
2046
2047  // Canonicalize all of the types.
2048  FromType1 = Context.getCanonicalType(FromType1);
2049  ToType1 = Context.getCanonicalType(ToType1);
2050  FromType2 = Context.getCanonicalType(FromType2);
2051  ToType2 = Context.getCanonicalType(ToType2);
2052
2053  // C++ [over.ics.rank]p4b3:
2054  //
2055  //   If class B is derived directly or indirectly from class A and
2056  //   class C is derived directly or indirectly from B,
2057  //
2058  // For Objective-C, we let A, B, and C also be Objective-C
2059  // interfaces.
2060
2061  // Compare based on pointer conversions.
2062  if (SCS1.Second == ICK_Pointer_Conversion &&
2063      SCS2.Second == ICK_Pointer_Conversion &&
2064      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2065      FromType1->isPointerType() && FromType2->isPointerType() &&
2066      ToType1->isPointerType() && ToType2->isPointerType()) {
2067    QualType FromPointee1
2068      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType ToPointee1
2070      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType FromPointee2
2072      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073    QualType ToPointee2
2074      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2075
2076    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2078    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2079    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2080
2081    //   -- conversion of C* to B* is better than conversion of C* to A*,
2082    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2083      if (IsDerivedFrom(ToPointee1, ToPointee2))
2084        return ImplicitConversionSequence::Better;
2085      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2086        return ImplicitConversionSequence::Worse;
2087
2088      if (ToIface1 && ToIface2) {
2089        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2090          return ImplicitConversionSequence::Better;
2091        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2092          return ImplicitConversionSequence::Worse;
2093      }
2094    }
2095
2096    //   -- conversion of B* to A* is better than conversion of C* to A*,
2097    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2098      if (IsDerivedFrom(FromPointee2, FromPointee1))
2099        return ImplicitConversionSequence::Better;
2100      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2101        return ImplicitConversionSequence::Worse;
2102
2103      if (FromIface1 && FromIface2) {
2104        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2105          return ImplicitConversionSequence::Better;
2106        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2107          return ImplicitConversionSequence::Worse;
2108      }
2109    }
2110  }
2111
2112  // Ranking of member-pointer types.
2113  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2114      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2115      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2116    const MemberPointerType * FromMemPointer1 =
2117                                        FromType1->getAs<MemberPointerType>();
2118    const MemberPointerType * ToMemPointer1 =
2119                                          ToType1->getAs<MemberPointerType>();
2120    const MemberPointerType * FromMemPointer2 =
2121                                          FromType2->getAs<MemberPointerType>();
2122    const MemberPointerType * ToMemPointer2 =
2123                                          ToType2->getAs<MemberPointerType>();
2124    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2125    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2126    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2127    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2128    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2129    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2130    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2131    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2132    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2133    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2134      if (IsDerivedFrom(ToPointee1, ToPointee2))
2135        return ImplicitConversionSequence::Worse;
2136      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2137        return ImplicitConversionSequence::Better;
2138    }
2139    // conversion of B::* to C::* is better than conversion of A::* to C::*
2140    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2141      if (IsDerivedFrom(FromPointee1, FromPointee2))
2142        return ImplicitConversionSequence::Better;
2143      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2144        return ImplicitConversionSequence::Worse;
2145    }
2146  }
2147
2148  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2149      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2150      SCS1.Second == ICK_Derived_To_Base) {
2151    //   -- conversion of C to B is better than conversion of C to A,
2152    //   -- binding of an expression of type C to a reference of type
2153    //      B& is better than binding an expression of type C to a
2154    //      reference of type A&,
2155    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2156        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2157      if (IsDerivedFrom(ToType1, ToType2))
2158        return ImplicitConversionSequence::Better;
2159      else if (IsDerivedFrom(ToType2, ToType1))
2160        return ImplicitConversionSequence::Worse;
2161    }
2162
2163    //   -- conversion of B to A is better than conversion of C to A.
2164    //   -- binding of an expression of type B to a reference of type
2165    //      A& is better than binding an expression of type C to a
2166    //      reference of type A&,
2167    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2168        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2169      if (IsDerivedFrom(FromType2, FromType1))
2170        return ImplicitConversionSequence::Better;
2171      else if (IsDerivedFrom(FromType1, FromType2))
2172        return ImplicitConversionSequence::Worse;
2173    }
2174  }
2175
2176  return ImplicitConversionSequence::Indistinguishable;
2177}
2178
2179/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2180/// determine whether they are reference-related,
2181/// reference-compatible, reference-compatible with added
2182/// qualification, or incompatible, for use in C++ initialization by
2183/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2184/// type, and the first type (T1) is the pointee type of the reference
2185/// type being initialized.
2186Sema::ReferenceCompareResult
2187Sema::CompareReferenceRelationship(SourceLocation Loc,
2188                                   QualType OrigT1, QualType OrigT2,
2189                                   bool& DerivedToBase) {
2190  assert(!OrigT1->isReferenceType() &&
2191    "T1 must be the pointee type of the reference type");
2192  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2193
2194  QualType T1 = Context.getCanonicalType(OrigT1);
2195  QualType T2 = Context.getCanonicalType(OrigT2);
2196  Qualifiers T1Quals, T2Quals;
2197  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2198  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2199
2200  // C++ [dcl.init.ref]p4:
2201  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2202  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2203  //   T1 is a base class of T2.
2204  if (UnqualT1 == UnqualT2)
2205    DerivedToBase = false;
2206  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2207           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2208           IsDerivedFrom(UnqualT2, UnqualT1))
2209    DerivedToBase = true;
2210  else
2211    return Ref_Incompatible;
2212
2213  // At this point, we know that T1 and T2 are reference-related (at
2214  // least).
2215
2216  // If the type is an array type, promote the element qualifiers to the type
2217  // for comparison.
2218  if (isa<ArrayType>(T1) && T1Quals)
2219    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2220  if (isa<ArrayType>(T2) && T2Quals)
2221    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2222
2223  // C++ [dcl.init.ref]p4:
2224  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2225  //   reference-related to T2 and cv1 is the same cv-qualification
2226  //   as, or greater cv-qualification than, cv2. For purposes of
2227  //   overload resolution, cases for which cv1 is greater
2228  //   cv-qualification than cv2 are identified as
2229  //   reference-compatible with added qualification (see 13.3.3.2).
2230  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2231    return Ref_Compatible;
2232  else if (T1.isMoreQualifiedThan(T2))
2233    return Ref_Compatible_With_Added_Qualification;
2234  else
2235    return Ref_Related;
2236}
2237
2238/// \brief Compute an implicit conversion sequence for reference
2239/// initialization.
2240static ImplicitConversionSequence
2241TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2242                 SourceLocation DeclLoc,
2243                 bool SuppressUserConversions,
2244                 bool AllowExplicit) {
2245  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2246
2247  // Most paths end in a failed conversion.
2248  ImplicitConversionSequence ICS;
2249  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2250
2251  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2252  QualType T2 = Init->getType();
2253
2254  // If the initializer is the address of an overloaded function, try
2255  // to resolve the overloaded function. If all goes well, T2 is the
2256  // type of the resulting function.
2257  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2258    DeclAccessPair Found;
2259    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2260                                                                false, Found))
2261      T2 = Fn->getType();
2262  }
2263
2264  // Compute some basic properties of the types and the initializer.
2265  bool isRValRef = DeclType->isRValueReferenceType();
2266  bool DerivedToBase = false;
2267  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2268  Sema::ReferenceCompareResult RefRelationship
2269    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2270
2271  // C++ [dcl.init.ref]p5:
2272  //   A reference to type "cv1 T1" is initialized by an expression
2273  //   of type "cv2 T2" as follows:
2274
2275  //     -- If the initializer expression
2276
2277  // C++ [over.ics.ref]p3:
2278  //   Except for an implicit object parameter, for which see 13.3.1,
2279  //   a standard conversion sequence cannot be formed if it requires
2280  //   binding an lvalue reference to non-const to an rvalue or
2281  //   binding an rvalue reference to an lvalue.
2282  if (isRValRef && InitLvalue == Expr::LV_Valid)
2283    return ICS;
2284
2285  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2286  //          reference-compatible with "cv2 T2," or
2287  //
2288  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2289  if (InitLvalue == Expr::LV_Valid &&
2290      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2291    // C++ [over.ics.ref]p1:
2292    //   When a parameter of reference type binds directly (8.5.3)
2293    //   to an argument expression, the implicit conversion sequence
2294    //   is the identity conversion, unless the argument expression
2295    //   has a type that is a derived class of the parameter type,
2296    //   in which case the implicit conversion sequence is a
2297    //   derived-to-base Conversion (13.3.3.1).
2298    ICS.setStandard();
2299    ICS.Standard.First = ICK_Identity;
2300    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2301    ICS.Standard.Third = ICK_Identity;
2302    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2303    ICS.Standard.setToType(0, T2);
2304    ICS.Standard.setToType(1, T1);
2305    ICS.Standard.setToType(2, T1);
2306    ICS.Standard.ReferenceBinding = true;
2307    ICS.Standard.DirectBinding = true;
2308    ICS.Standard.RRefBinding = false;
2309    ICS.Standard.CopyConstructor = 0;
2310
2311    // Nothing more to do: the inaccessibility/ambiguity check for
2312    // derived-to-base conversions is suppressed when we're
2313    // computing the implicit conversion sequence (C++
2314    // [over.best.ics]p2).
2315    return ICS;
2316  }
2317
2318  //       -- has a class type (i.e., T2 is a class type), where T1 is
2319  //          not reference-related to T2, and can be implicitly
2320  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2321  //          is reference-compatible with "cv3 T3" 92) (this
2322  //          conversion is selected by enumerating the applicable
2323  //          conversion functions (13.3.1.6) and choosing the best
2324  //          one through overload resolution (13.3)),
2325  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2326      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2327      RefRelationship == Sema::Ref_Incompatible) {
2328    CXXRecordDecl *T2RecordDecl
2329      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2330
2331    OverloadCandidateSet CandidateSet(DeclLoc);
2332    const UnresolvedSetImpl *Conversions
2333      = T2RecordDecl->getVisibleConversionFunctions();
2334    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2335           E = Conversions->end(); I != E; ++I) {
2336      NamedDecl *D = *I;
2337      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2338      if (isa<UsingShadowDecl>(D))
2339        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2340
2341      FunctionTemplateDecl *ConvTemplate
2342        = dyn_cast<FunctionTemplateDecl>(D);
2343      CXXConversionDecl *Conv;
2344      if (ConvTemplate)
2345        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2346      else
2347        Conv = cast<CXXConversionDecl>(D);
2348
2349      // If the conversion function doesn't return a reference type,
2350      // it can't be considered for this conversion.
2351      if (Conv->getConversionType()->isLValueReferenceType() &&
2352          (AllowExplicit || !Conv->isExplicit())) {
2353        if (ConvTemplate)
2354          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2355                                         Init, DeclType, CandidateSet);
2356        else
2357          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2358                                 DeclType, CandidateSet);
2359      }
2360    }
2361
2362    OverloadCandidateSet::iterator Best;
2363    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2364    case OR_Success:
2365      // C++ [over.ics.ref]p1:
2366      //
2367      //   [...] If the parameter binds directly to the result of
2368      //   applying a conversion function to the argument
2369      //   expression, the implicit conversion sequence is a
2370      //   user-defined conversion sequence (13.3.3.1.2), with the
2371      //   second standard conversion sequence either an identity
2372      //   conversion or, if the conversion function returns an
2373      //   entity of a type that is a derived class of the parameter
2374      //   type, a derived-to-base Conversion.
2375      if (!Best->FinalConversion.DirectBinding)
2376        break;
2377
2378      ICS.setUserDefined();
2379      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2380      ICS.UserDefined.After = Best->FinalConversion;
2381      ICS.UserDefined.ConversionFunction = Best->Function;
2382      ICS.UserDefined.EllipsisConversion = false;
2383      assert(ICS.UserDefined.After.ReferenceBinding &&
2384             ICS.UserDefined.After.DirectBinding &&
2385             "Expected a direct reference binding!");
2386      return ICS;
2387
2388    case OR_Ambiguous:
2389      ICS.setAmbiguous();
2390      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2391           Cand != CandidateSet.end(); ++Cand)
2392        if (Cand->Viable)
2393          ICS.Ambiguous.addConversion(Cand->Function);
2394      return ICS;
2395
2396    case OR_No_Viable_Function:
2397    case OR_Deleted:
2398      // There was no suitable conversion, or we found a deleted
2399      // conversion; continue with other checks.
2400      break;
2401    }
2402  }
2403
2404  //     -- Otherwise, the reference shall be to a non-volatile const
2405  //        type (i.e., cv1 shall be const), or the reference shall be an
2406  //        rvalue reference and the initializer expression shall be an rvalue.
2407  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2408    return ICS;
2409
2410  //       -- If the initializer expression is an rvalue, with T2 a
2411  //          class type, and "cv1 T1" is reference-compatible with
2412  //          "cv2 T2," the reference is bound in one of the
2413  //          following ways (the choice is implementation-defined):
2414  //
2415  //          -- The reference is bound to the object represented by
2416  //             the rvalue (see 3.10) or to a sub-object within that
2417  //             object.
2418  //
2419  //          -- A temporary of type "cv1 T2" [sic] is created, and
2420  //             a constructor is called to copy the entire rvalue
2421  //             object into the temporary. The reference is bound to
2422  //             the temporary or to a sub-object within the
2423  //             temporary.
2424  //
2425  //          The constructor that would be used to make the copy
2426  //          shall be callable whether or not the copy is actually
2427  //          done.
2428  //
2429  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2430  // freedom, so we will always take the first option and never build
2431  // a temporary in this case.
2432  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2433      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2434    ICS.setStandard();
2435    ICS.Standard.First = ICK_Identity;
2436    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2437    ICS.Standard.Third = ICK_Identity;
2438    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2439    ICS.Standard.setToType(0, T2);
2440    ICS.Standard.setToType(1, T1);
2441    ICS.Standard.setToType(2, T1);
2442    ICS.Standard.ReferenceBinding = true;
2443    ICS.Standard.DirectBinding = false;
2444    ICS.Standard.RRefBinding = isRValRef;
2445    ICS.Standard.CopyConstructor = 0;
2446    return ICS;
2447  }
2448
2449  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2450  //          initialized from the initializer expression using the
2451  //          rules for a non-reference copy initialization (8.5). The
2452  //          reference is then bound to the temporary. If T1 is
2453  //          reference-related to T2, cv1 must be the same
2454  //          cv-qualification as, or greater cv-qualification than,
2455  //          cv2; otherwise, the program is ill-formed.
2456  if (RefRelationship == Sema::Ref_Related) {
2457    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2458    // we would be reference-compatible or reference-compatible with
2459    // added qualification. But that wasn't the case, so the reference
2460    // initialization fails.
2461    return ICS;
2462  }
2463
2464  // If at least one of the types is a class type, the types are not
2465  // related, and we aren't allowed any user conversions, the
2466  // reference binding fails. This case is important for breaking
2467  // recursion, since TryImplicitConversion below will attempt to
2468  // create a temporary through the use of a copy constructor.
2469  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2470      (T1->isRecordType() || T2->isRecordType()))
2471    return ICS;
2472
2473  // C++ [over.ics.ref]p2:
2474  //
2475  //   When a parameter of reference type is not bound directly to
2476  //   an argument expression, the conversion sequence is the one
2477  //   required to convert the argument expression to the
2478  //   underlying type of the reference according to
2479  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2480  //   to copy-initializing a temporary of the underlying type with
2481  //   the argument expression. Any difference in top-level
2482  //   cv-qualification is subsumed by the initialization itself
2483  //   and does not constitute a conversion.
2484  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2485                                /*AllowExplicit=*/false,
2486                                /*ForceRValue=*/false,
2487                                /*InOverloadResolution=*/false);
2488
2489  // Of course, that's still a reference binding.
2490  if (ICS.isStandard()) {
2491    ICS.Standard.ReferenceBinding = true;
2492    ICS.Standard.RRefBinding = isRValRef;
2493  } else if (ICS.isUserDefined()) {
2494    ICS.UserDefined.After.ReferenceBinding = true;
2495    ICS.UserDefined.After.RRefBinding = isRValRef;
2496  }
2497  return ICS;
2498}
2499
2500/// TryCopyInitialization - Try to copy-initialize a value of type
2501/// ToType from the expression From. Return the implicit conversion
2502/// sequence required to pass this argument, which may be a bad
2503/// conversion sequence (meaning that the argument cannot be passed to
2504/// a parameter of this type). If @p SuppressUserConversions, then we
2505/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2506/// then we treat @p From as an rvalue, even if it is an lvalue.
2507static ImplicitConversionSequence
2508TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2509                      bool SuppressUserConversions, bool ForceRValue,
2510                      bool InOverloadResolution) {
2511  if (ToType->isReferenceType())
2512    return TryReferenceInit(S, From, ToType,
2513                            /*FIXME:*/From->getLocStart(),
2514                            SuppressUserConversions,
2515                            /*AllowExplicit=*/false);
2516
2517  return S.TryImplicitConversion(From, ToType,
2518                                 SuppressUserConversions,
2519                                 /*AllowExplicit=*/false,
2520                                 ForceRValue,
2521                                 InOverloadResolution);
2522}
2523
2524/// TryObjectArgumentInitialization - Try to initialize the object
2525/// parameter of the given member function (@c Method) from the
2526/// expression @p From.
2527ImplicitConversionSequence
2528Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2529                                      CXXMethodDecl *Method,
2530                                      CXXRecordDecl *ActingContext) {
2531  QualType ClassType = Context.getTypeDeclType(ActingContext);
2532  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2533  //                 const volatile object.
2534  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2535    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2536  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2537
2538  // Set up the conversion sequence as a "bad" conversion, to allow us
2539  // to exit early.
2540  ImplicitConversionSequence ICS;
2541
2542  // We need to have an object of class type.
2543  QualType FromType = OrigFromType;
2544  if (const PointerType *PT = FromType->getAs<PointerType>())
2545    FromType = PT->getPointeeType();
2546
2547  assert(FromType->isRecordType());
2548
2549  // The implicit object parameter is has the type "reference to cv X",
2550  // where X is the class of which the function is a member
2551  // (C++ [over.match.funcs]p4). However, when finding an implicit
2552  // conversion sequence for the argument, we are not allowed to
2553  // create temporaries or perform user-defined conversions
2554  // (C++ [over.match.funcs]p5). We perform a simplified version of
2555  // reference binding here, that allows class rvalues to bind to
2556  // non-constant references.
2557
2558  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2559  // with the implicit object parameter (C++ [over.match.funcs]p5).
2560  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2561  if (ImplicitParamType.getCVRQualifiers()
2562                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2563      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2564    ICS.setBad(BadConversionSequence::bad_qualifiers,
2565               OrigFromType, ImplicitParamType);
2566    return ICS;
2567  }
2568
2569  // Check that we have either the same type or a derived type. It
2570  // affects the conversion rank.
2571  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2572  ImplicitConversionKind SecondKind;
2573  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2574    SecondKind = ICK_Identity;
2575  } else if (IsDerivedFrom(FromType, ClassType))
2576    SecondKind = ICK_Derived_To_Base;
2577  else {
2578    ICS.setBad(BadConversionSequence::unrelated_class,
2579               FromType, ImplicitParamType);
2580    return ICS;
2581  }
2582
2583  // Success. Mark this as a reference binding.
2584  ICS.setStandard();
2585  ICS.Standard.setAsIdentityConversion();
2586  ICS.Standard.Second = SecondKind;
2587  ICS.Standard.setFromType(FromType);
2588  ICS.Standard.setAllToTypes(ImplicitParamType);
2589  ICS.Standard.ReferenceBinding = true;
2590  ICS.Standard.DirectBinding = true;
2591  ICS.Standard.RRefBinding = false;
2592  return ICS;
2593}
2594
2595/// PerformObjectArgumentInitialization - Perform initialization of
2596/// the implicit object parameter for the given Method with the given
2597/// expression.
2598bool
2599Sema::PerformObjectArgumentInitialization(Expr *&From,
2600                                          NestedNameSpecifier *Qualifier,
2601                                          NamedDecl *FoundDecl,
2602                                          CXXMethodDecl *Method) {
2603  QualType FromRecordType, DestType;
2604  QualType ImplicitParamRecordType  =
2605    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2606
2607  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2608    FromRecordType = PT->getPointeeType();
2609    DestType = Method->getThisType(Context);
2610  } else {
2611    FromRecordType = From->getType();
2612    DestType = ImplicitParamRecordType;
2613  }
2614
2615  // Note that we always use the true parent context when performing
2616  // the actual argument initialization.
2617  ImplicitConversionSequence ICS
2618    = TryObjectArgumentInitialization(From->getType(), Method,
2619                                      Method->getParent());
2620  if (ICS.isBad())
2621    return Diag(From->getSourceRange().getBegin(),
2622                diag::err_implicit_object_parameter_init)
2623       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2624
2625  if (ICS.Standard.Second == ICK_Derived_To_Base)
2626    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2627
2628  if (!Context.hasSameType(From->getType(), DestType))
2629    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2630                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2631  return false;
2632}
2633
2634/// TryContextuallyConvertToBool - Attempt to contextually convert the
2635/// expression From to bool (C++0x [conv]p3).
2636ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2637  return TryImplicitConversion(From, Context.BoolTy,
2638                               // FIXME: Are these flags correct?
2639                               /*SuppressUserConversions=*/false,
2640                               /*AllowExplicit=*/true,
2641                               /*ForceRValue=*/false,
2642                               /*InOverloadResolution=*/false);
2643}
2644
2645/// PerformContextuallyConvertToBool - Perform a contextual conversion
2646/// of the expression From to bool (C++0x [conv]p3).
2647bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2648  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2649  if (!ICS.isBad())
2650    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2651
2652  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2653    return  Diag(From->getSourceRange().getBegin(),
2654                 diag::err_typecheck_bool_condition)
2655                  << From->getType() << From->getSourceRange();
2656  return true;
2657}
2658
2659/// AddOverloadCandidate - Adds the given function to the set of
2660/// candidate functions, using the given function call arguments.  If
2661/// @p SuppressUserConversions, then don't allow user-defined
2662/// conversions via constructors or conversion operators.
2663///
2664/// \para PartialOverloading true if we are performing "partial" overloading
2665/// based on an incomplete set of function arguments. This feature is used by
2666/// code completion.
2667void
2668Sema::AddOverloadCandidate(FunctionDecl *Function,
2669                           DeclAccessPair FoundDecl,
2670                           Expr **Args, unsigned NumArgs,
2671                           OverloadCandidateSet& CandidateSet,
2672                           bool SuppressUserConversions,
2673                           bool PartialOverloading) {
2674  const FunctionProtoType* Proto
2675    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2676  assert(Proto && "Functions without a prototype cannot be overloaded");
2677  assert(!Function->getDescribedFunctionTemplate() &&
2678         "Use AddTemplateOverloadCandidate for function templates");
2679
2680  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2681    if (!isa<CXXConstructorDecl>(Method)) {
2682      // If we get here, it's because we're calling a member function
2683      // that is named without a member access expression (e.g.,
2684      // "this->f") that was either written explicitly or created
2685      // implicitly. This can happen with a qualified call to a member
2686      // function, e.g., X::f(). We use an empty type for the implied
2687      // object argument (C++ [over.call.func]p3), and the acting context
2688      // is irrelevant.
2689      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2690                         QualType(), Args, NumArgs, CandidateSet,
2691                         SuppressUserConversions);
2692      return;
2693    }
2694    // We treat a constructor like a non-member function, since its object
2695    // argument doesn't participate in overload resolution.
2696  }
2697
2698  if (!CandidateSet.isNewCandidate(Function))
2699    return;
2700
2701  // Overload resolution is always an unevaluated context.
2702  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2703
2704  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2705    // C++ [class.copy]p3:
2706    //   A member function template is never instantiated to perform the copy
2707    //   of a class object to an object of its class type.
2708    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2709    if (NumArgs == 1 &&
2710        Constructor->isCopyConstructorLikeSpecialization() &&
2711        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2712         IsDerivedFrom(Args[0]->getType(), ClassType)))
2713      return;
2714  }
2715
2716  // Add this candidate
2717  CandidateSet.push_back(OverloadCandidate());
2718  OverloadCandidate& Candidate = CandidateSet.back();
2719  Candidate.FoundDecl = FoundDecl;
2720  Candidate.Function = Function;
2721  Candidate.Viable = true;
2722  Candidate.IsSurrogate = false;
2723  Candidate.IgnoreObjectArgument = false;
2724
2725  unsigned NumArgsInProto = Proto->getNumArgs();
2726
2727  // (C++ 13.3.2p2): A candidate function having fewer than m
2728  // parameters is viable only if it has an ellipsis in its parameter
2729  // list (8.3.5).
2730  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2731      !Proto->isVariadic()) {
2732    Candidate.Viable = false;
2733    Candidate.FailureKind = ovl_fail_too_many_arguments;
2734    return;
2735  }
2736
2737  // (C++ 13.3.2p2): A candidate function having more than m parameters
2738  // is viable only if the (m+1)st parameter has a default argument
2739  // (8.3.6). For the purposes of overload resolution, the
2740  // parameter list is truncated on the right, so that there are
2741  // exactly m parameters.
2742  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2743  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2744    // Not enough arguments.
2745    Candidate.Viable = false;
2746    Candidate.FailureKind = ovl_fail_too_few_arguments;
2747    return;
2748  }
2749
2750  // Determine the implicit conversion sequences for each of the
2751  // arguments.
2752  Candidate.Conversions.resize(NumArgs);
2753  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2754    if (ArgIdx < NumArgsInProto) {
2755      // (C++ 13.3.2p3): for F to be a viable function, there shall
2756      // exist for each argument an implicit conversion sequence
2757      // (13.3.3.1) that converts that argument to the corresponding
2758      // parameter of F.
2759      QualType ParamType = Proto->getArgType(ArgIdx);
2760      Candidate.Conversions[ArgIdx]
2761        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2762                                SuppressUserConversions,
2763                                /*ForceRValue=*/false,
2764                                /*InOverloadResolution=*/true);
2765      if (Candidate.Conversions[ArgIdx].isBad()) {
2766        Candidate.Viable = false;
2767        Candidate.FailureKind = ovl_fail_bad_conversion;
2768        break;
2769      }
2770    } else {
2771      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2772      // argument for which there is no corresponding parameter is
2773      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2774      Candidate.Conversions[ArgIdx].setEllipsis();
2775    }
2776  }
2777}
2778
2779/// \brief Add all of the function declarations in the given function set to
2780/// the overload canddiate set.
2781void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2782                                 Expr **Args, unsigned NumArgs,
2783                                 OverloadCandidateSet& CandidateSet,
2784                                 bool SuppressUserConversions) {
2785  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2786    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2787    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2788      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2789        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2790                           cast<CXXMethodDecl>(FD)->getParent(),
2791                           Args[0]->getType(), Args + 1, NumArgs - 1,
2792                           CandidateSet, SuppressUserConversions);
2793      else
2794        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2795                             SuppressUserConversions);
2796    } else {
2797      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2798      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2799          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2800        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2801                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2802                                   /*FIXME: explicit args */ 0,
2803                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2804                                   CandidateSet,
2805                                   SuppressUserConversions);
2806      else
2807        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2808                                     /*FIXME: explicit args */ 0,
2809                                     Args, NumArgs, CandidateSet,
2810                                     SuppressUserConversions);
2811    }
2812  }
2813}
2814
2815/// AddMethodCandidate - Adds a named decl (which is some kind of
2816/// method) as a method candidate to the given overload set.
2817void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2818                              QualType ObjectType,
2819                              Expr **Args, unsigned NumArgs,
2820                              OverloadCandidateSet& CandidateSet,
2821                              bool SuppressUserConversions) {
2822  NamedDecl *Decl = FoundDecl.getDecl();
2823  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2824
2825  if (isa<UsingShadowDecl>(Decl))
2826    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2827
2828  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2829    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2830           "Expected a member function template");
2831    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2832                               /*ExplicitArgs*/ 0,
2833                               ObjectType, Args, NumArgs,
2834                               CandidateSet,
2835                               SuppressUserConversions);
2836  } else {
2837    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2838                       ObjectType, Args, NumArgs,
2839                       CandidateSet, SuppressUserConversions);
2840  }
2841}
2842
2843/// AddMethodCandidate - Adds the given C++ member function to the set
2844/// of candidate functions, using the given function call arguments
2845/// and the object argument (@c Object). For example, in a call
2846/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2847/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2848/// allow user-defined conversions via constructors or conversion
2849/// operators.
2850void
2851Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2852                         CXXRecordDecl *ActingContext, QualType ObjectType,
2853                         Expr **Args, unsigned NumArgs,
2854                         OverloadCandidateSet& CandidateSet,
2855                         bool SuppressUserConversions) {
2856  const FunctionProtoType* Proto
2857    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2858  assert(Proto && "Methods without a prototype cannot be overloaded");
2859  assert(!isa<CXXConstructorDecl>(Method) &&
2860         "Use AddOverloadCandidate for constructors");
2861
2862  if (!CandidateSet.isNewCandidate(Method))
2863    return;
2864
2865  // Overload resolution is always an unevaluated context.
2866  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2867
2868  // Add this candidate
2869  CandidateSet.push_back(OverloadCandidate());
2870  OverloadCandidate& Candidate = CandidateSet.back();
2871  Candidate.FoundDecl = FoundDecl;
2872  Candidate.Function = Method;
2873  Candidate.IsSurrogate = false;
2874  Candidate.IgnoreObjectArgument = false;
2875
2876  unsigned NumArgsInProto = Proto->getNumArgs();
2877
2878  // (C++ 13.3.2p2): A candidate function having fewer than m
2879  // parameters is viable only if it has an ellipsis in its parameter
2880  // list (8.3.5).
2881  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2882    Candidate.Viable = false;
2883    Candidate.FailureKind = ovl_fail_too_many_arguments;
2884    return;
2885  }
2886
2887  // (C++ 13.3.2p2): A candidate function having more than m parameters
2888  // is viable only if the (m+1)st parameter has a default argument
2889  // (8.3.6). For the purposes of overload resolution, the
2890  // parameter list is truncated on the right, so that there are
2891  // exactly m parameters.
2892  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2893  if (NumArgs < MinRequiredArgs) {
2894    // Not enough arguments.
2895    Candidate.Viable = false;
2896    Candidate.FailureKind = ovl_fail_too_few_arguments;
2897    return;
2898  }
2899
2900  Candidate.Viable = true;
2901  Candidate.Conversions.resize(NumArgs + 1);
2902
2903  if (Method->isStatic() || ObjectType.isNull())
2904    // The implicit object argument is ignored.
2905    Candidate.IgnoreObjectArgument = true;
2906  else {
2907    // Determine the implicit conversion sequence for the object
2908    // parameter.
2909    Candidate.Conversions[0]
2910      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2911    if (Candidate.Conversions[0].isBad()) {
2912      Candidate.Viable = false;
2913      Candidate.FailureKind = ovl_fail_bad_conversion;
2914      return;
2915    }
2916  }
2917
2918  // Determine the implicit conversion sequences for each of the
2919  // arguments.
2920  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2921    if (ArgIdx < NumArgsInProto) {
2922      // (C++ 13.3.2p3): for F to be a viable function, there shall
2923      // exist for each argument an implicit conversion sequence
2924      // (13.3.3.1) that converts that argument to the corresponding
2925      // parameter of F.
2926      QualType ParamType = Proto->getArgType(ArgIdx);
2927      Candidate.Conversions[ArgIdx + 1]
2928        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2929                                SuppressUserConversions,
2930                                /*ForceRValue=*/false,
2931                                /*InOverloadResolution=*/true);
2932      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2933        Candidate.Viable = false;
2934        Candidate.FailureKind = ovl_fail_bad_conversion;
2935        break;
2936      }
2937    } else {
2938      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2939      // argument for which there is no corresponding parameter is
2940      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2941      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2942    }
2943  }
2944}
2945
2946/// \brief Add a C++ member function template as a candidate to the candidate
2947/// set, using template argument deduction to produce an appropriate member
2948/// function template specialization.
2949void
2950Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2951                                 DeclAccessPair FoundDecl,
2952                                 CXXRecordDecl *ActingContext,
2953                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2954                                 QualType ObjectType,
2955                                 Expr **Args, unsigned NumArgs,
2956                                 OverloadCandidateSet& CandidateSet,
2957                                 bool SuppressUserConversions) {
2958  if (!CandidateSet.isNewCandidate(MethodTmpl))
2959    return;
2960
2961  // C++ [over.match.funcs]p7:
2962  //   In each case where a candidate is a function template, candidate
2963  //   function template specializations are generated using template argument
2964  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2965  //   candidate functions in the usual way.113) A given name can refer to one
2966  //   or more function templates and also to a set of overloaded non-template
2967  //   functions. In such a case, the candidate functions generated from each
2968  //   function template are combined with the set of non-template candidate
2969  //   functions.
2970  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2971  FunctionDecl *Specialization = 0;
2972  if (TemplateDeductionResult Result
2973      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2974                                Args, NumArgs, Specialization, Info)) {
2975        // FIXME: Record what happened with template argument deduction, so
2976        // that we can give the user a beautiful diagnostic.
2977        (void)Result;
2978        return;
2979      }
2980
2981  // Add the function template specialization produced by template argument
2982  // deduction as a candidate.
2983  assert(Specialization && "Missing member function template specialization?");
2984  assert(isa<CXXMethodDecl>(Specialization) &&
2985         "Specialization is not a member function?");
2986  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2987                     ActingContext, ObjectType, Args, NumArgs,
2988                     CandidateSet, SuppressUserConversions);
2989}
2990
2991/// \brief Add a C++ function template specialization as a candidate
2992/// in the candidate set, using template argument deduction to produce
2993/// an appropriate function template specialization.
2994void
2995Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2996                                   DeclAccessPair FoundDecl,
2997                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2998                                   Expr **Args, unsigned NumArgs,
2999                                   OverloadCandidateSet& CandidateSet,
3000                                   bool SuppressUserConversions) {
3001  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3002    return;
3003
3004  // C++ [over.match.funcs]p7:
3005  //   In each case where a candidate is a function template, candidate
3006  //   function template specializations are generated using template argument
3007  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3008  //   candidate functions in the usual way.113) A given name can refer to one
3009  //   or more function templates and also to a set of overloaded non-template
3010  //   functions. In such a case, the candidate functions generated from each
3011  //   function template are combined with the set of non-template candidate
3012  //   functions.
3013  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3014  FunctionDecl *Specialization = 0;
3015  if (TemplateDeductionResult Result
3016        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3017                                  Args, NumArgs, Specialization, Info)) {
3018    CandidateSet.push_back(OverloadCandidate());
3019    OverloadCandidate &Candidate = CandidateSet.back();
3020    Candidate.FoundDecl = FoundDecl;
3021    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3022    Candidate.Viable = false;
3023    Candidate.FailureKind = ovl_fail_bad_deduction;
3024    Candidate.IsSurrogate = false;
3025    Candidate.IgnoreObjectArgument = false;
3026
3027    // TODO: record more information about failed template arguments
3028    Candidate.DeductionFailure.Result = Result;
3029    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3030    return;
3031  }
3032
3033  // Add the function template specialization produced by template argument
3034  // deduction as a candidate.
3035  assert(Specialization && "Missing function template specialization?");
3036  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3037                       SuppressUserConversions);
3038}
3039
3040/// AddConversionCandidate - Add a C++ conversion function as a
3041/// candidate in the candidate set (C++ [over.match.conv],
3042/// C++ [over.match.copy]). From is the expression we're converting from,
3043/// and ToType is the type that we're eventually trying to convert to
3044/// (which may or may not be the same type as the type that the
3045/// conversion function produces).
3046void
3047Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3048                             DeclAccessPair FoundDecl,
3049                             CXXRecordDecl *ActingContext,
3050                             Expr *From, QualType ToType,
3051                             OverloadCandidateSet& CandidateSet) {
3052  assert(!Conversion->getDescribedFunctionTemplate() &&
3053         "Conversion function templates use AddTemplateConversionCandidate");
3054
3055  if (!CandidateSet.isNewCandidate(Conversion))
3056    return;
3057
3058  // Overload resolution is always an unevaluated context.
3059  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3060
3061  // Add this candidate
3062  CandidateSet.push_back(OverloadCandidate());
3063  OverloadCandidate& Candidate = CandidateSet.back();
3064  Candidate.FoundDecl = FoundDecl;
3065  Candidate.Function = Conversion;
3066  Candidate.IsSurrogate = false;
3067  Candidate.IgnoreObjectArgument = false;
3068  Candidate.FinalConversion.setAsIdentityConversion();
3069  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3070  Candidate.FinalConversion.setAllToTypes(ToType);
3071
3072  // Determine the implicit conversion sequence for the implicit
3073  // object parameter.
3074  Candidate.Viable = true;
3075  Candidate.Conversions.resize(1);
3076  Candidate.Conversions[0]
3077    = TryObjectArgumentInitialization(From->getType(), Conversion,
3078                                      ActingContext);
3079  // Conversion functions to a different type in the base class is visible in
3080  // the derived class.  So, a derived to base conversion should not participate
3081  // in overload resolution.
3082  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3083    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3084  if (Candidate.Conversions[0].isBad()) {
3085    Candidate.Viable = false;
3086    Candidate.FailureKind = ovl_fail_bad_conversion;
3087    return;
3088  }
3089
3090  // We won't go through a user-define type conversion function to convert a
3091  // derived to base as such conversions are given Conversion Rank. They only
3092  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3093  QualType FromCanon
3094    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3095  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3096  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3097    Candidate.Viable = false;
3098    Candidate.FailureKind = ovl_fail_trivial_conversion;
3099    return;
3100  }
3101
3102
3103  // To determine what the conversion from the result of calling the
3104  // conversion function to the type we're eventually trying to
3105  // convert to (ToType), we need to synthesize a call to the
3106  // conversion function and attempt copy initialization from it. This
3107  // makes sure that we get the right semantics with respect to
3108  // lvalues/rvalues and the type. Fortunately, we can allocate this
3109  // call on the stack and we don't need its arguments to be
3110  // well-formed.
3111  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3112                            From->getLocStart());
3113  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3114                                CastExpr::CK_FunctionToPointerDecay,
3115                                &ConversionRef, false);
3116
3117  // Note that it is safe to allocate CallExpr on the stack here because
3118  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3119  // allocator).
3120  CallExpr Call(Context, &ConversionFn, 0, 0,
3121                Conversion->getConversionType().getNonReferenceType(),
3122                From->getLocStart());
3123  ImplicitConversionSequence ICS =
3124    TryCopyInitialization(*this, &Call, ToType,
3125                          /*SuppressUserConversions=*/true,
3126                          /*ForceRValue=*/false,
3127                          /*InOverloadResolution=*/false);
3128
3129  switch (ICS.getKind()) {
3130  case ImplicitConversionSequence::StandardConversion:
3131    Candidate.FinalConversion = ICS.Standard;
3132
3133    // C++ [over.ics.user]p3:
3134    //   If the user-defined conversion is specified by a specialization of a
3135    //   conversion function template, the second standard conversion sequence
3136    //   shall have exact match rank.
3137    if (Conversion->getPrimaryTemplate() &&
3138        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3139      Candidate.Viable = false;
3140      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3141    }
3142
3143    break;
3144
3145  case ImplicitConversionSequence::BadConversion:
3146    Candidate.Viable = false;
3147    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3148    break;
3149
3150  default:
3151    assert(false &&
3152           "Can only end up with a standard conversion sequence or failure");
3153  }
3154}
3155
3156/// \brief Adds a conversion function template specialization
3157/// candidate to the overload set, using template argument deduction
3158/// to deduce the template arguments of the conversion function
3159/// template from the type that we are converting to (C++
3160/// [temp.deduct.conv]).
3161void
3162Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3163                                     DeclAccessPair FoundDecl,
3164                                     CXXRecordDecl *ActingDC,
3165                                     Expr *From, QualType ToType,
3166                                     OverloadCandidateSet &CandidateSet) {
3167  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3168         "Only conversion function templates permitted here");
3169
3170  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3171    return;
3172
3173  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3174  CXXConversionDecl *Specialization = 0;
3175  if (TemplateDeductionResult Result
3176        = DeduceTemplateArguments(FunctionTemplate, ToType,
3177                                  Specialization, Info)) {
3178    // FIXME: Record what happened with template argument deduction, so
3179    // that we can give the user a beautiful diagnostic.
3180    (void)Result;
3181    return;
3182  }
3183
3184  // Add the conversion function template specialization produced by
3185  // template argument deduction as a candidate.
3186  assert(Specialization && "Missing function template specialization?");
3187  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3188                         CandidateSet);
3189}
3190
3191/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3192/// converts the given @c Object to a function pointer via the
3193/// conversion function @c Conversion, and then attempts to call it
3194/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3195/// the type of function that we'll eventually be calling.
3196void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3197                                 DeclAccessPair FoundDecl,
3198                                 CXXRecordDecl *ActingContext,
3199                                 const FunctionProtoType *Proto,
3200                                 QualType ObjectType,
3201                                 Expr **Args, unsigned NumArgs,
3202                                 OverloadCandidateSet& CandidateSet) {
3203  if (!CandidateSet.isNewCandidate(Conversion))
3204    return;
3205
3206  // Overload resolution is always an unevaluated context.
3207  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3208
3209  CandidateSet.push_back(OverloadCandidate());
3210  OverloadCandidate& Candidate = CandidateSet.back();
3211  Candidate.FoundDecl = FoundDecl;
3212  Candidate.Function = 0;
3213  Candidate.Surrogate = Conversion;
3214  Candidate.Viable = true;
3215  Candidate.IsSurrogate = true;
3216  Candidate.IgnoreObjectArgument = false;
3217  Candidate.Conversions.resize(NumArgs + 1);
3218
3219  // Determine the implicit conversion sequence for the implicit
3220  // object parameter.
3221  ImplicitConversionSequence ObjectInit
3222    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3223  if (ObjectInit.isBad()) {
3224    Candidate.Viable = false;
3225    Candidate.FailureKind = ovl_fail_bad_conversion;
3226    Candidate.Conversions[0] = ObjectInit;
3227    return;
3228  }
3229
3230  // The first conversion is actually a user-defined conversion whose
3231  // first conversion is ObjectInit's standard conversion (which is
3232  // effectively a reference binding). Record it as such.
3233  Candidate.Conversions[0].setUserDefined();
3234  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3235  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3236  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3237  Candidate.Conversions[0].UserDefined.After
3238    = Candidate.Conversions[0].UserDefined.Before;
3239  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3240
3241  // Find the
3242  unsigned NumArgsInProto = Proto->getNumArgs();
3243
3244  // (C++ 13.3.2p2): A candidate function having fewer than m
3245  // parameters is viable only if it has an ellipsis in its parameter
3246  // list (8.3.5).
3247  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3248    Candidate.Viable = false;
3249    Candidate.FailureKind = ovl_fail_too_many_arguments;
3250    return;
3251  }
3252
3253  // Function types don't have any default arguments, so just check if
3254  // we have enough arguments.
3255  if (NumArgs < NumArgsInProto) {
3256    // Not enough arguments.
3257    Candidate.Viable = false;
3258    Candidate.FailureKind = ovl_fail_too_few_arguments;
3259    return;
3260  }
3261
3262  // Determine the implicit conversion sequences for each of the
3263  // arguments.
3264  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3265    if (ArgIdx < NumArgsInProto) {
3266      // (C++ 13.3.2p3): for F to be a viable function, there shall
3267      // exist for each argument an implicit conversion sequence
3268      // (13.3.3.1) that converts that argument to the corresponding
3269      // parameter of F.
3270      QualType ParamType = Proto->getArgType(ArgIdx);
3271      Candidate.Conversions[ArgIdx + 1]
3272        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3273                                /*SuppressUserConversions=*/false,
3274                                /*ForceRValue=*/false,
3275                                /*InOverloadResolution=*/false);
3276      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3277        Candidate.Viable = false;
3278        Candidate.FailureKind = ovl_fail_bad_conversion;
3279        break;
3280      }
3281    } else {
3282      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3283      // argument for which there is no corresponding parameter is
3284      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3285      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3286    }
3287  }
3288}
3289
3290// FIXME: This will eventually be removed, once we've migrated all of the
3291// operator overloading logic over to the scheme used by binary operators, which
3292// works for template instantiation.
3293void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3294                                 SourceLocation OpLoc,
3295                                 Expr **Args, unsigned NumArgs,
3296                                 OverloadCandidateSet& CandidateSet,
3297                                 SourceRange OpRange) {
3298  UnresolvedSet<16> Fns;
3299
3300  QualType T1 = Args[0]->getType();
3301  QualType T2;
3302  if (NumArgs > 1)
3303    T2 = Args[1]->getType();
3304
3305  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3306  if (S)
3307    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3308  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3309  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3310                                       CandidateSet);
3311  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3312  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3313}
3314
3315/// \brief Add overload candidates for overloaded operators that are
3316/// member functions.
3317///
3318/// Add the overloaded operator candidates that are member functions
3319/// for the operator Op that was used in an operator expression such
3320/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3321/// CandidateSet will store the added overload candidates. (C++
3322/// [over.match.oper]).
3323void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3324                                       SourceLocation OpLoc,
3325                                       Expr **Args, unsigned NumArgs,
3326                                       OverloadCandidateSet& CandidateSet,
3327                                       SourceRange OpRange) {
3328  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3329
3330  // C++ [over.match.oper]p3:
3331  //   For a unary operator @ with an operand of a type whose
3332  //   cv-unqualified version is T1, and for a binary operator @ with
3333  //   a left operand of a type whose cv-unqualified version is T1 and
3334  //   a right operand of a type whose cv-unqualified version is T2,
3335  //   three sets of candidate functions, designated member
3336  //   candidates, non-member candidates and built-in candidates, are
3337  //   constructed as follows:
3338  QualType T1 = Args[0]->getType();
3339  QualType T2;
3340  if (NumArgs > 1)
3341    T2 = Args[1]->getType();
3342
3343  //     -- If T1 is a class type, the set of member candidates is the
3344  //        result of the qualified lookup of T1::operator@
3345  //        (13.3.1.1.1); otherwise, the set of member candidates is
3346  //        empty.
3347  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3348    // Complete the type if it can be completed. Otherwise, we're done.
3349    if (RequireCompleteType(OpLoc, T1, PDiag()))
3350      return;
3351
3352    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3353    LookupQualifiedName(Operators, T1Rec->getDecl());
3354    Operators.suppressDiagnostics();
3355
3356    for (LookupResult::iterator Oper = Operators.begin(),
3357                             OperEnd = Operators.end();
3358         Oper != OperEnd;
3359         ++Oper)
3360      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3361                         Args + 1, NumArgs - 1, CandidateSet,
3362                         /* SuppressUserConversions = */ false);
3363  }
3364}
3365
3366/// AddBuiltinCandidate - Add a candidate for a built-in
3367/// operator. ResultTy and ParamTys are the result and parameter types
3368/// of the built-in candidate, respectively. Args and NumArgs are the
3369/// arguments being passed to the candidate. IsAssignmentOperator
3370/// should be true when this built-in candidate is an assignment
3371/// operator. NumContextualBoolArguments is the number of arguments
3372/// (at the beginning of the argument list) that will be contextually
3373/// converted to bool.
3374void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3375                               Expr **Args, unsigned NumArgs,
3376                               OverloadCandidateSet& CandidateSet,
3377                               bool IsAssignmentOperator,
3378                               unsigned NumContextualBoolArguments) {
3379  // Overload resolution is always an unevaluated context.
3380  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3381
3382  // Add this candidate
3383  CandidateSet.push_back(OverloadCandidate());
3384  OverloadCandidate& Candidate = CandidateSet.back();
3385  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3386  Candidate.Function = 0;
3387  Candidate.IsSurrogate = false;
3388  Candidate.IgnoreObjectArgument = false;
3389  Candidate.BuiltinTypes.ResultTy = ResultTy;
3390  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3391    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3392
3393  // Determine the implicit conversion sequences for each of the
3394  // arguments.
3395  Candidate.Viable = true;
3396  Candidate.Conversions.resize(NumArgs);
3397  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3398    // C++ [over.match.oper]p4:
3399    //   For the built-in assignment operators, conversions of the
3400    //   left operand are restricted as follows:
3401    //     -- no temporaries are introduced to hold the left operand, and
3402    //     -- no user-defined conversions are applied to the left
3403    //        operand to achieve a type match with the left-most
3404    //        parameter of a built-in candidate.
3405    //
3406    // We block these conversions by turning off user-defined
3407    // conversions, since that is the only way that initialization of
3408    // a reference to a non-class type can occur from something that
3409    // is not of the same type.
3410    if (ArgIdx < NumContextualBoolArguments) {
3411      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3412             "Contextual conversion to bool requires bool type");
3413      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3414    } else {
3415      Candidate.Conversions[ArgIdx]
3416        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3417                                ArgIdx == 0 && IsAssignmentOperator,
3418                                /*ForceRValue=*/false,
3419                                /*InOverloadResolution=*/false);
3420    }
3421    if (Candidate.Conversions[ArgIdx].isBad()) {
3422      Candidate.Viable = false;
3423      Candidate.FailureKind = ovl_fail_bad_conversion;
3424      break;
3425    }
3426  }
3427}
3428
3429/// BuiltinCandidateTypeSet - A set of types that will be used for the
3430/// candidate operator functions for built-in operators (C++
3431/// [over.built]). The types are separated into pointer types and
3432/// enumeration types.
3433class BuiltinCandidateTypeSet  {
3434  /// TypeSet - A set of types.
3435  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3436
3437  /// PointerTypes - The set of pointer types that will be used in the
3438  /// built-in candidates.
3439  TypeSet PointerTypes;
3440
3441  /// MemberPointerTypes - The set of member pointer types that will be
3442  /// used in the built-in candidates.
3443  TypeSet MemberPointerTypes;
3444
3445  /// EnumerationTypes - The set of enumeration types that will be
3446  /// used in the built-in candidates.
3447  TypeSet EnumerationTypes;
3448
3449  /// Sema - The semantic analysis instance where we are building the
3450  /// candidate type set.
3451  Sema &SemaRef;
3452
3453  /// Context - The AST context in which we will build the type sets.
3454  ASTContext &Context;
3455
3456  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3457                                               const Qualifiers &VisibleQuals);
3458  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3459
3460public:
3461  /// iterator - Iterates through the types that are part of the set.
3462  typedef TypeSet::iterator iterator;
3463
3464  BuiltinCandidateTypeSet(Sema &SemaRef)
3465    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3466
3467  void AddTypesConvertedFrom(QualType Ty,
3468                             SourceLocation Loc,
3469                             bool AllowUserConversions,
3470                             bool AllowExplicitConversions,
3471                             const Qualifiers &VisibleTypeConversionsQuals);
3472
3473  /// pointer_begin - First pointer type found;
3474  iterator pointer_begin() { return PointerTypes.begin(); }
3475
3476  /// pointer_end - Past the last pointer type found;
3477  iterator pointer_end() { return PointerTypes.end(); }
3478
3479  /// member_pointer_begin - First member pointer type found;
3480  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3481
3482  /// member_pointer_end - Past the last member pointer type found;
3483  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3484
3485  /// enumeration_begin - First enumeration type found;
3486  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3487
3488  /// enumeration_end - Past the last enumeration type found;
3489  iterator enumeration_end() { return EnumerationTypes.end(); }
3490};
3491
3492/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3493/// the set of pointer types along with any more-qualified variants of
3494/// that type. For example, if @p Ty is "int const *", this routine
3495/// will add "int const *", "int const volatile *", "int const
3496/// restrict *", and "int const volatile restrict *" to the set of
3497/// pointer types. Returns true if the add of @p Ty itself succeeded,
3498/// false otherwise.
3499///
3500/// FIXME: what to do about extended qualifiers?
3501bool
3502BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3503                                             const Qualifiers &VisibleQuals) {
3504
3505  // Insert this type.
3506  if (!PointerTypes.insert(Ty))
3507    return false;
3508
3509  const PointerType *PointerTy = Ty->getAs<PointerType>();
3510  assert(PointerTy && "type was not a pointer type!");
3511
3512  QualType PointeeTy = PointerTy->getPointeeType();
3513  // Don't add qualified variants of arrays. For one, they're not allowed
3514  // (the qualifier would sink to the element type), and for another, the
3515  // only overload situation where it matters is subscript or pointer +- int,
3516  // and those shouldn't have qualifier variants anyway.
3517  if (PointeeTy->isArrayType())
3518    return true;
3519  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3520  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3521    BaseCVR = Array->getElementType().getCVRQualifiers();
3522  bool hasVolatile = VisibleQuals.hasVolatile();
3523  bool hasRestrict = VisibleQuals.hasRestrict();
3524
3525  // Iterate through all strict supersets of BaseCVR.
3526  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3527    if ((CVR | BaseCVR) != CVR) continue;
3528    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3529    // in the types.
3530    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3531    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3532    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3533    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3534  }
3535
3536  return true;
3537}
3538
3539/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3540/// to the set of pointer types along with any more-qualified variants of
3541/// that type. For example, if @p Ty is "int const *", this routine
3542/// will add "int const *", "int const volatile *", "int const
3543/// restrict *", and "int const volatile restrict *" to the set of
3544/// pointer types. Returns true if the add of @p Ty itself succeeded,
3545/// false otherwise.
3546///
3547/// FIXME: what to do about extended qualifiers?
3548bool
3549BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3550    QualType Ty) {
3551  // Insert this type.
3552  if (!MemberPointerTypes.insert(Ty))
3553    return false;
3554
3555  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3556  assert(PointerTy && "type was not a member pointer type!");
3557
3558  QualType PointeeTy = PointerTy->getPointeeType();
3559  // Don't add qualified variants of arrays. For one, they're not allowed
3560  // (the qualifier would sink to the element type), and for another, the
3561  // only overload situation where it matters is subscript or pointer +- int,
3562  // and those shouldn't have qualifier variants anyway.
3563  if (PointeeTy->isArrayType())
3564    return true;
3565  const Type *ClassTy = PointerTy->getClass();
3566
3567  // Iterate through all strict supersets of the pointee type's CVR
3568  // qualifiers.
3569  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3570  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3571    if ((CVR | BaseCVR) != CVR) continue;
3572
3573    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3574    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3575  }
3576
3577  return true;
3578}
3579
3580/// AddTypesConvertedFrom - Add each of the types to which the type @p
3581/// Ty can be implicit converted to the given set of @p Types. We're
3582/// primarily interested in pointer types and enumeration types. We also
3583/// take member pointer types, for the conditional operator.
3584/// AllowUserConversions is true if we should look at the conversion
3585/// functions of a class type, and AllowExplicitConversions if we
3586/// should also include the explicit conversion functions of a class
3587/// type.
3588void
3589BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3590                                               SourceLocation Loc,
3591                                               bool AllowUserConversions,
3592                                               bool AllowExplicitConversions,
3593                                               const Qualifiers &VisibleQuals) {
3594  // Only deal with canonical types.
3595  Ty = Context.getCanonicalType(Ty);
3596
3597  // Look through reference types; they aren't part of the type of an
3598  // expression for the purposes of conversions.
3599  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3600    Ty = RefTy->getPointeeType();
3601
3602  // We don't care about qualifiers on the type.
3603  Ty = Ty.getLocalUnqualifiedType();
3604
3605  // If we're dealing with an array type, decay to the pointer.
3606  if (Ty->isArrayType())
3607    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3608
3609  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3610    QualType PointeeTy = PointerTy->getPointeeType();
3611
3612    // Insert our type, and its more-qualified variants, into the set
3613    // of types.
3614    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3615      return;
3616  } else if (Ty->isMemberPointerType()) {
3617    // Member pointers are far easier, since the pointee can't be converted.
3618    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3619      return;
3620  } else if (Ty->isEnumeralType()) {
3621    EnumerationTypes.insert(Ty);
3622  } else if (AllowUserConversions) {
3623    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3624      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3625        // No conversion functions in incomplete types.
3626        return;
3627      }
3628
3629      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3630      const UnresolvedSetImpl *Conversions
3631        = ClassDecl->getVisibleConversionFunctions();
3632      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3633             E = Conversions->end(); I != E; ++I) {
3634        NamedDecl *D = I.getDecl();
3635        if (isa<UsingShadowDecl>(D))
3636          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3637
3638        // Skip conversion function templates; they don't tell us anything
3639        // about which builtin types we can convert to.
3640        if (isa<FunctionTemplateDecl>(D))
3641          continue;
3642
3643        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3644        if (AllowExplicitConversions || !Conv->isExplicit()) {
3645          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3646                                VisibleQuals);
3647        }
3648      }
3649    }
3650  }
3651}
3652
3653/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3654/// the volatile- and non-volatile-qualified assignment operators for the
3655/// given type to the candidate set.
3656static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3657                                                   QualType T,
3658                                                   Expr **Args,
3659                                                   unsigned NumArgs,
3660                                    OverloadCandidateSet &CandidateSet) {
3661  QualType ParamTypes[2];
3662
3663  // T& operator=(T&, T)
3664  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3665  ParamTypes[1] = T;
3666  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3667                        /*IsAssignmentOperator=*/true);
3668
3669  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3670    // volatile T& operator=(volatile T&, T)
3671    ParamTypes[0]
3672      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3673    ParamTypes[1] = T;
3674    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3675                          /*IsAssignmentOperator=*/true);
3676  }
3677}
3678
3679/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3680/// if any, found in visible type conversion functions found in ArgExpr's type.
3681static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3682    Qualifiers VRQuals;
3683    const RecordType *TyRec;
3684    if (const MemberPointerType *RHSMPType =
3685        ArgExpr->getType()->getAs<MemberPointerType>())
3686      TyRec = cast<RecordType>(RHSMPType->getClass());
3687    else
3688      TyRec = ArgExpr->getType()->getAs<RecordType>();
3689    if (!TyRec) {
3690      // Just to be safe, assume the worst case.
3691      VRQuals.addVolatile();
3692      VRQuals.addRestrict();
3693      return VRQuals;
3694    }
3695
3696    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3697    if (!ClassDecl->hasDefinition())
3698      return VRQuals;
3699
3700    const UnresolvedSetImpl *Conversions =
3701      ClassDecl->getVisibleConversionFunctions();
3702
3703    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3704           E = Conversions->end(); I != E; ++I) {
3705      NamedDecl *D = I.getDecl();
3706      if (isa<UsingShadowDecl>(D))
3707        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3708      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3709        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3710        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3711          CanTy = ResTypeRef->getPointeeType();
3712        // Need to go down the pointer/mempointer chain and add qualifiers
3713        // as see them.
3714        bool done = false;
3715        while (!done) {
3716          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3717            CanTy = ResTypePtr->getPointeeType();
3718          else if (const MemberPointerType *ResTypeMPtr =
3719                CanTy->getAs<MemberPointerType>())
3720            CanTy = ResTypeMPtr->getPointeeType();
3721          else
3722            done = true;
3723          if (CanTy.isVolatileQualified())
3724            VRQuals.addVolatile();
3725          if (CanTy.isRestrictQualified())
3726            VRQuals.addRestrict();
3727          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3728            return VRQuals;
3729        }
3730      }
3731    }
3732    return VRQuals;
3733}
3734
3735/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3736/// operator overloads to the candidate set (C++ [over.built]), based
3737/// on the operator @p Op and the arguments given. For example, if the
3738/// operator is a binary '+', this routine might add "int
3739/// operator+(int, int)" to cover integer addition.
3740void
3741Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3742                                   SourceLocation OpLoc,
3743                                   Expr **Args, unsigned NumArgs,
3744                                   OverloadCandidateSet& CandidateSet) {
3745  // The set of "promoted arithmetic types", which are the arithmetic
3746  // types are that preserved by promotion (C++ [over.built]p2). Note
3747  // that the first few of these types are the promoted integral
3748  // types; these types need to be first.
3749  // FIXME: What about complex?
3750  const unsigned FirstIntegralType = 0;
3751  const unsigned LastIntegralType = 13;
3752  const unsigned FirstPromotedIntegralType = 7,
3753                 LastPromotedIntegralType = 13;
3754  const unsigned FirstPromotedArithmeticType = 7,
3755                 LastPromotedArithmeticType = 16;
3756  const unsigned NumArithmeticTypes = 16;
3757  QualType ArithmeticTypes[NumArithmeticTypes] = {
3758    Context.BoolTy, Context.CharTy, Context.WCharTy,
3759// FIXME:   Context.Char16Ty, Context.Char32Ty,
3760    Context.SignedCharTy, Context.ShortTy,
3761    Context.UnsignedCharTy, Context.UnsignedShortTy,
3762    Context.IntTy, Context.LongTy, Context.LongLongTy,
3763    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3764    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3765  };
3766  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3767         "Invalid first promoted integral type");
3768  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3769           == Context.UnsignedLongLongTy &&
3770         "Invalid last promoted integral type");
3771  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3772         "Invalid first promoted arithmetic type");
3773  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3774            == Context.LongDoubleTy &&
3775         "Invalid last promoted arithmetic type");
3776
3777  // Find all of the types that the arguments can convert to, but only
3778  // if the operator we're looking at has built-in operator candidates
3779  // that make use of these types.
3780  Qualifiers VisibleTypeConversionsQuals;
3781  VisibleTypeConversionsQuals.addConst();
3782  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3783    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3784
3785  BuiltinCandidateTypeSet CandidateTypes(*this);
3786  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3787      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3788      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3789      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3790      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3791      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3792    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3793      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3794                                           OpLoc,
3795                                           true,
3796                                           (Op == OO_Exclaim ||
3797                                            Op == OO_AmpAmp ||
3798                                            Op == OO_PipePipe),
3799                                           VisibleTypeConversionsQuals);
3800  }
3801
3802  bool isComparison = false;
3803  switch (Op) {
3804  case OO_None:
3805  case NUM_OVERLOADED_OPERATORS:
3806    assert(false && "Expected an overloaded operator");
3807    break;
3808
3809  case OO_Star: // '*' is either unary or binary
3810    if (NumArgs == 1)
3811      goto UnaryStar;
3812    else
3813      goto BinaryStar;
3814    break;
3815
3816  case OO_Plus: // '+' is either unary or binary
3817    if (NumArgs == 1)
3818      goto UnaryPlus;
3819    else
3820      goto BinaryPlus;
3821    break;
3822
3823  case OO_Minus: // '-' is either unary or binary
3824    if (NumArgs == 1)
3825      goto UnaryMinus;
3826    else
3827      goto BinaryMinus;
3828    break;
3829
3830  case OO_Amp: // '&' is either unary or binary
3831    if (NumArgs == 1)
3832      goto UnaryAmp;
3833    else
3834      goto BinaryAmp;
3835
3836  case OO_PlusPlus:
3837  case OO_MinusMinus:
3838    // C++ [over.built]p3:
3839    //
3840    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3841    //   is either volatile or empty, there exist candidate operator
3842    //   functions of the form
3843    //
3844    //       VQ T&      operator++(VQ T&);
3845    //       T          operator++(VQ T&, int);
3846    //
3847    // C++ [over.built]p4:
3848    //
3849    //   For every pair (T, VQ), where T is an arithmetic type other
3850    //   than bool, and VQ is either volatile or empty, there exist
3851    //   candidate operator functions of the form
3852    //
3853    //       VQ T&      operator--(VQ T&);
3854    //       T          operator--(VQ T&, int);
3855    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3856         Arith < NumArithmeticTypes; ++Arith) {
3857      QualType ArithTy = ArithmeticTypes[Arith];
3858      QualType ParamTypes[2]
3859        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3860
3861      // Non-volatile version.
3862      if (NumArgs == 1)
3863        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3864      else
3865        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3866      // heuristic to reduce number of builtin candidates in the set.
3867      // Add volatile version only if there are conversions to a volatile type.
3868      if (VisibleTypeConversionsQuals.hasVolatile()) {
3869        // Volatile version
3870        ParamTypes[0]
3871          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3872        if (NumArgs == 1)
3873          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3874        else
3875          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3876      }
3877    }
3878
3879    // C++ [over.built]p5:
3880    //
3881    //   For every pair (T, VQ), where T is a cv-qualified or
3882    //   cv-unqualified object type, and VQ is either volatile or
3883    //   empty, there exist candidate operator functions of the form
3884    //
3885    //       T*VQ&      operator++(T*VQ&);
3886    //       T*VQ&      operator--(T*VQ&);
3887    //       T*         operator++(T*VQ&, int);
3888    //       T*         operator--(T*VQ&, int);
3889    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3890         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3891      // Skip pointer types that aren't pointers to object types.
3892      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3893        continue;
3894
3895      QualType ParamTypes[2] = {
3896        Context.getLValueReferenceType(*Ptr), Context.IntTy
3897      };
3898
3899      // Without volatile
3900      if (NumArgs == 1)
3901        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3902      else
3903        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3904
3905      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3906          VisibleTypeConversionsQuals.hasVolatile()) {
3907        // With volatile
3908        ParamTypes[0]
3909          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3910        if (NumArgs == 1)
3911          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3912        else
3913          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3914      }
3915    }
3916    break;
3917
3918  UnaryStar:
3919    // C++ [over.built]p6:
3920    //   For every cv-qualified or cv-unqualified object type T, there
3921    //   exist candidate operator functions of the form
3922    //
3923    //       T&         operator*(T*);
3924    //
3925    // C++ [over.built]p7:
3926    //   For every function type T, there exist candidate operator
3927    //   functions of the form
3928    //       T&         operator*(T*);
3929    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3930         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3931      QualType ParamTy = *Ptr;
3932      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3933      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3934                          &ParamTy, Args, 1, CandidateSet);
3935    }
3936    break;
3937
3938  UnaryPlus:
3939    // C++ [over.built]p8:
3940    //   For every type T, there exist candidate operator functions of
3941    //   the form
3942    //
3943    //       T*         operator+(T*);
3944    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3945         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3946      QualType ParamTy = *Ptr;
3947      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3948    }
3949
3950    // Fall through
3951
3952  UnaryMinus:
3953    // C++ [over.built]p9:
3954    //  For every promoted arithmetic type T, there exist candidate
3955    //  operator functions of the form
3956    //
3957    //       T         operator+(T);
3958    //       T         operator-(T);
3959    for (unsigned Arith = FirstPromotedArithmeticType;
3960         Arith < LastPromotedArithmeticType; ++Arith) {
3961      QualType ArithTy = ArithmeticTypes[Arith];
3962      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3963    }
3964    break;
3965
3966  case OO_Tilde:
3967    // C++ [over.built]p10:
3968    //   For every promoted integral type T, there exist candidate
3969    //   operator functions of the form
3970    //
3971    //        T         operator~(T);
3972    for (unsigned Int = FirstPromotedIntegralType;
3973         Int < LastPromotedIntegralType; ++Int) {
3974      QualType IntTy = ArithmeticTypes[Int];
3975      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3976    }
3977    break;
3978
3979  case OO_New:
3980  case OO_Delete:
3981  case OO_Array_New:
3982  case OO_Array_Delete:
3983  case OO_Call:
3984    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3985    break;
3986
3987  case OO_Comma:
3988  UnaryAmp:
3989  case OO_Arrow:
3990    // C++ [over.match.oper]p3:
3991    //   -- For the operator ',', the unary operator '&', or the
3992    //      operator '->', the built-in candidates set is empty.
3993    break;
3994
3995  case OO_EqualEqual:
3996  case OO_ExclaimEqual:
3997    // C++ [over.match.oper]p16:
3998    //   For every pointer to member type T, there exist candidate operator
3999    //   functions of the form
4000    //
4001    //        bool operator==(T,T);
4002    //        bool operator!=(T,T);
4003    for (BuiltinCandidateTypeSet::iterator
4004           MemPtr = CandidateTypes.member_pointer_begin(),
4005           MemPtrEnd = CandidateTypes.member_pointer_end();
4006         MemPtr != MemPtrEnd;
4007         ++MemPtr) {
4008      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4009      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4010    }
4011
4012    // Fall through
4013
4014  case OO_Less:
4015  case OO_Greater:
4016  case OO_LessEqual:
4017  case OO_GreaterEqual:
4018    // C++ [over.built]p15:
4019    //
4020    //   For every pointer or enumeration type T, there exist
4021    //   candidate operator functions of the form
4022    //
4023    //        bool       operator<(T, T);
4024    //        bool       operator>(T, T);
4025    //        bool       operator<=(T, T);
4026    //        bool       operator>=(T, T);
4027    //        bool       operator==(T, T);
4028    //        bool       operator!=(T, T);
4029    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4030         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4031      QualType ParamTypes[2] = { *Ptr, *Ptr };
4032      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4033    }
4034    for (BuiltinCandidateTypeSet::iterator Enum
4035           = CandidateTypes.enumeration_begin();
4036         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4037      QualType ParamTypes[2] = { *Enum, *Enum };
4038      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4039    }
4040
4041    // Fall through.
4042    isComparison = true;
4043
4044  BinaryPlus:
4045  BinaryMinus:
4046    if (!isComparison) {
4047      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4048
4049      // C++ [over.built]p13:
4050      //
4051      //   For every cv-qualified or cv-unqualified object type T
4052      //   there exist candidate operator functions of the form
4053      //
4054      //      T*         operator+(T*, ptrdiff_t);
4055      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4056      //      T*         operator-(T*, ptrdiff_t);
4057      //      T*         operator+(ptrdiff_t, T*);
4058      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4059      //
4060      // C++ [over.built]p14:
4061      //
4062      //   For every T, where T is a pointer to object type, there
4063      //   exist candidate operator functions of the form
4064      //
4065      //      ptrdiff_t  operator-(T, T);
4066      for (BuiltinCandidateTypeSet::iterator Ptr
4067             = CandidateTypes.pointer_begin();
4068           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4069        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4070
4071        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4072        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4073
4074        if (Op == OO_Plus) {
4075          // T* operator+(ptrdiff_t, T*);
4076          ParamTypes[0] = ParamTypes[1];
4077          ParamTypes[1] = *Ptr;
4078          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4079        } else {
4080          // ptrdiff_t operator-(T, T);
4081          ParamTypes[1] = *Ptr;
4082          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4083                              Args, 2, CandidateSet);
4084        }
4085      }
4086    }
4087    // Fall through
4088
4089  case OO_Slash:
4090  BinaryStar:
4091  Conditional:
4092    // C++ [over.built]p12:
4093    //
4094    //   For every pair of promoted arithmetic types L and R, there
4095    //   exist candidate operator functions of the form
4096    //
4097    //        LR         operator*(L, R);
4098    //        LR         operator/(L, R);
4099    //        LR         operator+(L, R);
4100    //        LR         operator-(L, R);
4101    //        bool       operator<(L, R);
4102    //        bool       operator>(L, R);
4103    //        bool       operator<=(L, R);
4104    //        bool       operator>=(L, R);
4105    //        bool       operator==(L, R);
4106    //        bool       operator!=(L, R);
4107    //
4108    //   where LR is the result of the usual arithmetic conversions
4109    //   between types L and R.
4110    //
4111    // C++ [over.built]p24:
4112    //
4113    //   For every pair of promoted arithmetic types L and R, there exist
4114    //   candidate operator functions of the form
4115    //
4116    //        LR       operator?(bool, L, R);
4117    //
4118    //   where LR is the result of the usual arithmetic conversions
4119    //   between types L and R.
4120    // Our candidates ignore the first parameter.
4121    for (unsigned Left = FirstPromotedArithmeticType;
4122         Left < LastPromotedArithmeticType; ++Left) {
4123      for (unsigned Right = FirstPromotedArithmeticType;
4124           Right < LastPromotedArithmeticType; ++Right) {
4125        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4126        QualType Result
4127          = isComparison
4128          ? Context.BoolTy
4129          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4130        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4131      }
4132    }
4133    break;
4134
4135  case OO_Percent:
4136  BinaryAmp:
4137  case OO_Caret:
4138  case OO_Pipe:
4139  case OO_LessLess:
4140  case OO_GreaterGreater:
4141    // C++ [over.built]p17:
4142    //
4143    //   For every pair of promoted integral types L and R, there
4144    //   exist candidate operator functions of the form
4145    //
4146    //      LR         operator%(L, R);
4147    //      LR         operator&(L, R);
4148    //      LR         operator^(L, R);
4149    //      LR         operator|(L, R);
4150    //      L          operator<<(L, R);
4151    //      L          operator>>(L, R);
4152    //
4153    //   where LR is the result of the usual arithmetic conversions
4154    //   between types L and R.
4155    for (unsigned Left = FirstPromotedIntegralType;
4156         Left < LastPromotedIntegralType; ++Left) {
4157      for (unsigned Right = FirstPromotedIntegralType;
4158           Right < LastPromotedIntegralType; ++Right) {
4159        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4160        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4161            ? LandR[0]
4162            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4163        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4164      }
4165    }
4166    break;
4167
4168  case OO_Equal:
4169    // C++ [over.built]p20:
4170    //
4171    //   For every pair (T, VQ), where T is an enumeration or
4172    //   pointer to member type and VQ is either volatile or
4173    //   empty, there exist candidate operator functions of the form
4174    //
4175    //        VQ T&      operator=(VQ T&, T);
4176    for (BuiltinCandidateTypeSet::iterator
4177           Enum = CandidateTypes.enumeration_begin(),
4178           EnumEnd = CandidateTypes.enumeration_end();
4179         Enum != EnumEnd; ++Enum)
4180      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4181                                             CandidateSet);
4182    for (BuiltinCandidateTypeSet::iterator
4183           MemPtr = CandidateTypes.member_pointer_begin(),
4184         MemPtrEnd = CandidateTypes.member_pointer_end();
4185         MemPtr != MemPtrEnd; ++MemPtr)
4186      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4187                                             CandidateSet);
4188      // Fall through.
4189
4190  case OO_PlusEqual:
4191  case OO_MinusEqual:
4192    // C++ [over.built]p19:
4193    //
4194    //   For every pair (T, VQ), where T is any type and VQ is either
4195    //   volatile or empty, there exist candidate operator functions
4196    //   of the form
4197    //
4198    //        T*VQ&      operator=(T*VQ&, T*);
4199    //
4200    // C++ [over.built]p21:
4201    //
4202    //   For every pair (T, VQ), where T is a cv-qualified or
4203    //   cv-unqualified object type and VQ is either volatile or
4204    //   empty, there exist candidate operator functions of the form
4205    //
4206    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4207    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4208    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4209         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4210      QualType ParamTypes[2];
4211      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4212
4213      // non-volatile version
4214      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4215      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4216                          /*IsAssigmentOperator=*/Op == OO_Equal);
4217
4218      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4219          VisibleTypeConversionsQuals.hasVolatile()) {
4220        // volatile version
4221        ParamTypes[0]
4222          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4223        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4224                            /*IsAssigmentOperator=*/Op == OO_Equal);
4225      }
4226    }
4227    // Fall through.
4228
4229  case OO_StarEqual:
4230  case OO_SlashEqual:
4231    // C++ [over.built]p18:
4232    //
4233    //   For every triple (L, VQ, R), where L is an arithmetic type,
4234    //   VQ is either volatile or empty, and R is a promoted
4235    //   arithmetic type, there exist candidate operator functions of
4236    //   the form
4237    //
4238    //        VQ L&      operator=(VQ L&, R);
4239    //        VQ L&      operator*=(VQ L&, R);
4240    //        VQ L&      operator/=(VQ L&, R);
4241    //        VQ L&      operator+=(VQ L&, R);
4242    //        VQ L&      operator-=(VQ L&, R);
4243    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4244      for (unsigned Right = FirstPromotedArithmeticType;
4245           Right < LastPromotedArithmeticType; ++Right) {
4246        QualType ParamTypes[2];
4247        ParamTypes[1] = ArithmeticTypes[Right];
4248
4249        // Add this built-in operator as a candidate (VQ is empty).
4250        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4251        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4252                            /*IsAssigmentOperator=*/Op == OO_Equal);
4253
4254        // Add this built-in operator as a candidate (VQ is 'volatile').
4255        if (VisibleTypeConversionsQuals.hasVolatile()) {
4256          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4257          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4258          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4259                              /*IsAssigmentOperator=*/Op == OO_Equal);
4260        }
4261      }
4262    }
4263    break;
4264
4265  case OO_PercentEqual:
4266  case OO_LessLessEqual:
4267  case OO_GreaterGreaterEqual:
4268  case OO_AmpEqual:
4269  case OO_CaretEqual:
4270  case OO_PipeEqual:
4271    // C++ [over.built]p22:
4272    //
4273    //   For every triple (L, VQ, R), where L is an integral type, VQ
4274    //   is either volatile or empty, and R is a promoted integral
4275    //   type, there exist candidate operator functions of the form
4276    //
4277    //        VQ L&       operator%=(VQ L&, R);
4278    //        VQ L&       operator<<=(VQ L&, R);
4279    //        VQ L&       operator>>=(VQ L&, R);
4280    //        VQ L&       operator&=(VQ L&, R);
4281    //        VQ L&       operator^=(VQ L&, R);
4282    //        VQ L&       operator|=(VQ L&, R);
4283    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4284      for (unsigned Right = FirstPromotedIntegralType;
4285           Right < LastPromotedIntegralType; ++Right) {
4286        QualType ParamTypes[2];
4287        ParamTypes[1] = ArithmeticTypes[Right];
4288
4289        // Add this built-in operator as a candidate (VQ is empty).
4290        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4291        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4292        if (VisibleTypeConversionsQuals.hasVolatile()) {
4293          // Add this built-in operator as a candidate (VQ is 'volatile').
4294          ParamTypes[0] = ArithmeticTypes[Left];
4295          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4296          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4297          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4298        }
4299      }
4300    }
4301    break;
4302
4303  case OO_Exclaim: {
4304    // C++ [over.operator]p23:
4305    //
4306    //   There also exist candidate operator functions of the form
4307    //
4308    //        bool        operator!(bool);
4309    //        bool        operator&&(bool, bool);     [BELOW]
4310    //        bool        operator||(bool, bool);     [BELOW]
4311    QualType ParamTy = Context.BoolTy;
4312    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4313                        /*IsAssignmentOperator=*/false,
4314                        /*NumContextualBoolArguments=*/1);
4315    break;
4316  }
4317
4318  case OO_AmpAmp:
4319  case OO_PipePipe: {
4320    // C++ [over.operator]p23:
4321    //
4322    //   There also exist candidate operator functions of the form
4323    //
4324    //        bool        operator!(bool);            [ABOVE]
4325    //        bool        operator&&(bool, bool);
4326    //        bool        operator||(bool, bool);
4327    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4328    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4329                        /*IsAssignmentOperator=*/false,
4330                        /*NumContextualBoolArguments=*/2);
4331    break;
4332  }
4333
4334  case OO_Subscript:
4335    // C++ [over.built]p13:
4336    //
4337    //   For every cv-qualified or cv-unqualified object type T there
4338    //   exist candidate operator functions of the form
4339    //
4340    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4341    //        T&         operator[](T*, ptrdiff_t);
4342    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4343    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4344    //        T&         operator[](ptrdiff_t, T*);
4345    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4346         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4347      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4348      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4349      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4350
4351      // T& operator[](T*, ptrdiff_t)
4352      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4353
4354      // T& operator[](ptrdiff_t, T*);
4355      ParamTypes[0] = ParamTypes[1];
4356      ParamTypes[1] = *Ptr;
4357      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4358    }
4359    break;
4360
4361  case OO_ArrowStar:
4362    // C++ [over.built]p11:
4363    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4364    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4365    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4366    //    there exist candidate operator functions of the form
4367    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4368    //    where CV12 is the union of CV1 and CV2.
4369    {
4370      for (BuiltinCandidateTypeSet::iterator Ptr =
4371             CandidateTypes.pointer_begin();
4372           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4373        QualType C1Ty = (*Ptr);
4374        QualType C1;
4375        QualifierCollector Q1;
4376        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4377          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4378          if (!isa<RecordType>(C1))
4379            continue;
4380          // heuristic to reduce number of builtin candidates in the set.
4381          // Add volatile/restrict version only if there are conversions to a
4382          // volatile/restrict type.
4383          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4384            continue;
4385          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4386            continue;
4387        }
4388        for (BuiltinCandidateTypeSet::iterator
4389             MemPtr = CandidateTypes.member_pointer_begin(),
4390             MemPtrEnd = CandidateTypes.member_pointer_end();
4391             MemPtr != MemPtrEnd; ++MemPtr) {
4392          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4393          QualType C2 = QualType(mptr->getClass(), 0);
4394          C2 = C2.getUnqualifiedType();
4395          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4396            break;
4397          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4398          // build CV12 T&
4399          QualType T = mptr->getPointeeType();
4400          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4401              T.isVolatileQualified())
4402            continue;
4403          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4404              T.isRestrictQualified())
4405            continue;
4406          T = Q1.apply(T);
4407          QualType ResultTy = Context.getLValueReferenceType(T);
4408          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4409        }
4410      }
4411    }
4412    break;
4413
4414  case OO_Conditional:
4415    // Note that we don't consider the first argument, since it has been
4416    // contextually converted to bool long ago. The candidates below are
4417    // therefore added as binary.
4418    //
4419    // C++ [over.built]p24:
4420    //   For every type T, where T is a pointer or pointer-to-member type,
4421    //   there exist candidate operator functions of the form
4422    //
4423    //        T        operator?(bool, T, T);
4424    //
4425    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4426         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4427      QualType ParamTypes[2] = { *Ptr, *Ptr };
4428      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4429    }
4430    for (BuiltinCandidateTypeSet::iterator Ptr =
4431           CandidateTypes.member_pointer_begin(),
4432         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4433      QualType ParamTypes[2] = { *Ptr, *Ptr };
4434      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4435    }
4436    goto Conditional;
4437  }
4438}
4439
4440/// \brief Add function candidates found via argument-dependent lookup
4441/// to the set of overloading candidates.
4442///
4443/// This routine performs argument-dependent name lookup based on the
4444/// given function name (which may also be an operator name) and adds
4445/// all of the overload candidates found by ADL to the overload
4446/// candidate set (C++ [basic.lookup.argdep]).
4447void
4448Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4449                                           bool Operator,
4450                                           Expr **Args, unsigned NumArgs,
4451                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4452                                           OverloadCandidateSet& CandidateSet,
4453                                           bool PartialOverloading) {
4454  ADLResult Fns;
4455
4456  // FIXME: This approach for uniquing ADL results (and removing
4457  // redundant candidates from the set) relies on pointer-equality,
4458  // which means we need to key off the canonical decl.  However,
4459  // always going back to the canonical decl might not get us the
4460  // right set of default arguments.  What default arguments are
4461  // we supposed to consider on ADL candidates, anyway?
4462
4463  // FIXME: Pass in the explicit template arguments?
4464  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4465
4466  // Erase all of the candidates we already knew about.
4467  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4468                                   CandEnd = CandidateSet.end();
4469       Cand != CandEnd; ++Cand)
4470    if (Cand->Function) {
4471      Fns.erase(Cand->Function);
4472      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4473        Fns.erase(FunTmpl);
4474    }
4475
4476  // For each of the ADL candidates we found, add it to the overload
4477  // set.
4478  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4479    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4480    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4481      if (ExplicitTemplateArgs)
4482        continue;
4483
4484      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4485                           false, PartialOverloading);
4486    } else
4487      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4488                                   FoundDecl, ExplicitTemplateArgs,
4489                                   Args, NumArgs, CandidateSet);
4490  }
4491}
4492
4493/// isBetterOverloadCandidate - Determines whether the first overload
4494/// candidate is a better candidate than the second (C++ 13.3.3p1).
4495bool
4496Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4497                                const OverloadCandidate& Cand2,
4498                                SourceLocation Loc) {
4499  // Define viable functions to be better candidates than non-viable
4500  // functions.
4501  if (!Cand2.Viable)
4502    return Cand1.Viable;
4503  else if (!Cand1.Viable)
4504    return false;
4505
4506  // C++ [over.match.best]p1:
4507  //
4508  //   -- if F is a static member function, ICS1(F) is defined such
4509  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4510  //      any function G, and, symmetrically, ICS1(G) is neither
4511  //      better nor worse than ICS1(F).
4512  unsigned StartArg = 0;
4513  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4514    StartArg = 1;
4515
4516  // C++ [over.match.best]p1:
4517  //   A viable function F1 is defined to be a better function than another
4518  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4519  //   conversion sequence than ICSi(F2), and then...
4520  unsigned NumArgs = Cand1.Conversions.size();
4521  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4522  bool HasBetterConversion = false;
4523  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4524    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4525                                               Cand2.Conversions[ArgIdx])) {
4526    case ImplicitConversionSequence::Better:
4527      // Cand1 has a better conversion sequence.
4528      HasBetterConversion = true;
4529      break;
4530
4531    case ImplicitConversionSequence::Worse:
4532      // Cand1 can't be better than Cand2.
4533      return false;
4534
4535    case ImplicitConversionSequence::Indistinguishable:
4536      // Do nothing.
4537      break;
4538    }
4539  }
4540
4541  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4542  //       ICSj(F2), or, if not that,
4543  if (HasBetterConversion)
4544    return true;
4545
4546  //     - F1 is a non-template function and F2 is a function template
4547  //       specialization, or, if not that,
4548  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4549      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4550    return true;
4551
4552  //   -- F1 and F2 are function template specializations, and the function
4553  //      template for F1 is more specialized than the template for F2
4554  //      according to the partial ordering rules described in 14.5.5.2, or,
4555  //      if not that,
4556  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4557      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4558    if (FunctionTemplateDecl *BetterTemplate
4559          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4560                                       Cand2.Function->getPrimaryTemplate(),
4561                                       Loc,
4562                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4563                                                             : TPOC_Call))
4564      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4565
4566  //   -- the context is an initialization by user-defined conversion
4567  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4568  //      from the return type of F1 to the destination type (i.e.,
4569  //      the type of the entity being initialized) is a better
4570  //      conversion sequence than the standard conversion sequence
4571  //      from the return type of F2 to the destination type.
4572  if (Cand1.Function && Cand2.Function &&
4573      isa<CXXConversionDecl>(Cand1.Function) &&
4574      isa<CXXConversionDecl>(Cand2.Function)) {
4575    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4576                                               Cand2.FinalConversion)) {
4577    case ImplicitConversionSequence::Better:
4578      // Cand1 has a better conversion sequence.
4579      return true;
4580
4581    case ImplicitConversionSequence::Worse:
4582      // Cand1 can't be better than Cand2.
4583      return false;
4584
4585    case ImplicitConversionSequence::Indistinguishable:
4586      // Do nothing
4587      break;
4588    }
4589  }
4590
4591  return false;
4592}
4593
4594/// \brief Computes the best viable function (C++ 13.3.3)
4595/// within an overload candidate set.
4596///
4597/// \param CandidateSet the set of candidate functions.
4598///
4599/// \param Loc the location of the function name (or operator symbol) for
4600/// which overload resolution occurs.
4601///
4602/// \param Best f overload resolution was successful or found a deleted
4603/// function, Best points to the candidate function found.
4604///
4605/// \returns The result of overload resolution.
4606OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4607                                           SourceLocation Loc,
4608                                        OverloadCandidateSet::iterator& Best) {
4609  // Find the best viable function.
4610  Best = CandidateSet.end();
4611  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4612       Cand != CandidateSet.end(); ++Cand) {
4613    if (Cand->Viable) {
4614      if (Best == CandidateSet.end() ||
4615          isBetterOverloadCandidate(*Cand, *Best, Loc))
4616        Best = Cand;
4617    }
4618  }
4619
4620  // If we didn't find any viable functions, abort.
4621  if (Best == CandidateSet.end())
4622    return OR_No_Viable_Function;
4623
4624  // Make sure that this function is better than every other viable
4625  // function. If not, we have an ambiguity.
4626  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4627       Cand != CandidateSet.end(); ++Cand) {
4628    if (Cand->Viable &&
4629        Cand != Best &&
4630        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4631      Best = CandidateSet.end();
4632      return OR_Ambiguous;
4633    }
4634  }
4635
4636  // Best is the best viable function.
4637  if (Best->Function &&
4638      (Best->Function->isDeleted() ||
4639       Best->Function->getAttr<UnavailableAttr>()))
4640    return OR_Deleted;
4641
4642  // C++ [basic.def.odr]p2:
4643  //   An overloaded function is used if it is selected by overload resolution
4644  //   when referred to from a potentially-evaluated expression. [Note: this
4645  //   covers calls to named functions (5.2.2), operator overloading
4646  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4647  //   placement new (5.3.4), as well as non-default initialization (8.5).
4648  if (Best->Function)
4649    MarkDeclarationReferenced(Loc, Best->Function);
4650  return OR_Success;
4651}
4652
4653namespace {
4654
4655enum OverloadCandidateKind {
4656  oc_function,
4657  oc_method,
4658  oc_constructor,
4659  oc_function_template,
4660  oc_method_template,
4661  oc_constructor_template,
4662  oc_implicit_default_constructor,
4663  oc_implicit_copy_constructor,
4664  oc_implicit_copy_assignment
4665};
4666
4667OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4668                                                FunctionDecl *Fn,
4669                                                std::string &Description) {
4670  bool isTemplate = false;
4671
4672  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4673    isTemplate = true;
4674    Description = S.getTemplateArgumentBindingsText(
4675      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4676  }
4677
4678  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4679    if (!Ctor->isImplicit())
4680      return isTemplate ? oc_constructor_template : oc_constructor;
4681
4682    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4683                                     : oc_implicit_default_constructor;
4684  }
4685
4686  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4687    // This actually gets spelled 'candidate function' for now, but
4688    // it doesn't hurt to split it out.
4689    if (!Meth->isImplicit())
4690      return isTemplate ? oc_method_template : oc_method;
4691
4692    assert(Meth->isCopyAssignment()
4693           && "implicit method is not copy assignment operator?");
4694    return oc_implicit_copy_assignment;
4695  }
4696
4697  return isTemplate ? oc_function_template : oc_function;
4698}
4699
4700} // end anonymous namespace
4701
4702// Notes the location of an overload candidate.
4703void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4704  std::string FnDesc;
4705  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4706  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4707    << (unsigned) K << FnDesc;
4708}
4709
4710/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4711/// "lead" diagnostic; it will be given two arguments, the source and
4712/// target types of the conversion.
4713void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4714                                       SourceLocation CaretLoc,
4715                                       const PartialDiagnostic &PDiag) {
4716  Diag(CaretLoc, PDiag)
4717    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4718  for (AmbiguousConversionSequence::const_iterator
4719         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4720    NoteOverloadCandidate(*I);
4721  }
4722}
4723
4724namespace {
4725
4726void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4727  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4728  assert(Conv.isBad());
4729  assert(Cand->Function && "for now, candidate must be a function");
4730  FunctionDecl *Fn = Cand->Function;
4731
4732  // There's a conversion slot for the object argument if this is a
4733  // non-constructor method.  Note that 'I' corresponds the
4734  // conversion-slot index.
4735  bool isObjectArgument = false;
4736  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4737    if (I == 0)
4738      isObjectArgument = true;
4739    else
4740      I--;
4741  }
4742
4743  std::string FnDesc;
4744  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4745
4746  Expr *FromExpr = Conv.Bad.FromExpr;
4747  QualType FromTy = Conv.Bad.getFromType();
4748  QualType ToTy = Conv.Bad.getToType();
4749
4750  if (FromTy == S.Context.OverloadTy) {
4751    assert(FromExpr && "overload set argument came from implicit argument?");
4752    Expr *E = FromExpr->IgnoreParens();
4753    if (isa<UnaryOperator>(E))
4754      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4755    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4756
4757    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4758      << (unsigned) FnKind << FnDesc
4759      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4760      << ToTy << Name << I+1;
4761    return;
4762  }
4763
4764  // Do some hand-waving analysis to see if the non-viability is due
4765  // to a qualifier mismatch.
4766  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4767  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4768  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4769    CToTy = RT->getPointeeType();
4770  else {
4771    // TODO: detect and diagnose the full richness of const mismatches.
4772    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4773      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4774        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4775  }
4776
4777  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4778      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4779    // It is dumb that we have to do this here.
4780    while (isa<ArrayType>(CFromTy))
4781      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4782    while (isa<ArrayType>(CToTy))
4783      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4784
4785    Qualifiers FromQs = CFromTy.getQualifiers();
4786    Qualifiers ToQs = CToTy.getQualifiers();
4787
4788    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4789      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4790        << (unsigned) FnKind << FnDesc
4791        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4792        << FromTy
4793        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4794        << (unsigned) isObjectArgument << I+1;
4795      return;
4796    }
4797
4798    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4799    assert(CVR && "unexpected qualifiers mismatch");
4800
4801    if (isObjectArgument) {
4802      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4803        << (unsigned) FnKind << FnDesc
4804        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4805        << FromTy << (CVR - 1);
4806    } else {
4807      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4808        << (unsigned) FnKind << FnDesc
4809        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4810        << FromTy << (CVR - 1) << I+1;
4811    }
4812    return;
4813  }
4814
4815  // Diagnose references or pointers to incomplete types differently,
4816  // since it's far from impossible that the incompleteness triggered
4817  // the failure.
4818  QualType TempFromTy = FromTy.getNonReferenceType();
4819  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4820    TempFromTy = PTy->getPointeeType();
4821  if (TempFromTy->isIncompleteType()) {
4822    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4823      << (unsigned) FnKind << FnDesc
4824      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4825      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4826    return;
4827  }
4828
4829  // TODO: specialize more based on the kind of mismatch
4830  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4831    << (unsigned) FnKind << FnDesc
4832    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4833    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4834}
4835
4836void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4837                           unsigned NumFormalArgs) {
4838  // TODO: treat calls to a missing default constructor as a special case
4839
4840  FunctionDecl *Fn = Cand->Function;
4841  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4842
4843  unsigned MinParams = Fn->getMinRequiredArguments();
4844
4845  // at least / at most / exactly
4846  unsigned mode, modeCount;
4847  if (NumFormalArgs < MinParams) {
4848    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4849    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4850      mode = 0; // "at least"
4851    else
4852      mode = 2; // "exactly"
4853    modeCount = MinParams;
4854  } else {
4855    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4856    if (MinParams != FnTy->getNumArgs())
4857      mode = 1; // "at most"
4858    else
4859      mode = 2; // "exactly"
4860    modeCount = FnTy->getNumArgs();
4861  }
4862
4863  std::string Description;
4864  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4865
4866  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4867    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4868}
4869
4870/// Diagnose a failed template-argument deduction.
4871void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4872                          Expr **Args, unsigned NumArgs) {
4873  FunctionDecl *Fn = Cand->Function; // pattern
4874
4875  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4876                                   Cand->DeductionFailure.TemplateParameter);
4877
4878  switch (Cand->DeductionFailure.Result) {
4879  case Sema::TDK_Success:
4880    llvm_unreachable("TDK_success while diagnosing bad deduction");
4881
4882  case Sema::TDK_Incomplete: {
4883    NamedDecl *ParamD;
4884    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4885    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4886    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4887    assert(ParamD && "no parameter found for incomplete deduction result");
4888    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4889      << ParamD->getDeclName();
4890    return;
4891  }
4892
4893  // TODO: diagnose these individually, then kill off
4894  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4895  case Sema::TDK_InstantiationDepth:
4896  case Sema::TDK_Inconsistent:
4897  case Sema::TDK_InconsistentQuals:
4898  case Sema::TDK_SubstitutionFailure:
4899  case Sema::TDK_NonDeducedMismatch:
4900  case Sema::TDK_TooManyArguments:
4901  case Sema::TDK_TooFewArguments:
4902  case Sema::TDK_InvalidExplicitArguments:
4903  case Sema::TDK_FailedOverloadResolution:
4904    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4905    return;
4906  }
4907}
4908
4909/// Generates a 'note' diagnostic for an overload candidate.  We've
4910/// already generated a primary error at the call site.
4911///
4912/// It really does need to be a single diagnostic with its caret
4913/// pointed at the candidate declaration.  Yes, this creates some
4914/// major challenges of technical writing.  Yes, this makes pointing
4915/// out problems with specific arguments quite awkward.  It's still
4916/// better than generating twenty screens of text for every failed
4917/// overload.
4918///
4919/// It would be great to be able to express per-candidate problems
4920/// more richly for those diagnostic clients that cared, but we'd
4921/// still have to be just as careful with the default diagnostics.
4922void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4923                           Expr **Args, unsigned NumArgs) {
4924  FunctionDecl *Fn = Cand->Function;
4925
4926  // Note deleted candidates, but only if they're viable.
4927  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4928    std::string FnDesc;
4929    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4930
4931    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4932      << FnKind << FnDesc << Fn->isDeleted();
4933    return;
4934  }
4935
4936  // We don't really have anything else to say about viable candidates.
4937  if (Cand->Viable) {
4938    S.NoteOverloadCandidate(Fn);
4939    return;
4940  }
4941
4942  switch (Cand->FailureKind) {
4943  case ovl_fail_too_many_arguments:
4944  case ovl_fail_too_few_arguments:
4945    return DiagnoseArityMismatch(S, Cand, NumArgs);
4946
4947  case ovl_fail_bad_deduction:
4948    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4949
4950  case ovl_fail_trivial_conversion:
4951  case ovl_fail_bad_final_conversion:
4952  case ovl_fail_final_conversion_not_exact:
4953    return S.NoteOverloadCandidate(Fn);
4954
4955  case ovl_fail_bad_conversion: {
4956    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4957    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4958      if (Cand->Conversions[I].isBad())
4959        return DiagnoseBadConversion(S, Cand, I);
4960
4961    // FIXME: this currently happens when we're called from SemaInit
4962    // when user-conversion overload fails.  Figure out how to handle
4963    // those conditions and diagnose them well.
4964    return S.NoteOverloadCandidate(Fn);
4965  }
4966  }
4967}
4968
4969void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4970  // Desugar the type of the surrogate down to a function type,
4971  // retaining as many typedefs as possible while still showing
4972  // the function type (and, therefore, its parameter types).
4973  QualType FnType = Cand->Surrogate->getConversionType();
4974  bool isLValueReference = false;
4975  bool isRValueReference = false;
4976  bool isPointer = false;
4977  if (const LValueReferenceType *FnTypeRef =
4978        FnType->getAs<LValueReferenceType>()) {
4979    FnType = FnTypeRef->getPointeeType();
4980    isLValueReference = true;
4981  } else if (const RValueReferenceType *FnTypeRef =
4982               FnType->getAs<RValueReferenceType>()) {
4983    FnType = FnTypeRef->getPointeeType();
4984    isRValueReference = true;
4985  }
4986  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4987    FnType = FnTypePtr->getPointeeType();
4988    isPointer = true;
4989  }
4990  // Desugar down to a function type.
4991  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4992  // Reconstruct the pointer/reference as appropriate.
4993  if (isPointer) FnType = S.Context.getPointerType(FnType);
4994  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4995  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4996
4997  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4998    << FnType;
4999}
5000
5001void NoteBuiltinOperatorCandidate(Sema &S,
5002                                  const char *Opc,
5003                                  SourceLocation OpLoc,
5004                                  OverloadCandidate *Cand) {
5005  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5006  std::string TypeStr("operator");
5007  TypeStr += Opc;
5008  TypeStr += "(";
5009  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5010  if (Cand->Conversions.size() == 1) {
5011    TypeStr += ")";
5012    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5013  } else {
5014    TypeStr += ", ";
5015    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5016    TypeStr += ")";
5017    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5018  }
5019}
5020
5021void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5022                                  OverloadCandidate *Cand) {
5023  unsigned NoOperands = Cand->Conversions.size();
5024  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5025    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5026    if (ICS.isBad()) break; // all meaningless after first invalid
5027    if (!ICS.isAmbiguous()) continue;
5028
5029    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5030                              S.PDiag(diag::note_ambiguous_type_conversion));
5031  }
5032}
5033
5034SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5035  if (Cand->Function)
5036    return Cand->Function->getLocation();
5037  if (Cand->IsSurrogate)
5038    return Cand->Surrogate->getLocation();
5039  return SourceLocation();
5040}
5041
5042struct CompareOverloadCandidatesForDisplay {
5043  Sema &S;
5044  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5045
5046  bool operator()(const OverloadCandidate *L,
5047                  const OverloadCandidate *R) {
5048    // Fast-path this check.
5049    if (L == R) return false;
5050
5051    // Order first by viability.
5052    if (L->Viable) {
5053      if (!R->Viable) return true;
5054
5055      // TODO: introduce a tri-valued comparison for overload
5056      // candidates.  Would be more worthwhile if we had a sort
5057      // that could exploit it.
5058      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5059      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5060    } else if (R->Viable)
5061      return false;
5062
5063    assert(L->Viable == R->Viable);
5064
5065    // Criteria by which we can sort non-viable candidates:
5066    if (!L->Viable) {
5067      // 1. Arity mismatches come after other candidates.
5068      if (L->FailureKind == ovl_fail_too_many_arguments ||
5069          L->FailureKind == ovl_fail_too_few_arguments)
5070        return false;
5071      if (R->FailureKind == ovl_fail_too_many_arguments ||
5072          R->FailureKind == ovl_fail_too_few_arguments)
5073        return true;
5074
5075      // 2. Bad conversions come first and are ordered by the number
5076      // of bad conversions and quality of good conversions.
5077      if (L->FailureKind == ovl_fail_bad_conversion) {
5078        if (R->FailureKind != ovl_fail_bad_conversion)
5079          return true;
5080
5081        // If there's any ordering between the defined conversions...
5082        // FIXME: this might not be transitive.
5083        assert(L->Conversions.size() == R->Conversions.size());
5084
5085        int leftBetter = 0;
5086        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5087        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5088          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5089                                                       R->Conversions[I])) {
5090          case ImplicitConversionSequence::Better:
5091            leftBetter++;
5092            break;
5093
5094          case ImplicitConversionSequence::Worse:
5095            leftBetter--;
5096            break;
5097
5098          case ImplicitConversionSequence::Indistinguishable:
5099            break;
5100          }
5101        }
5102        if (leftBetter > 0) return true;
5103        if (leftBetter < 0) return false;
5104
5105      } else if (R->FailureKind == ovl_fail_bad_conversion)
5106        return false;
5107
5108      // TODO: others?
5109    }
5110
5111    // Sort everything else by location.
5112    SourceLocation LLoc = GetLocationForCandidate(L);
5113    SourceLocation RLoc = GetLocationForCandidate(R);
5114
5115    // Put candidates without locations (e.g. builtins) at the end.
5116    if (LLoc.isInvalid()) return false;
5117    if (RLoc.isInvalid()) return true;
5118
5119    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5120  }
5121};
5122
5123/// CompleteNonViableCandidate - Normally, overload resolution only
5124/// computes up to the first
5125void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5126                                Expr **Args, unsigned NumArgs) {
5127  assert(!Cand->Viable);
5128
5129  // Don't do anything on failures other than bad conversion.
5130  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5131
5132  // Skip forward to the first bad conversion.
5133  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5134  unsigned ConvCount = Cand->Conversions.size();
5135  while (true) {
5136    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5137    ConvIdx++;
5138    if (Cand->Conversions[ConvIdx - 1].isBad())
5139      break;
5140  }
5141
5142  if (ConvIdx == ConvCount)
5143    return;
5144
5145  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5146         "remaining conversion is initialized?");
5147
5148  // FIXME: this should probably be preserved from the overload
5149  // operation somehow.
5150  bool SuppressUserConversions = false;
5151
5152  const FunctionProtoType* Proto;
5153  unsigned ArgIdx = ConvIdx;
5154
5155  if (Cand->IsSurrogate) {
5156    QualType ConvType
5157      = Cand->Surrogate->getConversionType().getNonReferenceType();
5158    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5159      ConvType = ConvPtrType->getPointeeType();
5160    Proto = ConvType->getAs<FunctionProtoType>();
5161    ArgIdx--;
5162  } else if (Cand->Function) {
5163    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5164    if (isa<CXXMethodDecl>(Cand->Function) &&
5165        !isa<CXXConstructorDecl>(Cand->Function))
5166      ArgIdx--;
5167  } else {
5168    // Builtin binary operator with a bad first conversion.
5169    assert(ConvCount <= 3);
5170    for (; ConvIdx != ConvCount; ++ConvIdx)
5171      Cand->Conversions[ConvIdx]
5172        = TryCopyInitialization(S, Args[ConvIdx],
5173                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5174                                SuppressUserConversions,
5175                                /*ForceRValue=*/false,
5176                                /*InOverloadResolution*/ true);
5177    return;
5178  }
5179
5180  // Fill in the rest of the conversions.
5181  unsigned NumArgsInProto = Proto->getNumArgs();
5182  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5183    if (ArgIdx < NumArgsInProto)
5184      Cand->Conversions[ConvIdx]
5185        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5186                                SuppressUserConversions,
5187                                /*ForceRValue=*/false,
5188                                /*InOverloadResolution=*/true);
5189    else
5190      Cand->Conversions[ConvIdx].setEllipsis();
5191  }
5192}
5193
5194} // end anonymous namespace
5195
5196/// PrintOverloadCandidates - When overload resolution fails, prints
5197/// diagnostic messages containing the candidates in the candidate
5198/// set.
5199void
5200Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5201                              OverloadCandidateDisplayKind OCD,
5202                              Expr **Args, unsigned NumArgs,
5203                              const char *Opc,
5204                              SourceLocation OpLoc) {
5205  // Sort the candidates by viability and position.  Sorting directly would
5206  // be prohibitive, so we make a set of pointers and sort those.
5207  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5208  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5209  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5210                                  LastCand = CandidateSet.end();
5211       Cand != LastCand; ++Cand) {
5212    if (Cand->Viable)
5213      Cands.push_back(Cand);
5214    else if (OCD == OCD_AllCandidates) {
5215      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5216      Cands.push_back(Cand);
5217    }
5218  }
5219
5220  std::sort(Cands.begin(), Cands.end(),
5221            CompareOverloadCandidatesForDisplay(*this));
5222
5223  bool ReportedAmbiguousConversions = false;
5224
5225  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5226  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5227    OverloadCandidate *Cand = *I;
5228
5229    if (Cand->Function)
5230      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5231    else if (Cand->IsSurrogate)
5232      NoteSurrogateCandidate(*this, Cand);
5233
5234    // This a builtin candidate.  We do not, in general, want to list
5235    // every possible builtin candidate.
5236    else if (Cand->Viable) {
5237      // Generally we only see ambiguities including viable builtin
5238      // operators if overload resolution got screwed up by an
5239      // ambiguous user-defined conversion.
5240      //
5241      // FIXME: It's quite possible for different conversions to see
5242      // different ambiguities, though.
5243      if (!ReportedAmbiguousConversions) {
5244        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5245        ReportedAmbiguousConversions = true;
5246      }
5247
5248      // If this is a viable builtin, print it.
5249      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5250    }
5251  }
5252}
5253
5254static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5255  if (isa<UnresolvedLookupExpr>(E))
5256    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5257
5258  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5259}
5260
5261/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5262/// an overloaded function (C++ [over.over]), where @p From is an
5263/// expression with overloaded function type and @p ToType is the type
5264/// we're trying to resolve to. For example:
5265///
5266/// @code
5267/// int f(double);
5268/// int f(int);
5269///
5270/// int (*pfd)(double) = f; // selects f(double)
5271/// @endcode
5272///
5273/// This routine returns the resulting FunctionDecl if it could be
5274/// resolved, and NULL otherwise. When @p Complain is true, this
5275/// routine will emit diagnostics if there is an error.
5276FunctionDecl *
5277Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5278                                         bool Complain,
5279                                         DeclAccessPair &FoundResult) {
5280  QualType FunctionType = ToType;
5281  bool IsMember = false;
5282  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5283    FunctionType = ToTypePtr->getPointeeType();
5284  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5285    FunctionType = ToTypeRef->getPointeeType();
5286  else if (const MemberPointerType *MemTypePtr =
5287                    ToType->getAs<MemberPointerType>()) {
5288    FunctionType = MemTypePtr->getPointeeType();
5289    IsMember = true;
5290  }
5291
5292  // C++ [over.over]p1:
5293  //   [...] [Note: any redundant set of parentheses surrounding the
5294  //   overloaded function name is ignored (5.1). ]
5295  // C++ [over.over]p1:
5296  //   [...] The overloaded function name can be preceded by the &
5297  //   operator.
5298  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5299  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5300  if (OvlExpr->hasExplicitTemplateArgs()) {
5301    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5302    ExplicitTemplateArgs = &ETABuffer;
5303  }
5304
5305  // We expect a pointer or reference to function, or a function pointer.
5306  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5307  if (!FunctionType->isFunctionType()) {
5308    if (Complain)
5309      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5310        << OvlExpr->getName() << ToType;
5311
5312    return 0;
5313  }
5314
5315  assert(From->getType() == Context.OverloadTy);
5316
5317  // Look through all of the overloaded functions, searching for one
5318  // whose type matches exactly.
5319  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5320  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5321
5322  bool FoundNonTemplateFunction = false;
5323  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5324         E = OvlExpr->decls_end(); I != E; ++I) {
5325    // Look through any using declarations to find the underlying function.
5326    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5327
5328    // C++ [over.over]p3:
5329    //   Non-member functions and static member functions match
5330    //   targets of type "pointer-to-function" or "reference-to-function."
5331    //   Nonstatic member functions match targets of
5332    //   type "pointer-to-member-function."
5333    // Note that according to DR 247, the containing class does not matter.
5334
5335    if (FunctionTemplateDecl *FunctionTemplate
5336          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5337      if (CXXMethodDecl *Method
5338            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5339        // Skip non-static function templates when converting to pointer, and
5340        // static when converting to member pointer.
5341        if (Method->isStatic() == IsMember)
5342          continue;
5343      } else if (IsMember)
5344        continue;
5345
5346      // C++ [over.over]p2:
5347      //   If the name is a function template, template argument deduction is
5348      //   done (14.8.2.2), and if the argument deduction succeeds, the
5349      //   resulting template argument list is used to generate a single
5350      //   function template specialization, which is added to the set of
5351      //   overloaded functions considered.
5352      // FIXME: We don't really want to build the specialization here, do we?
5353      FunctionDecl *Specialization = 0;
5354      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5355      if (TemplateDeductionResult Result
5356            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5357                                      FunctionType, Specialization, Info)) {
5358        // FIXME: make a note of the failed deduction for diagnostics.
5359        (void)Result;
5360      } else {
5361        // FIXME: If the match isn't exact, shouldn't we just drop this as
5362        // a candidate? Find a testcase before changing the code.
5363        assert(FunctionType
5364                 == Context.getCanonicalType(Specialization->getType()));
5365        Matches.push_back(std::make_pair(I.getPair(),
5366                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5367      }
5368
5369      continue;
5370    }
5371
5372    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5373      // Skip non-static functions when converting to pointer, and static
5374      // when converting to member pointer.
5375      if (Method->isStatic() == IsMember)
5376        continue;
5377
5378      // If we have explicit template arguments, skip non-templates.
5379      if (OvlExpr->hasExplicitTemplateArgs())
5380        continue;
5381    } else if (IsMember)
5382      continue;
5383
5384    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5385      QualType ResultTy;
5386      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5387          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5388                               ResultTy)) {
5389        Matches.push_back(std::make_pair(I.getPair(),
5390                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5391        FoundNonTemplateFunction = true;
5392      }
5393    }
5394  }
5395
5396  // If there were 0 or 1 matches, we're done.
5397  if (Matches.empty()) {
5398    if (Complain) {
5399      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5400        << OvlExpr->getName() << FunctionType;
5401      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5402                                 E = OvlExpr->decls_end();
5403           I != E; ++I)
5404        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5405          NoteOverloadCandidate(F);
5406    }
5407
5408    return 0;
5409  } else if (Matches.size() == 1) {
5410    FunctionDecl *Result = Matches[0].second;
5411    FoundResult = Matches[0].first;
5412    MarkDeclarationReferenced(From->getLocStart(), Result);
5413    if (Complain)
5414      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5415    return Result;
5416  }
5417
5418  // C++ [over.over]p4:
5419  //   If more than one function is selected, [...]
5420  if (!FoundNonTemplateFunction) {
5421    //   [...] and any given function template specialization F1 is
5422    //   eliminated if the set contains a second function template
5423    //   specialization whose function template is more specialized
5424    //   than the function template of F1 according to the partial
5425    //   ordering rules of 14.5.5.2.
5426
5427    // The algorithm specified above is quadratic. We instead use a
5428    // two-pass algorithm (similar to the one used to identify the
5429    // best viable function in an overload set) that identifies the
5430    // best function template (if it exists).
5431
5432    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5433    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5434      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5435
5436    UnresolvedSetIterator Result =
5437        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5438                           TPOC_Other, From->getLocStart(),
5439                           PDiag(),
5440                           PDiag(diag::err_addr_ovl_ambiguous)
5441                               << Matches[0].second->getDeclName(),
5442                           PDiag(diag::note_ovl_candidate)
5443                               << (unsigned) oc_function_template);
5444    assert(Result != MatchesCopy.end() && "no most-specialized template");
5445    MarkDeclarationReferenced(From->getLocStart(), *Result);
5446    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5447    if (Complain)
5448      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5449    return cast<FunctionDecl>(*Result);
5450  }
5451
5452  //   [...] any function template specializations in the set are
5453  //   eliminated if the set also contains a non-template function, [...]
5454  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5455    if (Matches[I].second->getPrimaryTemplate() == 0)
5456      ++I;
5457    else {
5458      Matches[I] = Matches[--N];
5459      Matches.set_size(N);
5460    }
5461  }
5462
5463  // [...] After such eliminations, if any, there shall remain exactly one
5464  // selected function.
5465  if (Matches.size() == 1) {
5466    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5467    FoundResult = Matches[0].first;
5468    if (Complain)
5469      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5470    return cast<FunctionDecl>(Matches[0].second);
5471  }
5472
5473  // FIXME: We should probably return the same thing that BestViableFunction
5474  // returns (even if we issue the diagnostics here).
5475  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5476    << Matches[0].second->getDeclName();
5477  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5478    NoteOverloadCandidate(Matches[I].second);
5479  return 0;
5480}
5481
5482/// \brief Given an expression that refers to an overloaded function, try to
5483/// resolve that overloaded function expression down to a single function.
5484///
5485/// This routine can only resolve template-ids that refer to a single function
5486/// template, where that template-id refers to a single template whose template
5487/// arguments are either provided by the template-id or have defaults,
5488/// as described in C++0x [temp.arg.explicit]p3.
5489FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5490  // C++ [over.over]p1:
5491  //   [...] [Note: any redundant set of parentheses surrounding the
5492  //   overloaded function name is ignored (5.1). ]
5493  // C++ [over.over]p1:
5494  //   [...] The overloaded function name can be preceded by the &
5495  //   operator.
5496
5497  if (From->getType() != Context.OverloadTy)
5498    return 0;
5499
5500  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5501
5502  // If we didn't actually find any template-ids, we're done.
5503  if (!OvlExpr->hasExplicitTemplateArgs())
5504    return 0;
5505
5506  TemplateArgumentListInfo ExplicitTemplateArgs;
5507  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5508
5509  // Look through all of the overloaded functions, searching for one
5510  // whose type matches exactly.
5511  FunctionDecl *Matched = 0;
5512  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5513         E = OvlExpr->decls_end(); I != E; ++I) {
5514    // C++0x [temp.arg.explicit]p3:
5515    //   [...] In contexts where deduction is done and fails, or in contexts
5516    //   where deduction is not done, if a template argument list is
5517    //   specified and it, along with any default template arguments,
5518    //   identifies a single function template specialization, then the
5519    //   template-id is an lvalue for the function template specialization.
5520    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5521
5522    // C++ [over.over]p2:
5523    //   If the name is a function template, template argument deduction is
5524    //   done (14.8.2.2), and if the argument deduction succeeds, the
5525    //   resulting template argument list is used to generate a single
5526    //   function template specialization, which is added to the set of
5527    //   overloaded functions considered.
5528    FunctionDecl *Specialization = 0;
5529    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5530    if (TemplateDeductionResult Result
5531          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5532                                    Specialization, Info)) {
5533      // FIXME: make a note of the failed deduction for diagnostics.
5534      (void)Result;
5535      continue;
5536    }
5537
5538    // Multiple matches; we can't resolve to a single declaration.
5539    if (Matched)
5540      return 0;
5541
5542    Matched = Specialization;
5543  }
5544
5545  return Matched;
5546}
5547
5548/// \brief Add a single candidate to the overload set.
5549static void AddOverloadedCallCandidate(Sema &S,
5550                                       DeclAccessPair FoundDecl,
5551                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5552                                       Expr **Args, unsigned NumArgs,
5553                                       OverloadCandidateSet &CandidateSet,
5554                                       bool PartialOverloading) {
5555  NamedDecl *Callee = FoundDecl.getDecl();
5556  if (isa<UsingShadowDecl>(Callee))
5557    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5558
5559  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5560    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5561    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5562                           false, PartialOverloading);
5563    return;
5564  }
5565
5566  if (FunctionTemplateDecl *FuncTemplate
5567      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5568    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5569                                   ExplicitTemplateArgs,
5570                                   Args, NumArgs, CandidateSet);
5571    return;
5572  }
5573
5574  assert(false && "unhandled case in overloaded call candidate");
5575
5576  // do nothing?
5577}
5578
5579/// \brief Add the overload candidates named by callee and/or found by argument
5580/// dependent lookup to the given overload set.
5581void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5582                                       Expr **Args, unsigned NumArgs,
5583                                       OverloadCandidateSet &CandidateSet,
5584                                       bool PartialOverloading) {
5585
5586#ifndef NDEBUG
5587  // Verify that ArgumentDependentLookup is consistent with the rules
5588  // in C++0x [basic.lookup.argdep]p3:
5589  //
5590  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5591  //   and let Y be the lookup set produced by argument dependent
5592  //   lookup (defined as follows). If X contains
5593  //
5594  //     -- a declaration of a class member, or
5595  //
5596  //     -- a block-scope function declaration that is not a
5597  //        using-declaration, or
5598  //
5599  //     -- a declaration that is neither a function or a function
5600  //        template
5601  //
5602  //   then Y is empty.
5603
5604  if (ULE->requiresADL()) {
5605    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5606           E = ULE->decls_end(); I != E; ++I) {
5607      assert(!(*I)->getDeclContext()->isRecord());
5608      assert(isa<UsingShadowDecl>(*I) ||
5609             !(*I)->getDeclContext()->isFunctionOrMethod());
5610      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5611    }
5612  }
5613#endif
5614
5615  // It would be nice to avoid this copy.
5616  TemplateArgumentListInfo TABuffer;
5617  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5618  if (ULE->hasExplicitTemplateArgs()) {
5619    ULE->copyTemplateArgumentsInto(TABuffer);
5620    ExplicitTemplateArgs = &TABuffer;
5621  }
5622
5623  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5624         E = ULE->decls_end(); I != E; ++I)
5625    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5626                               Args, NumArgs, CandidateSet,
5627                               PartialOverloading);
5628
5629  if (ULE->requiresADL())
5630    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5631                                         Args, NumArgs,
5632                                         ExplicitTemplateArgs,
5633                                         CandidateSet,
5634                                         PartialOverloading);
5635}
5636
5637static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5638                                      Expr **Args, unsigned NumArgs) {
5639  Fn->Destroy(SemaRef.Context);
5640  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5641    Args[Arg]->Destroy(SemaRef.Context);
5642  return SemaRef.ExprError();
5643}
5644
5645/// Attempts to recover from a call where no functions were found.
5646///
5647/// Returns true if new candidates were found.
5648static Sema::OwningExprResult
5649BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5650                      UnresolvedLookupExpr *ULE,
5651                      SourceLocation LParenLoc,
5652                      Expr **Args, unsigned NumArgs,
5653                      SourceLocation *CommaLocs,
5654                      SourceLocation RParenLoc) {
5655
5656  CXXScopeSpec SS;
5657  if (ULE->getQualifier()) {
5658    SS.setScopeRep(ULE->getQualifier());
5659    SS.setRange(ULE->getQualifierRange());
5660  }
5661
5662  TemplateArgumentListInfo TABuffer;
5663  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5664  if (ULE->hasExplicitTemplateArgs()) {
5665    ULE->copyTemplateArgumentsInto(TABuffer);
5666    ExplicitTemplateArgs = &TABuffer;
5667  }
5668
5669  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5670                 Sema::LookupOrdinaryName);
5671  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5672    return Destroy(SemaRef, Fn, Args, NumArgs);
5673
5674  assert(!R.empty() && "lookup results empty despite recovery");
5675
5676  // Build an implicit member call if appropriate.  Just drop the
5677  // casts and such from the call, we don't really care.
5678  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5679  if ((*R.begin())->isCXXClassMember())
5680    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5681  else if (ExplicitTemplateArgs)
5682    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5683  else
5684    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5685
5686  if (NewFn.isInvalid())
5687    return Destroy(SemaRef, Fn, Args, NumArgs);
5688
5689  Fn->Destroy(SemaRef.Context);
5690
5691  // This shouldn't cause an infinite loop because we're giving it
5692  // an expression with non-empty lookup results, which should never
5693  // end up here.
5694  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5695                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5696                               CommaLocs, RParenLoc);
5697}
5698
5699/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5700/// (which eventually refers to the declaration Func) and the call
5701/// arguments Args/NumArgs, attempt to resolve the function call down
5702/// to a specific function. If overload resolution succeeds, returns
5703/// the function declaration produced by overload
5704/// resolution. Otherwise, emits diagnostics, deletes all of the
5705/// arguments and Fn, and returns NULL.
5706Sema::OwningExprResult
5707Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5708                              SourceLocation LParenLoc,
5709                              Expr **Args, unsigned NumArgs,
5710                              SourceLocation *CommaLocs,
5711                              SourceLocation RParenLoc) {
5712#ifndef NDEBUG
5713  if (ULE->requiresADL()) {
5714    // To do ADL, we must have found an unqualified name.
5715    assert(!ULE->getQualifier() && "qualified name with ADL");
5716
5717    // We don't perform ADL for implicit declarations of builtins.
5718    // Verify that this was correctly set up.
5719    FunctionDecl *F;
5720    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5721        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5722        F->getBuiltinID() && F->isImplicit())
5723      assert(0 && "performing ADL for builtin");
5724
5725    // We don't perform ADL in C.
5726    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5727  }
5728#endif
5729
5730  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5731
5732  // Add the functions denoted by the callee to the set of candidate
5733  // functions, including those from argument-dependent lookup.
5734  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5735
5736  // If we found nothing, try to recover.
5737  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5738  // bailout out if it fails.
5739  if (CandidateSet.empty())
5740    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5741                                 CommaLocs, RParenLoc);
5742
5743  OverloadCandidateSet::iterator Best;
5744  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5745  case OR_Success: {
5746    FunctionDecl *FDecl = Best->Function;
5747    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5748    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5749    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5750  }
5751
5752  case OR_No_Viable_Function:
5753    Diag(Fn->getSourceRange().getBegin(),
5754         diag::err_ovl_no_viable_function_in_call)
5755      << ULE->getName() << Fn->getSourceRange();
5756    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5757    break;
5758
5759  case OR_Ambiguous:
5760    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5761      << ULE->getName() << Fn->getSourceRange();
5762    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5763    break;
5764
5765  case OR_Deleted:
5766    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5767      << Best->Function->isDeleted()
5768      << ULE->getName()
5769      << Fn->getSourceRange();
5770    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5771    break;
5772  }
5773
5774  // Overload resolution failed. Destroy all of the subexpressions and
5775  // return NULL.
5776  Fn->Destroy(Context);
5777  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5778    Args[Arg]->Destroy(Context);
5779  return ExprError();
5780}
5781
5782static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5783  return Functions.size() > 1 ||
5784    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5785}
5786
5787/// \brief Create a unary operation that may resolve to an overloaded
5788/// operator.
5789///
5790/// \param OpLoc The location of the operator itself (e.g., '*').
5791///
5792/// \param OpcIn The UnaryOperator::Opcode that describes this
5793/// operator.
5794///
5795/// \param Functions The set of non-member functions that will be
5796/// considered by overload resolution. The caller needs to build this
5797/// set based on the context using, e.g.,
5798/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5799/// set should not contain any member functions; those will be added
5800/// by CreateOverloadedUnaryOp().
5801///
5802/// \param input The input argument.
5803Sema::OwningExprResult
5804Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5805                              const UnresolvedSetImpl &Fns,
5806                              ExprArg input) {
5807  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5808  Expr *Input = (Expr *)input.get();
5809
5810  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5811  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5812  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5813
5814  Expr *Args[2] = { Input, 0 };
5815  unsigned NumArgs = 1;
5816
5817  // For post-increment and post-decrement, add the implicit '0' as
5818  // the second argument, so that we know this is a post-increment or
5819  // post-decrement.
5820  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5821    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5822    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5823                                           SourceLocation());
5824    NumArgs = 2;
5825  }
5826
5827  if (Input->isTypeDependent()) {
5828    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5829    UnresolvedLookupExpr *Fn
5830      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5831                                     0, SourceRange(), OpName, OpLoc,
5832                                     /*ADL*/ true, IsOverloaded(Fns));
5833    Fn->addDecls(Fns.begin(), Fns.end());
5834
5835    input.release();
5836    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5837                                                   &Args[0], NumArgs,
5838                                                   Context.DependentTy,
5839                                                   OpLoc));
5840  }
5841
5842  // Build an empty overload set.
5843  OverloadCandidateSet CandidateSet(OpLoc);
5844
5845  // Add the candidates from the given function set.
5846  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5847
5848  // Add operator candidates that are member functions.
5849  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5850
5851  // Add candidates from ADL.
5852  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5853                                       Args, NumArgs,
5854                                       /*ExplicitTemplateArgs*/ 0,
5855                                       CandidateSet);
5856
5857  // Add builtin operator candidates.
5858  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5859
5860  // Perform overload resolution.
5861  OverloadCandidateSet::iterator Best;
5862  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5863  case OR_Success: {
5864    // We found a built-in operator or an overloaded operator.
5865    FunctionDecl *FnDecl = Best->Function;
5866
5867    if (FnDecl) {
5868      // We matched an overloaded operator. Build a call to that
5869      // operator.
5870
5871      // Convert the arguments.
5872      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5873        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5874
5875        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5876                                                Best->FoundDecl, Method))
5877          return ExprError();
5878      } else {
5879        // Convert the arguments.
5880        OwningExprResult InputInit
5881          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5882                                                      FnDecl->getParamDecl(0)),
5883                                      SourceLocation(),
5884                                      move(input));
5885        if (InputInit.isInvalid())
5886          return ExprError();
5887
5888        input = move(InputInit);
5889        Input = (Expr *)input.get();
5890      }
5891
5892      // Determine the result type
5893      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5894
5895      // Build the actual expression node.
5896      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5897                                               SourceLocation());
5898      UsualUnaryConversions(FnExpr);
5899
5900      input.release();
5901      Args[0] = Input;
5902      ExprOwningPtr<CallExpr> TheCall(this,
5903        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5904                                          Args, NumArgs, ResultTy, OpLoc));
5905
5906      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5907                              FnDecl))
5908        return ExprError();
5909
5910      return MaybeBindToTemporary(TheCall.release());
5911    } else {
5912      // We matched a built-in operator. Convert the arguments, then
5913      // break out so that we will build the appropriate built-in
5914      // operator node.
5915        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5916                                      Best->Conversions[0], AA_Passing))
5917          return ExprError();
5918
5919        break;
5920      }
5921    }
5922
5923    case OR_No_Viable_Function:
5924      // No viable function; fall through to handling this as a
5925      // built-in operator, which will produce an error message for us.
5926      break;
5927
5928    case OR_Ambiguous:
5929      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5930          << UnaryOperator::getOpcodeStr(Opc)
5931          << Input->getSourceRange();
5932      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5933                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5934      return ExprError();
5935
5936    case OR_Deleted:
5937      Diag(OpLoc, diag::err_ovl_deleted_oper)
5938        << Best->Function->isDeleted()
5939        << UnaryOperator::getOpcodeStr(Opc)
5940        << Input->getSourceRange();
5941      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5942      return ExprError();
5943    }
5944
5945  // Either we found no viable overloaded operator or we matched a
5946  // built-in operator. In either case, fall through to trying to
5947  // build a built-in operation.
5948  input.release();
5949  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5950}
5951
5952/// \brief Create a binary operation that may resolve to an overloaded
5953/// operator.
5954///
5955/// \param OpLoc The location of the operator itself (e.g., '+').
5956///
5957/// \param OpcIn The BinaryOperator::Opcode that describes this
5958/// operator.
5959///
5960/// \param Functions The set of non-member functions that will be
5961/// considered by overload resolution. The caller needs to build this
5962/// set based on the context using, e.g.,
5963/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5964/// set should not contain any member functions; those will be added
5965/// by CreateOverloadedBinOp().
5966///
5967/// \param LHS Left-hand argument.
5968/// \param RHS Right-hand argument.
5969Sema::OwningExprResult
5970Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5971                            unsigned OpcIn,
5972                            const UnresolvedSetImpl &Fns,
5973                            Expr *LHS, Expr *RHS) {
5974  Expr *Args[2] = { LHS, RHS };
5975  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5976
5977  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5978  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5979  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5980
5981  // If either side is type-dependent, create an appropriate dependent
5982  // expression.
5983  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5984    if (Fns.empty()) {
5985      // If there are no functions to store, just build a dependent
5986      // BinaryOperator or CompoundAssignment.
5987      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5988        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5989                                                  Context.DependentTy, OpLoc));
5990
5991      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5992                                                        Context.DependentTy,
5993                                                        Context.DependentTy,
5994                                                        Context.DependentTy,
5995                                                        OpLoc));
5996    }
5997
5998    // FIXME: save results of ADL from here?
5999    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6000    UnresolvedLookupExpr *Fn
6001      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6002                                     0, SourceRange(), OpName, OpLoc,
6003                                     /*ADL*/ true, IsOverloaded(Fns));
6004
6005    Fn->addDecls(Fns.begin(), Fns.end());
6006    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6007                                                   Args, 2,
6008                                                   Context.DependentTy,
6009                                                   OpLoc));
6010  }
6011
6012  // If this is the .* operator, which is not overloadable, just
6013  // create a built-in binary operator.
6014  if (Opc == BinaryOperator::PtrMemD)
6015    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6016
6017  // If this is the assignment operator, we only perform overload resolution
6018  // if the left-hand side is a class or enumeration type. This is actually
6019  // a hack. The standard requires that we do overload resolution between the
6020  // various built-in candidates, but as DR507 points out, this can lead to
6021  // problems. So we do it this way, which pretty much follows what GCC does.
6022  // Note that we go the traditional code path for compound assignment forms.
6023  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6024    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6025
6026  // Build an empty overload set.
6027  OverloadCandidateSet CandidateSet(OpLoc);
6028
6029  // Add the candidates from the given function set.
6030  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6031
6032  // Add operator candidates that are member functions.
6033  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6034
6035  // Add candidates from ADL.
6036  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6037                                       Args, 2,
6038                                       /*ExplicitTemplateArgs*/ 0,
6039                                       CandidateSet);
6040
6041  // Add builtin operator candidates.
6042  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6043
6044  // Perform overload resolution.
6045  OverloadCandidateSet::iterator Best;
6046  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6047    case OR_Success: {
6048      // We found a built-in operator or an overloaded operator.
6049      FunctionDecl *FnDecl = Best->Function;
6050
6051      if (FnDecl) {
6052        // We matched an overloaded operator. Build a call to that
6053        // operator.
6054
6055        // Convert the arguments.
6056        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6057          // Best->Access is only meaningful for class members.
6058          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6059
6060          OwningExprResult Arg1
6061            = PerformCopyInitialization(
6062                                        InitializedEntity::InitializeParameter(
6063                                                        FnDecl->getParamDecl(0)),
6064                                        SourceLocation(),
6065                                        Owned(Args[1]));
6066          if (Arg1.isInvalid())
6067            return ExprError();
6068
6069          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6070                                                  Best->FoundDecl, Method))
6071            return ExprError();
6072
6073          Args[1] = RHS = Arg1.takeAs<Expr>();
6074        } else {
6075          // Convert the arguments.
6076          OwningExprResult Arg0
6077            = PerformCopyInitialization(
6078                                        InitializedEntity::InitializeParameter(
6079                                                        FnDecl->getParamDecl(0)),
6080                                        SourceLocation(),
6081                                        Owned(Args[0]));
6082          if (Arg0.isInvalid())
6083            return ExprError();
6084
6085          OwningExprResult Arg1
6086            = PerformCopyInitialization(
6087                                        InitializedEntity::InitializeParameter(
6088                                                        FnDecl->getParamDecl(1)),
6089                                        SourceLocation(),
6090                                        Owned(Args[1]));
6091          if (Arg1.isInvalid())
6092            return ExprError();
6093          Args[0] = LHS = Arg0.takeAs<Expr>();
6094          Args[1] = RHS = Arg1.takeAs<Expr>();
6095        }
6096
6097        // Determine the result type
6098        QualType ResultTy
6099          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6100        ResultTy = ResultTy.getNonReferenceType();
6101
6102        // Build the actual expression node.
6103        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6104                                                 OpLoc);
6105        UsualUnaryConversions(FnExpr);
6106
6107        ExprOwningPtr<CXXOperatorCallExpr>
6108          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6109                                                          Args, 2, ResultTy,
6110                                                          OpLoc));
6111
6112        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6113                                FnDecl))
6114          return ExprError();
6115
6116        return MaybeBindToTemporary(TheCall.release());
6117      } else {
6118        // We matched a built-in operator. Convert the arguments, then
6119        // break out so that we will build the appropriate built-in
6120        // operator node.
6121        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6122                                      Best->Conversions[0], AA_Passing) ||
6123            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6124                                      Best->Conversions[1], AA_Passing))
6125          return ExprError();
6126
6127        break;
6128      }
6129    }
6130
6131    case OR_No_Viable_Function: {
6132      // C++ [over.match.oper]p9:
6133      //   If the operator is the operator , [...] and there are no
6134      //   viable functions, then the operator is assumed to be the
6135      //   built-in operator and interpreted according to clause 5.
6136      if (Opc == BinaryOperator::Comma)
6137        break;
6138
6139      // For class as left operand for assignment or compound assigment operator
6140      // do not fall through to handling in built-in, but report that no overloaded
6141      // assignment operator found
6142      OwningExprResult Result = ExprError();
6143      if (Args[0]->getType()->isRecordType() &&
6144          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6145        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6146             << BinaryOperator::getOpcodeStr(Opc)
6147             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6148      } else {
6149        // No viable function; try to create a built-in operation, which will
6150        // produce an error. Then, show the non-viable candidates.
6151        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6152      }
6153      assert(Result.isInvalid() &&
6154             "C++ binary operator overloading is missing candidates!");
6155      if (Result.isInvalid())
6156        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6157                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6158      return move(Result);
6159    }
6160
6161    case OR_Ambiguous:
6162      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6163          << BinaryOperator::getOpcodeStr(Opc)
6164          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6165      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6166                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6167      return ExprError();
6168
6169    case OR_Deleted:
6170      Diag(OpLoc, diag::err_ovl_deleted_oper)
6171        << Best->Function->isDeleted()
6172        << BinaryOperator::getOpcodeStr(Opc)
6173        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6174      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6175      return ExprError();
6176  }
6177
6178  // We matched a built-in operator; build it.
6179  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6180}
6181
6182Action::OwningExprResult
6183Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6184                                         SourceLocation RLoc,
6185                                         ExprArg Base, ExprArg Idx) {
6186  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6187                    static_cast<Expr*>(Idx.get()) };
6188  DeclarationName OpName =
6189      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6190
6191  // If either side is type-dependent, create an appropriate dependent
6192  // expression.
6193  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6194
6195    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6196    UnresolvedLookupExpr *Fn
6197      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6198                                     0, SourceRange(), OpName, LLoc,
6199                                     /*ADL*/ true, /*Overloaded*/ false);
6200    // Can't add any actual overloads yet
6201
6202    Base.release();
6203    Idx.release();
6204    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6205                                                   Args, 2,
6206                                                   Context.DependentTy,
6207                                                   RLoc));
6208  }
6209
6210  // Build an empty overload set.
6211  OverloadCandidateSet CandidateSet(LLoc);
6212
6213  // Subscript can only be overloaded as a member function.
6214
6215  // Add operator candidates that are member functions.
6216  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6217
6218  // Add builtin operator candidates.
6219  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6220
6221  // Perform overload resolution.
6222  OverloadCandidateSet::iterator Best;
6223  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6224    case OR_Success: {
6225      // We found a built-in operator or an overloaded operator.
6226      FunctionDecl *FnDecl = Best->Function;
6227
6228      if (FnDecl) {
6229        // We matched an overloaded operator. Build a call to that
6230        // operator.
6231
6232        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6233
6234        // Convert the arguments.
6235        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6236        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6237                                                Best->FoundDecl, Method))
6238          return ExprError();
6239
6240        // Convert the arguments.
6241        OwningExprResult InputInit
6242          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6243                                                      FnDecl->getParamDecl(0)),
6244                                      SourceLocation(),
6245                                      Owned(Args[1]));
6246        if (InputInit.isInvalid())
6247          return ExprError();
6248
6249        Args[1] = InputInit.takeAs<Expr>();
6250
6251        // Determine the result type
6252        QualType ResultTy
6253          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6254        ResultTy = ResultTy.getNonReferenceType();
6255
6256        // Build the actual expression node.
6257        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6258                                                 LLoc);
6259        UsualUnaryConversions(FnExpr);
6260
6261        Base.release();
6262        Idx.release();
6263        ExprOwningPtr<CXXOperatorCallExpr>
6264          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6265                                                          FnExpr, Args, 2,
6266                                                          ResultTy, RLoc));
6267
6268        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6269                                FnDecl))
6270          return ExprError();
6271
6272        return MaybeBindToTemporary(TheCall.release());
6273      } else {
6274        // We matched a built-in operator. Convert the arguments, then
6275        // break out so that we will build the appropriate built-in
6276        // operator node.
6277        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6278                                      Best->Conversions[0], AA_Passing) ||
6279            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6280                                      Best->Conversions[1], AA_Passing))
6281          return ExprError();
6282
6283        break;
6284      }
6285    }
6286
6287    case OR_No_Viable_Function: {
6288      if (CandidateSet.empty())
6289        Diag(LLoc, diag::err_ovl_no_oper)
6290          << Args[0]->getType() << /*subscript*/ 0
6291          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6292      else
6293        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6294          << Args[0]->getType()
6295          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6296      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6297                              "[]", LLoc);
6298      return ExprError();
6299    }
6300
6301    case OR_Ambiguous:
6302      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6303          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6304      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6305                              "[]", LLoc);
6306      return ExprError();
6307
6308    case OR_Deleted:
6309      Diag(LLoc, diag::err_ovl_deleted_oper)
6310        << Best->Function->isDeleted() << "[]"
6311        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6312      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6313                              "[]", LLoc);
6314      return ExprError();
6315    }
6316
6317  // We matched a built-in operator; build it.
6318  Base.release();
6319  Idx.release();
6320  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6321                                         Owned(Args[1]), RLoc);
6322}
6323
6324/// BuildCallToMemberFunction - Build a call to a member
6325/// function. MemExpr is the expression that refers to the member
6326/// function (and includes the object parameter), Args/NumArgs are the
6327/// arguments to the function call (not including the object
6328/// parameter). The caller needs to validate that the member
6329/// expression refers to a member function or an overloaded member
6330/// function.
6331Sema::OwningExprResult
6332Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6333                                SourceLocation LParenLoc, Expr **Args,
6334                                unsigned NumArgs, SourceLocation *CommaLocs,
6335                                SourceLocation RParenLoc) {
6336  // Dig out the member expression. This holds both the object
6337  // argument and the member function we're referring to.
6338  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6339
6340  MemberExpr *MemExpr;
6341  CXXMethodDecl *Method = 0;
6342  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6343  NestedNameSpecifier *Qualifier = 0;
6344  if (isa<MemberExpr>(NakedMemExpr)) {
6345    MemExpr = cast<MemberExpr>(NakedMemExpr);
6346    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6347    FoundDecl = MemExpr->getFoundDecl();
6348    Qualifier = MemExpr->getQualifier();
6349  } else {
6350    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6351    Qualifier = UnresExpr->getQualifier();
6352
6353    QualType ObjectType = UnresExpr->getBaseType();
6354
6355    // Add overload candidates
6356    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6357
6358    // FIXME: avoid copy.
6359    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6360    if (UnresExpr->hasExplicitTemplateArgs()) {
6361      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6362      TemplateArgs = &TemplateArgsBuffer;
6363    }
6364
6365    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6366           E = UnresExpr->decls_end(); I != E; ++I) {
6367
6368      NamedDecl *Func = *I;
6369      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6370      if (isa<UsingShadowDecl>(Func))
6371        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6372
6373      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6374        // If explicit template arguments were provided, we can't call a
6375        // non-template member function.
6376        if (TemplateArgs)
6377          continue;
6378
6379        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6380                           Args, NumArgs,
6381                           CandidateSet, /*SuppressUserConversions=*/false);
6382      } else {
6383        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6384                                   I.getPair(), ActingDC, TemplateArgs,
6385                                   ObjectType, Args, NumArgs,
6386                                   CandidateSet,
6387                                   /*SuppressUsedConversions=*/false);
6388      }
6389    }
6390
6391    DeclarationName DeclName = UnresExpr->getMemberName();
6392
6393    OverloadCandidateSet::iterator Best;
6394    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6395    case OR_Success:
6396      Method = cast<CXXMethodDecl>(Best->Function);
6397      FoundDecl = Best->FoundDecl;
6398      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6399      break;
6400
6401    case OR_No_Viable_Function:
6402      Diag(UnresExpr->getMemberLoc(),
6403           diag::err_ovl_no_viable_member_function_in_call)
6404        << DeclName << MemExprE->getSourceRange();
6405      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6406      // FIXME: Leaking incoming expressions!
6407      return ExprError();
6408
6409    case OR_Ambiguous:
6410      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6411        << DeclName << MemExprE->getSourceRange();
6412      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6413      // FIXME: Leaking incoming expressions!
6414      return ExprError();
6415
6416    case OR_Deleted:
6417      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6418        << Best->Function->isDeleted()
6419        << DeclName << MemExprE->getSourceRange();
6420      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6421      // FIXME: Leaking incoming expressions!
6422      return ExprError();
6423    }
6424
6425    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6426
6427    // If overload resolution picked a static member, build a
6428    // non-member call based on that function.
6429    if (Method->isStatic()) {
6430      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6431                                   Args, NumArgs, RParenLoc);
6432    }
6433
6434    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6435  }
6436
6437  assert(Method && "Member call to something that isn't a method?");
6438  ExprOwningPtr<CXXMemberCallExpr>
6439    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6440                                                  NumArgs,
6441                                  Method->getResultType().getNonReferenceType(),
6442                                  RParenLoc));
6443
6444  // Check for a valid return type.
6445  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6446                          TheCall.get(), Method))
6447    return ExprError();
6448
6449  // Convert the object argument (for a non-static member function call).
6450  // We only need to do this if there was actually an overload; otherwise
6451  // it was done at lookup.
6452  Expr *ObjectArg = MemExpr->getBase();
6453  if (!Method->isStatic() &&
6454      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6455                                          FoundDecl, Method))
6456    return ExprError();
6457  MemExpr->setBase(ObjectArg);
6458
6459  // Convert the rest of the arguments
6460  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6461  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6462                              RParenLoc))
6463    return ExprError();
6464
6465  if (CheckFunctionCall(Method, TheCall.get()))
6466    return ExprError();
6467
6468  return MaybeBindToTemporary(TheCall.release());
6469}
6470
6471/// BuildCallToObjectOfClassType - Build a call to an object of class
6472/// type (C++ [over.call.object]), which can end up invoking an
6473/// overloaded function call operator (@c operator()) or performing a
6474/// user-defined conversion on the object argument.
6475Sema::ExprResult
6476Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6477                                   SourceLocation LParenLoc,
6478                                   Expr **Args, unsigned NumArgs,
6479                                   SourceLocation *CommaLocs,
6480                                   SourceLocation RParenLoc) {
6481  assert(Object->getType()->isRecordType() && "Requires object type argument");
6482  const RecordType *Record = Object->getType()->getAs<RecordType>();
6483
6484  // C++ [over.call.object]p1:
6485  //  If the primary-expression E in the function call syntax
6486  //  evaluates to a class object of type "cv T", then the set of
6487  //  candidate functions includes at least the function call
6488  //  operators of T. The function call operators of T are obtained by
6489  //  ordinary lookup of the name operator() in the context of
6490  //  (E).operator().
6491  OverloadCandidateSet CandidateSet(LParenLoc);
6492  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6493
6494  if (RequireCompleteType(LParenLoc, Object->getType(),
6495                          PDiag(diag::err_incomplete_object_call)
6496                          << Object->getSourceRange()))
6497    return true;
6498
6499  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6500  LookupQualifiedName(R, Record->getDecl());
6501  R.suppressDiagnostics();
6502
6503  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6504       Oper != OperEnd; ++Oper) {
6505    AddMethodCandidate(Oper.getPair(), Object->getType(),
6506                       Args, NumArgs, CandidateSet,
6507                       /*SuppressUserConversions=*/ false);
6508  }
6509
6510  // C++ [over.call.object]p2:
6511  //   In addition, for each conversion function declared in T of the
6512  //   form
6513  //
6514  //        operator conversion-type-id () cv-qualifier;
6515  //
6516  //   where cv-qualifier is the same cv-qualification as, or a
6517  //   greater cv-qualification than, cv, and where conversion-type-id
6518  //   denotes the type "pointer to function of (P1,...,Pn) returning
6519  //   R", or the type "reference to pointer to function of
6520  //   (P1,...,Pn) returning R", or the type "reference to function
6521  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6522  //   is also considered as a candidate function. Similarly,
6523  //   surrogate call functions are added to the set of candidate
6524  //   functions for each conversion function declared in an
6525  //   accessible base class provided the function is not hidden
6526  //   within T by another intervening declaration.
6527  const UnresolvedSetImpl *Conversions
6528    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6529  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6530         E = Conversions->end(); I != E; ++I) {
6531    NamedDecl *D = *I;
6532    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6533    if (isa<UsingShadowDecl>(D))
6534      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6535
6536    // Skip over templated conversion functions; they aren't
6537    // surrogates.
6538    if (isa<FunctionTemplateDecl>(D))
6539      continue;
6540
6541    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6542
6543    // Strip the reference type (if any) and then the pointer type (if
6544    // any) to get down to what might be a function type.
6545    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6546    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6547      ConvType = ConvPtrType->getPointeeType();
6548
6549    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6550      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6551                            Object->getType(), Args, NumArgs,
6552                            CandidateSet);
6553  }
6554
6555  // Perform overload resolution.
6556  OverloadCandidateSet::iterator Best;
6557  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6558  case OR_Success:
6559    // Overload resolution succeeded; we'll build the appropriate call
6560    // below.
6561    break;
6562
6563  case OR_No_Viable_Function:
6564    if (CandidateSet.empty())
6565      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6566        << Object->getType() << /*call*/ 1
6567        << Object->getSourceRange();
6568    else
6569      Diag(Object->getSourceRange().getBegin(),
6570           diag::err_ovl_no_viable_object_call)
6571        << Object->getType() << Object->getSourceRange();
6572    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6573    break;
6574
6575  case OR_Ambiguous:
6576    Diag(Object->getSourceRange().getBegin(),
6577         diag::err_ovl_ambiguous_object_call)
6578      << Object->getType() << Object->getSourceRange();
6579    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6580    break;
6581
6582  case OR_Deleted:
6583    Diag(Object->getSourceRange().getBegin(),
6584         diag::err_ovl_deleted_object_call)
6585      << Best->Function->isDeleted()
6586      << Object->getType() << Object->getSourceRange();
6587    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6588    break;
6589  }
6590
6591  if (Best == CandidateSet.end()) {
6592    // We had an error; delete all of the subexpressions and return
6593    // the error.
6594    Object->Destroy(Context);
6595    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6596      Args[ArgIdx]->Destroy(Context);
6597    return true;
6598  }
6599
6600  if (Best->Function == 0) {
6601    // Since there is no function declaration, this is one of the
6602    // surrogate candidates. Dig out the conversion function.
6603    CXXConversionDecl *Conv
6604      = cast<CXXConversionDecl>(
6605                         Best->Conversions[0].UserDefined.ConversionFunction);
6606
6607    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6608
6609    // We selected one of the surrogate functions that converts the
6610    // object parameter to a function pointer. Perform the conversion
6611    // on the object argument, then let ActOnCallExpr finish the job.
6612
6613    // Create an implicit member expr to refer to the conversion operator.
6614    // and then call it.
6615    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6616                                                   Conv);
6617
6618    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6619                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6620                         CommaLocs, RParenLoc).result();
6621  }
6622
6623  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6624
6625  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6626  // that calls this method, using Object for the implicit object
6627  // parameter and passing along the remaining arguments.
6628  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6629  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6630
6631  unsigned NumArgsInProto = Proto->getNumArgs();
6632  unsigned NumArgsToCheck = NumArgs;
6633
6634  // Build the full argument list for the method call (the
6635  // implicit object parameter is placed at the beginning of the
6636  // list).
6637  Expr **MethodArgs;
6638  if (NumArgs < NumArgsInProto) {
6639    NumArgsToCheck = NumArgsInProto;
6640    MethodArgs = new Expr*[NumArgsInProto + 1];
6641  } else {
6642    MethodArgs = new Expr*[NumArgs + 1];
6643  }
6644  MethodArgs[0] = Object;
6645  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6646    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6647
6648  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6649                                          SourceLocation());
6650  UsualUnaryConversions(NewFn);
6651
6652  // Once we've built TheCall, all of the expressions are properly
6653  // owned.
6654  QualType ResultTy = Method->getResultType().getNonReferenceType();
6655  ExprOwningPtr<CXXOperatorCallExpr>
6656    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6657                                                    MethodArgs, NumArgs + 1,
6658                                                    ResultTy, RParenLoc));
6659  delete [] MethodArgs;
6660
6661  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6662                          Method))
6663    return true;
6664
6665  // We may have default arguments. If so, we need to allocate more
6666  // slots in the call for them.
6667  if (NumArgs < NumArgsInProto)
6668    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6669  else if (NumArgs > NumArgsInProto)
6670    NumArgsToCheck = NumArgsInProto;
6671
6672  bool IsError = false;
6673
6674  // Initialize the implicit object parameter.
6675  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6676                                                 Best->FoundDecl, Method);
6677  TheCall->setArg(0, Object);
6678
6679
6680  // Check the argument types.
6681  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6682    Expr *Arg;
6683    if (i < NumArgs) {
6684      Arg = Args[i];
6685
6686      // Pass the argument.
6687
6688      OwningExprResult InputInit
6689        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6690                                                    Method->getParamDecl(i)),
6691                                    SourceLocation(), Owned(Arg));
6692
6693      IsError |= InputInit.isInvalid();
6694      Arg = InputInit.takeAs<Expr>();
6695    } else {
6696      OwningExprResult DefArg
6697        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6698      if (DefArg.isInvalid()) {
6699        IsError = true;
6700        break;
6701      }
6702
6703      Arg = DefArg.takeAs<Expr>();
6704    }
6705
6706    TheCall->setArg(i + 1, Arg);
6707  }
6708
6709  // If this is a variadic call, handle args passed through "...".
6710  if (Proto->isVariadic()) {
6711    // Promote the arguments (C99 6.5.2.2p7).
6712    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6713      Expr *Arg = Args[i];
6714      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6715      TheCall->setArg(i + 1, Arg);
6716    }
6717  }
6718
6719  if (IsError) return true;
6720
6721  if (CheckFunctionCall(Method, TheCall.get()))
6722    return true;
6723
6724  return MaybeBindToTemporary(TheCall.release()).result();
6725}
6726
6727/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6728///  (if one exists), where @c Base is an expression of class type and
6729/// @c Member is the name of the member we're trying to find.
6730Sema::OwningExprResult
6731Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6732  Expr *Base = static_cast<Expr *>(BaseIn.get());
6733  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6734
6735  SourceLocation Loc = Base->getExprLoc();
6736
6737  // C++ [over.ref]p1:
6738  //
6739  //   [...] An expression x->m is interpreted as (x.operator->())->m
6740  //   for a class object x of type T if T::operator->() exists and if
6741  //   the operator is selected as the best match function by the
6742  //   overload resolution mechanism (13.3).
6743  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6744  OverloadCandidateSet CandidateSet(Loc);
6745  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6746
6747  if (RequireCompleteType(Loc, Base->getType(),
6748                          PDiag(diag::err_typecheck_incomplete_tag)
6749                            << Base->getSourceRange()))
6750    return ExprError();
6751
6752  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6753  LookupQualifiedName(R, BaseRecord->getDecl());
6754  R.suppressDiagnostics();
6755
6756  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6757       Oper != OperEnd; ++Oper) {
6758    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6759                       /*SuppressUserConversions=*/false);
6760  }
6761
6762  // Perform overload resolution.
6763  OverloadCandidateSet::iterator Best;
6764  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6765  case OR_Success:
6766    // Overload resolution succeeded; we'll build the call below.
6767    break;
6768
6769  case OR_No_Viable_Function:
6770    if (CandidateSet.empty())
6771      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6772        << Base->getType() << Base->getSourceRange();
6773    else
6774      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6775        << "operator->" << Base->getSourceRange();
6776    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6777    return ExprError();
6778
6779  case OR_Ambiguous:
6780    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6781      << "->" << Base->getSourceRange();
6782    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6783    return ExprError();
6784
6785  case OR_Deleted:
6786    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6787      << Best->Function->isDeleted()
6788      << "->" << Base->getSourceRange();
6789    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6790    return ExprError();
6791  }
6792
6793  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6794
6795  // Convert the object parameter.
6796  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6797  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6798                                          Best->FoundDecl, Method))
6799    return ExprError();
6800
6801  // No concerns about early exits now.
6802  BaseIn.release();
6803
6804  // Build the operator call.
6805  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6806                                           SourceLocation());
6807  UsualUnaryConversions(FnExpr);
6808
6809  QualType ResultTy = Method->getResultType().getNonReferenceType();
6810  ExprOwningPtr<CXXOperatorCallExpr>
6811    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6812                                                    &Base, 1, ResultTy, OpLoc));
6813
6814  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6815                          Method))
6816          return ExprError();
6817  return move(TheCall);
6818}
6819
6820/// FixOverloadedFunctionReference - E is an expression that refers to
6821/// a C++ overloaded function (possibly with some parentheses and
6822/// perhaps a '&' around it). We have resolved the overloaded function
6823/// to the function declaration Fn, so patch up the expression E to
6824/// refer (possibly indirectly) to Fn. Returns the new expr.
6825Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6826                                           FunctionDecl *Fn) {
6827  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6828    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6829                                                   Found, Fn);
6830    if (SubExpr == PE->getSubExpr())
6831      return PE->Retain();
6832
6833    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6834  }
6835
6836  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6837    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6838                                                   Found, Fn);
6839    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6840                               SubExpr->getType()) &&
6841           "Implicit cast type cannot be determined from overload");
6842    if (SubExpr == ICE->getSubExpr())
6843      return ICE->Retain();
6844
6845    return new (Context) ImplicitCastExpr(ICE->getType(),
6846                                          ICE->getCastKind(),
6847                                          SubExpr,
6848                                          ICE->isLvalueCast());
6849  }
6850
6851  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6852    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6853           "Can only take the address of an overloaded function");
6854    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6855      if (Method->isStatic()) {
6856        // Do nothing: static member functions aren't any different
6857        // from non-member functions.
6858      } else {
6859        // Fix the sub expression, which really has to be an
6860        // UnresolvedLookupExpr holding an overloaded member function
6861        // or template.
6862        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6863                                                       Found, Fn);
6864        if (SubExpr == UnOp->getSubExpr())
6865          return UnOp->Retain();
6866
6867        assert(isa<DeclRefExpr>(SubExpr)
6868               && "fixed to something other than a decl ref");
6869        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6870               && "fixed to a member ref with no nested name qualifier");
6871
6872        // We have taken the address of a pointer to member
6873        // function. Perform the computation here so that we get the
6874        // appropriate pointer to member type.
6875        QualType ClassType
6876          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6877        QualType MemPtrType
6878          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6879
6880        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6881                                           MemPtrType, UnOp->getOperatorLoc());
6882      }
6883    }
6884    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6885                                                   Found, Fn);
6886    if (SubExpr == UnOp->getSubExpr())
6887      return UnOp->Retain();
6888
6889    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6890                                     Context.getPointerType(SubExpr->getType()),
6891                                       UnOp->getOperatorLoc());
6892  }
6893
6894  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6895    // FIXME: avoid copy.
6896    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6897    if (ULE->hasExplicitTemplateArgs()) {
6898      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6899      TemplateArgs = &TemplateArgsBuffer;
6900    }
6901
6902    return DeclRefExpr::Create(Context,
6903                               ULE->getQualifier(),
6904                               ULE->getQualifierRange(),
6905                               Fn,
6906                               ULE->getNameLoc(),
6907                               Fn->getType(),
6908                               TemplateArgs);
6909  }
6910
6911  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6912    // FIXME: avoid copy.
6913    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6914    if (MemExpr->hasExplicitTemplateArgs()) {
6915      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6916      TemplateArgs = &TemplateArgsBuffer;
6917    }
6918
6919    Expr *Base;
6920
6921    // If we're filling in
6922    if (MemExpr->isImplicitAccess()) {
6923      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6924        return DeclRefExpr::Create(Context,
6925                                   MemExpr->getQualifier(),
6926                                   MemExpr->getQualifierRange(),
6927                                   Fn,
6928                                   MemExpr->getMemberLoc(),
6929                                   Fn->getType(),
6930                                   TemplateArgs);
6931      } else {
6932        SourceLocation Loc = MemExpr->getMemberLoc();
6933        if (MemExpr->getQualifier())
6934          Loc = MemExpr->getQualifierRange().getBegin();
6935        Base = new (Context) CXXThisExpr(Loc,
6936                                         MemExpr->getBaseType(),
6937                                         /*isImplicit=*/true);
6938      }
6939    } else
6940      Base = MemExpr->getBase()->Retain();
6941
6942    return MemberExpr::Create(Context, Base,
6943                              MemExpr->isArrow(),
6944                              MemExpr->getQualifier(),
6945                              MemExpr->getQualifierRange(),
6946                              Fn,
6947                              Found,
6948                              MemExpr->getMemberLoc(),
6949                              TemplateArgs,
6950                              Fn->getType());
6951  }
6952
6953  assert(false && "Invalid reference to overloaded function");
6954  return E->Retain();
6955}
6956
6957Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6958                                                          DeclAccessPair Found,
6959                                                            FunctionDecl *Fn) {
6960  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6961}
6962
6963} // end namespace clang
6964