SemaOverload.cpp revision c27d6c58b2c1a7fecfb53c4f4016af6773a9d5ba
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  DeclAccessPair AccessPair;
571
572  // Lvalue-to-rvalue conversion (C++ 4.1):
573  //   An lvalue (3.10) of a non-function, non-array type T can be
574  //   converted to an rvalue.
575  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
576  if (argIsLvalue == Expr::LV_Valid &&
577      !FromType->isFunctionType() && !FromType->isArrayType() &&
578      Context.getCanonicalType(FromType) != Context.OverloadTy) {
579    SCS.First = ICK_Lvalue_To_Rvalue;
580
581    // If T is a non-class type, the type of the rvalue is the
582    // cv-unqualified version of T. Otherwise, the type of the rvalue
583    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
584    // just strip the qualifiers because they don't matter.
585    FromType = FromType.getUnqualifiedType();
586  } else if (FromType->isArrayType()) {
587    // Array-to-pointer conversion (C++ 4.2)
588    SCS.First = ICK_Array_To_Pointer;
589
590    // An lvalue or rvalue of type "array of N T" or "array of unknown
591    // bound of T" can be converted to an rvalue of type "pointer to
592    // T" (C++ 4.2p1).
593    FromType = Context.getArrayDecayedType(FromType);
594
595    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
596      // This conversion is deprecated. (C++ D.4).
597      SCS.DeprecatedStringLiteralToCharPtr = true;
598
599      // For the purpose of ranking in overload resolution
600      // (13.3.3.1.1), this conversion is considered an
601      // array-to-pointer conversion followed by a qualification
602      // conversion (4.4). (C++ 4.2p2)
603      SCS.Second = ICK_Identity;
604      SCS.Third = ICK_Qualification;
605      SCS.setAllToTypes(FromType);
606      return true;
607    }
608  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
609    // Function-to-pointer conversion (C++ 4.3).
610    SCS.First = ICK_Function_To_Pointer;
611
612    // An lvalue of function type T can be converted to an rvalue of
613    // type "pointer to T." The result is a pointer to the
614    // function. (C++ 4.3p1).
615    FromType = Context.getPointerType(FromType);
616  } else if (From->getType() == Context.OverloadTy) {
617    if (FunctionDecl *Fn
618          = ResolveAddressOfOverloadedFunction(From, ToType, false,
619                                               AccessPair)) {
620      // Address of overloaded function (C++ [over.over]).
621      SCS.First = ICK_Function_To_Pointer;
622
623      // We were able to resolve the address of the overloaded function,
624      // so we can convert to the type of that function.
625      FromType = Fn->getType();
626      if (ToType->isLValueReferenceType())
627        FromType = Context.getLValueReferenceType(FromType);
628      else if (ToType->isRValueReferenceType())
629        FromType = Context.getRValueReferenceType(FromType);
630      else if (ToType->isMemberPointerType()) {
631        // Resolve address only succeeds if both sides are member pointers,
632        // but it doesn't have to be the same class. See DR 247.
633        // Note that this means that the type of &Derived::fn can be
634        // Ret (Base::*)(Args) if the fn overload actually found is from the
635        // base class, even if it was brought into the derived class via a
636        // using declaration. The standard isn't clear on this issue at all.
637        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
638        FromType = Context.getMemberPointerType(FromType,
639                      Context.getTypeDeclType(M->getParent()).getTypePtr());
640      } else {
641        FromType = Context.getPointerType(FromType);
642      }
643    } else {
644      return false;
645    }
646  } else {
647    // We don't require any conversions for the first step.
648    SCS.First = ICK_Identity;
649  }
650  SCS.setToType(0, FromType);
651
652  // The second conversion can be an integral promotion, floating
653  // point promotion, integral conversion, floating point conversion,
654  // floating-integral conversion, pointer conversion,
655  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
656  // For overloading in C, this can also be a "compatible-type"
657  // conversion.
658  bool IncompatibleObjC = false;
659  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
660    // The unqualified versions of the types are the same: there's no
661    // conversion to do.
662    SCS.Second = ICK_Identity;
663  } else if (IsIntegralPromotion(From, FromType, ToType)) {
664    // Integral promotion (C++ 4.5).
665    SCS.Second = ICK_Integral_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if (IsFloatingPointPromotion(FromType, ToType)) {
668    // Floating point promotion (C++ 4.6).
669    SCS.Second = ICK_Floating_Promotion;
670    FromType = ToType.getUnqualifiedType();
671  } else if (IsComplexPromotion(FromType, ToType)) {
672    // Complex promotion (Clang extension)
673    SCS.Second = ICK_Complex_Promotion;
674    FromType = ToType.getUnqualifiedType();
675  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
676           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
677    // Integral conversions (C++ 4.7).
678    SCS.Second = ICK_Integral_Conversion;
679    FromType = ToType.getUnqualifiedType();
680  } else if (FromType->isComplexType() && ToType->isComplexType()) {
681    // Complex conversions (C99 6.3.1.6)
682    SCS.Second = ICK_Complex_Conversion;
683    FromType = ToType.getUnqualifiedType();
684  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
685             (ToType->isComplexType() && FromType->isArithmeticType())) {
686    // Complex-real conversions (C99 6.3.1.7)
687    SCS.Second = ICK_Complex_Real;
688    FromType = ToType.getUnqualifiedType();
689  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
690    // Floating point conversions (C++ 4.8).
691    SCS.Second = ICK_Floating_Conversion;
692    FromType = ToType.getUnqualifiedType();
693  } else if ((FromType->isFloatingType() &&
694              ToType->isIntegralType() && (!ToType->isBooleanType() &&
695                                           !ToType->isEnumeralType())) ||
696             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
697              ToType->isFloatingType())) {
698    // Floating-integral conversions (C++ 4.9).
699    SCS.Second = ICK_Floating_Integral;
700    FromType = ToType.getUnqualifiedType();
701  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
702                                 FromType, IncompatibleObjC)) {
703    // Pointer conversions (C++ 4.10).
704    SCS.Second = ICK_Pointer_Conversion;
705    SCS.IncompatibleObjC = IncompatibleObjC;
706  } else if (IsMemberPointerConversion(From, FromType, ToType,
707                                       InOverloadResolution, FromType)) {
708    // Pointer to member conversions (4.11).
709    SCS.Second = ICK_Pointer_Member;
710  } else if (ToType->isBooleanType() &&
711             (FromType->isArithmeticType() ||
712              FromType->isEnumeralType() ||
713              FromType->isAnyPointerType() ||
714              FromType->isBlockPointerType() ||
715              FromType->isMemberPointerType() ||
716              FromType->isNullPtrType())) {
717    // Boolean conversions (C++ 4.12).
718    SCS.Second = ICK_Boolean_Conversion;
719    FromType = Context.BoolTy;
720  } else if (!getLangOptions().CPlusPlus &&
721             Context.typesAreCompatible(ToType, FromType)) {
722    // Compatible conversions (Clang extension for C function overloading)
723    SCS.Second = ICK_Compatible_Conversion;
724  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
725    // Treat a conversion that strips "noreturn" as an identity conversion.
726    SCS.Second = ICK_NoReturn_Adjustment;
727  } else {
728    // No second conversion required.
729    SCS.Second = ICK_Identity;
730  }
731  SCS.setToType(1, FromType);
732
733  QualType CanonFrom;
734  QualType CanonTo;
735  // The third conversion can be a qualification conversion (C++ 4p1).
736  if (IsQualificationConversion(FromType, ToType)) {
737    SCS.Third = ICK_Qualification;
738    FromType = ToType;
739    CanonFrom = Context.getCanonicalType(FromType);
740    CanonTo = Context.getCanonicalType(ToType);
741  } else {
742    // No conversion required
743    SCS.Third = ICK_Identity;
744
745    // C++ [over.best.ics]p6:
746    //   [...] Any difference in top-level cv-qualification is
747    //   subsumed by the initialization itself and does not constitute
748    //   a conversion. [...]
749    CanonFrom = Context.getCanonicalType(FromType);
750    CanonTo = Context.getCanonicalType(ToType);
751    if (CanonFrom.getLocalUnqualifiedType()
752                                       == CanonTo.getLocalUnqualifiedType() &&
753        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
754      FromType = ToType;
755      CanonFrom = CanonTo;
756    }
757  }
758  SCS.setToType(2, FromType);
759
760  // If we have not converted the argument type to the parameter type,
761  // this is a bad conversion sequence.
762  if (CanonFrom != CanonTo)
763    return false;
764
765  return true;
766}
767
768/// IsIntegralPromotion - Determines whether the conversion from the
769/// expression From (whose potentially-adjusted type is FromType) to
770/// ToType is an integral promotion (C++ 4.5). If so, returns true and
771/// sets PromotedType to the promoted type.
772bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
773  const BuiltinType *To = ToType->getAs<BuiltinType>();
774  // All integers are built-in.
775  if (!To) {
776    return false;
777  }
778
779  // An rvalue of type char, signed char, unsigned char, short int, or
780  // unsigned short int can be converted to an rvalue of type int if
781  // int can represent all the values of the source type; otherwise,
782  // the source rvalue can be converted to an rvalue of type unsigned
783  // int (C++ 4.5p1).
784  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
785      !FromType->isEnumeralType()) {
786    if (// We can promote any signed, promotable integer type to an int
787        (FromType->isSignedIntegerType() ||
788         // We can promote any unsigned integer type whose size is
789         // less than int to an int.
790         (!FromType->isSignedIntegerType() &&
791          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
792      return To->getKind() == BuiltinType::Int;
793    }
794
795    return To->getKind() == BuiltinType::UInt;
796  }
797
798  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
799  // can be converted to an rvalue of the first of the following types
800  // that can represent all the values of its underlying type: int,
801  // unsigned int, long, or unsigned long (C++ 4.5p2).
802
803  // We pre-calculate the promotion type for enum types.
804  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
805    if (ToType->isIntegerType())
806      return Context.hasSameUnqualifiedType(ToType,
807                                FromEnumType->getDecl()->getPromotionType());
808
809  if (FromType->isWideCharType() && ToType->isIntegerType()) {
810    // Determine whether the type we're converting from is signed or
811    // unsigned.
812    bool FromIsSigned;
813    uint64_t FromSize = Context.getTypeSize(FromType);
814
815    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
816    FromIsSigned = true;
817
818    // The types we'll try to promote to, in the appropriate
819    // order. Try each of these types.
820    QualType PromoteTypes[6] = {
821      Context.IntTy, Context.UnsignedIntTy,
822      Context.LongTy, Context.UnsignedLongTy ,
823      Context.LongLongTy, Context.UnsignedLongLongTy
824    };
825    for (int Idx = 0; Idx < 6; ++Idx) {
826      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
827      if (FromSize < ToSize ||
828          (FromSize == ToSize &&
829           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
830        // We found the type that we can promote to. If this is the
831        // type we wanted, we have a promotion. Otherwise, no
832        // promotion.
833        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
834      }
835    }
836  }
837
838  // An rvalue for an integral bit-field (9.6) can be converted to an
839  // rvalue of type int if int can represent all the values of the
840  // bit-field; otherwise, it can be converted to unsigned int if
841  // unsigned int can represent all the values of the bit-field. If
842  // the bit-field is larger yet, no integral promotion applies to
843  // it. If the bit-field has an enumerated type, it is treated as any
844  // other value of that type for promotion purposes (C++ 4.5p3).
845  // FIXME: We should delay checking of bit-fields until we actually perform the
846  // conversion.
847  using llvm::APSInt;
848  if (From)
849    if (FieldDecl *MemberDecl = From->getBitField()) {
850      APSInt BitWidth;
851      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
852          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
853        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
854        ToSize = Context.getTypeSize(ToType);
855
856        // Are we promoting to an int from a bitfield that fits in an int?
857        if (BitWidth < ToSize ||
858            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
859          return To->getKind() == BuiltinType::Int;
860        }
861
862        // Are we promoting to an unsigned int from an unsigned bitfield
863        // that fits into an unsigned int?
864        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
865          return To->getKind() == BuiltinType::UInt;
866        }
867
868        return false;
869      }
870    }
871
872  // An rvalue of type bool can be converted to an rvalue of type int,
873  // with false becoming zero and true becoming one (C++ 4.5p4).
874  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
875    return true;
876  }
877
878  return false;
879}
880
881/// IsFloatingPointPromotion - Determines whether the conversion from
882/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
883/// returns true and sets PromotedType to the promoted type.
884bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
885  /// An rvalue of type float can be converted to an rvalue of type
886  /// double. (C++ 4.6p1).
887  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
888    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
889      if (FromBuiltin->getKind() == BuiltinType::Float &&
890          ToBuiltin->getKind() == BuiltinType::Double)
891        return true;
892
893      // C99 6.3.1.5p1:
894      //   When a float is promoted to double or long double, or a
895      //   double is promoted to long double [...].
896      if (!getLangOptions().CPlusPlus &&
897          (FromBuiltin->getKind() == BuiltinType::Float ||
898           FromBuiltin->getKind() == BuiltinType::Double) &&
899          (ToBuiltin->getKind() == BuiltinType::LongDouble))
900        return true;
901    }
902
903  return false;
904}
905
906/// \brief Determine if a conversion is a complex promotion.
907///
908/// A complex promotion is defined as a complex -> complex conversion
909/// where the conversion between the underlying real types is a
910/// floating-point or integral promotion.
911bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
912  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
913  if (!FromComplex)
914    return false;
915
916  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
917  if (!ToComplex)
918    return false;
919
920  return IsFloatingPointPromotion(FromComplex->getElementType(),
921                                  ToComplex->getElementType()) ||
922    IsIntegralPromotion(0, FromComplex->getElementType(),
923                        ToComplex->getElementType());
924}
925
926/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
927/// the pointer type FromPtr to a pointer to type ToPointee, with the
928/// same type qualifiers as FromPtr has on its pointee type. ToType,
929/// if non-empty, will be a pointer to ToType that may or may not have
930/// the right set of qualifiers on its pointee.
931static QualType
932BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
933                                   QualType ToPointee, QualType ToType,
934                                   ASTContext &Context) {
935  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
936  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
937  Qualifiers Quals = CanonFromPointee.getQualifiers();
938
939  // Exact qualifier match -> return the pointer type we're converting to.
940  if (CanonToPointee.getLocalQualifiers() == Quals) {
941    // ToType is exactly what we need. Return it.
942    if (!ToType.isNull())
943      return ToType;
944
945    // Build a pointer to ToPointee. It has the right qualifiers
946    // already.
947    return Context.getPointerType(ToPointee);
948  }
949
950  // Just build a canonical type that has the right qualifiers.
951  return Context.getPointerType(
952         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
953                                  Quals));
954}
955
956/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
957/// the FromType, which is an objective-c pointer, to ToType, which may or may
958/// not have the right set of qualifiers.
959static QualType
960BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
961                                             QualType ToType,
962                                             ASTContext &Context) {
963  QualType CanonFromType = Context.getCanonicalType(FromType);
964  QualType CanonToType = Context.getCanonicalType(ToType);
965  Qualifiers Quals = CanonFromType.getQualifiers();
966
967  // Exact qualifier match -> return the pointer type we're converting to.
968  if (CanonToType.getLocalQualifiers() == Quals)
969    return ToType;
970
971  // Just build a canonical type that has the right qualifiers.
972  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
973}
974
975static bool isNullPointerConstantForConversion(Expr *Expr,
976                                               bool InOverloadResolution,
977                                               ASTContext &Context) {
978  // Handle value-dependent integral null pointer constants correctly.
979  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
980  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
981      Expr->getType()->isIntegralType())
982    return !InOverloadResolution;
983
984  return Expr->isNullPointerConstant(Context,
985                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
986                                        : Expr::NPC_ValueDependentIsNull);
987}
988
989/// IsPointerConversion - Determines whether the conversion of the
990/// expression From, which has the (possibly adjusted) type FromType,
991/// can be converted to the type ToType via a pointer conversion (C++
992/// 4.10). If so, returns true and places the converted type (that
993/// might differ from ToType in its cv-qualifiers at some level) into
994/// ConvertedType.
995///
996/// This routine also supports conversions to and from block pointers
997/// and conversions with Objective-C's 'id', 'id<protocols...>', and
998/// pointers to interfaces. FIXME: Once we've determined the
999/// appropriate overloading rules for Objective-C, we may want to
1000/// split the Objective-C checks into a different routine; however,
1001/// GCC seems to consider all of these conversions to be pointer
1002/// conversions, so for now they live here. IncompatibleObjC will be
1003/// set if the conversion is an allowed Objective-C conversion that
1004/// should result in a warning.
1005bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1006                               bool InOverloadResolution,
1007                               QualType& ConvertedType,
1008                               bool &IncompatibleObjC) {
1009  IncompatibleObjC = false;
1010  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1011    return true;
1012
1013  // Conversion from a null pointer constant to any Objective-C pointer type.
1014  if (ToType->isObjCObjectPointerType() &&
1015      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1016    ConvertedType = ToType;
1017    return true;
1018  }
1019
1020  // Blocks: Block pointers can be converted to void*.
1021  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1022      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1023    ConvertedType = ToType;
1024    return true;
1025  }
1026  // Blocks: A null pointer constant can be converted to a block
1027  // pointer type.
1028  if (ToType->isBlockPointerType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  // If the left-hand-side is nullptr_t, the right side can be a null
1035  // pointer constant.
1036  if (ToType->isNullPtrType() &&
1037      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1038    ConvertedType = ToType;
1039    return true;
1040  }
1041
1042  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1043  if (!ToTypePtr)
1044    return false;
1045
1046  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1047  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1048    ConvertedType = ToType;
1049    return true;
1050  }
1051
1052  // Beyond this point, both types need to be pointers
1053  // , including objective-c pointers.
1054  QualType ToPointeeType = ToTypePtr->getPointeeType();
1055  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1056    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1057                                                       ToType, Context);
1058    return true;
1059
1060  }
1061  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1062  if (!FromTypePtr)
1063    return false;
1064
1065  QualType FromPointeeType = FromTypePtr->getPointeeType();
1066
1067  // An rvalue of type "pointer to cv T," where T is an object type,
1068  // can be converted to an rvalue of type "pointer to cv void" (C++
1069  // 4.10p2).
1070  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1071    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1072                                                       ToPointeeType,
1073                                                       ToType, Context);
1074    return true;
1075  }
1076
1077  // When we're overloading in C, we allow a special kind of pointer
1078  // conversion for compatible-but-not-identical pointee types.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1081    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1082                                                       ToPointeeType,
1083                                                       ToType, Context);
1084    return true;
1085  }
1086
1087  // C++ [conv.ptr]p3:
1088  //
1089  //   An rvalue of type "pointer to cv D," where D is a class type,
1090  //   can be converted to an rvalue of type "pointer to cv B," where
1091  //   B is a base class (clause 10) of D. If B is an inaccessible
1092  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1093  //   necessitates this conversion is ill-formed. The result of the
1094  //   conversion is a pointer to the base class sub-object of the
1095  //   derived class object. The null pointer value is converted to
1096  //   the null pointer value of the destination type.
1097  //
1098  // Note that we do not check for ambiguity or inaccessibility
1099  // here. That is handled by CheckPointerConversion.
1100  if (getLangOptions().CPlusPlus &&
1101      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1102      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1103      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1104      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1105    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1106                                                       ToPointeeType,
1107                                                       ToType, Context);
1108    return true;
1109  }
1110
1111  return false;
1112}
1113
1114/// isObjCPointerConversion - Determines whether this is an
1115/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1116/// with the same arguments and return values.
1117bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1118                                   QualType& ConvertedType,
1119                                   bool &IncompatibleObjC) {
1120  if (!getLangOptions().ObjC1)
1121    return false;
1122
1123  // First, we handle all conversions on ObjC object pointer types.
1124  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1125  const ObjCObjectPointerType *FromObjCPtr =
1126    FromType->getAs<ObjCObjectPointerType>();
1127
1128  if (ToObjCPtr && FromObjCPtr) {
1129    // Objective C++: We're able to convert between "id" or "Class" and a
1130    // pointer to any interface (in both directions).
1131    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Conversions with Objective-C's id<...>.
1136    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1137         ToObjCPtr->isObjCQualifiedIdType()) &&
1138        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1139                                                  /*compare=*/false)) {
1140      ConvertedType = ToType;
1141      return true;
1142    }
1143    // Objective C++: We're able to convert from a pointer to an
1144    // interface to a pointer to a different interface.
1145    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1146      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1147      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1148      if (getLangOptions().CPlusPlus && LHS && RHS &&
1149          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1150                                                FromObjCPtr->getPointeeType()))
1151        return false;
1152      ConvertedType = ToType;
1153      return true;
1154    }
1155
1156    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1157      // Okay: this is some kind of implicit downcast of Objective-C
1158      // interfaces, which is permitted. However, we're going to
1159      // complain about it.
1160      IncompatibleObjC = true;
1161      ConvertedType = FromType;
1162      return true;
1163    }
1164  }
1165  // Beyond this point, both types need to be C pointers or block pointers.
1166  QualType ToPointeeType;
1167  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1168    ToPointeeType = ToCPtr->getPointeeType();
1169  else if (const BlockPointerType *ToBlockPtr =
1170            ToType->getAs<BlockPointerType>()) {
1171    // Objective C++: We're able to convert from a pointer to any object
1172    // to a block pointer type.
1173    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1174      ConvertedType = ToType;
1175      return true;
1176    }
1177    ToPointeeType = ToBlockPtr->getPointeeType();
1178  }
1179  else if (FromType->getAs<BlockPointerType>() &&
1180           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1181    // Objective C++: We're able to convert from a block pointer type to a
1182    // pointer to any object.
1183    ConvertedType = ToType;
1184    return true;
1185  }
1186  else
1187    return false;
1188
1189  QualType FromPointeeType;
1190  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1191    FromPointeeType = FromCPtr->getPointeeType();
1192  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1193    FromPointeeType = FromBlockPtr->getPointeeType();
1194  else
1195    return false;
1196
1197  // If we have pointers to pointers, recursively check whether this
1198  // is an Objective-C conversion.
1199  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1200      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1201                              IncompatibleObjC)) {
1202    // We always complain about this conversion.
1203    IncompatibleObjC = true;
1204    ConvertedType = ToType;
1205    return true;
1206  }
1207  // Allow conversion of pointee being objective-c pointer to another one;
1208  // as in I* to id.
1209  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1210      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1211      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1212                              IncompatibleObjC)) {
1213    ConvertedType = ToType;
1214    return true;
1215  }
1216
1217  // If we have pointers to functions or blocks, check whether the only
1218  // differences in the argument and result types are in Objective-C
1219  // pointer conversions. If so, we permit the conversion (but
1220  // complain about it).
1221  const FunctionProtoType *FromFunctionType
1222    = FromPointeeType->getAs<FunctionProtoType>();
1223  const FunctionProtoType *ToFunctionType
1224    = ToPointeeType->getAs<FunctionProtoType>();
1225  if (FromFunctionType && ToFunctionType) {
1226    // If the function types are exactly the same, this isn't an
1227    // Objective-C pointer conversion.
1228    if (Context.getCanonicalType(FromPointeeType)
1229          == Context.getCanonicalType(ToPointeeType))
1230      return false;
1231
1232    // Perform the quick checks that will tell us whether these
1233    // function types are obviously different.
1234    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1235        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1236        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1237      return false;
1238
1239    bool HasObjCConversion = false;
1240    if (Context.getCanonicalType(FromFunctionType->getResultType())
1241          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1242      // Okay, the types match exactly. Nothing to do.
1243    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1244                                       ToFunctionType->getResultType(),
1245                                       ConvertedType, IncompatibleObjC)) {
1246      // Okay, we have an Objective-C pointer conversion.
1247      HasObjCConversion = true;
1248    } else {
1249      // Function types are too different. Abort.
1250      return false;
1251    }
1252
1253    // Check argument types.
1254    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1255         ArgIdx != NumArgs; ++ArgIdx) {
1256      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1257      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1258      if (Context.getCanonicalType(FromArgType)
1259            == Context.getCanonicalType(ToArgType)) {
1260        // Okay, the types match exactly. Nothing to do.
1261      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1262                                         ConvertedType, IncompatibleObjC)) {
1263        // Okay, we have an Objective-C pointer conversion.
1264        HasObjCConversion = true;
1265      } else {
1266        // Argument types are too different. Abort.
1267        return false;
1268      }
1269    }
1270
1271    if (HasObjCConversion) {
1272      // We had an Objective-C conversion. Allow this pointer
1273      // conversion, but complain about it.
1274      ConvertedType = ToType;
1275      IncompatibleObjC = true;
1276      return true;
1277    }
1278  }
1279
1280  return false;
1281}
1282
1283/// CheckPointerConversion - Check the pointer conversion from the
1284/// expression From to the type ToType. This routine checks for
1285/// ambiguous or inaccessible derived-to-base pointer
1286/// conversions for which IsPointerConversion has already returned
1287/// true. It returns true and produces a diagnostic if there was an
1288/// error, or returns false otherwise.
1289bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1290                                  CastExpr::CastKind &Kind,
1291                                  bool IgnoreBaseAccess) {
1292  QualType FromType = From->getType();
1293
1294  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1295    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1296      QualType FromPointeeType = FromPtrType->getPointeeType(),
1297               ToPointeeType   = ToPtrType->getPointeeType();
1298
1299      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1300          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1301        // We must have a derived-to-base conversion. Check an
1302        // ambiguous or inaccessible conversion.
1303        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1304                                         From->getExprLoc(),
1305                                         From->getSourceRange(),
1306                                         IgnoreBaseAccess))
1307          return true;
1308
1309        // The conversion was successful.
1310        Kind = CastExpr::CK_DerivedToBase;
1311      }
1312    }
1313  if (const ObjCObjectPointerType *FromPtrType =
1314        FromType->getAs<ObjCObjectPointerType>())
1315    if (const ObjCObjectPointerType *ToPtrType =
1316          ToType->getAs<ObjCObjectPointerType>()) {
1317      // Objective-C++ conversions are always okay.
1318      // FIXME: We should have a different class of conversions for the
1319      // Objective-C++ implicit conversions.
1320      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1321        return false;
1322
1323  }
1324  return false;
1325}
1326
1327/// IsMemberPointerConversion - Determines whether the conversion of the
1328/// expression From, which has the (possibly adjusted) type FromType, can be
1329/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1330/// If so, returns true and places the converted type (that might differ from
1331/// ToType in its cv-qualifiers at some level) into ConvertedType.
1332bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1333                                     QualType ToType,
1334                                     bool InOverloadResolution,
1335                                     QualType &ConvertedType) {
1336  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1337  if (!ToTypePtr)
1338    return false;
1339
1340  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1341  if (From->isNullPointerConstant(Context,
1342                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1343                                        : Expr::NPC_ValueDependentIsNull)) {
1344    ConvertedType = ToType;
1345    return true;
1346  }
1347
1348  // Otherwise, both types have to be member pointers.
1349  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1350  if (!FromTypePtr)
1351    return false;
1352
1353  // A pointer to member of B can be converted to a pointer to member of D,
1354  // where D is derived from B (C++ 4.11p2).
1355  QualType FromClass(FromTypePtr->getClass(), 0);
1356  QualType ToClass(ToTypePtr->getClass(), 0);
1357  // FIXME: What happens when these are dependent? Is this function even called?
1358
1359  if (IsDerivedFrom(ToClass, FromClass)) {
1360    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1361                                                 ToClass.getTypePtr());
1362    return true;
1363  }
1364
1365  return false;
1366}
1367
1368/// CheckMemberPointerConversion - Check the member pointer conversion from the
1369/// expression From to the type ToType. This routine checks for ambiguous or
1370/// virtual or inaccessible base-to-derived member pointer conversions
1371/// for which IsMemberPointerConversion has already returned true. It returns
1372/// true and produces a diagnostic if there was an error, or returns false
1373/// otherwise.
1374bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1375                                        CastExpr::CastKind &Kind,
1376                                        bool IgnoreBaseAccess) {
1377  QualType FromType = From->getType();
1378  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1379  if (!FromPtrType) {
1380    // This must be a null pointer to member pointer conversion
1381    assert(From->isNullPointerConstant(Context,
1382                                       Expr::NPC_ValueDependentIsNull) &&
1383           "Expr must be null pointer constant!");
1384    Kind = CastExpr::CK_NullToMemberPointer;
1385    return false;
1386  }
1387
1388  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1389  assert(ToPtrType && "No member pointer cast has a target type "
1390                      "that is not a member pointer.");
1391
1392  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1393  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1394
1395  // FIXME: What about dependent types?
1396  assert(FromClass->isRecordType() && "Pointer into non-class.");
1397  assert(ToClass->isRecordType() && "Pointer into non-class.");
1398
1399  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1400                     /*DetectVirtual=*/true);
1401  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1402  assert(DerivationOkay &&
1403         "Should not have been called if derivation isn't OK.");
1404  (void)DerivationOkay;
1405
1406  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1407                                  getUnqualifiedType())) {
1408    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1409    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1410      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1411    return true;
1412  }
1413
1414  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1415    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1416      << FromClass << ToClass << QualType(VBase, 0)
1417      << From->getSourceRange();
1418    return true;
1419  }
1420
1421  if (!IgnoreBaseAccess)
1422    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1423                         Paths.front(),
1424                         diag::err_downcast_from_inaccessible_base);
1425
1426  // Must be a base to derived member conversion.
1427  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1428  return false;
1429}
1430
1431/// IsQualificationConversion - Determines whether the conversion from
1432/// an rvalue of type FromType to ToType is a qualification conversion
1433/// (C++ 4.4).
1434bool
1435Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1436  FromType = Context.getCanonicalType(FromType);
1437  ToType = Context.getCanonicalType(ToType);
1438
1439  // If FromType and ToType are the same type, this is not a
1440  // qualification conversion.
1441  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1442    return false;
1443
1444  // (C++ 4.4p4):
1445  //   A conversion can add cv-qualifiers at levels other than the first
1446  //   in multi-level pointers, subject to the following rules: [...]
1447  bool PreviousToQualsIncludeConst = true;
1448  bool UnwrappedAnyPointer = false;
1449  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1450    // Within each iteration of the loop, we check the qualifiers to
1451    // determine if this still looks like a qualification
1452    // conversion. Then, if all is well, we unwrap one more level of
1453    // pointers or pointers-to-members and do it all again
1454    // until there are no more pointers or pointers-to-members left to
1455    // unwrap.
1456    UnwrappedAnyPointer = true;
1457
1458    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1459    //      2,j, and similarly for volatile.
1460    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1461      return false;
1462
1463    //   -- if the cv 1,j and cv 2,j are different, then const is in
1464    //      every cv for 0 < k < j.
1465    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1466        && !PreviousToQualsIncludeConst)
1467      return false;
1468
1469    // Keep track of whether all prior cv-qualifiers in the "to" type
1470    // include const.
1471    PreviousToQualsIncludeConst
1472      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1473  }
1474
1475  // We are left with FromType and ToType being the pointee types
1476  // after unwrapping the original FromType and ToType the same number
1477  // of types. If we unwrapped any pointers, and if FromType and
1478  // ToType have the same unqualified type (since we checked
1479  // qualifiers above), then this is a qualification conversion.
1480  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1481}
1482
1483/// Determines whether there is a user-defined conversion sequence
1484/// (C++ [over.ics.user]) that converts expression From to the type
1485/// ToType. If such a conversion exists, User will contain the
1486/// user-defined conversion sequence that performs such a conversion
1487/// and this routine will return true. Otherwise, this routine returns
1488/// false and User is unspecified.
1489///
1490/// \param AllowConversionFunctions true if the conversion should
1491/// consider conversion functions at all. If false, only constructors
1492/// will be considered.
1493///
1494/// \param AllowExplicit  true if the conversion should consider C++0x
1495/// "explicit" conversion functions as well as non-explicit conversion
1496/// functions (C++0x [class.conv.fct]p2).
1497///
1498/// \param UserCast true if looking for user defined conversion for a static
1499/// cast.
1500OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1501                                          UserDefinedConversionSequence& User,
1502                                            OverloadCandidateSet& CandidateSet,
1503                                                bool AllowConversionFunctions,
1504                                                bool AllowExplicit,
1505                                                bool UserCast) {
1506  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1507    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1508      // We're not going to find any constructors.
1509    } else if (CXXRecordDecl *ToRecordDecl
1510                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1511      // C++ [over.match.ctor]p1:
1512      //   When objects of class type are direct-initialized (8.5), or
1513      //   copy-initialized from an expression of the same or a
1514      //   derived class type (8.5), overload resolution selects the
1515      //   constructor. [...] For copy-initialization, the candidate
1516      //   functions are all the converting constructors (12.3.1) of
1517      //   that class. The argument list is the expression-list within
1518      //   the parentheses of the initializer.
1519      bool SuppressUserConversions = !UserCast;
1520      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1521          IsDerivedFrom(From->getType(), ToType)) {
1522        SuppressUserConversions = false;
1523        AllowConversionFunctions = false;
1524      }
1525
1526      DeclarationName ConstructorName
1527        = Context.DeclarationNames.getCXXConstructorName(
1528                          Context.getCanonicalType(ToType).getUnqualifiedType());
1529      DeclContext::lookup_iterator Con, ConEnd;
1530      for (llvm::tie(Con, ConEnd)
1531             = ToRecordDecl->lookup(ConstructorName);
1532           Con != ConEnd; ++Con) {
1533        NamedDecl *D = *Con;
1534        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1535
1536        // Find the constructor (which may be a template).
1537        CXXConstructorDecl *Constructor = 0;
1538        FunctionTemplateDecl *ConstructorTmpl
1539          = dyn_cast<FunctionTemplateDecl>(D);
1540        if (ConstructorTmpl)
1541          Constructor
1542            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1543        else
1544          Constructor = cast<CXXConstructorDecl>(D);
1545
1546        if (!Constructor->isInvalidDecl() &&
1547            Constructor->isConvertingConstructor(AllowExplicit)) {
1548          if (ConstructorTmpl)
1549            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1550                                         /*ExplicitArgs*/ 0,
1551                                         &From, 1, CandidateSet,
1552                                         SuppressUserConversions);
1553          else
1554            // Allow one user-defined conversion when user specifies a
1555            // From->ToType conversion via an static cast (c-style, etc).
1556            AddOverloadCandidate(Constructor, FoundDecl,
1557                                 &From, 1, CandidateSet,
1558                                 SuppressUserConversions);
1559        }
1560      }
1561    }
1562  }
1563
1564  if (!AllowConversionFunctions) {
1565    // Don't allow any conversion functions to enter the overload set.
1566  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1567                                 PDiag(0)
1568                                   << From->getSourceRange())) {
1569    // No conversion functions from incomplete types.
1570  } else if (const RecordType *FromRecordType
1571               = From->getType()->getAs<RecordType>()) {
1572    if (CXXRecordDecl *FromRecordDecl
1573         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1574      // Add all of the conversion functions as candidates.
1575      const UnresolvedSetImpl *Conversions
1576        = FromRecordDecl->getVisibleConversionFunctions();
1577      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1578             E = Conversions->end(); I != E; ++I) {
1579        DeclAccessPair FoundDecl = I.getPair();
1580        NamedDecl *D = FoundDecl.getDecl();
1581        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1582        if (isa<UsingShadowDecl>(D))
1583          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1584
1585        CXXConversionDecl *Conv;
1586        FunctionTemplateDecl *ConvTemplate;
1587        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1588          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1589        else
1590          Conv = cast<CXXConversionDecl>(D);
1591
1592        if (AllowExplicit || !Conv->isExplicit()) {
1593          if (ConvTemplate)
1594            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1595                                           ActingContext, From, ToType,
1596                                           CandidateSet);
1597          else
1598            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1599                                   From, ToType, CandidateSet);
1600        }
1601      }
1602    }
1603  }
1604
1605  OverloadCandidateSet::iterator Best;
1606  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1607    case OR_Success:
1608      // Record the standard conversion we used and the conversion function.
1609      if (CXXConstructorDecl *Constructor
1610            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1611        // C++ [over.ics.user]p1:
1612        //   If the user-defined conversion is specified by a
1613        //   constructor (12.3.1), the initial standard conversion
1614        //   sequence converts the source type to the type required by
1615        //   the argument of the constructor.
1616        //
1617        QualType ThisType = Constructor->getThisType(Context);
1618        if (Best->Conversions[0].isEllipsis())
1619          User.EllipsisConversion = true;
1620        else {
1621          User.Before = Best->Conversions[0].Standard;
1622          User.EllipsisConversion = false;
1623        }
1624        User.ConversionFunction = Constructor;
1625        User.After.setAsIdentityConversion();
1626        User.After.setFromType(
1627          ThisType->getAs<PointerType>()->getPointeeType());
1628        User.After.setAllToTypes(ToType);
1629        return OR_Success;
1630      } else if (CXXConversionDecl *Conversion
1631                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1632        // C++ [over.ics.user]p1:
1633        //
1634        //   [...] If the user-defined conversion is specified by a
1635        //   conversion function (12.3.2), the initial standard
1636        //   conversion sequence converts the source type to the
1637        //   implicit object parameter of the conversion function.
1638        User.Before = Best->Conversions[0].Standard;
1639        User.ConversionFunction = Conversion;
1640        User.EllipsisConversion = false;
1641
1642        // C++ [over.ics.user]p2:
1643        //   The second standard conversion sequence converts the
1644        //   result of the user-defined conversion to the target type
1645        //   for the sequence. Since an implicit conversion sequence
1646        //   is an initialization, the special rules for
1647        //   initialization by user-defined conversion apply when
1648        //   selecting the best user-defined conversion for a
1649        //   user-defined conversion sequence (see 13.3.3 and
1650        //   13.3.3.1).
1651        User.After = Best->FinalConversion;
1652        return OR_Success;
1653      } else {
1654        assert(false && "Not a constructor or conversion function?");
1655        return OR_No_Viable_Function;
1656      }
1657
1658    case OR_No_Viable_Function:
1659      return OR_No_Viable_Function;
1660    case OR_Deleted:
1661      // No conversion here! We're done.
1662      return OR_Deleted;
1663
1664    case OR_Ambiguous:
1665      return OR_Ambiguous;
1666    }
1667
1668  return OR_No_Viable_Function;
1669}
1670
1671bool
1672Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1673  ImplicitConversionSequence ICS;
1674  OverloadCandidateSet CandidateSet(From->getExprLoc());
1675  OverloadingResult OvResult =
1676    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1677                            CandidateSet, true, false, false);
1678  if (OvResult == OR_Ambiguous)
1679    Diag(From->getSourceRange().getBegin(),
1680         diag::err_typecheck_ambiguous_condition)
1681          << From->getType() << ToType << From->getSourceRange();
1682  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1683    Diag(From->getSourceRange().getBegin(),
1684         diag::err_typecheck_nonviable_condition)
1685    << From->getType() << ToType << From->getSourceRange();
1686  else
1687    return false;
1688  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1689  return true;
1690}
1691
1692/// CompareImplicitConversionSequences - Compare two implicit
1693/// conversion sequences to determine whether one is better than the
1694/// other or if they are indistinguishable (C++ 13.3.3.2).
1695ImplicitConversionSequence::CompareKind
1696Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1697                                         const ImplicitConversionSequence& ICS2)
1698{
1699  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1700  // conversion sequences (as defined in 13.3.3.1)
1701  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1702  //      conversion sequence than a user-defined conversion sequence or
1703  //      an ellipsis conversion sequence, and
1704  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1705  //      conversion sequence than an ellipsis conversion sequence
1706  //      (13.3.3.1.3).
1707  //
1708  // C++0x [over.best.ics]p10:
1709  //   For the purpose of ranking implicit conversion sequences as
1710  //   described in 13.3.3.2, the ambiguous conversion sequence is
1711  //   treated as a user-defined sequence that is indistinguishable
1712  //   from any other user-defined conversion sequence.
1713  if (ICS1.getKind() < ICS2.getKind()) {
1714    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1715      return ImplicitConversionSequence::Better;
1716  } else if (ICS2.getKind() < ICS1.getKind()) {
1717    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1718      return ImplicitConversionSequence::Worse;
1719  }
1720
1721  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1722    return ImplicitConversionSequence::Indistinguishable;
1723
1724  // Two implicit conversion sequences of the same form are
1725  // indistinguishable conversion sequences unless one of the
1726  // following rules apply: (C++ 13.3.3.2p3):
1727  if (ICS1.isStandard())
1728    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1729  else if (ICS1.isUserDefined()) {
1730    // User-defined conversion sequence U1 is a better conversion
1731    // sequence than another user-defined conversion sequence U2 if
1732    // they contain the same user-defined conversion function or
1733    // constructor and if the second standard conversion sequence of
1734    // U1 is better than the second standard conversion sequence of
1735    // U2 (C++ 13.3.3.2p3).
1736    if (ICS1.UserDefined.ConversionFunction ==
1737          ICS2.UserDefined.ConversionFunction)
1738      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1739                                                ICS2.UserDefined.After);
1740  }
1741
1742  return ImplicitConversionSequence::Indistinguishable;
1743}
1744
1745// Per 13.3.3.2p3, compare the given standard conversion sequences to
1746// determine if one is a proper subset of the other.
1747static ImplicitConversionSequence::CompareKind
1748compareStandardConversionSubsets(ASTContext &Context,
1749                                 const StandardConversionSequence& SCS1,
1750                                 const StandardConversionSequence& SCS2) {
1751  ImplicitConversionSequence::CompareKind Result
1752    = ImplicitConversionSequence::Indistinguishable;
1753
1754  if (SCS1.Second != SCS2.Second) {
1755    if (SCS1.Second == ICK_Identity)
1756      Result = ImplicitConversionSequence::Better;
1757    else if (SCS2.Second == ICK_Identity)
1758      Result = ImplicitConversionSequence::Worse;
1759    else
1760      return ImplicitConversionSequence::Indistinguishable;
1761  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  if (SCS1.Third == SCS2.Third) {
1765    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1766                             : ImplicitConversionSequence::Indistinguishable;
1767  }
1768
1769  if (SCS1.Third == ICK_Identity)
1770    return Result == ImplicitConversionSequence::Worse
1771             ? ImplicitConversionSequence::Indistinguishable
1772             : ImplicitConversionSequence::Better;
1773
1774  if (SCS2.Third == ICK_Identity)
1775    return Result == ImplicitConversionSequence::Better
1776             ? ImplicitConversionSequence::Indistinguishable
1777             : ImplicitConversionSequence::Worse;
1778
1779  return ImplicitConversionSequence::Indistinguishable;
1780}
1781
1782/// CompareStandardConversionSequences - Compare two standard
1783/// conversion sequences to determine whether one is better than the
1784/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1785ImplicitConversionSequence::CompareKind
1786Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1787                                         const StandardConversionSequence& SCS2)
1788{
1789  // Standard conversion sequence S1 is a better conversion sequence
1790  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1791
1792  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1793  //     sequences in the canonical form defined by 13.3.3.1.1,
1794  //     excluding any Lvalue Transformation; the identity conversion
1795  //     sequence is considered to be a subsequence of any
1796  //     non-identity conversion sequence) or, if not that,
1797  if (ImplicitConversionSequence::CompareKind CK
1798        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1799    return CK;
1800
1801  //  -- the rank of S1 is better than the rank of S2 (by the rules
1802  //     defined below), or, if not that,
1803  ImplicitConversionRank Rank1 = SCS1.getRank();
1804  ImplicitConversionRank Rank2 = SCS2.getRank();
1805  if (Rank1 < Rank2)
1806    return ImplicitConversionSequence::Better;
1807  else if (Rank2 < Rank1)
1808    return ImplicitConversionSequence::Worse;
1809
1810  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1811  // are indistinguishable unless one of the following rules
1812  // applies:
1813
1814  //   A conversion that is not a conversion of a pointer, or
1815  //   pointer to member, to bool is better than another conversion
1816  //   that is such a conversion.
1817  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1818    return SCS2.isPointerConversionToBool()
1819             ? ImplicitConversionSequence::Better
1820             : ImplicitConversionSequence::Worse;
1821
1822  // C++ [over.ics.rank]p4b2:
1823  //
1824  //   If class B is derived directly or indirectly from class A,
1825  //   conversion of B* to A* is better than conversion of B* to
1826  //   void*, and conversion of A* to void* is better than conversion
1827  //   of B* to void*.
1828  bool SCS1ConvertsToVoid
1829    = SCS1.isPointerConversionToVoidPointer(Context);
1830  bool SCS2ConvertsToVoid
1831    = SCS2.isPointerConversionToVoidPointer(Context);
1832  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1833    // Exactly one of the conversion sequences is a conversion to
1834    // a void pointer; it's the worse conversion.
1835    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1836                              : ImplicitConversionSequence::Worse;
1837  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1838    // Neither conversion sequence converts to a void pointer; compare
1839    // their derived-to-base conversions.
1840    if (ImplicitConversionSequence::CompareKind DerivedCK
1841          = CompareDerivedToBaseConversions(SCS1, SCS2))
1842      return DerivedCK;
1843  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1844    // Both conversion sequences are conversions to void
1845    // pointers. Compare the source types to determine if there's an
1846    // inheritance relationship in their sources.
1847    QualType FromType1 = SCS1.getFromType();
1848    QualType FromType2 = SCS2.getFromType();
1849
1850    // Adjust the types we're converting from via the array-to-pointer
1851    // conversion, if we need to.
1852    if (SCS1.First == ICK_Array_To_Pointer)
1853      FromType1 = Context.getArrayDecayedType(FromType1);
1854    if (SCS2.First == ICK_Array_To_Pointer)
1855      FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857    QualType FromPointee1
1858      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1859    QualType FromPointee2
1860      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1861
1862    if (IsDerivedFrom(FromPointee2, FromPointee1))
1863      return ImplicitConversionSequence::Better;
1864    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1865      return ImplicitConversionSequence::Worse;
1866
1867    // Objective-C++: If one interface is more specific than the
1868    // other, it is the better one.
1869    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1870    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1871    if (FromIface1 && FromIface1) {
1872      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1873        return ImplicitConversionSequence::Better;
1874      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877  }
1878
1879  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1880  // bullet 3).
1881  if (ImplicitConversionSequence::CompareKind QualCK
1882        = CompareQualificationConversions(SCS1, SCS2))
1883    return QualCK;
1884
1885  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1886    // C++0x [over.ics.rank]p3b4:
1887    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1888    //      implicit object parameter of a non-static member function declared
1889    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1890    //      rvalue and S2 binds an lvalue reference.
1891    // FIXME: We don't know if we're dealing with the implicit object parameter,
1892    // or if the member function in this case has a ref qualifier.
1893    // (Of course, we don't have ref qualifiers yet.)
1894    if (SCS1.RRefBinding != SCS2.RRefBinding)
1895      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1896                              : ImplicitConversionSequence::Worse;
1897
1898    // C++ [over.ics.rank]p3b4:
1899    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1900    //      which the references refer are the same type except for
1901    //      top-level cv-qualifiers, and the type to which the reference
1902    //      initialized by S2 refers is more cv-qualified than the type
1903    //      to which the reference initialized by S1 refers.
1904    QualType T1 = SCS1.getToType(2);
1905    QualType T2 = SCS2.getToType(2);
1906    T1 = Context.getCanonicalType(T1);
1907    T2 = Context.getCanonicalType(T2);
1908    Qualifiers T1Quals, T2Quals;
1909    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1910    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1911    if (UnqualT1 == UnqualT2) {
1912      // If the type is an array type, promote the element qualifiers to the type
1913      // for comparison.
1914      if (isa<ArrayType>(T1) && T1Quals)
1915        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1916      if (isa<ArrayType>(T2) && T2Quals)
1917        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1918      if (T2.isMoreQualifiedThan(T1))
1919        return ImplicitConversionSequence::Better;
1920      else if (T1.isMoreQualifiedThan(T2))
1921        return ImplicitConversionSequence::Worse;
1922    }
1923  }
1924
1925  return ImplicitConversionSequence::Indistinguishable;
1926}
1927
1928/// CompareQualificationConversions - Compares two standard conversion
1929/// sequences to determine whether they can be ranked based on their
1930/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1931ImplicitConversionSequence::CompareKind
1932Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1933                                      const StandardConversionSequence& SCS2) {
1934  // C++ 13.3.3.2p3:
1935  //  -- S1 and S2 differ only in their qualification conversion and
1936  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1937  //     cv-qualification signature of type T1 is a proper subset of
1938  //     the cv-qualification signature of type T2, and S1 is not the
1939  //     deprecated string literal array-to-pointer conversion (4.2).
1940  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1941      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1942    return ImplicitConversionSequence::Indistinguishable;
1943
1944  // FIXME: the example in the standard doesn't use a qualification
1945  // conversion (!)
1946  QualType T1 = SCS1.getToType(2);
1947  QualType T2 = SCS2.getToType(2);
1948  T1 = Context.getCanonicalType(T1);
1949  T2 = Context.getCanonicalType(T2);
1950  Qualifiers T1Quals, T2Quals;
1951  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1952  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1953
1954  // If the types are the same, we won't learn anything by unwrapped
1955  // them.
1956  if (UnqualT1 == UnqualT2)
1957    return ImplicitConversionSequence::Indistinguishable;
1958
1959  // If the type is an array type, promote the element qualifiers to the type
1960  // for comparison.
1961  if (isa<ArrayType>(T1) && T1Quals)
1962    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1963  if (isa<ArrayType>(T2) && T2Quals)
1964    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1965
1966  ImplicitConversionSequence::CompareKind Result
1967    = ImplicitConversionSequence::Indistinguishable;
1968  while (UnwrapSimilarPointerTypes(T1, T2)) {
1969    // Within each iteration of the loop, we check the qualifiers to
1970    // determine if this still looks like a qualification
1971    // conversion. Then, if all is well, we unwrap one more level of
1972    // pointers or pointers-to-members and do it all again
1973    // until there are no more pointers or pointers-to-members left
1974    // to unwrap. This essentially mimics what
1975    // IsQualificationConversion does, but here we're checking for a
1976    // strict subset of qualifiers.
1977    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1978      // The qualifiers are the same, so this doesn't tell us anything
1979      // about how the sequences rank.
1980      ;
1981    else if (T2.isMoreQualifiedThan(T1)) {
1982      // T1 has fewer qualifiers, so it could be the better sequence.
1983      if (Result == ImplicitConversionSequence::Worse)
1984        // Neither has qualifiers that are a subset of the other's
1985        // qualifiers.
1986        return ImplicitConversionSequence::Indistinguishable;
1987
1988      Result = ImplicitConversionSequence::Better;
1989    } else if (T1.isMoreQualifiedThan(T2)) {
1990      // T2 has fewer qualifiers, so it could be the better sequence.
1991      if (Result == ImplicitConversionSequence::Better)
1992        // Neither has qualifiers that are a subset of the other's
1993        // qualifiers.
1994        return ImplicitConversionSequence::Indistinguishable;
1995
1996      Result = ImplicitConversionSequence::Worse;
1997    } else {
1998      // Qualifiers are disjoint.
1999      return ImplicitConversionSequence::Indistinguishable;
2000    }
2001
2002    // If the types after this point are equivalent, we're done.
2003    if (Context.hasSameUnqualifiedType(T1, T2))
2004      break;
2005  }
2006
2007  // Check that the winning standard conversion sequence isn't using
2008  // the deprecated string literal array to pointer conversion.
2009  switch (Result) {
2010  case ImplicitConversionSequence::Better:
2011    if (SCS1.DeprecatedStringLiteralToCharPtr)
2012      Result = ImplicitConversionSequence::Indistinguishable;
2013    break;
2014
2015  case ImplicitConversionSequence::Indistinguishable:
2016    break;
2017
2018  case ImplicitConversionSequence::Worse:
2019    if (SCS2.DeprecatedStringLiteralToCharPtr)
2020      Result = ImplicitConversionSequence::Indistinguishable;
2021    break;
2022  }
2023
2024  return Result;
2025}
2026
2027/// CompareDerivedToBaseConversions - Compares two standard conversion
2028/// sequences to determine whether they can be ranked based on their
2029/// various kinds of derived-to-base conversions (C++
2030/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2031/// conversions between Objective-C interface types.
2032ImplicitConversionSequence::CompareKind
2033Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2034                                      const StandardConversionSequence& SCS2) {
2035  QualType FromType1 = SCS1.getFromType();
2036  QualType ToType1 = SCS1.getToType(1);
2037  QualType FromType2 = SCS2.getFromType();
2038  QualType ToType2 = SCS2.getToType(1);
2039
2040  // Adjust the types we're converting from via the array-to-pointer
2041  // conversion, if we need to.
2042  if (SCS1.First == ICK_Array_To_Pointer)
2043    FromType1 = Context.getArrayDecayedType(FromType1);
2044  if (SCS2.First == ICK_Array_To_Pointer)
2045    FromType2 = Context.getArrayDecayedType(FromType2);
2046
2047  // Canonicalize all of the types.
2048  FromType1 = Context.getCanonicalType(FromType1);
2049  ToType1 = Context.getCanonicalType(ToType1);
2050  FromType2 = Context.getCanonicalType(FromType2);
2051  ToType2 = Context.getCanonicalType(ToType2);
2052
2053  // C++ [over.ics.rank]p4b3:
2054  //
2055  //   If class B is derived directly or indirectly from class A and
2056  //   class C is derived directly or indirectly from B,
2057  //
2058  // For Objective-C, we let A, B, and C also be Objective-C
2059  // interfaces.
2060
2061  // Compare based on pointer conversions.
2062  if (SCS1.Second == ICK_Pointer_Conversion &&
2063      SCS2.Second == ICK_Pointer_Conversion &&
2064      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2065      FromType1->isPointerType() && FromType2->isPointerType() &&
2066      ToType1->isPointerType() && ToType2->isPointerType()) {
2067    QualType FromPointee1
2068      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2069    QualType ToPointee1
2070      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2071    QualType FromPointee2
2072      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2073    QualType ToPointee2
2074      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2075
2076    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2077    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2078    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2079    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2080
2081    //   -- conversion of C* to B* is better than conversion of C* to A*,
2082    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2083      if (IsDerivedFrom(ToPointee1, ToPointee2))
2084        return ImplicitConversionSequence::Better;
2085      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2086        return ImplicitConversionSequence::Worse;
2087
2088      if (ToIface1 && ToIface2) {
2089        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2090          return ImplicitConversionSequence::Better;
2091        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2092          return ImplicitConversionSequence::Worse;
2093      }
2094    }
2095
2096    //   -- conversion of B* to A* is better than conversion of C* to A*,
2097    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2098      if (IsDerivedFrom(FromPointee2, FromPointee1))
2099        return ImplicitConversionSequence::Better;
2100      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2101        return ImplicitConversionSequence::Worse;
2102
2103      if (FromIface1 && FromIface2) {
2104        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2105          return ImplicitConversionSequence::Better;
2106        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2107          return ImplicitConversionSequence::Worse;
2108      }
2109    }
2110  }
2111
2112  // Ranking of member-pointer types.
2113  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2114      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2115      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2116    const MemberPointerType * FromMemPointer1 =
2117                                        FromType1->getAs<MemberPointerType>();
2118    const MemberPointerType * ToMemPointer1 =
2119                                          ToType1->getAs<MemberPointerType>();
2120    const MemberPointerType * FromMemPointer2 =
2121                                          FromType2->getAs<MemberPointerType>();
2122    const MemberPointerType * ToMemPointer2 =
2123                                          ToType2->getAs<MemberPointerType>();
2124    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2125    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2126    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2127    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2128    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2129    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2130    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2131    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2132    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2133    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2134      if (IsDerivedFrom(ToPointee1, ToPointee2))
2135        return ImplicitConversionSequence::Worse;
2136      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2137        return ImplicitConversionSequence::Better;
2138    }
2139    // conversion of B::* to C::* is better than conversion of A::* to C::*
2140    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2141      if (IsDerivedFrom(FromPointee1, FromPointee2))
2142        return ImplicitConversionSequence::Better;
2143      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2144        return ImplicitConversionSequence::Worse;
2145    }
2146  }
2147
2148  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2149      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2150      SCS1.Second == ICK_Derived_To_Base) {
2151    //   -- conversion of C to B is better than conversion of C to A,
2152    //   -- binding of an expression of type C to a reference of type
2153    //      B& is better than binding an expression of type C to a
2154    //      reference of type A&,
2155    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2156        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2157      if (IsDerivedFrom(ToType1, ToType2))
2158        return ImplicitConversionSequence::Better;
2159      else if (IsDerivedFrom(ToType2, ToType1))
2160        return ImplicitConversionSequence::Worse;
2161    }
2162
2163    //   -- conversion of B to A is better than conversion of C to A.
2164    //   -- binding of an expression of type B to a reference of type
2165    //      A& is better than binding an expression of type C to a
2166    //      reference of type A&,
2167    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2168        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2169      if (IsDerivedFrom(FromType2, FromType1))
2170        return ImplicitConversionSequence::Better;
2171      else if (IsDerivedFrom(FromType1, FromType2))
2172        return ImplicitConversionSequence::Worse;
2173    }
2174  }
2175
2176  return ImplicitConversionSequence::Indistinguishable;
2177}
2178
2179/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2180/// determine whether they are reference-related,
2181/// reference-compatible, reference-compatible with added
2182/// qualification, or incompatible, for use in C++ initialization by
2183/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2184/// type, and the first type (T1) is the pointee type of the reference
2185/// type being initialized.
2186Sema::ReferenceCompareResult
2187Sema::CompareReferenceRelationship(SourceLocation Loc,
2188                                   QualType OrigT1, QualType OrigT2,
2189                                   bool& DerivedToBase) {
2190  assert(!OrigT1->isReferenceType() &&
2191    "T1 must be the pointee type of the reference type");
2192  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2193
2194  QualType T1 = Context.getCanonicalType(OrigT1);
2195  QualType T2 = Context.getCanonicalType(OrigT2);
2196  Qualifiers T1Quals, T2Quals;
2197  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2198  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2199
2200  // C++ [dcl.init.ref]p4:
2201  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2202  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2203  //   T1 is a base class of T2.
2204  if (UnqualT1 == UnqualT2)
2205    DerivedToBase = false;
2206  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2207           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2208           IsDerivedFrom(UnqualT2, UnqualT1))
2209    DerivedToBase = true;
2210  else
2211    return Ref_Incompatible;
2212
2213  // At this point, we know that T1 and T2 are reference-related (at
2214  // least).
2215
2216  // If the type is an array type, promote the element qualifiers to the type
2217  // for comparison.
2218  if (isa<ArrayType>(T1) && T1Quals)
2219    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2220  if (isa<ArrayType>(T2) && T2Quals)
2221    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2222
2223  // C++ [dcl.init.ref]p4:
2224  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2225  //   reference-related to T2 and cv1 is the same cv-qualification
2226  //   as, or greater cv-qualification than, cv2. For purposes of
2227  //   overload resolution, cases for which cv1 is greater
2228  //   cv-qualification than cv2 are identified as
2229  //   reference-compatible with added qualification (see 13.3.3.2).
2230  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2231    return Ref_Compatible;
2232  else if (T1.isMoreQualifiedThan(T2))
2233    return Ref_Compatible_With_Added_Qualification;
2234  else
2235    return Ref_Related;
2236}
2237
2238/// \brief Compute an implicit conversion sequence for reference
2239/// initialization.
2240static ImplicitConversionSequence
2241TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2242                 SourceLocation DeclLoc,
2243                 bool SuppressUserConversions,
2244                 bool AllowExplicit, bool ForceRValue) {
2245  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2246
2247  // Most paths end in a failed conversion.
2248  ImplicitConversionSequence ICS;
2249  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2250
2251  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2252  QualType T2 = Init->getType();
2253
2254  // If the initializer is the address of an overloaded function, try
2255  // to resolve the overloaded function. If all goes well, T2 is the
2256  // type of the resulting function.
2257  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2258    DeclAccessPair Found;
2259    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2260                                                                false, Found))
2261      T2 = Fn->getType();
2262  }
2263
2264  // Compute some basic properties of the types and the initializer.
2265  bool isRValRef = DeclType->isRValueReferenceType();
2266  bool DerivedToBase = false;
2267  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2268                                                  Init->isLvalue(S.Context);
2269  Sema::ReferenceCompareResult RefRelationship
2270    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2271
2272  // C++ [dcl.init.ref]p5:
2273  //   A reference to type "cv1 T1" is initialized by an expression
2274  //   of type "cv2 T2" as follows:
2275
2276  //     -- If the initializer expression
2277
2278  // C++ [over.ics.ref]p3:
2279  //   Except for an implicit object parameter, for which see 13.3.1,
2280  //   a standard conversion sequence cannot be formed if it requires
2281  //   binding an lvalue reference to non-const to an rvalue or
2282  //   binding an rvalue reference to an lvalue.
2283  if (isRValRef && InitLvalue == Expr::LV_Valid)
2284    return ICS;
2285
2286  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2287  //          reference-compatible with "cv2 T2," or
2288  //
2289  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2290  if (InitLvalue == Expr::LV_Valid &&
2291      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2292    // C++ [over.ics.ref]p1:
2293    //   When a parameter of reference type binds directly (8.5.3)
2294    //   to an argument expression, the implicit conversion sequence
2295    //   is the identity conversion, unless the argument expression
2296    //   has a type that is a derived class of the parameter type,
2297    //   in which case the implicit conversion sequence is a
2298    //   derived-to-base Conversion (13.3.3.1).
2299    ICS.setStandard();
2300    ICS.Standard.First = ICK_Identity;
2301    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2302    ICS.Standard.Third = ICK_Identity;
2303    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2304    ICS.Standard.setToType(0, T2);
2305    ICS.Standard.setToType(1, T1);
2306    ICS.Standard.setToType(2, T1);
2307    ICS.Standard.ReferenceBinding = true;
2308    ICS.Standard.DirectBinding = true;
2309    ICS.Standard.RRefBinding = false;
2310    ICS.Standard.CopyConstructor = 0;
2311
2312    // Nothing more to do: the inaccessibility/ambiguity check for
2313    // derived-to-base conversions is suppressed when we're
2314    // computing the implicit conversion sequence (C++
2315    // [over.best.ics]p2).
2316    return ICS;
2317  }
2318
2319  //       -- has a class type (i.e., T2 is a class type), where T1 is
2320  //          not reference-related to T2, and can be implicitly
2321  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2322  //          is reference-compatible with "cv3 T3" 92) (this
2323  //          conversion is selected by enumerating the applicable
2324  //          conversion functions (13.3.1.6) and choosing the best
2325  //          one through overload resolution (13.3)),
2326  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2327      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2328      RefRelationship == Sema::Ref_Incompatible) {
2329    CXXRecordDecl *T2RecordDecl
2330      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2331
2332    OverloadCandidateSet CandidateSet(DeclLoc);
2333    const UnresolvedSetImpl *Conversions
2334      = T2RecordDecl->getVisibleConversionFunctions();
2335    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2336           E = Conversions->end(); I != E; ++I) {
2337      NamedDecl *D = *I;
2338      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2339      if (isa<UsingShadowDecl>(D))
2340        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2341
2342      FunctionTemplateDecl *ConvTemplate
2343        = dyn_cast<FunctionTemplateDecl>(D);
2344      CXXConversionDecl *Conv;
2345      if (ConvTemplate)
2346        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2347      else
2348        Conv = cast<CXXConversionDecl>(D);
2349
2350      // If the conversion function doesn't return a reference type,
2351      // it can't be considered for this conversion.
2352      if (Conv->getConversionType()->isLValueReferenceType() &&
2353          (AllowExplicit || !Conv->isExplicit())) {
2354        if (ConvTemplate)
2355          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2356                                         Init, DeclType, CandidateSet);
2357        else
2358          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2359                                 DeclType, CandidateSet);
2360      }
2361    }
2362
2363    OverloadCandidateSet::iterator Best;
2364    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2365    case OR_Success:
2366      // C++ [over.ics.ref]p1:
2367      //
2368      //   [...] If the parameter binds directly to the result of
2369      //   applying a conversion function to the argument
2370      //   expression, the implicit conversion sequence is a
2371      //   user-defined conversion sequence (13.3.3.1.2), with the
2372      //   second standard conversion sequence either an identity
2373      //   conversion or, if the conversion function returns an
2374      //   entity of a type that is a derived class of the parameter
2375      //   type, a derived-to-base Conversion.
2376      if (!Best->FinalConversion.DirectBinding)
2377        break;
2378
2379      ICS.setUserDefined();
2380      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2381      ICS.UserDefined.After = Best->FinalConversion;
2382      ICS.UserDefined.ConversionFunction = Best->Function;
2383      ICS.UserDefined.EllipsisConversion = false;
2384      assert(ICS.UserDefined.After.ReferenceBinding &&
2385             ICS.UserDefined.After.DirectBinding &&
2386             "Expected a direct reference binding!");
2387      return ICS;
2388
2389    case OR_Ambiguous:
2390      ICS.setAmbiguous();
2391      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2392           Cand != CandidateSet.end(); ++Cand)
2393        if (Cand->Viable)
2394          ICS.Ambiguous.addConversion(Cand->Function);
2395      return ICS;
2396
2397    case OR_No_Viable_Function:
2398    case OR_Deleted:
2399      // There was no suitable conversion, or we found a deleted
2400      // conversion; continue with other checks.
2401      break;
2402    }
2403  }
2404
2405  //     -- Otherwise, the reference shall be to a non-volatile const
2406  //        type (i.e., cv1 shall be const), or the reference shall be an
2407  //        rvalue reference and the initializer expression shall be an rvalue.
2408  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const)
2409    return ICS;
2410
2411  //       -- If the initializer expression is an rvalue, with T2 a
2412  //          class type, and "cv1 T1" is reference-compatible with
2413  //          "cv2 T2," the reference is bound in one of the
2414  //          following ways (the choice is implementation-defined):
2415  //
2416  //          -- The reference is bound to the object represented by
2417  //             the rvalue (see 3.10) or to a sub-object within that
2418  //             object.
2419  //
2420  //          -- A temporary of type "cv1 T2" [sic] is created, and
2421  //             a constructor is called to copy the entire rvalue
2422  //             object into the temporary. The reference is bound to
2423  //             the temporary or to a sub-object within the
2424  //             temporary.
2425  //
2426  //          The constructor that would be used to make the copy
2427  //          shall be callable whether or not the copy is actually
2428  //          done.
2429  //
2430  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2431  // freedom, so we will always take the first option and never build
2432  // a temporary in this case.
2433  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2434      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2435    ICS.setStandard();
2436    ICS.Standard.First = ICK_Identity;
2437    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2438    ICS.Standard.Third = ICK_Identity;
2439    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2440    ICS.Standard.setToType(0, T2);
2441    ICS.Standard.setToType(1, T1);
2442    ICS.Standard.setToType(2, T1);
2443    ICS.Standard.ReferenceBinding = true;
2444    ICS.Standard.DirectBinding = false;
2445    ICS.Standard.RRefBinding = isRValRef;
2446    ICS.Standard.CopyConstructor = 0;
2447    return ICS;
2448  }
2449
2450  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2451  //          initialized from the initializer expression using the
2452  //          rules for a non-reference copy initialization (8.5). The
2453  //          reference is then bound to the temporary. If T1 is
2454  //          reference-related to T2, cv1 must be the same
2455  //          cv-qualification as, or greater cv-qualification than,
2456  //          cv2; otherwise, the program is ill-formed.
2457  if (RefRelationship == Sema::Ref_Related) {
2458    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2459    // we would be reference-compatible or reference-compatible with
2460    // added qualification. But that wasn't the case, so the reference
2461    // initialization fails.
2462    return ICS;
2463  }
2464
2465  // If at least one of the types is a class type, the types are not
2466  // related, and we aren't allowed any user conversions, the
2467  // reference binding fails. This case is important for breaking
2468  // recursion, since TryImplicitConversion below will attempt to
2469  // create a temporary through the use of a copy constructor.
2470  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2471      (T1->isRecordType() || T2->isRecordType()))
2472    return ICS;
2473
2474  // C++ [over.ics.ref]p2:
2475  //
2476  //   When a parameter of reference type is not bound directly to
2477  //   an argument expression, the conversion sequence is the one
2478  //   required to convert the argument expression to the
2479  //   underlying type of the reference according to
2480  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2481  //   to copy-initializing a temporary of the underlying type with
2482  //   the argument expression. Any difference in top-level
2483  //   cv-qualification is subsumed by the initialization itself
2484  //   and does not constitute a conversion.
2485  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2486                                /*AllowExplicit=*/false,
2487                                /*ForceRValue=*/false,
2488                                /*InOverloadResolution=*/false);
2489
2490  // Of course, that's still a reference binding.
2491  if (ICS.isStandard()) {
2492    ICS.Standard.ReferenceBinding = true;
2493    ICS.Standard.RRefBinding = isRValRef;
2494  } else if (ICS.isUserDefined()) {
2495    ICS.UserDefined.After.ReferenceBinding = true;
2496    ICS.UserDefined.After.RRefBinding = isRValRef;
2497  }
2498  return ICS;
2499}
2500
2501/// TryCopyInitialization - Try to copy-initialize a value of type
2502/// ToType from the expression From. Return the implicit conversion
2503/// sequence required to pass this argument, which may be a bad
2504/// conversion sequence (meaning that the argument cannot be passed to
2505/// a parameter of this type). If @p SuppressUserConversions, then we
2506/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2507/// then we treat @p From as an rvalue, even if it is an lvalue.
2508ImplicitConversionSequence
2509Sema::TryCopyInitialization(Expr *From, QualType ToType,
2510                            bool SuppressUserConversions, bool ForceRValue,
2511                            bool InOverloadResolution) {
2512  if (ToType->isReferenceType())
2513    return TryReferenceInit(*this, From, ToType,
2514                            /*FIXME:*/From->getLocStart(),
2515                            SuppressUserConversions,
2516                            /*AllowExplicit=*/false,
2517                            ForceRValue);
2518
2519  return TryImplicitConversion(From, ToType,
2520                               SuppressUserConversions,
2521                               /*AllowExplicit=*/false,
2522                               ForceRValue,
2523                               InOverloadResolution);
2524}
2525
2526/// TryObjectArgumentInitialization - Try to initialize the object
2527/// parameter of the given member function (@c Method) from the
2528/// expression @p From.
2529ImplicitConversionSequence
2530Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2531                                      CXXMethodDecl *Method,
2532                                      CXXRecordDecl *ActingContext) {
2533  QualType ClassType = Context.getTypeDeclType(ActingContext);
2534  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2535  //                 const volatile object.
2536  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2537    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2538  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2539
2540  // Set up the conversion sequence as a "bad" conversion, to allow us
2541  // to exit early.
2542  ImplicitConversionSequence ICS;
2543
2544  // We need to have an object of class type.
2545  QualType FromType = OrigFromType;
2546  if (const PointerType *PT = FromType->getAs<PointerType>())
2547    FromType = PT->getPointeeType();
2548
2549  assert(FromType->isRecordType());
2550
2551  // The implicit object parameter is has the type "reference to cv X",
2552  // where X is the class of which the function is a member
2553  // (C++ [over.match.funcs]p4). However, when finding an implicit
2554  // conversion sequence for the argument, we are not allowed to
2555  // create temporaries or perform user-defined conversions
2556  // (C++ [over.match.funcs]p5). We perform a simplified version of
2557  // reference binding here, that allows class rvalues to bind to
2558  // non-constant references.
2559
2560  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2561  // with the implicit object parameter (C++ [over.match.funcs]p5).
2562  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2563  if (ImplicitParamType.getCVRQualifiers()
2564                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2565      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2566    ICS.setBad(BadConversionSequence::bad_qualifiers,
2567               OrigFromType, ImplicitParamType);
2568    return ICS;
2569  }
2570
2571  // Check that we have either the same type or a derived type. It
2572  // affects the conversion rank.
2573  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2574  ImplicitConversionKind SecondKind;
2575  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2576    SecondKind = ICK_Identity;
2577  } else if (IsDerivedFrom(FromType, ClassType))
2578    SecondKind = ICK_Derived_To_Base;
2579  else {
2580    ICS.setBad(BadConversionSequence::unrelated_class,
2581               FromType, ImplicitParamType);
2582    return ICS;
2583  }
2584
2585  // Success. Mark this as a reference binding.
2586  ICS.setStandard();
2587  ICS.Standard.setAsIdentityConversion();
2588  ICS.Standard.Second = SecondKind;
2589  ICS.Standard.setFromType(FromType);
2590  ICS.Standard.setAllToTypes(ImplicitParamType);
2591  ICS.Standard.ReferenceBinding = true;
2592  ICS.Standard.DirectBinding = true;
2593  ICS.Standard.RRefBinding = false;
2594  return ICS;
2595}
2596
2597/// PerformObjectArgumentInitialization - Perform initialization of
2598/// the implicit object parameter for the given Method with the given
2599/// expression.
2600bool
2601Sema::PerformObjectArgumentInitialization(Expr *&From,
2602                                          NestedNameSpecifier *Qualifier,
2603                                          NamedDecl *FoundDecl,
2604                                          CXXMethodDecl *Method) {
2605  QualType FromRecordType, DestType;
2606  QualType ImplicitParamRecordType  =
2607    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2608
2609  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2610    FromRecordType = PT->getPointeeType();
2611    DestType = Method->getThisType(Context);
2612  } else {
2613    FromRecordType = From->getType();
2614    DestType = ImplicitParamRecordType;
2615  }
2616
2617  // Note that we always use the true parent context when performing
2618  // the actual argument initialization.
2619  ImplicitConversionSequence ICS
2620    = TryObjectArgumentInitialization(From->getType(), Method,
2621                                      Method->getParent());
2622  if (ICS.isBad())
2623    return Diag(From->getSourceRange().getBegin(),
2624                diag::err_implicit_object_parameter_init)
2625       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2626
2627  if (ICS.Standard.Second == ICK_Derived_To_Base)
2628    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2629
2630  if (!Context.hasSameType(From->getType(), DestType))
2631    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2632                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2633  return false;
2634}
2635
2636/// TryContextuallyConvertToBool - Attempt to contextually convert the
2637/// expression From to bool (C++0x [conv]p3).
2638ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2639  return TryImplicitConversion(From, Context.BoolTy,
2640                               // FIXME: Are these flags correct?
2641                               /*SuppressUserConversions=*/false,
2642                               /*AllowExplicit=*/true,
2643                               /*ForceRValue=*/false,
2644                               /*InOverloadResolution=*/false);
2645}
2646
2647/// PerformContextuallyConvertToBool - Perform a contextual conversion
2648/// of the expression From to bool (C++0x [conv]p3).
2649bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2650  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2651  if (!ICS.isBad())
2652    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2653
2654  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2655    return  Diag(From->getSourceRange().getBegin(),
2656                 diag::err_typecheck_bool_condition)
2657                  << From->getType() << From->getSourceRange();
2658  return true;
2659}
2660
2661/// AddOverloadCandidate - Adds the given function to the set of
2662/// candidate functions, using the given function call arguments.  If
2663/// @p SuppressUserConversions, then don't allow user-defined
2664/// conversions via constructors or conversion operators.
2665///
2666/// \para PartialOverloading true if we are performing "partial" overloading
2667/// based on an incomplete set of function arguments. This feature is used by
2668/// code completion.
2669void
2670Sema::AddOverloadCandidate(FunctionDecl *Function,
2671                           DeclAccessPair FoundDecl,
2672                           Expr **Args, unsigned NumArgs,
2673                           OverloadCandidateSet& CandidateSet,
2674                           bool SuppressUserConversions,
2675                           bool PartialOverloading) {
2676  const FunctionProtoType* Proto
2677    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2678  assert(Proto && "Functions without a prototype cannot be overloaded");
2679  assert(!Function->getDescribedFunctionTemplate() &&
2680         "Use AddTemplateOverloadCandidate for function templates");
2681
2682  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2683    if (!isa<CXXConstructorDecl>(Method)) {
2684      // If we get here, it's because we're calling a member function
2685      // that is named without a member access expression (e.g.,
2686      // "this->f") that was either written explicitly or created
2687      // implicitly. This can happen with a qualified call to a member
2688      // function, e.g., X::f(). We use an empty type for the implied
2689      // object argument (C++ [over.call.func]p3), and the acting context
2690      // is irrelevant.
2691      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2692                         QualType(), Args, NumArgs, CandidateSet,
2693                         SuppressUserConversions);
2694      return;
2695    }
2696    // We treat a constructor like a non-member function, since its object
2697    // argument doesn't participate in overload resolution.
2698  }
2699
2700  if (!CandidateSet.isNewCandidate(Function))
2701    return;
2702
2703  // Overload resolution is always an unevaluated context.
2704  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2705
2706  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2707    // C++ [class.copy]p3:
2708    //   A member function template is never instantiated to perform the copy
2709    //   of a class object to an object of its class type.
2710    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2711    if (NumArgs == 1 &&
2712        Constructor->isCopyConstructorLikeSpecialization() &&
2713        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2714         IsDerivedFrom(Args[0]->getType(), ClassType)))
2715      return;
2716  }
2717
2718  // Add this candidate
2719  CandidateSet.push_back(OverloadCandidate());
2720  OverloadCandidate& Candidate = CandidateSet.back();
2721  Candidate.FoundDecl = FoundDecl;
2722  Candidate.Function = Function;
2723  Candidate.Viable = true;
2724  Candidate.IsSurrogate = false;
2725  Candidate.IgnoreObjectArgument = false;
2726
2727  unsigned NumArgsInProto = Proto->getNumArgs();
2728
2729  // (C++ 13.3.2p2): A candidate function having fewer than m
2730  // parameters is viable only if it has an ellipsis in its parameter
2731  // list (8.3.5).
2732  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2733      !Proto->isVariadic()) {
2734    Candidate.Viable = false;
2735    Candidate.FailureKind = ovl_fail_too_many_arguments;
2736    return;
2737  }
2738
2739  // (C++ 13.3.2p2): A candidate function having more than m parameters
2740  // is viable only if the (m+1)st parameter has a default argument
2741  // (8.3.6). For the purposes of overload resolution, the
2742  // parameter list is truncated on the right, so that there are
2743  // exactly m parameters.
2744  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2745  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2746    // Not enough arguments.
2747    Candidate.Viable = false;
2748    Candidate.FailureKind = ovl_fail_too_few_arguments;
2749    return;
2750  }
2751
2752  // Determine the implicit conversion sequences for each of the
2753  // arguments.
2754  Candidate.Conversions.resize(NumArgs);
2755  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2756    if (ArgIdx < NumArgsInProto) {
2757      // (C++ 13.3.2p3): for F to be a viable function, there shall
2758      // exist for each argument an implicit conversion sequence
2759      // (13.3.3.1) that converts that argument to the corresponding
2760      // parameter of F.
2761      QualType ParamType = Proto->getArgType(ArgIdx);
2762      Candidate.Conversions[ArgIdx]
2763        = TryCopyInitialization(Args[ArgIdx], ParamType,
2764                                SuppressUserConversions,
2765                                /*ForceRValue=*/false,
2766                                /*InOverloadResolution=*/true);
2767      if (Candidate.Conversions[ArgIdx].isBad()) {
2768        Candidate.Viable = false;
2769        Candidate.FailureKind = ovl_fail_bad_conversion;
2770        break;
2771      }
2772    } else {
2773      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2774      // argument for which there is no corresponding parameter is
2775      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2776      Candidate.Conversions[ArgIdx].setEllipsis();
2777    }
2778  }
2779}
2780
2781/// \brief Add all of the function declarations in the given function set to
2782/// the overload canddiate set.
2783void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2784                                 Expr **Args, unsigned NumArgs,
2785                                 OverloadCandidateSet& CandidateSet,
2786                                 bool SuppressUserConversions) {
2787  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2788    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2789    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2790      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2791        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2792                           cast<CXXMethodDecl>(FD)->getParent(),
2793                           Args[0]->getType(), Args + 1, NumArgs - 1,
2794                           CandidateSet, SuppressUserConversions);
2795      else
2796        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2797                             SuppressUserConversions);
2798    } else {
2799      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2800      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2801          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2802        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2803                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2804                                   /*FIXME: explicit args */ 0,
2805                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2806                                   CandidateSet,
2807                                   SuppressUserConversions);
2808      else
2809        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2810                                     /*FIXME: explicit args */ 0,
2811                                     Args, NumArgs, CandidateSet,
2812                                     SuppressUserConversions);
2813    }
2814  }
2815}
2816
2817/// AddMethodCandidate - Adds a named decl (which is some kind of
2818/// method) as a method candidate to the given overload set.
2819void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2820                              QualType ObjectType,
2821                              Expr **Args, unsigned NumArgs,
2822                              OverloadCandidateSet& CandidateSet,
2823                              bool SuppressUserConversions) {
2824  NamedDecl *Decl = FoundDecl.getDecl();
2825  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2826
2827  if (isa<UsingShadowDecl>(Decl))
2828    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2829
2830  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2831    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2832           "Expected a member function template");
2833    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2834                               /*ExplicitArgs*/ 0,
2835                               ObjectType, Args, NumArgs,
2836                               CandidateSet,
2837                               SuppressUserConversions);
2838  } else {
2839    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2840                       ObjectType, Args, NumArgs,
2841                       CandidateSet, SuppressUserConversions);
2842  }
2843}
2844
2845/// AddMethodCandidate - Adds the given C++ member function to the set
2846/// of candidate functions, using the given function call arguments
2847/// and the object argument (@c Object). For example, in a call
2848/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2849/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2850/// allow user-defined conversions via constructors or conversion
2851/// operators.
2852void
2853Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2854                         CXXRecordDecl *ActingContext, QualType ObjectType,
2855                         Expr **Args, unsigned NumArgs,
2856                         OverloadCandidateSet& CandidateSet,
2857                         bool SuppressUserConversions) {
2858  const FunctionProtoType* Proto
2859    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2860  assert(Proto && "Methods without a prototype cannot be overloaded");
2861  assert(!isa<CXXConstructorDecl>(Method) &&
2862         "Use AddOverloadCandidate for constructors");
2863
2864  if (!CandidateSet.isNewCandidate(Method))
2865    return;
2866
2867  // Overload resolution is always an unevaluated context.
2868  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2869
2870  // Add this candidate
2871  CandidateSet.push_back(OverloadCandidate());
2872  OverloadCandidate& Candidate = CandidateSet.back();
2873  Candidate.FoundDecl = FoundDecl;
2874  Candidate.Function = Method;
2875  Candidate.IsSurrogate = false;
2876  Candidate.IgnoreObjectArgument = false;
2877
2878  unsigned NumArgsInProto = Proto->getNumArgs();
2879
2880  // (C++ 13.3.2p2): A candidate function having fewer than m
2881  // parameters is viable only if it has an ellipsis in its parameter
2882  // list (8.3.5).
2883  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2884    Candidate.Viable = false;
2885    Candidate.FailureKind = ovl_fail_too_many_arguments;
2886    return;
2887  }
2888
2889  // (C++ 13.3.2p2): A candidate function having more than m parameters
2890  // is viable only if the (m+1)st parameter has a default argument
2891  // (8.3.6). For the purposes of overload resolution, the
2892  // parameter list is truncated on the right, so that there are
2893  // exactly m parameters.
2894  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2895  if (NumArgs < MinRequiredArgs) {
2896    // Not enough arguments.
2897    Candidate.Viable = false;
2898    Candidate.FailureKind = ovl_fail_too_few_arguments;
2899    return;
2900  }
2901
2902  Candidate.Viable = true;
2903  Candidate.Conversions.resize(NumArgs + 1);
2904
2905  if (Method->isStatic() || ObjectType.isNull())
2906    // The implicit object argument is ignored.
2907    Candidate.IgnoreObjectArgument = true;
2908  else {
2909    // Determine the implicit conversion sequence for the object
2910    // parameter.
2911    Candidate.Conversions[0]
2912      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2913    if (Candidate.Conversions[0].isBad()) {
2914      Candidate.Viable = false;
2915      Candidate.FailureKind = ovl_fail_bad_conversion;
2916      return;
2917    }
2918  }
2919
2920  // Determine the implicit conversion sequences for each of the
2921  // arguments.
2922  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2923    if (ArgIdx < NumArgsInProto) {
2924      // (C++ 13.3.2p3): for F to be a viable function, there shall
2925      // exist for each argument an implicit conversion sequence
2926      // (13.3.3.1) that converts that argument to the corresponding
2927      // parameter of F.
2928      QualType ParamType = Proto->getArgType(ArgIdx);
2929      Candidate.Conversions[ArgIdx + 1]
2930        = TryCopyInitialization(Args[ArgIdx], ParamType,
2931                                SuppressUserConversions,
2932                                /*ForceRValue=*/false,
2933                                /*InOverloadResolution=*/true);
2934      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2935        Candidate.Viable = false;
2936        Candidate.FailureKind = ovl_fail_bad_conversion;
2937        break;
2938      }
2939    } else {
2940      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2941      // argument for which there is no corresponding parameter is
2942      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2943      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2944    }
2945  }
2946}
2947
2948/// \brief Add a C++ member function template as a candidate to the candidate
2949/// set, using template argument deduction to produce an appropriate member
2950/// function template specialization.
2951void
2952Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2953                                 DeclAccessPair FoundDecl,
2954                                 CXXRecordDecl *ActingContext,
2955                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2956                                 QualType ObjectType,
2957                                 Expr **Args, unsigned NumArgs,
2958                                 OverloadCandidateSet& CandidateSet,
2959                                 bool SuppressUserConversions) {
2960  if (!CandidateSet.isNewCandidate(MethodTmpl))
2961    return;
2962
2963  // C++ [over.match.funcs]p7:
2964  //   In each case where a candidate is a function template, candidate
2965  //   function template specializations are generated using template argument
2966  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2967  //   candidate functions in the usual way.113) A given name can refer to one
2968  //   or more function templates and also to a set of overloaded non-template
2969  //   functions. In such a case, the candidate functions generated from each
2970  //   function template are combined with the set of non-template candidate
2971  //   functions.
2972  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2973  FunctionDecl *Specialization = 0;
2974  if (TemplateDeductionResult Result
2975      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2976                                Args, NumArgs, Specialization, Info)) {
2977        // FIXME: Record what happened with template argument deduction, so
2978        // that we can give the user a beautiful diagnostic.
2979        (void)Result;
2980        return;
2981      }
2982
2983  // Add the function template specialization produced by template argument
2984  // deduction as a candidate.
2985  assert(Specialization && "Missing member function template specialization?");
2986  assert(isa<CXXMethodDecl>(Specialization) &&
2987         "Specialization is not a member function?");
2988  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2989                     ActingContext, ObjectType, Args, NumArgs,
2990                     CandidateSet, SuppressUserConversions);
2991}
2992
2993/// \brief Add a C++ function template specialization as a candidate
2994/// in the candidate set, using template argument deduction to produce
2995/// an appropriate function template specialization.
2996void
2997Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2998                                   DeclAccessPair FoundDecl,
2999                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3000                                   Expr **Args, unsigned NumArgs,
3001                                   OverloadCandidateSet& CandidateSet,
3002                                   bool SuppressUserConversions) {
3003  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3004    return;
3005
3006  // C++ [over.match.funcs]p7:
3007  //   In each case where a candidate is a function template, candidate
3008  //   function template specializations are generated using template argument
3009  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3010  //   candidate functions in the usual way.113) A given name can refer to one
3011  //   or more function templates and also to a set of overloaded non-template
3012  //   functions. In such a case, the candidate functions generated from each
3013  //   function template are combined with the set of non-template candidate
3014  //   functions.
3015  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3016  FunctionDecl *Specialization = 0;
3017  if (TemplateDeductionResult Result
3018        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3019                                  Args, NumArgs, Specialization, Info)) {
3020    CandidateSet.push_back(OverloadCandidate());
3021    OverloadCandidate &Candidate = CandidateSet.back();
3022    Candidate.FoundDecl = FoundDecl;
3023    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3024    Candidate.Viable = false;
3025    Candidate.FailureKind = ovl_fail_bad_deduction;
3026    Candidate.IsSurrogate = false;
3027    Candidate.IgnoreObjectArgument = false;
3028
3029    // TODO: record more information about failed template arguments
3030    Candidate.DeductionFailure.Result = Result;
3031    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3032    return;
3033  }
3034
3035  // Add the function template specialization produced by template argument
3036  // deduction as a candidate.
3037  assert(Specialization && "Missing function template specialization?");
3038  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3039                       SuppressUserConversions);
3040}
3041
3042/// AddConversionCandidate - Add a C++ conversion function as a
3043/// candidate in the candidate set (C++ [over.match.conv],
3044/// C++ [over.match.copy]). From is the expression we're converting from,
3045/// and ToType is the type that we're eventually trying to convert to
3046/// (which may or may not be the same type as the type that the
3047/// conversion function produces).
3048void
3049Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3050                             DeclAccessPair FoundDecl,
3051                             CXXRecordDecl *ActingContext,
3052                             Expr *From, QualType ToType,
3053                             OverloadCandidateSet& CandidateSet) {
3054  assert(!Conversion->getDescribedFunctionTemplate() &&
3055         "Conversion function templates use AddTemplateConversionCandidate");
3056
3057  if (!CandidateSet.isNewCandidate(Conversion))
3058    return;
3059
3060  // Overload resolution is always an unevaluated context.
3061  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3062
3063  // Add this candidate
3064  CandidateSet.push_back(OverloadCandidate());
3065  OverloadCandidate& Candidate = CandidateSet.back();
3066  Candidate.FoundDecl = FoundDecl;
3067  Candidate.Function = Conversion;
3068  Candidate.IsSurrogate = false;
3069  Candidate.IgnoreObjectArgument = false;
3070  Candidate.FinalConversion.setAsIdentityConversion();
3071  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
3072  Candidate.FinalConversion.setAllToTypes(ToType);
3073
3074  // Determine the implicit conversion sequence for the implicit
3075  // object parameter.
3076  Candidate.Viable = true;
3077  Candidate.Conversions.resize(1);
3078  Candidate.Conversions[0]
3079    = TryObjectArgumentInitialization(From->getType(), Conversion,
3080                                      ActingContext);
3081  // Conversion functions to a different type in the base class is visible in
3082  // the derived class.  So, a derived to base conversion should not participate
3083  // in overload resolution.
3084  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3085    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3086  if (Candidate.Conversions[0].isBad()) {
3087    Candidate.Viable = false;
3088    Candidate.FailureKind = ovl_fail_bad_conversion;
3089    return;
3090  }
3091
3092  // We won't go through a user-define type conversion function to convert a
3093  // derived to base as such conversions are given Conversion Rank. They only
3094  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3095  QualType FromCanon
3096    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3097  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3098  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3099    Candidate.Viable = false;
3100    Candidate.FailureKind = ovl_fail_trivial_conversion;
3101    return;
3102  }
3103
3104
3105  // To determine what the conversion from the result of calling the
3106  // conversion function to the type we're eventually trying to
3107  // convert to (ToType), we need to synthesize a call to the
3108  // conversion function and attempt copy initialization from it. This
3109  // makes sure that we get the right semantics with respect to
3110  // lvalues/rvalues and the type. Fortunately, we can allocate this
3111  // call on the stack and we don't need its arguments to be
3112  // well-formed.
3113  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3114                            From->getLocStart());
3115  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3116                                CastExpr::CK_FunctionToPointerDecay,
3117                                &ConversionRef, false);
3118
3119  // Note that it is safe to allocate CallExpr on the stack here because
3120  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3121  // allocator).
3122  CallExpr Call(Context, &ConversionFn, 0, 0,
3123                Conversion->getConversionType().getNonReferenceType(),
3124                From->getLocStart());
3125  ImplicitConversionSequence ICS =
3126    TryCopyInitialization(&Call, ToType,
3127                          /*SuppressUserConversions=*/true,
3128                          /*ForceRValue=*/false,
3129                          /*InOverloadResolution=*/false);
3130
3131  switch (ICS.getKind()) {
3132  case ImplicitConversionSequence::StandardConversion:
3133    Candidate.FinalConversion = ICS.Standard;
3134
3135    // C++ [over.ics.user]p3:
3136    //   If the user-defined conversion is specified by a specialization of a
3137    //   conversion function template, the second standard conversion sequence
3138    //   shall have exact match rank.
3139    if (Conversion->getPrimaryTemplate() &&
3140        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3141      Candidate.Viable = false;
3142      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3143    }
3144
3145    break;
3146
3147  case ImplicitConversionSequence::BadConversion:
3148    Candidate.Viable = false;
3149    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3150    break;
3151
3152  default:
3153    assert(false &&
3154           "Can only end up with a standard conversion sequence or failure");
3155  }
3156}
3157
3158/// \brief Adds a conversion function template specialization
3159/// candidate to the overload set, using template argument deduction
3160/// to deduce the template arguments of the conversion function
3161/// template from the type that we are converting to (C++
3162/// [temp.deduct.conv]).
3163void
3164Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3165                                     DeclAccessPair FoundDecl,
3166                                     CXXRecordDecl *ActingDC,
3167                                     Expr *From, QualType ToType,
3168                                     OverloadCandidateSet &CandidateSet) {
3169  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3170         "Only conversion function templates permitted here");
3171
3172  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3173    return;
3174
3175  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3176  CXXConversionDecl *Specialization = 0;
3177  if (TemplateDeductionResult Result
3178        = DeduceTemplateArguments(FunctionTemplate, ToType,
3179                                  Specialization, Info)) {
3180    // FIXME: Record what happened with template argument deduction, so
3181    // that we can give the user a beautiful diagnostic.
3182    (void)Result;
3183    return;
3184  }
3185
3186  // Add the conversion function template specialization produced by
3187  // template argument deduction as a candidate.
3188  assert(Specialization && "Missing function template specialization?");
3189  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3190                         CandidateSet);
3191}
3192
3193/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3194/// converts the given @c Object to a function pointer via the
3195/// conversion function @c Conversion, and then attempts to call it
3196/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3197/// the type of function that we'll eventually be calling.
3198void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3199                                 DeclAccessPair FoundDecl,
3200                                 CXXRecordDecl *ActingContext,
3201                                 const FunctionProtoType *Proto,
3202                                 QualType ObjectType,
3203                                 Expr **Args, unsigned NumArgs,
3204                                 OverloadCandidateSet& CandidateSet) {
3205  if (!CandidateSet.isNewCandidate(Conversion))
3206    return;
3207
3208  // Overload resolution is always an unevaluated context.
3209  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3210
3211  CandidateSet.push_back(OverloadCandidate());
3212  OverloadCandidate& Candidate = CandidateSet.back();
3213  Candidate.FoundDecl = FoundDecl;
3214  Candidate.Function = 0;
3215  Candidate.Surrogate = Conversion;
3216  Candidate.Viable = true;
3217  Candidate.IsSurrogate = true;
3218  Candidate.IgnoreObjectArgument = false;
3219  Candidate.Conversions.resize(NumArgs + 1);
3220
3221  // Determine the implicit conversion sequence for the implicit
3222  // object parameter.
3223  ImplicitConversionSequence ObjectInit
3224    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3225  if (ObjectInit.isBad()) {
3226    Candidate.Viable = false;
3227    Candidate.FailureKind = ovl_fail_bad_conversion;
3228    Candidate.Conversions[0] = ObjectInit;
3229    return;
3230  }
3231
3232  // The first conversion is actually a user-defined conversion whose
3233  // first conversion is ObjectInit's standard conversion (which is
3234  // effectively a reference binding). Record it as such.
3235  Candidate.Conversions[0].setUserDefined();
3236  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3237  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3238  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3239  Candidate.Conversions[0].UserDefined.After
3240    = Candidate.Conversions[0].UserDefined.Before;
3241  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3242
3243  // Find the
3244  unsigned NumArgsInProto = Proto->getNumArgs();
3245
3246  // (C++ 13.3.2p2): A candidate function having fewer than m
3247  // parameters is viable only if it has an ellipsis in its parameter
3248  // list (8.3.5).
3249  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3250    Candidate.Viable = false;
3251    Candidate.FailureKind = ovl_fail_too_many_arguments;
3252    return;
3253  }
3254
3255  // Function types don't have any default arguments, so just check if
3256  // we have enough arguments.
3257  if (NumArgs < NumArgsInProto) {
3258    // Not enough arguments.
3259    Candidate.Viable = false;
3260    Candidate.FailureKind = ovl_fail_too_few_arguments;
3261    return;
3262  }
3263
3264  // Determine the implicit conversion sequences for each of the
3265  // arguments.
3266  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3267    if (ArgIdx < NumArgsInProto) {
3268      // (C++ 13.3.2p3): for F to be a viable function, there shall
3269      // exist for each argument an implicit conversion sequence
3270      // (13.3.3.1) that converts that argument to the corresponding
3271      // parameter of F.
3272      QualType ParamType = Proto->getArgType(ArgIdx);
3273      Candidate.Conversions[ArgIdx + 1]
3274        = TryCopyInitialization(Args[ArgIdx], ParamType,
3275                                /*SuppressUserConversions=*/false,
3276                                /*ForceRValue=*/false,
3277                                /*InOverloadResolution=*/false);
3278      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3279        Candidate.Viable = false;
3280        Candidate.FailureKind = ovl_fail_bad_conversion;
3281        break;
3282      }
3283    } else {
3284      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3285      // argument for which there is no corresponding parameter is
3286      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3287      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3288    }
3289  }
3290}
3291
3292// FIXME: This will eventually be removed, once we've migrated all of the
3293// operator overloading logic over to the scheme used by binary operators, which
3294// works for template instantiation.
3295void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
3296                                 SourceLocation OpLoc,
3297                                 Expr **Args, unsigned NumArgs,
3298                                 OverloadCandidateSet& CandidateSet,
3299                                 SourceRange OpRange) {
3300  UnresolvedSet<16> Fns;
3301
3302  QualType T1 = Args[0]->getType();
3303  QualType T2;
3304  if (NumArgs > 1)
3305    T2 = Args[1]->getType();
3306
3307  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3308  if (S)
3309    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
3310  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
3311  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
3312                                       CandidateSet);
3313  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
3314  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
3315}
3316
3317/// \brief Add overload candidates for overloaded operators that are
3318/// member functions.
3319///
3320/// Add the overloaded operator candidates that are member functions
3321/// for the operator Op that was used in an operator expression such
3322/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3323/// CandidateSet will store the added overload candidates. (C++
3324/// [over.match.oper]).
3325void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3326                                       SourceLocation OpLoc,
3327                                       Expr **Args, unsigned NumArgs,
3328                                       OverloadCandidateSet& CandidateSet,
3329                                       SourceRange OpRange) {
3330  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3331
3332  // C++ [over.match.oper]p3:
3333  //   For a unary operator @ with an operand of a type whose
3334  //   cv-unqualified version is T1, and for a binary operator @ with
3335  //   a left operand of a type whose cv-unqualified version is T1 and
3336  //   a right operand of a type whose cv-unqualified version is T2,
3337  //   three sets of candidate functions, designated member
3338  //   candidates, non-member candidates and built-in candidates, are
3339  //   constructed as follows:
3340  QualType T1 = Args[0]->getType();
3341  QualType T2;
3342  if (NumArgs > 1)
3343    T2 = Args[1]->getType();
3344
3345  //     -- If T1 is a class type, the set of member candidates is the
3346  //        result of the qualified lookup of T1::operator@
3347  //        (13.3.1.1.1); otherwise, the set of member candidates is
3348  //        empty.
3349  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3350    // Complete the type if it can be completed. Otherwise, we're done.
3351    if (RequireCompleteType(OpLoc, T1, PDiag()))
3352      return;
3353
3354    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3355    LookupQualifiedName(Operators, T1Rec->getDecl());
3356    Operators.suppressDiagnostics();
3357
3358    for (LookupResult::iterator Oper = Operators.begin(),
3359                             OperEnd = Operators.end();
3360         Oper != OperEnd;
3361         ++Oper)
3362      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3363                         Args + 1, NumArgs - 1, CandidateSet,
3364                         /* SuppressUserConversions = */ false);
3365  }
3366}
3367
3368/// AddBuiltinCandidate - Add a candidate for a built-in
3369/// operator. ResultTy and ParamTys are the result and parameter types
3370/// of the built-in candidate, respectively. Args and NumArgs are the
3371/// arguments being passed to the candidate. IsAssignmentOperator
3372/// should be true when this built-in candidate is an assignment
3373/// operator. NumContextualBoolArguments is the number of arguments
3374/// (at the beginning of the argument list) that will be contextually
3375/// converted to bool.
3376void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3377                               Expr **Args, unsigned NumArgs,
3378                               OverloadCandidateSet& CandidateSet,
3379                               bool IsAssignmentOperator,
3380                               unsigned NumContextualBoolArguments) {
3381  // Overload resolution is always an unevaluated context.
3382  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3383
3384  // Add this candidate
3385  CandidateSet.push_back(OverloadCandidate());
3386  OverloadCandidate& Candidate = CandidateSet.back();
3387  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3388  Candidate.Function = 0;
3389  Candidate.IsSurrogate = false;
3390  Candidate.IgnoreObjectArgument = false;
3391  Candidate.BuiltinTypes.ResultTy = ResultTy;
3392  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3393    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3394
3395  // Determine the implicit conversion sequences for each of the
3396  // arguments.
3397  Candidate.Viable = true;
3398  Candidate.Conversions.resize(NumArgs);
3399  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3400    // C++ [over.match.oper]p4:
3401    //   For the built-in assignment operators, conversions of the
3402    //   left operand are restricted as follows:
3403    //     -- no temporaries are introduced to hold the left operand, and
3404    //     -- no user-defined conversions are applied to the left
3405    //        operand to achieve a type match with the left-most
3406    //        parameter of a built-in candidate.
3407    //
3408    // We block these conversions by turning off user-defined
3409    // conversions, since that is the only way that initialization of
3410    // a reference to a non-class type can occur from something that
3411    // is not of the same type.
3412    if (ArgIdx < NumContextualBoolArguments) {
3413      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3414             "Contextual conversion to bool requires bool type");
3415      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3416    } else {
3417      Candidate.Conversions[ArgIdx]
3418        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3419                                ArgIdx == 0 && IsAssignmentOperator,
3420                                /*ForceRValue=*/false,
3421                                /*InOverloadResolution=*/false);
3422    }
3423    if (Candidate.Conversions[ArgIdx].isBad()) {
3424      Candidate.Viable = false;
3425      Candidate.FailureKind = ovl_fail_bad_conversion;
3426      break;
3427    }
3428  }
3429}
3430
3431/// BuiltinCandidateTypeSet - A set of types that will be used for the
3432/// candidate operator functions for built-in operators (C++
3433/// [over.built]). The types are separated into pointer types and
3434/// enumeration types.
3435class BuiltinCandidateTypeSet  {
3436  /// TypeSet - A set of types.
3437  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3438
3439  /// PointerTypes - The set of pointer types that will be used in the
3440  /// built-in candidates.
3441  TypeSet PointerTypes;
3442
3443  /// MemberPointerTypes - The set of member pointer types that will be
3444  /// used in the built-in candidates.
3445  TypeSet MemberPointerTypes;
3446
3447  /// EnumerationTypes - The set of enumeration types that will be
3448  /// used in the built-in candidates.
3449  TypeSet EnumerationTypes;
3450
3451  /// Sema - The semantic analysis instance where we are building the
3452  /// candidate type set.
3453  Sema &SemaRef;
3454
3455  /// Context - The AST context in which we will build the type sets.
3456  ASTContext &Context;
3457
3458  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3459                                               const Qualifiers &VisibleQuals);
3460  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3461
3462public:
3463  /// iterator - Iterates through the types that are part of the set.
3464  typedef TypeSet::iterator iterator;
3465
3466  BuiltinCandidateTypeSet(Sema &SemaRef)
3467    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3468
3469  void AddTypesConvertedFrom(QualType Ty,
3470                             SourceLocation Loc,
3471                             bool AllowUserConversions,
3472                             bool AllowExplicitConversions,
3473                             const Qualifiers &VisibleTypeConversionsQuals);
3474
3475  /// pointer_begin - First pointer type found;
3476  iterator pointer_begin() { return PointerTypes.begin(); }
3477
3478  /// pointer_end - Past the last pointer type found;
3479  iterator pointer_end() { return PointerTypes.end(); }
3480
3481  /// member_pointer_begin - First member pointer type found;
3482  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3483
3484  /// member_pointer_end - Past the last member pointer type found;
3485  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3486
3487  /// enumeration_begin - First enumeration type found;
3488  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3489
3490  /// enumeration_end - Past the last enumeration type found;
3491  iterator enumeration_end() { return EnumerationTypes.end(); }
3492};
3493
3494/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3495/// the set of pointer types along with any more-qualified variants of
3496/// that type. For example, if @p Ty is "int const *", this routine
3497/// will add "int const *", "int const volatile *", "int const
3498/// restrict *", and "int const volatile restrict *" to the set of
3499/// pointer types. Returns true if the add of @p Ty itself succeeded,
3500/// false otherwise.
3501///
3502/// FIXME: what to do about extended qualifiers?
3503bool
3504BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3505                                             const Qualifiers &VisibleQuals) {
3506
3507  // Insert this type.
3508  if (!PointerTypes.insert(Ty))
3509    return false;
3510
3511  const PointerType *PointerTy = Ty->getAs<PointerType>();
3512  assert(PointerTy && "type was not a pointer type!");
3513
3514  QualType PointeeTy = PointerTy->getPointeeType();
3515  // Don't add qualified variants of arrays. For one, they're not allowed
3516  // (the qualifier would sink to the element type), and for another, the
3517  // only overload situation where it matters is subscript or pointer +- int,
3518  // and those shouldn't have qualifier variants anyway.
3519  if (PointeeTy->isArrayType())
3520    return true;
3521  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3522  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3523    BaseCVR = Array->getElementType().getCVRQualifiers();
3524  bool hasVolatile = VisibleQuals.hasVolatile();
3525  bool hasRestrict = VisibleQuals.hasRestrict();
3526
3527  // Iterate through all strict supersets of BaseCVR.
3528  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3529    if ((CVR | BaseCVR) != CVR) continue;
3530    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3531    // in the types.
3532    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3533    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3534    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3535    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3536  }
3537
3538  return true;
3539}
3540
3541/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3542/// to the set of pointer types along with any more-qualified variants of
3543/// that type. For example, if @p Ty is "int const *", this routine
3544/// will add "int const *", "int const volatile *", "int const
3545/// restrict *", and "int const volatile restrict *" to the set of
3546/// pointer types. Returns true if the add of @p Ty itself succeeded,
3547/// false otherwise.
3548///
3549/// FIXME: what to do about extended qualifiers?
3550bool
3551BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3552    QualType Ty) {
3553  // Insert this type.
3554  if (!MemberPointerTypes.insert(Ty))
3555    return false;
3556
3557  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3558  assert(PointerTy && "type was not a member pointer type!");
3559
3560  QualType PointeeTy = PointerTy->getPointeeType();
3561  // Don't add qualified variants of arrays. For one, they're not allowed
3562  // (the qualifier would sink to the element type), and for another, the
3563  // only overload situation where it matters is subscript or pointer +- int,
3564  // and those shouldn't have qualifier variants anyway.
3565  if (PointeeTy->isArrayType())
3566    return true;
3567  const Type *ClassTy = PointerTy->getClass();
3568
3569  // Iterate through all strict supersets of the pointee type's CVR
3570  // qualifiers.
3571  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3572  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3573    if ((CVR | BaseCVR) != CVR) continue;
3574
3575    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3576    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3577  }
3578
3579  return true;
3580}
3581
3582/// AddTypesConvertedFrom - Add each of the types to which the type @p
3583/// Ty can be implicit converted to the given set of @p Types. We're
3584/// primarily interested in pointer types and enumeration types. We also
3585/// take member pointer types, for the conditional operator.
3586/// AllowUserConversions is true if we should look at the conversion
3587/// functions of a class type, and AllowExplicitConversions if we
3588/// should also include the explicit conversion functions of a class
3589/// type.
3590void
3591BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3592                                               SourceLocation Loc,
3593                                               bool AllowUserConversions,
3594                                               bool AllowExplicitConversions,
3595                                               const Qualifiers &VisibleQuals) {
3596  // Only deal with canonical types.
3597  Ty = Context.getCanonicalType(Ty);
3598
3599  // Look through reference types; they aren't part of the type of an
3600  // expression for the purposes of conversions.
3601  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3602    Ty = RefTy->getPointeeType();
3603
3604  // We don't care about qualifiers on the type.
3605  Ty = Ty.getLocalUnqualifiedType();
3606
3607  // If we're dealing with an array type, decay to the pointer.
3608  if (Ty->isArrayType())
3609    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3610
3611  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3612    QualType PointeeTy = PointerTy->getPointeeType();
3613
3614    // Insert our type, and its more-qualified variants, into the set
3615    // of types.
3616    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3617      return;
3618  } else if (Ty->isMemberPointerType()) {
3619    // Member pointers are far easier, since the pointee can't be converted.
3620    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3621      return;
3622  } else if (Ty->isEnumeralType()) {
3623    EnumerationTypes.insert(Ty);
3624  } else if (AllowUserConversions) {
3625    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3626      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3627        // No conversion functions in incomplete types.
3628        return;
3629      }
3630
3631      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3632      const UnresolvedSetImpl *Conversions
3633        = ClassDecl->getVisibleConversionFunctions();
3634      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3635             E = Conversions->end(); I != E; ++I) {
3636        NamedDecl *D = I.getDecl();
3637        if (isa<UsingShadowDecl>(D))
3638          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3639
3640        // Skip conversion function templates; they don't tell us anything
3641        // about which builtin types we can convert to.
3642        if (isa<FunctionTemplateDecl>(D))
3643          continue;
3644
3645        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3646        if (AllowExplicitConversions || !Conv->isExplicit()) {
3647          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3648                                VisibleQuals);
3649        }
3650      }
3651    }
3652  }
3653}
3654
3655/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3656/// the volatile- and non-volatile-qualified assignment operators for the
3657/// given type to the candidate set.
3658static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3659                                                   QualType T,
3660                                                   Expr **Args,
3661                                                   unsigned NumArgs,
3662                                    OverloadCandidateSet &CandidateSet) {
3663  QualType ParamTypes[2];
3664
3665  // T& operator=(T&, T)
3666  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3667  ParamTypes[1] = T;
3668  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3669                        /*IsAssignmentOperator=*/true);
3670
3671  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3672    // volatile T& operator=(volatile T&, T)
3673    ParamTypes[0]
3674      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3675    ParamTypes[1] = T;
3676    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3677                          /*IsAssignmentOperator=*/true);
3678  }
3679}
3680
3681/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3682/// if any, found in visible type conversion functions found in ArgExpr's type.
3683static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3684    Qualifiers VRQuals;
3685    const RecordType *TyRec;
3686    if (const MemberPointerType *RHSMPType =
3687        ArgExpr->getType()->getAs<MemberPointerType>())
3688      TyRec = cast<RecordType>(RHSMPType->getClass());
3689    else
3690      TyRec = ArgExpr->getType()->getAs<RecordType>();
3691    if (!TyRec) {
3692      // Just to be safe, assume the worst case.
3693      VRQuals.addVolatile();
3694      VRQuals.addRestrict();
3695      return VRQuals;
3696    }
3697
3698    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3699    if (!ClassDecl->hasDefinition())
3700      return VRQuals;
3701
3702    const UnresolvedSetImpl *Conversions =
3703      ClassDecl->getVisibleConversionFunctions();
3704
3705    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3706           E = Conversions->end(); I != E; ++I) {
3707      NamedDecl *D = I.getDecl();
3708      if (isa<UsingShadowDecl>(D))
3709        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3710      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3711        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3712        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3713          CanTy = ResTypeRef->getPointeeType();
3714        // Need to go down the pointer/mempointer chain and add qualifiers
3715        // as see them.
3716        bool done = false;
3717        while (!done) {
3718          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3719            CanTy = ResTypePtr->getPointeeType();
3720          else if (const MemberPointerType *ResTypeMPtr =
3721                CanTy->getAs<MemberPointerType>())
3722            CanTy = ResTypeMPtr->getPointeeType();
3723          else
3724            done = true;
3725          if (CanTy.isVolatileQualified())
3726            VRQuals.addVolatile();
3727          if (CanTy.isRestrictQualified())
3728            VRQuals.addRestrict();
3729          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3730            return VRQuals;
3731        }
3732      }
3733    }
3734    return VRQuals;
3735}
3736
3737/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3738/// operator overloads to the candidate set (C++ [over.built]), based
3739/// on the operator @p Op and the arguments given. For example, if the
3740/// operator is a binary '+', this routine might add "int
3741/// operator+(int, int)" to cover integer addition.
3742void
3743Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3744                                   SourceLocation OpLoc,
3745                                   Expr **Args, unsigned NumArgs,
3746                                   OverloadCandidateSet& CandidateSet) {
3747  // The set of "promoted arithmetic types", which are the arithmetic
3748  // types are that preserved by promotion (C++ [over.built]p2). Note
3749  // that the first few of these types are the promoted integral
3750  // types; these types need to be first.
3751  // FIXME: What about complex?
3752  const unsigned FirstIntegralType = 0;
3753  const unsigned LastIntegralType = 13;
3754  const unsigned FirstPromotedIntegralType = 7,
3755                 LastPromotedIntegralType = 13;
3756  const unsigned FirstPromotedArithmeticType = 7,
3757                 LastPromotedArithmeticType = 16;
3758  const unsigned NumArithmeticTypes = 16;
3759  QualType ArithmeticTypes[NumArithmeticTypes] = {
3760    Context.BoolTy, Context.CharTy, Context.WCharTy,
3761// FIXME:   Context.Char16Ty, Context.Char32Ty,
3762    Context.SignedCharTy, Context.ShortTy,
3763    Context.UnsignedCharTy, Context.UnsignedShortTy,
3764    Context.IntTy, Context.LongTy, Context.LongLongTy,
3765    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3766    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3767  };
3768  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3769         "Invalid first promoted integral type");
3770  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3771           == Context.UnsignedLongLongTy &&
3772         "Invalid last promoted integral type");
3773  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3774         "Invalid first promoted arithmetic type");
3775  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3776            == Context.LongDoubleTy &&
3777         "Invalid last promoted arithmetic type");
3778
3779  // Find all of the types that the arguments can convert to, but only
3780  // if the operator we're looking at has built-in operator candidates
3781  // that make use of these types.
3782  Qualifiers VisibleTypeConversionsQuals;
3783  VisibleTypeConversionsQuals.addConst();
3784  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3785    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3786
3787  BuiltinCandidateTypeSet CandidateTypes(*this);
3788  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3789      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3790      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3791      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3792      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3793      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3794    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3795      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3796                                           OpLoc,
3797                                           true,
3798                                           (Op == OO_Exclaim ||
3799                                            Op == OO_AmpAmp ||
3800                                            Op == OO_PipePipe),
3801                                           VisibleTypeConversionsQuals);
3802  }
3803
3804  bool isComparison = false;
3805  switch (Op) {
3806  case OO_None:
3807  case NUM_OVERLOADED_OPERATORS:
3808    assert(false && "Expected an overloaded operator");
3809    break;
3810
3811  case OO_Star: // '*' is either unary or binary
3812    if (NumArgs == 1)
3813      goto UnaryStar;
3814    else
3815      goto BinaryStar;
3816    break;
3817
3818  case OO_Plus: // '+' is either unary or binary
3819    if (NumArgs == 1)
3820      goto UnaryPlus;
3821    else
3822      goto BinaryPlus;
3823    break;
3824
3825  case OO_Minus: // '-' is either unary or binary
3826    if (NumArgs == 1)
3827      goto UnaryMinus;
3828    else
3829      goto BinaryMinus;
3830    break;
3831
3832  case OO_Amp: // '&' is either unary or binary
3833    if (NumArgs == 1)
3834      goto UnaryAmp;
3835    else
3836      goto BinaryAmp;
3837
3838  case OO_PlusPlus:
3839  case OO_MinusMinus:
3840    // C++ [over.built]p3:
3841    //
3842    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3843    //   is either volatile or empty, there exist candidate operator
3844    //   functions of the form
3845    //
3846    //       VQ T&      operator++(VQ T&);
3847    //       T          operator++(VQ T&, int);
3848    //
3849    // C++ [over.built]p4:
3850    //
3851    //   For every pair (T, VQ), where T is an arithmetic type other
3852    //   than bool, and VQ is either volatile or empty, there exist
3853    //   candidate operator functions of the form
3854    //
3855    //       VQ T&      operator--(VQ T&);
3856    //       T          operator--(VQ T&, int);
3857    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3858         Arith < NumArithmeticTypes; ++Arith) {
3859      QualType ArithTy = ArithmeticTypes[Arith];
3860      QualType ParamTypes[2]
3861        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3862
3863      // Non-volatile version.
3864      if (NumArgs == 1)
3865        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3866      else
3867        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3868      // heuristic to reduce number of builtin candidates in the set.
3869      // Add volatile version only if there are conversions to a volatile type.
3870      if (VisibleTypeConversionsQuals.hasVolatile()) {
3871        // Volatile version
3872        ParamTypes[0]
3873          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3874        if (NumArgs == 1)
3875          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3876        else
3877          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3878      }
3879    }
3880
3881    // C++ [over.built]p5:
3882    //
3883    //   For every pair (T, VQ), where T is a cv-qualified or
3884    //   cv-unqualified object type, and VQ is either volatile or
3885    //   empty, there exist candidate operator functions of the form
3886    //
3887    //       T*VQ&      operator++(T*VQ&);
3888    //       T*VQ&      operator--(T*VQ&);
3889    //       T*         operator++(T*VQ&, int);
3890    //       T*         operator--(T*VQ&, int);
3891    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3892         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3893      // Skip pointer types that aren't pointers to object types.
3894      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3895        continue;
3896
3897      QualType ParamTypes[2] = {
3898        Context.getLValueReferenceType(*Ptr), Context.IntTy
3899      };
3900
3901      // Without volatile
3902      if (NumArgs == 1)
3903        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3904      else
3905        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3906
3907      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3908          VisibleTypeConversionsQuals.hasVolatile()) {
3909        // With volatile
3910        ParamTypes[0]
3911          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3912        if (NumArgs == 1)
3913          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3914        else
3915          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3916      }
3917    }
3918    break;
3919
3920  UnaryStar:
3921    // C++ [over.built]p6:
3922    //   For every cv-qualified or cv-unqualified object type T, there
3923    //   exist candidate operator functions of the form
3924    //
3925    //       T&         operator*(T*);
3926    //
3927    // C++ [over.built]p7:
3928    //   For every function type T, there exist candidate operator
3929    //   functions of the form
3930    //       T&         operator*(T*);
3931    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3932         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3933      QualType ParamTy = *Ptr;
3934      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3935      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3936                          &ParamTy, Args, 1, CandidateSet);
3937    }
3938    break;
3939
3940  UnaryPlus:
3941    // C++ [over.built]p8:
3942    //   For every type T, there exist candidate operator functions of
3943    //   the form
3944    //
3945    //       T*         operator+(T*);
3946    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3947         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3948      QualType ParamTy = *Ptr;
3949      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3950    }
3951
3952    // Fall through
3953
3954  UnaryMinus:
3955    // C++ [over.built]p9:
3956    //  For every promoted arithmetic type T, there exist candidate
3957    //  operator functions of the form
3958    //
3959    //       T         operator+(T);
3960    //       T         operator-(T);
3961    for (unsigned Arith = FirstPromotedArithmeticType;
3962         Arith < LastPromotedArithmeticType; ++Arith) {
3963      QualType ArithTy = ArithmeticTypes[Arith];
3964      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3965    }
3966    break;
3967
3968  case OO_Tilde:
3969    // C++ [over.built]p10:
3970    //   For every promoted integral type T, there exist candidate
3971    //   operator functions of the form
3972    //
3973    //        T         operator~(T);
3974    for (unsigned Int = FirstPromotedIntegralType;
3975         Int < LastPromotedIntegralType; ++Int) {
3976      QualType IntTy = ArithmeticTypes[Int];
3977      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3978    }
3979    break;
3980
3981  case OO_New:
3982  case OO_Delete:
3983  case OO_Array_New:
3984  case OO_Array_Delete:
3985  case OO_Call:
3986    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3987    break;
3988
3989  case OO_Comma:
3990  UnaryAmp:
3991  case OO_Arrow:
3992    // C++ [over.match.oper]p3:
3993    //   -- For the operator ',', the unary operator '&', or the
3994    //      operator '->', the built-in candidates set is empty.
3995    break;
3996
3997  case OO_EqualEqual:
3998  case OO_ExclaimEqual:
3999    // C++ [over.match.oper]p16:
4000    //   For every pointer to member type T, there exist candidate operator
4001    //   functions of the form
4002    //
4003    //        bool operator==(T,T);
4004    //        bool operator!=(T,T);
4005    for (BuiltinCandidateTypeSet::iterator
4006           MemPtr = CandidateTypes.member_pointer_begin(),
4007           MemPtrEnd = CandidateTypes.member_pointer_end();
4008         MemPtr != MemPtrEnd;
4009         ++MemPtr) {
4010      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4011      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4012    }
4013
4014    // Fall through
4015
4016  case OO_Less:
4017  case OO_Greater:
4018  case OO_LessEqual:
4019  case OO_GreaterEqual:
4020    // C++ [over.built]p15:
4021    //
4022    //   For every pointer or enumeration type T, there exist
4023    //   candidate operator functions of the form
4024    //
4025    //        bool       operator<(T, T);
4026    //        bool       operator>(T, T);
4027    //        bool       operator<=(T, T);
4028    //        bool       operator>=(T, T);
4029    //        bool       operator==(T, T);
4030    //        bool       operator!=(T, T);
4031    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4032         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4033      QualType ParamTypes[2] = { *Ptr, *Ptr };
4034      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4035    }
4036    for (BuiltinCandidateTypeSet::iterator Enum
4037           = CandidateTypes.enumeration_begin();
4038         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4039      QualType ParamTypes[2] = { *Enum, *Enum };
4040      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4041    }
4042
4043    // Fall through.
4044    isComparison = true;
4045
4046  BinaryPlus:
4047  BinaryMinus:
4048    if (!isComparison) {
4049      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4050
4051      // C++ [over.built]p13:
4052      //
4053      //   For every cv-qualified or cv-unqualified object type T
4054      //   there exist candidate operator functions of the form
4055      //
4056      //      T*         operator+(T*, ptrdiff_t);
4057      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4058      //      T*         operator-(T*, ptrdiff_t);
4059      //      T*         operator+(ptrdiff_t, T*);
4060      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4061      //
4062      // C++ [over.built]p14:
4063      //
4064      //   For every T, where T is a pointer to object type, there
4065      //   exist candidate operator functions of the form
4066      //
4067      //      ptrdiff_t  operator-(T, T);
4068      for (BuiltinCandidateTypeSet::iterator Ptr
4069             = CandidateTypes.pointer_begin();
4070           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4071        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4072
4073        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4074        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4075
4076        if (Op == OO_Plus) {
4077          // T* operator+(ptrdiff_t, T*);
4078          ParamTypes[0] = ParamTypes[1];
4079          ParamTypes[1] = *Ptr;
4080          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4081        } else {
4082          // ptrdiff_t operator-(T, T);
4083          ParamTypes[1] = *Ptr;
4084          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4085                              Args, 2, CandidateSet);
4086        }
4087      }
4088    }
4089    // Fall through
4090
4091  case OO_Slash:
4092  BinaryStar:
4093  Conditional:
4094    // C++ [over.built]p12:
4095    //
4096    //   For every pair of promoted arithmetic types L and R, there
4097    //   exist candidate operator functions of the form
4098    //
4099    //        LR         operator*(L, R);
4100    //        LR         operator/(L, R);
4101    //        LR         operator+(L, R);
4102    //        LR         operator-(L, R);
4103    //        bool       operator<(L, R);
4104    //        bool       operator>(L, R);
4105    //        bool       operator<=(L, R);
4106    //        bool       operator>=(L, R);
4107    //        bool       operator==(L, R);
4108    //        bool       operator!=(L, R);
4109    //
4110    //   where LR is the result of the usual arithmetic conversions
4111    //   between types L and R.
4112    //
4113    // C++ [over.built]p24:
4114    //
4115    //   For every pair of promoted arithmetic types L and R, there exist
4116    //   candidate operator functions of the form
4117    //
4118    //        LR       operator?(bool, L, R);
4119    //
4120    //   where LR is the result of the usual arithmetic conversions
4121    //   between types L and R.
4122    // Our candidates ignore the first parameter.
4123    for (unsigned Left = FirstPromotedArithmeticType;
4124         Left < LastPromotedArithmeticType; ++Left) {
4125      for (unsigned Right = FirstPromotedArithmeticType;
4126           Right < LastPromotedArithmeticType; ++Right) {
4127        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4128        QualType Result
4129          = isComparison
4130          ? Context.BoolTy
4131          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4132        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4133      }
4134    }
4135    break;
4136
4137  case OO_Percent:
4138  BinaryAmp:
4139  case OO_Caret:
4140  case OO_Pipe:
4141  case OO_LessLess:
4142  case OO_GreaterGreater:
4143    // C++ [over.built]p17:
4144    //
4145    //   For every pair of promoted integral types L and R, there
4146    //   exist candidate operator functions of the form
4147    //
4148    //      LR         operator%(L, R);
4149    //      LR         operator&(L, R);
4150    //      LR         operator^(L, R);
4151    //      LR         operator|(L, R);
4152    //      L          operator<<(L, R);
4153    //      L          operator>>(L, R);
4154    //
4155    //   where LR is the result of the usual arithmetic conversions
4156    //   between types L and R.
4157    for (unsigned Left = FirstPromotedIntegralType;
4158         Left < LastPromotedIntegralType; ++Left) {
4159      for (unsigned Right = FirstPromotedIntegralType;
4160           Right < LastPromotedIntegralType; ++Right) {
4161        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4162        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4163            ? LandR[0]
4164            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4165        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4166      }
4167    }
4168    break;
4169
4170  case OO_Equal:
4171    // C++ [over.built]p20:
4172    //
4173    //   For every pair (T, VQ), where T is an enumeration or
4174    //   pointer to member type and VQ is either volatile or
4175    //   empty, there exist candidate operator functions of the form
4176    //
4177    //        VQ T&      operator=(VQ T&, T);
4178    for (BuiltinCandidateTypeSet::iterator
4179           Enum = CandidateTypes.enumeration_begin(),
4180           EnumEnd = CandidateTypes.enumeration_end();
4181         Enum != EnumEnd; ++Enum)
4182      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4183                                             CandidateSet);
4184    for (BuiltinCandidateTypeSet::iterator
4185           MemPtr = CandidateTypes.member_pointer_begin(),
4186         MemPtrEnd = CandidateTypes.member_pointer_end();
4187         MemPtr != MemPtrEnd; ++MemPtr)
4188      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4189                                             CandidateSet);
4190      // Fall through.
4191
4192  case OO_PlusEqual:
4193  case OO_MinusEqual:
4194    // C++ [over.built]p19:
4195    //
4196    //   For every pair (T, VQ), where T is any type and VQ is either
4197    //   volatile or empty, there exist candidate operator functions
4198    //   of the form
4199    //
4200    //        T*VQ&      operator=(T*VQ&, T*);
4201    //
4202    // C++ [over.built]p21:
4203    //
4204    //   For every pair (T, VQ), where T is a cv-qualified or
4205    //   cv-unqualified object type and VQ is either volatile or
4206    //   empty, there exist candidate operator functions of the form
4207    //
4208    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4209    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4210    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4211         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4212      QualType ParamTypes[2];
4213      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4214
4215      // non-volatile version
4216      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4217      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4218                          /*IsAssigmentOperator=*/Op == OO_Equal);
4219
4220      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4221          VisibleTypeConversionsQuals.hasVolatile()) {
4222        // volatile version
4223        ParamTypes[0]
4224          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4225        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4226                            /*IsAssigmentOperator=*/Op == OO_Equal);
4227      }
4228    }
4229    // Fall through.
4230
4231  case OO_StarEqual:
4232  case OO_SlashEqual:
4233    // C++ [over.built]p18:
4234    //
4235    //   For every triple (L, VQ, R), where L is an arithmetic type,
4236    //   VQ is either volatile or empty, and R is a promoted
4237    //   arithmetic type, there exist candidate operator functions of
4238    //   the form
4239    //
4240    //        VQ L&      operator=(VQ L&, R);
4241    //        VQ L&      operator*=(VQ L&, R);
4242    //        VQ L&      operator/=(VQ L&, R);
4243    //        VQ L&      operator+=(VQ L&, R);
4244    //        VQ L&      operator-=(VQ L&, R);
4245    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4246      for (unsigned Right = FirstPromotedArithmeticType;
4247           Right < LastPromotedArithmeticType; ++Right) {
4248        QualType ParamTypes[2];
4249        ParamTypes[1] = ArithmeticTypes[Right];
4250
4251        // Add this built-in operator as a candidate (VQ is empty).
4252        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4253        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4254                            /*IsAssigmentOperator=*/Op == OO_Equal);
4255
4256        // Add this built-in operator as a candidate (VQ is 'volatile').
4257        if (VisibleTypeConversionsQuals.hasVolatile()) {
4258          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4259          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4260          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4261                              /*IsAssigmentOperator=*/Op == OO_Equal);
4262        }
4263      }
4264    }
4265    break;
4266
4267  case OO_PercentEqual:
4268  case OO_LessLessEqual:
4269  case OO_GreaterGreaterEqual:
4270  case OO_AmpEqual:
4271  case OO_CaretEqual:
4272  case OO_PipeEqual:
4273    // C++ [over.built]p22:
4274    //
4275    //   For every triple (L, VQ, R), where L is an integral type, VQ
4276    //   is either volatile or empty, and R is a promoted integral
4277    //   type, there exist candidate operator functions of the form
4278    //
4279    //        VQ L&       operator%=(VQ L&, R);
4280    //        VQ L&       operator<<=(VQ L&, R);
4281    //        VQ L&       operator>>=(VQ L&, R);
4282    //        VQ L&       operator&=(VQ L&, R);
4283    //        VQ L&       operator^=(VQ L&, R);
4284    //        VQ L&       operator|=(VQ L&, R);
4285    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4286      for (unsigned Right = FirstPromotedIntegralType;
4287           Right < LastPromotedIntegralType; ++Right) {
4288        QualType ParamTypes[2];
4289        ParamTypes[1] = ArithmeticTypes[Right];
4290
4291        // Add this built-in operator as a candidate (VQ is empty).
4292        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4293        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4294        if (VisibleTypeConversionsQuals.hasVolatile()) {
4295          // Add this built-in operator as a candidate (VQ is 'volatile').
4296          ParamTypes[0] = ArithmeticTypes[Left];
4297          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4298          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4299          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4300        }
4301      }
4302    }
4303    break;
4304
4305  case OO_Exclaim: {
4306    // C++ [over.operator]p23:
4307    //
4308    //   There also exist candidate operator functions of the form
4309    //
4310    //        bool        operator!(bool);
4311    //        bool        operator&&(bool, bool);     [BELOW]
4312    //        bool        operator||(bool, bool);     [BELOW]
4313    QualType ParamTy = Context.BoolTy;
4314    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4315                        /*IsAssignmentOperator=*/false,
4316                        /*NumContextualBoolArguments=*/1);
4317    break;
4318  }
4319
4320  case OO_AmpAmp:
4321  case OO_PipePipe: {
4322    // C++ [over.operator]p23:
4323    //
4324    //   There also exist candidate operator functions of the form
4325    //
4326    //        bool        operator!(bool);            [ABOVE]
4327    //        bool        operator&&(bool, bool);
4328    //        bool        operator||(bool, bool);
4329    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4330    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4331                        /*IsAssignmentOperator=*/false,
4332                        /*NumContextualBoolArguments=*/2);
4333    break;
4334  }
4335
4336  case OO_Subscript:
4337    // C++ [over.built]p13:
4338    //
4339    //   For every cv-qualified or cv-unqualified object type T there
4340    //   exist candidate operator functions of the form
4341    //
4342    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4343    //        T&         operator[](T*, ptrdiff_t);
4344    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4345    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4346    //        T&         operator[](ptrdiff_t, T*);
4347    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4348         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4349      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4350      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4351      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4352
4353      // T& operator[](T*, ptrdiff_t)
4354      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4355
4356      // T& operator[](ptrdiff_t, T*);
4357      ParamTypes[0] = ParamTypes[1];
4358      ParamTypes[1] = *Ptr;
4359      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4360    }
4361    break;
4362
4363  case OO_ArrowStar:
4364    // C++ [over.built]p11:
4365    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4366    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4367    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4368    //    there exist candidate operator functions of the form
4369    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4370    //    where CV12 is the union of CV1 and CV2.
4371    {
4372      for (BuiltinCandidateTypeSet::iterator Ptr =
4373             CandidateTypes.pointer_begin();
4374           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4375        QualType C1Ty = (*Ptr);
4376        QualType C1;
4377        QualifierCollector Q1;
4378        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4379          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4380          if (!isa<RecordType>(C1))
4381            continue;
4382          // heuristic to reduce number of builtin candidates in the set.
4383          // Add volatile/restrict version only if there are conversions to a
4384          // volatile/restrict type.
4385          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4386            continue;
4387          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4388            continue;
4389        }
4390        for (BuiltinCandidateTypeSet::iterator
4391             MemPtr = CandidateTypes.member_pointer_begin(),
4392             MemPtrEnd = CandidateTypes.member_pointer_end();
4393             MemPtr != MemPtrEnd; ++MemPtr) {
4394          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4395          QualType C2 = QualType(mptr->getClass(), 0);
4396          C2 = C2.getUnqualifiedType();
4397          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4398            break;
4399          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4400          // build CV12 T&
4401          QualType T = mptr->getPointeeType();
4402          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4403              T.isVolatileQualified())
4404            continue;
4405          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4406              T.isRestrictQualified())
4407            continue;
4408          T = Q1.apply(T);
4409          QualType ResultTy = Context.getLValueReferenceType(T);
4410          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4411        }
4412      }
4413    }
4414    break;
4415
4416  case OO_Conditional:
4417    // Note that we don't consider the first argument, since it has been
4418    // contextually converted to bool long ago. The candidates below are
4419    // therefore added as binary.
4420    //
4421    // C++ [over.built]p24:
4422    //   For every type T, where T is a pointer or pointer-to-member type,
4423    //   there exist candidate operator functions of the form
4424    //
4425    //        T        operator?(bool, T, T);
4426    //
4427    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4428         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4429      QualType ParamTypes[2] = { *Ptr, *Ptr };
4430      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4431    }
4432    for (BuiltinCandidateTypeSet::iterator Ptr =
4433           CandidateTypes.member_pointer_begin(),
4434         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4435      QualType ParamTypes[2] = { *Ptr, *Ptr };
4436      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4437    }
4438    goto Conditional;
4439  }
4440}
4441
4442/// \brief Add function candidates found via argument-dependent lookup
4443/// to the set of overloading candidates.
4444///
4445/// This routine performs argument-dependent name lookup based on the
4446/// given function name (which may also be an operator name) and adds
4447/// all of the overload candidates found by ADL to the overload
4448/// candidate set (C++ [basic.lookup.argdep]).
4449void
4450Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4451                                           bool Operator,
4452                                           Expr **Args, unsigned NumArgs,
4453                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4454                                           OverloadCandidateSet& CandidateSet,
4455                                           bool PartialOverloading) {
4456  ADLResult Fns;
4457
4458  // FIXME: This approach for uniquing ADL results (and removing
4459  // redundant candidates from the set) relies on pointer-equality,
4460  // which means we need to key off the canonical decl.  However,
4461  // always going back to the canonical decl might not get us the
4462  // right set of default arguments.  What default arguments are
4463  // we supposed to consider on ADL candidates, anyway?
4464
4465  // FIXME: Pass in the explicit template arguments?
4466  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4467
4468  // Erase all of the candidates we already knew about.
4469  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4470                                   CandEnd = CandidateSet.end();
4471       Cand != CandEnd; ++Cand)
4472    if (Cand->Function) {
4473      Fns.erase(Cand->Function);
4474      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4475        Fns.erase(FunTmpl);
4476    }
4477
4478  // For each of the ADL candidates we found, add it to the overload
4479  // set.
4480  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4481    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4482    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4483      if (ExplicitTemplateArgs)
4484        continue;
4485
4486      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4487                           false, PartialOverloading);
4488    } else
4489      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4490                                   FoundDecl, ExplicitTemplateArgs,
4491                                   Args, NumArgs, CandidateSet);
4492  }
4493}
4494
4495/// isBetterOverloadCandidate - Determines whether the first overload
4496/// candidate is a better candidate than the second (C++ 13.3.3p1).
4497bool
4498Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4499                                const OverloadCandidate& Cand2,
4500                                SourceLocation Loc) {
4501  // Define viable functions to be better candidates than non-viable
4502  // functions.
4503  if (!Cand2.Viable)
4504    return Cand1.Viable;
4505  else if (!Cand1.Viable)
4506    return false;
4507
4508  // C++ [over.match.best]p1:
4509  //
4510  //   -- if F is a static member function, ICS1(F) is defined such
4511  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4512  //      any function G, and, symmetrically, ICS1(G) is neither
4513  //      better nor worse than ICS1(F).
4514  unsigned StartArg = 0;
4515  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4516    StartArg = 1;
4517
4518  // C++ [over.match.best]p1:
4519  //   A viable function F1 is defined to be a better function than another
4520  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4521  //   conversion sequence than ICSi(F2), and then...
4522  unsigned NumArgs = Cand1.Conversions.size();
4523  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4524  bool HasBetterConversion = false;
4525  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4526    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4527                                               Cand2.Conversions[ArgIdx])) {
4528    case ImplicitConversionSequence::Better:
4529      // Cand1 has a better conversion sequence.
4530      HasBetterConversion = true;
4531      break;
4532
4533    case ImplicitConversionSequence::Worse:
4534      // Cand1 can't be better than Cand2.
4535      return false;
4536
4537    case ImplicitConversionSequence::Indistinguishable:
4538      // Do nothing.
4539      break;
4540    }
4541  }
4542
4543  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4544  //       ICSj(F2), or, if not that,
4545  if (HasBetterConversion)
4546    return true;
4547
4548  //     - F1 is a non-template function and F2 is a function template
4549  //       specialization, or, if not that,
4550  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4551      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4552    return true;
4553
4554  //   -- F1 and F2 are function template specializations, and the function
4555  //      template for F1 is more specialized than the template for F2
4556  //      according to the partial ordering rules described in 14.5.5.2, or,
4557  //      if not that,
4558  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4559      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4560    if (FunctionTemplateDecl *BetterTemplate
4561          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4562                                       Cand2.Function->getPrimaryTemplate(),
4563                                       Loc,
4564                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4565                                                             : TPOC_Call))
4566      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4567
4568  //   -- the context is an initialization by user-defined conversion
4569  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4570  //      from the return type of F1 to the destination type (i.e.,
4571  //      the type of the entity being initialized) is a better
4572  //      conversion sequence than the standard conversion sequence
4573  //      from the return type of F2 to the destination type.
4574  if (Cand1.Function && Cand2.Function &&
4575      isa<CXXConversionDecl>(Cand1.Function) &&
4576      isa<CXXConversionDecl>(Cand2.Function)) {
4577    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4578                                               Cand2.FinalConversion)) {
4579    case ImplicitConversionSequence::Better:
4580      // Cand1 has a better conversion sequence.
4581      return true;
4582
4583    case ImplicitConversionSequence::Worse:
4584      // Cand1 can't be better than Cand2.
4585      return false;
4586
4587    case ImplicitConversionSequence::Indistinguishable:
4588      // Do nothing
4589      break;
4590    }
4591  }
4592
4593  return false;
4594}
4595
4596/// \brief Computes the best viable function (C++ 13.3.3)
4597/// within an overload candidate set.
4598///
4599/// \param CandidateSet the set of candidate functions.
4600///
4601/// \param Loc the location of the function name (or operator symbol) for
4602/// which overload resolution occurs.
4603///
4604/// \param Best f overload resolution was successful or found a deleted
4605/// function, Best points to the candidate function found.
4606///
4607/// \returns The result of overload resolution.
4608OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4609                                           SourceLocation Loc,
4610                                        OverloadCandidateSet::iterator& Best) {
4611  // Find the best viable function.
4612  Best = CandidateSet.end();
4613  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4614       Cand != CandidateSet.end(); ++Cand) {
4615    if (Cand->Viable) {
4616      if (Best == CandidateSet.end() ||
4617          isBetterOverloadCandidate(*Cand, *Best, Loc))
4618        Best = Cand;
4619    }
4620  }
4621
4622  // If we didn't find any viable functions, abort.
4623  if (Best == CandidateSet.end())
4624    return OR_No_Viable_Function;
4625
4626  // Make sure that this function is better than every other viable
4627  // function. If not, we have an ambiguity.
4628  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4629       Cand != CandidateSet.end(); ++Cand) {
4630    if (Cand->Viable &&
4631        Cand != Best &&
4632        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4633      Best = CandidateSet.end();
4634      return OR_Ambiguous;
4635    }
4636  }
4637
4638  // Best is the best viable function.
4639  if (Best->Function &&
4640      (Best->Function->isDeleted() ||
4641       Best->Function->getAttr<UnavailableAttr>()))
4642    return OR_Deleted;
4643
4644  // C++ [basic.def.odr]p2:
4645  //   An overloaded function is used if it is selected by overload resolution
4646  //   when referred to from a potentially-evaluated expression. [Note: this
4647  //   covers calls to named functions (5.2.2), operator overloading
4648  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4649  //   placement new (5.3.4), as well as non-default initialization (8.5).
4650  if (Best->Function)
4651    MarkDeclarationReferenced(Loc, Best->Function);
4652  return OR_Success;
4653}
4654
4655namespace {
4656
4657enum OverloadCandidateKind {
4658  oc_function,
4659  oc_method,
4660  oc_constructor,
4661  oc_function_template,
4662  oc_method_template,
4663  oc_constructor_template,
4664  oc_implicit_default_constructor,
4665  oc_implicit_copy_constructor,
4666  oc_implicit_copy_assignment
4667};
4668
4669OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4670                                                FunctionDecl *Fn,
4671                                                std::string &Description) {
4672  bool isTemplate = false;
4673
4674  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4675    isTemplate = true;
4676    Description = S.getTemplateArgumentBindingsText(
4677      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4678  }
4679
4680  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4681    if (!Ctor->isImplicit())
4682      return isTemplate ? oc_constructor_template : oc_constructor;
4683
4684    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4685                                     : oc_implicit_default_constructor;
4686  }
4687
4688  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4689    // This actually gets spelled 'candidate function' for now, but
4690    // it doesn't hurt to split it out.
4691    if (!Meth->isImplicit())
4692      return isTemplate ? oc_method_template : oc_method;
4693
4694    assert(Meth->isCopyAssignment()
4695           && "implicit method is not copy assignment operator?");
4696    return oc_implicit_copy_assignment;
4697  }
4698
4699  return isTemplate ? oc_function_template : oc_function;
4700}
4701
4702} // end anonymous namespace
4703
4704// Notes the location of an overload candidate.
4705void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4706  std::string FnDesc;
4707  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4708  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4709    << (unsigned) K << FnDesc;
4710}
4711
4712/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4713/// "lead" diagnostic; it will be given two arguments, the source and
4714/// target types of the conversion.
4715void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4716                                       SourceLocation CaretLoc,
4717                                       const PartialDiagnostic &PDiag) {
4718  Diag(CaretLoc, PDiag)
4719    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4720  for (AmbiguousConversionSequence::const_iterator
4721         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4722    NoteOverloadCandidate(*I);
4723  }
4724}
4725
4726namespace {
4727
4728void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4729  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4730  assert(Conv.isBad());
4731  assert(Cand->Function && "for now, candidate must be a function");
4732  FunctionDecl *Fn = Cand->Function;
4733
4734  // There's a conversion slot for the object argument if this is a
4735  // non-constructor method.  Note that 'I' corresponds the
4736  // conversion-slot index.
4737  bool isObjectArgument = false;
4738  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4739    if (I == 0)
4740      isObjectArgument = true;
4741    else
4742      I--;
4743  }
4744
4745  std::string FnDesc;
4746  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4747
4748  Expr *FromExpr = Conv.Bad.FromExpr;
4749  QualType FromTy = Conv.Bad.getFromType();
4750  QualType ToTy = Conv.Bad.getToType();
4751
4752  if (FromTy == S.Context.OverloadTy) {
4753    assert(FromExpr && "overload set argument came from implicit argument?");
4754    Expr *E = FromExpr->IgnoreParens();
4755    if (isa<UnaryOperator>(E))
4756      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4757    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4758
4759    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4760      << (unsigned) FnKind << FnDesc
4761      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4762      << ToTy << Name << I+1;
4763    return;
4764  }
4765
4766  // Do some hand-waving analysis to see if the non-viability is due
4767  // to a qualifier mismatch.
4768  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4769  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4770  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4771    CToTy = RT->getPointeeType();
4772  else {
4773    // TODO: detect and diagnose the full richness of const mismatches.
4774    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4775      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4776        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4777  }
4778
4779  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4780      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4781    // It is dumb that we have to do this here.
4782    while (isa<ArrayType>(CFromTy))
4783      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4784    while (isa<ArrayType>(CToTy))
4785      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4786
4787    Qualifiers FromQs = CFromTy.getQualifiers();
4788    Qualifiers ToQs = CToTy.getQualifiers();
4789
4790    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4791      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4792        << (unsigned) FnKind << FnDesc
4793        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4794        << FromTy
4795        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4796        << (unsigned) isObjectArgument << I+1;
4797      return;
4798    }
4799
4800    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4801    assert(CVR && "unexpected qualifiers mismatch");
4802
4803    if (isObjectArgument) {
4804      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4805        << (unsigned) FnKind << FnDesc
4806        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4807        << FromTy << (CVR - 1);
4808    } else {
4809      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4810        << (unsigned) FnKind << FnDesc
4811        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4812        << FromTy << (CVR - 1) << I+1;
4813    }
4814    return;
4815  }
4816
4817  // Diagnose references or pointers to incomplete types differently,
4818  // since it's far from impossible that the incompleteness triggered
4819  // the failure.
4820  QualType TempFromTy = FromTy.getNonReferenceType();
4821  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4822    TempFromTy = PTy->getPointeeType();
4823  if (TempFromTy->isIncompleteType()) {
4824    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4825      << (unsigned) FnKind << FnDesc
4826      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4827      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4828    return;
4829  }
4830
4831  // TODO: specialize more based on the kind of mismatch
4832  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4833    << (unsigned) FnKind << FnDesc
4834    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4835    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4836}
4837
4838void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4839                           unsigned NumFormalArgs) {
4840  // TODO: treat calls to a missing default constructor as a special case
4841
4842  FunctionDecl *Fn = Cand->Function;
4843  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4844
4845  unsigned MinParams = Fn->getMinRequiredArguments();
4846
4847  // at least / at most / exactly
4848  unsigned mode, modeCount;
4849  if (NumFormalArgs < MinParams) {
4850    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4851    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4852      mode = 0; // "at least"
4853    else
4854      mode = 2; // "exactly"
4855    modeCount = MinParams;
4856  } else {
4857    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4858    if (MinParams != FnTy->getNumArgs())
4859      mode = 1; // "at most"
4860    else
4861      mode = 2; // "exactly"
4862    modeCount = FnTy->getNumArgs();
4863  }
4864
4865  std::string Description;
4866  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4867
4868  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4869    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4870}
4871
4872/// Diagnose a failed template-argument deduction.
4873void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4874                          Expr **Args, unsigned NumArgs) {
4875  FunctionDecl *Fn = Cand->Function; // pattern
4876
4877  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4878                                   Cand->DeductionFailure.TemplateParameter);
4879
4880  switch (Cand->DeductionFailure.Result) {
4881  case Sema::TDK_Success:
4882    llvm_unreachable("TDK_success while diagnosing bad deduction");
4883
4884  case Sema::TDK_Incomplete: {
4885    NamedDecl *ParamD;
4886    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4887    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4888    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4889    assert(ParamD && "no parameter found for incomplete deduction result");
4890    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4891      << ParamD->getDeclName();
4892    return;
4893  }
4894
4895  // TODO: diagnose these individually, then kill off
4896  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4897  case Sema::TDK_InstantiationDepth:
4898  case Sema::TDK_Inconsistent:
4899  case Sema::TDK_InconsistentQuals:
4900  case Sema::TDK_SubstitutionFailure:
4901  case Sema::TDK_NonDeducedMismatch:
4902  case Sema::TDK_TooManyArguments:
4903  case Sema::TDK_TooFewArguments:
4904  case Sema::TDK_InvalidExplicitArguments:
4905  case Sema::TDK_FailedOverloadResolution:
4906    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4907    return;
4908  }
4909}
4910
4911/// Generates a 'note' diagnostic for an overload candidate.  We've
4912/// already generated a primary error at the call site.
4913///
4914/// It really does need to be a single diagnostic with its caret
4915/// pointed at the candidate declaration.  Yes, this creates some
4916/// major challenges of technical writing.  Yes, this makes pointing
4917/// out problems with specific arguments quite awkward.  It's still
4918/// better than generating twenty screens of text for every failed
4919/// overload.
4920///
4921/// It would be great to be able to express per-candidate problems
4922/// more richly for those diagnostic clients that cared, but we'd
4923/// still have to be just as careful with the default diagnostics.
4924void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4925                           Expr **Args, unsigned NumArgs) {
4926  FunctionDecl *Fn = Cand->Function;
4927
4928  // Note deleted candidates, but only if they're viable.
4929  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4930    std::string FnDesc;
4931    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4932
4933    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4934      << FnKind << FnDesc << Fn->isDeleted();
4935    return;
4936  }
4937
4938  // We don't really have anything else to say about viable candidates.
4939  if (Cand->Viable) {
4940    S.NoteOverloadCandidate(Fn);
4941    return;
4942  }
4943
4944  switch (Cand->FailureKind) {
4945  case ovl_fail_too_many_arguments:
4946  case ovl_fail_too_few_arguments:
4947    return DiagnoseArityMismatch(S, Cand, NumArgs);
4948
4949  case ovl_fail_bad_deduction:
4950    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4951
4952  case ovl_fail_trivial_conversion:
4953  case ovl_fail_bad_final_conversion:
4954  case ovl_fail_final_conversion_not_exact:
4955    return S.NoteOverloadCandidate(Fn);
4956
4957  case ovl_fail_bad_conversion: {
4958    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4959    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4960      if (Cand->Conversions[I].isBad())
4961        return DiagnoseBadConversion(S, Cand, I);
4962
4963    // FIXME: this currently happens when we're called from SemaInit
4964    // when user-conversion overload fails.  Figure out how to handle
4965    // those conditions and diagnose them well.
4966    return S.NoteOverloadCandidate(Fn);
4967  }
4968  }
4969}
4970
4971void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4972  // Desugar the type of the surrogate down to a function type,
4973  // retaining as many typedefs as possible while still showing
4974  // the function type (and, therefore, its parameter types).
4975  QualType FnType = Cand->Surrogate->getConversionType();
4976  bool isLValueReference = false;
4977  bool isRValueReference = false;
4978  bool isPointer = false;
4979  if (const LValueReferenceType *FnTypeRef =
4980        FnType->getAs<LValueReferenceType>()) {
4981    FnType = FnTypeRef->getPointeeType();
4982    isLValueReference = true;
4983  } else if (const RValueReferenceType *FnTypeRef =
4984               FnType->getAs<RValueReferenceType>()) {
4985    FnType = FnTypeRef->getPointeeType();
4986    isRValueReference = true;
4987  }
4988  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4989    FnType = FnTypePtr->getPointeeType();
4990    isPointer = true;
4991  }
4992  // Desugar down to a function type.
4993  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4994  // Reconstruct the pointer/reference as appropriate.
4995  if (isPointer) FnType = S.Context.getPointerType(FnType);
4996  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4997  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4998
4999  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5000    << FnType;
5001}
5002
5003void NoteBuiltinOperatorCandidate(Sema &S,
5004                                  const char *Opc,
5005                                  SourceLocation OpLoc,
5006                                  OverloadCandidate *Cand) {
5007  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5008  std::string TypeStr("operator");
5009  TypeStr += Opc;
5010  TypeStr += "(";
5011  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5012  if (Cand->Conversions.size() == 1) {
5013    TypeStr += ")";
5014    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5015  } else {
5016    TypeStr += ", ";
5017    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5018    TypeStr += ")";
5019    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5020  }
5021}
5022
5023void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5024                                  OverloadCandidate *Cand) {
5025  unsigned NoOperands = Cand->Conversions.size();
5026  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5027    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5028    if (ICS.isBad()) break; // all meaningless after first invalid
5029    if (!ICS.isAmbiguous()) continue;
5030
5031    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5032                              S.PDiag(diag::note_ambiguous_type_conversion));
5033  }
5034}
5035
5036SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5037  if (Cand->Function)
5038    return Cand->Function->getLocation();
5039  if (Cand->IsSurrogate)
5040    return Cand->Surrogate->getLocation();
5041  return SourceLocation();
5042}
5043
5044struct CompareOverloadCandidatesForDisplay {
5045  Sema &S;
5046  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5047
5048  bool operator()(const OverloadCandidate *L,
5049                  const OverloadCandidate *R) {
5050    // Fast-path this check.
5051    if (L == R) return false;
5052
5053    // Order first by viability.
5054    if (L->Viable) {
5055      if (!R->Viable) return true;
5056
5057      // TODO: introduce a tri-valued comparison for overload
5058      // candidates.  Would be more worthwhile if we had a sort
5059      // that could exploit it.
5060      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5061      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5062    } else if (R->Viable)
5063      return false;
5064
5065    assert(L->Viable == R->Viable);
5066
5067    // Criteria by which we can sort non-viable candidates:
5068    if (!L->Viable) {
5069      // 1. Arity mismatches come after other candidates.
5070      if (L->FailureKind == ovl_fail_too_many_arguments ||
5071          L->FailureKind == ovl_fail_too_few_arguments)
5072        return false;
5073      if (R->FailureKind == ovl_fail_too_many_arguments ||
5074          R->FailureKind == ovl_fail_too_few_arguments)
5075        return true;
5076
5077      // 2. Bad conversions come first and are ordered by the number
5078      // of bad conversions and quality of good conversions.
5079      if (L->FailureKind == ovl_fail_bad_conversion) {
5080        if (R->FailureKind != ovl_fail_bad_conversion)
5081          return true;
5082
5083        // If there's any ordering between the defined conversions...
5084        // FIXME: this might not be transitive.
5085        assert(L->Conversions.size() == R->Conversions.size());
5086
5087        int leftBetter = 0;
5088        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5089        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5090          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5091                                                       R->Conversions[I])) {
5092          case ImplicitConversionSequence::Better:
5093            leftBetter++;
5094            break;
5095
5096          case ImplicitConversionSequence::Worse:
5097            leftBetter--;
5098            break;
5099
5100          case ImplicitConversionSequence::Indistinguishable:
5101            break;
5102          }
5103        }
5104        if (leftBetter > 0) return true;
5105        if (leftBetter < 0) return false;
5106
5107      } else if (R->FailureKind == ovl_fail_bad_conversion)
5108        return false;
5109
5110      // TODO: others?
5111    }
5112
5113    // Sort everything else by location.
5114    SourceLocation LLoc = GetLocationForCandidate(L);
5115    SourceLocation RLoc = GetLocationForCandidate(R);
5116
5117    // Put candidates without locations (e.g. builtins) at the end.
5118    if (LLoc.isInvalid()) return false;
5119    if (RLoc.isInvalid()) return true;
5120
5121    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5122  }
5123};
5124
5125/// CompleteNonViableCandidate - Normally, overload resolution only
5126/// computes up to the first
5127void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5128                                Expr **Args, unsigned NumArgs) {
5129  assert(!Cand->Viable);
5130
5131  // Don't do anything on failures other than bad conversion.
5132  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5133
5134  // Skip forward to the first bad conversion.
5135  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5136  unsigned ConvCount = Cand->Conversions.size();
5137  while (true) {
5138    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5139    ConvIdx++;
5140    if (Cand->Conversions[ConvIdx - 1].isBad())
5141      break;
5142  }
5143
5144  if (ConvIdx == ConvCount)
5145    return;
5146
5147  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5148         "remaining conversion is initialized?");
5149
5150  // FIXME: these should probably be preserved from the overload
5151  // operation somehow.
5152  bool SuppressUserConversions = false;
5153  bool ForceRValue = false;
5154
5155  const FunctionProtoType* Proto;
5156  unsigned ArgIdx = ConvIdx;
5157
5158  if (Cand->IsSurrogate) {
5159    QualType ConvType
5160      = Cand->Surrogate->getConversionType().getNonReferenceType();
5161    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5162      ConvType = ConvPtrType->getPointeeType();
5163    Proto = ConvType->getAs<FunctionProtoType>();
5164    ArgIdx--;
5165  } else if (Cand->Function) {
5166    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5167    if (isa<CXXMethodDecl>(Cand->Function) &&
5168        !isa<CXXConstructorDecl>(Cand->Function))
5169      ArgIdx--;
5170  } else {
5171    // Builtin binary operator with a bad first conversion.
5172    assert(ConvCount <= 3);
5173    for (; ConvIdx != ConvCount; ++ConvIdx)
5174      Cand->Conversions[ConvIdx]
5175        = S.TryCopyInitialization(Args[ConvIdx],
5176                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
5177                                  SuppressUserConversions, ForceRValue,
5178                                  /*InOverloadResolution*/ true);
5179    return;
5180  }
5181
5182  // Fill in the rest of the conversions.
5183  unsigned NumArgsInProto = Proto->getNumArgs();
5184  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5185    if (ArgIdx < NumArgsInProto)
5186      Cand->Conversions[ConvIdx]
5187        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
5188                                  SuppressUserConversions, ForceRValue,
5189                                  /*InOverloadResolution=*/true);
5190    else
5191      Cand->Conversions[ConvIdx].setEllipsis();
5192  }
5193}
5194
5195} // end anonymous namespace
5196
5197/// PrintOverloadCandidates - When overload resolution fails, prints
5198/// diagnostic messages containing the candidates in the candidate
5199/// set.
5200void
5201Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5202                              OverloadCandidateDisplayKind OCD,
5203                              Expr **Args, unsigned NumArgs,
5204                              const char *Opc,
5205                              SourceLocation OpLoc) {
5206  // Sort the candidates by viability and position.  Sorting directly would
5207  // be prohibitive, so we make a set of pointers and sort those.
5208  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5209  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5210  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5211                                  LastCand = CandidateSet.end();
5212       Cand != LastCand; ++Cand) {
5213    if (Cand->Viable)
5214      Cands.push_back(Cand);
5215    else if (OCD == OCD_AllCandidates) {
5216      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5217      Cands.push_back(Cand);
5218    }
5219  }
5220
5221  std::sort(Cands.begin(), Cands.end(),
5222            CompareOverloadCandidatesForDisplay(*this));
5223
5224  bool ReportedAmbiguousConversions = false;
5225
5226  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5227  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5228    OverloadCandidate *Cand = *I;
5229
5230    if (Cand->Function)
5231      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5232    else if (Cand->IsSurrogate)
5233      NoteSurrogateCandidate(*this, Cand);
5234
5235    // This a builtin candidate.  We do not, in general, want to list
5236    // every possible builtin candidate.
5237    else if (Cand->Viable) {
5238      // Generally we only see ambiguities including viable builtin
5239      // operators if overload resolution got screwed up by an
5240      // ambiguous user-defined conversion.
5241      //
5242      // FIXME: It's quite possible for different conversions to see
5243      // different ambiguities, though.
5244      if (!ReportedAmbiguousConversions) {
5245        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5246        ReportedAmbiguousConversions = true;
5247      }
5248
5249      // If this is a viable builtin, print it.
5250      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5251    }
5252  }
5253}
5254
5255static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5256  if (isa<UnresolvedLookupExpr>(E))
5257    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5258
5259  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5260}
5261
5262/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5263/// an overloaded function (C++ [over.over]), where @p From is an
5264/// expression with overloaded function type and @p ToType is the type
5265/// we're trying to resolve to. For example:
5266///
5267/// @code
5268/// int f(double);
5269/// int f(int);
5270///
5271/// int (*pfd)(double) = f; // selects f(double)
5272/// @endcode
5273///
5274/// This routine returns the resulting FunctionDecl if it could be
5275/// resolved, and NULL otherwise. When @p Complain is true, this
5276/// routine will emit diagnostics if there is an error.
5277FunctionDecl *
5278Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5279                                         bool Complain,
5280                                         DeclAccessPair &FoundResult) {
5281  QualType FunctionType = ToType;
5282  bool IsMember = false;
5283  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5284    FunctionType = ToTypePtr->getPointeeType();
5285  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5286    FunctionType = ToTypeRef->getPointeeType();
5287  else if (const MemberPointerType *MemTypePtr =
5288                    ToType->getAs<MemberPointerType>()) {
5289    FunctionType = MemTypePtr->getPointeeType();
5290    IsMember = true;
5291  }
5292
5293  // C++ [over.over]p1:
5294  //   [...] [Note: any redundant set of parentheses surrounding the
5295  //   overloaded function name is ignored (5.1). ]
5296  // C++ [over.over]p1:
5297  //   [...] The overloaded function name can be preceded by the &
5298  //   operator.
5299  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5300  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5301  if (OvlExpr->hasExplicitTemplateArgs()) {
5302    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5303    ExplicitTemplateArgs = &ETABuffer;
5304  }
5305
5306  // We expect a pointer or reference to function, or a function pointer.
5307  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5308  if (!FunctionType->isFunctionType()) {
5309    if (Complain)
5310      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5311        << OvlExpr->getName() << ToType;
5312
5313    return 0;
5314  }
5315
5316  assert(From->getType() == Context.OverloadTy);
5317
5318  // Look through all of the overloaded functions, searching for one
5319  // whose type matches exactly.
5320  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5321  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5322
5323  bool FoundNonTemplateFunction = false;
5324  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5325         E = OvlExpr->decls_end(); I != E; ++I) {
5326    // Look through any using declarations to find the underlying function.
5327    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5328
5329    // C++ [over.over]p3:
5330    //   Non-member functions and static member functions match
5331    //   targets of type "pointer-to-function" or "reference-to-function."
5332    //   Nonstatic member functions match targets of
5333    //   type "pointer-to-member-function."
5334    // Note that according to DR 247, the containing class does not matter.
5335
5336    if (FunctionTemplateDecl *FunctionTemplate
5337          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5338      if (CXXMethodDecl *Method
5339            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5340        // Skip non-static function templates when converting to pointer, and
5341        // static when converting to member pointer.
5342        if (Method->isStatic() == IsMember)
5343          continue;
5344      } else if (IsMember)
5345        continue;
5346
5347      // C++ [over.over]p2:
5348      //   If the name is a function template, template argument deduction is
5349      //   done (14.8.2.2), and if the argument deduction succeeds, the
5350      //   resulting template argument list is used to generate a single
5351      //   function template specialization, which is added to the set of
5352      //   overloaded functions considered.
5353      // FIXME: We don't really want to build the specialization here, do we?
5354      FunctionDecl *Specialization = 0;
5355      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5356      if (TemplateDeductionResult Result
5357            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5358                                      FunctionType, Specialization, Info)) {
5359        // FIXME: make a note of the failed deduction for diagnostics.
5360        (void)Result;
5361      } else {
5362        // FIXME: If the match isn't exact, shouldn't we just drop this as
5363        // a candidate? Find a testcase before changing the code.
5364        assert(FunctionType
5365                 == Context.getCanonicalType(Specialization->getType()));
5366        Matches.push_back(std::make_pair(I.getPair(),
5367                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5368      }
5369
5370      continue;
5371    }
5372
5373    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5374      // Skip non-static functions when converting to pointer, and static
5375      // when converting to member pointer.
5376      if (Method->isStatic() == IsMember)
5377        continue;
5378
5379      // If we have explicit template arguments, skip non-templates.
5380      if (OvlExpr->hasExplicitTemplateArgs())
5381        continue;
5382    } else if (IsMember)
5383      continue;
5384
5385    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5386      QualType ResultTy;
5387      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5388          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5389                               ResultTy)) {
5390        Matches.push_back(std::make_pair(I.getPair(),
5391                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5392        FoundNonTemplateFunction = true;
5393      }
5394    }
5395  }
5396
5397  // If there were 0 or 1 matches, we're done.
5398  if (Matches.empty()) {
5399    if (Complain) {
5400      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5401        << OvlExpr->getName() << FunctionType;
5402      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5403                                 E = OvlExpr->decls_end();
5404           I != E; ++I)
5405        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5406          NoteOverloadCandidate(F);
5407    }
5408
5409    return 0;
5410  } else if (Matches.size() == 1) {
5411    FunctionDecl *Result = Matches[0].second;
5412    FoundResult = Matches[0].first;
5413    MarkDeclarationReferenced(From->getLocStart(), Result);
5414    if (Complain)
5415      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5416    return Result;
5417  }
5418
5419  // C++ [over.over]p4:
5420  //   If more than one function is selected, [...]
5421  if (!FoundNonTemplateFunction) {
5422    //   [...] and any given function template specialization F1 is
5423    //   eliminated if the set contains a second function template
5424    //   specialization whose function template is more specialized
5425    //   than the function template of F1 according to the partial
5426    //   ordering rules of 14.5.5.2.
5427
5428    // The algorithm specified above is quadratic. We instead use a
5429    // two-pass algorithm (similar to the one used to identify the
5430    // best viable function in an overload set) that identifies the
5431    // best function template (if it exists).
5432
5433    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5434    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5435      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5436
5437    UnresolvedSetIterator Result =
5438        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5439                           TPOC_Other, From->getLocStart(),
5440                           PDiag(),
5441                           PDiag(diag::err_addr_ovl_ambiguous)
5442                               << Matches[0].second->getDeclName(),
5443                           PDiag(diag::note_ovl_candidate)
5444                               << (unsigned) oc_function_template);
5445    assert(Result != MatchesCopy.end() && "no most-specialized template");
5446    MarkDeclarationReferenced(From->getLocStart(), *Result);
5447    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5448    if (Complain)
5449      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5450    return cast<FunctionDecl>(*Result);
5451  }
5452
5453  //   [...] any function template specializations in the set are
5454  //   eliminated if the set also contains a non-template function, [...]
5455  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5456    if (Matches[I].second->getPrimaryTemplate() == 0)
5457      ++I;
5458    else {
5459      Matches[I] = Matches[--N];
5460      Matches.set_size(N);
5461    }
5462  }
5463
5464  // [...] After such eliminations, if any, there shall remain exactly one
5465  // selected function.
5466  if (Matches.size() == 1) {
5467    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5468    FoundResult = Matches[0].first;
5469    if (Complain)
5470      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5471    return cast<FunctionDecl>(Matches[0].second);
5472  }
5473
5474  // FIXME: We should probably return the same thing that BestViableFunction
5475  // returns (even if we issue the diagnostics here).
5476  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5477    << Matches[0].second->getDeclName();
5478  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5479    NoteOverloadCandidate(Matches[I].second);
5480  return 0;
5481}
5482
5483/// \brief Given an expression that refers to an overloaded function, try to
5484/// resolve that overloaded function expression down to a single function.
5485///
5486/// This routine can only resolve template-ids that refer to a single function
5487/// template, where that template-id refers to a single template whose template
5488/// arguments are either provided by the template-id or have defaults,
5489/// as described in C++0x [temp.arg.explicit]p3.
5490FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5491  // C++ [over.over]p1:
5492  //   [...] [Note: any redundant set of parentheses surrounding the
5493  //   overloaded function name is ignored (5.1). ]
5494  // C++ [over.over]p1:
5495  //   [...] The overloaded function name can be preceded by the &
5496  //   operator.
5497
5498  if (From->getType() != Context.OverloadTy)
5499    return 0;
5500
5501  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5502
5503  // If we didn't actually find any template-ids, we're done.
5504  if (!OvlExpr->hasExplicitTemplateArgs())
5505    return 0;
5506
5507  TemplateArgumentListInfo ExplicitTemplateArgs;
5508  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5509
5510  // Look through all of the overloaded functions, searching for one
5511  // whose type matches exactly.
5512  FunctionDecl *Matched = 0;
5513  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5514         E = OvlExpr->decls_end(); I != E; ++I) {
5515    // C++0x [temp.arg.explicit]p3:
5516    //   [...] In contexts where deduction is done and fails, or in contexts
5517    //   where deduction is not done, if a template argument list is
5518    //   specified and it, along with any default template arguments,
5519    //   identifies a single function template specialization, then the
5520    //   template-id is an lvalue for the function template specialization.
5521    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5522
5523    // C++ [over.over]p2:
5524    //   If the name is a function template, template argument deduction is
5525    //   done (14.8.2.2), and if the argument deduction succeeds, the
5526    //   resulting template argument list is used to generate a single
5527    //   function template specialization, which is added to the set of
5528    //   overloaded functions considered.
5529    FunctionDecl *Specialization = 0;
5530    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5531    if (TemplateDeductionResult Result
5532          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5533                                    Specialization, Info)) {
5534      // FIXME: make a note of the failed deduction for diagnostics.
5535      (void)Result;
5536      continue;
5537    }
5538
5539    // Multiple matches; we can't resolve to a single declaration.
5540    if (Matched)
5541      return 0;
5542
5543    Matched = Specialization;
5544  }
5545
5546  return Matched;
5547}
5548
5549/// \brief Add a single candidate to the overload set.
5550static void AddOverloadedCallCandidate(Sema &S,
5551                                       DeclAccessPair FoundDecl,
5552                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5553                                       Expr **Args, unsigned NumArgs,
5554                                       OverloadCandidateSet &CandidateSet,
5555                                       bool PartialOverloading) {
5556  NamedDecl *Callee = FoundDecl.getDecl();
5557  if (isa<UsingShadowDecl>(Callee))
5558    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5559
5560  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5561    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5562    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5563                           false, PartialOverloading);
5564    return;
5565  }
5566
5567  if (FunctionTemplateDecl *FuncTemplate
5568      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5569    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5570                                   ExplicitTemplateArgs,
5571                                   Args, NumArgs, CandidateSet);
5572    return;
5573  }
5574
5575  assert(false && "unhandled case in overloaded call candidate");
5576
5577  // do nothing?
5578}
5579
5580/// \brief Add the overload candidates named by callee and/or found by argument
5581/// dependent lookup to the given overload set.
5582void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5583                                       Expr **Args, unsigned NumArgs,
5584                                       OverloadCandidateSet &CandidateSet,
5585                                       bool PartialOverloading) {
5586
5587#ifndef NDEBUG
5588  // Verify that ArgumentDependentLookup is consistent with the rules
5589  // in C++0x [basic.lookup.argdep]p3:
5590  //
5591  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5592  //   and let Y be the lookup set produced by argument dependent
5593  //   lookup (defined as follows). If X contains
5594  //
5595  //     -- a declaration of a class member, or
5596  //
5597  //     -- a block-scope function declaration that is not a
5598  //        using-declaration, or
5599  //
5600  //     -- a declaration that is neither a function or a function
5601  //        template
5602  //
5603  //   then Y is empty.
5604
5605  if (ULE->requiresADL()) {
5606    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5607           E = ULE->decls_end(); I != E; ++I) {
5608      assert(!(*I)->getDeclContext()->isRecord());
5609      assert(isa<UsingShadowDecl>(*I) ||
5610             !(*I)->getDeclContext()->isFunctionOrMethod());
5611      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5612    }
5613  }
5614#endif
5615
5616  // It would be nice to avoid this copy.
5617  TemplateArgumentListInfo TABuffer;
5618  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5619  if (ULE->hasExplicitTemplateArgs()) {
5620    ULE->copyTemplateArgumentsInto(TABuffer);
5621    ExplicitTemplateArgs = &TABuffer;
5622  }
5623
5624  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5625         E = ULE->decls_end(); I != E; ++I)
5626    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5627                               Args, NumArgs, CandidateSet,
5628                               PartialOverloading);
5629
5630  if (ULE->requiresADL())
5631    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5632                                         Args, NumArgs,
5633                                         ExplicitTemplateArgs,
5634                                         CandidateSet,
5635                                         PartialOverloading);
5636}
5637
5638static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5639                                      Expr **Args, unsigned NumArgs) {
5640  Fn->Destroy(SemaRef.Context);
5641  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5642    Args[Arg]->Destroy(SemaRef.Context);
5643  return SemaRef.ExprError();
5644}
5645
5646/// Attempts to recover from a call where no functions were found.
5647///
5648/// Returns true if new candidates were found.
5649static Sema::OwningExprResult
5650BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5651                      UnresolvedLookupExpr *ULE,
5652                      SourceLocation LParenLoc,
5653                      Expr **Args, unsigned NumArgs,
5654                      SourceLocation *CommaLocs,
5655                      SourceLocation RParenLoc) {
5656
5657  CXXScopeSpec SS;
5658  if (ULE->getQualifier()) {
5659    SS.setScopeRep(ULE->getQualifier());
5660    SS.setRange(ULE->getQualifierRange());
5661  }
5662
5663  TemplateArgumentListInfo TABuffer;
5664  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5665  if (ULE->hasExplicitTemplateArgs()) {
5666    ULE->copyTemplateArgumentsInto(TABuffer);
5667    ExplicitTemplateArgs = &TABuffer;
5668  }
5669
5670  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5671                 Sema::LookupOrdinaryName);
5672  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5673    return Destroy(SemaRef, Fn, Args, NumArgs);
5674
5675  assert(!R.empty() && "lookup results empty despite recovery");
5676
5677  // Build an implicit member call if appropriate.  Just drop the
5678  // casts and such from the call, we don't really care.
5679  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5680  if ((*R.begin())->isCXXClassMember())
5681    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5682  else if (ExplicitTemplateArgs)
5683    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5684  else
5685    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5686
5687  if (NewFn.isInvalid())
5688    return Destroy(SemaRef, Fn, Args, NumArgs);
5689
5690  Fn->Destroy(SemaRef.Context);
5691
5692  // This shouldn't cause an infinite loop because we're giving it
5693  // an expression with non-empty lookup results, which should never
5694  // end up here.
5695  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5696                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5697                               CommaLocs, RParenLoc);
5698}
5699
5700/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5701/// (which eventually refers to the declaration Func) and the call
5702/// arguments Args/NumArgs, attempt to resolve the function call down
5703/// to a specific function. If overload resolution succeeds, returns
5704/// the function declaration produced by overload
5705/// resolution. Otherwise, emits diagnostics, deletes all of the
5706/// arguments and Fn, and returns NULL.
5707Sema::OwningExprResult
5708Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5709                              SourceLocation LParenLoc,
5710                              Expr **Args, unsigned NumArgs,
5711                              SourceLocation *CommaLocs,
5712                              SourceLocation RParenLoc) {
5713#ifndef NDEBUG
5714  if (ULE->requiresADL()) {
5715    // To do ADL, we must have found an unqualified name.
5716    assert(!ULE->getQualifier() && "qualified name with ADL");
5717
5718    // We don't perform ADL for implicit declarations of builtins.
5719    // Verify that this was correctly set up.
5720    FunctionDecl *F;
5721    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5722        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5723        F->getBuiltinID() && F->isImplicit())
5724      assert(0 && "performing ADL for builtin");
5725
5726    // We don't perform ADL in C.
5727    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5728  }
5729#endif
5730
5731  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5732
5733  // Add the functions denoted by the callee to the set of candidate
5734  // functions, including those from argument-dependent lookup.
5735  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5736
5737  // If we found nothing, try to recover.
5738  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5739  // bailout out if it fails.
5740  if (CandidateSet.empty())
5741    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5742                                 CommaLocs, RParenLoc);
5743
5744  OverloadCandidateSet::iterator Best;
5745  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5746  case OR_Success: {
5747    FunctionDecl *FDecl = Best->Function;
5748    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5749    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5750    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5751  }
5752
5753  case OR_No_Viable_Function:
5754    Diag(Fn->getSourceRange().getBegin(),
5755         diag::err_ovl_no_viable_function_in_call)
5756      << ULE->getName() << Fn->getSourceRange();
5757    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5758    break;
5759
5760  case OR_Ambiguous:
5761    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5762      << ULE->getName() << Fn->getSourceRange();
5763    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5764    break;
5765
5766  case OR_Deleted:
5767    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5768      << Best->Function->isDeleted()
5769      << ULE->getName()
5770      << Fn->getSourceRange();
5771    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5772    break;
5773  }
5774
5775  // Overload resolution failed. Destroy all of the subexpressions and
5776  // return NULL.
5777  Fn->Destroy(Context);
5778  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5779    Args[Arg]->Destroy(Context);
5780  return ExprError();
5781}
5782
5783static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5784  return Functions.size() > 1 ||
5785    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5786}
5787
5788/// \brief Create a unary operation that may resolve to an overloaded
5789/// operator.
5790///
5791/// \param OpLoc The location of the operator itself (e.g., '*').
5792///
5793/// \param OpcIn The UnaryOperator::Opcode that describes this
5794/// operator.
5795///
5796/// \param Functions The set of non-member functions that will be
5797/// considered by overload resolution. The caller needs to build this
5798/// set based on the context using, e.g.,
5799/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5800/// set should not contain any member functions; those will be added
5801/// by CreateOverloadedUnaryOp().
5802///
5803/// \param input The input argument.
5804Sema::OwningExprResult
5805Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5806                              const UnresolvedSetImpl &Fns,
5807                              ExprArg input) {
5808  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5809  Expr *Input = (Expr *)input.get();
5810
5811  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5812  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5813  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5814
5815  Expr *Args[2] = { Input, 0 };
5816  unsigned NumArgs = 1;
5817
5818  // For post-increment and post-decrement, add the implicit '0' as
5819  // the second argument, so that we know this is a post-increment or
5820  // post-decrement.
5821  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5822    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5823    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5824                                           SourceLocation());
5825    NumArgs = 2;
5826  }
5827
5828  if (Input->isTypeDependent()) {
5829    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5830    UnresolvedLookupExpr *Fn
5831      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5832                                     0, SourceRange(), OpName, OpLoc,
5833                                     /*ADL*/ true, IsOverloaded(Fns));
5834    Fn->addDecls(Fns.begin(), Fns.end());
5835
5836    input.release();
5837    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5838                                                   &Args[0], NumArgs,
5839                                                   Context.DependentTy,
5840                                                   OpLoc));
5841  }
5842
5843  // Build an empty overload set.
5844  OverloadCandidateSet CandidateSet(OpLoc);
5845
5846  // Add the candidates from the given function set.
5847  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5848
5849  // Add operator candidates that are member functions.
5850  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5851
5852  // Add candidates from ADL.
5853  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5854                                       Args, NumArgs,
5855                                       /*ExplicitTemplateArgs*/ 0,
5856                                       CandidateSet);
5857
5858  // Add builtin operator candidates.
5859  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5860
5861  // Perform overload resolution.
5862  OverloadCandidateSet::iterator Best;
5863  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5864  case OR_Success: {
5865    // We found a built-in operator or an overloaded operator.
5866    FunctionDecl *FnDecl = Best->Function;
5867
5868    if (FnDecl) {
5869      // We matched an overloaded operator. Build a call to that
5870      // operator.
5871
5872      // Convert the arguments.
5873      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5874        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5875
5876        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5877                                                Best->FoundDecl, Method))
5878          return ExprError();
5879      } else {
5880        // Convert the arguments.
5881        OwningExprResult InputInit
5882          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5883                                                      FnDecl->getParamDecl(0)),
5884                                      SourceLocation(),
5885                                      move(input));
5886        if (InputInit.isInvalid())
5887          return ExprError();
5888
5889        input = move(InputInit);
5890        Input = (Expr *)input.get();
5891      }
5892
5893      // Determine the result type
5894      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5895
5896      // Build the actual expression node.
5897      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5898                                               SourceLocation());
5899      UsualUnaryConversions(FnExpr);
5900
5901      input.release();
5902      Args[0] = Input;
5903      ExprOwningPtr<CallExpr> TheCall(this,
5904        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5905                                          Args, NumArgs, ResultTy, OpLoc));
5906
5907      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5908                              FnDecl))
5909        return ExprError();
5910
5911      return MaybeBindToTemporary(TheCall.release());
5912    } else {
5913      // We matched a built-in operator. Convert the arguments, then
5914      // break out so that we will build the appropriate built-in
5915      // operator node.
5916        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5917                                      Best->Conversions[0], AA_Passing))
5918          return ExprError();
5919
5920        break;
5921      }
5922    }
5923
5924    case OR_No_Viable_Function:
5925      // No viable function; fall through to handling this as a
5926      // built-in operator, which will produce an error message for us.
5927      break;
5928
5929    case OR_Ambiguous:
5930      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5931          << UnaryOperator::getOpcodeStr(Opc)
5932          << Input->getSourceRange();
5933      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5934                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5935      return ExprError();
5936
5937    case OR_Deleted:
5938      Diag(OpLoc, diag::err_ovl_deleted_oper)
5939        << Best->Function->isDeleted()
5940        << UnaryOperator::getOpcodeStr(Opc)
5941        << Input->getSourceRange();
5942      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5943      return ExprError();
5944    }
5945
5946  // Either we found no viable overloaded operator or we matched a
5947  // built-in operator. In either case, fall through to trying to
5948  // build a built-in operation.
5949  input.release();
5950  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5951}
5952
5953/// \brief Create a binary operation that may resolve to an overloaded
5954/// operator.
5955///
5956/// \param OpLoc The location of the operator itself (e.g., '+').
5957///
5958/// \param OpcIn The BinaryOperator::Opcode that describes this
5959/// operator.
5960///
5961/// \param Functions The set of non-member functions that will be
5962/// considered by overload resolution. The caller needs to build this
5963/// set based on the context using, e.g.,
5964/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5965/// set should not contain any member functions; those will be added
5966/// by CreateOverloadedBinOp().
5967///
5968/// \param LHS Left-hand argument.
5969/// \param RHS Right-hand argument.
5970Sema::OwningExprResult
5971Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5972                            unsigned OpcIn,
5973                            const UnresolvedSetImpl &Fns,
5974                            Expr *LHS, Expr *RHS) {
5975  Expr *Args[2] = { LHS, RHS };
5976  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5977
5978  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5979  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5980  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5981
5982  // If either side is type-dependent, create an appropriate dependent
5983  // expression.
5984  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5985    if (Fns.empty()) {
5986      // If there are no functions to store, just build a dependent
5987      // BinaryOperator or CompoundAssignment.
5988      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5989        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5990                                                  Context.DependentTy, OpLoc));
5991
5992      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5993                                                        Context.DependentTy,
5994                                                        Context.DependentTy,
5995                                                        Context.DependentTy,
5996                                                        OpLoc));
5997    }
5998
5999    // FIXME: save results of ADL from here?
6000    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6001    UnresolvedLookupExpr *Fn
6002      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6003                                     0, SourceRange(), OpName, OpLoc,
6004                                     /*ADL*/ true, IsOverloaded(Fns));
6005
6006    Fn->addDecls(Fns.begin(), Fns.end());
6007    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6008                                                   Args, 2,
6009                                                   Context.DependentTy,
6010                                                   OpLoc));
6011  }
6012
6013  // If this is the .* operator, which is not overloadable, just
6014  // create a built-in binary operator.
6015  if (Opc == BinaryOperator::PtrMemD)
6016    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6017
6018  // If this is the assignment operator, we only perform overload resolution
6019  // if the left-hand side is a class or enumeration type. This is actually
6020  // a hack. The standard requires that we do overload resolution between the
6021  // various built-in candidates, but as DR507 points out, this can lead to
6022  // problems. So we do it this way, which pretty much follows what GCC does.
6023  // Note that we go the traditional code path for compound assignment forms.
6024  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6025    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6026
6027  // Build an empty overload set.
6028  OverloadCandidateSet CandidateSet(OpLoc);
6029
6030  // Add the candidates from the given function set.
6031  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6032
6033  // Add operator candidates that are member functions.
6034  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6035
6036  // Add candidates from ADL.
6037  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6038                                       Args, 2,
6039                                       /*ExplicitTemplateArgs*/ 0,
6040                                       CandidateSet);
6041
6042  // Add builtin operator candidates.
6043  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6044
6045  // Perform overload resolution.
6046  OverloadCandidateSet::iterator Best;
6047  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6048    case OR_Success: {
6049      // We found a built-in operator or an overloaded operator.
6050      FunctionDecl *FnDecl = Best->Function;
6051
6052      if (FnDecl) {
6053        // We matched an overloaded operator. Build a call to that
6054        // operator.
6055
6056        // Convert the arguments.
6057        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6058          // Best->Access is only meaningful for class members.
6059          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6060
6061          OwningExprResult Arg1
6062            = PerformCopyInitialization(
6063                                        InitializedEntity::InitializeParameter(
6064                                                        FnDecl->getParamDecl(0)),
6065                                        SourceLocation(),
6066                                        Owned(Args[1]));
6067          if (Arg1.isInvalid())
6068            return ExprError();
6069
6070          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6071                                                  Best->FoundDecl, Method))
6072            return ExprError();
6073
6074          Args[1] = RHS = Arg1.takeAs<Expr>();
6075        } else {
6076          // Convert the arguments.
6077          OwningExprResult Arg0
6078            = PerformCopyInitialization(
6079                                        InitializedEntity::InitializeParameter(
6080                                                        FnDecl->getParamDecl(0)),
6081                                        SourceLocation(),
6082                                        Owned(Args[0]));
6083          if (Arg0.isInvalid())
6084            return ExprError();
6085
6086          OwningExprResult Arg1
6087            = PerformCopyInitialization(
6088                                        InitializedEntity::InitializeParameter(
6089                                                        FnDecl->getParamDecl(1)),
6090                                        SourceLocation(),
6091                                        Owned(Args[1]));
6092          if (Arg1.isInvalid())
6093            return ExprError();
6094          Args[0] = LHS = Arg0.takeAs<Expr>();
6095          Args[1] = RHS = Arg1.takeAs<Expr>();
6096        }
6097
6098        // Determine the result type
6099        QualType ResultTy
6100          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6101        ResultTy = ResultTy.getNonReferenceType();
6102
6103        // Build the actual expression node.
6104        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6105                                                 OpLoc);
6106        UsualUnaryConversions(FnExpr);
6107
6108        ExprOwningPtr<CXXOperatorCallExpr>
6109          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6110                                                          Args, 2, ResultTy,
6111                                                          OpLoc));
6112
6113        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6114                                FnDecl))
6115          return ExprError();
6116
6117        return MaybeBindToTemporary(TheCall.release());
6118      } else {
6119        // We matched a built-in operator. Convert the arguments, then
6120        // break out so that we will build the appropriate built-in
6121        // operator node.
6122        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6123                                      Best->Conversions[0], AA_Passing) ||
6124            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6125                                      Best->Conversions[1], AA_Passing))
6126          return ExprError();
6127
6128        break;
6129      }
6130    }
6131
6132    case OR_No_Viable_Function: {
6133      // C++ [over.match.oper]p9:
6134      //   If the operator is the operator , [...] and there are no
6135      //   viable functions, then the operator is assumed to be the
6136      //   built-in operator and interpreted according to clause 5.
6137      if (Opc == BinaryOperator::Comma)
6138        break;
6139
6140      // For class as left operand for assignment or compound assigment operator
6141      // do not fall through to handling in built-in, but report that no overloaded
6142      // assignment operator found
6143      OwningExprResult Result = ExprError();
6144      if (Args[0]->getType()->isRecordType() &&
6145          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6146        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6147             << BinaryOperator::getOpcodeStr(Opc)
6148             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6149      } else {
6150        // No viable function; try to create a built-in operation, which will
6151        // produce an error. Then, show the non-viable candidates.
6152        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6153      }
6154      assert(Result.isInvalid() &&
6155             "C++ binary operator overloading is missing candidates!");
6156      if (Result.isInvalid())
6157        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6158                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6159      return move(Result);
6160    }
6161
6162    case OR_Ambiguous:
6163      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6164          << BinaryOperator::getOpcodeStr(Opc)
6165          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6166      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6167                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6168      return ExprError();
6169
6170    case OR_Deleted:
6171      Diag(OpLoc, diag::err_ovl_deleted_oper)
6172        << Best->Function->isDeleted()
6173        << BinaryOperator::getOpcodeStr(Opc)
6174        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6175      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6176      return ExprError();
6177  }
6178
6179  // We matched a built-in operator; build it.
6180  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6181}
6182
6183Action::OwningExprResult
6184Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6185                                         SourceLocation RLoc,
6186                                         ExprArg Base, ExprArg Idx) {
6187  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6188                    static_cast<Expr*>(Idx.get()) };
6189  DeclarationName OpName =
6190      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6191
6192  // If either side is type-dependent, create an appropriate dependent
6193  // expression.
6194  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6195
6196    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6197    UnresolvedLookupExpr *Fn
6198      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6199                                     0, SourceRange(), OpName, LLoc,
6200                                     /*ADL*/ true, /*Overloaded*/ false);
6201    // Can't add any actual overloads yet
6202
6203    Base.release();
6204    Idx.release();
6205    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6206                                                   Args, 2,
6207                                                   Context.DependentTy,
6208                                                   RLoc));
6209  }
6210
6211  // Build an empty overload set.
6212  OverloadCandidateSet CandidateSet(LLoc);
6213
6214  // Subscript can only be overloaded as a member function.
6215
6216  // Add operator candidates that are member functions.
6217  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6218
6219  // Add builtin operator candidates.
6220  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6221
6222  // Perform overload resolution.
6223  OverloadCandidateSet::iterator Best;
6224  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6225    case OR_Success: {
6226      // We found a built-in operator or an overloaded operator.
6227      FunctionDecl *FnDecl = Best->Function;
6228
6229      if (FnDecl) {
6230        // We matched an overloaded operator. Build a call to that
6231        // operator.
6232
6233        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6234
6235        // Convert the arguments.
6236        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6237        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6238                                                Best->FoundDecl, Method))
6239          return ExprError();
6240
6241        // Convert the arguments.
6242        OwningExprResult InputInit
6243          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6244                                                      FnDecl->getParamDecl(0)),
6245                                      SourceLocation(),
6246                                      Owned(Args[1]));
6247        if (InputInit.isInvalid())
6248          return ExprError();
6249
6250        Args[1] = InputInit.takeAs<Expr>();
6251
6252        // Determine the result type
6253        QualType ResultTy
6254          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6255        ResultTy = ResultTy.getNonReferenceType();
6256
6257        // Build the actual expression node.
6258        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6259                                                 LLoc);
6260        UsualUnaryConversions(FnExpr);
6261
6262        Base.release();
6263        Idx.release();
6264        ExprOwningPtr<CXXOperatorCallExpr>
6265          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6266                                                          FnExpr, Args, 2,
6267                                                          ResultTy, RLoc));
6268
6269        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6270                                FnDecl))
6271          return ExprError();
6272
6273        return MaybeBindToTemporary(TheCall.release());
6274      } else {
6275        // We matched a built-in operator. Convert the arguments, then
6276        // break out so that we will build the appropriate built-in
6277        // operator node.
6278        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6279                                      Best->Conversions[0], AA_Passing) ||
6280            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6281                                      Best->Conversions[1], AA_Passing))
6282          return ExprError();
6283
6284        break;
6285      }
6286    }
6287
6288    case OR_No_Viable_Function: {
6289      if (CandidateSet.empty())
6290        Diag(LLoc, diag::err_ovl_no_oper)
6291          << Args[0]->getType() << /*subscript*/ 0
6292          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6293      else
6294        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6295          << Args[0]->getType()
6296          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6297      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6298                              "[]", LLoc);
6299      return ExprError();
6300    }
6301
6302    case OR_Ambiguous:
6303      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6304          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6305      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6306                              "[]", LLoc);
6307      return ExprError();
6308
6309    case OR_Deleted:
6310      Diag(LLoc, diag::err_ovl_deleted_oper)
6311        << Best->Function->isDeleted() << "[]"
6312        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6313      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6314                              "[]", LLoc);
6315      return ExprError();
6316    }
6317
6318  // We matched a built-in operator; build it.
6319  Base.release();
6320  Idx.release();
6321  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6322                                         Owned(Args[1]), RLoc);
6323}
6324
6325/// BuildCallToMemberFunction - Build a call to a member
6326/// function. MemExpr is the expression that refers to the member
6327/// function (and includes the object parameter), Args/NumArgs are the
6328/// arguments to the function call (not including the object
6329/// parameter). The caller needs to validate that the member
6330/// expression refers to a member function or an overloaded member
6331/// function.
6332Sema::OwningExprResult
6333Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6334                                SourceLocation LParenLoc, Expr **Args,
6335                                unsigned NumArgs, SourceLocation *CommaLocs,
6336                                SourceLocation RParenLoc) {
6337  // Dig out the member expression. This holds both the object
6338  // argument and the member function we're referring to.
6339  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6340
6341  MemberExpr *MemExpr;
6342  CXXMethodDecl *Method = 0;
6343  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6344  NestedNameSpecifier *Qualifier = 0;
6345  if (isa<MemberExpr>(NakedMemExpr)) {
6346    MemExpr = cast<MemberExpr>(NakedMemExpr);
6347    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6348    FoundDecl = MemExpr->getFoundDecl();
6349    Qualifier = MemExpr->getQualifier();
6350  } else {
6351    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6352    Qualifier = UnresExpr->getQualifier();
6353
6354    QualType ObjectType = UnresExpr->getBaseType();
6355
6356    // Add overload candidates
6357    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6358
6359    // FIXME: avoid copy.
6360    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6361    if (UnresExpr->hasExplicitTemplateArgs()) {
6362      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6363      TemplateArgs = &TemplateArgsBuffer;
6364    }
6365
6366    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6367           E = UnresExpr->decls_end(); I != E; ++I) {
6368
6369      NamedDecl *Func = *I;
6370      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6371      if (isa<UsingShadowDecl>(Func))
6372        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6373
6374      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6375        // If explicit template arguments were provided, we can't call a
6376        // non-template member function.
6377        if (TemplateArgs)
6378          continue;
6379
6380        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6381                           Args, NumArgs,
6382                           CandidateSet, /*SuppressUserConversions=*/false);
6383      } else {
6384        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6385                                   I.getPair(), ActingDC, TemplateArgs,
6386                                   ObjectType, Args, NumArgs,
6387                                   CandidateSet,
6388                                   /*SuppressUsedConversions=*/false);
6389      }
6390    }
6391
6392    DeclarationName DeclName = UnresExpr->getMemberName();
6393
6394    OverloadCandidateSet::iterator Best;
6395    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6396    case OR_Success:
6397      Method = cast<CXXMethodDecl>(Best->Function);
6398      FoundDecl = Best->FoundDecl;
6399      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6400      break;
6401
6402    case OR_No_Viable_Function:
6403      Diag(UnresExpr->getMemberLoc(),
6404           diag::err_ovl_no_viable_member_function_in_call)
6405        << DeclName << MemExprE->getSourceRange();
6406      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6407      // FIXME: Leaking incoming expressions!
6408      return ExprError();
6409
6410    case OR_Ambiguous:
6411      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6412        << DeclName << MemExprE->getSourceRange();
6413      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6414      // FIXME: Leaking incoming expressions!
6415      return ExprError();
6416
6417    case OR_Deleted:
6418      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6419        << Best->Function->isDeleted()
6420        << DeclName << MemExprE->getSourceRange();
6421      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6422      // FIXME: Leaking incoming expressions!
6423      return ExprError();
6424    }
6425
6426    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6427
6428    // If overload resolution picked a static member, build a
6429    // non-member call based on that function.
6430    if (Method->isStatic()) {
6431      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6432                                   Args, NumArgs, RParenLoc);
6433    }
6434
6435    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6436  }
6437
6438  assert(Method && "Member call to something that isn't a method?");
6439  ExprOwningPtr<CXXMemberCallExpr>
6440    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6441                                                  NumArgs,
6442                                  Method->getResultType().getNonReferenceType(),
6443                                  RParenLoc));
6444
6445  // Check for a valid return type.
6446  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6447                          TheCall.get(), Method))
6448    return ExprError();
6449
6450  // Convert the object argument (for a non-static member function call).
6451  // We only need to do this if there was actually an overload; otherwise
6452  // it was done at lookup.
6453  Expr *ObjectArg = MemExpr->getBase();
6454  if (!Method->isStatic() &&
6455      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6456                                          FoundDecl, Method))
6457    return ExprError();
6458  MemExpr->setBase(ObjectArg);
6459
6460  // Convert the rest of the arguments
6461  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6462  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6463                              RParenLoc))
6464    return ExprError();
6465
6466  if (CheckFunctionCall(Method, TheCall.get()))
6467    return ExprError();
6468
6469  return MaybeBindToTemporary(TheCall.release());
6470}
6471
6472/// BuildCallToObjectOfClassType - Build a call to an object of class
6473/// type (C++ [over.call.object]), which can end up invoking an
6474/// overloaded function call operator (@c operator()) or performing a
6475/// user-defined conversion on the object argument.
6476Sema::ExprResult
6477Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6478                                   SourceLocation LParenLoc,
6479                                   Expr **Args, unsigned NumArgs,
6480                                   SourceLocation *CommaLocs,
6481                                   SourceLocation RParenLoc) {
6482  assert(Object->getType()->isRecordType() && "Requires object type argument");
6483  const RecordType *Record = Object->getType()->getAs<RecordType>();
6484
6485  // C++ [over.call.object]p1:
6486  //  If the primary-expression E in the function call syntax
6487  //  evaluates to a class object of type "cv T", then the set of
6488  //  candidate functions includes at least the function call
6489  //  operators of T. The function call operators of T are obtained by
6490  //  ordinary lookup of the name operator() in the context of
6491  //  (E).operator().
6492  OverloadCandidateSet CandidateSet(LParenLoc);
6493  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6494
6495  if (RequireCompleteType(LParenLoc, Object->getType(),
6496                          PDiag(diag::err_incomplete_object_call)
6497                          << Object->getSourceRange()))
6498    return true;
6499
6500  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6501  LookupQualifiedName(R, Record->getDecl());
6502  R.suppressDiagnostics();
6503
6504  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6505       Oper != OperEnd; ++Oper) {
6506    AddMethodCandidate(Oper.getPair(), Object->getType(),
6507                       Args, NumArgs, CandidateSet,
6508                       /*SuppressUserConversions=*/ false);
6509  }
6510
6511  // C++ [over.call.object]p2:
6512  //   In addition, for each conversion function declared in T of the
6513  //   form
6514  //
6515  //        operator conversion-type-id () cv-qualifier;
6516  //
6517  //   where cv-qualifier is the same cv-qualification as, or a
6518  //   greater cv-qualification than, cv, and where conversion-type-id
6519  //   denotes the type "pointer to function of (P1,...,Pn) returning
6520  //   R", or the type "reference to pointer to function of
6521  //   (P1,...,Pn) returning R", or the type "reference to function
6522  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6523  //   is also considered as a candidate function. Similarly,
6524  //   surrogate call functions are added to the set of candidate
6525  //   functions for each conversion function declared in an
6526  //   accessible base class provided the function is not hidden
6527  //   within T by another intervening declaration.
6528  const UnresolvedSetImpl *Conversions
6529    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6530  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6531         E = Conversions->end(); I != E; ++I) {
6532    NamedDecl *D = *I;
6533    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6534    if (isa<UsingShadowDecl>(D))
6535      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6536
6537    // Skip over templated conversion functions; they aren't
6538    // surrogates.
6539    if (isa<FunctionTemplateDecl>(D))
6540      continue;
6541
6542    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6543
6544    // Strip the reference type (if any) and then the pointer type (if
6545    // any) to get down to what might be a function type.
6546    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6547    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6548      ConvType = ConvPtrType->getPointeeType();
6549
6550    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6551      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6552                            Object->getType(), Args, NumArgs,
6553                            CandidateSet);
6554  }
6555
6556  // Perform overload resolution.
6557  OverloadCandidateSet::iterator Best;
6558  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6559  case OR_Success:
6560    // Overload resolution succeeded; we'll build the appropriate call
6561    // below.
6562    break;
6563
6564  case OR_No_Viable_Function:
6565    if (CandidateSet.empty())
6566      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6567        << Object->getType() << /*call*/ 1
6568        << Object->getSourceRange();
6569    else
6570      Diag(Object->getSourceRange().getBegin(),
6571           diag::err_ovl_no_viable_object_call)
6572        << Object->getType() << Object->getSourceRange();
6573    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6574    break;
6575
6576  case OR_Ambiguous:
6577    Diag(Object->getSourceRange().getBegin(),
6578         diag::err_ovl_ambiguous_object_call)
6579      << Object->getType() << Object->getSourceRange();
6580    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6581    break;
6582
6583  case OR_Deleted:
6584    Diag(Object->getSourceRange().getBegin(),
6585         diag::err_ovl_deleted_object_call)
6586      << Best->Function->isDeleted()
6587      << Object->getType() << Object->getSourceRange();
6588    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6589    break;
6590  }
6591
6592  if (Best == CandidateSet.end()) {
6593    // We had an error; delete all of the subexpressions and return
6594    // the error.
6595    Object->Destroy(Context);
6596    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6597      Args[ArgIdx]->Destroy(Context);
6598    return true;
6599  }
6600
6601  if (Best->Function == 0) {
6602    // Since there is no function declaration, this is one of the
6603    // surrogate candidates. Dig out the conversion function.
6604    CXXConversionDecl *Conv
6605      = cast<CXXConversionDecl>(
6606                         Best->Conversions[0].UserDefined.ConversionFunction);
6607
6608    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6609
6610    // We selected one of the surrogate functions that converts the
6611    // object parameter to a function pointer. Perform the conversion
6612    // on the object argument, then let ActOnCallExpr finish the job.
6613
6614    // Create an implicit member expr to refer to the conversion operator.
6615    // and then call it.
6616    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6617                                                   Conv);
6618
6619    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6620                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6621                         CommaLocs, RParenLoc).result();
6622  }
6623
6624  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6625
6626  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6627  // that calls this method, using Object for the implicit object
6628  // parameter and passing along the remaining arguments.
6629  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6630  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6631
6632  unsigned NumArgsInProto = Proto->getNumArgs();
6633  unsigned NumArgsToCheck = NumArgs;
6634
6635  // Build the full argument list for the method call (the
6636  // implicit object parameter is placed at the beginning of the
6637  // list).
6638  Expr **MethodArgs;
6639  if (NumArgs < NumArgsInProto) {
6640    NumArgsToCheck = NumArgsInProto;
6641    MethodArgs = new Expr*[NumArgsInProto + 1];
6642  } else {
6643    MethodArgs = new Expr*[NumArgs + 1];
6644  }
6645  MethodArgs[0] = Object;
6646  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6647    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6648
6649  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6650                                          SourceLocation());
6651  UsualUnaryConversions(NewFn);
6652
6653  // Once we've built TheCall, all of the expressions are properly
6654  // owned.
6655  QualType ResultTy = Method->getResultType().getNonReferenceType();
6656  ExprOwningPtr<CXXOperatorCallExpr>
6657    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6658                                                    MethodArgs, NumArgs + 1,
6659                                                    ResultTy, RParenLoc));
6660  delete [] MethodArgs;
6661
6662  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6663                          Method))
6664    return true;
6665
6666  // We may have default arguments. If so, we need to allocate more
6667  // slots in the call for them.
6668  if (NumArgs < NumArgsInProto)
6669    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6670  else if (NumArgs > NumArgsInProto)
6671    NumArgsToCheck = NumArgsInProto;
6672
6673  bool IsError = false;
6674
6675  // Initialize the implicit object parameter.
6676  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6677                                                 Best->FoundDecl, Method);
6678  TheCall->setArg(0, Object);
6679
6680
6681  // Check the argument types.
6682  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6683    Expr *Arg;
6684    if (i < NumArgs) {
6685      Arg = Args[i];
6686
6687      // Pass the argument.
6688
6689      OwningExprResult InputInit
6690        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6691                                                    Method->getParamDecl(i)),
6692                                    SourceLocation(), Owned(Arg));
6693
6694      IsError |= InputInit.isInvalid();
6695      Arg = InputInit.takeAs<Expr>();
6696    } else {
6697      OwningExprResult DefArg
6698        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6699      if (DefArg.isInvalid()) {
6700        IsError = true;
6701        break;
6702      }
6703
6704      Arg = DefArg.takeAs<Expr>();
6705    }
6706
6707    TheCall->setArg(i + 1, Arg);
6708  }
6709
6710  // If this is a variadic call, handle args passed through "...".
6711  if (Proto->isVariadic()) {
6712    // Promote the arguments (C99 6.5.2.2p7).
6713    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6714      Expr *Arg = Args[i];
6715      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6716      TheCall->setArg(i + 1, Arg);
6717    }
6718  }
6719
6720  if (IsError) return true;
6721
6722  if (CheckFunctionCall(Method, TheCall.get()))
6723    return true;
6724
6725  return MaybeBindToTemporary(TheCall.release()).result();
6726}
6727
6728/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6729///  (if one exists), where @c Base is an expression of class type and
6730/// @c Member is the name of the member we're trying to find.
6731Sema::OwningExprResult
6732Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6733  Expr *Base = static_cast<Expr *>(BaseIn.get());
6734  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6735
6736  SourceLocation Loc = Base->getExprLoc();
6737
6738  // C++ [over.ref]p1:
6739  //
6740  //   [...] An expression x->m is interpreted as (x.operator->())->m
6741  //   for a class object x of type T if T::operator->() exists and if
6742  //   the operator is selected as the best match function by the
6743  //   overload resolution mechanism (13.3).
6744  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6745  OverloadCandidateSet CandidateSet(Loc);
6746  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6747
6748  if (RequireCompleteType(Loc, Base->getType(),
6749                          PDiag(diag::err_typecheck_incomplete_tag)
6750                            << Base->getSourceRange()))
6751    return ExprError();
6752
6753  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6754  LookupQualifiedName(R, BaseRecord->getDecl());
6755  R.suppressDiagnostics();
6756
6757  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6758       Oper != OperEnd; ++Oper) {
6759    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6760                       /*SuppressUserConversions=*/false);
6761  }
6762
6763  // Perform overload resolution.
6764  OverloadCandidateSet::iterator Best;
6765  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6766  case OR_Success:
6767    // Overload resolution succeeded; we'll build the call below.
6768    break;
6769
6770  case OR_No_Viable_Function:
6771    if (CandidateSet.empty())
6772      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6773        << Base->getType() << Base->getSourceRange();
6774    else
6775      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6776        << "operator->" << Base->getSourceRange();
6777    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6778    return ExprError();
6779
6780  case OR_Ambiguous:
6781    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6782      << "->" << Base->getSourceRange();
6783    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6784    return ExprError();
6785
6786  case OR_Deleted:
6787    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6788      << Best->Function->isDeleted()
6789      << "->" << Base->getSourceRange();
6790    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6791    return ExprError();
6792  }
6793
6794  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6795
6796  // Convert the object parameter.
6797  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6798  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6799                                          Best->FoundDecl, Method))
6800    return ExprError();
6801
6802  // No concerns about early exits now.
6803  BaseIn.release();
6804
6805  // Build the operator call.
6806  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6807                                           SourceLocation());
6808  UsualUnaryConversions(FnExpr);
6809
6810  QualType ResultTy = Method->getResultType().getNonReferenceType();
6811  ExprOwningPtr<CXXOperatorCallExpr>
6812    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6813                                                    &Base, 1, ResultTy, OpLoc));
6814
6815  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6816                          Method))
6817          return ExprError();
6818  return move(TheCall);
6819}
6820
6821/// FixOverloadedFunctionReference - E is an expression that refers to
6822/// a C++ overloaded function (possibly with some parentheses and
6823/// perhaps a '&' around it). We have resolved the overloaded function
6824/// to the function declaration Fn, so patch up the expression E to
6825/// refer (possibly indirectly) to Fn. Returns the new expr.
6826Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6827                                           FunctionDecl *Fn) {
6828  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6829    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6830                                                   Found, Fn);
6831    if (SubExpr == PE->getSubExpr())
6832      return PE->Retain();
6833
6834    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6835  }
6836
6837  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6838    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6839                                                   Found, Fn);
6840    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6841                               SubExpr->getType()) &&
6842           "Implicit cast type cannot be determined from overload");
6843    if (SubExpr == ICE->getSubExpr())
6844      return ICE->Retain();
6845
6846    return new (Context) ImplicitCastExpr(ICE->getType(),
6847                                          ICE->getCastKind(),
6848                                          SubExpr,
6849                                          ICE->isLvalueCast());
6850  }
6851
6852  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6853    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6854           "Can only take the address of an overloaded function");
6855    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6856      if (Method->isStatic()) {
6857        // Do nothing: static member functions aren't any different
6858        // from non-member functions.
6859      } else {
6860        // Fix the sub expression, which really has to be an
6861        // UnresolvedLookupExpr holding an overloaded member function
6862        // or template.
6863        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6864                                                       Found, Fn);
6865        if (SubExpr == UnOp->getSubExpr())
6866          return UnOp->Retain();
6867
6868        assert(isa<DeclRefExpr>(SubExpr)
6869               && "fixed to something other than a decl ref");
6870        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6871               && "fixed to a member ref with no nested name qualifier");
6872
6873        // We have taken the address of a pointer to member
6874        // function. Perform the computation here so that we get the
6875        // appropriate pointer to member type.
6876        QualType ClassType
6877          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6878        QualType MemPtrType
6879          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6880
6881        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6882                                           MemPtrType, UnOp->getOperatorLoc());
6883      }
6884    }
6885    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6886                                                   Found, Fn);
6887    if (SubExpr == UnOp->getSubExpr())
6888      return UnOp->Retain();
6889
6890    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6891                                     Context.getPointerType(SubExpr->getType()),
6892                                       UnOp->getOperatorLoc());
6893  }
6894
6895  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6896    // FIXME: avoid copy.
6897    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6898    if (ULE->hasExplicitTemplateArgs()) {
6899      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6900      TemplateArgs = &TemplateArgsBuffer;
6901    }
6902
6903    return DeclRefExpr::Create(Context,
6904                               ULE->getQualifier(),
6905                               ULE->getQualifierRange(),
6906                               Fn,
6907                               ULE->getNameLoc(),
6908                               Fn->getType(),
6909                               TemplateArgs);
6910  }
6911
6912  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6913    // FIXME: avoid copy.
6914    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6915    if (MemExpr->hasExplicitTemplateArgs()) {
6916      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6917      TemplateArgs = &TemplateArgsBuffer;
6918    }
6919
6920    Expr *Base;
6921
6922    // If we're filling in
6923    if (MemExpr->isImplicitAccess()) {
6924      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6925        return DeclRefExpr::Create(Context,
6926                                   MemExpr->getQualifier(),
6927                                   MemExpr->getQualifierRange(),
6928                                   Fn,
6929                                   MemExpr->getMemberLoc(),
6930                                   Fn->getType(),
6931                                   TemplateArgs);
6932      } else {
6933        SourceLocation Loc = MemExpr->getMemberLoc();
6934        if (MemExpr->getQualifier())
6935          Loc = MemExpr->getQualifierRange().getBegin();
6936        Base = new (Context) CXXThisExpr(Loc,
6937                                         MemExpr->getBaseType(),
6938                                         /*isImplicit=*/true);
6939      }
6940    } else
6941      Base = MemExpr->getBase()->Retain();
6942
6943    return MemberExpr::Create(Context, Base,
6944                              MemExpr->isArrow(),
6945                              MemExpr->getQualifier(),
6946                              MemExpr->getQualifierRange(),
6947                              Fn,
6948                              Found,
6949                              MemExpr->getMemberLoc(),
6950                              TemplateArgs,
6951                              Fn->getType());
6952  }
6953
6954  assert(false && "Invalid reference to overloaded function");
6955  return E->Retain();
6956}
6957
6958Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6959                                                          DeclAccessPair Found,
6960                                                            FunctionDecl *Fn) {
6961  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6962}
6963
6964} // end namespace clang
6965